Bonte, Anja; Neuweger, Heiko; Goesmann, Alexander; Thonar, Cécile; Mäder, Paul; Langenkämper, Georg; Niehaus, Karsten
2014-10-01
Identification of biomarkers capable of distinguishing organic and conventional products would be highly welcome to improve the strength of food quality assurance. Metabolite profiling was used for biomarker search in organic and conventional wheat grain (Triticum aestivum L.) of 11 different old and new bread wheat cultivars grown in the DOK system comparison trial. Metabolites were extracted using methanol and analysed by gas chromatography-mass spectrometry. Altogether 48 metabolites and 245 non-identified metabolites (TAGs) were detected in the cultivar Runal. Principal component analysis showed a sample clustering according to farming systems and significant differences in peak areas between the farming systems for 10 Runal metabolites. Results obtained from all 11 cultivars indicated a greater influence of the cultivar than the farming system on metabolite concentrations. Nevertheless, a t-test on data of all cultivars still detected 5 metabolites and 11 TAGs with significant differences between the farming systems. Based on individual cultivars, metabolite profiling showed promising results for the categorization of organic and conventional wheat. Further investigations are necessary with wheat from more growing seasons and locations before definite conclusions can be drawn concerning the feasibility to evolve a combined set of biomarkers for organically grown wheat using metabolite profiles. © 2014 Society of Chemical Industry.
Development of automated analytical capability for the early detection of diabetes mellitus
NASA Technical Reports Server (NTRS)
Zlatkis, A.
1976-01-01
The total profile of volatile metabolites in urine of patients with diabetes mellitus was studied. Because of the drastic abnormalities in the metabolism of carbohydrates, lipids, and proteins connected with diabetes it was expected that apart from acetone further characteristic abnormalities occur in the profiles if volatile urinary metabolites in cases of diabetes mellitus. Quantitative and qualitative changes were found in these urines as compared to the urines of normal subjects.
Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.
Aretz, Ina; Meierhofer, David
2016-04-27
Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.
Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology
Aretz, Ina; Meierhofer, David
2016-01-01
Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology. PMID:27128910
Kozlovsky, A G; Zhelifonova, V P; Antipova, T V; Baskunov, B P; Ivanushkina, N E; Ozerskaya, S M
2014-01-01
Data were obtained on the species composition of mycelial fungi isolated from the air of workrooms and production premises in cheese-making and meat-processing plants. The strains studied were shown to be capable of producing various low molecular weight compounds. Many of them are mycotoxins such as α-cyclopiazonic acid (CPA), mycophenolic acid (MPA), citrinin, cladosporin, roquefortine and ergot alkaloids. The profiles of the secondary metabolites were used to elucidate the species' names of the isolated strains.
Higashi, Tatsuya; Ogawa, Shoujiro
2016-10-25
The analysis of the qualitative and quantitative changes of metabolites in body fluids and tissues yields valuable information for the diagnosis, pathological analysis and treatment of many diseases. Recently, liquid chromatography/electrospray ionization-(tandem) mass spectrometry [LC/ESI-MS(/MS)] has been widely used for these purposes due to the high separation capability of LC, broad coverage of ESI for various compounds and high specificity of MS(/MS). However, there are still two major problems to be solved regarding the biological sample analysis; lack of sensitivity and limited availability of stable isotope-labeled analogues (internal standards, ISs) for most metabolites. Stable isotope-coded derivatization (ICD) can be the answer for these problems. By the ICD, different isotope-coded moieties are introduced to the metabolites and one of the resulting derivatives can serve as the IS, which minimize the matrix effects. Furthermore, the derivatization can improve the ESI efficiency, fragmentation property in the MS/MS and chromatographic behavior of the metabolites, which lead to a high sensitivity and specificity in the various detection modes. Based on this background, this article reviews the recently-reported isotope-coded ESI-enhancing derivatization (ICEED) reagents, which are key components for the ICD-based LC/MS(/MS) studies, and their applications to the detection, identification, quantification and profiling of metabolites in human and animal samples. The LC/MS(/MS) using the ICEED reagents is the powerful method especially for the differential analysis (relative quantification) of metabolites in two comparative samples, simultaneous quantification of multiple metabolites whose stable isotope-labeled ISs are not available, and submetabolome profiling. Copyright © 2016 Elsevier B.V. All rights reserved.
Zha, Haihong; Cai, Yuping; Yin, Yandong; Wang, Zhuozhong; Li, Kang; Zhu, Zheng-Jiang
2018-03-20
The complexity of metabolome presents a great analytical challenge for quantitative metabolite profiling, and restricts the application of metabolomics in biomarker discovery. Targeted metabolomics using multiple-reaction monitoring (MRM) technique has excellent capability for quantitative analysis, but suffers from the limited metabolite coverage. To address this challenge, we developed a new strategy, namely, SWATHtoMRM, which utilizes the broad coverage of SWATH-MS technology to develop high-coverage targeted metabolomics method. Specifically, SWATH-MS technique was first utilized to untargeted profile one pooled biological sample and to acquire the MS 2 spectra for all metabolites. Then, SWATHtoMRM was used to extract the large-scale MRM transitions for targeted analysis with coverage as high as 1000-2000 metabolites. Then, we demonstrated the advantages of SWATHtoMRM method in quantitative analysis such as coverage, reproducibility, sensitivity, and dynamic range. Finally, we applied our SWATHtoMRM approach to discover potential metabolite biomarkers for colorectal cancer (CRC) diagnosis. A high-coverage targeted metabolomics method with 1303 metabolites in one injection was developed to profile colorectal cancer tissues from CRC patients. A total of 20 potential metabolite biomarkers were discovered and validated for CRC diagnosis. In plasma samples from CRC patients, 17 out of 20 potential biomarkers were further validated to be associated with tumor resection, which may have a great potential in assessing the prognosis of CRC patients after tumor resection. Together, the SWATHtoMRM strategy provides a new way to develop high-coverage targeted metabolomics method, and facilitates the application of targeted metabolomics in disease biomarker discovery. The SWATHtoMRM program is freely available on the Internet ( http://www.zhulab.cn/software.php ).
Omics Approaches To Probe Microbiota and Drug Metabolism Interactions.
Nichols, Robert G; Hume, Nicole E; Smith, Philip B; Peters, Jeffrey M; Patterson, Andrew D
2016-12-19
The drug metabolism field has long recognized the beneficial and sometimes deleterious influence of microbiota in the absorption, distribution, metabolism, and excretion of drugs. Early pioneering work with the sulfanilamide precursor prontosil pointed toward the necessity not only to better understand the metabolic capabilities of the microbiota but also, importantly, to identify the specific microbiota involved in the generation and metabolism of drugs. However, technological limitations important for cataloging the microbiota community as well as for understanding and/or predicting their metabolic capabilities hindered progress. Current advances including mass spectrometry-based metabolite profiling as well as culture-independent sequence-based identification and functional analysis of microbiota have begun to shed light on microbial metabolism. In this review, case studies will be presented to highlight key aspects (e.g., microbiota identification, metabolic function and prediction, metabolite identification, and profiling) that have helped to clarify how the microbiota might impact or be impacted by drug metabolism. Lastly, a perspective of the future of this field is presented that takes into account what important knowledge is lacking and how to tackle these problems.
Xing, Jie; Zang, Meitong; Liu, Huixiang
2017-11-15
Metabolite profiling of combination drugs in complex matrix is a big challenge. Development of an effective data mining technique for simultaneously extracting metabolites of one parent drug from both background matrix and combined drug-related signals could be a solution. This study presented a novel high resolution mass spectrometry (HRMS)-based data-mining strategy to fast and comprehensive metabolite identification of combination drugs in human. The model drug combination was verapamil-irbesartan (VER-IRB), which is widely used in clinic to treat hypertension. First, mass defect filter (MDF), as a targeted data mining tool, worked effectively except for those metabolites with similar MDF values. Second, the accurate mass-based background subtraction (BS), as an untargeted data-mining tool, was able to recover all relevant metabolites of VER-IRB from the full-scan MS dataset except for trace metabolites buried in the background noise and/or combined drug-related signals. Third, the novel ring double bond (RDB; valence values of elements in structure) filter, could show rich structural information in more sensitive full-scan MS chromatograms; however, it had a low capability to remove background noise and was difficult to differentiate the metabolites with RDB coverage. Fourth, an integrated strategy, i.e., untargeted BS followed by RDB, was effective for metabolite identification of VER and IRB, which have different RDB values. Majority of matrix signals were firstly removed using BS. Metabolite ions for each parent drug were then isolated from remaining background matrix and combined drug-related signals by imposing of preset RDB values/ranges around the parent drug and selected core substructures. In parallel, MDF was used to recover potential metabolites with similar RDB. As a result, a total of 74 metabolites were found for VER-IRB in human plasma and urine, among which ten metabolites have not been previously reported in human. The results demonstrated that the combination of accurate mass-based multiple data-mining techniques, i.e., untargeted background subtraction followed by ring double bond filtering in parallel with targeted mass defect filtering, can be a valuable tool for rapid metabolite profiling of combination drug. Copyright © 2017 Elsevier B.V. All rights reserved.
van Doorn, Martijn; Vogels, Jack; Tas, Albert; van Hoogdalem, Ewoud Jan; Burggraaf, Jacobus; Cohen, Adam; van der Greef, Jan
2007-05-01
* Many studies have investigated the effects of thiazolidinediones on isolated biochemical markers (biomarkers) or sets of markers in Type 2 diabetes mellitus (T2DM) patients and healthy volunteers. * However, a limited number of parameters is not capable of capturing the broad response to pharmacological intervention with these types of (pleiotropic) drugs, which are known to activate the nuclear transcription factor peroxisome proliferator activated receptor gamma (PPARgamma). * Our study tested the new hypothesis (primary objective) that nuclear magnetic resonance (NMR)-based metabolomics, capable of providing a readout of global metabolite concentrations in biofluids, could provide a better (more holistic) picture of the the multiparametric response to pharmacological intervention with a PPARgamma agonist and thus yield a broad array of biomarkers ('fingerprint') that could be used to support and expedite clinical development of novel thiazolidinediones. * NMR-based metabolomics coupled with sophisticated bioinformatics is indeed capable of identifying rapid changes in global metabolite profiles in urine and plasma (treatment 'fingerprints'), which may be linked to the well-documented early changes in hepatic insulin senstitivity following thiazolidinedione intervention in T2DM patients. * Consequently, this approach (upon proper validation) comprises an important new addition to the early clinical development 'proof of concept' toolbox for thiazolidinediones, and may also be applicable to other classes of drugs. To explore the usefulness of metabolomics as a method to obtain a broad array of biomarkers for the pharmacological effects of rosiglitazone (RSG) in plasma and urine samples from patients with type 2 diabetes mellitus (T2DM) and healthy volunteers (HVs). Additionally, we explored the differences in metabolite concentrations between T2DM patients and HVs to identify a putative metabolic disease fingerprint for T2DM. (1)H nuclear magnetic resonance (NMR) spectroscopy was used to profile blood plasma and urine samples of 16 T2DM patients and 16 HVs receiving RSG 4 mg or placebo twice daily for 6 weeks. Multivariate analyses were employed to identify treatment- and disease-related effects on global endogenous metabolite profiles. RSG treatment led to a rapid relative reduction in urinary hippurate and aromatic amino acids as well as an increase in plasma branched chain amino acids and alanine, glutamine and glutamate in the T2DM group. No RSG treatment effects were noted in the HV group. Exploratory baseline analyses showed that urine and plasma metabolites discriminated between genders and disease state. T2DM patients showed a relative increase in urinary concentrations of several amino acids, citrate, phospho(enol)pyruvate and hippurate. Putative T2DM-related changes in plasma were largely attributable to increased plasma lipids. The results of this study indicate that NMR-based metabolomics of urine and blood plasma samples can yield a broad array of early responding biomarkers for the effects of RSG in T2DM patients, as well as nonglucose biomarkers that may reflect the T2DM state.
Pathway Activity Profiling (PAPi): from the metabolite profile to the metabolic pathway activity.
Aggio, Raphael B M; Ruggiero, Katya; Villas-Bôas, Silas Granato
2010-12-01
Metabolomics is one of the most recent omics-technologies and uses robust analytical techniques to screen low molecular mass metabolites in biological samples. It has evolved very quickly during the last decade. However, metabolomics datasets are considered highly complex when used to relate metabolite levels to metabolic pathway activity. Despite recent developments in bioinformatics, which have improved the quality of metabolomics data, there is still no straightforward method capable of correlating metabolite level to the activity of different metabolic pathways operating within the cells. Thus, this kind of analysis still depends on extremely laborious and time-consuming processes. Here, we present a new algorithm Pathway Activity Profiling (PAPi) with which we are able to compare metabolic pathway activities from metabolite profiles. The applicability and potential of PAPi was demonstrated using a previously published data from the yeast Saccharomyces cerevisiae. PAPi was able to support the biological interpretations of the previously published observations and, in addition, generated new hypotheses in a straightforward manner. However, PAPi is time consuming to perform manually. Thus, we also present here a new R-software package (PAPi) which implements the PAPi algorithm and facilitates its usage to quickly compare metabolic pathways activities between different experimental conditions. Using the identified metabolites and their respective abundances as input, the PAPi package calculates pathways' Activity Scores, which represents the potential metabolic pathways activities and allows their comparison between conditions. PAPi also performs principal components analysis and analysis of variance or t-test to investigate differences in activity level between experimental conditions. In addition, PAPi generates comparative graphs highlighting up- and down-regulated pathway activity. These datasets are available in http://www.4shared.com/file/hTWyndYU/extra.html and http://www.4shared.com/file/VbQIIDeu/intra.html. PAPi package is available in: http://www.4shared.com/file/s0uIYWIg/PAPi_10.html s.villas-boas@auckland.ac.nz Supplementary data are available at Bioinformatics online.
Liu, Zhao-Ying
2012-12-01
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time-of-flight MS coupled with LC (LC-IT-TOF-MS) has successfully integrated ease of operation, compatibility with LC flow rates and data-dependent MS(n) with high mass accuracy and mass resolving power. The MS(n) and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC-IT-TOF-MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT-TOF instrument. Then, a general workflow for metabolite profiling using LC-IT-TOF-MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC-IT-TOF-MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.
Metabolic Response of Escherichia coli upon Treatment with Hypochlorite at Sub-Lethal Concentrations
Winter, Jeannette; Eisenreich, Wolfgang
2015-01-01
Hypochlorite is a reactive oxygen species that is worldwide as an antibacterial disinfectant. Hypochlorite exposure is known to cause oxidative damage to DNA and proteins. As a response to these effects, the metabolite profiles of organisms treated with sub-lethal doses of hypochlorite are assumed to be severely modified; however, the nature of these changes is hardly understood. Therefore, using nuclear magnetic resonance spectroscopy and gas chromatography-coupled mass spectrometry, we analyzed the time-dependent impact of hypochlorite exposure with a sub-lethal concentration (50 µM) on the metabolite profile of the Escherichia coli strain MG1655. Principle component analysis clearly distinguished between the metabolite profiles of bacteria treated for 0, 5,10, 20, 40, or 60 min. Major changes in the relative amounts of fatty acids, acetic acid, and formic acid occurred within the first 5 min. Comparative gas chromatography-coupled mass spectrometry analyses revealed that the amounts of free methionine and alanine were significantly decreased in the treated cells, demonstrating their susceptibility to hypochlorite exposure. The concentrations of succinate, urea, orotic acid, 2-aminobutyric acid, and 2-hydroxybutyric acid were also severely affected, indicating general changes in the metabolic network by hypochlorite. However, most metabolite levels relaxed to the reference values of untreated cells after 40–60 min, reflecting the capability of E. coli to rapidly adapt to environmental stress factors such as the presence of sub-lethal oxidant levels. PMID:25932918
Ekanayake, Piyumi N; Kaur, Jatinder; Tian, Pei; Rochfort, Simone J; Guthridge, Kathryn M; Sawbridge, Timothy I; Spangenberg, German C; Forster, John W
2017-06-01
Symbiotic associations between tall fescue grasses and asexual Epichloë fungal endophytes exhibit biosynthesis of alkaloid compounds causing both beneficial and detrimental effects. Candidate novel endophytes with favourable chemotypic profiles have been identified in germplasm collections by screening for genetic diversity, followed by metabolite profile analysis in endogenous genetic backgrounds. A subset of candidates was subjected to genome survey sequencing to detect the presence or absence and structural status of known genes for biosynthesis of the major alkaloid classes. The capacity to produce specific metabolites was directly predictable from metabolic data. In addition, study of duplicated gene structure in heteroploid genomic constitutions provided further evidence for the origin of such endophytes. Selected strains were inoculated into meristem-derived callus cultures from specific tall fescue genotypes to perform isogenic comparisons of alkaloid profile in different host backgrounds, revealing evidence for host-specific quantitative control of metabolite production, consistent with previous studies. Certain strains were capable of both inoculation and formation of longer-term associations with a nonhost species, perennial ryegrass (Lolium perenne L.). Discovery and primary characterisation of novel endophytes by DNA analysis, followed by confirmatory metabolic studies, offers improvements of speed and efficiency and hence accelerated deployment in pasture grass improvement programs.
Li, Tongtong; Long, Meng; Li, Huan; Gatesoupe, François-Joël; Zhang, Xujie; Zhang, Qianqian; Feng, Dongyue; Li, Aihua
2017-01-01
Gut microbiota play key roles in host nutrition and metabolism. However, little is known about the relationship between host genetics, gut microbiota and metabolic profiles. Here, we used high-throughput sequencing and gas chromatography/mass spectrometry approaches to characterize the microbiota composition and the metabolite profiles in the gut of five cyprinid fish species with three different feeding habits raised under identical husbandry conditions. Our results showed that host species and feeding habits significantly affect not only gut microbiota composition but also metabolite profiles (ANOSIM, p ≤ 0.05). Mantel test demonstrated that host phylogeny, gut microbiota, and metabolite profiles were significantly related to each other (p ≤ 0.05). Additionally, the carps with the same feeding habits had more similarity in gut microbiota composition and metabolite profiles. Various metabolites were correlated positively with bacterial taxa involved in food degradation. Our results shed new light on the microbiome and metabolite profiles in the gut content of cyprinid fishes, and highlighted the correlations between host genotype, fish gut microbiome and putative functions, and gut metabolite profiles. PMID:28367147
Cuadros-Inostroza, Alvaro; Caldana, Camila; Redestig, Henning; Kusano, Miyako; Lisec, Jan; Peña-Cortés, Hugo; Willmitzer, Lothar; Hannah, Matthew A
2009-12-16
Metabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks. We introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R. TargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data.
2009-01-01
Background Metabolite profiling, the simultaneous quantification of multiple metabolites in an experiment, is becoming increasingly popular, particularly with the rise of systems-level biology. The workhorse in this field is gas-chromatography hyphenated with mass spectrometry (GC-MS). The high-throughput of this technology coupled with a demand for large experiments has led to data pre-processing, i.e. the quantification of metabolites across samples, becoming a major bottleneck. Existing software has several limitations, including restricted maximum sample size, systematic errors and low flexibility. However, the biggest limitation is that the resulting data usually require extensive hand-curation, which is subjective and can typically take several days to weeks. Results We introduce the TargetSearch package, an open source tool which is a flexible and accurate method for pre-processing even very large numbers of GC-MS samples within hours. We developed a novel strategy to iteratively correct and update retention time indices for searching and identifying metabolites. The package is written in the R programming language with computationally intensive functions written in C for speed and performance. The package includes a graphical user interface to allow easy use by those unfamiliar with R. Conclusions TargetSearch allows fast and accurate data pre-processing for GC-MS experiments and overcomes the sample number limitations and manual curation requirements of existing software. We validate our method by carrying out an analysis against both a set of known chemical standard mixtures and of a biological experiment. In addition we demonstrate its capabilities and speed by comparing it with other GC-MS pre-processing tools. We believe this package will greatly ease current bottlenecks and facilitate the analysis of metabolic profiling data. PMID:20015393
Species differences in the formation of vabicaserin carbamoyl glucuronide.
Tong, Zeen; Chandrasekaran, Appavu; DeMaio, William; Jordan, Ronald; Li, Hongshan; Moore, Robin; Poola, Nagaraju; Burghart, Peter; Hultin, Theresa; Scatina, JoAnn
2010-04-01
Vabicaserin is a potent 5-hydroxtryptamine 2C full agonist with therapeutic potential for a wide array of psychiatric disorders. Metabolite profiles indicated that vabicaserin was extensively metabolized via carbamoyl glucuronidation after oral administration in humans. In the present study, the differences in the extent of vabicaserin carbamoyl glucuronide (CG) formation in humans and in animals used for safety assessment were investigated. After oral dosing, the systemic exposure ratios of CG to vabicaserin were approximately 12 and up to 29 in monkeys and humans, respectively, and the ratios of CG to vabicaserin were approximately 1.5 and 1.7 in mice and dogs, respectively. These differences in systemic levels of CG are likely related to species differences in the rate and extent of CG formation and elimination. Whereas CG was the predominant circulating metabolite in humans and a major metabolite in mice, dogs, and monkeys, it was a relatively minor metabolite in rats, in which oxidative metabolism was the major metabolic pathway. Although the CG was not detected in plasma or urine of rats, approximately 5% of the dose was excreted in bile as CG in the 24-h collection postdose, indicating the rat had the metabolic capability of producing the CG. In vitro, in a CO(2)-enriched environment, the CG was the predominant metabolite in dog and human liver microsomes, a major metabolite in monkey and mice, and only a very minor metabolite in rats. Carbamoyl glucuronidation and hydroxylation had similar contributions to vabicaserin metabolism in mouse and monkey liver microsomes. However, only trace amounts of CG were formed in rat liver microsomes, and other metabolites were more prominent than the CG. In conclusion, significant differences in the extent of formation of the CG were observed among the various species examined. The exposure ratios of CG to vabicaserin were highest in humans, followed by monkeys, then mice and dogs, and lowest in rats, and the in vitro metabolite profiles generally correlated well with the in vivo metabolites.
Development of an Integrated Metabolomic Profiling Approach for Infectious Diseases Research
Lv, Haitao; Hung, Chia S.; Chaturvedi, Kaveri S.; Hooton, Thomas M.; Henderson, Jeffrey P.
2013-01-01
Metabolomic profiling offers direct insights into the chemical environment and metabolic pathway activities at sites of human disease. During infection, this environment may receive important contributions from both host and pathogen. Here we apply untargeted metabolomics approach to identify compounds associated with an E. coli urinary tract infection population. Correlative and structural data from minimally processed samples were obtained using an optimized LC-MS platform capable of resolving ∼2300 molecular features. Principal components analysis readily distinguished patient groups and multiple supervised chemometric analyses resolved robust metabolomic shifts between groups. These analyses revealed nine compounds whose provisional structures suggest candidate infection-associated endocrine, catabolic, and lipid pathways. Several of these metabolite signatures may derive from microbial processing of host metabolites. Overall, this study highlights the ability of metabolomic approaches to directly identify compounds encountered by, and produced from, bacterial pathogens within human hosts. PMID:21922104
Functional associations between the metabolome and manganese tolerance in Vigna unguiculata
Führs, Hendrik; Specht, André; Erban, Alexander; Kopka, Joachim; Horst, Walter J.
2012-01-01
Genotypic- and silicon (Si)-mediated differences in manganese (Mn) tolerance of cowpea (Vigna unguiculata) arise from a combination of symplastic and apoplastic traits. A detailed metabolomic inspection could help to identify functional associations between genotype- and Si-mediated Mn tolerance and metabolism. Two cowpea genotypes differing in Mn tolerance (TVu 91, Mn sensitive; TVu 1987, Mn tolerant) were subjected to differential Mn and Si treatments. Gas chromatography–mass spectrometry (GC-MS)-based metabolite profiling of leaf material was performed. Detailed evaluation of the response of metabolites was combined with gene expression and physiological analyses. After 2 d of 50 μM Mn supply TVu 91 expressed toxicity symptoms first in the form of brown spots on the second oldest trifoliate leaves. Silicon treatment suppressed symptom development in TVu 91. Despite higher concentrations of Mn in leaves of TVu 1987 compared with TVu 91, the tolerant genotype did not show symptoms. From sample cluster formation as identified by independent component analysis (ICA) of metabolite profiles it is concluded that genotypic differences accounted for the highest impact on variation in metabolite pools, followed by Mn and Si treatments in one of two experiments. Analysis of individual metabolites corroborated a comparable minor role for Mn and Si treatments in the modulation of individual metabolites. Mapping individual metabolites differing significantly between genotypes onto biosynthetic pathways and gene expression studies on the corresponding pathways suggest that genotypic Mn tolerance is a consequence of differences (i) in the apoplastic binding capacity; (ii) in the capability to maintain a high antioxidative state; and (iii) in the activity of shikimate and phenylpropanoid metabolism. PMID:21934118
Yun, Eun Ju; Oh, Eun Joong; Liu, Jing-Jing; Yu, Sora; Kim, Dong Hyun; Kwak, Suryang; Kim, Kyoung Heon; Jin, Yong-Su
2018-01-01
Understanding the global metabolic network, significantly perturbed upon promiscuous activities of foreign enzymes and different carbon sources, is crucial for systematic optimization of metabolic engineering of yeast Saccharomyces cerevisiae . Here, we studied the effects of promiscuous activities of overexpressed enzymes encoded by foreign genes on rerouting of metabolic fluxes of an engineered yeast capable of assimilating sugars from renewable biomass by profiling intracellular and extracellular metabolites. Unbiased metabolite profiling of the engineered S. cerevisiae strain EJ4 revealed promiscuous enzymatic activities of xylose reductase and xylitol dehydrogenase on galactose and galactitol, respectively, resulting in accumulation of galactitol and tagatose during galactose fermentation. Moreover, during glucose fermentation, a trisaccharide consisting of glucose accumulated outside of the cells probably owing to the promiscuous and transglycosylation activity of β-glucosidase expressed for hydrolyzing cellobiose. Meanwhile, higher accumulation of fatty acids and secondary metabolites was observed during xylose and cellobiose fermentations, respectively. The heterologous enzymes functionally expressed in S. cerevisiae showed promiscuous activities that led to unintended metabolic rerouting in strain EJ4. Such metabolic rerouting could result in a low yield and productivity of a final product due to the formation of unexpected metabolites. Furthermore, the global metabolic network can be significantly regulated by carbon sources, thus yielding different patterns of metabolite production. This metabolomic study can provide useful information for yeast strain improvement and systematic optimization of yeast metabolism to manufacture bio-based products.
Comparative Chemistry of Aspergillus oryzae (RIB40) and A. flavus (NRRL 3357)
Rank, Christian; Klejnstrup, Marie Louise; Petersen, Lene Maj; Kildgaard, Sara; Frisvad, Jens Christian; Gotfredsen, Charlotte Held; Larsen, Thomas Ostenfeld
2012-01-01
Aspergillus oryzae and A. flavus are important species in industrial biotechnology and food safety and have been some of the first aspergilli to be fully genome sequenced. Bioinformatic analysis has revealed 99.5% gene homology between the two species pointing towards a large coherence in the secondary metabolite production. In this study we report on the first comparison of secondary metabolite production between the full genome sequenced strains of A. oryzae (RIB40) and A. flavus (NRRL 3357). Surprisingly, the overall chemical profiles of the two strains were mostly very different across 15 growth conditions. Contrary to previous studies we found the aflatrem precursor 13-desoxypaxilline to be a major metabolite from A. oryzae under certain growth conditions. For the first time, we additionally report A. oryzae to produce parasiticolide A and two new analogues hereof, along with four new alkaloids related to the A. flavus metabolites ditryptophenalines and miyakamides. Generally the secondary metabolite capability of A. oryzae presents several novel end products likely to result from the domestication process from A. flavus. PMID:24957367
A Strategy for Sensitive, Large Scale Quantitative Metabolomics
Liu, Xiaojing; Ser, Zheng; Cluntun, Ahmad A.; Mentch, Samantha J.; Locasale, Jason W.
2014-01-01
Metabolite profiling has been a valuable asset in the study of metabolism in health and disease. However, current platforms have different limiting factors, such as labor intensive sample preparations, low detection limits, slow scan speeds, intensive method optimization for each metabolite, and the inability to measure both positively and negatively charged ions in single experiments. Therefore, a novel metabolomics protocol could advance metabolomics studies. Amide-based hydrophilic chromatography enables polar metabolite analysis without any chemical derivatization. High resolution MS using the Q-Exactive (QE-MS) has improved ion optics, increased scan speeds (256 msec at resolution 70,000), and has the capability of carrying out positive/negative switching. Using a cold methanol extraction strategy, and coupling an amide column with QE-MS enables robust detection of 168 targeted polar metabolites and thousands of additional features simultaneously. Data processing is carried out with commercially available software in a highly efficient way, and unknown features extracted from the mass spectra can be queried in databases. PMID:24894601
Concurrent profiling of polar metabolites and lipids in human plasma using HILIC-FTMS
NASA Astrophysics Data System (ADS)
Cai, Xiaoming; Li, Ruibin
2016-11-01
Blood plasma is the most popularly used sample matrix for metabolite profiling studies, which aim to achieve global metabolite profiling and biomarker discovery. However, most of the current studies on plasma metabolite profiling focused on either the polar metabolites or lipids. In this study, a comprehensive analysis approach based on HILIC-FTMS was developed to concurrently examine polar metabolites and lipids. The HILIC-FTMS method was developed using mixed standards of polar metabolites and lipids, the separation efficiency of which is better in HILIC mode than in C5 and C18 reversed phase (RP) chromatography. This method exhibits good reproducibility in retention times (CVs < 3.43%) and high mass accuracy (<3.5 ppm). In addition, we found MeOH/ACN/Acetone (1:1:1, v/v/v) as extraction cocktail could achieve desirable gathering of demanded extracts from plasma samples. We further integrated the MeOH/ACN/Acetone extraction with the HILIC-FTMS method for metabolite profiling and smoking-related biomarker discovery in human plasma samples. Heavy smokers could be successfully distinguished from non smokers by univariate and multivariate statistical analysis of the profiling data, and 62 biomarkers for cigarette smoke were found. These results indicate that our concurrent analysis approach could be potentially used for clinical biomarker discovery, metabolite-based diagnosis, etc.
Global Profiling of Various Metabolites in Platycodon grandiflorum by UPLC-QTOF/MS.
Lee, Jae Won; Ji, Seung-Heon; Kim, Geum-Soog; Song, Kyung-Sik; Um, Yurry; Kim, Ok Tae; Lee, Yi; Hong, Chang Pyo; Shin, Dong-Ho; Kim, Chang-Kug; Lee, Seung-Eun; Ahn, Young-Sup; Lee, Dae-Young
2015-11-09
In this study, a method of metabolite profiling based on UPLC-QTOF/MS was developed to analyze Platycodon grandiflorum. In the optimal UPLC, various metabolites, including major platycosides, were separated well in 15 min. The metabolite extraction protocols were also optimized by selecting a solvent for use in the study, the ratio of solvent to sample and sonication time. This method was used to profile two different parts of P. grandiflorum, i.e., the roots of P. grandiflorum (PR) and the stems and leaves of P. grandiflorum (PS), in the positive and negative ion modes. As a result, PR and PS showed qualitatively and quantitatively different metabolite profiles. Furthermore, their metabolite compositions differed according to individual plant samples. These results indicate that the UPLC-QTOF/MS-based profiling method is a good tool to analyze various metabolites in P. grandiflorum. This metabolomics approach can also be applied to evaluate the overall quality of P. grandiflorum, as well as to discriminate the cultivars for the medicinal plant industry.
Global Profiling of Various Metabolites in Platycodon grandiflorum by UPLC-QTOF/MS
Lee, Jae Won; Ji, Seung-Heon; Kim, Geum-Soog; Song, Kyung-Sik; Um, Yurry; Kim, Ok Tae; Lee, Yi; Hong, Chang Pyo; Shin, Dong-Ho; Kim, Chang-Kug; Lee, Seung-Eun; Ahn, Young-Sup; Lee, Dae-Young
2015-01-01
In this study, a method of metabolite profiling based on UPLC-QTOF/MS was developed to analyze Platycodon grandiflorum. In the optimal UPLC, various metabolites, including major platycosides, were separated well in 15 min. The metabolite extraction protocols were also optimized by selecting a solvent for use in the study, the ratio of solvent to sample and sonication time. This method was used to profile two different parts of P. grandiflorum, i.e., the roots of P. grandiflorum (PR) and the stems and leaves of P. grandiflorum (PS), in the positive and negative ion modes. As a result, PR and PS showed qualitatively and quantitatively different metabolite profiles. Furthermore, their metabolite compositions differed according to individual plant samples. These results indicate that the UPLC-QTOF/MS-based profiling method is a good tool to analyze various metabolites in P. grandiflorum. This metabolomics approach can also be applied to evaluate the overall quality of P. grandiflorum, as well as to discriminate the cultivars for the medicinal plant industry. PMID:26569219
Pieper, R; Neumann, K; Kröger, S; Richter, J F; Wang, J; Martin, L; Bindelle, J; Htoo, J K; Vahjen, V; Van Kessel, A G; Zentek, J
2012-12-01
It was recently shown that variations in the ratio of dietary fermentable carbohydrates (fCHO) and fermentable protein (fCP) differentially affect large intestinal microbial ecology and the mucosal response. Here we investigated the use of mass spectrometry to profile changes in metabolite composition in colon and urine associated with variation in dietary fCHO and fCP composition and mucosal physiology. Thirty-two weaned piglets were fed 4 diets in a 2 × 2 factorial design with low fCP and low fCHO, low fCP and high fCHO, high fCP and low fCHO, and high fCP and high fCHO. After 21 to 23 d, all pigs were euthanized and colon digesta and urine metabolite profiles were obtained by mass spectrometry. Analysis of mass spectra by partial least squares approach indicated a clustering of both colonic and urinary profiles for each pig by feeding group. Metabolite identification and annotation using the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathways revealed increased abundance of metabolites associated with arachidonic acid metabolism in colon of pigs fed a high concentration of fCP irrespective of dietary fCHO. Urinary metabolites did not show as clear patterns. Mass spectrometry can effectively differentiate metabolite profiles in colon contents and urine associated with changes in dietary composition. Whether metabolite profiling is an effective tool to identify specific metabolites (biomarkers) or metabolite profiles associated with gut function and integrity needs further elucidation.
Metabolic Profile of the Cellulolytic Industrial Actinomycete Thermobifida fusca
Vanee, Niti
2017-01-01
Actinomycetes have a long history of being the source of numerous valuable natural products and medicinals. To expedite product discovery and optimization of biochemical production, high-throughput technologies can now be used to screen the library of compounds present (or produced) at a given time in an organism. This not only facilitates chemical product screening, but also provides a comprehensive methodology to the study cellular metabolic networks to inform cellular engineering. Here, we present some of the first metabolomic data of the industrial cellulolytic actinomycete Thermobifida fusca generated using LC-MS/MS. The underlying objective of conducting global metabolite profiling was to gain better insight on the innate capabilities of T. fusca, with a long-term goal of facilitating T. fusca-based bioprocesses. The T. fusca metabolome was characterized for growth on two cellulose-relevant carbon sources, cellobiose and Avicel. Furthermore, the comprehensive list of measured metabolites was computationally integrated into a metabolic model of T. fusca, to study metabolic shifts in the network flux associated with carbohydrate and amino acid metabolism. PMID:29137138
NASA Astrophysics Data System (ADS)
Dunn, Jocelyn T.
Integrative and unobtrusive approaches to monitoring health and stress can assist in preventative medicine and disease management, and provide capabilities for complex work environments, such as military deployments and long-duration human space exploration missions. With many data streams that could potentially provide critical information about the health, behavior, and psychosocial states of individuals or small groups, the central question of this research is how to reliably measure health and stress states over time. This integrative approach to health and stress monitoring has implemented biological metabolite profiling, wearables data analysis, and survey assessment for comparing biological, behavioral, and psychological perspectives. Health monitoring technologies aim to provide objective data about health status. Providing objective information can help mitigate biases or blind spots in an individual's perception. Consider an individual who is unwilling to openly admit to psychosocial distress and unhealthy habits, or an individual who has habituated to long-term stressors and is unable to recognize a chronic state of high stress. Both honesty and self-awareness are required for accurate self-reporting. Digital health technologies, such as wearable devices, provide objective data for health monitoring. Compared to surveys, wearables are less influenced by participant openness, and compared to biological samples, wearables require less equipment and less labor for analysis. However, inherent to every data stream are limitations due to uncertainty and sensitivity. This research has been conducted in collaboration with Hawaii Space Exploration Analog and Simulation (HI-SEAS), which is a Mars analog research site on the slopes on Mauna Loa volcano in Hawaii. During 8-month and 12-month HI-SEAS missions in the 2014-2016 timeframe, twelve individuals provided hair and urine samples for metabolite profiling, utilized consumer-grade wearables to monitor sleep and activity behaviors, and responded to surveys for recording perceived health and stress levels. This work has developed a self-report instrument for stress characterization, efficient protocols for metabolite profiling, novel measures of sleep quality and activity levels, and has evaluated performance differences of JawboneRTM and FitbitRTM wearable devices that were worn in tandem. There is considerable debate about the accuracy of data collected from wearable devices. Therefore, the success of next-generation wearable devices is hinging on the ability to reliably process wearables data into meaningful health information. By simultaneously quantifying biological metabolites, sleep and activity behaviors, and psychological perceptions of health, this research is evaluating possible predictors of health and stress, such as evaluating if activity and sleep behaviors recorded by wearables can be predictive of biological metabolites and perceived health. This research has developed data-driven insights for advancing the next-generation of biological, behavioral, and psychological health monitoring capabilities.
Secondary metabolite profiling of Alternaria dauci, A. porri, A. solani, and A. tomatophila.
Andersen, Birgitte; Dongo, Anita; Pryor, Barry M
2008-02-01
Chemotaxonomy (secondary metabolite profiling) has been shown to be of great value in the classification and differentiation in Ascomycota. However, few studies have investigated the use of metabolite production for classification and identification purposes of plant pathogenic Alternaria species. The purpose of the present study was to describe the methodology behind metabolite profiling in chemotaxonomy using A. dauci, A. porri, A. solani, and A. tomatophila strains as examples of the group. The results confirmed that A. dauci, A. solani, and A. tomatophila are three distinct species each with their own specific metabolite profiles, and that A. solani and A. tomatophila both produce altersolanol A, altertoxin I, and macrosporin. By using automated chemical image analysis and other multivariate statistic analyses, three sets of species-specific metabolites could be selected, one each for A. dauci, A. solani, and A. tomatophila.
Dahmane, Elyes; Boccard, Julien; Csajka, Chantal; Rudaz, Serge; Décosterd, Laurent; Genin, Eric; Duretz, Bénédicte; Bromirski, Maciej; Zaman, Khalil; Testa, Bernard; Rochat, Bertrand
2014-04-01
Liquid-chromatography (LC) high-resolution (HR) mass spectrometry (MS) analysis can record HR full scans, a technique of detection that shows comparable selectivity and sensitivity to ion transitions (SRM) performed with triple-quadrupole (TQ)-MS but that allows de facto determination of "all" ions including drug metabolites. This could be of potential utility in in vivo drug metabolism and pharmacovigilance studies in order to have a more comprehensive insight in drug biotransformation profile differences in patients. This simultaneous quantitative and qualitative (Quan/Qual) approach has been tested with 20 patients chronically treated with tamoxifen (TAM). The absolute quantification of TAM and three metabolites in plasma was realized using HR- and TQ-MS and compared. The same LC-HR-MS analysis allowed the identification and relative quantification of 37 additional TAM metabolites. A number of new metabolites were detected in patients' plasma including metabolites identified as didemethyl-trihydroxy-TAM-glucoside and didemethyl-tetrahydroxy-TAM-glucoside conjugates corresponding to TAM with six and seven biotransformation steps, respectively. Multivariate analysis allowed relevant patterns of metabolites and ratios to be associated with TAM administration and CYP2D6 genotype. Two hydroxylated metabolites, α-OH-TAM and 4'-OH-TAM, were newly identified as putative CYP2D6 substrates. The relative quantification was precise (<20 %), and the semiquantitative estimation suggests that metabolite levels are non-negligible. Metabolites could play an important role in drug toxicity, but their impact on drug-related side effects has been partially neglected due to the tremendous effort needed with previous MS technologies. Using present HR-MS, this situation should evolve with the straightforward determination of drug metabolites, enlarging the possibilities in studying inter- and intra-patients drug metabolism variability and related effects.
Metabolite profiling of microfluidic cell culture conditions for droplet based screening.
Bjork, Sara M; Sjostrom, Staffan L; Andersson-Svahn, Helene; Joensson, Haakan N
2015-07-01
We investigate the impact of droplet culture conditions on cell metabolic state by determining key metabolite concentrations in S. cerevisiae cultures in different microfluidic droplet culture formats. Control of culture conditions is critical for single cell/clone screening in droplets, such as directed evolution of yeast, as cell metabolic state directly affects production yields from cell factories. Here, we analyze glucose, pyruvate, ethanol, and glycerol, central metabolites in yeast glucose dissimilation to establish culture formats for screening of respiring as well as fermenting yeast. Metabolite profiling provides a more nuanced estimate of cell state compared to proliferation studies alone. We show that the choice of droplet incubation format impacts cell proliferation and metabolite production. The standard syringe incubation of droplets exhibited metabolite profiles similar to oxygen limited cultures, whereas the metabolite profiles of cells cultured in the alternative wide tube droplet incubation format resemble those from aerobic culture. Furthermore, we demonstrate retained droplet stability and size in the new better oxygenated droplet incubation format.
Farag, Mohamed A; Porzel, Andrea; Al-Hammady, Montasser A; Hegazy, Mohamed-Elamir F; Meyer, Achim; Mohamed, Tarik A; Westphal, Hildegard; Wessjohann, Ludger A
2016-04-01
Marine life has developed unique metabolic and physiologic capabilities and advanced symbiotic relationships to survive in the varied and complex marine ecosystems. Herein, metabolite composition of the soft coral genus Sarcophyton was profiled with respect to its species and different habitats along the coastal Egyptian Red Sea via (1)H NMR and ultra performance liquid chromatography-mass spectrometry (UPLC-MS) large-scale metabolomics analyses. The current study extends the application of comparative secondary metabolite profiling from plants to corals revealing for metabolite compositional differences among its species via a comparative MS and NMR approach. This was applied for the first time to investigate the metabolism of 16 Sarcophyton species in the context of their genetic diversity or growth habitat. Under optimized conditions, we were able to simultaneously identify 120 metabolites including 65 diterpenes, 8 sesquiterpenes, 18 sterols, and 15 oxylipids. Principal component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS) were used to define both similarities and differences among samples. For a compound based classification of coral species, UPLC-MS was found to be more effective than NMR. The main differentiations emanate from cembranoids and oxylipids. The specific metabolites that contribute to discrimination between soft corals of S. ehrenbergi from the three different growing habitats also belonged to cembrane type diterpenes, with aquarium S. ehrenbergi corals being less enriched in cembranoids compared to sea corals. PCA using either NMR or UPLC-MS data sets was found equally effective in predicting the species origin of unknown Sarcophyton. Cyclopropane containing sterols observed in abundance in corals may act as cellular membrane protectant against the action of coral toxins, that is, cembranoids.
Huang, Joanne H; Park, Hyoungjun; Iaconelli, Jonathan; Berkovitch, Shaunna S; Watmuff, Bradley; McPhie, Donna; Öngür, Dost; Cohen, Bruce M; Clish, Clary B; Karmacharya, Rakesh
2017-02-03
We undertook an unbiased metabolite profiling of fibroblasts from schizophrenia patients and healthy controls to identify metabolites and pathways that are dysregulated in disease, seeking to gain new insights into the disease biology of schizophrenia and to discover potential disease-related biomarkers. We measured polar and nonpolar metabolites in the fibroblasts under normal conditions and under two stressful physiological perturbations: growth in low-glucose media and exposure to the steroid hormone dexamethasone. We found that metabolites that were significantly different between schizophrenia and control subjects showed separation of the two groups by partial least-squares discriminant analysis methods. This separation between schizophrenia and healthy controls was more robust with metabolites identified under the perturbation conditions. The most significant individual metabolite differences were also found in the perturbation experiments. Metabolites that were significantly different between schizophrenia and healthy controls included a number of plasmalogens and phosphatidylcholines. We present these results in the context of previous reports of metabolic profiling of brain tissue and plasma in schizophrenia. These results show the applicability of metabolite profiling under stressful perturbations to reveal cellular pathways that may be involved in disease biology.
Wang, QuanQiu; Xu, Rong
2017-07-01
Human metabolomics has great potential in disease mechanism understanding, early diagnosis, and therapy. Existing metabolomics studies are often based on profiling patient biofluids and tissue samples and are difficult owing to the challenges of sample collection and data processing. Here, we report an alternative approach and developed a computation-based prediction system, MetabolitePredict, for disease metabolomics biomarker prediction. We applied MetabolitePredict to identify metabolite biomarkers and metabolite targeting therapies for rheumatoid arthritis (RA), a last-lasting complex disease with multiple genetic and environmental factors involved. MetabolitePredict is a de novo prediction system. It first constructs a disease-specific genetic profile using genes and pathways data associated with an input disease. It then constructs genetic profiles for a total of 259,170 chemicals/metabolites using known chemical genetics and human metabolomic data. MetabolitePredict prioritizes metabolites for a given disease based on the genetic profile similarities between disease and metabolites. We evaluated MetabolitePredict using 63 known RA-associated metabolites. MetabolitePredict found 24 of the 63 metabolites (recall: 0.38) and ranked them highly (mean ranking: top 4.13%, median ranking: top 1.10%, P-value: 5.08E-19). MetabolitePredict performed better than an existing metabolite prediction system, PROFANCY, in predicting RA-associated metabolites (PROFANCY: recall: 0.31, mean ranking: 20.91%, median ranking: 16.47%, P-value: 3.78E-7). Short-chain fatty acids (SCFAs), the abundant metabolites of gut microbiota in the fermentation of fiber, ranked highly (butyrate, 0.03%; acetate, 0.05%; propionate, 0.38%). Finally, we established MetabolitePredict's potential in novel metabolite targeting for disease treatment: MetabolitePredict ranked highly three known metabolite inhibitors for RA treatments (methotrexate:0.25%; leflunomide: 0.56%; sulfasalazine: 0.92%). MetabolitePredict is a generalizable disease metabolite prediction system. The only required input to the system is a disease name or a set of disease-associated genes. The web-based MetabolitePredict is available at:http://xulab. edu/MetabolitePredict. Copyright © 2017 Elsevier Inc. All rights reserved.
Metabolite Profiling of Candidatus Liberibacter Infection in Hamlin Sweet Oranges.
Hung, Wei-Lun; Wang, Yu
2018-04-18
Huanglongbing (HLB), also known as citrus greening disease, caused by Candidatus Liberibacter asiaticus (CLas), is considered the most serious citrus disease in the world. CLas infection has been shown to greatly affect metabolite profiles in citrus fruits. However, because of uneven distribution of CLas throughout the tree and a minimum bacterial titer requirement for polymerase chain reaction (PCR) detection, the infected trees may test false negative. To prevent this, metabolites of healthy Hamlin oranges (CLas-) obtained from the citrus undercover protection systems (CUPS) were investigated. Comparison of the metabolite profile of juice obtained from CLas- and CLas+ (asymptomatic and symptomatic) trees revealed significant differences in both volatile and nonvolatile metabolites. However, no consistent pattern could be observed in alcohols, esters, sesquiterpenes, sugars, flavanones, and limonoids as compared to previous studies. These results suggest that CLas may affect metabolite profiles of citrus fruits earlier than detecting infection by PCR. Citric acid, nobiletin, malic acid, and phenylalanine were identified as the metabolic biomarkers associated with the progression of HLB. Thus, the differential metabolites found in this study may serve as the biomarkers of HLB in its early stage, and the metabolite signature of CLas infection may provide useful information for developing a potential treatment strategy.
The NUTRA-SNACKS project: basic research and biotechnological programs on nutraceutics.
Rea, Giuseppina; Antonacci, Amina; Lambreva, Maya; Margonelli, Andrea; Ambrosi, Cecilia; Giardi, Maria Teresa
2010-01-01
The Nutra-Snacks project aims at creating novel high quality ready-to-eat foods with functional activity, useful for promoting public health. The team is composed of seven research institutes and three SMEs from different countries whose activities span from basic to applied research providing the right technological transfer to small and medium industries involved in the novel food production chain. Strategic objectives include the application of plant cell and in vitro culture systems to create very large amounts of high-value plant secondary metabolites with recognized anticancer, antilipidemic, anticholesterol, antimicrobial, antiviral, antihypertensive and anti-inflammatory properties and to include them in specific food products. To this end, the screening of a vast number of working organisms capable of accumulating the desired compounds and the characterization of their expression profiles represent fundamental steps in the research program. The information allows the identification of plant species hyper-producing metabolites and selection of those metabolites capable of specifically counteracting the oxidative stress that underlies the development of important pathologies and diseases. In addition, devising safe metabolite extraction procedures is also crucial in order to provide nutraceutical-enriched extracts compatible with human health. New biotechnological approaches are also undertaken including the exploitation of photosynthetic algal strains in bio-farms to enhance the synthesis ofantioxidant compounds and the design of novel bioreactors for small and large scale biomass production. Further outstanding objectives include the development of (i) safety and quality control protocols (ii) biosensor techniques for the analysis of the emerging ready-to-eat food and (iii) a contribution to define a standard for new regulations on nutraceutics.
Kotronoulas, Aristotelis; Gomez-Gómez, Àlex; Fabregat, Andreu; Segura, Jordi; Yang, Sheng; Xing, Yanyi; Moutian, Wu; Marcos, Josep; Joglar, Jesús; Ventura, Rosa; Pozo, Oscar J
2018-05-01
In the fight against doping, the introduction of alternative markers to the steroid profile can be considered as an effective approach to improve the screening capabilities for the detection of testosterone (T) misuse. The aim of this study was to evaluate the potential of several T metabolites (cysteinyl conjugated and glucuronoconjugated resistant to enzymatic hydrolysis) to detect both the transdermal and the intramuscular administration of T. In Part I of the study, we studied the potential of these metabolites for the detection of T transdermal administration. Results revealed that resistant glucuronides can be a suitable complement to the current steroid profile. In this, Part II, dedicated to the intramuscular administration, we studied the potential of cysteinyl conjugated, resistant glucuronoconjugated and 1-cyclopentenoylglycine (1-CPG) for the detection of a single intramuscular injection of T cypionate. Possible differences in the excretion profile of all markers were explored between individuals with low basal (n=6) and medium basal (n=6) values of the testosterone/epitestosterone ratio (T/E). The results showed that all tested markers presented low intra-individual stability in basal conditions. Despite this, all glucuronoconjugated markers and 1-CPG, but not the cysteinyl conjugated markers, provided detection windows that were similar or longer than those obtained by markers currently included in the steroid profile. Based on the results obtained from the 2 parts of this study and from previously reported data, the potential applicability and the limitations of including these markers in the steroid profile are discussed. Copyright © 2017 John Wiley & Sons, Ltd.
Lee, Jueun; Jung, Youngae; Shin, Jeoung-Hwa; Kim, Ho Kyoung; Moon, Byeong Cheol; Ryu, Do Hyun; Hwang, Geum-Sook
2014-07-04
Curcuma, a genus of rhizomatous herbaceous species, has been used as a spice, traditional medicine, and natural dye. In this study, the metabolite profile of Curcuma extracts was determined using gas chromatography-time of flight mass spectrometry (GC/TOF MS) and ultrahigh-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC/Q-TOF MS) to characterize differences between Curcuma aromatica and Curcuma longa grown on the Jeju-do or Jin-do islands, South Korea. Previous studies have performed primary metabolite profiling of Curcuma species grown in different regions using NMR-based metabolomics. This study focused on profiling of secondary metabolites from the hexane extract of Curcuma species. Principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) plots showed significant differences between the C. aromatica and C. longa metabolite profiles, whereas geographical location had little effect. A t-test was performed to identify statistically significant metabolites, such as terpenoids. Additionally, targeted profiling using UPLC/Q-TOF MS showed that the concentration of curcuminoids differed depending on the plant origin. Based on these results, a combination of GC- and LC-MS allowed us to analyze curcuminoids and terpenoids, the typical bioactive compounds of Curcuma, which can be used to discriminate Curcuma samples according to species or geographical origin.
Metabolite Depletion Affects Flux Profiling of Cell Lines.
Nilsson, A; Haanstra, J R; Teusink, B; Nielsen, J
2018-06-01
Quantifying the rate of consumption and release of metabolites (i.e., flux profiling) has become integral to the study of cancer. The fluxes as well as the growth of the cells may be affected by metabolite depletion during cultivation. Copyright © 2018 Elsevier Ltd. All rights reserved.
2011-01-01
Background Improvements in the techniques for metabolomics analyses and growing interest in metabolomic approaches are resulting in the generation of increasing numbers of metabolomic profiles. Platforms are required for profile management, as a function of experimental design, and for metabolite identification, to facilitate the mining of the corresponding data. Various databases have been created, including organism-specific knowledgebases and analytical technique-specific spectral databases. However, there is currently no platform meeting the requirements for both profile management and metabolite identification for nuclear magnetic resonance (NMR) experiments. Description MeRy-B, the first platform for plant 1H-NMR metabolomic profiles, is designed (i) to provide a knowledgebase of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata, (ii) for queries and visualization of the data, (iii) to discriminate between profiles with spectrum visualization tools and statistical analysis, (iv) to facilitate compound identification. It contains lists of plant metabolites and unknown compounds, with information about experimental conditions, the factors studied and metabolite concentrations for several plant species, compiled from more than one thousand annotated NMR profiles for various organs or tissues. Conclusion MeRy-B manages all the data generated by NMR-based plant metabolomics experiments, from description of the biological source to identification of the metabolites and determinations of their concentrations. It is the first database allowing the display and overlay of NMR metabolomic profiles selected through queries on data or metadata. MeRy-B is available from http://www.cbib.u-bordeaux2.fr/MERYB/index.php. PMID:21668943
Xiao, Ying; Hu, Zhongzhi; Yin, Zhiting; Zhou, Yiming; Liu, Taiyi; Zhou, Xiaoli; Chang, Dawei
2017-01-01
The metabolite profiles and distributions of procyanidin B2 were qualitatively described using UPLC-DAD-ESI-IT-TOF-MSn without help of reference standards, and a possible metabolic pathway was proposed in the present study. Summarily, 53 metabolites (24 new metabolites) were detected as metabolites of procyanidin B2, and 45 of them were tentatively identified. Twenty seven metabolites were assigned as similar metabolites of (−)-epicatechin by scission of the flavanol interflavanic bond C4–C8, including 16 aromatic metabolites, 5 conjugated metabolites, 3 ring-cleavage metabolites, and 2 phenylvalerolactone metabolites. Additionally, 14 metabolites were conjugates of free procyanidin B2, comprising 9 methylation metabolites, 8 sulfation metabolites, 5 hydration metabolites, 2 hydroxylation metabolites, 1 hydrogenation metabolites, and 1 glucuronidation metabolites. The results of metabolite distributions in organs indicated that the conjugated reaction of free procyanidin B2 mainly occurred in liver and diversified metabolites forms were observed in small intestine. The metabolic components of procyanidin B2 identified in mice provided useful information for further study of the bioactivity and mechanism of its action. PMID:28522973
Wang, Zhe; Zhou, Xinmiao; Liu, Xin; Dong, Ying; Zhang, Jinlan
2017-01-01
Stanozolol is one of the most commonly abused anabolic androgenic steroids (AAS) by athletes and usually detected by its parent drug and major metabolites. However, its metabolic pathway is complex, varied and individually different, it is important to characterize its overall metabolic profiles and discover new and long-term metabolites for the aims of expanding detection windows. High performance liquid chromatography coupled with triple quadrupole mass spectrometer (HPLC-MS/MS) was used to analyze the human urine after oral administration of stanozolol. Multiple reaction monitoring (MRM), one of the scan modes of triple quadrupole mass spectrometer showing extremely high sensitivity was well used to develop a strategy for metabolic profiles characterization and long-term metabolites detection based on typical precursor to product ion transitions of parent drug and its major metabolites. Utilizing the characteristic fragment ions of stanozolol and its major metabolites as the product ions, and speculating unknown precursor ions based on the possible phase I and phase II metabolic reactions in human body, the metabolite profiles of stanozolol could be comprehensively discovered, especially for those unknown and low concentration metabolites in human urine. Then these metabolites were further well structure identified by targeted high resolution MS/MS scan of quadrupole-time of flight mass spectrometry (Q-TOF). Applying this strategy, 27 phase I and 21 phase II metabolites of stanozolol were identified, in which 13 phase I and 14 phase II metabolites have not been reported previously. The 9 out of 48 metabolites could be detected over 15days post drug administration. This strategy could be employed effectively to characterize AAS metabolic profiles and discover unknown and long-term metabolites in sports drug testing. Copyright © 2016 Elsevier B.V. All rights reserved.
Okuma, Nobuyuki; Saita, Makiko; Hoshi, Noriyuki; Soga, Tomoyoshi; Tomita, Masaru; Sugimoto, Masahiro; Kimoto, Katsuhiko
2017-01-01
This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation. Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry. In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors. Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation.
Benavidez Rozo, Martha Elizabeth; Patriarca, Andrea; Cabrera, Gabriela; Fernández Pinto, Virginia E
2014-01-01
Many Alternaria species have been studied for their ability to produce bioactive secondary metabolites, such as tentoxin (TEN), some of which have toxic properties. The main food contaminant toxins are tenuazonic acid, alternariol (AOH), alternariol monomethyl ether (AME), altenuene, and altertoxins i, ii and iii. To determine the profiles of secondary metabolites characteristic of Alternaria strains isolated from tomato for their chemotaxonomic classification. The profiles of secondary metabolites were determined by HPLC MS. The Alternaria isolates obtained from spoiled tomatoes belong, according to their morphological characteristics, to the species groups Alternaria alternata, Alternaria tenuissima and Alternaria arborescens, with A. tenuissima being the most frequent. The most frequent profiles of secondary metabolites belonging to the species groups A. alternata (AOH, AME, TEN), A. tenuissima (AOH, AME, TEN, tenuazonic acid) and A. arborescens (AOH, AME, TEN, tenuazonic acid) were determined, with some isolates of the latter being able to synthesize AAL toxins. Secondary metabolite profiles are a useful tool for the differentiation of small spored Alternaria isolates not easily identifiable by their morphological characteristics. Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Application of global metabolomic profiling of synovial fluid for osteoarthritis biomarkers.
Carlson, Alyssa K; Rawle, Rachel A; Adams, Erik; Greenwood, Mark C; Bothner, Brian; June, Ronald K
2018-05-05
Osteoarthritis affects over 250 million individuals worldwide. Currently, there are no options for early diagnosis of osteoarthritis, demonstrating the need for biomarker discovery. To find biomarkers of osteoarthritis in human synovial fluid, we used high performance liquid-chromatography mass spectrometry for global metabolomic profiling. Metabolites were extracted from human osteoarthritic (n = 5), rheumatoid arthritic (n = 3), and healthy (n = 5) synovial fluid, and a total of 1233 metabolites were detected. Principal components analysis clearly distinguished the metabolomic profiles of diseased from healthy synovial fluid. Synovial fluid from rheumatoid arthritis patients contained expected metabolites consistent with the inflammatory nature of the disease. Similarly, unsupervised clustering analysis found that each disease state was associated with distinct metabolomic profiles and clusters of co-regulated metabolites. For osteoarthritis, co-regulated metabolites that were upregulated compared to healthy synovial fluid mapped to known disease processes including chondroitin sulfate degradation, arginine and proline metabolism, and nitric oxide metabolism. We utilized receiver operating characteristic analysis to determine the diagnostic value of each metabolite and identified 35 metabolites as potential biomarkers of osteoarthritis, with an area under the receiver operating characteristic curve >0.9. These metabolites included phosphatidylcholine, lysophosphatidylcholine, ceramides, myristate derivatives, and carnitine derivatives. This pilot study provides strong justification for a larger cohort-based study of human osteoarthritic synovial fluid using global metabolomics. The significance of these data is the demonstration that metabolomic profiling of synovial fluid can identify relevant biomarkers of joint disease. Copyright © 2018 Elsevier Inc. All rights reserved.
Metabolic Profiling of Alpine and Ecuadorian Lichens.
Mittermeier, Verena K; Schmitt, Nicola; Volk, Lukas P M; Suárez, Juan Pablo; Beck, Andreas; Eisenreich, Wolfgang
2015-10-01
Non-targeted ¹H-NMR methods were used to determine metabolite profiles from crude extracts of Alpine and Ecuadorian lichens collected from their natural habitats. In control experiments, the robustness of metabolite detection and quantification was estimated using replicate measurements of Stereocaulon alpinum extracts. The deviations in the overall metabolite fingerprints were low when analyzing S. alpinum collections from different locations or during different annual and seasonal periods. In contrast, metabolite profiles observed from extracts of different Alpine and Ecuadorian lichens clearly revealed genus- and species-specific profiles. The discriminating functions determining cluster formation in principle component analysis (PCA) were due to differences in the amounts of genus-specific compounds such as sticticin from the Sticta species, but also in the amounts of ubiquitous metabolites, such as sugar alcohols or trehalose. However, varying concentrations of these metabolites from the same lichen species e.g., due to different environmental conditions appeared of minor relevance for the overall cluster formation in PCA. The metabolic clusters matched phylogenetic analyses using nuclear ribosomal DNA (nrDNA) internal transcribed spacer (ITS) sequences of lichen mycobionts, as exemplified for the genus Sticta. It can be concluded that NMR-based non-targeted metabolic profiling is a useful tool in the chemo-taxonomy of lichens. The same approach could also facilitate the discovery of novel lichen metabolites on a rapid and systematical basis.
Callahan, Damien L; De Souza, David; Bacic, Antony; Roessner, Ute
2009-07-01
Highly polar metabolites, such as sugars and most amino acids are not retained by conventional RP LC columns. Without sufficient retention low concentration compounds are not detected due ion suppression and structural isomers are not resolved. In contrast, hydrophilic interaction chromatography (HILIC) and aqueous normal phase chromatography (ANP) retain compounds based on their hydrophilicity and therefore provides a means of separating highly polar compounds. Here, an ANP method based on the diamond hydride stationary phase is presented for profiling biological small molecules by LC. A rapid separation system based upon a fast gradient that delivers reproducible chromatography is presented. Approximately 1000 compounds were reproducibly detected in human urine samples and clear differences between these samples were identified. This chromatography was also applied to xylem fluid from soyabean (Glycine max) plants to which 400 compounds were detected. This method greatly increases the metabolite coverage over RP-only metabolite profiling in biological samples. We show that both forms of chromatography are necessary for untargeted comprehensive metabolite profiling and that the diamond hydride stationary phase provides a good option for polar metabolite analysis.
Hsu, Han-Hsiu; Araki, Michihiro; Mochizuki, Masao; Hori, Yoshimi; Murata, Masahiro; Kahar, Prihardi; Yoshida, Takanobu; Hasunuma, Tomohisa; Kondo, Akihiko
2017-03-02
Chinese hamster ovary (CHO) cells are the primary host used for biopharmaceutical protein production. The engineering of CHO cells to produce higher amounts of biopharmaceuticals has been highly dependent on empirical approaches, but recent high-throughput "omics" methods are changing the situation in a rational manner. Omics data analyses using gene expression or metabolite profiling make it possible to identify key genes and metabolites in antibody production. Systematic omics approaches using different types of time-series data are expected to further enhance understanding of cellular behaviours and molecular networks for rational design of CHO cells. This study developed a systematic method for obtaining and analysing time-dependent intracellular and extracellular metabolite profiles, RNA-seq data (enzymatic mRNA levels) and cell counts from CHO cell cultures to capture an overall view of the CHO central metabolic pathway (CMP). We then calculated correlation coefficients among all the profiles and visualised the whole CMP by heatmap analysis and metabolic pathway mapping, to classify genes and metabolites together. This approach provides an efficient platform to identify key genes and metabolites in CHO cell culture.
Glaubitz, Ulrike; Li, Xia; Schaedel, Sandra; Erban, Alexander; Sulpice, Ronan; Kopka, Joachim; Hincha, Dirk K; Zuther, Ellen
2017-01-01
Transcript and metabolite profiling were performed on leaves from six rice cultivars under high night temperature (HNT) condition. Six genes were identified as central for HNT response encoding proteins involved in transcription regulation, signal transduction, protein-protein interactions, jasmonate response and the biosynthesis of secondary metabolites. Sensitive cultivars showed specific changes in transcript abundance including abiotic stress responses, changes of cell wall-related genes, of ABA signaling and secondary metabolism. Additionally, metabolite profiles revealed a highly activated TCA cycle under HNT and concomitantly increased levels in pathways branching off that could be corroborated by enzyme activity measurements. Integrated data analysis using clustering based on one-dimensional self-organizing maps identified two profiles highly correlated with HNT sensitivity. The sensitivity profile included genes of the functional bins abiotic stress, hormone metabolism, cell wall, signaling, redox state, transcription factors, secondary metabolites and defence genes. In the tolerance profile, similar bins were affected with slight differences in hormone metabolism and transcription factor responses. Metabolites of the two profiles revealed involvement of GABA signaling, thus providing a link to the TCA cycle status in sensitive cultivars and of myo-inositol as precursor for inositol phosphates linking jasmonate signaling to the HNT response specifically in tolerant cultivars. © 2016 John Wiley & Sons Ltd.
Association between Metabolite Profiles, Metabolic Syndrome and Obesity Status.
Allam-Ndoul, Bénédicte; Guénard, Frédéric; Garneau, Véronique; Cormier, Hubert; Barbier, Olivier; Pérusse, Louis; Vohl, Marie-Claude
2016-05-27
Underlying mechanisms associated with the development of abnormal metabolic phenotypes among obese individuals are not yet clear. Our aim is to investigate differences in plasma metabolomics profiles between normal weight (NW) and overweight/obese (Ov/Ob) individuals, with or without metabolic syndrome (MetS). Mass spectrometry-based metabolite profiling was used to compare metabolite levels between each group. Three main principal components factors explaining a maximum of variance were retained. Factor 1's (long chain glycerophospholipids) metabolite profile score was higher among Ov/Ob with MetS than among Ov/Ob and NW participants without MetS. This factor was positively correlated to plasma total cholesterol (total-C) and triglyceride levels in the three groups, to high density lipoprotein -cholesterol (HDL-C) among participants without MetS. Factor 2 (amino acids and short to long chain acylcarnitine) was positively correlated to HDL-C and negatively correlated with insulin levels among NW participants. Factor 3's (medium chain acylcarnitines) metabolite profile scores were higher among NW participants than among Ov/Ob with or without MetS. Factor 3 was negatively associated with glucose levels among the Ov/Ob with MetS. Factor 1 seems to be associated with a deteriorated metabolic profile that corresponds to obesity, whereas Factors 2 and 3 seem to be rather associated with a healthy metabolic profile.
Yamamoto, Shinya; Bamba, Takeshi; Sano, Atsushi; Kodama, Yukako; Imamura, Miho; Obata, Akio; Fukusaki, Eiichiro
2012-08-01
Soy sauces, produced from different ingredients and brewing processes, have variations in components and quality. Therefore, it is extremely important to comprehend the relationship between components and the sensory attributes of soy sauces. The current study sought to perform metabolite profiling in order to devise a method of assessing the attributes of soy sauces. Quantitative descriptive analysis (QDA) data for 24 soy sauce samples were obtained from well selected sensory panelists. Metabolite profiles primarily concerning low-molecular-weight hydrophilic components were based on gas chromatography with time-of-flightmass spectrometry (GC/TOFMS). QDA data for soy sauces were accurately predicted by projection to latent structure (PLS), with metabolite profiles serving as explanatory variables and QDA data set serving as a response variable. Moreover, analysis of correlation between matrices of metabolite profiles and QDA data indicated contributing compounds that were highly correlated with QDA data. Especially, it was indicated that sugars are important components of the tastes of soy sauces. This new approach which combines metabolite profiling with QDA is applicable to analysis of sensory attributes of food as a result of the complex interaction between its components. This approach is effective to search important compounds that contribute to the attributes. Copyright © 2012 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Can NMR solve some significant challenges in metabolomics?
Gowda, G.A. Nagana; Raftery, Daniel
2015-01-01
The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact biospecimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, M; Wang, Xiliang
Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less
Hu, M; Wang, Xiliang
2014-12-05
Melanoma is a malignant tumor of melanocytes with high capability of invasion and rapid metastasis to other organs. Malignant melanoma is the most common metastatic malignancy found in gastrointestinal tract (GI). To the best of our knowledge, previous studies of melanoma in gastrointestinal tract are all clinical case reports. In this work, 1H NMR-based metabolomics approach is used to investigate the metabolite profiles differences of stomach tissue extracts of metastatic B16-F10 melanoma in C57BL/6J mouse and search for specific metabolite biomarker candidates. Principal Component Analysis (PCA), an unsupervised multivariate data analysis method, is used to detect possible outliers, while Orthogonalmore » Projection to Latent Structure (OPLS), a supervised multivariate data analysis method, is employed to evaluate important metabolites responsible for discriminating the control and the melanoma groups. Both PCA and OPLS results reveal that the melanoma group can be well separated from its control group. Among the 50 identified metabolites, it is found that the concentrations of 19 metabolites are statistically and significantly changed with the levels of O-phosphocholine and hypoxanthine down-regulated while the levels of isoleucine, leucine, valine, isobutyrate, threonine, cadaverine, alanine, glutamate, glutamine, methionine, citrate, asparagine, tryptophan, glycine, serine, uracil, and formate up-regulated in the melanoma group. These significantly changed metabolites are associated with multiple biological pathways and may be potential biomarkers for metastatic melanoma in stomach.« less
Can NMR solve some significant challenges in metabolomics?
NASA Astrophysics Data System (ADS)
Nagana Gowda, G. A.; Raftery, Daniel
2015-11-01
The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.
Different profiles of quercetin metabolites in rat plasma: comparison of two administration methods.
Kawai, Yoshichika; Saito, Satomi; Nishikawa, Tomomi; Ishisaka, Akari; Murota, Kaeko; Terao, Junji
2009-03-23
The bioavailability of polyphenols in human and rodents has been discussed regarding their biological activity. We found different metabolite profiles of quercetin in rat plasma between two administration procedures. A single intragastric administration (50 mg/kg) resulted in the appearance of a variety of metabolites in the plasma, whereas only a major fraction was detected by free access (1% quercetin). The methylated/non-methylated metabolites ratio was much higher in the free access group. Mass spectrometric analyses showed that the fraction from free access contained highly conjugated quercetin metabolites such as sulfo-glucuronides of quercetin and methylquercetin. The metabolite profile of human plasma after an intake of onion was similar to that with intragastric administration in rats. In vitro oxidation of human low-density lipoprotein showed that methylation of the catechol moiety of quercetin significantly attenuated the antioxidative activity. These results might provide information about the bioavailability of quercetin when conducting animal experiments.
Baran, Richard; Ivanova, Natalia N.; Jose, Nick; Garcia-Pichel, Ferran; Kyrpides, Nikos C.; Gugger, Muriel; Northen, Trent R.
2013-01-01
Mass spectrometry-based metabolomics has become a powerful tool for the detection of metabolites in complex biological systems and for the identification of novel metabolites. We previously identified a number of unexpected metabolites in the cyanobacterium Synechococcus sp. PCC 7002, such as histidine betaine, its derivatives and several unusual oligosaccharides. To test for the presence of these compounds and to assess the diversity of small polar metabolites in other cyanobacteria, we profiled cell extracts of nine strains representing much of the morphological and evolutionary diversification of this phylum. Spectral features in raw metabolite profiles obtained by normal phase liquid chromatography coupled to mass spectrometry (MS) were manually curated so that chemical formulae of metabolites could be assigned. For putative identification, retention times and MS/MS spectra were cross-referenced with those of standards or available sprectral library records. Overall, we detected 264 distinct metabolites. These included indeed different betaines, oligosaccharides as well as additional unidentified metabolites with chemical formulae not present in databases of metabolism. Some of these metabolites were detected only in a single strain, but some were present in more than one. Genomic interrogation of the strains revealed that generally, presence of a given metabolite corresponded well with the presence of its biosynthetic genes, if known. Our results show the potential of combining metabolite profiling and genomics for the identification of novel biosynthetic genes. PMID:24084783
Ahn, Joong Kyong; Kim, Jungyeon; Hwang, Jiwon; Song, Juhwan; Kim, Kyoung Heon; Cha, Hoon-Suk
2018-05-01
Although many diagnostic criteria of Behcet's disease (BD) have been developed and revised by experts, diagnosing BD is still complicated and challenging. No metabolomic studies on serum have been attempted to improve the diagnosis and to identify potential biomarkers of BD. The purposes of this study were to investigate distinctive metabolic changes in serum samples of BD patients and to identify metabolic candidate biomarkers for reliable diagnosis of BD using the metabolomics platform. Metabolomic profiling of 90 serum samples from 45 BD patients and 45 healthy controls (HCs) were performed via gas chromatography with time-of-flight mass spectrometry (GC/TOF-MS) with multivariate statistical analyses. A total of 104 metabolites were identified from samples. The serum metabolite profiles obtained from GC/TOF-MS analysis can distinguish BD patients from HC group in discovery set. The variation values of the partial least squared-discrimination analysis (PLS-DA) model are R 2 X of 0.246, R 2 Y of 0.913 and Q 2 of 0.852, respectively, indicating strong explanation and prediction capabilities of the model. A panel of five metabolic biomarkers, namely, decanoic acid, fructose, tagatose, linoleic acid and oleic acid were selected and adequately validated as putative biomarkers of BD (sensitivity 100%, specificity 97.1%, area under the curve 0.998) in the discovery set and independent set. The PLS_DA model showed clear discrimination of BD and HC groups by the five metabolic biomarkers in independent set. This is the first report on characteristic metabolic profiles and potential metabolite biomarkers in serum for reliable diagnosis of BD using GC/TOF-MS. Copyright © 2017. Published by Elsevier SAS.
Hoshi, Noriyuki; Soga, Tomoyoshi; Tomita, Masaru; Sugimoto, Masahiro; Kimoto, Katsuhiko
2017-01-01
Background This study characterized the changes in quality and quantity of saliva, and changes in the salivary metabolomic profile, to understand the effects of masticatory stimulation. Methods Stimulated and unstimulated saliva samples were collected from 55 subjects and salivary hydrophilic metabolites were comprehensively quantified using capillary electrophoresis-time-of-flight mass spectrometry. Results In total, 137 metabolites were identified and quantified. The concentrations of 44 metabolites in stimulated saliva were significantly higher than those in unstimulated saliva. Pathway analysis identified the upregulation of the urea cycle and synthesis and degradation pathways of glycine, serine, cysteine and threonine in stimulated saliva. A principal component analysis revealed that the effect of masticatory stimulation on salivary metabolomic profiles was less dependent on sample population sex, age, and smoking. The concentrations of only 1 metabolite in unstimulated saliva, and of 3 metabolites stimulated saliva, showed significant correlation with salivary secretion volume, indicating that the salivary metabolomic profile and salivary secretion volume were independent factors. Conclusions Masticatory stimulation affected not only salivary secretion volume, but also metabolite concentration patterns. A low correlation between the secretion volume and these patterns supports the conclusion that the salivary metabolomic profile may be a new indicator to characterize masticatory stimulation. PMID:28813487
A High-Resolution LC-MS-Based Secondary Metabolite Fingerprint Database of Marine Bacteria
Lu, Liang; Wang, Jijie; Xu, Ying; Wang, Kailing; Hu, Yingwei; Tian, Renmao; Yang, Bo; Lai, Qiliang; Li, Yongxin; Zhang, Weipeng; Shao, Zongze; Lam, Henry; Qian, Pei-Yuan
2014-01-01
Marine bacteria are the most widely distributed organisms in the ocean environment and produce a wide variety of secondary metabolites. However, traditional screening for bioactive natural compounds is greatly hindered by the lack of a systematic way of cataloguing the chemical profiles of bacterial strains found in nature. Here we present a chemical fingerprint database of marine bacteria based on their secondary metabolite profiles, acquired by high-resolution LC-MS. Till now, 1,430 bacterial strains spanning 168 known species collected from different marine environments were cultured and profiled. Using this database, we demonstrated that secondary metabolite profile similarity is approximately, but not always, correlated with taxonomical similarity. We also validated the ability of this database to find species-specific metabolites, as well as to discover known bioactive compounds from previously unknown sources. An online interface to this database, as well as the accompanying software, is provided freely for the community to use. PMID:25298017
Taira, Kumiko; Fujioka, Kazutoshi; Aoyama, Yoshiko
2013-01-01
Neonicotinoid pesticides have been widely applied for the production of fruits and vegetables, and occasionally detected in conventionally grown produce. Thus oral exposure to neonicotinoid pesticides may exist in the general population; however, neonicotinoid metabolites in human body fluids have not been investigated comprehensively. The purpose of this study is the qualitative profiling and quantitative analysis of neonicotinoid metabolites in the human spot urine by liquid chromatography coupled with mass spectrometry (LC/MS). Human urine samples were collected from three patients suspected of subacute exposure to neonicotinoid pesticides. A qualitative profiling of urinary metabolites was performed using liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) with a database of nominal molecular weights of 57 known metabolites of three neonicotinoid pesticides (acetamiprid, Imidacloprid, and clothianidin), as well as the parent compounds. Then a quantitative analysis of selected urinary metabolites was performed using liquid chromatography/tandem mass spectrometry (LC/MS/MS) with a standard pesticide and metabolite, which were detected by the qualitative profiling. The result of qualitative profiling showed that seven metabolites, i.e. an acetamiprid metabolite, N-desmethyl-acetamiprid; three Imidacloprid metabolites, 5-hydroxy-Imidacloprid, 4,5-dihydroxy-imidacloprid, 4,5-dehydro-Imidacloprid; a common metabolite of acetamiprid and Imidacloprid, N-(6-chloronicotinoyl)-glycine; and two clothianidin metabolites, N-desmethyl-clothianidin, N-(2-(methylsulfanyl)thiazole-5-carboxyl)-glycine, as well as acetamiprid, were detected in the urine of three cases. The result of the quantitative analysis showed N-desmethyl-acetamiprid was determined in the urine of one case, which had been collected on the first visit, at a concentration of 3.2 ng/mL. This is the first report on the qualitative and quantitative detection of N-desmethyl-acetamiprid in the human urine. The results suggest that the one case with detection of N-desmethyl-acetamiprid was exposed to acetamiprid through the consumption of contaminated foods. Urinary N-desmethyl-acetamiprid, as well as 5-hydroxy-Imidacloprid and N-desmethyl-clothianidin, may be a good biomarker for neonicotinoid exposure in humans and warrants further investigation. PMID:24265808
Puhka, Maija; Takatalo, Maarit; Nordberg, Maria-Elisa; Valkonen, Sami; Nandania, Jatin; Aatonen, Maria; Yliperttula, Marjo; Laitinen, Saara; Velagapudi, Vidya; Mirtti, Tuomas; Kallioniemi, Olli; Rannikko, Antti; Siljander, Pia R-M; af Hällström, Taija Maria
2017-01-01
Body fluids are a rich source of extracellular vesicles (EVs), which carry cargo derived from the secreting cells. So far, biomarkers for pathological conditions have been mainly searched from their protein, (mi)RNA, DNA and lipid cargo. Here, we explored the small molecule metabolites from urinary and platelet EVs relative to their matched source samples. As a proof-of-concept study of intra-EV metabolites, we compared alternative normalization methods to profile urinary EVs from prostate cancer patients before and after prostatectomy and from healthy controls. Methods: We employed targeted ultra-performance liquid chromatography-tandem mass spectrometry to profile over 100 metabolites in the isolated EVs, original urine samples and platelets. We determined the enrichment of the metabolites in the EVs and analyzed their subcellular origin, pathways and relevant enzymes or transporters through data base searches. EV- and urine-derived factors and ratios between metabolites were tested for normalization of the metabolomics data. Results: Approximately 1 x 1010 EVs were sufficient for detection of metabolite profiles from EVs. The profiles of the urinary and platelet EVs overlapped with each other and with those of the source materials, but they also contained unique metabolites. The EVs enriched a selection of cytosolic metabolites including members from the nucleotide and spermidine pathways, which linked to a number of EV-resident enzymes or transporters. Analysis of the urinary EVs from the patients indicated that the levels of glucuronate, D-ribose 5-phosphate and isobutyryl-L-carnitine were 2-26-fold lower in all pre-prostatectomy samples compared to the healthy control and post-prostatectomy samples (p < 0.05). These changes were only detected from EVs by normalization to EV-derived factors or with metabolite ratios, and not from the original urine samples. Conclusions: Our results suggest that metabolite analysis of EVs from different samples is feasible using a high-throughput platform and relatively small amount of sample material. With the knowledge about the specific enrichment of metabolites and normalization methods, EV metabolomics could be used to gain novel biomarker data not revealed by the analysis of the original EV source materials. PMID:29109780
Jurynczyk, Maciej; Probert, Fay; Yeo, Tianrong; Tackley, George; Claridge, Tim D W; Cavey, Ana; Woodhall, Mark R; Arora, Siddharth; Winkler, Torsten; Schiffer, Eric; Vincent, Angela; DeLuca, Gabriele; Sibson, Nicola R; Isabel Leite, M; Waters, Patrick; Anthony, Daniel C; Palace, Jacqueline
2017-12-06
The overlapping clinical features of relapsing remitting multiple sclerosis (RRMS), aquaporin-4 (AQP4)-antibody (Ab) neuromyelitis optica spectrum disorder (NMOSD), and myelin oligodendrocyte glycoprotein (MOG)-Ab disease mean that detection of disease specific serum antibodies is the gold standard in diagnostics. However, antibody levels are not prognostic and may become undetectable after treatment or during remission. Therefore, there is still a need to discover antibody-independent biomarkers. We sought to discover whether plasma metabolic profiling could provide biomarkers of these three diseases and explore if the metabolic differences are independent of antibody titre. Plasma samples from 108 patients (34 RRMS, 54 AQP4-Ab NMOSD, and 20 MOG-Ab disease) were analysed by nuclear magnetic resonance spectroscopy followed by lipoprotein profiling. Orthogonal partial-least squares discriminatory analysis (OPLS-DA) was used to identify significant differences in the plasma metabolite concentrations and produce models (mathematical algorithms) capable of identifying these diseases. In all instances, the models were highly discriminatory, with a distinct metabolite pattern identified for each disease. In addition, OPLS-DA identified AQP4-Ab NMOSD patient samples with low/undetectable antibody levels with an accuracy of 92%. The AQP4-Ab NMOSD metabolic profile was characterised by decreased levels of scyllo-inositol and small high density lipoprotein particles along with an increase in large low density lipoprotein particles relative to both RRMS and MOG-Ab disease. RRMS plasma exhibited increased histidine and glucose, along with decreased lactate, alanine, and large high density lipoproteins while MOG-Ab disease plasma was defined by increases in formate and leucine coupled with decreased myo-inositol. Despite overlap in clinical measures in these three diseases, the distinct plasma metabolic patterns support their distinct serological profiles and confirm that these conditions are indeed different at a molecular level. The metabolites identified provide a molecular signature of each condition which is independent of antibody titre and EDSS, with potential use for disease monitoring and diagnosis.
Obesity-related metabolite profiles of black women spanning the epidemiologic transition.
Dugas, Lara R; Chorell, Elin; Plange-Rhule, Jacob; Lambert, Estelle V; Cao, Guichan; Cooper, Richard S; Layden, Brian T; Scholten, Denise; Olsson, Tommy; Luke, Amy; Goedecke, Julia H
2016-03-01
In developed countries, specific metabolites have been associated with obesity and metabolic diseases, e.g. type 2 diabetes. It is unknown whether a similar profile persists across populations of African-origin, at increased risk for obesity and related diseases. In a cross-sectional study of normal-weight and obese black women (33.3 ± 6.3 years) from the US ( N = 69, 65 % obese), South Africa (SA, N = 97, 49 % obese) and Ghana ( N = 82, 33 % obese) serum metabolite profiles were characterized via gas chromatography-time of flight/mass spectrometry. In US and SA women, BMI correlated with branched-chain and aromatic amino acids, as well as dopamine and aminoadipic acid. The relationship between BMI and lipid metabolites differed by site; BMI correlated positively with palmitoleic acid (16:1) in the US; negatively with stearic acid (18:0) in SA, and positively with arachidonic acid (20:4) in Ghana. BMI was also positively associated with sugar-related metabolites in the US; i.e. uric acid, and mannitol, and with glucosamine, glucoronic acid and mannitol in SA. While we identified a common amino acid metabolite profile associated with obesity in black women from the US and SA, we also found site-specific obesity-related metabolites suggesting that the local environment is a key moderator of obesity.
Obesity-related metabolite profiles of black women spanning the epidemiologic transition
Plange-Rhule, Jacob; Lambert, Estelle V.; Cao, Guichan; Cooper, Richard S.; Layden, Brian T.; Scholten, Denise; Olsson, Tommy; Luke, Amy; Goedecke, Julia H.
2016-01-01
In developed countries, specific metabolites have been associated with obesity and metabolic diseases, e.g. type 2 diabetes. It is unknown whether a similar profile persists across populations of African-origin, at increased risk for obesity and related diseases. In a cross-sectional study of normal-weight and obese black women (33.3 ± 6.3 years) from the US (N = 69, 65 % obese), South Africa (SA, N = 97, 49 % obese) and Ghana (N = 82, 33 % obese) serum metabolite profiles were characterized via gas chromatography-time of flight/mass spectrometry. In US and SA women, BMI correlated with branched-chain and aromatic amino acids, as well as dopamine and aminoadipic acid. The relationship between BMI and lipid metabolites differed by site; BMI correlated positively with palmitoleic acid (16:1) in the US; negatively with stearic acid (18:0) in SA, and positively with arachidonic acid (20:4) in Ghana. BMI was also positively associated with sugar-related metabolites in the US; i.e. uric acid, and mannitol, and with glucosamine, glucoronic acid and mannitol in SA. While we identified a common amino acid metabolite profile associated with obesity in black women from the US and SA, we also found site-specific obesity-related metabolites suggesting that the local environment is a key moderator of obesity. PMID:27346989
Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset.
Rogers, Angela J; Contrepois, Kévin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B; Matthay, Michael A
2017-05-01
There is considerable biological and physiological heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a subgroup of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Nontargeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were conducted to find discriminant metabolites. Seven-hundred and sixty unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared with edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This "high metabolite" endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biological heterogeneity among ARDS patients who meet standard clinical and physiological criteria for ARDS. Copyright © 2017 the American Physiological Society.
Identification of astilbin metabolites produced by human intestinal bacteria using UPLC-Q-TOF/MS.
Zhao, Min; Xu, Jun; Qian, Dawei; Guo, Jianming; Jiang, Shu; Shang, Er-xin; Duan, Jin-ao
2014-07-01
Astilbin, mainly isolated from a commonly used herbal medicine, Smilax glabra Roxb (SGR), exhibits a variety of pharmacological activities and biological effects. It is metabolized by intestinal bacteria after oral administration which leads to the variation of ethnopharmacological profile of this traditional medicine. However, little is known on the interactions of this active compound with intestinal bacteria, which would be very helpful in unravelling how SGR works. In this study, different pure bacteria from human feces were isolated and were used to investigate their conversion capability of astilbin. Ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry (UPLC-Q-TOF/MS) technique combined with Metabolynx(TM) software was used to analyze astilbin and its metabolites. The parent compound and two metabolites (quercetin and eriodictyol) were detected in the isolated bacterial samples compared with blank samples. Quercetin was present in Enterococcus sp. 8B, 8-2 and 9-2 samples. Eriodictyol was only identified in Enterococcus sp. 8B sample. The metabolic routes and metabolites of astilbin produced by the different intestinal bacteria are reported for the first time. This will be useful for the investigation of the pharmacokinetic study of astilbin in vivo and the role of different intestinal bacteria in the metabolism of natural compounds. Copyright © 2014 John Wiley & Sons, Ltd.
Abraham, R T; Benson, L M; Jardine, I
1983-10-01
Previous studies have shown that 6-thiopurine is metabolically activated by hepatic cytochrome P-450 to an intermediate capable of binding to proteins by a mixed disulfide linkage. The identity of the active metabolite was postulated to be purine-6-sulfenic acid. In the present report, we describe the synthesis of the sulfenic acid derivatives of 6-thiopurine and two structurally similar compounds, 9-methyl-6-thiopurine and 4-mercapto-1H-pyrazolo[3,4-d]-pyrimidine. The unusual pH-dependent stability profiles of these compounds in buffered aqueous media are presented and explained on the basis of a disproportionation mechanism of sulfenic acid decomposition. Studies with radiolabeled purine-6-sulfenic acid demonstrate that this species binds directly to hepatic microsomal protein. These results support the proposed involvement of purine-6-sulfenic acid in the metabolic activation and tissue binding of 6-thiopurine.
Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia.
Hotti, Hannu; Gopalacharyulu, Peddinti; Seppänen-Laakso, Tuulikki; Rischer, Heiko
2017-01-01
Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed.
Metabolite profiling of the carnivorous pitcher plants Darlingtonia and Sarracenia
Seppänen-Laakso, Tuulikki
2017-01-01
Sarraceniaceae is a New World carnivorous plant family comprising three genera: Darlingtonia, Heliamphora, and Sarracenia. The plants occur in nutrient-poor environments and have developed insectivorous capability in order to supplement their nutrient uptake. Sarracenia flava contains the alkaloid coniine, otherwise only found in Conium maculatum, in which its biosynthesis has been studied, and several Aloe species. Its ecological role and biosynthetic origin in S. flava is speculative. The aim of the current research was to investigate the occurrence of coniine in Sarracenia and Darlingtonia and to identify common constituents of both genera, unique compounds for individual variants and floral scent chemicals. In this comprehensive metabolic profiling study, we looked for compound patterns that are associated with the taxonomy of Sarracenia species. In total, 57 different Sarracenia and D. californica accessions were used for metabolite content screening by gas chromatography-mass spectrometry. The resulting high-dimensional data were studied using a data mining approach. The two genera are characterized by a large number of metabolites and huge chemical diversity between different species. By applying feature selection for clustering and by integrating new biochemical data with existing phylogenetic data, we were able to demonstrate that the chemical composition of the species can be explained by their known classification. Although transcriptome analysis did not reveal a candidate gene for coniine biosynthesis, the use of a sensitive selected ion monitoring method enabled the detection of coniine in eight Sarracenia species, showing that it is more widespread in this genus than previously believed. PMID:28222171
Thurman, E Michael; Ferrer, Imma
2012-10-12
We use the combination of liquid chromatography/quadrupole-time-of-flight mass spectrometry (LC/Q-TOF-MS) and urine metabolic profiling to find and identify the metabolites of dextromethorphan, a common over-the-counter (OTC) cough suppressant. Next, we use the combination of ion masses, their MS/MS fragmentation, and retention times to determine dextromethorphan and its metabolites in surface water impacted by wastewater. Prior to this study, neither dextromethorphan nor its metabolites have been reported in surface water; in spite of its common use in over 100 various OTC medications. We found that the concentration of the dextrorphan metabolite in surface water greatly exceeded the parent compound by factors of 5-10 times, which reflects the urine profile, where parent compound is approximately <2% of the total excreted drug based on ion intensities. Urine profiling also indicated that glucuronide metabolites are major phase 2 products (92% of the total) in urine and then are completely hydrolyzed in wastewater to dextrorphan and N-demethyldextrorphan, which are phase 1 metabolites-a "kind of reversal" of human metabolism. Copyright © 2012 Elsevier B.V. All rights reserved.
Temperament Type Specific Metabolite Profiles of the Prefrontal Cortex and Serum in Cattle
Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L.; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred
2015-01-01
In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response. PMID:25927228
Temperament type specific metabolite profiles of the prefrontal cortex and serum in cattle.
Brand, Bodo; Hadlich, Frieder; Brandt, Bettina; Schauer, Nicolas; Graunke, Katharina L; Langbein, Jan; Repsilber, Dirk; Ponsuksili, Siriluk; Schwerin, Manfred
2015-01-01
In the past decade the number of studies investigating temperament in farm animals has increased greatly because temperament has been shown not only to affect handling but also reproduction, health and economically important production traits. However, molecular pathways underlying temperament and molecular pathways linking temperament to production traits, health and reproduction have yet to be studied in full detail. Here we report the results of metabolite profiling of the prefrontal cortex and serum of cattle with distinct temperament types that were performed to further explore their molecular divergence in the response to the slaughter procedure and to identify new targets for further research of cattle temperament. By performing an untargeted comprehensive metabolite profiling, 627 and 1097 metabolite features comprising 235 and 328 metabolites could be detected in the prefrontal cortex and serum, respectively. In total, 54 prefrontal cortex and 51 serum metabolite features were indicated to have a high relevance in the classification of temperament types by a sparse partial least square discriminant analysis. A clear discrimination between fearful/neophobic-alert, interested-stressed, subdued/uninterested-calm and outgoing/neophilic-alert temperament types could be observed based on the abundance of the identified relevant prefrontal cortex and serum metabolites. Metabolites with high relevance in the classification of temperament types revealed that the main differences between temperament types in the response to the slaughter procedure were related to the abundance of glycerophospholipids, fatty acyls and sterol lipids. Differences in the abundance of metabolites related to C21 steroid metabolism and oxidative stress indicated that the differences in the metabolite profiles of the four extreme temperament types could be the result of a temperament type specific regulation of molecular pathways that are known to be involved in the stress and fear response.
Effect of Cultivar and Cultivation Year on the Metabolite Profile of Onion Bulbs ( Allium cepa L.).
Böttcher, Christoph; Krähmer, Andrea; Stürtz, Melanie; Widder, Sabine; Schulz, Hartwig
2018-03-28
This study investigated the variation of metabolite profiles of onion bulbs ( Allium cepa L.) depending on genetic and environmental factors. Nine onion cultivars ("Corrado", "Cupido", "Forum", "Hytech", "Picador", "Redlight", "Snowpack", "Stardust", "Sturon") with different scale color and dry matter content were grown in a two-year field trial. Using a recently established metabolite profiling approach based on liquid chromatography-coupled electrospray ionization quadrupole time-of-flight mass spectrometry, 106 polar and semipolar metabolites which belong to compound classes determining nutritional, sensory, and technological quality of onion bulbs such as saccharides, flavonoids, S-substitued cysteine conjugates, amino acids, and derived γ-glutamyl peptides were relatively quantitated in parallel. Statistical analyses of the obtained data indicated that depending on the compound class genetic and environmental factors differently contributed to variation of metabolite levels. For saccharides and flavonoids the genetic factor was the major source of variation, whereas for cysteine sulfoxides, amino acids, and peptides both genetic and environmental factors had a significant impact on corresponding metabolite levels.
Responses to water stress of gas exchange and metabolites in Eucalyptus and Acacia spp.
Warren, Charles R; Aranda, Ismael; Cano, F Javier
2011-10-01
Studies of water stress commonly examine either gas exchange or leaf metabolites, and many fail to quantify the concentration of CO₂ in the chloroplasts (C(c)). We redress these limitations by quantifying C(c) from discrimination against ¹³CO₂ and using gas chromatography-mass spectrometry (GC-MS) for leaf metabolite profiling. Five Eucalyptus and two Acacia species from semi-arid to mesic habitats were subjected to a 2 month water stress treatment (Ψ(pre-dawn) = -1.7 to -2.3 MPa). Carbohydrates dominated the leaf metabolite profiles of species from dry areas, whereas organic acids dominated the metabolite profiles of species from wet areas. Water stress caused large decreases in photosynthesis and C(c), increases in 17-33 metabolites and decreases in 0-9 metabolites. In most species, fructose, glucose and sucrose made major contributions to osmotic adjustment. In Acacia, significant osmotic adjustment was also caused by increases in pinitol, pipecolic acid and trans-4-hydroxypipecolic acid. There were also increases in low-abundance metabolites (e.g. proline and erythritol), and metabolites that are indicative of stress-induced changes in metabolism [e.g. γ-aminobutyric acid (GABA) shunt, photorespiration, phenylpropanoid pathway]. The response of gas exchange to water stress and rewatering is rather consistent among species originating from mesic to semi-arid habitats, and the general response of metabolites to water stress is rather similar, although the specific metabolites involved may vary. © 2011 Blackwell Publishing Ltd.
Mogensen, Kris M; Lasky-Su, Jessica; Rogers, Angela J; Baron, Rebecca M; Fredenburgh, Laura E; Rawn, James; Robinson, Malcolm K; Massarro, Anthony; Choi, Augustine M K; Christopher, Kenneth B
2017-02-01
We hypothesized that metabolic profiles would differ in critically ill patients with malnutrition relative to those without. We performed a prospective cohort study on 85 adult patients with systemic inflammatory response syndrome or sepsis admitted to a 20-bed medical intensive care unit (ICU) in Boston. We generated metabolomic profiles using gas and liquid chromatography and mass spectroscopy. We followed this by logistic regression and partial least squares discriminant analysis to identify individual metabolites that were significant. We then interrogated the entire metabolomics profile using metabolite set enrichment analysis and network model construction of chemical-protein target interactions to identify groups of metabolites and pathways that were differentiates in patients with and without malnutrition. Of the cohort, 38% were malnourished at admission to the ICU. Metabolomic profiles differed in critically ill patients with malnutrition relative to those without. Ten metabolites were significantly associated with malnutrition ( P < .05). A parsimonious model of 5 metabolites effectively differentiated patients with malnutrition (AUC = 0.76), including pyroglutamine and hypoxanthine. Using pathway enrichment analysis, we identified a critical role of glutathione and purine metabolism in predicting nutrition. Nutrition status was associated with 28-day mortality, even after adjustment for known phenotypic variables associated with ICU mortality. Importantly, 7 metabolites associated with nutrition status were also associated with 28-day mortality. Malnutrition is associated with differential metabolic profiles early in critical illness. Common to all of our metabolome analyses, glutathione and purine metabolism, which play principal roles in cellular redox regulation and accelerated tissue adenosine triphosphate degradation, respectively, were significantly altered with malnutrition.
Can NMR solve some significant challenges in metabolomics?
Nagana Gowda, G A; Raftery, Daniel
2015-11-01
The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. Copyright © 2015 Elsevier Inc. All rights reserved.
Schou, Mads F; Kristensen, Torsten N; Pedersen, Anders; Karlsson, B Göran; Loeschcke, Volker; Malmendal, Anders
2017-02-01
The ability of ectotherms to respond to changes in their thermal environment through plastic mechanisms is central to their adaptive capability. However, we still lack knowledge on the physiological and functional responses by which ectotherms acclimate to temperatures during development, and in particular, how physiological stress at extreme temperatures may counteract beneficial acclimation responses at benign temperatures. We exposed Drosophila melanogaster to 10 developmental temperatures covering their entire permissible temperature range. We obtained metabolic profiles and reaction norms for several functional traits: egg-to-adult viability, developmental time, and heat and cold tolerance. Females were more heat tolerant than males, whereas no sexual dimorphism was found in cold tolerance. A group of metabolites, mainly free amino acids, had linear reaction norms. Several energy-carrying molecules, as well as some sugars, showed distinct inverted U-shaped norms of reaction across the thermal range, resulting in a positive correlation between metabolite intensities and egg-to-adult viability. At extreme temperatures, low levels of these metabolites were interpreted as a response characteristic of costs of homeostatic perturbations. Our results provide novel insights into a range of metabolites reported to be central for the acclimation response and suggest several new candidate metabolites. Low and high temperatures result in different adaptive physiological responses, but they also have commonalities likely to be a result of the failure to compensate for the physiological stress. We suggest that the regulation of metabolites that are tightly connected to the performance curve is important for the ability of ectotherms to cope with variation in temperature. Copyright © 2017 the American Physiological Society.
Ji, Dong Yoon; Park, Se Hee; Park, Soo Jin; Kim, Kyoung Heon; Ku, Cheol Ryong; Shin, Dong Yeob; Yoon, Jin Sook; Lee, Do Yup; Lee, Eun Jig
2018-06-18
Graves' disease (GD) is an autoimmune disorder that causes the overproduction of thyroid hormones and consequent cascade of systemic metabolism dysfunction. Moreover, Graves' ophthalmopathy (GO) is the main extrathyroidal manifestation of Graves' disease (GD). The goal of the study was to identify metabolic signatures in association with diagnostic biomarkers of GD without GO and GO, respectively. Ninety metabolites were profiled and analyzed based on a non-targeted primary metabolite profiling from plasma samples of 21 GD patients without GO, 26 subjects with GO, and 32 healthy subjects. Multivariate statistics showed a clear discrimination between healthy controls and disease group (R2Y = 0.518, Q2 = 0.478) and suggested a biomarker panel consisting of 10 metabolites. Among them, most of metabolites showed the positive association with the levels of thyrotropin receptor antibodies. With combination of proline and 1,5-anhydroglucitol, which were identified as GO-specific modulators, the re-constructed biomarker model greatly improved the statistical power and also facilitated simultaneous discrimination among healthy control, GO, and GD without GO groups (AUC = 0.845-0.935). Finally, the comparative analysis of tissue metabolite profiles from GO patients proposed putative metabolic linkage between orbital adipose/connective tissues and the biofluidic consequences, in which fumarate, proline, phenylalanine, and glycerol were coordinately altered with the blood metabolites.
Paiva, Anthony; Shou, Wilson Z
2016-08-01
The last several years have seen the rapid adoption of the high-resolution MS (HRMS) for bioanalytical support of high throughput in vitro ADME profiling. Many capable software tools have been developed and refined to process quantitative HRMS bioanalysis data for ADME samples with excellent performance. Additionally, new software applications specifically designed for quan/qual soft spot identification workflows using HRMS have greatly enhanced the quality and efficiency of the structure elucidation process for high throughput metabolite ID in early in vitro ADME profiling. Finally, novel approaches in data acquisition and compression, as well as tools for transferring, archiving and retrieving HRMS data, are being continuously refined to tackle the issue of large data file size typical for HRMS analyses.
Silva, Anderson Tadeu; Ligterink, Wilco; Hilhorst, Henk W M
2017-11-01
Metabolic and transcriptomic correlation analysis identified two distinctive profiles involved in the metabolic preparation for seed germination and seedling establishment, respectively. Transcripts were identified that may control metabolic fluxes. The transition from a quiescent metabolic state (dry seed) to the active state of a vigorous seedling is crucial in the plant's life cycle. We analysed this complex physiological trait by measuring the changes in primary metabolism that occur during the transition in order to determine which metabolic networks are operational. The transition involves several developmental stages from seed germination to seedling establishment, i.e. between imbibition of the mature dry seed and opening of the cotyledons, the final stage of seedling establishment. We hypothesized that the advancement of growth is associated with certain signature metabolite profiles. Metabolite-metabolite correlation analysis underlined two specific profiles which appear to be involved in the metabolic preparation for seed germination and efficient seedling establishment, respectively. Metabolite profiles were also compared to transcript profiles and although transcriptional changes did not always equate to a proportional metabolic response, in depth correlation analysis identified several transcripts that may directly influence the flux through metabolic pathways during the seed-to-seedling transition. This correlation analysis also pinpointed metabolic pathways which are significant for the seed-to-seedling transition, and metabolite contents that appeared to be controlled directly by transcript abundance. This global view of the transcriptional and metabolic changes during the seed-to-seedling transition in Arabidopsis opens up new perspectives for understanding the complex regulatory mechanism underlying this transition.
2016-01-01
temporal changes in urinary metabolite profiles mirrored cognitive performance during continuous wakefulness. Additionally , subjects identified by...profiles mirrored cognitive performance during continuous wakefulness. Additionally , subjects identified by cognitive assessments as having a high...field studies and would have little useful application in occupational or military operational environments. Addition - ally, their usefulness is
Analysis of Multiple Metabolites of Tocopherols and Tocotrienols in Mice and Humans
Zhao, Yang; Lee, Mao-Jung; Cheung, Connie; Ju, Ji-Hyeung; Chen, Yu-Kuo; Liu, Ba; Hu, Long-Qin; Yang, Chung S.
2010-01-01
Tocopherols and tocotrienols, collectively known as vitamin E, are essential antioxidant nutrients. The biological fates and metabolite profiles of the different forms are not clearly understood. The objective of this study is to simultaneously analyze the metabolites of different tocopherols and tocotrienols in mouse and human samples. Using HPLC/electrochemical detection and mass spectrometry, 18 tocopherol-derived and 24 tocotrienol-derived side-chain degradation metabolites were identified in fecal samples. Short-chain degradation metabolites, in particular γ- and δ- carboxyethyl hydroxychromans (CEHCs) and carboxymethylbutyl hydroxychromans (CMBHCs) were detected in urine, serum and liver samples, with tocopherols additionally detected in serum and liver samples. The metabolite profiles of tocotrienols and tocopherols were similar, but new tocotrienol metabolites with double bonds were identified. This is the first comprehensive report describing simultaneous analysis of different side-chain metabolites of tocopherols and tocotrienols in mice and humans. Urinary metabolites may serve as useful biomarkers for nutritional assessment of vitamin E. PMID:20222730
Brundige, Dottie R.; Maga, Elizabeth A.; Klasing, Kirk C.
2009-01-01
Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats’ milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats’ milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health. PMID:19847666
Krauser, Joel; Walles, Markus; Wolf, Thierry; Graf, Daniel; Swart, Piet
2012-01-01
Generation and interpretation of biotransformation data on drugs, i.e. identification of physiologically relevant metabolites, defining metabolic pathways and elucidation of metabolite structures, have become increasingly important to the drug development process. Profiling using 14C or 3H radiolabel is defined as the chromatographic separation and quantification of drug-related material in a given biological sample derived from an in vitro, preclinical in vivo or clinical study. Metabolite profiling is a very time intensive activity, particularly for preclinical in vivo or clinical studies which have defined limitations on radiation burden and exposure levels. A clear gap exists for certain studies which do not require specialized high volume automation technologies, yet these studies would still clearly benefit from automation. Use of radiolabeled compounds in preclinical and clinical ADME studies, specifically for metabolite profiling and identification are a very good example. The current lack of automation for measuring low level radioactivity in metabolite profiling requires substantial capacity, personal attention and resources from laboratory scientists. To help address these challenges and improve efficiency, we have innovated, developed and implemented a novel and flexible automation platform that integrates a robotic plate handling platform, HPLC or UPLC system, mass spectrometer and an automated fraction collector. PMID:22723932
Brundige, Dottie R; Maga, Elizabeth A; Klasing, Kirk C; Murray, James D
2010-08-01
Nutrition, bacterial composition of the gastrointestinal tract, and general health status can all influence the metabolic profile of an organism. We previously demonstrated that feeding pasteurized transgenic goats' milk expressing human lysozyme (hLZ) can positively impact intestinal morphology and modulate intestinal microbiota composition in young pigs. The objective of this study was to further examine the effect of consuming hLZ-containing milk on young pigs by profiling serum metabolites. Pigs were placed into two groups and fed a diet of solid food and either control (non-transgenic) goats' milk or milk from hLZ-transgenic goats for 6 weeks. Serum samples were collected at the end of the feeding period and global metabolite profiling was performed. For a total of 225 metabolites (160 known, 65 unknown) semi-quantitative data was obtained. Levels of 18 known and 4 unknown metabolites differed significantly between the two groups with the direction of change in 13 of the 18 known metabolites being almost entirely congruent with improved health status, particularly in terms of the gastrointestinal tract health and immune response, with the effects of the other five being neutral or unknown. These results further support our hypothesis that consumption of hLZ-containing milk is beneficial to health.
Park, Hye Min; Singh, Digar; Lee, Choong Hwan
2016-01-01
Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions. PMID:26863302
Kim, Hyang Yeon; Heo, Do Yeon; Park, Hye Min; Singh, Digar; Lee, Choong Hwan
2016-01-01
Penicillium spp. are known to harbor a wide array of secondary metabolites with cryptic bioactivities. However, the metabolomics of these species is not well-understood in terms of different fermentation models and conditions. The present study involved metabolomics profiling and transcriptomic analysis of Penicillium expansum 40815 under solid-state fermentation (SSF) and submerged fermentation (SmF). Metabolite profiling was carried out using ultra-performance liquid chromatography quadruple time-of-flight mass spectrometry with multivariate analysis, followed by transcriptomic analyses of differentially expressed genes. In principal component analysis, the metabolite profiling data was studied under different experimental sets, including SSF and SmF. The significantly different metabolites such as polyketide metabolites (agonodepside B, rotiorin, verrucosidin, and ochrephilone) and corresponding gene transcripts (polyketide synthase, aromatic prenyltransferase, and terpenoid synthase) were primarily detected under SmF conditions. In contrast, the meroterpenoid compounds (andrastin A and C) and their genes transcripts were exclusively detected under SSF conditions. We demonstrated that the metabolite production and its corresponding gene expression levels in P. expansum 40815 were significantly influenced by the varying growth parameters and the immediate environment. This study further provides a foundation to produce specific metabolites by regulating fermentation conditions.
De La Rosa, Vanessa Y; Asfaha, Jonathan; Fasullo, Michael; Loguinov, Alex; Li, Peng; Moore, Lee E; Rothman, Nathaniel; Nakamura, Jun; Swenberg, James A; Scelo, Ghislaine; Zhang, Luoping; Smith, Martyn T; Vulpe, Chris D
2017-11-01
Trichloroethylene (TCE), an industrial chemical and environmental contaminant, is a human carcinogen. Reactive metabolites are implicated in renal carcinogenesis associated with TCE exposure, yet the toxicity mechanisms of these metabolites and their contribution to cancer and other adverse effects remain unclear. We employed an integrated functional genomics approach that combined functional profiling studies in yeast and avian DT40 cell models to provide new insights into the specific mechanisms contributing to toxicity associated with TCE metabolites. Genome-wide profiling studies in yeast identified the error-prone translesion synthesis (TLS) pathway as an import mechanism in response to TCE metabolites. The role of TLS DNA repair was further confirmed by functional profiling in DT40 avian cell lines, but also revealed that TLS and homologous recombination DNA repair likely play competing roles in cellular susceptibility to TCE metabolites in higher eukaryotes. These DNA repair pathways are highly conserved between yeast, DT40, and humans. We propose that in humans, mutagenic TLS is favored over homologous recombination repair in response to TCE metabolites. The results of these studies contribute to the body of evidence supporting a mutagenic mode of action for TCE-induced renal carcinogenesis mediated by reactive metabolites in humans. Our approach illustrates the potential for high-throughput in vitro functional profiling in yeast to elucidate toxicity pathways (molecular initiating events, key events) and candidate susceptibility genes for focused study. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Multiplexed, quantitative, and targeted metabolite profiling by LC-MS/MRM.
Wei, Ru; Li, Guodong; Seymour, Albert B
2014-01-01
Targeted metabolomics, which focuses on a subset of known metabolites representative of biologically relevant metabolic pathways, is a valuable tool to discover biomarkers and link disease phenotypes to underlying mechanisms or therapeutic modes of action. A key advantage of targeted metabolomics, compared to discovery metabolomics, is its immediate readiness for extracting biological information derived from known metabolites and quantitative measurements. However, simultaneously analyzing hundreds of endogenous metabolites presents a challenge due to their diverse chemical structures and properties. Here we report a method which combines different chromatographic separation conditions, optimal ionization polarities, and the most sensitive triple-quadrupole MS-based data acquisition mode, multiple reaction monitoring (MRM), to quantitatively profile 205 endogenous metabolites in 10 min.
Bandu, Raju; Lee, Hyun Jeong; Lee, Hyeong Min; Ha, Tae Hyon; Lee, Heon-Jeong; Kim, Se Joo; Ha, Kyooseob; Kim, Kwang Pyo
2018-05-01
Liquid chromatography-mass spectrometry (LC-MS) method revealed the plasma metabolite profiles in major depressive disorder patients treated with escitalopram (ECTP) (n = 7). Depression severity was assessed according to the 17-item Hamilton Depression Rating Scale. Metabolic profiles were derived from major depressive disorder subject blood samples collected after ECTP treatment. Blood plasma was separated and processed in order to effectively extract metabolites, which were then analyzed using LC-MS. We identified 19 metabolites and elucidated their structures using LC-tandem MS (LC-MS/MS) combined with elemental compositions derived from accurate mass measurements. We further used online H/D exchange experiments to verify the structural elucidations of each metabolite. Identifying molecular metabolites may provide critical insights into the pharmacological and clinical effects of ECTP treatment and may also provide useful information informing the development of new antidepressant treatments. These detailed plasma metabolite analyses may also be used to identify optimal dose concentrations in psychopharmacotherapeutic treatment through drug monitoring, as well as forming the basis for response predictions in depressed subjects. Copyright © 2018 John Wiley & Sons, Ltd.
Alterations in hepatic lipid profiles of fathead minnows (FHM) exposed to the synthetic estrogen 17α-ethynylestradiol (EE2) were determined using 1H-NMR spectroscopy-based metabolite profiling. The exposures were conducted using either 10 ng/l or 100 ng/l EE2 via a continuous flo...
Lu, Alex Y; Turban, Jack L; Damisah, Eyiyemisi C; Li, Jie; Alomari, Ahmed K; Eid, Tore; Vortmeyer, Alexander O; Chiang, Veronica L
2017-08-01
OBJECTIVE Following an initial response of brain metastases to Gamma Knife radiosurgery, regrowth of the enhancing lesion as detected on MRI may represent either radiation necrosis (a treatment-related inflammatory change) or recurrent tumor. Differentiation of radiation necrosis from tumor is vital for management decision making but remains difficult by imaging alone. In this study, gas chromatography with time-of-flight mass spectrometry (GC-TOF) was used to identify differential metabolite profiles of the 2 tissue types obtained by surgical biopsy to find potential targets for noninvasive imaging. METHODS Specimens of pure radiation necrosis and pure tumor obtained from patient brain biopsies were flash-frozen and validated histologically. These formalin-free tissue samples were then analyzed using GC-TOF. The metabolite profiles of radiation necrosis and tumor samples were compared using multivariate and univariate statistical analysis. Statistical significance was defined as p ≤ 0.05. RESULTS For the metabolic profiling, GC-TOF was performed on 7 samples of radiation necrosis and 7 samples of tumor. Of the 141 metabolites identified, 17 (12.1%) were found to be statistically significantly different between comparison groups. Of these metabolites, 6 were increased in tumor, and 11 were increased in radiation necrosis. An unsupervised hierarchical clustering analysis found that tumor had elevated levels of metabolites associated with energy metabolism, whereas radiation necrosis had elevated levels of metabolites that were fatty acids and antioxidants/cofactors. CONCLUSIONS To the authors' knowledge, this is the first tissue-based metabolomics study of radiation necrosis and tumor. Radiation necrosis and recurrent tumor following Gamma Knife radiosurgery for brain metastases have unique metabolite profiles that may be targeted in the future to develop noninvasive metabolic imaging techniques.
LC-MS/MS profiling-based secondary metabolite screening of Myxococcus xanthus.
Kim, Jiyoung; Choi, Jung Nam; Kim, Pil; Sok, Dai-Eun; Nam, Soo-Wan; Lee, Choong Hwan
2009-01-01
Myxobacteria, Gram-negative soil bacteria, are a well-known producer of bioactive secondary metabolites. Therefore, this study presents a methodological approach for the high-throughput screening of secondary metabolites from 4 wild-type Myxococcus xanthus strains. First, electrospray ionization mass spectrometry (ESI-MS) was performed using extracellular crude extracts. As a result, 22 metabolite peaks were detected, and the metabolite profiling was then conducted using the m/z value, retention time, and MS/MS fragmentation pattern analyses. Among the peaks, one unknown compound peak was identified as analogous to the myxalamid A, B, and C series. An analysis of the tandem mass spectrometric fragmentation patterns and HR-MS identified myxalamid K as a new compound derived from M. xanthus. In conclusion, LC-MS/MS-based chemical screening of diverse secondary metabolites would appear to be an effective approach for discovering unknown microbial secondary metabolites.
Kirkwood, Jay S; Maier, Claudia; Stevens, Jan F
2013-05-01
At its most ambitious, untargeted metabolomics aims to characterize and quantify all of the metabolites in a given system. Metabolites are often present at a broad range of concentrations and possess diverse physical properties complicating this task. Performing multiple sample extractions, concentrating sample extracts, and using several separation and detection methods are common strategies to overcome these challenges but require a great amount of resources. This protocol describes the untargeted, metabolic profiling of polar and nonpolar metabolites with a single extraction and using a single analytical platform. © 2013 by John Wiley & Sons, Inc.
¹H NMR-based metabolic profiling of human rectal cancer tissue
2013-01-01
Background Rectal cancer is one of the most prevalent tumor types. Understanding the metabolic profile of rectal cancer is important for developing therapeutic approaches and molecular diagnosis. Methods Here, we report a metabonomics profiling of tissue samples on a large cohort of human rectal cancer subjects (n = 127) and normal controls (n = 43) using 1H nuclear magnetic resonance (1H NMR) based metabonomics assay, which is a highly sensitive and non-destructive method for the biomarker identification in biological systems. Principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and orthogonal projection to latent structure with discriminant analysis (OPLS-DA) were applied to analyze the 1H-NMR profiling data to identify the distinguishing metabolites of rectal cancer. Results Excellent separation was obtained and distinguishing metabolites were observed among the different stages of rectal cancer tissues (stage I = 35; stage II = 37; stage III = 37 and stage IV = 18) and normal controls. A total of 38 differential metabolites were identified, 16 of which were closely correlated with the stage of rectal cancer. The up-regulation of 10 metabolites, including lactate, threonine, acetate, glutathione, uracil, succinate, serine, formate, lysine and tyrosine, were detected in the cancer tissues. On the other hand, 6 metabolites, including myo-inositol, taurine, phosphocreatine, creatine, betaine and dimethylglycine were decreased in cancer tissues. These modified metabolites revealed disturbance of energy, amino acids, ketone body and choline metabolism, which may be correlated with the progression of human rectal cancer. Conclusion Our findings firstly identify the distinguishing metabolites in different stages of rectal cancer tissues, indicating possibility of the attribution of metabolites disturbance to the progression of rectal cancer. The altered metabolites may be as potential biomarkers, which would provide a promising molecular diagnostic approach for clinical diagnosis of human rectal cancer. The role and underlying mechanism of metabolites in rectal cancer progression are worth being further investigated. PMID:24138801
Metabolite and lipid profiling are well established techniques for studying chemical-induced alterations to normal biological function in numerous organisms. These techniques have been used successfully to identify biomarkers of chemical exposure, screen for chemical potency, or ...
Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling
Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...
2014-12-12
An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less
Secondary metabolites profiles and antioxidant activities of germinated brown and red rice
NASA Astrophysics Data System (ADS)
Nurnaistia, Y.; Aisyah, S.; Munawaroh, H. S. H.; Zackiyah
2018-05-01
The research aims to investigate the effect of germination on the secondary metabolite profiles and antioxidant activity of brown and red rice. The germination was performed by using a simple laboratory-scale machine that was designed and optimized to provide conditions that support the germination process. The germination was carried out for 2 days in dark conditions at 26°C and 99% humidity. Analysis of the secondary metabolite profile of ungerminated and germinated rice was performed using LC-MS. The antioxidant activities of ungerminated and germinated rice were done by using DPPH method. The results showed that the profiles of secondary metabolites of brown and red rice changed after germination. Some peaks were found to be induced in the germinated rice. However, some peaks were also loss during germination. The antioxidant activity of brown rice was slightly increased due to the germination, from 11.2% to 22.5%. Meanwhile the antioxidant activity of red rice was decreased after germination, from 73.8% to 60.0%.
Mitochondrial Transfer by Photothermal Nanoblade Restores Metabolite Profile in Mammalian Cells.
Wu, Ting-Hsiang; Sagullo, Enrico; Case, Dana; Zheng, Xin; Li, Yanjing; Hong, Jason S; TeSlaa, Tara; Patananan, Alexander N; McCaffery, J Michael; Niazi, Kayvan; Braas, Daniel; Koehler, Carla M; Graeber, Thomas G; Chiou, Pei-Yu; Teitell, Michael A
2016-05-10
mtDNA sequence alterations are challenging to generate but desirable for basic studies and potential correction of mtDNA diseases. Here, we report a new method for transferring isolated mitochondria into somatic mammalian cells using a photothermal nanoblade, which bypasses endocytosis and cell fusion. The nanoblade rescued the pyrimidine auxotroph phenotype and respiration of ρ0 cells that lack mtDNA. Three stable isogenic nanoblade-rescued clones grown in uridine-free medium showed distinct bioenergetics profiles. Rescue lines 1 and 3 reestablished nucleus-encoded anapleurotic and catapleurotic enzyme gene expression patterns and had metabolite profiles similar to the parent cells from which the ρ0 recipient cells were derived. By contrast, rescue line 2 retained a ρ0 cell metabolic phenotype despite growth in uridine-free selection. The known influence of metabolite levels on cellular processes, including epigenome modifications and gene expression, suggests metabolite profiling can help assess the quality and function of mtDNA-modified cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Effect of Solid Biological Waste Compost on the Metabolite Profile of Brassica rapa ssp. chinensis
Neugart, Susanne; Wiesner-Reinhold, Melanie; Frede, Katja; Jander, Elisabeth; Homann, Thomas; Rawel, Harshadrai M.; Schreiner, Monika; Baldermann, Susanne
2018-01-01
Large quantities of biological waste are generated at various steps within the food production chain and a great utilization potential for this solid biological waste exists apart from the current main usage for the feedstuff sector. It remains unclear how the usage of biological waste as compost modulates plant metabolites. We investigated the effect of biological waste of the processing of coffee, aronia, and hop added to soil on the plant metabolite profile by means of liquid chromatography in pak choi sprouts. Here we demonstrate that the solid biological waste composts induced specific changes in the metabolite profiles and the changes are depending on the type of the organic residues and its concentration in soil. The targeted analysis of selected plant metabolites, associated with health beneficial properties of the Brassicaceae family, revealed increased concentrations of carotenoids (up to 3.2-fold) and decreased amounts of glucosinolates (up to 4.7-fold) as well as phenolic compounds (up to 1.5-fold). PMID:29616051
Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.; ...
2017-03-06
Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.
Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less
Profiling of ARDS pulmonary edema fluid identifies a metabolically distinct subset
Contrepois, Kévin; Wu, Manhong; Zheng, Ming; Peltz, Gary; Ware, Lorraine B.; Matthay, Michael A.
2017-01-01
There is considerable biological and physiological heterogeneity among patients who meet standard clinical criteria for acute respiratory distress syndrome (ARDS). In this study, we tested the hypothesis that there exists a subgroup of ARDS patients who exhibit a metabolically distinct profile. We examined undiluted pulmonary edema fluid obtained at the time of endotracheal intubation from 16 clinically phenotyped ARDS patients and 13 control patients with hydrostatic pulmonary edema. Nontargeted metabolic profiling was carried out on the undiluted edema fluid. Univariate and multivariate statistical analyses including principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were conducted to find discriminant metabolites. Seven-hundred and sixty unique metabolites were identified in the pulmonary edema fluid of these 29 patients. We found that a subset of ARDS patients (6/16, 38%) presented a distinct metabolic profile with the overrepresentation of 235 metabolites compared with edema fluid from the other 10 ARDS patients, whose edema fluid metabolic profile was indistinguishable from those of the 13 control patients with hydrostatic edema. This “high metabolite” endotype was characterized by higher concentrations of metabolites belonging to all of the main metabolic classes including lipids, amino acids, and carbohydrates. This distinct group with high metabolite levels in the edema fluid was also associated with a higher mortality rate. Thus metabolic profiling of the edema fluid of ARDS patients supports the hypothesis that there is considerable biological heterogeneity among ARDS patients who meet standard clinical and physiological criteria for ARDS. PMID:28258106
Metabolomics for secondary metabolite research.
Breitling, Rainer; Ceniceros, Ana; Jankevics, Andris; Takano, Eriko
2013-11-11
Metabolomics, the global characterization of metabolite profiles, is becoming an increasingly powerful tool for research on secondary metabolite discovery and production. In this review we discuss examples of recent technological advances and biological applications of metabolomics in the search for chemical novelty and the engineered production of bioactive secondary metabolites.
A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments.
Dona, Anthony C; Kyriakides, Michael; Scott, Flora; Shephard, Elizabeth A; Varshavi, Dorsa; Veselkov, Kirill; Everett, Jeremy R
2016-01-01
Metabonomics/metabolomics is an important science for the understanding of biological systems and the prediction of their behaviour, through the profiling of metabolites. Two technologies are routinely used in order to analyse metabolite profiles in biological fluids: nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS), the latter typically with hyphenation to a chromatography system such as liquid chromatography (LC), in a configuration known as LC-MS. With both NMR and MS-based detection technologies, the identification of the metabolites in the biological sample remains a significant obstacle and bottleneck. This article provides guidance on methods for metabolite identification in biological fluids using NMR spectroscopy, and is illustrated with examples from recent studies on mice.
Unraveling the Plant-Soil Interactome
NASA Astrophysics Data System (ADS)
Lipton, M. S.; Hixson, K.; Ahkami, A. H.; HaHandkumbura, P. P.; Hess, N. J.; Fang, Y.; Fortin, D.; Stanfill, B.; Yabusaki, S.; Engbrecht, K. M.; Baker, E.; Renslow, R.; Jansson, C.
2017-12-01
Plant photosynthesis is the primary conduit of carbon fixation from the atmosphere to the terrestrial ecosystem. While more is known about plant physiology and biochemistry, the interplay between genetic and environmental factors that govern partitioning of carbon to above- and below ground plant biomass, to microbes, to the soil, and respired to the atmosphere is not well understood holistically. To address this knowledge gap there is a need to define, study, comprehend, and model the plant ecosystem as an integrated system of integrated biotic and abiotic processes and feedbacks. Local rhizosphere conditions are an important control on plant performance but are in turn affected by plant uptake and rhizodeposition processes. C3 and C4 plants have different CO2 fixation strategies and likely have differential metabolic profiles resulting in different carbon sources exuding to the rhizosphere. In this presentation, we report on an integrated capability to better understand plant-soil interactions, including modeling tools that address the spatiotemporal hydrobiogeochemistry in the rhizosphere. Comparing Brachypodium distachyon, (Brachypodium) as our C3 representative and Setaria viridis (Setaria) as our C4 representative, we designed, highly controlled single-plant experimental ecosystems based these model grasses to enable quantitative prediction of ecosystem traits and responses as a function of plant genotype and environmental variables. A metabolomics survey of 30 Brachypodium genotypes grown under control and drought conditions revealed specific metabolites that correlated with biomass production and drought tolerance. A comparison of Brachypodium and Setaria grown with control and a future predicted elevated CO2 level revealed changes in biomass accumulation and metabolite profiles between the C3 and C4 species in both leaves and roots. Finally, we are building an mechanistic modeling capability that will contribute to a better basis for modeling plant water and nutrient cycling in larger scale models.
Du, Fuying; Liu, Ting; Liu, Tian; Wang, Yongwei; Wan, Yakun; Xing, Jie
2011-10-30
Triptolide (TP), the primary active component of the herbal medicine Tripterygium wilfordii Hook F, has shown promising antileukemic and anti-inflammatory activity. The pharmacokinetic profile of TP indicates an extensive metabolic elimination in vivo; however, its metabolic data is rarely available partly because of the difficulty in identifying it due to the absence of appropriate ultraviolet chromophores in the structure and the presence of endogenous interferences in biological samples. In the present study, the biotransformation of TP was investigated by improved data-dependent accurate mass spectrometric analysis, using an LTQ/Orbitrap hybrid mass spectrometer in conjunction with the online hydrogen (H)/deuterium (D) exchange technique for rapid structural characterization. Accurate full-scan MS and MS/MS data were processed with multiple post-acquisition data-mining techniques, which were complementary and effective in detecting both common and uncommon metabolites from biological matrices. As a result, 38 phase I, 9 phase II and 8 N-acetylcysteine (NAC) metabolites of TP were found in rat urine. Accurate MS/MS data were used to support assignments of metabolite structures, and online H/D exchange experiments provided additional evidence for exchangeable hydrogen atoms in the structure. The results showed the main phase I metabolic pathways of TP are hydroxylation, hydrolysis and desaturation, and the resulting metabolites subsequently undergo phase II processes. The presence of NAC conjugates indicated the capability of TP to form reactive intermediate species. This study also demonstrated the effectiveness of LC/HR-MS(n) in combination with multiple post-acquisition data-mining methods and the online H/D exchange technique for the rapid identification of drug metabolites. Copyright © 2011 John Wiley & Sons, Ltd.
Shankar, Vijay; Homer, Daniel; Rigsbee, Laura; Khamis, Harry J; Michail, Sonia; Raymer, Michael; Reo, Nicholas V; Paliy, Oleg
2015-08-01
The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe-metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite-genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe-microbe associations in the distal gut of the same cohort of IBS-D children.
Wandro, Stephen; Carmody, Lisa; Gallagher, Tara; LiPuma, John J; Whiteson, Katrine
2017-01-01
Metabolites of human or microbial origin have the potential to be important biomarkers of the disease state in cystic fibrosis (CF). Clinical sample collection and storage conditions may impact metabolite abundances with clinical relevance. We measured the change in metabolite composition based on untargeted gas chromatography-mass spectrometry (GC-MS) when CF sputum samples were stored at 4°C, -20°C, or -80°C with one or two freeze-thaw cycles. Daily measurements were taken for 1 week and then weekly for 4 weeks (4°C) and 8 weeks (-20°C). The metabolites in samples stored at -20°C maintained abundances similar to those found at-80°C over the course of 8 weeks (average change in Bray-Curtis distance, 0.06 ± 0.04) and were also stable after one or two freeze-thaw cycles. However, the metabolite profiles of samples stored at 4°C shifted after 1 day and continued to change over the course of 4 weeks (average change in Bray-Curtis distance, 0.31 ± 0.12). The abundances of several amino acids and other metabolites increased with time of storage at 4°C but remained constant at -20°C. Storage temperature was a significant factor driving the metabolite composition (permutational multivariate analysis of variance: r 2 = 0.32 to 0.49, P < 0.001). CF sputum samples stored at -20°C at the time of sampling maintain a relatively stable untargeted GC-MS profile. Samples should be frozen on the day of collection, as more than 1 day at 4°C impacts the global composition of the metabolites in the sample. IMPORTANCE Metabolomics has great potential for uncovering biomarkers of the disease state in CF and many other contexts. However, sample storage timing and temperature may alter the abundance of clinically relevant metabolites. To assess whether existing samples are stable and to direct future study design, we conducted untargeted GC-MS metabolomic analysis of CF sputum samples after one or two freeze-thaw cycles and storage at 4°C and -20°C for 4 to 8 weeks. Overall, storage at -20°C and freeze-thaw cycles had little impact on metabolite profiles; however, storage at 4°C shifted metabolite abundances significantly. GC-MS profiling will aid in our understanding of the CF lung, but care should be taken in studies using sputum samples to ensure that samples are properly stored.
Zhen, Shoumin; Dong, Kun; Deng, Xiong; Zhou, Jiaxing; Xu, Xuexin; Han, Caixia; Zhang, Wenying; Xu, Yanhao; Wang, Zhimin; Yan, Yueming
2016-08-01
Metabolites in wheat grains greatly influence nutritional values. Wheat provides proteins, minerals, B-group vitamins and dietary fiber to humans. These metabolites are important to human health. However, the metabolome of the grain during the development of bread wheat has not been studied so far. In this work the first dynamic metabolome of the developing grain of the elite Chinese bread wheat cultivar Zhongmai 175 was analyzed, using non-targeted gas chromatography/mass spectrometry (GC/MS) for metabolite profiling. In total, 74 metabolites were identified over the grain developmental stages. Metabolite-metabolite correlation analysis revealed that the metabolism of amino acids, carbohydrates, organic acids, amines and lipids was interrelated. An integrated metabolic map revealed a distinct regulatory profile. The results provide information that can be used by metabolic engineers and molecular breeders to improve wheat grain quality. The present metabolome approach identified dynamic changes in metabolite levels, and correlations among such levels, in developing seeds. The comprehensive metabolic map may be useful when breeding programs seek to improve grain quality. The work highlights the utility of GC/MS-based metabolomics, in conjunction with univariate and multivariate data analysis, when it is sought to understand metabolic changes in developing seeds. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Schadt, Simone; Bister, Bojan; Chowdhury, Swapan K; Funk, Christoph; Hop, Cornelis E C A; Humphreys, W Griffith; Igarashi, Fumihiko; James, Alexander D; Kagan, Mark; Khojasteh, S Cyrus; Nedderman, Angus N R; Prakash, Chandra; Runge, Frank; Scheible, Holger; Spracklin, Douglas K; Swart, Piet; Tse, Susanna; Yuan, Josh; Obach, R Scott
2018-06-01
Since the introduction of metabolites in safety testing (MIST) guidance by the Food and Drug Administration in 2008, major changes have occurred in the experimental methods for the identification and quantification of metabolites, ways to evaluate coverage of metabolites, and the timing of critical clinical and nonclinical studies to generate this information. In this cross-industry review, we discuss how the increased focus on human drug metabolites and their potential contribution to safety and drug-drug interactions has influenced the approaches taken by industry for the identification and quantitation of human drug metabolites. Before the MIST guidance was issued, the method of choice for generating comprehensive metabolite profile was radio chromatography. The MIST guidance increased the focus on human drug metabolites and their potential contribution to safety and drug-drug interactions and led to changes in the practices of drug metabolism scientists. In addition, the guidance suggested that human metabolism studies should also be accelerated, which has led to more frequent determination of human metabolite profiles from multiple ascending-dose clinical studies. Generating a comprehensive and quantitative profile of human metabolites has become a more urgent task. Together with technological advances, these events have led to a general shift of focus toward earlier human metabolism studies using high-resolution mass spectrometry and to a reduction in animal radiolabel absorption/distribution/metabolism/excretion studies. The changes induced by the MIST guidance are highlighted by six case studies included herein, reflecting different stages of implementation of the MIST guidance within the pharmaceutical industry. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.
Metabolite Profiles and the Risk of Developing Diabetes
Wang, Thomas J.; Larson, Martin G.; Vasan, Ramachandran S.; Cheng, Susan; Rhee, Eugene P.; McCabe, Elizabeth; Lewis, Gregory D.; Fox, Caroline S.; Jacques, Paul F.; Fernandez, Céline; O’Donnell, Christopher J.; Carr, Stephen A.; Mootha, Vamsi K.; Florez, Jose C.; Souza, Amanda; Melander, Olle; Clish, Clary B.; Gerszten, Robert E.
2011-01-01
Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines, and other polar metabolites were profiled in baseline specimens using liquid chromatography-tandem mass spectrometry. Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly-significant associations with future diabetes: isoleucine, leucine, valine, tyrosine, and phenylalanine. A combination of three amino acids predicted future diabetes (>5-fold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential importance of amino acid metabolism early in the pathogenesis of diabetes, and suggest that amino acid profiles could aid in diabetes risk assessment. PMID:21423183
Metabolite profiles and the risk of developing diabetes.
Wang, Thomas J; Larson, Martin G; Vasan, Ramachandran S; Cheng, Susan; Rhee, Eugene P; McCabe, Elizabeth; Lewis, Gregory D; Fox, Caroline S; Jacques, Paul F; Fernandez, Céline; O'Donnell, Christopher J; Carr, Stephen A; Mootha, Vamsi K; Florez, Jose C; Souza, Amanda; Melander, Olle; Clish, Clary B; Gerszten, Robert E
2011-04-01
Emerging technologies allow the high-throughput profiling of metabolic status from a blood specimen (metabolomics). We investigated whether metabolite profiles could predict the development of diabetes. Among 2,422 normoglycemic individuals followed for 12 years, 201 developed diabetes. Amino acids, amines and other polar metabolites were profiled in baseline specimens by liquid chromatography-tandem mass spectrometry (LC-MS). Cases and controls were matched for age, body mass index and fasting glucose. Five branched-chain and aromatic amino acids had highly significant associations with future diabetes: isoleucine, leucine, valine, tyrosine and phenylalanine. A combination of three amino acids predicted future diabetes (with a more than fivefold higher risk for individuals in top quartile). The results were replicated in an independent, prospective cohort. These findings underscore the potential key role of amino acid metabolism early in the pathogenesis of diabetes and suggest that amino acid profiles could aid in diabetes risk assessment.
Martínez-González, Miguel Á; Ruiz-Canela, Miguel; Hruby, Adela; Liang, Liming; Trichopoulou, Antonia; Hu, Frank B
2016-03-09
Large observational epidemiologic studies and randomized trials support the benefits of a Mediterranean dietary pattern on cardiovascular disease (CVD). Mechanisms postulated to mediate these benefits include the reduction of low-grade inflammation, increased adiponectin concentrations, decreased blood coagulation, enhanced endothelial function, lower oxidative stress, lower concentrations of oxidized LDL, and improved apolipoprotein profiles. However, the metabolic pathways through which the Mediterranean diet influences CVD risk remain largely unknown. Investigating specific mechanisms in the context of a large intervention trial with the use of high-throughput metabolomic profiling will provide more solid public health messages and may help to identify key molecular targets for more effective prevention and management of CVD. Although metabolomics is not without its limitations, the techniques allow for an assessment of thousands of metabolites, providing wide-ranging profiling of small molecules related to biological status. Specific candidate plasma metabolites that may be associated with CVD include branched-chain and aromatic amino acids; the glutamine-to-glutamate ratio; some short- to medium-chain acylcarnitines; gut flora metabolites (choline, betaine, and trimethylamine N-oxide); urea cycle metabolites (citrulline and ornithine); and specific lipid subclasses. In addition to targeted metabolites, the role of a large number of untargeted metabolites should also be assessed. Large intervention trials with the use of food patterns for the prevention of CVD provide an unparalleled opportunity to examine the effects of these interventions on plasma concentrations of specific metabolites and determine whether such changes mediate the benefits of the dietary interventions on CVD risk. © 2016 American Society for Nutrition.
Hyun, Sun-Hee; Lee, Seok-Young; Sung, Gi-Ho; Kim, Seong Hwan; Choi, Hyung-Kyoon
2013-01-01
The metabolic profiles of Cordyceps bassiana according to fruiting body developmental stage were investigated using gas chromatography-mass spectrometry. We were able to detect 62 metabolites, including 48 metabolites from 70% methanol extracts and 14 metabolites from 100% n-hexane extracts. These metabolites were classified as alcohols, amino acids, organic acids, phosphoric acids, purine nucleosides and bases, sugars, saturated fatty acids, unsaturated fatty acids, or fatty amides. Significant changes in metabolite levels were found according to developmental stage. Relative levels of amino acids, purine nucleosides, and sugars were higher in development stage 3 than in the other stages. Among the amino acids, valine, isoleucine, lysine, histidine, glutamine, and aspartic acid, which are associated with ABC transporters and aminoacyl-tRNA biosynthesis, also showed higher levels in stage 3 samples. The free radical scavenging activities, which were significantly higher in stage 3 than in the other stages, showed a positive correlation with purine nucleoside metabolites such as adenosine, guanosine, and inosine. These results not only show metabolic profiles, but also suggest the metabolic pathways associated with fruiting body development stages in cultivated C. bassiana. PMID:24058459
Observability of Plant Metabolic Networks Is Reflected in the Correlation of Metabolic Profiles.
Schwahn, Kevin; Küken, Anika; Kliebenstein, Daniel J; Fernie, Alisdair R; Nikoloski, Zoran
2016-10-01
Understanding whether the functionality of a biological system can be characterized by measuring few selected components is key to targeted phenotyping techniques in systems biology. Methods from observability theory have proven useful in identifying sensor components that have to be measured to obtain information about the entire system. Yet, the extent to which the data profiles reflect the role of components in the observability of the system remains unexplored. Here we first identify the sensor metabolites in the model plant Arabidopsis (Arabidopsis thaliana) by employing state-of-the-art genome-scale metabolic networks. By using metabolic data profiles from a set of seven environmental perturbations as well as from natural variability, we demonstrate that the data profiles of sensor metabolites are more correlated than those of nonsensor metabolites. This pattern was confirmed with in silico generated metabolic profiles from a medium-size kinetic model of plant central carbon metabolism. Altogether, due to the small number of identified sensors, our study implies that targeted metabolite analyses may provide the vast majority of relevant information about plant metabolic systems. © 2016 American Society of Plant Biologists. All Rights Reserved.
Nikolskiy, Igor; Siuzdak, Gary; Patti, Gary J
2015-06-15
The goal of large-scale metabolite profiling is to compare the relative concentrations of as many metabolites extracted from biological samples as possible. This is typically accomplished by measuring the abundances of thousands of ions with high-resolution and high mass accuracy mass spectrometers. Although the data from these instruments provide a comprehensive fingerprint of each sample, identifying the structures of the thousands of detected ions is still challenging and time intensive. An alternative, less-comprehensive approach is to use triple quadrupole (QqQ) mass spectrometry to analyze predetermined sets of metabolites (typically fewer than several hundred). This is done using authentic standards to develop QqQ experiments that specifically detect only the targeted metabolites, with the advantage that the need for ion identification after profiling is eliminated. Here, we propose a framework to extend the application of QqQ mass spectrometers to large-scale metabolite profiling. We aim to provide a foundation for designing QqQ multiple reaction monitoring (MRM) experiments for each of the 82 696 metabolites in the METLIN metabolite database. First, we identify common fragmentation products from the experimental fragmentation data in METLIN. Then, we model the likelihoods of each precursor structure in METLIN producing each common fragmentation product. With these likelihood estimates, we select ensembles of common fragmentation products that minimize our uncertainty about metabolite identities. We demonstrate encouraging performance and, based on our results, we suggest how our method can be integrated with future work to develop large-scale MRM experiments. Our predictions, Supplementary results, and the code for estimating likelihoods and selecting ensembles of fragmentation reactions are made available on the lab website at http://pattilab.wustl.edu/FragPred. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Gémesi, L I; Kapás, M; Szeberényi, S
2001-03-01
RGH-1756, 1-(2-methoxy-phenyl)-4-(4-[4-(6-imidazol[2,1-b] thiazolyl)-phenoxy]-butyl-4-(14)C)-piperazine dimethane is a novel atypical antipsychotic drug candidate of Gedeon Richter Ltd. The metabolic pathways of the compound have been investigated by profiling the metabolites present in plasma, bile, and faeces samples of rats treated with (14)C-RGH-1756. The metabolites formed in vitro by rat liver microsomes have also been analysed. Good separation of the compounds has been achieved by gradient HPLC method on Zorbax/Bonus RP-C18 column. Radiometry and mass spectrometry have been applied to detect and characterise the metabolites. The metabolite formed by oxidative cleavage of the chain at the carbon atom adjacent to the piperazine nitrogen has been identified as the major plasma metabolite. Glucuronide conjugate of hydroxy-RGH-1756 has been found as one of the main metabolites excreted in the bile where the unchanged compound has not been detected.
Dong, Yinfeng; Tang, Minghai; Song, Hang; Li, Rong; Wang, Chunyu; Ye, Haoyu; Qiu, Neng; Zhang, Yongkui; Chen, Lijuan; Wei, Yuquan
2014-03-15
As fecal excretion is one of important routes of elimination of drugs and their metabolites, it is indispensable to investigate the metabolites in feces for more comprehensive information on biotransformation in vivo. In this study, a sensitive and reliable approach based on ultra-performance liquid chromatography/quadrupole-time-of-flight-mass spectrometry (UHPLC-Q-TOF-MS) was applied to characterize the metabolic profile of honokiol in rat feces after the administration of an equimolar mixture of honokiol and [(13)C6]-labeled honokiol. Totally 42 metabolites were discovered and tentatively identified in rat feces samples, 26 metabolites were first reported, including two novel classes of metabolites, methylated and dimeric metabolites of honokiol. Moreover, this study provided basic comparative data on the metabolites in rat plasma, feces and urine, which gave better understanding of the metabolic fate of honokiol in vivo. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Jun; Lu, Chenyang; Zhang, Dijun; Ma, Chennv; Su, Xiurong
2017-08-01
Vibrio parahaemolyticus is a halophilic bacterium endemic to coastal areas, and its pathogenicity has caused widespread seafood poisoning. In our previous research, the protein expression of V. parahaemolyticus in Fe 3+ medium was determined using isobaric tags for relative and absolute quantitation (iTRAQ). Here, nuclear magnetic resonance (NMR) was used to detect changes in the V. parahaemolyticus metabolome. NMR spectra were obtained using methanol-water extracts of intracellular metabolites from V. parahaemolyticus under various culture conditions, and 62 metabolites were identified, including serine, arginine, alanine, ornithine, tryptophan, glutamine, malate, NAD + , NADP + , oxypurinol, xanthosine, dCTP, uracil, thymine, hypoxanthine, and betaine. Among these, 21 metabolites were up-regulated after the stimulation of the cells by ferric iron, and 9 metabolites were down-regulated. These metabolites are involved in amino acid and protein synthesis, energy metabolism, DNA and RNA synthesis and osmolality. Based on these results, we conclude that Fe 3+ influences the metabolite profiles of V. parahaemolyticus.
Telu, Kelly H.; Yan, Xinjian; Wallace, William E.; Stein, Stephen E.; Simón-Manso, Yamil
2016-01-01
RATIONALE The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different LC-MS platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. METHODS Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC-MS platforms using reversed phase chromatography and different chromatographic scales (nano, conventional and UHPLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). RESULTS Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (RSD < 2%); however, substantial differences were found in the LC-MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. CONLUSIONS Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. PMID:26842580
Shankar, Vijay; Homer, Daniel; Rigsbee, Laura; Khamis, Harry J; Michail, Sonia; Raymer, Michael; Reo, Nicholas V; Paliy, Oleg
2015-01-01
The goal of this study was to determine if fecal metabolite and microbiota profiles can serve as biomarkers of human intestinal diseases, and to uncover possible gut microbe–metabolite associations. We employed proton nuclear magnetic resonance to measure fecal metabolites of healthy children and those diagnosed with diarrhea-predominant irritable bowel syndrome (IBS-D). Metabolite levels were associated with fecal microbial abundances. Using several ordination techniques, healthy and irritable bowel syndrome (IBS) samples could be distinguished based on the metabolite profiles of fecal samples, and such partitioning was congruent with the microbiota-based sample separation. Measurements of individual metabolites indicated that the intestinal environment in IBS-D was characterized by increased proteolysis, incomplete anaerobic fermentation and possible change in methane production. By correlating metabolite levels with abundances of microbial genera, a number of statistically significant metabolite–genus associations were detected in stools of healthy children. No such associations were evident for IBS children. This finding complemented the previously observed reduction in the number of microbe–microbe associations in the distal gut of the same cohort of IBS-D children. PMID:25635640
USDA-ARS?s Scientific Manuscript database
Leaves of greenhouse-grown ‘Hamlin’ and ‘Valencia’ orange (Citrus sinensis L.) seedlings were analyzed by high performance liquid chromatography in a study of the progression of changes in secondary metabolite profiles resulting from infection by Candidatus Liberibacter asiaticus (CLas), the Huanglo...
Ganie, Arshid Hussain; Ahmad, Altaf; Pandey, Renu; Aref, Ibrahim M.; Yousuf, Peerzada Yasir; Ahmad, Sayeed; Iqbal, Muhammad
2015-01-01
Background Maize (Zea mays L.) is one of the most widely cultivated crop plants. Unavoidable economic and environmental problems associated with the excessive use of phosphatic fertilizers demands its better management. The solution lies in improving the phosphorus (P) use efficiency to sustain productivity even at low P levels. Untargeted metabolomic profiling of contrasting genotypes provides a snap shot of whole metabolome which differs under specific conditions. This information provides an understanding of the mechanisms underlying tolerance to P stress and the approach for increasing P-use-efficiency. Methodology/Principal Findings A comparative metabolite-profiling approach based on gas chromatography-mass spectrometry (GC/MS) was applied to investigate the effect of P starvation and its restoration in low-P sensitive (HM-4) and low-P tolerant (PEHM-2) maize genotypes. A comparison of the metabolite profiles of contrasting genotypes in response to P-deficiency revealed distinct differences among low-P sensitive and tolerant genotypes. Another set of these genotypes were grown under P-restoration condition and sampled at different time intervals (3, 5 and 10 days) to investigate if the changes in metabolite profile under P-deficiency was restored. Significant variations in the metabolite pools of these genotypes were observed under P-deficiency which were genotype specific. Out of 180 distinct analytes, 91 were identified. Phosphorus-starvation resulted in accumulation of di- and trisaccharides and metabolites of ammonium metabolism, specifically in leaves, but decreased the levels of phosphate-containing metabolites and organic acids. A sharp increase in the concentrations of glutamine, asparagine, serine and glycine was observed in both shoots and roots under low-P condition. Conclusion The new insights generated on the maize metabolome in resposne to P-starvation and restoration would be useful towards improvement of the P-use efficiency in maize. PMID:26090681
Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko
2016-01-01
Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease. PMID:27479467
Global metabolic profiling procedures for urine using UPLC-MS.
Want, Elizabeth J; Wilson, Ian D; Gika, Helen; Theodoridis, Georgios; Plumb, Robert S; Shockcor, John; Holmes, Elaine; Nicholson, Jeremy K
2010-06-01
The production of 'global' metabolite profiles involves measuring low molecular-weight metabolites (<1 kDa) in complex biofluids/tissues to study perturbations in response to physiological challenges, toxic insults or disease processes. Information-rich analytical platforms, such as mass spectrometry (MS), are needed. Here we describe the application of ultra-performance liquid chromatography-MS (UPLC-MS) to urinary metabolite profiling, including sample preparation, stability/storage and the selection of chromatographic conditions that balance metabolome coverage, chromatographic resolution and throughput. We discuss quality control and metabolite identification, as well as provide details of multivariate data analysis approaches for analyzing such MS data. Using this protocol, the analysis of a sample set in 96-well plate format, would take ca. 30 h, including 1 h for system setup, 1-2 h for sample preparation, 24 h for UPLC-MS analysis and 1-2 h for initial data processing. The use of UPLC-MS for metabolic profiling in this way is not faster than the conventional HPLC-based methods but, because of improved chromatographic performance, provides superior metabolome coverage.
Miyamoto, Yuji; Mukai, Tetsu; Matsuoka, Masanori; Kai, Masanori; Maeda, Yumi; Makino, Masahiko
2016-08-01
Mycobacterium leprae is the causative agent of leprosy and also known to possess unique features such as inability to proliferate in vitro. Among the cellular components of M. leprae, various glycolipids present on the cell envelope are well characterized and some of them are identified to be pathogenic factors responsible for intracellular survival in host cells, while other intracellular metabolites, assumed to be associated with basic physiological feature, remain largely unknown. In the present study, to elucidate the comprehensive profile of intracellular metabolites, we performed the capillary electrophoresis-mass spectrometry (CE-MS) analysis on M. leprae and compared to that of M. bovis BCG. Interestingly, comparison of these two profiles showed that, in M. leprae, amino acids and their derivatives are significantly accumulated, but most of intermediates related to central carbon metabolism markedly decreased, implying that M. leprae possess unique metabolic features. The present study is the first report demonstrating the unique profiles of M. leprae metabolites and these insights might contribute to understanding undefined metabolism of M. leprae as well as pathogenic characteristics related to the manifestation of the disease.
Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study.
Zhao, Qi; Zhu, Yun; Best, Lyle G; Umans, Jason G; Uppal, Karan; Tran, ViLinh T; Jones, Dean P; Lee, Elisa T; Howard, Barbara V; Zhao, Jinying
2016-01-01
Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography-mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups.
Metabolic Profiles of Obesity in American Indians: The Strong Heart Family Study
Best, Lyle G.; Umans, Jason G.; Uppal, Karan; Tran, ViLinh T.; Jones, Dean P.; Lee, Elisa T.; Howard, Barbara V.; Zhao, Jinying
2016-01-01
Obesity is a typical metabolic disorder resulting from the imbalance between energy intake and expenditure. American Indians suffer disproportionately high rates of obesity and diabetes. The goal of this study is to identify metabolic profiles of obesity in 431 normoglycemic American Indians participating in the Strong Heart Family Study. Using an untargeted liquid chromatography–mass spectrometry, we detected 1,364 distinct m/z features matched to known compounds in the current metabolomics databases. We conducted multivariate analysis to identify metabolic profiles for obesity, adjusting for standard obesity indicators. After adjusting for covariates and multiple testing, five metabolites were associated with body mass index and seven were associated with waist circumference. Of them, three were associated with both. Majority of the obesity-related metabolites belongs to lipids, e.g., fatty amides, sphingolipids, prenol lipids, and steroid derivatives. Other identified metabolites are amino acids or peptides. Of the nine identified metabolites, five metabolites (oleoylethanolamide, mannosyl-diinositol-phosphorylceramide, pristanic acid, glutamate, and kynurenine) have been previously implicated in obesity or its related pathways. Future studies are warranted to replicate these findings in larger populations or other ethnic groups. PMID:27434237
HIM-herbal ingredients in-vivo metabolism database.
Kang, Hong; Tang, Kailin; Liu, Qi; Sun, Yi; Huang, Qi; Zhu, Ruixin; Gao, Jun; Zhang, Duanfeng; Huang, Chenggang; Cao, Zhiwei
2013-05-31
Herbal medicine has long been viewed as a valuable asset for potential new drug discovery and herbal ingredients' metabolites, especially the in vivo metabolites were often found to gain better pharmacological, pharmacokinetic and even better safety profiles compared to their parent compounds. However, these herbal metabolite information is still scattered and waiting to be collected. HIM database manually collected so far the most comprehensive available in-vivo metabolism information for herbal active ingredients, as well as their corresponding bioactivity, organs and/or tissues distribution, toxicity, ADME and the clinical research profile. Currently HIM contains 361 ingredients and 1104 corresponding in-vivo metabolites from 673 reputable herbs. Tools of structural similarity, substructure search and Lipinski's Rule of Five are also provided. Various links were made to PubChem, PubMed, TCM-ID (Traditional Chinese Medicine Information database) and HIT (Herbal ingredients' targets databases). A curated database HIM is set up for the in vivo metabolites information of the active ingredients for Chinese herbs, together with their corresponding bioactivity, toxicity and ADME profile. HIM is freely accessible to academic researchers at http://www.bioinformatics.org.cn/.
Xing, Jie; Zang, Meitong; Zhang, Haiying; Zhu, Mingshe
2015-10-15
Patients are usually exposed to multiple drugs, and metabolite profiling of each drug in complex biological matrices is a big challenge. This study presented a new application of an improved high resolution mass spectrometry (HRMS)-based data-mining tools in tandem to fast and comprehensive metabolite identification of combination drugs in human. The model drug combination was metronidazole-pantoprazole-clarithromycin (MET-PAN-CLAR), which is widely used in clinic to treat ulcers caused by Helicobacter pylori. First, mass defect filter (MDF), as a targeted data processing tool, was able to recover all relevant metabolites of MET-PAN-CLAR in human plasma and urine from the full-scan MS dataset when appropriate MDF templates for each drug were defined. Second, the accurate mass-based background subtraction (BS), as an untargeted data-mining tool, worked effectively except for several trace metabolites, which were buried in the remaining background signals. Third, an integrated strategy, i.e., untargeted BS followed by improved MDF, was effective for metabolite identification of MET-PAN-CLAR. Most metabolites except for trace ones were found in the first step of BS-processed datasets, and the results led to the setup of appropriate metabolite MDF template for the subsequent MDF data processing. Trace metabolites were further recovered by MDF, which used both common MDF templates and the novel metabolite-based MDF templates. As a result, a total of 44 metabolites or related components were found for MET-PAN-CLAR in human plasma and urine using the integrated strategy. New metabolic pathways such as N-glucuronidation of PAN and dehydrogenation of CLAR were found. This study demonstrated that the combination of accurate mass-based multiple data-mining techniques in tandem, i.e., untargeted background subtraction followed by targeted mass defect filtering, can be a valuable tool for rapid metabolite profiling of combination drugs in vivo. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Huan, Tao; Troyer, Dean A.; Li, Liang
2016-08-01
We report a method of metabolomic profiling of intact tissue based on molecular preservation by extraction and fixation (mPREF) and high-performance chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). mPREF extracts metabolites by aqueous methanol from tissue biopsies without altering tissue architecture and thus conventional histology can be performed on the same tissue. In a proof-of-principle study, we applied dansylation LC-MS to profile the amine/phenol submetabolome of prostate needle biopsies from 25 patient samples derived from 16 subjects. 2900 metabolites were consistently detected in more than 50% of the samples. This unprecedented coverage allowed us to identify significant metabolites for differentiating tumor and normal tissues. The panel of significant metabolites was refined using 36 additional samples from 18 subjects. Receiver Operating Characteristic (ROC) analysis showed area-under-the-curve (AUC) of 0.896 with sensitivity of 84.6% and specificity of 83.3% using 7 metabolites. A blind study of 24 additional validation samples gave a specificity of 90.9% at the same sensitivity of 84.6%. The mPREF extraction can be readily implemented into the existing clinical workflow. Our method of combining mPREF with CIL LC-MS offers a powerful and convenient means of performing histopathology and discovering or detecting metabolite biomarkers in the same tissue biopsy.
Uroic, M. Kalle; Salaün, Pascal; Raab, Andrea; Feldmann, Jörg
2012-01-01
Arsenic uptake and translocation studies on xylem sap focus generally on the concentration and speciation of arsenic in the xylem. Arsenic impact on the xylem sap metabolite profile and its production during short term exposure has not been reported in detail. To investigate this, cucumbers were grown hydroponically and arsenate (AsV) and DMA were used for plant treatment for 24 h. Total arsenic and arsenic speciation in xylem sap was analyzed including a metabolite profiling under AsV stress. Produced xylem sap was quantified and absolute arsenic transported was determined. AsV exposure had a significant impact on the metabolite profile of xylem sap. Four m/z values corresponding to four compounds were up-regulated, one compound down-regulated by AsV exposure. The compound down-regulated was identified to be isoleucine. Furthermore, AsV exposure had a significant influence on sap production, leading to a reduction of up to 96% sap production when plants were exposed to 1000 μg kg−1 AsV. No difference to control plants was observed when plants were exposed to 1000 μg kg−1 DMA. Absolute arsenic amount in xylem sap was the lowest at high AsV exposure. These results show that AsV has a significant impact on the production and metabolite profile of xylem sap. The physiological importance of isoleucine needs further attention. PMID:22536187
Analytical aspects of plant metabolite profiling platforms: current standings and future aims.
Seger, Christoph; Sturm, Sonja
2007-02-01
Over the past years, metabolic profiling has been established as a comprehensive systems biology tool. Mass spectrometry or NMR spectroscopy-based technology platforms combined with unsupervised or supervised multivariate statistical methodologies allow a deep insight into the complex metabolite patterns of plant-derived samples. Within this review, we provide a thorough introduction to the analytical hard- and software requirements of metabolic profiling platforms. Methodological limitations are addressed, and the metabolic profiling workflow is exemplified by summarizing recent applications ranging from model systems to more applied topics.
Chen, Der-Yuan; Chen, Yi-Ming; Chien, Han-Ju; Lin, Chi-Chen; Hsieh, Chia-Wei; Chen, Hsin-Hua; Hung, Wei-Ting; Lai, Chien-Chen
2016-01-01
Liquid chromatography/mass spectrometry (LC/MS)-based comprehensive analysis of metabolic profiles with metabolomics approach has potential diagnostic and predictive implications. However, no metabolomics data have been reported in adult-onset Still's disease (AOSD). This study investigated the metabolomic profiles in AOSD patients and examined their association with clinical characteristics and disease outcome. Serum metabolite profiles were determined on 32 AOSD patients and 30 healthy controls (HC) using ultra-performance liquid chromatography (UPLC)/MS analysis, and the differentially expressed metabolites were quantified using multiple reactions monitoring (MRM)/MS analysis in 44 patients and 42 HC. Pure standards were utilized to confirm the presence of the differentially expressed metabolites. Eighteen differentially expressed metabolites were identified in AOSD patents using LC/MS-based analysis, of which 13 metabolites were validated by MRM/MS analysis. Among them, serum levels of lysoPC(18:2), urocanic acid and indole were significantly lower, and L-phenylalanine levels were significantly higher in AOSD patients compared with HC. Moreover, serum levels of lysoPC(18:2), PhePhe, uridine, taurine, L-threonine, and (R)-3-Hydroxy-hexadecanoic acid were significantly correlated with disease activity scores (all p<0.05) in AOSD patients. A different clustering of metabolites was associated with a different disease outcome, with significantly lower levels of isovalerylsarcosine observed in patients with chronic articular pattern (median, 77.0AU/ml) compared with monocyclic (341.5AU/ml, p<0.01) or polycyclic systemic pattern (168.0AU/ml, p<0.05). Thirteen differentially expressed metabolites identified and validated in AOSD patients were shown to be involved in five metabolic pathways. Significant associations of metabolic profiles with disease activity and outcome of AOSD suggest their involvement in AOSD pathogenesis.
Pan, Qifang; Dai, Yuntao; Nuringtyas, Tri Rini; Mustafa, Natali Rianika; Schulte, Anna Elisabeth; Verpoorte, Robert; Choi, Young Hae
2014-01-01
Flower colour is a complex phenomenon that involves a wide range of secondary metabolites of flowers, for example phenolics and carotenoids as well as co-pigments. Biosynthesis of these metabolites, though, occurs through complicated pathways in many other plant organs. The analysis of the metabolic profile of leaves, stems and roots, for example, therefore may allow the identification of chemomarkers related to the final expression of flower colour. To investigate the metabolic profile of leaves, stems, roots and flowers of Catharanthus roseus and the possible correlation with four flower colours (orange, pink, purple and red). (1) H-NMR and multivariate data analysis were used to characterise the metabolites in the organs. The results showed that flower colour is characterised by a special pattern of metabolites such as anthocyanins, flavonoids, organic acids and sugars. The leaves, stems and roots also exhibit differences in their metabolic profiles according to the flower colour. Plants with orange flowers featured a relatively high level of kaempferol analogues in all organs except roots. Red-flowered plants showed a high level of malic acid, fumaric acid and asparagine in both flowers and leaves, and purple and pink flowering plants exhibited high levels of sucrose, glucose and 2,3-dihydroxy benzoic acid. High concentrations of quercetin analogues were detected in flowers and leaves of purple-flowered plants. There is a correlation between the metabolites specifically associated to the expression of different flower colours and the metabolite profile of other plant organs and it is therefore possible to predict the flower colours by detecting specific metabolites in leaves, stems or roots. This may have interesting application in the plant breeding industry. Copyright © 2013 John Wiley & Sons, Ltd.
Antihepatotoxic Effect and Metabolite Profiling of Panicum turgidum Extract via UPLC-qTOF-MS.
Farag, Mohamed A; El Fishawy, Ahlam M; El-Toumy, Sayed A; Amer, Khadiga F; Mansour, Ahmed M; Taha, Hala E
2016-07-01
Panicum turgidum , desert grass, has not reported any detailed phytochemical or biological study as yet. To establish P. turgidum secondary metabolite profile and to assess its antihepatotoxic effect. Ultra-performance liquid chromatography (UPLC) coupled to quadrupole high-resolution time of flight mass spectrometry (qTOF-MS) was used for large-scale secondary metabolites profiling in P. turgidum extract, alongside assessing median lethal dose (LD 50 ) and hepatoprotective effect against carbon tetrachloride (CCl 4 ) intoxication. A total of 39 metabolites were identified with flavonoids as the major class present as O/C -glycosides of luteolin, apigenin, isorhamnetin and naringenin, most of which are first time to be reported in Panicum sp. Antihepatotoxic effect of P. turgidum crude extract was revealed via improving several biochemical marker levels and mitigation against oxidative stress in the serum and liver tissues, compared with CCl4 intoxicated group and further confirmed by histopathological examination. This study reveals that P. turgidum , enriched in C -flavonoids, presents a novel source of safe antihepatotoxic agents and further demonstrates the efficacy of UPLC-MS metabolomics in the field of natural products drug discovery. UPLC coupled to qTOF-MS was used for large scale secondary metabolites profiling in P. turgidum .A total of 39 metabolites were identified with flavonoids amounting as the major metabolite class.Anti-hepatotoxic effect of P. turgidum extract was revealed via several biochemical markers and histopathological examination.This study reveals that P. turgidum , enriched in C -flavonoids, present a novel source of antihepatotoxic agents. Abbreviations used: UPLC: Ultra-performance liquid chromatography (UPLC), LD50: median lethal dose, MDA: malondialdehyde, GSH: glutathione reductase, CAT: catalase, SOD: superoxide dismutase, ALT: alanine aminotransferase, AST: aspartate aminotransferase, ALP: alkaline phosphatase, TG: triglycerides.
Antihepatotoxic Effect and Metabolite Profiling of Panicum turgidum Extract via UPLC-qTOF-MS
Farag, Mohamed A.; El Fishawy, Ahlam M.; El-Toumy, Sayed A.; Amer, Khadiga F.; Mansour, Ahmed M.; Taha, Hala E.
2016-01-01
Background: Panicum turgidum, desert grass, has not reported any detailed phytochemical or biological study as yet Objective: To establish P. turgidum secondary metabolite profile and to assess its antihepatotoxic effect Materials and Methods: Ultra-performance liquid chromatography (UPLC) coupled to quadrupole high-resolution time of flight mass spectrometry (qTOF-MS) was used for large-scale secondary metabolites profiling in P. turgidum extract, alongside assessing median lethal dose (LD50) and hepatoprotective effect against carbon tetrachloride (CCl4) intoxication Results: A total of 39 metabolites were identified with flavonoids as the major class present as O/C-glycosides of luteolin, apigenin, isorhamnetin and naringenin, most of which are first time to be reported in Panicum sp. Antihepatotoxic effect of P. turgidum crude extract was revealed via improving several biochemical marker levels and mitigation against oxidative stress in the serum and liver tissues, compared with CCl4 intoxicated group and further confirmed by histopathological examination. Conclusion: This study reveals that P. turgidum, enriched in C-flavonoids, presents a novel source of safe antihepatotoxic agents and further demonstrates the efficacy of UPLC-MS metabolomics in the field of natural products drug discovery. SUMMARY UPLC coupled to qTOF-MS was used for large scale secondary metabolites profiling in P. turgidum.A total of 39 metabolites were identified with flavonoids amounting as the major metabolite class.Anti-hepatotoxic effect of P. turgidum extract was revealed via several biochemical markers and histopathological examination.This study reveals that P. turgidum, enriched in C-flavonoids, present a novel source of antihepatotoxic agents. Abbreviations used: UPLC: Ultra-performance liquid chromatography (UPLC), LD50: median lethal dose, MDA: malondialdehyde, GSH: glutathione reductase, CAT: catalase, SOD: superoxide dismutase, ALT: alanine aminotransferase, AST: aspartate aminotransferase, ALP: alkaline phosphatase, TG: triglycerides. PMID:27761073
Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans.
Hangler, Martin; Jensen, Bo; Rønhede, Stig; Sørensen, Sebastian R
2007-03-01
A screening of 27 fungal strains for degradation of the phenylurea herbicide isoproturon was performed and yielded 15 strains capable of converting the herbicide to polar metabolites. The zygomycete fungus Cunninghamella elegans strain JS/2 isolated from an agricultural soil converted isoproturon to several known hydroxylated metabolites. In addition, unknown metabolites were produced in minor amounts. Inducible degradation was indicated by comparing resting cells pregrown with or without isoproturon. This shows that strain JS/2 is capable of partially degrading isoproturon and that one or more of the enzymes involved are inducible upon isoproturon exposure.
Tai, Helen H; Worrall, Kraig; Pelletier, Yvan; De Koeyer, David; Calhoun, Larry A
2014-09-10
The Colorado potato beetle Leptinotarsa decemlineata (Say) (CPB) is a coleopteran herbivore that feeds on the foliage on Solanum species, in particular, potato. Six resistant wild Solanum species were identified, and two of these species had low levels of glycoalkaloids. Comparative analysis of the untargeted metabolite profiles of the foliage using UPLC-qTOF-MS was done to find metabolites shared between the wild species but not with Solanum tuberosum (L.) to identify resistance-related metabolites. It was found that only S. tuberosum produced the triose glycoalkaloids solanine and chaconine. Instead, the six wild species produced glycoalkaloids that shared in common tetrose sugar side chains. Additionally, there were non-glycoalkaloid metabolites associated with resistance including hydroxycoumarin and a phenylpropanoid, which were produced in all wild species but not in S. tuberosum.
NASA Astrophysics Data System (ADS)
Dementeva, N.; Ivanova, K.; Kokova, D.; Kurzina, I.; Ponomaryova, A.; Kzhyshkowska, J.
2017-09-01
Lung cancer is one of the most common types of cancer leading to death. Consequently, the search and the identification of the metabolites associated with the risk of developing cancer are very valuable. For the purpose, untargeted metabolic profiling of the plasma samples collected from the patients with lung cancer (n = 100) and the control group (n = 100) was conducted. After sample preparation, the plasma samples were analyzed using LC-MS method. Biostatistics methods were applied to pre-process the data for elicitation of dominating metabolites which responded to the difference between the case and the control groups. At least seven significant metabolites were evaluated and annotated. The most part of identified metabolites are connected with lipid metabolism and their combination could be useful for follow-up studies of lung cancer pathogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xue, Junfeng; Isern, Nancy G.; Ewing, R James
An in-situ nuclear magnetic resonance (NMR) bioreactor was developed and employed to monitor microbial metabolism under batch-growth conditions in real time. We selected Moorella thermoacetica ATCC 49707 as a test case. M. thermoacetica (formerly Clostridium thermoaceticum) is a strictly anaerobic, thermophilic, acetogenic, gram-positive bacterium with potential for industrial production of chemicals. The metabolic profiles of M. thermoacetica were characterized during growth in batch mode on xylose (a component of lignocellulosic biomass) using the new generation NMR bioreactor in combination with high-resolution, high sensitivity NMR (HR-NMR) spectroscopy. In-situ NMR measurements were performed using water-suppressed H-1 NMR spectroscopy at an NMR frequencymore » of 500 MHz, and aliquots of the bioreactor contents were taken for 600 MHz HR-NMR spectroscopy at specific intervals to confirm metabolite identifications and expand metabolite coverage. M. thermoacetica demonstrated the metabolic potential to produce formate, ethanol and methanol from xylose, in addition to its known capability of producing acetic acid. Real-time monitoring of bioreactor conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet showed that the strong magnetic field employed for NMR detection did not significantly affect cell metabolism. Use of the in-situ NMR bioreactor facilitated monitoring of the fermentation process in real time, enabling identification of intermediate and end-point metabolites and their correlation with pH and biomass produced during culture growth. Real-time monitoring of culture metabolism using the NMR bioreactor in combination with the HR-NMR spectroscopy will allow optimization of the metabolism of microorganisms producing valuable bioproducts.« less
The purpose of this study was twofold. First, we sought to identify candidate markers of exposure to anti-androgens by analyzing endogenous metabolite profiles in the urine of male fathead minnows (mFHM, Pimephales promelas). Based on earlier work, we hypothesized that unidentifi...
1H-NMR spectroscopy was used to profile metabolite changes in the livers of fathead minnows (Pimephales promelas) exposed to the synthetic estrogen 17α ethynylestradiol (EE2) via a continuous flow water exposure. Fish were exposed to either 10 or 100 ng EE2/L for 8 days, followed...
Nakamura, Toshihide; Sekiyama, Yasuyo; Kikuchi, Jun
2017-01-01
In this study, we investigated the applicability of NMR-based metabolomics to discriminate strain-dependent fermentation characteristics of lactic acid bacteria (LAB), which are important microorganisms for fermented food production. To evaluate the discrimination capability, six type strains of Lactobacillus species and six additional L. brevis strains were used focusing on i) the difference between homo- and hetero-lactic fermentative species and ii) strain-dependent characteristics within L. brevis. Based on the differences in the metabolite profiles of fermented vegetable juices, non-targeted principal component analysis (PCA) clearly separated the samples into those inoculated with homo- and hetero-lactic fermentative species. The separation was primarily explained by the different levels of dominant metabolites (lactic acid, acetic acid, ethanol, and mannitol). Orthogonal partial least squares discrimination analysis, based on a regions-of-interest (ROIs) approach, revealed the contribution of low-abundance metabolites: acetoin, phenyllactic acid, p-hydroxyphenyllactic acid, glycerophosphocholine, and succinic acid for homolactic fermentation; and ornithine, tyramine, and γ-aminobutyric acid (GABA) for heterolactic fermentation. Furthermore, ROIs-based PCA of seven L. brevis strains separated their strain-dependent fermentation characteristics primarily based on their ability to utilize sucrose and citric acid, and convert glutamic acid and tyrosine into GABA and tyramine, respectively. In conclusion, NMR metabolomics successfully discriminated the fermentation characteristics of the tested strains and provided further information on metabolites responsible for these characteristics, which may impact the taste, aroma, and functional properties of fermented foods. PMID:28759594
Zhong, Fanyi; Xu, Mengyang; Bruno, Richard S; Ballard, Kevin D; Zhu, Jiangjiang
2017-04-01
Both obesity and the metabolic syndrome are risk factors for type 2 diabetes and cardiovascular disease. Identification of novel biomarkers are needed to distinguish metabolic syndrome from equally obese individuals in order to direct them to early interventions that reduce their risk of developing further health problems. We utilized mass spectrometry-based targeted metabolic profiling of 221 metabolites to evaluate the associations between metabolite profiles and established metabolic syndrome criteria (i.e. elevated waist circumference, hypertension, elevated fasting glucose, elevated triglycerides, and low high-density lipoprotein cholesterol) in plasma samples from obese men ( n = 29; BMI = 35.5 ± 5.2 kg/m 2 ) and women ( n = 40; 34.9 ± 6.7 kg/m 2 ), of which 26 met the criteria for metabolic syndrome (17 men and 9 women). Compared to obese individuals without metabolic syndrome, univariate statistical analysis and partial least squares discriminant analysis showed that a specific group of metabolites from multiple metabolic pathways (i.e. purine metabolism, valine, leucine and isoleucine degradation, and tryptophan metabolism) were associated with the presence of metabolic syndrome. Receiver operating characteristic curves generated based on the PLS-DA models showed excellent areas under the curve (0.85 and 0.96, for metabolites only model and enhanced metabolites model, respectively), high specificities (0.86 and 0.93), and good sensitivities (0.71 and 0.91). Moreover, principal component analysis revealed that metabolic profiles can be used to further differentiate metabolic syndrome with 3 versus 4-5 metabolic syndrome criteria. Collectively, these findings support targeted metabolomics approaches to distinguish metabolic syndrome from obesity alone, and to stratify metabolic syndrome status based on the number of criteria met. Impact statement We utilized mass spectrometry-based targeted metabolic profiling of 221 metabolites to evaluate the associations between metabolite profiles and established MetS criteria. To our best knowledge, the findings of this study provide the first evidence that metabolic profiles can be used to differentiate participants with MetS from similarly obese individuals who do not meet established criteria of MetS. Furthermore, the study demonstrated that within MetS participants, their unique metabolic profiles correlated to the number of criteria used for MetS determination. Taken together, this metabolic profiling approach can potentially serve as a novel tool for MetS detection and monitoring, and provide useful metabolic information for future interventions targeting obesity and MetS.
Nemenman, Ilya; Escola, G Sean; Hlavacek, William S; Unkefer, Pat J; Unkefer, Clifford J; Wall, Michael E
2007-12-01
We investigate the ability of algorithms developed for reverse engineering of transcriptional regulatory networks to reconstruct metabolic networks from high-throughput metabolite profiling data. For benchmarking purposes, we generate synthetic metabolic profiles based on a well-established model for red blood cell metabolism. A variety of data sets are generated, accounting for different properties of real metabolic networks, such as experimental noise, metabolite correlations, and temporal dynamics. These data sets are made available online. We use ARACNE, a mainstream algorithm for reverse engineering of transcriptional regulatory networks from gene expression data, to predict metabolic interactions from these data sets. We find that the performance of ARACNE on metabolic data is comparable to that on gene expression data.
Ibrahim, Reham S; Fathy, Hoda
2018-03-30
Tracking the impact of commonly applied post-harvesting and industrial processing practices on the compositional integrity of ginger rhizome was implemented in this work. Untargeted metabolite profiling was performed using digitally-enhanced HPTLC method where the chromatographic fingerprints were extracted using ImageJ software then analysed with multivariate Principal Component Analysis (PCA) for pattern recognition. A targeted approach was applied using a new, validated, simple and fast HPTLC image analysis method for simultaneous quantification of the officially recognized markers 6-, 8-, 10-gingerol and 6-shogaol in conjunction with chemometric Hierarchical Clustering Analysis (HCA). The results of both targeted and untargeted metabolite profiling revealed that peeling, drying in addition to storage employed during processing have a great influence on ginger chemo-profile, the different forms of processed ginger shouldn't be used interchangeably. Moreover, it deemed necessary to consider the holistic metabolic profile for comprehensive evaluation of ginger during processing. Copyright © 2018. Published by Elsevier B.V.
Telu, Kelly H; Yan, Xinjian; Wallace, William E; Stein, Stephen E; Simón-Manso, Yamil
2016-03-15
The metabolite profiling of a NIST plasma Standard Reference Material (SRM 1950) on different liquid chromatography/mass spectrometry (LC/MS) platforms showed significant differences. Although these findings suggest caution when interpreting metabolomics results, the degree of overlap of both profiles allowed us to use tandem mass spectral libraries of recurrent spectra to evaluate to what extent these results are transferable across platforms and to develop cross-platform chemical signatures. Non-targeted global metabolite profiles of SRM 1950 were obtained on different LC/MS platforms using reversed-phase chromatography and different chromatographic scales (conventional HPLC, UHPLC and nanoLC). The data processing and the metabolite differential analysis were carried out using publically available (XCMS), proprietary (Mass Profiler Professional) and in-house software (NIST pipeline). Repeatability and intermediate precision showed that the non-targeted SRM 1950 profiling was highly reproducible when working on the same platform (relative standard deviation (RSD) <2%); however, substantial differences were found in the LC/MS patterns originating on different platforms or even using different chromatographic scales (conventional HPLC, UHPLC and nanoLC) on the same platform. A substantial degree of overlap (common molecular features) was also found. A procedure to generate consistent chemical signatures using tandem mass spectral libraries of recurrent spectra is proposed. Different platforms rendered significantly different metabolite profiles, but the results were highly reproducible when working within one platform. Tandem mass spectral libraries of recurrent spectra are proposed to evaluate the degree of transferability of chemical signatures generated on different platforms. Chemical signatures based on our procedure are most likely cross-platform transferable. Published in 2016. This article is a U.S. Government work and is in the public domain in the USA.
Li, Yujuan; Zhang, Yushi; Wang, Rui; Wei, Lizhong; Deng, Yulin; Ren, Wei
2017-05-01
Although much is known about the pharmacological activities of Dragon's Blood (DB, a traditional Chinese herb), its metabolism in human liver microsomes (HLMs) and the cytochrome P450 (CYP) enzymes has not been studied. This study aims to identify the metabolic profile of five flavonoids (loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone) from DB in HLMs as well as the CYP enzymes that are involved in the metabolism of them. High-resolution mass spectrometry was used to characterize the structures of their metabolites and 10 cDNA-expressed CYP enzymes (CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4 and CYP3A5) were used to verify which isozymes mediate in the metabolism of the metabolites. Totally, 29 metabolites including 10 metabolites of loureirin A, 10 metabolites of loureirin B, 4 metabolites of loureirin C, 2 metabolites of 7,4'-dihydroxyflavone and 3 metabolites of 5,7,4'-trihydroxyflavanone were elucidated and identified on the basis of the high-resolution MS n data. The metabolic profile of the five flavonoids in HLMs involved hydroxylation, oxidation and demethylation. Among them, hydroxylation was the predominant biotransformation of the five flavonoids in HLMs, occurring in combination with other metabolic reactions. Assay with recombinant P450s revealed that CYP2C9 and CYP2C19 played an important role in the hydroxylation of flavonoids in HLMs. To the best of our knowledge, this is the first in vitro evaluation of the metabolic profile of loureirin A, loureirin B, loureirin C, 7,4'-dihydroxyflavone and 5,7,4'-trihydroxyflavanone in HLMs. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johansson, E.; Gillespie, H.K.; Halldin, M.M.
The urinary excretion profiles of delta 1-tetrahydrocannabinol (delta 1-THC) metabolites have been evaluated in two chronic and two naive marijuana users after smoking and oral administration of ({sup 14}C)delta 1-THC. Urine was collected for five days after each administration route and analyzed for total delta 1-THC metabolites by radioactivity determination, for delta 1-THC-7-oic acid by high-performance liquid chromatography, and for cross-reacting cannabinoids by the EMIT d.a.u. cannabinoid assay. The average urinary excretion half-life of {sup 14}C-labeled delta 1-THC metabolites was calculated to be 18.2 +/- 4.9 h (+/- SD). The excretion profiles of delta 1-THC-7-oic acid and EMIT readings weremore » similar to the excretion profile of {sup 14}C-labeled metabolites in the naive users. However, in the chronic users the excretion profiles of delta 1-THC-7-oic acid and EMIT readings did not resemble the radioactive excretion due to the heavy influence from previous Cannabis use. Between 8-14% of the radioactive dose was recovered in the urine in both user groups after oral administration. Lower urinary recovery was obtained both in the chronic and naive users after smoking--5 and 2%, respectively.« less
Testicular distribution and toxicity of a novel LTA4H inhibitor in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, P.D., E-mail: pward4@its.jnj.com; La, D.
JNJ 40929837, a novel leukotriene A4 hydrolase inhibitor in drug development, was reported to induce testicular toxicity in rats. The mechanism of toxicity was considered to be rodent specific and not relevant to humans. To further investigate this finding in rats, the distribution and toxicokinetics of JNJ 40929837 and its two metabolites, M1 and M2, were investigated. A quantitative whole body autoradiography study showed preferential distribution and retention of JNJ 40929837-derived radioactivity in the testes consistent with the observed site of toxicity. Subsequent studies with unlabeled JNJ 40929837 showed different metabolite profiles between the plasma and testes. Following a singlemore » oral 50 mg/kg dose of JNJ 40929837, M2 was the primary metabolite in plasma whereas M1 was the primary metabolite in testes. The exposure of M1 was 386-fold higher in the testes compared to plasma whereas M2 had limited exposure in testes. Furthermore, the T{sub max} of M1 was 48 h in testes suggesting a large accumulation potential of this metabolite in testes compared to plasma. Following six months of repeated daily oral dosing, M1 accumulated approximately five-fold in the testes whereas the parent did not accumulate. These results indicate that the toxicokinetic profiles of JNJ 40929837 and its two metabolites in testes are markedly different compared to plasma and support the importance of understanding the toxicokinetic profiles of compounds and their metabolites in organs/tissues where toxicity is observed. - Highlights: • JNJ 40929837-derived radioactivity preferentially distributed into testes • Primary metabolite flip-flop in plasma and testes • The primary metabolite in testes accumulated 5-fold but not parent.« less
Hasegawa, Tetsuya; Sumita, Maho; Horitani, Yusuke; Tamai, Reo; Tanaka, Katsuhiro; Komori, Masayuki; Takenaka, Shigeo
2014-04-01
Epilepsy is a common neurological disorder with seizures, but diagnostic approaches in veterinary clinics remain limited. Cerebrospinal fluid (CSF) is a body fluid used for diagnosis in veterinary medicine. In this study, we explored canine epilepsy diagnostic biomarkers using gas chromatography-mass spectrometry (GC-MS)-based metabolic profiling of CSF and multivariate data analysis. Profiles for subjects with idiopathic epilepsy differed significantly from those of healthy controls and subjects with symptomatic epilepsy. Among 60 identified metabolites, the levels of 20 differed significantly among the three groups. Glutamic acid was significantly increased in idiopathic epilepsy, and some metabolites including ascorbic acid were changed in both forms of epilepsy. These findings show that metabolic profiles of CSF differ between idiopathic and symptomatic epilepsy and that metabolites including glutamic acid and ascorbic acid in CSF may be useful for diagnosis of canine epilepsy.
Sugimoto, Masahiro; Obiya, Shinichi; Kaneko, Miku; Enomoto, Ayame; Honma, Mayu; Wakayama, Masataka; Soga, Tomoyoshi; Tomita, Masaru
2017-01-18
Dry-cured hams are popular among consumers. To increase the attractiveness of the product, objective analytical methods and algorithms to evaluate the relationship between observable properties and consumer acceptability are required. In this study, metabolomics, which is used for quantitative profiling of hundreds of small molecules, was applied to 12 kinds of dry-cured hams from Japan and Europe. In total, 203 charged metabolites, including amino acids, organic acids, nucleotides, and peptides, were successfully identified and quantified. Metabolite profiles were compared for the samples with different countries of origin and processing methods (e.g., smoking or use of a starter culture). Principal component analysis of the metabolite profiles with sensory properties revealed significant correlations for redness, homogeneity, and fat whiteness. This approach could be used to design new ham products by objective evaluation of various features.
Ma, Siming; Upneja, Akhil; Galecki, Andrzej; Tsai, Yi-Miau; Burant, Charles F; Raskind, Sasha; Zhang, Quanwei; Zhang, Zhengdong D; Seluanov, Andrei; Gorbunova, Vera; Clish, Clary B; Miller, Richard A; Gladyshev, Vadim N
2016-11-22
Mammalian lifespan differs by >100 fold, but the mechanisms associated with such longevity differences are not understood. Here, we conducted a study on primary skin fibroblasts isolated from 16 species of mammals and maintained under identical cell culture conditions. We developed a pipeline for obtaining species-specific ortholog sequences, profiled gene expression by RNA-seq and small molecules by metabolite profiling, and identified genes and metabolites correlating with species longevity. Cells from longer lived species up-regulated genes involved in DNA repair and glucose metabolism, down-regulated proteolysis and protein transport, and showed high levels of amino acids but low levels of lysophosphatidylcholine and lysophosphatidylethanolamine. The amino acid patterns were recapitulated by further analyses of primate and bird fibroblasts. The study suggests that fibroblast profiling captures differences in longevity across mammals at the level of global gene expression and metabolite levels and reveals pathways that define these differences.
Arbona, Vicent; Iglesias, Domingo J; Gómez-Cadenas, Aurelio
2015-02-05
Genetic diversity of citrus includes intrageneric hybrids, cultivars arising from cross-pollination and/or somatic mutations with particular biochemical compounds such as sugar, acids and secondary metabolite composition. Secondary metabolite profiles of juices from 12 commercial varieties grouped into blonde and navel types, mandarins, lemons and grapefruits were analyzed by LC/ESI-QTOF-MS. HCA on metabolite profiling data revealed the existence of natural groups demarcating fruit types and varieties associated to specific composition patterns. The unbiased classification provided by HCA was used for PLS-DA to find the potential variables (mass chromatographic features) responsible for the classification. Abscisic acid and derivatives, several flavonoids and limonoids were identified by analysis of mass spectra. To facilitate interpretation, metabolites were represented as flow charts depicting biosynthetic pathways. Mandarins 'Fortune' and 'Hernandina' along with oranges showed higher ABA contents and ABA degradation products were present as glycosylated forms in oranges and certain mandarins. All orange and grapefruit varieties showed high limonin contents and its glycosylated form, that was only absent in lemons. The rest of identified limonoids were highly abundant in oranges. Particularly, Sucrenya cultivar showed a specific accumulation of obacunone and limonoate A-ring lactone. Polymethoxylated flavanones (tangeritin and isomers) were absolutely absent from lemons and grapefruits whereas kaempferol deoxyhexose hexose isomer #2, naringin and neohesperidin were only present in these cultivars. Analysis of relative metabolite build-up in closely-related genotypes allowed the efficient demarcation of cultivars and suggested the existence of genotype-specific regulatory mechanisms underlying the differential metabolite accumulation.
Zhang, Zhihao; Wang, Xiaoyan; Wang, Jingcheng; Jia, Zhiying; Liu, Yumin; Xie, Xie; Wang, Chongchong; Jia, Wei
2016-06-03
Metabolic profiling technology, a massive information provider, has promoted the understanding of the metabolism of multicomponent medicines and its interactions with endogenous metabolites, which was previously a challenge in clarification. In this study, an untargeted GC/MS-based approach was employed to investigate the urinary metabolite profile in rats with oral administration of ginsenosides and the control group. Significant changes of urinary metabolites contents were observed in the total ginsenosides group, revealing the impact of ginsenosides as indicated by the up- or down-regulation of several pathways involving neurotransmitter-related metabolites, tricarboxylic acid (TCA) cycle, fatty acids β-oxidation, and intestinal microflora metabolites. Meanwhile, a targeted UPLC-QQQ/MS-based metabonomic approach was developed to investigate the changes of urinary ginsenoside metabolites during the process of acute cold stress. Metabolic analysis indicated that upstream ginsenosides (rg1, re, and rf) increased significantly, whereas downstream ginsenosides (ck, ppd, and ppt) decreased correspondingly after cold exposure. Finally, the relationships between ginsenosides and significantly changed metabolites were investigated by correlation analysis.
Bioavailability and pharmacokinetic profile of grape pomace phenolic compounds in humans.
Castello, Fabio; Costabile, Giuseppina; Bresciani, Letizia; Tassotti, Michele; Naviglio, Daniele; Luongo, Delia; Ciciola, Paola; Vitale, Marilena; Vetrani, Claudia; Galaverna, Gianni; Brighenti, Furio; Giacco, Rosalba; Del Rio, Daniele; Mena, Pedro
2018-05-15
Grape pomace, the major byproduct of the wine and juice industry, is a relevant source of bioactive phenolic compounds. However, polyphenol bioavailability in humans is not well understood, and the inter-individual variability in the production of phenolic metabolites has not been comprehensively assessed to date. The pharmacokinetic and excretive profiles of phenolic metabolites after the acute administration of a drink made from red grape pomace was here investigated in ten volunteers. A total of 35 and 28 phenolic metabolites were quantified in urine and plasma, respectively. The main circulating metabolites included phenyl-γ-valerolactones, hydroxybenzoic acids, simple phenols, hydroxyphenylpropionic acids, hydroxycinnamates, and (epi)catechin phase II conjugates. A high inter-individual variability was shown both in urine and plasma samples, and different patterns of circulating metabolites were unravelled by applying unsupervised multivariate analysis. Besides the huge variability in the production of microbial metabolites of colonic origin, an important variability was observed due to phase II conjugates. These results are of interest to further understand the potential health benefits of phenolic metabolites on individual basis. Copyright © 2018 Elsevier Inc. All rights reserved.
Nealon, N J; Worcester, C R; Ryan, E P
2017-06-01
This study aimed to determine the effect of a cell-free supernatant of Lactobacillus paracasei ATCC 27092 with and without rice bran extract (RBE) on Salmonella Typhimurium 14028s growth, and to identify a metabolite profile with antimicrobial functions. Supernatant was collected from overnight cultures of L. paracasei incubated in the presence (LP+RBE) or absence (LP) of RBE and applied to S. Typhimurium. LP+RBE reduced 13·1% more S. Typhimurium growth than LP after 16 h (P < 0·05). Metabolite profiles of LP and LP+RBE were examined using nontargeted global metabolomics consisting of ultra-high-performance liquid chromatography coupled with tandem mass spectrometry. A comparison of LP and LP+RBE revealed 84 statistically significant metabolites (P < 0·05), where 20 were classified with antimicrobial functions. LP+RBE reduced S. Typhimurium growth to a greater extent than LP, and the metabolite profile distinctions suggested that RBE favourably modulates the metabolism of L. paracasei. These findings warrant continued investigation of probiotic and RBE antimicrobial activities across microenvironments and matrices where S. Typhimurium exposure is problematic. This study showed a novel metabolite profile of probiotic L. paracasei and prebiotic rice bran that increased antimicrobial activity against S. Typhimurium. © 2017 The Authors. Journal of Applied Microbiology published by John Wiley & Sons Ltd on behalf of The Society for Applied Microbiology.
Saito, Takafumi; Sugimoto, Masahiro; Okumoto, Kazuo; Haga, Hiroaki; Katsumi, Tomohiro; Mizuno, Kei; Nishina, Taketo; Sato, Sonoko; Igarashi, Kaori; Maki, Hiroko; Tomita, Masaru; Ueno, Yoshiyuki; Soga, Tomoyoshi
2016-07-21
To clarify the characteristics of metabolite profiles in virus-related hepatocellular carcinoma (HCC) patients using serum metabolome analysis. The serum levels of low-molecular-weight metabolites in 68 patients with HCC were quantified using capillary electrophoresis chromatography and mass spectrometry. Thirty and 38 of the patients suffered from hepatitis B virus-related HCC (HCC-B) and hepatitis C virus-related HCC (HCC-C), respectively. The main metabolites characteristic of HCC were those associated with glutathione metabolism, notably 13 γ-glutamyl peptides, which are by-products of glutathione induction. Two major profiles, i.e., concentration patterns, of metabolites were identified in HCC patients, and these were classified into two groups: an HCC-B group and an HCC-C group including some of the HCC-B cases. The receiver operating characteristic curve for the multiple logistic regression model discriminating HCC-B from HCC-C incorporating the concentrations of glutamic acid, methionine and γ-glutamyl-glycine-glycine showed a highly significant area under the curve value of 0.94 (95%CI: 0.89-1.0, P < 0.0001). The serum levels of γ-glutamyl peptides, as well as their concentration patterns, contribute to the development of potential biomarkers for virus-related HCC. The difference in metabolite profiles between HCC-B and HCC-C may reflect the respective metabolic reactions that underlie the different pathogeneses of these two types of HCC.
Comparing metabolite profiles of habitual diet in serum and urine123
Playdon, Mary C; Sampson, Joshua N; Cross, Amanda J; Sinha, Rashmi; Guertin, Kristin A; Moy, Kristin A; Rothman, Nathaniel; Irwin, Melinda L; Mayne, Susan T; Stolzenberg-Solomon, Rachael; Moore, Steven C
2016-01-01
Background: Diet plays an important role in chronic disease etiology, but some diet-disease associations remain inconclusive because of methodologic limitations in dietary assessment. Metabolomics is a novel method for identifying objective dietary biomarkers, although it is unclear what dietary information is captured from metabolites found in serum compared with urine. Objective: We compared metabolite profiles of habitual diet measured from serum with those measured from urine. Design: We first estimated correlations between consumption of 56 foods, beverages, and supplements assessed by a food-frequency questionnaire, with 676 serum and 848 urine metabolites identified by untargeted liquid chromatography mass spectrometry, ultra-high performance liquid chromatography tandem mass spectrometry, and gas chromatography mass spectrometry in a colon adenoma case–control study (n = 125 cases and 128 controls) while adjusting for age, sex, smoking, fasting, case-control status, body mass index, physical activity, education, and caloric intake. We controlled for multiple comparisons with the use of a false discovery rate of <0.1. Next, we created serum and urine multiple-metabolite models to predict food intake with the use of 10-fold crossvalidation least absolute shrinkage and selection operator regression for 80% of the data; predicted values were created in the remaining 20%. Finally, we compared predicted values with estimates obtained from self-reported intake for metabolites measured in serum and urine. Results: We identified metabolites associated with 46 of 56 dietary items; 417 urine and 105 serum metabolites were correlated with ≥1 food, beverage, or supplement. More metabolites in urine (n = 154) than in serum (n = 39) were associated uniquely with one food. We found previously unreported metabolite associations with leafy green vegetables, sugar-sweetened beverages, citrus, added sugar, red meat, shellfish, desserts, and wine. Prediction of dietary intake from multiple-metabolite profiles was similar between biofluids. Conclusions: Candidate metabolite biomarkers of habitual diet are identifiable in both serum and urine. Urine samples offer a valid alternative or complement to serum for metabolite biomarkers of diet in large-scale clinical or epidemiologic studies. PMID:27510537
Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun
2015-02-15
In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.
Klueter, Anke; Crandall, Jesse B.; Archer, Frederick I.; Teece, Mark A.; Coffroth, Mary Alice
2015-01-01
Microorganisms in terrestrial and marine ecosystems are essential to environmental sustainability. In the marine environment, invertebrates often depend on metabolic cooperation with their endosymbionts. Coral reefs, one of the most important marine ecosystems, are based on the symbiosis between a broad diversity of dinoflagellates of the genus Symbiodinium and a wide phyletic diversity of hosts (i.e., cnidarian, molluscan, poriferan). This diversity is reflected in the ecology and physiology of the symbionts, yet the underlying biochemical mechanisms are still poorly understood. We examined metabolite profiles of four cultured species of Symbiodinium known to form viable symbioses with reef-building corals, S. microadriaticum (cp-type A194), S. minutum (cp-type B184), S. psygmophilum (cp-type B224) and S. trenchii (cp-type D206). Metabolite profiles were shown to differ among Symbiodinium species and were found to be affected by their physiological response to growth in different temperatures and light regimes. A combined Random Forests and Bayesian analysis revealed that the four Symbiodinium species examined primarily differed in their production of sterols and sugars, including a C29 stanol and the two sterols C28Δ5 and C28Δ5,22, as well as differences in metabolite abundances of a hexose and inositol. Inositol levels were also strongly affected by changes in temperature across all Symbiodinium species. Our results offer a detailed view of the metabolite profile characteristic of marine symbiotic dinoflagellates of the genus Symbiodinium, and identify patterns of metabolites related to several growth conditions. PMID:25693143
Lv, Haitao; Palacios, Gustavo; Hartil, Kirsten; Kurland, Irwin J.
2014-01-01
In this study a UPLC-tandem (Waters Xevo TQ) MRM based MS method was developed for rapid, broad profiling of hydrophilic metabolites from biological samples, in either positive or negative ion modes without the need for an ion pairing reagent, using a reversed-phase pentafluorophenylpropyl (PFPP) column. The developed method was successfully applied to analyze various biological samples from C57BL/6 mice; including urine, duodenum, liver, plasma, kidney, heart, and skeletal muscle. As result, a total 112 of hydrophilic metabolites were detected within 8 min of running time to obtain a metabolite profile of the biological samples. The analysis of this number of hydrophilic metabolites is significantly faster than previous studies. Classification separation for metabolites from different tissues was globally analyzed by PCA, PLS-DA and HCA biostatistical methods. Overall, most of the hydrophilic metabolites were found to have a “fingerprint” characteristic of tissue dependency. In general, a higher level of most metabolites was found in urine, duodenum and kidney. Altogether, these results suggest that this method has potential application for targeted metabolomic analyzes of hydrophilic metabolites in a wide ranges of biological samples. PMID:21322650
Lv, Haitao; Palacios, Gustavo; Hartil, Kirsten; Kurland, Irwin J
2011-04-01
In this study, a tandem LC-MS (Waters Xevo TQ) MRM-based MS method was developed for rapid, broad profiling of hydrophilic metabolites from biological samples, in either positive or negative ion modes without the need for an ion pairing reagent, using a reversed-phase pentafluorophenylpropyl (PFPP) column. The developed method was successfully applied to analyze various biological samples from C57BL/6 mice, including urine, duodenum, liver, plasma, kidney, heart, and skeletal muscle. As result, a total 112 of hydrophilic metabolites were detected within 8 min of running time to obtain a metabolite profile of the biological samples. The analysis of this number of hydrophilic metabolites is significantly faster than previous studies. Classification separation for metabolites from different tissues was globally analyzed by PCA, PLS-DA and HCA biostatistical methods. Overall, most of the hydrophilic metabolites were found to have a "fingerprint" characteristic of tissue dependency. In general, a higher level of most metabolites was found in urine, duodenum, and kidney. Altogether, these results suggest that this method has potential application for targeted metabolomic analyzes of hydrophilic metabolites in a wide ranges of biological samples.
Huang, Meilin; Cheng, Zhongzhe; Wang, Lu; Feng, Yulin; Huang, Jiangeng; Du, Zhifeng; Jiang, Hongliang
2018-05-29
It is challenging to conduct in vivo metabolic study for traditional Chinese medicines (TCMs) because of complex components, unpredictable metabolic pathways and low metabolite concentrations. Herein, we proposed a sensitive strategy to characterize TCM metabolites in vivo at an orally clinical dose using ultra-high performance liquid chromatography-triple quadrupole-linear ion trap mass spectrometry (UHPLC-QTRAP-MS). Firstly, the metabolism of individual compounds in rat liver microsomes was studied to obtain the metabolic pathways and fragmentation patterns. The untargeted metabolites in vitro were detected by multiple ion monitoring-enhanced product ion (EPI) and neutral loss-EPI scans. Subsequently, a sensitive multiple reaction monitoring-EPI method was developed according to the in vitro results and predicted metabolites to profile the in vivo metabolites. Licorice as a model herb was used to evaluate and validate our strategy. A clinical dose of licorice water extract was orally administered to rats, then a total of 45 metabolites in urine, 21 metabolites in feces and 35 metabolites in plasma were detected. Among them, 18 minor metabolites have not been reported previously and 6 minor metabolites were first detected in vivo. Several isomeric metabolites were well separated and differentiated in our strategy. These results suggested that this new strategy could be widely used for the detection and characterization of in vivo metabolites of TCMs. Copyright © 2018. Published by Elsevier B.V.
Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; Karjalainen, Reijo O; Sandell, Mari
2015-01-28
Strawberry (Fragaria × ananassa Duch.) contains many secondary metabolites potentially beneficial for human health, and several of these compounds contribute to strawberry sensory properties, as well. In this study, three strawberry cultivars grown both conventionally and organically were subjected to nontargeted metabolite profiling analysis with LC-qTOF-ESI-MS and to descriptive sensory evaluation by a trained panel. Combined metabolome and sensory data (PLS model) revealed that 79% variation in the metabolome explained 88% variation in the sensory profiles. Flavonoids and condensed and hydrolyzable tannins determined the orosensory properties, and fatty acids contributed to the odor attributes of strawberry. Overall, the results indicated that the chemical composition and sensory quality of strawberries grown in different cultivation systems vary mostly according to cultivar. Organic farming practices may enhance the accumulation of some plant metabolites in specific strawberry genotypes. Careful cultivar selection is a key factor for the improvement of nutritional quality and marketing value of organic strawberries.
Li, Jian-Ping; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Liu, Yang; Zhao, Bu-Chang; Zhao, Jing; Tang, Zhi-Shu; Duan, Jin-Ao
2017-05-10
Acetylsalicylic acid (Aspirin, ASA) is a famous drug for cardiovascular diseases in recent years. Effects of ASA dosage on the metabolic profile have not been fully understood. The purpose of our study is to establish a rapid and reliable method to quantify ASA metabolites in biological matrices, especially for glucuronide metabolites whose standards are not commercially available. Then we applied this method to evaluate the effects of ASA dosage on the metabolic and excretion profile of ASA metabolites in rat urine. Salicylic acid (SA), gentisic acid (GA) and salicyluric acid (SUA) were determined directly by UHPLC-MS/MS, while salicyl phenolic glucuronide (SAPG) and salicyluric acid phenolic glucuronide (SUAPG) were quantified indirectly by measuring the released SA and SUA from SAPG and SUAPG after β-glucuronidase digestion. SUA and SUAPG were the major metabolites of ASA in rat urine 24h after ASA administration, which accounted for 50% (SUA) and 26% (SUAPG). When ASA dosage was increased, the contributions dropped to 32% and 18%, respectively. The excretion of other three metabolites (GA, SA and SAPG) however showed remarkable increases by 16%, 6% and 4%, respectively. In addition, SUA and SUAPG were mainly excreted in the time period of 12-24h, while GA was excreted in the earlier time periods (0-4h and 4-8h). SA was mainly excreted in the time period of 0-4h and 12-24h. And the excretion of SAPG was equally distributed in the four time periods. We went further to show that the excretion of five metabolites in rat urine was delayed when ASA dosage was increased. In conclusion, we have developed a rapid and sensitive method to determine the five ASA metabolites (SA, GA, SUA, SAPG and SUAPG) in rat urine. We showed that ASA dosage could significantly influence the metabolic and excretion profile of ASA metabolites in rat urine. Copyright © 2016 Elsevier B.V. All rights reserved.
Metabolite profiling of non-sterile rhizosphere soil.
Pétriacq, Pierre; Williams, Alex; Cotton, Anne; McFarlane, Alexander E; Rolfe, Stephen A; Ton, Jurriaan
2017-10-01
Rhizosphere chemistry is the sum of root exudation chemicals, their breakdown products and the microbial products of soil-derived chemicals. To date, most studies about root exudation chemistry are based on sterile cultivation systems, which limits the discovery of microbial breakdown products that act as semiochemicals and shape microbial rhizosphere communities. Here, we present a method for untargeted metabolic profiling of non-sterile rhizosphere soil. We have developed an experimental growth system that enables the collection and analysis of rhizosphere chemicals from different plant species. High-throughput sequencing of 16SrRNA genes demonstrated that plants in the growth system support a microbial rhizosphere effect. To collect a range of (a)polar chemicals from the system, we developed extraction methods that do not cause detectable damage to root cells or soil-inhabiting microbes, thus preventing contamination with cellular metabolites. Untargeted metabolite profiling by UPLC-Q-TOF mass spectrometry, followed by uni- and multivariate statistical analyses, identified a wide range of secondary metabolites that are enriched in plant-containing soil, compared with control soil without roots. We show that the method is suitable for profiling the rhizosphere chemistry of Zea mays (maize) in agricultural soil, thereby demonstrating the applicability to different plant-soil combinations. Our study provides a robust method for the comprehensive metabolite profiling of non-sterile rhizosphere soil, which represents a technical advance towards the establishment of causal relationships between the chemistry and microbial composition of the rhizosphere. © 2017 The Authors The Plant Journal published by John Wiley & Sons Ltd and Society for Experimental Biology.
Božičević, Alen; Dobrzyński, Maciej; De Bie, Hans; Gafner, Frank; Garo, Eliane; Hamburger, Matthias
2017-12-05
The technological development of LC-MS instrumentation has led to significant improvements of performance and sensitivity, enabling high-throughput analysis of complex samples, such as plant extracts. Most software suites allow preprocessing of LC-MS chromatograms to obtain comprehensive information on single constituents. However, more advanced processing needs, such as the systematic and unbiased comparative metabolite profiling of large numbers of complex LC-MS chromatograms remains a challenge. Currently, users have to rely on different tools to perform such data analyses. We developed a two-step protocol comprising a comparative metabolite profiling tool integrated in ACD/MS Workbook Suite, and a web platform developed in R language designed for clustering and visualization of chromatographic data. Initially, all relevant chromatographic and spectroscopic data (retention time, molecular ions with the respective ion abundance, and sample names) are automatically extracted and assembled in an Excel spreadsheet. The file is then loaded into an online web application that includes various statistical algorithms and provides the user with tools to compare and visualize the results in intuitive 2D heatmaps. We applied this workflow to LC-ESIMS profiles obtained from 69 honey samples. Within few hours of calculation with a standard PC, honey samples were preprocessed and organized in clusters based on their metabolite profile similarities, thereby highlighting the common metabolite patterns and distributions among samples. Implementation in the ACD/Laboratories software package enables ulterior integration of other analytical data, and in silico prediction tools for modern drug discovery.
Modulation of antimicrobial metabolites production by the fungus Aspergillus parasiticus
Bracarense, Adriana A.P.; Takahashi, Jacqueline A.
2014-01-01
Biosynthesis of active secondary metabolites by fungi occurs as a specific response to the different growing environments. Changes in this environment alter the chemical and biological profiles leading to metabolites diversification and consequently to novel pharmacological applications. In this work, it was studied the influence of three parameters (fermentation length, medium composition and aeration) in the biosyntheses of antimicrobial metabolites by the fungus Aspergillus parasiticus in 10 distinct fermentation periods. Metabolism modulation in two culturing media, CYA and YES was evaluated by a 22 full factorial planning (ANOVA) and on a 23 factorial planning, role of aeration, medium composition and carbohydrate concentration were also evaluated. In overall, 120 different extracts were prepared, their HPLC profiles were obtained and the antimicrobial activity against A. flavus, C. albicans, E. coli and S. aureus of all extracts was evaluated by microdilution bioassay. Yield of kojic acid, a fine chemical produced by the fungus A. parasiticus was determined in all extracts. Statistical analyses pointed thirteen conditions able to modulate the production of bioactive metabolites by A. parasiticus. Effect of carbon source in metabolites diversification was significant as shown by the changes in the HPLC profiles of the extracts. Most of the extracts presented inhibition rates higher than that of kojic acid as for the extract obtained after 6 days of fermentation in YES medium under stirring. Kojic acid was not the only metabolite responsible for the activity since some highly active extracts showed to possess low amounts of this compound, as determined by HPLC. PMID:24948950
Sun, Jinchun; Jin, Jinshan; Beger, Richard D.; Cerniglia, Carl E.; Yang, Maocheng; Chen, Huizhong
2017-01-01
The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the argininenitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. PMID:27480511
Leruez, Stéphanie; Bresson, Thomas; Chao de la Barca, Juan M; Marill, Alexandre; de Saint Martin, Grégoire; Buisset, Adrien; Muller, Jeanne; Tessier, Lydie; Gadras, Cédric; Verny, Christophe; Amati-Bonneau, Patrizia; Lenaers, Guy; Gohier, Philippe; Bonneau, Dominique; Simard, Gilles; Milea, Dan; Procaccio, Vincent; Reynier, Pascal
2018-02-01
To determine the plasma metabolomic signature of the exfoliative syndrome (XFS), the most common cause worldwide of secondary open-angle glaucoma. We performed a targeted metabolomic study, using the standardized p180 Biocrates Absolute IDQ p180 kit with a QTRAP 5500 mass spectrometer, to compare the metabolomic profiles of plasma from individuals with XFS (n = 16), and an age- and sex-matched control group with cataract (n = 18). A total of 151 metabolites were detected correctly, 16 of which allowed for construction of an OPLS-DA model with a good predictive capability (Q2cum = 0.51) associated with a low risk of over-fitting (permQ2 = -0.48, CV-ANOVA P-value <0.001). The metabolites contributing the most to the signature were octanoyl-carnitine (C8) and decanoyl-carnitine (C10), the branched-chain amino acids (i.e., isoleucine, leucine, and valine), and tyrosine, all of which were at higher concentrations in the XFS group, whereas spermine and spermidine, together with their precursor acetyl-ornithine, were at lower concentrations than in the control group. We identified a significant metabolomic signature in the plasma of individuals with XFS. Paradoxically, this signature, characterized by lower concentrations of the neuroprotective spermine and spermidine polyamines than in controls, partially overlaps the plasma metabolomic profile associated with insulin resistance, despite the absence of evidence of insulin resistance in XFS.
Sun, Jinchun; Jin, Jinshan; Beger, Richard D; Cerniglia, Carl E; Yang, Maocheng; Chen, Huizhong
2016-10-01
The association between exposure to smokeless tobacco products (STP) and oral diseases is partially due to the physiological and pathological changes in the composition of the oral microbiome and its metabolic profile. However, it is not clear how STPs affect the physiology and ecology of oral microbiota. A UPLC/QTof-MS-based metabolomics study was employed to analyze metabolic alterations in oral bacterium, Capnocytophaga sputigena as a result of smokeless tobacco exposure and to assess the capability of the bacterium to metabolize nicotine. Pathway analysis of the metabolome profiles indicated that smokeless tobacco extracts caused oxidative stress in the bacterium. The metabolomics data also showed that the arginine-nitric oxide pathway was perturbed by the smokeless tobacco treatment. Results also showed that LC/MS was useful in identifying STP constituents and additives, including caffeine and many flavoring compounds. No significant changes in levels of nicotine and its major metabolites were found when C. sputigena was cultured in a nutrient rich medium, although hydroxylnicotine and cotinine N-oxide were detected in the bacterial metabolites suggesting that nicotine metabolism might be present as a minor degradation pathway in the bacterium. Study results provide new insights regarding the physiological and toxicological effects of smokeless tobacco on oral bacterium C. sputigena and associated oral health as well as measuring the ability of the oral bacterium to metabolize nicotine. Published by Elsevier Ltd.
Ultra-rapid auxin metabolite profiling for high-throughput mutant screening in Arabidopsis.
Pencík, Aleš; Casanova-Sáez, Rubén; Pilarová, Veronika; Žukauskaite, Asta; Pinto, Rui; Micol, José Luis; Ljung, Karin; Novák, Ondrej
2018-04-27
Auxin (indole-3-acetic acid, IAA) plays fundamental roles as a signalling molecule during numerous plant growth and development processes. The formation of local auxin gradients and auxin maxima/minima, which is very important for these processes, is regulated by auxin metabolism (biosynthesis, degradation, and conjugation) as well as transport. When studying auxin metabolism pathways it is crucial to combine data obtained from genetic investigations with the identification and quantification of individual metabolites. Thus, to facilitate efforts to elucidate auxin metabolism and its roles in plants, we have developed a high-throughput method for simultaneously quantifying IAA and its key metabolites in minute samples (<10 mg FW) of Arabidopsis thaliana tissues by in-tip micro solid-phase extraction and fast LC-tandem MS. As a proof of concept, we applied the method to a collection of Arabidopsis mutant lines and identified lines with altered IAA metabolite profiles using multivariate data analysis. Finally, we explored the correlation between IAA metabolite profiles and IAA-related phenotypes. The developed rapid analysis of large numbers of samples (>100 samples d-1) is a valuable tool to screen for novel regulators of auxin metabolism and homeostasis among large collections of genotypes.
Metabolic profiling of Arabidopsis thaliana epidermal cells
Ebert, Berit; Zöller, Daniela; Erban, Alexander; Fehrle, Ines; Hartmann, Jürgen; Niehl, Annette; Kopka, Joachim; Fisahn, Joachim
2010-01-01
Metabolic phenotyping at cellular resolution may be considered one of the challenges in current plant physiology. A method is described which enables the cell type-specific metabolic analysis of epidermal cell types in Arabidopsis thaliana pavement, basal, and trichome cells. To achieve the required high spatial resolution, single cell sampling using microcapillaries was combined with routine gas chromatography-time of flight-mass spectrometry (GC-TOF-MS) based metabolite profiling. The identification and relative quantification of 117 mostly primary metabolites has been demonstrated. The majority, namely 90 compounds, were accessible without analytical background correction. Analyses were performed using cell type-specific pools of 200 microsampled individual cells. Moreover, among these identified metabolites, 38 exhibited differential pool sizes in trichomes, basal or pavement cells. The application of an independent component analysis confirmed the cell type-specific metabolic phenotypes. Significant pool size changes between individual cells were detectable within several classes of metabolites, namely amino acids, fatty acids and alcohols, alkanes, lipids, N-compounds, organic acids and polyhydroxy acids, polyols, sugars, sugar conjugates and phenylpropanoids. It is demonstrated here that the combination of microsampling and GC-MS based metabolite profiling provides a method to investigate the cellular metabolism of fully differentiated plant cell types in vivo. PMID:20150518
USDA-ARS?s Scientific Manuscript database
To investigate the natural variability of leaf metabolism and enzymatic activity in a maize inbred population, statistical and network analyses were employed on metabolite and enzyme profiles. The test of coefficient of variation showed that sugars and amino acids displayed opposite trends in their ...
Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites
HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...
Male and female fathead minnows (FHM) were exposed via the water to cyproterone acetate (CA), a model androgen receptor (AR) antagonist. FHM were also exposed to 517b-trenbolone (TB), a model AR agonist, and to mixtures of TB with CA. The urine metabolite profile of male FHM ex...
Determination of Ancylostoma caninum ova viability using metabolic profiling.
Gyawali, P; Beale, D J; Ahmed, W; Karpe, A V; Magalhaes, R J Soares; Morrison, P D; Palombo, E A
2016-09-01
Differentiation between viable and non-viable hookworm ova in environmental samples is necessary in order to implement strategies to mitigate re-infections in endemic regions. In this study, an untargeted metabolic profiling method was developed that utilised gas chromatography-mass spectrometry (GC-MS) in order to investigate hookworm ova viability. Ancylostoma caninum was used to investigate the metabolites within viable and non-viable ova. Univariate and multivariate statistical analyses of the data resulted in the identification of 53 significant metabolites across all hookworm ova samples. The major compounds observed in viable and non-viable hookworm ova were tetradecanoic acid, commonly known as myristic acid [fold change (FC) = 0.4], and dodecanoic acid, commonly known as lauric acid (FC = 0.388). Additionally, the viable ova had self-protecting metabolites such as prostaglandins, a typical feature absent in non-viable ova. The results of this study demonstrate that metabolic profiling using GC-MS methods can be used to determine the viability of canine hookworm ova. Further studies are needed to assess the applicability of metabolic profiling using GC-MS to detect viable hookworm ova in the mixed (viable and non-viable) populations from environmental samples and identify the metabolites specific to human hookworm species.
Methods, applications and concepts of metabolite profiling: primary metabolism.
Steinhauser, Dirk; Kopka, Joachim
2007-01-01
In the 1990s the concept of a comprehensive analysis of the metabolic complement in biological systems, termed metabolomics or alternately metabonomics, was established as the last of four cornerstones for phenotypic studies in the post-genomic era. With genomic, transcriptomic, and proteomic technologies in place and metabolomic phenotyping under rapid development all necessary tools appear to be available today for a fully functional assessment of biological phenomena at all major system levels of life. This chapter attempts to describe and discuss crucial steps of establishing and maintaining a gas chromatography/electron impact ionization/ mass spectrometry (GC-EI-MS)-based metabolite profiling platform. GC-EI-MS can be perceived as the first and exemplary profiling technology aimed at simultaneous and non-biased analysis of primary metabolites from biological samples. The potential and constraints of this profiling technology are among the best understood. Most problems are solved as well as pitfalls identified. Thus GC-EI-MS serves as an ideal example for students and scientists who intend to enter the field of metabolomics. This chapter will be biased towards GC-EI-MS analyses but aims at discussing general topics, such as experimental design, metabolite identification, quantification and data mining.
Cipriano, Rocco C; Smith, McKenzie L; Vermeersch, Kathleen A; Dove, Alistair D M; Styczynski, Mark P
2015-03-01
Atlantic salmon Salmo salar undergo months-long inappetence during spawning, but it is not known whether this inappetence is a pathological state or one for which the fish are adapted. Recent work has shown that inappetent whale sharks can exhibit circulating metabolite profiles similar to ketosis known to occur in humans during starvation. In this work, metabolite profiling was used to explore differences in analyte profiles between a cohort of inappetent spawning run Atlantic salmon and captively reared animals that were fed up to and through the time of sampling. The two classes of animals were easily distinguished by their metabolite profiles. The sea-run fish had elevated ɷ-9 fatty acids relative to the domestic feeding animals, while other fatty acid concentrations were reduced. Sugar alcohols were generally elevated in inappetent animals, suggesting potentially novel metabolic responses or pathways in fish that feature these compounds. Compounds expected to indicate a pathological catabolic state were not more abundant in the sea-run fish, suggesting that the animals, while inappetent, were not stressed in an unnatural way. These findings demonstrate the power of discovery-based metabolomics for exploring biochemistry in poorly understood animal models. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of viroid infection on the dynamics of phenolic metabolites in the apoplast of tomato
USDA-ARS?s Scientific Manuscript database
Plants are capable of producing a wide array of secondary metabolites which serve many functions, due to their bioactive, redox or structural properties. Subtle changes in the external or internal environment can cause significant changes in the array of secondary metabolites presented in the tissu...
Yang, Xiao-Long; Huang, Le; Ruan, Xiao-Li
2014-01-01
The addition of the DNA methyltransferase inhibitor 500 μM 5-azacytidine to the culture medium of a plant endophytic fungus, Pestalotiopsis crassiuscula, obtained from the leaves of Fragaria chiloensis, dramatically altered the profiles of its metabolites and resulted in the isolation of one new coumarin (1), along with six known compounds (2-7). HPLC profiles revealed that only compounds 3, 4, and 7 belonged to the new induced secondary metabolites. The structures of all isolated compounds were elucidated on the basis of extensive analysis of NMR spectra.
Extended Duration Nocturnal Hemodialysis and Changes in Plasma Metabolite Profiles.
Kalim, Sahir; Wald, Ron; Yan, Andrew T; Goldstein, Marc B; Kiaii, Mercedeh; Xu, Dihua; Berg, Anders H; Clish, Clary; Thadhani, Ravi; Rhee, Eugene P; Perl, Jeffrey
2018-03-07
In-center, extended duration nocturnal hemodialysis has been associated with variable clinical benefits, but the effect of extended duration hemodialysis on many established uremic solutes and other components of the metabolome is unknown. We determined the magnitude of change in metabolite profiles for patients on extended duration nocturnal hemodialysis. In a 52-week prospective, observational study, we followed 33 patients receiving conventional thrice weekly hemodialysis who converted to nocturnal hemodialysis (7-8 hours per session, three times per week). A separate group of 20 patients who remained on conventional hemodialysis (3-4 hours per session, three times per week) served as a control group. For both groups, we applied liquid chromatography-mass spectrometry-based metabolite profiling on stored plasma samples collected from all participants at baseline and after 1 year. We examined longitudinal changes in 164 metabolites among those who remained on conventional hemodialysis and those who converted to nocturnal hemodialysis using Wilcoxon rank sum tests adjusted for multiple comparisons (false discovery rate <0.05). On average, the nocturnal group had 9.6 hours more dialysis per week than the conventional group. Among 164 metabolites, none changed significantly from baseline to study end in the conventional group. Twenty-nine metabolites changed in the nocturnal group, 21 of which increased from baseline to study end (including all branched-chain amino acids). Eight metabolites decreased after conversion to nocturnal dialysis, including l-carnitine and acetylcarnitine. By contrast, several established uremic retention solutes, including p -cresol sulfate, indoxyl sulfate, and trimethylamine N -oxide, did not change with extended dialysis. Across a wide array of metabolites examined, extended duration hemodialysis was associated with modest changes in the plasma metabolome, with most differences relating to metabolite increases, despite increased dialysis time. Few metabolites showed reduction with more dialysis, and no change in several established uremic toxins was observed. Copyright © 2018 by the American Society of Nephrology.
MeRy-B, a metabolomic database and knowledge base for exploring plant primary metabolism.
Deborde, Catherine; Jacob, Daniel
2014-01-01
Plant primary metabolites are organic compounds that are common to all or most plant species and are essential for plant growth, development, and reproduction. They are intermediates and products of metabolism involved in photosynthesis and other biosynthetic processes. Primary metabolites belong to different compound families, mainly carbohydrates, organic acids, amino acids, nucleotides, fatty acids, steroids, or lipids. Until recently, unlike the Human Metabolome Database ( http://www.hmdb.ca ) dedicated to human metabolism, there was no centralized database or repository dedicated exclusively to the plant kingdom that contained information on metabolites and their concentrations in a detailed experimental context. MeRy-B is the first platform for plant (1)H-NMR metabolomic profiles (MeRy-B, http://bit.ly/meryb ), designed to provide a knowledge base of curated plant profiles and metabolites obtained by NMR, together with the corresponding experimental and analytical metadata. MeRy-B contains lists of plant metabolites, mostly primary metabolites and unknown compounds, with information about experimental conditions, the factors studied, and metabolite concentrations for 19 different plant species (Arabidopsis, broccoli, daphne, grape, maize, barrel clover, melon, Ostreococcus tauri, palm date, palm tree, peach, pine tree, eucalyptus, plantain rice, strawberry, sugar beet, tomato, vanilla), compiled from more than 2,300 annotated NMR profiles for various organs or tissues deposited by 30 different private or public contributors in September 2013. Currently, about half of the data deposited in MeRy-B is publicly available. In this chapter, readers will be shown how to (1) navigate through and retrieve data of publicly available projects on MeRy-B website; (2) visualize lists of experimentally identified metabolites and their concentrations in all plant species present in MeRy-B; (3) get primary metabolite list for a particular plant species in MeRy-B; and for a particular tissue (4) find information on a primary metabolite regardless of the species.
Würtz, Peter; Wang, Qin; Kangas, Antti J; Richmond, Rebecca C; Skarp, Joni; Tiainen, Mika; Tynkkynen, Tuulia; Soininen, Pasi; Havulinna, Aki S; Kaakinen, Marika; Viikari, Jorma S; Savolainen, Markku J; Kähönen, Mika; Lehtimäki, Terho; Männistö, Satu; Blankenberg, Stefan; Zeller, Tanja; Laitinen, Jaana; Pouta, Anneli; Mäntyselkä, Pekka; Vanhala, Mauno; Elliott, Paul; Pietiläinen, Kirsi H; Ripatti, Samuli; Salomaa, Veikko; Raitakari, Olli T; Järvelin, Marjo-Riitta; Smith, George Davey; Ala-Korpela, Mika
2014-12-01
Increased adiposity is linked with higher risk for cardiometabolic diseases. We aimed to determine to what extent elevated body mass index (BMI) within the normal weight range has causal effects on the detailed systemic metabolite profile in early adulthood. We used Mendelian randomization to estimate causal effects of BMI on 82 metabolic measures in 12,664 adolescents and young adults from four population-based cohorts in Finland (mean age 26 y, range 16-39 y; 51% women; mean ± standard deviation BMI 24 ± 4 kg/m(2)). Circulating metabolites were quantified by high-throughput nuclear magnetic resonance metabolomics and biochemical assays. In cross-sectional analyses, elevated BMI was adversely associated with cardiometabolic risk markers throughout the systemic metabolite profile, including lipoprotein subclasses, fatty acid composition, amino acids, inflammatory markers, and various hormones (p<0.0005 for 68 measures). Metabolite associations with BMI were generally stronger for men than for women (median 136%, interquartile range 125%-183%). A gene score for predisposition to elevated BMI, composed of 32 established genetic correlates, was used as the instrument to assess causality. Causal effects of elevated BMI closely matched observational estimates (correspondence 87% ± 3%; R(2)= 0.89), suggesting causative influences of adiposity on the levels of numerous metabolites (p<0.0005 for 24 measures), including lipoprotein lipid subclasses and particle size, branched-chain and aromatic amino acids, and inflammation-related glycoprotein acetyls. Causal analyses of certain metabolites and potential sex differences warrant stronger statistical power. Metabolite changes associated with change in BMI during 6 y of follow-up were examined for 1,488 individuals. Change in BMI was accompanied by widespread metabolite changes, which had an association pattern similar to that of the cross-sectional observations, yet with greater metabolic effects (correspondence 160% ± 2%; R(2) = 0.92). Mendelian randomization indicates causal adverse effects of increased adiposity with multiple cardiometabolic risk markers across the metabolite profile in adolescents and young adults within the non-obese weight range. Consistent with the causal influences of adiposity, weight changes were paralleled by extensive metabolic changes, suggesting a broadly modifiable systemic metabolite profile in early adulthood. Please see later in the article for the Editors' Summary.
Wang, Fei; Shang, Zhanpeng; Xu, Lulu; Wang, Zhibin; Zhao, Wenjing; Mei, XiaoDan; Lu, Jianqiu; Zhang, Jia Yu
2018-06-01
1. Chlorogenic acids (CGAs), one kind of major bioactive constituents isolated from Flos Lonicera Japonica, possess many biological activities, such as antibacterial, antioxidant and antiviral activities. In this study, we established an efficient strategy using ultra-high-performance liquid chromatography coupled with linear ion trap-Orbitrap mass spectrometry (UHPLC-LTQ-Orbitrap MS) to profile the in vivo metabolic fate of CGAs in rat urine and plasma. 2. The extract from Flos Lonicera Japonica was orally administrated to Sprague-Dawley (SD) rats at a dose of 1000 mg/kg body weight. Then, a combination of various post-acquisition data mining methods, including high-resolution extracted ion chromatogram (HREIC) and multiple mass defect filters (MMDFs) and diagnostic product ions (DPIs), were adopted to characterize the known and unknown CGA metabolites in SD rats. 3. As a result, a total of 68 CGA metabolites were unambiguously or tentatively screened and characterized. These metabolites, including 18 prototype compounds and 50 metabolites, were deduced to be yielded via methylation, hydrogenation, demethylation, dehydration, sulfate conjugation, glucuronide conjugation, glycosylation conjugation and their composite reactions, which mainly occurred to caffeoylquinic acids, dicaffeoylquinic acids, p-coumaroylquinic acids and feruloylquinic acids. 4. In conclusion, this study profiled CGA metabolites, which are useful in understanding the in vivo metabolic fate, effective forms, and pharmacological and toxic actions of CGAs.
Harb, Jamil; Alseekh, Saleh; Tohge, Takayuki; Fernie, Alisdair R
2015-09-01
Cultivation of grapes in West Bank - Palestine is very old and a large number of grape varieties exist as a result of continuous domestication over thousands of years. This rich biodiversity has highly influenced the consumer behavior of local people, who consume both grape berries and leaves. However, studies that address the contents of health-promoting metabolites in leaves are scarce. Accordingly the aim of this study is to assess metabolite levels in leaves of two grape varieties that were collected from semiarid and temperate regions. Metabolic profiling was conducted using GC-MS and LC-MS. The obtained results show that abiotic stresses in the semiarid region led to clear changes in primary metabolites, in particular in amino acids, which exist at very high levels. By contrast, qualitative and genotype-dependent differences in secondary metabolites were observed, whereas abiotic stresses appear to have negligible effect on the content of these metabolites. The qualitative difference in the flavonol profiles between the two genotypes is most probably related to differential expression of specific genes, in particular flavonol 3-O-rhamnosyltransferase, flavonol-3-O-glycoside pentosyltransferases and flavonol-3-O-d-glucosidel-rhamnosyltransferase by 'Beituni' grape leaves, which led to much higher levels of flavonols with rutinoside, pentoside, and rhamnoside moieties with this genotype. Copyright © 2015 Elsevier Ltd. All rights reserved.
Myxotyrosides A and B, Unusual rhamnosides from Myxococcus sp.
Ohlendorf, Birgit; Lorenzen, Wolfram; Kehraus, Stefan; Krick, Anja; Bode, Helge B; König, Gabriele M
2009-01-01
Myxobacteria are gliding bacteria of the delta-subdivision of the Proteobacteria and known for their unique biosynthetic capabilities. Two examples of a new class of metabolites, myxotyrosides A (1) and B (2), were isolated from a Myxococcus sp. The myxotyrosides have a tyrosine-derived core structure glycosylated with rhamnose and acylated with unusual fatty acids such as (Z)-15-methyl-2-hexadecenoic and (Z)-2-hexadecenoic acid. The fatty acid profile of the investigated Myxococcus sp. (strain 131) is that of a typical myxobacterium with a high similarity to those described for M. fulvus and M. xanthus, with significant concentrations of neither 15-methyl-2-hexadecenoic acid nor 2-hexadecenoic acid being detected.
Jung, Sung-Min; Hur, Youn-Young; Preece, John E.; Fiehn, Oliver; Kim, Young-Ho
2016-01-01
Green shoot cuttings of 10 different grapevine species were inoculated with Agrobacterium vitis to find disease-related metabolites in the grapevine. Crown galls formed 60 days after inoculation varied in gall severity (GS) evaluated by gall incidence (GI) and gall diameter (GD), which were classified into three response types as RR (low GI and small GD), SR (high GI and small GD), and SS (high GI and large GD), corresponding to resistant, moderately resistant, and susceptible responses, respectively. In this, 4, 4, and 2 Vitis species were classified into RR, SR, and SS, respectively. Gas chromatography mass spectrometry (GC-MS) analysis of the grapevine stem metabolites with A. vitis infection showed 134 metabolites in various compound classes critically occurred, which were differentially clustered with the response types by the principal component analysis. Multivariate analysis of the metabolite profile revealed that 11 metabolites increased significantly in relation to the response types, mostly at post-inoculation stages, more prevalently (8 metabolites) at two days after inoculation than other stages, and more related to SS (7 metabolites) than RR (3 metabolites) or SR (one metabolite). This suggests most of the disease-related metabolites may be rarely pre-existing but mostly induced by pathogen infection largely for facilitating gall development except stilbene compound resveratrol, a phytoalexin that may be involved in the resistance response. All of these aspects may be used for the selection of resistant grapevine cultivars and their rootstocks for the control of the crown gall disease of the grapevine. PMID:27904455
Metabolic Signatures of Bacterial Vaginosis
Morgan, Martin T.; Fiedler, Tina L.; Djukovic, Danijel; Hoffman, Noah G.; Raftery, Daniel; Marrazzo, Jeanne M.
2015-01-01
ABSTRACT Bacterial vaginosis (BV) is characterized by shifts in the vaginal microbiota from Lactobacillus dominant to a microbiota with diverse anaerobic bacteria. Few studies have linked specific metabolites with bacteria found in the human vagina. Here, we report dramatic differences in metabolite compositions and concentrations associated with BV using a global metabolomics approach. We further validated important metabolites using samples from a second cohort of women and a different platform to measure metabolites. In the primary study, we compared metabolite profiles in cervicovaginal lavage fluid from 40 women with BV and 20 women without BV. Vaginal bacterial representation was determined using broad-range PCR with pyrosequencing and concentrations of bacteria by quantitative PCR. We detected 279 named biochemicals; levels of 62% of metabolites were significantly different in women with BV. Unsupervised clustering of metabolites separated women with and without BV. Women with BV have metabolite profiles marked by lower concentrations of amino acids and dipeptides, concomitant with higher levels of amino acid catabolites and polyamines. Higher levels of the signaling eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE), a biomarker for inflammation, were noted in BV. Lactobacillus crispatus and Lactobacillus jensenii exhibited similar metabolite correlation patterns, which were distinct from correlation patterns exhibited by BV-associated bacteria. Several metabolites were significantly associated with clinical signs and symptoms (Amsel criteria) used to diagnose BV, and no metabolite was associated with all four clinical criteria. BV has strong metabolic signatures across multiple metabolic pathways, and these signatures are associated with the presence and concentrations of particular bacteria. PMID:25873373
Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M; Young, Vincent B; Jansson, Janet K; Fredricks, David N; Borenstein, Elhanan
2016-01-01
Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites' abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism.
Blanco-Muñoz, Julia; Morales, Magally Mayanin; Lacasaña, Marina; Aguilar-Garduño, Clemente; Bassol, Susana; Cebrián, Mariano E
2010-07-01
Studies on experimental animals have found that organophosphate (OP) pesticides may act as endocrine disruptors; however, their effects on the human hormonal profile have not yet been adequately characterized. We evaluate the association between exposure to OP pesticides, measured through dialkyl phosphate (DAP) metabolites urinary levels, and the male hormone profile. A cross-sectional study was performed in 104 floriculturists of Morelos, Mexico. A structured questionnaire was applied to get information on sociodemographic characteristics, anthropometry, clinical history, alcohol and tobacco consumption, and work history. DAP metabolites [dimethylphosphate (DMP), dimethylthiophosphate, dimethyldithiophosphate, diethylphosphate (DEP), diethylthiophosphate (DETP) and diethyldithiophosphate] were determined using gas-liquid chromatography. Serum levels of FSH, LH, prolactin, testosterone, inhibin B and estradiol were determined using enzyme-linked immunosorbent assay. Multiple linear regression was used to study the association between DAP metabolite levels and male hormonal profile. Data were adjusted by p,p'-dichlorodiphenyldichloroethene serum levels and other potential confounders. There was a negative association between inhibin B and urinary levels of DMP, DEP, DETP and total DAP metabolites. DEP levels were negatively associated with serum FSH concentrations, but marginally and positively associated with those of testosterone. DETP was marginally associated with lower LH serum levels. There were no other significant associations among OP metabolites and serum hormone levels. Inhibin B and FSH vary according to levels of DAP metabolites in men occupationally exposed to OP pesticides. These results suggest that OP pesticides could act as endocrine disruptors in humans; however, most hormonal values fell within the wide normal range and associations were small. There is, therefore, a need for further investigation to elucidate their biological and clinical relevance.
Farag, Mohamed A; Weigend, Maximilian; Luebert, Federico; Brokamp, Grischa; Wessjohann, Ludger A
2013-12-01
Several species of the genus Urtica (especially Urtica dioica, Urticaceae), are used medicinally to treat a variety of ailments. To better understand the chemical diversity of the genus and to compare different accessions and different taxa of Urtica, 63 leaf samples representing a broad geographical, taxonomical and morphological diversity were evaluated under controlled conditions. A molecular phylogeny for all taxa investigated was prepared to compare phytochemical similarity with phylogenetic relatedness. Metabolites were analyzed via UPLC-PDA-MS and multivariate data analyses. In total, 43 metabolites were identified, with phenolic compounds and hydroxy fatty acids as the dominant substance groups. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) provides a first structured chemotaxonomy of the genus. The molecular data present a highly resolved phylogeny with well-supported clades and subclades. U. dioica is retrieved as both para- and polyphyletic. European members of the U. dioica group and the North American subspecies share a rather similar metabolite profile and were largely retrieved as one, nearly exclusive cluster by metabolite data. This latter cluster also includes - remotely related - Urtica urens, which is pharmaceutically used in the same way as U. dioica. However, most highly supported phylogenetic clades were not retrieved in the metabolite cluster analyses. Overall, metabolite profiles indicate considerable phytochemical diversity in the genus, which largely falls into a group characterized by high contents of hydroxy fatty acids (e.g., most Andean-American taxa) and another group characterized by high contents of phenolic acids (especially the U. dioica-clade). Anti-inflammatory in vitro COX1 enzyme inhibition assays suggest that bioactivity may be predicted by gross metabolic profiling in Urtica. Copyright © 2013. Published by Elsevier Ltd.
Wang, Jianwei; Qi, Peng; Hou, Jinjun; Shen, Yao; Yang, Min; Bi, Qirui; Deng, Yanping; Shi, Xiaojian; Feng, Ruihong; Feng, Zijin; Wu, Wanying; Guo, Dean
2017-02-05
Drug metabolites identification and construction of metabolic profile are meaningful work for the drug discovery and development. The great challenge during this process is the work of the structural clarification of possible metabolites in the complicated biological matrix, which often resulting in a huge amount data sets, especially in multi-samples in vivo. Analyzing these complex data manually is time-consuming and laborious. The object of this study was to develop a practical strategy for screening and identifying of metabolites from multiple biological samples efficiently. Using hirsutine (HTI), an active components of Uncaria rhynchophylla (Gouteng in Chinese) as a model and its plasma, urine, bile, feces and various tissues were analyzed with data processing software (Metwork), data mining tool (Progenesis QI), and HR-MS n data by ultra-high performance liquid chromatography/linear ion trap-Orbitrap mass spectrometry (U-HPLC/LTQ-Orbitrap-MS). A total of 67 metabolites of HTI in rat biological samples were tentatively identified with established library, and to our knowledge most of which were reported for the first time. The possible metabolic pathways were subsequently proposed, hydroxylation, dehydrogenation, oxidation, N-oxidation, hydrolysis, reduction and glucuronide conjugation were mainly involved according to metabolic profile. The result proved application of this improved strategy was efficient, rapid, and reliable for metabolic profiling of components in multiple biological samples and could significantly expand our understanding of metabolic situation of TCM in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Scarfe, G B; Nicholson, J K; Lindon, J C; Wilson, I D; Taylor, S; Clayton, E; Wright, B
2002-04-01
1. The urinary excretion of 4-bromoaniline and its [carbonyl-(13)C]-labelled N-acetanilide, together with their corresponding metabolites, have been investigated in the rat following i.p. administration at 50 mg kg(-1). 2. Metabolite profiling was performed by reversed-phase HPLC with UV detection, whilst identification was performed using a combination of enzymic hydrolysis and directly coupled HPLC-NMR-MS analysis. The urinary metabolite profile was quantitatively and qualitatively similar for both compounds with little of either excreted unchanged. 3. The major metabolite present in urine was 2-amino-5-bromophenylsulphate, but, in addition, a number of metabolites with modification of the N-acetyl moiety were identified (from both the [(13)C]-acetanilide or produced following acetylation of the free bromoaniline). 4. For 4-bromoacetanilide, N-deacetylation was a major route of metabolism, but despite the detection of the acetanilide following the administration of the free aniline, there was no evidence of reacetylation (futile deacetylation). 5. Metabolites resulting from the oxidation of the acetyl group included a novel glucuronide of an N-glycolanilide, an unusual N-oxanilic acid and a novel N-acetyl cysteine conjugate.
Rhizosphere Protists Change Metabolite Profiles in Zea mays.
Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis
2018-01-01
Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth.
Rhizosphere Protists Change Metabolite Profiles in Zea mays
Kuppardt, Anke; Fester, Thomas; Härtig, Claus; Chatzinotas, Antonis
2018-01-01
Plant growth and productivity depend on the interactions of the plant with the associated rhizosphere microbes. Rhizosphere protists play a significant role in this respect: considerable efforts have been made in the past to reveal the impact of protist-bacteria interactions on the remobilization of essential nutrients for plant uptake, or the grazing induced changes on plant-growth promoting bacteria and the root-architecture. However, the metabolic responses of plants to the presence of protists or to protist-bacteria interactions in the rhizosphere have not yet been analyzed. Here we studied in controlled laboratory experiments the impact of bacterivorous protists in the rhizosphere on maize plant growth parameters and the bacterial community composition. Beyond that we investigated the induction of plant biochemical responses by separately analyzing above- and below-ground metabolite profiles of maize plants incubated either with a soil bacterial inoculum or with a mixture of soil bacteria and bacterivorous protists. Significantly distinct leaf and root metabolite profiles were obtained from plants which grew in the presence of protists. These profiles showed decreased levels of a considerable number of metabolites typical for the plant stress reaction, such as polyols, a number of carbohydrates and metabolites connected to phenolic metabolism. We assume that this decrease in plant stress is connected to the grazing induced shifts in rhizosphere bacterial communities as shown by distinct T-RFLP community profiles. Protist grazing had a clear effect on the overall bacterial community composition, richness and evenness in our microcosms. Given the competition of plant resource allocation to either defense or growth, we propose that a reduction in plant stress levels caused directly or indirectly by protists may be an additional reason for corresponding positive effects on plant growth. PMID:29780370
Liu, Dongyang; Jiang, Ji; Zhang, Li; Tan, Fenlai; Wang, Yingxiang; Hu, Pei
2011-08-15
Icotinib is a novel anti-cancer drug that has shown promising clinical efficacy and safety in patients with non-small-cell lung cancer (NSCLC). At this time, the metabolic fate of icotinib in humans is unknown. In the present study, a liquid chromatography/quadrupole time-of-flight tandem mass spectrometry (LC/Q-TOF MS) method was established to characterize metabolites of icotinib in human plasma, urine and feces. In addition, nuclear magnetic resonance (NMR) detection was utilized to determine the connection between side-chain and quinazoline groups for some complex metabolites. In total, 29 human metabolites (21 isomer metabolites) were characterized, of which 23 metabolites are novel compared to the metabolites in rats. This metabolic study revealed that icotinib was extensively metabolized at the 12-crown-4 ether moiety (ring-opening and further oxidation), carbon 15 (hydroxylation) and an acetylene moiety (oxidation) to yield 19 oxidized metabolites and to further form 10 conjugates with sulfate acid or glucuronic acid. To our knowledge, this is the first report of the human metabolic profile of icotinib. Study results indicated that significant attention should be paid to the metabolic profiles of NSCLC patients during the development of icotinib. Copyright © 2011 John Wiley & Sons, Ltd.
Fuss, Taylor L.; Cheng, Leo L.
2016-01-01
According to World Health Organization (WHO) estimates, cancer is responsible for more deaths than all coronary heart disease or stroke worldwide, serving as a major public health threat around the world. High resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS) has demonstrated its usefulness in the identification of cancer metabolic markers with the potential to improve diagnosis and prognosis for the oncology clinic, due partially to its ability to preserve tissue architecture for subsequent histological and molecular pathology analysis. Capable of the quantification of individual metabolites, ratios of metabolites, and entire metabolomic profiles, HRMAS MRS is one of the major techniques now used in cancer metabolomic research. This article reviews and discusses literature reports of HRMAS MRS studies of cancer metabolomics published between 2010 and 2015 according to anatomical origins, including brain, breast, prostate, lung, gastrointestinal, and neuroendocrine cancers. These studies focused on improving diagnosis and understanding patient prognostication, monitoring treatment effects, as well as correlating with the use of in vivo MRS in cancer clinics. PMID:27011205
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations inmore » S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.« less
Spatio-Temporal Metabolite Profiling of the Barley Germination Process by MALDI MS Imaging
Gorzolka, Karin; Kölling, Jan; Nattkemper, Tim W.; Niehaus, Karsten
2016-01-01
MALDI mass spectrometry imaging was performed to localize metabolites during the first seven days of the barley germination. Up to 100 mass signals were detected of which 85 signals were identified as 48 different metabolites with highly tissue-specific localizations. Oligosaccharides were observed in the endosperm and in parts of the developed embryo. Lipids in the endosperm co-localized in dependency on their fatty acid compositions with changes in the distributions of diacyl phosphatidylcholines during germination. 26 potentially antifungal hordatines were detected in the embryo with tissue-specific localizations of their glycosylated, hydroxylated, and O-methylated derivates. In order to reveal spatio-temporal patterns in local metabolite compositions, multiple MSI data sets from a time series were analyzed in one batch. This requires a new preprocessing strategy to achieve comparability between data sets as well as a new strategy for unsupervised clustering. The resulting spatial segmentation for each time point sample is visualized in an interactive cluster map and enables simultaneous interactive exploration of all time points. Using this new analysis approach and visualization tool germination-dependent developments of metabolite patterns with single MS position accuracy were discovered. This is the first study that presents metabolite profiling of a cereals’ germination process over time by MALDI MSI with the identification of a large number of peaks of agronomically and industrially important compounds such as oligosaccharides, lipids and antifungal agents. Their detailed localization as well as the MS cluster analyses for on-tissue metabolite profile mapping revealed important information for the understanding of the germination process, which is of high scientific interest. PMID:26938880
Ghaste, Manoj; Narduzzi, Luca; Carlin, Silvia; Vrhovsek, Urska; Shulaev, Vladimir; Mattivi, Fulvio
2015-12-01
Every grape cultivar has its own unique genetic characteristics, leading to the production of a different secondary metabolite profile. Aroma is one of the most important aspects in terms of the quality of grapes and previous studies have assigned specific aromas to particular grape cultivars. In this study we present the molecular profiling of volatile aroma metabolites and their precursors in ten selected genotypes, including six Vitis vinifera cultivars, two American species (Arizonica Texas, Vitis cinerea) and two interspecific crosses. Chemical profiling was achieved through combined use of two orthogonal techniques, GC-MS and LC-HRMS, before and after enzymatic hydrolysis. The results show that both free and glycosidically bound aroma precursors behave differently in each different grape cultivar and species. As many as 66 free aroma volatile molecules (originally existing and released after hydrolysis) were profiled through GC-MS analysis, while 15 glycosylated precursors of volatiles were identified through LC-HRMS and correlation with GC-MS data. Copyright © 2015 Elsevier Ltd. All rights reserved.
NMR analysis of seven selections of vermentino grape berry: metabolites composition and development.
Mulas, Gilberto; Galaffu, Maria Grazia; Pretti, Luca; Nieddu, Gianni; Mercenaro, Luca; Tonelli, Roberto; Anedda, Roberto
2011-02-09
The goal of this work was to study via NMR the unaltered metabolic profile of Sardinian Vermentino grape berry. Seven selections of Vermentino were harvested from the same vineyard. Berries were stored and extracted following an unbiased extraction protocol. Extracts were analyzed to investigate variability in metabolites concentration as a function of the clone, the position of berries in the bunch or growing area within the vineyard. Quantitative NMR and statistical analysis (PCA, correlation analysis, Anova) of the experimental data point out that, among the investigated sources of variation, the position of the berries within the bunch mainly influences the metabolic profile of berries, while the metabolic profile does not seem to be significantly influenced by growing area and clone. Significant variability of the amino acids such as arginine, proline, and organic acids (malic and citric) characterizes the rapid rearrangements of the metabolic profile in response to environmental stimuli. Finally, an application is described on the analysis of metabolite variation throughout the physiological development of berries.
The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi.
Frisvad, Jens C; Andersen, Birgitte; Thrane, Ulf
2008-02-01
A secondary metabolite is a chemical compound produced by a limited number of fungal species in a genus, an order, or even phylum. A profile of secondary metabolites consists of all the different compounds a fungus can produce on a given substratum and includes toxins, antibiotics and other outward-directed compounds. Chemotaxonomy is traditionally restricted to comprise fatty acids, proteins, carbohydrates, or secondary metabolites, but has sometimes been defined so broadly that it also includes DNA sequences. It is not yet possible to use secondary metabolites in phylogeny, because of the inconsistent distribution throughout the fungal kingdom. However, this is the very quality that makes secondary metabolites so useful in classification and identification. Four groups of organisms are particularly good producers of secondary metabolites: plants, fungi, lichen fungi, and actinomycetes, whereas yeasts, protozoa, and animals are less efficient producers. Therefore, secondary metabolites have mostly been used in plant and fungal taxonomy, whereas chemotaxonomy has been neglected in bacteriology. Lichen chemotaxonomy has been based on few biosynthetic families (chemosyndromes), whereas filamentous fungi have been analysed for a wide array of terpenes, polyketides, non-ribosomal peptides, and combinations of these. Fungal chemotaxonomy based on secondary metabolites has been used successfully in large ascomycete genera such as Alternaria, Aspergillus, Fusarium, Hypoxylon, Penicillium, Stachybotrys, Xylaria and in few basidiomycete genera, but not in Zygomycota and Chytridiomycota.
USDA-ARS?s Scientific Manuscript database
The pattern of metabolites produced by the gut microbiome comprises a phenotype indicative of the means by which that microbiome affects the gut. We characterized that phenotype in mice by conducting metabolomic analyses of the colonic-cecal contents, comparing that to the metabolite patterns of fec...
Teixeira, António; Martins, Viviana; Noronha, Henrique; Eiras-Dias, José; Gerós, Hernâni
2014-03-10
The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC) regions (Vinho Verde and Lisboa) was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA) plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde.
Teixeira, António; Martins, Viviana; Noronha, Henrique; Eiras-Dias, José; Gerós, Hernâni
2014-01-01
The characterization of the metabolites accumulated in the grapes of specific cultivars grown in different climates is of particular importance for viticulturists and enologists. In the present study, the metabolite profiling of grapes from the cultivars, Alvarinho, Arinto and Padeiro de Basto, of two Portuguese Controlled Denomination of Origin (DOC) regions (Vinho Verde and Lisboa) was investigated by gas chromatography-coupled time-of-flight mass spectrometry (GC-TOF-MS) and an amino acid analyzer. Primary metabolites, including sugars, organic acids and amino acids, and some secondary metabolites were identified. Tartaric and malic acids and free amino acids accumulated more in grapes from vines of the DOC region of Vinho Verde than DOC Lisboa, but a principal component analysis (PCA) plot showed that besides the DOC region, the grape cultivar also accounted for the variance in the relative abundance of metabolites. Grapes from the cultivar, Alvarinho, were particularly rich in malic acid and tartaric acids in both DOC regions, but sucrose accumulated more in the DOC region of Vinho Verde. PMID:24619195
Measuring Medication Adherence in Pediatric Cancer: An Approach to Validation.
Rohan, Jennifer M; Fukuda, Tsuyoshi; Alderfer, Melissa A; Wetherington Donewar, Crista; Ewing, Linda; Katz, Ernest R; Muriel, Anna C; Vinks, Alexander A; Drotar, Dennis
2017-03-01
This study described the prospective relationship between pharmacological and behavioral measures of 6-mercaptopurine (6MP) medication adherence in a multisite cohort of pediatric patients diagnosed with cancer ( N = 139). Pharmacological measures (i.e., metabolite concentrations) assessed 6MP intake. Behavioral measures (e.g., electronic monitoring) described adherence patterns over time. Three metabolite profiles were identified across 15 months: one group demonstrated low levels of both metabolites (40.8%) consistent with nonadherence and/or suboptimal therapy; two other groups demonstrated metabolite clusters indicative of adequate adherence (59.2%). Those patients whose metabolite profile demonstrated low levels of both metabolites had consistently lower behavioral adherence rates. To our knowledge, this was the first study to prospectively validate a pharmacological measure of medication adherence with a behavioral adherence measure in a relatively large sample of pediatric patients with cancer. Using multiple methods of adherence measurement could inform clinical care and target patients in need of intervention. © The Author 2016. Published by Oxford University Press on behalf of the Society of Pediatric Psychology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
2015-01-01
Wound bioburden in the form of colonizing biofilms is a major contributor to nonhealing wounds. Staphylococcus aureus is a Gram-positive, facultative anaerobe commonly found in chronic wounds; however, much remains unknown about the basic physiology of this opportunistic pathogen, especially with regard to the biofilm phenotype. Transcriptomic and proteomic analysis of S. aureus biofilms have suggested that S. aureus biofilms exhibit an altered metabolic state relative to the planktonic phenotype. Herein, comparisons of extracellular and intracellular metabolite profiles detected by 1H NMR were conducted for methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) S. aureus strains grown as biofilm and planktonic cultures. Principal component analysis distinguished the biofilm phenotype from the planktonic phenotype, and factor loadings analysis identified metabolites that contributed to the statistical separation of the biofilm from the planktonic phenotype, suggesting that key features distinguishing biofilm from planktonic growth include selective amino acid uptake, lipid catabolism, butanediol fermentation, and a shift in metabolism from energy production to assembly of cell-wall components and matrix deposition. These metabolite profiles provide a basis for the development of metabolite biomarkers that distinguish between biofilm and planktonic phenotypes in S. aureus and have the potential for improved diagnostic and therapeutic use in chronic wounds. PMID:24809402
Mosele, Juana I; Gosalbes, María-José; Macià, Alba; Rubió, Laura; Vázquez-Castellanos, Jorge F; Jiménez Hernández, Nuria; Moya, Andrés; Latorre, Amparo; Motilva, María-José
2015-10-01
The purpose of the study was to evaluate the effect, regarding the metabolic and microbial profile of feces, of diet supplementation of healthy adults with pomegranate juice (PJ). Twelve healthy adults were recruited to the study, which consisted of the intake of 200 mL/day of PJ during 4 weeks. Feces were collected before and after the supplementation with PJ. Metabolites (phenolic catabolites, short-chain fatty acids, and fecal steroids) and microbial profile were analyzed at baseline and at 4 weeks. Fecal phenolic metabolites, 3-phenylpropionic acid, catechol, hydroxytyrosol, and urolithin A, showed a significant increase in their concentration after supplementation with PJ. Among fecal steroids, parallel to the significant increase of cholesterol concentration, a significant decrease of coprostanol was observed. Although no significant changes in the microbiota profile were observed, different relationships between initial microbiota and the metabolites produced were found. Catechol showed positive and negative correlation with Oscillospora and Paraprevotella genera, respectively, and 3-phenylpropionic acid was positively correlated with Odoribacter genus. Inclusion of PJ in the diet did not significantly alter the gut microbiota composition in healthy adults, but the individual bacterial composition could contribute to the generation of potential health-promoting phenolic metabolites. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Disposition, profiling and identification of emixustat and its metabolites in humans.
Fitzsimmons, Michael E; Sun, Gang; Kuksa, Vladimir; Reid, Michael J
2018-06-01
1. Emixustat is a small molecule that potently inhibits retinal pigment epithelium 65 isomerohydrolase. Emixustat is in clinical development for the treatment of various retinopathies (i.e. Stargardt disease and diabetic retinopathy). 2. A human absorption, distribution, metabolism, and excretion (ADME) study was conducted with a single dose of [ 14 C]-emixustat in healthy male subjects. Total 14 C content in plasma, urine, and faeces was determined using accelerator mass spectrometry (AMS), and metabolic profiles in pooled plasma and urine were investigated by both HPLC-AMS and 2D LC-MS/MS. 3. After a single, oral 40-mg dose of [ 14 C]-emixustat, recovery of total 14 C was nearly complete within 24 h. Urine was the major route of 14 C elimination; accounting for > 90% of the administered dose. 4. Biotransformation of emixustat occurred primarily at two structural moieties; oxidation of the cyclohexyl moiety and oxidative deamination of the 3R-hydroxypropylamine, both independently and in combination to produce secondary metabolites. Metabolite profiling in pooled plasma samples identified 3 major metabolites: ACU-5124, ACU-5116 and ACU-5149, accounting for 29.0%, 11.5%, and 10.6% of total 14 C, respectively. Emixustat was metabolized in human hepatocytes with unchanged emixustat accounting for 33.7% of sample radioactivity and predominantly cyclohexanol metabolites observed.
Maker, Garth L.; Trengove, Robert D.; O'Handley, Ryan M.
2015-01-01
The aim of this study was to utilize gas chromatography coupled with mass spectrometry (GC-MS) to compare and identify patterns of biochemical change between Salmonella cells grown in planktonic and biofilm phases and Salmonella biofilms of different ages. Our results showed a clear separation between planktonic and biofilm modes of growth. The majority of metabolites contributing to variance between planktonic and biofilm supernatants were identified as amino acids, including alanine, glutamic acid, glycine, and ornithine. Metabolites contributing to variance in intracellular profiles were identified as succinic acid, putrescine, pyroglutamic acid, and N-acetylglutamic acid. Principal-component analysis revealed no significant differences between the various ages of intracellular profiles, which would otherwise allow differentiation of biofilm cells on the basis of age. A shifting pattern across the score plot was illustrated when analyzing extracellular metabolites sampled from different days of biofilm growth, and amino acids were again identified as the metabolites contributing most to variance. An understanding of biofilm-specific metabolic responses to perturbations, especially antibiotics, can lead to the identification of novel drug targets and potential therapies for combating biofilm-associated diseases. We concluded that under the conditions of this study, GC-MS can be successfully applied as a high-throughput technique for “bottom-up” metabolomic biofilm research. PMID:25636852
Dessì, Angelica; Murgia, Antonio; Agostino, Rocco; Pattumelli, Maria Grazia; Schirru, Andrea; Scano, Paola; Fanos, Vassilios; Caboni, Pierluigi
2016-01-01
In this study, a gas-chromatography mass spectrometry (GC-MS) metabolomics study was applied to examine urine metabolite profiles of different classes of neonates under different nutrition regimens. The study population included 35 neonates, exclusively either breastfed or formula milk fed, in a seven-day timeframe. Urine samples were collected from intrauterine growth restriction (IUGR), large for gestational age (LGA), and appropriate gestational age (AGA) neonates. At birth, IUGR and LGA neonates showed similarities in their urine metabolite profiles that differed from AGA. When neonates started milk feeding, their metabolite excretion profile was strongly characterized by the different diet regimens. After three days of formula milk nutrition, urine had higher levels of glucose, galactose, glycine and myo-inositol, while up-regulated aconitic acid, aminomalonic acid and adipic acid were found in breast milk fed neonates. At seven days, neonates fed with formula milk shared higher levels of pseudouridine with IUGR and LGA at birth. Breastfed neonates shared up-regulated pyroglutamic acid, citric acid, and homoserine, with AGA at birth. The role of most important metabolites is herein discussed. PMID:26907266
Deese, Rachel D; Weldeghiorghis, Thomas K; Haywood, Benjamin J; Cook, Robert L
2017-05-01
Surfactants, such as triton X-100 (Tx-100), cetylpyridinium chloride (CPC), and sodium dodecyl sulfate (SDS) are known to be toxic to Artemia Franciscana (Artemia) - an organism, frequently used to monitor the health of the aquatic environment. The phospho-metabolite profile of a living organism is often indicative of imbalances that may have been caused by environmental stressors, such as surfactants. This study utilizes in vivo 31 P NMR to monitor temporal changes in the phospho-metabolite profile of Artemia caused by Tx-100, CPC, and SDS and the ability of humic acid (HA) to mitigate the toxicity of these surfactants. It was found that, while Tx-100 does not have any effect on the phospho-metabolite profile, both CPC and SDS cause a complete retardation in growth of the phosphodiester (PDE) peak in the 31 P NMR spectrum, which is indicative of the inhibited cell replication. This growth inhibition was independently verified by the decreased guanosine triphosphate (GTP) concentration in the CPC and SDS-exposed Artemia. In addition, upon introduction of HA to the CPC and SDS-exposed Artemia, an increase of PDE peak over time is indicative of HA mitigating toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.
Wang, Nani; Wang, Xuping; Zhang, Yang; Zhang, Qiaoyan; Xu, Pingcui; Xin, Hailiang; Wu, Renjie; Shou, Dan; Qin, Luping
2018-05-30
Osthole is a derivative of coumnarin, which has been used to treat several diseases, including osteoporosis. To investigate the metabolite profile of osthole in osteoporosis rats was utilized to understand its underlying mechanisms of its anti-osteoporosis effect. In this study, plasma samples were collected from normal and osteoporosis rats after oral administration of osthole and analyzed to identify the metabolites of osthole by high performance liquid chromatography quadrupole time-of-flight mass spectrometry. By comparing the molecular weight and MS fragmentation of the metabolites with those of parent drug and reference standards, a total of 36 metabolites in plasma were identified. Demethylation, hydroxylation, hydroxymethylene loss and reduction, and subsequent glucuronidation, methylation and sulfation were the major metabolic pathways of osthole in both normal and osteoporosis rats. A specific hydration metabolic pathway was found in osteoporosis rats. These results provided a meaningful basis for studying the underlying mechanism of the anti-osteoporosis effect of osthole. Copyright © 2018 Elsevier B.V. All rights reserved.
Estimation of caffeine intake from analysis of caffeine metabolites in wastewater.
Gracia-Lor, Emma; Rousis, Nikolaos I; Zuccato, Ettore; Bade, Richard; Baz-Lomba, Jose Antonio; Castrignanò, Erika; Causanilles, Ana; Hernández, Félix; Kasprzyk-Hordern, Barbara; Kinyua, Juliet; McCall, Ann-Kathrin; van Nuijs, Alexander L N; Plósz, Benedek G; Ramin, Pedram; Ryu, Yeonsuk; Santos, Miguel M; Thomas, Kevin; de Voogt, Pim; Yang, Zhugen; Castiglioni, Sara
2017-12-31
Caffeine metabolites in wastewater were investigated as potential biomarkers for assessing caffeine intake in a population. The main human urinary metabolites of caffeine were measured in the urban wastewater of ten European cities and the metabolic profiles in wastewater were compared with the human urinary excretion profile. A good match was found for 1,7-dimethyluric acid, an exclusive caffeine metabolite, suggesting that might be a suitable biomarker in wastewater for assessing population-level caffeine consumption. A correction factor was developed considering the percentage of excretion of this metabolite in humans, according to published pharmacokinetic studies. Daily caffeine intake estimated from wastewater analysis was compared with the average daily intake calculated from the average amount of coffee consumed by country per capita. Good agreement was found in some cities but further information is needed to standardize this approach. Wastewater analysis proved useful to providing additional local information on caffeine use. Copyright © 2017 Elsevier B.V. All rights reserved.
Effect of high pressure treatment on metabolite profile of marinated meat in soy sauce.
Yang, Yang; Ye, Yangfang; Wang, Ying; Sun, Yangying; Pan, Daodong; Cao, Jinxuan
2018-02-01
Marinated meat in soy sauce was produced using hind leg by washing, rubbing salt, marinating with soy sauce and spices, and air dry-ripening for 15d. The effect of high pressure (HP) (150 and 300MPa for 15min) on the metabolite profiles of products was characterized using 1 H NMR and multivariate data analysis. The results showed that the metabonome was dominated by 26 metabolites, including amino acids, sugars, organic acids, nucleic aides and their derivatives. PC1 and PC2 explained a total of 75.4 and 11.9% of variables, respectively. HP treatments increased most of the metabolites, especially PC1, glutamate, sugars, nucleotides, anserine, lactate and creatine compared to the control. The increase of metabolites under HP was not dependent on pressure level except for alanine, lactate, acetate, formate, fumarate, glucose and 5'-IMP. These findings demonstrated that HP treatment at 150MPa was economical to improve the taste of marinated meat in soy sauce. Copyright © 2017 Elsevier Ltd. All rights reserved.
Shankar, Vijay; Reo, Nicholas V; Paliy, Oleg
2015-12-09
We previously showed that stool samples of pre-adolescent and adolescent US children diagnosed with diarrhea-predominant IBS (IBS-D) had different compositions of microbiota and metabolites compared to healthy age-matched controls. Here we explored whether observed fecal microbiota and metabolite differences between these two adolescent populations can be used to discriminate between IBS and health. We constructed individual microbiota- and metabolite-based sample classification models based on the partial least squares multivariate analysis and then applied a Bayesian approach to integrate individual models into a single classifier. The resulting combined classification achieved 84 % accuracy of correct sample group assignment and 86 % prediction for IBS-D in cross-validation tests. The performance of the cumulative classification model was further validated by the de novo analysis of stool samples from a small independent IBS-D cohort. High-throughput microbial and metabolite profiling of subject stool samples can be used to facilitate IBS diagnosis.
Identification of human cell responses to benzene and benzene metabolites.
Gillis, Bruce; Gavin, Igor M; Arbieva, Zarema; King, Stephen T; Jayaraman, Sundararajan; Prabhakar, Bellur S
2007-09-01
Benzene is a common air pollutant and confirmed carcinogen, especially in reference to the hematopoietic system. In the present study we analyzed cytokine/chemokine production by, and gene expression induction in, human peripheral blood mononuclear cells upon their exposure to the benzene metabolites catechol, hydroquinone, 1,2,4-benzenetriol, and p-benzoquinone. Protein profiling showed that benzene metabolites can stimulate the production of chemokines, the proinflammatory cytokines TNF-alpha and IL-6, and the Th2 cytokines IL-4 and IL-5. Activated cells showed concurrent suppression of anti-inflammatory cytokine IL-10 expression. We also identified changes in global gene expression patterns in response to benzene metabolite challenges by using high-density oligonucleotide microarrays. Treatment with 1,2,4-benzenetriol resulted in the suppression of genes related to the regulation of protein expression and a concomitant activation of genes that encode heat shock proteins and cytochrome P450 family members. Protein and gene expression profiling identified unique human cellular responses upon exposure to benzene and benzene metabolites.
Bannur, Z; Teh, L K; Hennesy, T; Rosli, W R W; Mohamad, N; Nasir, A; Ankathil, R; Zakaria, Z A; Baba, A; Salleh, M Z
2014-04-01
Acute lymphoblastic leukaemia (ALL) has posed challenges to the clinician due to variable patients' responses and late diagnosis. With the advance in metabolomics, early detection and personalised treatment are possible. Metabolomic profile of 21 ALL patients treated with 6-mercaptopurine and 10 healthy volunteers were analysed using liquid chromatography/mass spectrometry quadrupole-time of flight (LC/MS Q-TOF). Principal components analysis (PCA), recursive analysis, clustering and pathway analysis were performed using MassHunter Qualitative and Mass Profiler Professional (MPP) software. Several metabolites were found to be expressed differently in patients treated with 6-mercaptopurine. Interestingly, 13 metabolites were significantly differently expressed [p-value <0.01 (unpaired t-test) and 2-fold change] in 19% of the patients who had relapses in their treatment. Down-regulated metabolites in relapsed patients were 1-tetrahexanoyl-2-(8-[3]-ladderane-octanyl)-sn-GPEtn, GPEtn (18:1(9Z)/0:0), GPCho(O-6:0/O-6:0), GPCho(O-2:0/O-1:0), methyl 8-[2-(2-formyl-vinyl)-3-hydroxy-5-oxo-cyclopentyl]-octanoate and plasma free amino acids (PFAA). Characterizing the subjects according to their ITPA 94C>A genotypes reveal differential expression of metabolites. Our research contributes to identification of metabolites that could be used to monitor disease progress of patients and allow targeted therapy for ALL at different stages, especially in preventing complication of relapse. Copyright © 2014 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Das, Aayudh; Rushton, Paul J.; Rohila, Jai S.
2017-01-01
Soybean is an important crop that is continually threatened by abiotic stresses, especially drought and heat stress. At molecular levels, reduced yields due to drought and heat stress can be seen as a result of alterations in metabolic homeostasis of vegetative tissues. At present an incomplete understanding of abiotic stress-associated metabolism and identification of associated metabolites remains a major gap in soybean stress research. A study with a goal to profile leaf metabolites under control conditions (28/24 °C), drought [28/24 °C, 10% volumetric water content (VWC)], and heat stress (43/35 °C) was conducted in a controlled environment. Analyses of non-targeted metabolomic data showed that in response to drought and heat stress, key metabolites (carbohydrates, amino acids, lipids, cofactors, nucleotides, peptides and secondary metabolites) were differentially accumulated in soybean leaves. The metabolites for various cellular processes, such as glycolysis, the tricarboxylic acid (TCA) cycle, the pentose phosphate pathway, and starch biosynthesis, that regulate carbohydrate metabolism, amino acid metabolism, peptide metabolism, and purine and pyrimidine biosynthesis, were found to be affected by drought as well as heat stress. Computationally based regulatory networks predicted additional compounds that address the possibility of other metabolites and metabolic pathways that could also be important for soybean under drought and heat stress conditions. Metabolomic profiling demonstrated that in soybeans, keeping up with sugar and nitrogen metabolism is of prime significance, along with phytochemical metabolism under drought and heat stress conditions. PMID:28587097
Huang, Aihua; Xu, Hui; Zhan, Ruoting; Chen, Weiwen; Liu, Jiawei; Chi, Yuguang; Chen, Daidi; Ji, Xiaoyu; Luo, Chaoquan
2017-03-23
Skimmianine is a furoquinoline alkaloid present mainly in the Rutaceae family. It has been reported to have analgesic, antispastic, sedative, anti-inflammatory, and other pharmacologic activities. Despite its critical pharmacological function, its metabolite profiling is still unclear. In this study, the in vivo metabolite profiling of skimmianine in rats was investigated using ultra-performance liquid chromatography coupled with quadrupole time-of-flight tandem mass spectrometry (UPLC/Q-TOF-MS). The metabolites were predicted using MetabolitePilot TM software. These predicted metabolites were further analyzed by MS² spectra, and compared with the detailed fragmentation pathway of the skimmianine standard and literature data. A total of 16 metabolites were identified for the first time in rat plasma, urine, and feces samples after oral administration of skimmianine. Skimmianine underwent extensive Phase I and Phase II metabolism in rats. The Phase I biotransformations of skimmianine consist of epoxidation of olefin on its furan ring (M1) followed by the hydrolysis of the epoxide ring (M4), hydroxylation (M2, M3), O -demethylation (M5-M7), didemethylation (M14-M16). The Phase II biotransformations include glucuronide conjugation (M8-M10) and sulfate conjugation (M11-M13). The epoxidation of 2,3-olefinic bond followed by the hydrolysis of the epoxide ring and O -demethylation were the major metabolic pathways of skimmianine. The results provide key information for understanding the biotransformation processes of skimmianine and the related furoquinoline alkaloids.
Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S
2015-01-01
Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy.
Minamoto, Yasushi; Otoni, Cristiane C; Steelman, Samantha M; Büyükleblebici, Olga; Steiner, Jörg M; Jergens, Albert E; Suchodolski, Jan S
2015-01-01
Idiopathic inflammatory bowel disease (IBD) is a common cause of chronic gastrointestinal (GI) disease in dogs. The combination of an underlying host genetic susceptibility, an intestinal dysbiosis, and dietary/environmental factors are suspected as main contributing factors in the pathogenesis of canine IBD. However, actual mechanisms of the host-microbe interactions remain elusive. The aim of this study was to compare the fecal microbiota and serum metabolite profiles between healthy dogs (n = 10) and dogs with IBD before and after 3 weeks of medical therapy (n = 12). Fecal microbiota and metabolite profiles were characterized by 454-pyrosequencing of 16 S rRNA genes and by an untargeted metabolomics approach, respectively. Significantly lower bacterial diversity and distinct microbial communities were observed in dogs with IBD compared to the healthy control dogs. While Gammaproteobacteria were overrepresented, Erysipelotrichia, Clostridia, and Bacteroidia were underrepresented in dogs with IBD. The functional gene content was predicted from the 16 S rRNA gene data using PICRUSt, and revealed overrepresented bacterial secretion system and transcription factors, and underrepresented amino acid metabolism in dogs with IBD. The serum metabolites 3-hydroxybutyrate, hexuronic acid, ribose, and gluconic acid lactone were significantly more abundant in dogs with IBD. Although a clinical improvement was observed after medical therapy in all dogs with IBD, this was not accompanied by significant changes in the fecal microbiota or in serum metabolite profiles. These results suggest the presence of oxidative stress and a functional alteration of the GI microbiota in dogs with IBD, which persisted even in the face of a clinical response to medical therapy. PMID:25531678
Profiles of metabolites and gene expression in rats with chemically induced hepatic necrosis.
Heijne, Wilbert H M; Lamers, Robert-Jan A N; van Bladeren, Peter J; Groten, John P; van Nesselrooij, Joop H J; van Ommen, Ben
2005-01-01
This study investigated whether integrated analysis of transcriptomics and metabolomics data increased the sensitivity of detection and provided new insight in the mechanisms of hepatotoxicity. Metabolite levels in plasma or urine were analyzed in relation to changes in hepatic gene expression in rats that received bromobenzene to induce acute hepatic centrilobular necrosis. Bromobenzene-induced lesions were only observed after treatment with the highest of 3 dose levels. Multivariate statistical analysis showed that metabolite profiles of blood plasma were largely different from controls when the rats were treated with bromobenzene, also at doses that did not elicit histopathological changes. Changes in levels of genes and metabolites were related to the degree of necrosis, providing putative novel markers of hepatotoxicity. Levels of endogenous metabolites like alanine, lactate, tyrosine and dimethylglycine differed in plasma from treated and control rats. The metabolite profiles of urine were found to be reflective of the exposure levels. This integrated analysis of hepatic transcriptomics and plasma metabolomics was able to more sensitively detect changes related to hepatotoxicity and discover novel markers. The relation between gene expression and metabolite levels was explored and additional insight in the role of various biological pathways in bromobenzene-induced hepatic necrosis was obtained, including the involvement of apoptosis and changes in glycolysis and amino acid metabolism. The complete Table 2 is available as a supplemental file online at http://taylorandfrancis.metapress.com/openurlasp?genre=journal&issn=0192-6233. To access the file, click on the issue link for 33(4), then select this article. A download option appears at the bottom of this abstract. In order to access the full article online, you must either have an individual subscription or a member subscription accessed through www.toxpath.org.
Abed-Elmdoust, Amirreza; Farahmand, Hamid; Mojazi-Amiri, Bagher; Rafiee, Gholamreza; Rahimi, Ruhollah
2017-06-01
Comparative quantitative metabolite profiling can be used for better understanding of cell functions and dysfunctions in particular circumstances such as sperm banking which is an important approach for cryopreservation of endangered species. Cryopreservation techniques have some deleterious effects on spermatozoa which put the obtained results in controversy. Therefore, in the present study, quantitative 1 H NMR (Nuclear Magnetic Resonance) based metabolite profiling was conducted to evaluate metabolite changes related to energetics and some other detected metabolites in vitrified semen of critically endangered wild Acipenser persicus. The semen was diluted with extenders containing 0, 5, 10, and 15 μM of fish antifreeze protein (AFP) type III as a cryoprotectant. Semen-extenders were vitrified and stored for two days. Based on post-thaw motility duration and motility percentage assessments, two treatments with 10 μM and 0 μM of AFP had the highest and the lowest motility percentages respectively and they were objected to 1 H NMR spectroscopy investigations in order to reveal the extremes of the metabolites dynamic range. Univariate (ANOVA) and multivariate (PCA) analysis of the resulting metabolic profiles indicated significant changes (P > 0.05) in metabolites. The level of some metabolites including acetate, adenine, creatine, creatine phosphate, lactate, betaine, sarcosine, β-alanine and trimethylamine N-oxide significantly decreased in vitrified semen while some others such as creatinine, guanidinoacetate, N, N-dimethylglycine, and glycine significantly increased. There were also significant differences between vitrified treatments in levels of creatine, creatine phosphate, creatinine, glucose, guanidinoacetate, lactate, N, N-dimethylglycine, and glycine, suggesting how fish AFP type III can be effective as a cryoprotectant. Copyright © 2017 Elsevier Inc. All rights reserved.
Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha; Theriot, Casey M.; Young, Vincent B.; Jansson, Janet K.; Fredricks, David N.
2016-01-01
ABSTRACT Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community. Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. IMPORTANCE Studies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism. PMID:27239563
Aceña, Jaume; Pérez, Sandra; Eichhorn, Peter; Solé, Montserrat; Barceló, Damià
2017-09-01
The widespread occurrence of pharmaceuticals in the aquatic environment has raised concerns about potential adverse effects on exposed wildlife. Very little is currently known on exposure levels and clearance mechanisms of drugs in marine fish. Within this context, our research was focused on the identification of main metabolic reactions, generated metabolites, and caused effects after exposure of fish to carbamazepine (CBZ) and ibuprofen (IBU). To this end, juveniles of Solea senegalensis acclimated to two temperature regimes of 15 and 20 °C for 60 days received a single intraperitoneal dose of these drugs. A control group was administered the vehicle (sunflower oil). Bile samples were analyzed by ultra-high-performance liquid chromatography-high-resolution mass spectrometry on a Q Exactive (Orbitrap) system, allowing to propose plausible identities for 11 metabolites of CBZ and 13 metabolites of IBU in fish bile. In case of CBZ metabolites originated from aromatic and benzylic hydroxylation, epoxidation, and ensuing O-glucuronidation, O-methylation of a catechol-like metabolite was also postulated. Ibuprofen, in turn, formed multiple hydroxyl metabolites, O-glucuronides, and (hydroxyl)-acyl glucuronides, in addition to several taurine conjugates. Enzymatic responses after drug exposures revealed a water temperature-dependent induction of microsomal carboxylesterases. The metabolite profiling in fish bile provides an important tool for pharmaceutical exposure assessment. Graphical abstract Studies of metabolism of carbamazepine and ibuprofen in fish.
Zhang, Zhaowei; Fang, Tianzi; Zhou, Hongyun; Yuan, Jie; Liu, Qingwang
2018-01-01
Evodiamine is an indoloquinazoline alkaloid isolated from the fruit of Evodia rutaecarpa, which has a wide range of pharmacological effects like anti-tumor and anti-inflammatory effects. This study was intended to investigate the metabolic characteristics of evodiamine in human liver microsomes and hepatocytes by ultra-high performance liquid chromatography coupled with a Q Exactive mass spectrometer. A total of 12 phase I metabolites were detected in human liver microsomes; whereas in human hepatocytes 19 metabolites, including seven phase II metabolites were detected. The structures of the metabolites were characterized based on their accurate masses, fragment ions, and chromatographic retention times. Four metabolites (M1, M2, M5, and M7) were further unambiguously confirmed by matching their retention times, accurate masses, and fragment ions with those of their reference standards. Among these metabolites, 12 metabolites are first identified (M2, M5–M8, M10–M13, and M17–M19). The current study revealed that oxygenation, N-demethylation, dehydrogenation, glucuronidation, and GSH conjugation were the major metabolic pathways for evodiamine. This study elucidated the detailed metabolite profiles of evodiamine, which is helpful in predicting in vivo metabolism of evodiamine in human and in understanding the elimination mechanism of evodiamine and in turn, the effectiveness and toxicity. PMID:29520234
Fujimura, Yoshinori; Miura, Daisuke; Tachibana, Hirofumi
2017-09-27
Low-molecular-weight phytochemicals have health benefits and reduce the risk of diseases, but the mechanisms underlying their activities have remained elusive because of the lack of a methodology that can easily visualize the exact behavior of such small molecules. Recently, we developed an in situ label-free imaging technique, called mass spectrometry imaging, for visualizing spatially-resolved biotransformations based on simultaneous mapping of the major bioactive green tea polyphenol and its phase II metabolites. In addition, we established a mass spectrometry-based metabolic profiling technique capable of evaluating the bioactivities of diverse green tea extracts, which contain multiple phytochemicals, by focusing on their compositional balances. This methodology allowed us to simultaneously evaluate the relative contributions of the multiple compounds present in a multicomponent system to its bioactivity. This review highlights small molecule-sensing techniques for visualizing the complex behaviors of herbal components and linking such information to an enhanced understanding of the functionalities of multicomponent medicinal herbs.
Ng, Theresa Lee Mei; Karim, Rezaul; Tan, Yew Seong; Teh, Huey Fang; Danial, Asma Dazni; Ho, Li Sim; Khalid, Norzulaani; Appleton, David Ross; Harikrishna, Jennifer Ann
2016-01-01
Interest in the medicinal properties of secondary metabolites of Boesenbergia rotunda (fingerroot ginger) has led to investigations into tissue culture of this plant. In this study, we profiled its primary and secondary metabolites, as well as hormones of embryogenic and non-embryogenic (dry and watery) callus and shoot base, Ultra Performance Liquid Chromatography-Mass Spectrometry together with histological characterization. Metabolite profiling showed relatively higher levels of glutamine, arginine and lysine in embryogenic callus than in dry and watery calli, while shoot base tissue showed an intermediate level of primary metabolites. For the five secondary metabolites analyzed (ie. panduratin, pinocembrin, pinostrobin, cardamonin and alpinetin), shoot base had the highest concentrations, followed by watery, dry and embryogenic calli. Furthermore, intracellular auxin levels were found to decrease from dry to watery calli, followed by shoot base and finally embryogenic calli. Our morphological observations showed the presence of fibrils on the cell surface of embryogenic callus while diphenylboric acid 2-aminoethylester staining indicated the presence of flavonoids in both dry and embryogenic calli. Periodic acid-Schiff staining showed that shoot base and dry and embryogenic calli contained starch reserves while none were found in watery callus. This study identified several primary metabolites that could be used as markers of embryogenic cells in B. rotunda, while secondary metabolite analysis indicated that biosynthesis pathways of these important metabolites may not be active in callus and embryogenic tissue.
Identification of metabolites associated with water stress responses in Solanum tuberosum L. clones.
Drapal, M; Farfan-Vignolo, E R; Gutierrez, O R; Bonierbale, M; Mihovilovich, E; Fraser, P D
2017-03-01
Water deficiency has become a major issue for modern agriculture as its effects on crop yields and tuber quality have become more pronounced. Potato genotypes more tolerant to water shortages have been identified through assessment of yield and dry matter. In the present study, a combination of metabolite profiling and physiological/agronomical measurements has been used to explore complex system level responses to non-lethal water restriction. The metabolites identified were associated with physiological responses in three different plant tissues (leaf, root and tuber) of five different potato genotypes varying in susceptibility/tolerance to drought. This approach explored the potential of metabolite profiling as a tool to unravel sectors of metabolism that react to stress conditions and could mirror the changes in the plant physiology. The metabolite results showed different responses of the three plant tissues to the water deficit, resulting either in different levels of the metabolites detected or different metabolites expressed. The leaf material displayed the most changes to drought as reported in literature. The results highlighted genotype-specific signatures to water restriction over all three plant tissues suggesting that the genetics can predominate over the environmental conditions. This will have important implications for future breeding approaches. Copyright © 2016. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sabourin, P.J.; Bechtold, W.E.; Henderson, R.F.
1988-05-01
The glucuronide and sulfate conjugates of benzene metabolite as well as muconic acid and pre-phenyl- and phenylmercapturic acids were separated by ion-pairing HPLC. The HPLC method developed was suitable for automated analysis of a large number of tissue or excreta samples. p-Nitrophenyl (/sup 14/C)glucuronide was used as an internal standard for quantitation of these water-soluble metabolites. Quantitation was verified by spiking liver tissue with various amounts of phenylsulfate or glucuronides of phenol, catechol, or hydroquinone and analyzing by HPLC. Values determined by HPLC analysis were within 10% of the actual amount with which the liver was spiked. The amount ofmore » metabolite present in urine following exposure to (/sup 3/H)benzene was determined using p-nitrophenyl (/sup 14/C)glucuronide as an internal standard. Phenylsulfate was the major water-soluble metabolite in the urine of F344 rats exposed to 50 ppm (/sup 3/H)benzene for 6 h. Muconic acid and an unknown metabolite which decomposed in acidic media to phenylmercapturic acid were also present. Liver, however, contained a different metabolic profile. This indicates that urinary metabolite profiles may not be a true reflection of what is seen in individual tissues.« less
Tian, Xiaoting; Zhang, Yucheng; Li, Zhixiong; Hu, Pei; Chen, Mingcang; Sun, Zhaolin; Lin, Yunfei; Pan, Guoyu; Huang, Chenggang
2016-03-01
Metabolite profiling plays a crucial role in drug discovery and development, and HPLC-Q-TOF has evolved into a powerful and effective high-resolution analytical tool for metabolite detection. However, traditional empirical identification is laborious and incomplete. This paper presents a systematic and comprehensive strategy for elucidating metabolite structures using software-assisted HPLC-Q-TOF that takes full advantage of data acquisition, data processing, and data mining technologies, especially for high-throughput metabolite screening. This strategy has been successfully applied in the study of magnoflorine metabolism based on our previous report of its poor bioavailability and drug-drug interactions. In this report, 23 metabolites of magnoflorine were tentatively identified with detailed fragmentation pathways in rat biological samples (urine, feces, plasma, and various organs) after i.p. or i.g. administration, and for most of these metabolites, the metabolic sites were determined. The phase I biotransformations of magnoflorine (M1-M7, M10-M14) consist of demethylation, dehydrogenation, hydroxylation, methylene to ketone transformation, N-ring opening, and dehydroxylation. The phase II biotransformations (M8, M9, and M15-M23) consist of methylation, acetylation, glucuronidation, and N-acetylcysteine conjugation. The results indicate that the extensive metabolism and wide tissue distribution of magnoflorine and its metabolites may partly contribute to its poor bioavailability and drug-drug interaction, and i.p. administration should thus be a suitable approach for isolating magnoflorine metabolites. In summary, this strategy could provide an efficient, rapid, and reliable method for the structural characterization of drug metabolites and may be applicable for general Q-TOF users.
Reproducible diagnostic metabolites in plasma from typhoid fever patients in Asia and Africa.
Näsström, Elin; Parry, Christopher M; Vu Thieu, Nga Tran; Maude, Rapeephan R; de Jong, Hanna K; Fukushima, Masako; Rzhepishevska, Olena; Marks, Florian; Panzner, Ursula; Im, Justin; Jeon, Hyonjin; Park, Seeun; Chaudhury, Zabeen; Ghose, Aniruddha; Samad, Rasheda; Van, Tan Trinh; Johansson, Anders; Dondorp, Arjen M; Thwaites, Guy E; Faiz, Abul; Antti, Henrik; Baker, Stephen
2017-05-09
Salmonella Typhi is the causative agent of typhoid. Typhoid is diagnosed by blood culture, a method that lacks sensitivity, portability and speed. We have previously shown that specific metabolomic profiles can be detected in the blood of typhoid patients from Nepal (Näsström et al., 2014). Here, we performed mass spectrometry on plasma from Bangladeshi and Senegalese patients with culture confirmed typhoid fever, clinically suspected typhoid, and other febrile diseases including malaria. After applying supervised pattern recognition modelling, we could significantly distinguish metabolite profiles in plasma from the culture confirmed typhoid patients. After comparing the direction of change and degree of multivariate significance, we identified 24 metabolites that were consistently up- or down regulated in a further Bangladeshi/Senegalese validation cohort, and the Nepali cohort from our previous work. We have identified and validated a metabolite panel that can distinguish typhoid from other febrile diseases, providing a new approach for typhoid diagnostics.
Metabolite profiling and bioactivity of rice koji fermented by Aspergillus strains.
Kim, Ah-Jin; Choi, Jung-Nam; Kim, Jiyoung; Kim, Hyang Yeon; Park, Sait-Byul; Yeo, Soo-Hwan; Choi, Ji-Ho; Liu, Kwang-Hyeon; Lee, Choong Hwan
2012-01-01
In this study, the metabolite profiles of three Aspergillus strains during rice koji fermentation were compared. In the partial least squares discriminant analysis-based gas chromatography-mass spectrometry data sets, the metabolite patterns of A. oryzae (KCCM 60345) were clearly distinguished from A. kawachii (KCCM 60552) and only marginal differences were observed for A. oryzae (KCCM 60551) fermentation. In the 2 days fermentation samples, the overall metabolite levels of A. oryzae (KCCM 60345) were similar to the A. oryzae (KCCM 60551) levels and lower than the A. kawachii (KCCM 60552) levels. In addition, we identified discriminators that were mainly contributing tyrosinase inhibition (kojic acid) and antioxidant activities (pyranonigrin A) in A. oryzae (KCCM 60345) and A. kawachii (KCCM 60552) inoculated rice koji, respectively. In this study, we demonstrated that the optimal inoculant Aspergillus strains and fermentation time for functional rice koji could be determined through a metabolomics approach with bioactivity correlations.
Zeng, Su-Ling; Duan, Li; Chen, Bai-Zhong; Li, Ping; Liu, E-Hu
2017-07-28
Detection of metabolites in complex biological matrixes is a great challenge because of the background noise and endogenous components. Herein, we proposed an integrated strategy that combined background subtraction program and modified mass defect filter (MMDF) data mining in a Microsoft Excel platform for chemicalome and metabolome profiling of the polymethoxylated flavonoids (PMFs) in Citri Reticulatae Pericarpium (CRP). The exogenously-sourced ions were firstly filtered out by the developed Visual Basic for Applications (VBA) program incorporated in the Microsoft Office. The novel MMDF strategy was proposed for detecting both target and untarget constituents and metabolites based on narrow, well-defined mass defect ranges. The approach was validated to be powerful, and potentially useful for the metabolite identification of both single compound and homologous compound mixture. We successfully identified 30 and 31 metabolites from rat biosamples after oral administration of nobiletin and tangeretin, respectively. A total of 56 PMFs compounds were chemically characterized and 125 metabolites were captured. This work demonstrated the feasibility of the integrated approach for reliable characterization of the constituents and metabolites in herbal medicines. Copyright © 2017 Elsevier B.V. All rights reserved.
Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo
2016-01-01
Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human. PMID:27527657
Drug metabolism and hypersensitivity reactions to drugs.
Agúndez, José A G; Mayorga, Cristobalina; García-Martin, Elena
2015-08-01
The aim of the present review was to discuss recent advances supporting a role of drug metabolism, and particularly of the generation of reactive metabolites, in hypersensitivity reactions to drugs. The development of novel mass-spectrometry procedures has allowed the identification of reactive metabolites from drugs known to be involved in hypersensitivity reactions, including amoxicillin and nonsteroidal antiinflammatory drugs such as aspirin, diclofenac or metamizole. Recent studies demonstrated that reactive metabolites may efficiently bind plasma proteins, thus suggesting that drug metabolites, rather than - or in addition to - parent drugs, may elicit an immune response. As drug metabolic profiles are often determined by variability in the genes coding for drug-metabolizing enzymes, it is conceivable that an altered drug metabolism may predispose to the generation of reactive drug metabolites and hence to hypersensitivity reactions. These findings support the potential for the use of pharmacogenomics tests in hypersensitivity (type B) adverse reactions, in addition to the well known utility of these tests in type A adverse reactions. Growing evidence supports a link between genetically determined drug metabolism, altered metabolic profiles, generation of highly reactive metabolites and haptenization. Additional research is required to developing robust biomarkers for drug-induced hypersensitivity reactions.
Zhong, Yun-Xi; Jin, Xiao-Liang; Gu, Shi-Yin; Peng, Ying; Zhang, Ke-Rong; Ou-Yang, Bing-Chen; Wang, Yu; Xiao, Wei; Wang, Zhen-Zhong; Aa, Ji-Ye; Wang, Guang-Ji; Sun, Jian-Guo
2016-08-16
Guizhi Fuling capsule (GZFL), a traditional Chinese medicine formulation, is widely used in China to relieve pain from dysmenorrhea and is now in a Phase II clinical trial in the USA. Due to the low exposure of the five main medicative ingredients (amygdalin, cinnamic acid, gallic acid, paeoniflorin and paeonol) of GZFL in human, a strategy was built to qualitatively and quantitatively identify the possible metabolites of GZFL and to describe the pharmacokinetic profiles of GZFL in human. In this strategy, LC-Q-TOF/MS was used to identify and structurally elucidate the possible metabolites of GZFL in vivo; and a time-based metabolite-confirming step (TBMCs) was used to confirm uncertain metabolites. The simultaneously quantitation results by LC-MS/MS showed low exposure of the five medicative ingredients. According to the strategy we built, a total of 36 metabolites were found and structurally elucidated. The simultaneously semi-quantitative analysis by LC-MS/MS showed that obvious time-concentration curves could be established for 12 of the metabolites, and most of them showed a relatively higher exposure. This study provides a better understanding of the metabolic processes of GZFL in human.
García-Cañaveras, Juan Carlos; López, Silvia; Castell, José Vicente; Donato, M Teresa; Lahoz, Agustín
2016-02-01
MS-based metabolite profiling of adherent mammalian cells comprises several challenging steps such as metabolism quenching, cell detachment, cell disruption, metabolome extraction, and metabolite measurement. In LC-MS, the final metabolome coverage is strongly determined by the separation technique and the MS conditions used. Human liver-derived cell line HepG2 was chosen as adherent mammalian cell model to evaluate the performance of several commonly used procedures in both sample processing and LC-MS analysis. In a first phase, metabolite extraction and sample analysis were optimized in a combined manner. To this end, the extraction abilities of five different solvents (or combinations) were assessed by comparing the number and the levels of the metabolites comprised in each extract. Three different chromatographic methods were selected for metabolites separation. A HILIC-based method which was set to specifically separate polar metabolites and two RP-based methods focused on lipidome and wide-ranging metabolite detection, respectively. With regard to metabolite measurement, a Q-ToF instrument operating in both ESI (+) and ESI (-) was used for unbiased extract analysis. Once metabolite extraction and analysis conditions were set up, the influence of cell harvesting on metabolome coverage was also evaluated. Therefore, different protocols for cell detachment (trypsinization or scraping) and metabolism quenching were compared. This study confirmed the inconvenience of trypsinization as a harvesting technique, and the importance of using complementary extraction solvents to extend metabolome coverage, minimizing interferences and maximizing detection, thanks to the use of dedicated analytical conditions through the combination of HILIC and RP separations. The proposed workflow allowed the detection of over 300 identified metabolites from highly polar compounds to a wide range of lipids.
Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Dae-Wook; Ilhan, Zehra Esra; Isern, Nancy G.
Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Usingmore » NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites- caprate, nicotinate, glutamine, thymine, and aspartate- may potentially function as a biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. Despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further investigation of metabolites in larger cohorts.« less
Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C
2015-01-01
Background: Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. Objective: We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. Design: In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate–controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Results: Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Conclusions: Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans. PMID:26511225
Schmidt, Julie A; Rinaldi, Sabina; Ferrari, Pietro; Carayol, Marion; Achaintre, David; Scalbert, Augustin; Cross, Amanda J; Gunter, Marc J; Fensom, Georgina K; Appleby, Paul N; Key, Timothy J; Travis, Ruth C
2015-12-01
Human metabolism is influenced by dietary factors and lifestyle, environmental, and genetic factors; thus, men who exclude some or all animal products from their diet might have different metabolic profiles than meat eaters. We aimed to investigate differences in concentrations of 118 circulating metabolites, including acylcarnitines, amino acids, biogenic amines, glycerophospholipids, hexose, and sphingolipids related to lipid, protein, and carbohydrate metabolism between male meat eaters, fish eaters, vegetarians, and vegans from the Oxford arm of the European Prospective Investigation into Cancer and Nutrition. In this cross-sectional study, concentrations of metabolites were measured by mass spectrometry in plasma from 379 men categorized according to their diet group. Differences in mean metabolite concentrations across diet groups were tested by using ANOVA, and a false discovery rate-controlling procedure was used to account for multiple testing. Principal component analysis was used to investigate patterns in metabolic profiles. Concentrations of 79% of metabolites differed significantly by diet group. In the vast majority of these cases, vegans had the lowest concentration, whereas meat eaters most often had the highest concentrations of the acylcarnitines, glycerophospholipids, and sphingolipids, and fish eaters or vegetarians most often had the highest concentrations of the amino acids and a biogenic amine. A clear separation between patterns in the metabolic profiles of the 4 diet groups was seen, with vegans being noticeably different from the other groups because of lower concentrations of some glycerophospholipids and sphingolipids. Metabolic profiles in plasma could effectively differentiate between men from different habitual diet groups, especially vegan men compared with men who consume animal products. The difference in metabolic profiles was mainly explained by the lower concentrations of glycerophospholipids and sphingolipids in vegans.
Wang, Ye; Yu, Fei; Liu, Ming-Yue; Zhao, Yi-Kai; Wang, Dong-Ming; Hao, Qing-Hong; Wang, Xiu-Ling
2017-05-24
Arctiin is the most abundant bioactive compound contained in the Arctium lappa plant. In our previous study, we isolated one single bacterium capable of bioconverting arctigenin, an aglycone of arctiin, to 3'-desmethylarctigenin (3'-DMAG) solely. However, to date, a specific bacterium capable of producing other arctiin metabolites has not been reported. In this study, we isolated one single bacterium, which we named Eggerthella sp. AUH-JLD49s, capable of bioconverting 3'-DMAG under anaerobic conditions. The metabolite of 3'-DMAG by strain AUH-JLD49s was identified as 3'-desmethyl-4'-dehydroxyarctigenin (DMDH-AG) based on electrospray ionization mass spectrometry (ESI-MS) and 1 H and 13 C nuclear magnetic resonance spectroscopy. The bioconversion kinetics and bioconversion capacity of strain AUH-JLD49s were investigated. In addition, the metabolite DMDH-AG showed an inhibitory effect on cell growth of human colon cancer cell line HCT116 and human breast cancer cell line MDA-MB-231.
Gandhi, Adarsh S.; Wohlfarth, Ariane; Zhu, Mingshe; Pang, Shaokun; Castaneto, Marisol; Scheidweiler, Karl B.; Huestis, Marilyn A.
2014-01-01
N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide (STS-135) is a new synthetic cannabinoid in herbal incense products discussed on internet drug user forums and identified in police seizures. To date, there are no STS-135 clinical or in vitro studies identifying STS-135 metabolic profiles. However, characterizing STS-135 metabolism is critical because synthetic cannabinoid metabolites can possess pharmacological activity and parent compounds are rarely detectable in urine. To characterize the metabolite profile, human hepatocytes were incubated with 10 μmol/L STS-135 for up to 3 h. High-resolution mass spectrometry with software-assisted data mining identified 29 STS-135 metabolites. Less than 25% of STS-135 parent compound remained after 3 h incubation. Primary metabolites were generated by mono-, di- or trihydroxylation with and without ketone formation, dealkylation and oxidative defluorination of N-fluoropentyl side chain or possible oxidation to carboxylic acid, some of them further glucuronidated. Hydroxylations occurred mainly on the aliphatic adamantane ring and less commonly on the N-pentyl side chain. At 1 h phase I metabolites predominated, while at 3 h phase II metabolites were present in higher amounts. The major metabolites were monohydroxy STS-135 (M25) and dihydroxy STS-135 (M21), both hydroxylated on the adamantane system. Moreover, metabolic stability of STS-135 (1 μmol/L) was assessed in human liver microsomes experiments. The in vitro half-life of STS-135 was 7.2±0.6 min and intrinsic clearance (CLint) was 93.6 mL·min−1·kg−1. This is the first report characterizing STS-135 hepatic metabolic pathways. These data provide potential urinary targets to document STS-135 intake in clinical and forensic settings and potential candidates for pharmacological testing. PMID:24827428
Kebede, Bethlehem; Wrigley, Stephen K.; Prashar, Anjali; Rahlff, Janina; Wolf, Markus; Reinshagen, Jeanette; Gribbon, Philip; Imhoff, Johannes F.; Silber, Johanna; Labes, Antje; Ellinger, Bernhard
2017-01-01
As part of an international research project, the marine fungal strain collection of the Helmholtz Centre for Ocean Research (GEOMAR) research centre was analysed for secondary metabolite profiles associated with anticancer activity. Strain MF458 was identified as Tolypocladium geodes, by internal transcribed spacer region (ITS) sequence similarity and its natural product production profile. By using five different media in two conditions and two time points, we were able to identify eight natural products produced by MF458. As well as cyclosporin A (1), efrapeptin D (2), pyridoxatin (3), terricolin A (4), malettinins B and E (5 and 6), and tolypocladenols A1/A2 (8), we identified a new secondary metabolite which we termed tolypocladenol C (7). All compounds were analysed for their anticancer potential using a selection of the NCI60 cancer cell line panel, with malettinins B and E (5 and 6) being the most promising candidates. In order to obtain sufficient quantities of these compounds to start preclinical development, their production was transferred from a static flask culture to a stirred tank reactor, and fermentation medium development resulted in a nearly eight-fold increase in compound production. The strain MF458 is therefore a producer of a number of interesting and new secondary metabolites and their production levels can be readily improved to achieve higher yields. PMID:28333084
Settachaimongkon, Sarn; Nout, M J Robert; Antunes Fernandes, Elsa C; Hettinga, Kasper A; Vervoort, Jacques M; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J; van Valenberg, Hein J F
2014-05-02
Proto-cooperation between Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus is one of the key factors that determine the fermentation process and final quality of yoghurt. In this study, the interaction between different proteolytic strains of S. thermophilus and L. delbrueckii subsp. bulgaricus was investigated in terms of microbial growth, acidification and changes in the biochemical composition of milk during set-yoghurt fermentation. A complementary metabolomics approach was applied for global characterization of volatile and non-volatile polar metabolite profiles of yoghurt associated with proteolytic activity of the individual strains in the starter cultures. The results demonstrated that only non-proteolytic S. thermophilus (Prt-) strain performed proto-cooperation with L. delbrueckii subsp. bulgaricus. The proto-cooperation resulted in significant higher populations of the two species, faster milk acidification, significant abundance of aroma volatiles and non-volatile metabolites desirable for a good organoleptic quality of yoghurt. Headspace SPME-GC/MS and (1)H NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Furthermore, multivariate statistical analysis allows discriminating set-yoghurts fermented by different types of starter cultures according to their metabolite profiles. Our finding underlines that selection of suitable strain combinations in yoghurt starters is important for achieving the best technological performance regarding the quality of product. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Isern, Nancy G.; Xue, Junfeng; Rao, Jaya V.
2013-04-03
Profiles of metabolites produced by the thermophilic obligately anaerobic cellulose-degrading Gram-positive bacterium Caldicellulosiruptor saccharolyticus DSM 8903 strain following growth on different monosaccharides (D-glucose, D-mannose, L-arabinose, D-arabinose, D-xylose, L-fucose, and D-fucose) as carbon sources revealed several unexpected fermentation products, suggesting novel metabolic capacities and unexplored metabolic pathways in this organism. Both 1H and 13C nuclear magnetic resonance (NMR) spectroscopy were used to determine intracellular and extracellular metabolite profiles. Metabolite profiles were determined from 1-D 1H NMR spectra by curve fitting against spectral libraries provided in Chenomx software. To reduce uncertainties due to unassigned, overlapping, or poorly-resolved peaks, metabolite identifications were confirmedmore » with 2-D homonuclear and heteronuclear NMR experiments. In addition to expected metabolites such as acetate, lactate, glycerol, and ethanol, several novel fermentation products were identified: ethylene glycol (from growth on D-arabinose, though not L-arabinose), acetoin and 2,3-butanediol (from D-glucose and L-arabinose), and hydroxyacetone (from D-mannose and L-arabinose). Production of ethylene glycol from D-arabinose was particularly notable, with around 10% of the substrate carbon converted into this uncommon fermentation product. The novel products have not previously been reported to be produced by C. saccharolyticus, nor would they be easily predicted from the current genome annotation, and show new potentials for using this strain for production of bioproducts.« less
Development of a Searchable Metabolite Database and Simulator of Xenobiotic Metabolism
A computational tool (MetaPath) has been developed for storage and analysis of metabolic pathways and associated metadata. The system is capable of sophisticated text and chemical structure/substructure searching as well as rapid comparison of metabolites formed across chemicals,...
Aura, Anna-Marja; Mattila, Ismo; Hyötyläinen, Tuulia; Gopalacharyulu, Peddinti; Cheynier, Veronique; Souquet, Jean-Marc; Bes, Magali; Le Bourvellec, Carine; Guyot, Sylvain; Orešič, Matej
2013-03-01
Syrah red grapes are used in the production of tannin-rich red wines. Tannins are high molecular weight molecules, proanthocyanidins (PAs), and poorly absorbed in the upper intestine. In this study, gut microbial metabolism of Syrah grape phenolic compounds was investigated. Syrah grape pericarp was subjected to an enzymatic in vitro digestion model, and red wine and grape skin PA fraction were prepared. Microbial conversion was screened using an in vitro colon model with faecal microbiota, by measurement of short-chain fatty acids by gas chromatography (GC) and microbial phenolic metabolites using GC with mass detection (GC-MS). Red wine metabolites were further profiled using two-dimensional GC mass spectrometry (GCxGC-TOFMS). In addition, the effect of PA structure and dose on conversion efficiency was investigated by GC-MS. Red wine exhibited a higher degree of C1-C3 phenolic acid formation than PA fraction or grape pericarp powders. Hydroxyphenyl valeric acid (flavanols and PAs as precursors) and 3,5-dimethoxy-4-hydroxybenzoic acid (anthocyanin as a precursor) were identified from the red wine metabolite profile. In the absence of native grape pericarp or red wine matrix, the isolated PAs were found to be effective in the dose-dependent inhibition of microbial conversions and short-chain fatty acid formation. Metabolite profiling was complementary to targeted analysis. The identified metabolites had biological relevance, because the structures of the metabolites resembled fragments of their grape phenolic precursors or were in agreement with literature data.
Hashimoto, Naoto; Han, Kyu-Ho; Fukushima, Michihiro
2017-02-01
Flavonoids purportedly have a role in improving lipid metabolism. In our preliminary study, highly concentrated flavonoid metabolites appeared in bile juice in rats, which also contains various lipids. Biliary flavonoid metabolites generally have amphiphilic properties, may influence lipid solubility, and possibly contribute to the improvement of dyslipidemia. However, the influence of biliary flavonoid metabolites on the biliary lipid profile is not well known. Therefore, we hypothesized that the amphiphilic property of biliary flavonoid metabolites alters biliary lipid profiles. To estimate the influence of flavonoids on the biliary lipid profile, we laparotomized rats under anesthesia, intraduodenally injected them with cyanidin-3-glucoside chloride (C3G) or quercetin, and analyzed their biliary metabolite concentrations for 2 hours. Concentrations of C3G and quercetin metabolites peaked at 30 minutes after the injection; those of quercetin were 6 to 10 times higher than those of C3G throughout the sampling period up to 2 hours. Biliary triglyceride (TG) concentrations were higher in the C3G group at 30 and 45 minutes; biliary cholesterol and phospholipid concentrations were lower in the quercetin group at 30 minutes than those in the control group. Hepatic TG content after the 2-hour sampling was lower in the C3G group than in the control group. These results suggest that C3G, but not quercetin, may transiently promote TG excretion into bile, with a reduction in hepatic TG content. This C3G effect may be involved in improvement of TG metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
Utility of metabolic profiling of serum in the diagnosis of pregnancy complications.
Powell, Katie L; Carrozzi, Anthony; Stephens, Alexandre S; Tasevski, Vitomir; Morris, Jonathan M; Ashton, Anthony W; Dona, Anthony C
2018-06-01
Currently there are no clinical screening tests available to identify pregnancies at risk of developing preeclampsia (PET) and/or intrauterine growth restriction (IUGR), both of which are associated with abnormal placentation. Metabolic profiling is now a stable analytical platform used in many laboratories and has successfully been used to identify biomarkers associated with various pathological states. We used nuclear magnetic resonance spectroscopy (NMR) to metabolically profile serum samples collected from 143 pregnant women at 26-41 weeks gestation with pregnancy outcomes of PET, IUGR, PET IUGR or small for gestational age (SGA) that were age-matched to normal pre/term pregnancies. Spectral analysis found no difference in the measured metabolites from normal term, pre-term and SGA samples, and of 25 identified metabolites, only glutamate was marginally different between groups. Of the identified metabolites, 3-methylhistidine, creatinine, acetyl groups and acetate, were determined to be independent predictors of PET and produced area under the curves (AUC) = 0.938 and 0.936 for the discovery and validation sets. Only 3-hydroxybutyrate was determined to be an independent predictor of IUGR, however the model had low predictive power (AUC = 0.623 and 0.581 for the discovery and validation sets). A sub-panel of metabolites had strong predictive power for identifying PET samples in a validation dataset, however prediction of IUGR was more difficult using the identified metabolites. NMR based metabolomics can identify metabolites strongly associated with disease and has the potential to be useful in developing early clinical screening tests for at risk pregnancies. Copyright © 2018 Elsevier Ltd. All rights reserved.
Metabolome Profiling of Partial and Fully Reprogrammed Induced Pluripotent Stem Cells.
Park, Soon-Jung; Lee, Sang A; Prasain, Nutan; Bae, Daekyeong; Kang, Hyunsu; Ha, Taewon; Kim, Jong Soo; Hong, Ki-Sung; Mantel, Charlie; Moon, Sung-Hwan; Broxmeyer, Hal E; Lee, Man Ryul
2017-05-15
Acquisition of proper metabolomic fate is required to convert somatic cells toward fully reprogrammed pluripotent stem cells. The majority of induced pluripotent stem cells (iPSCs) are partially reprogrammed and have a transcriptome different from that of the pluripotent stem cells. The metabolomic profile and mitochondrial metabolic functions required to achieve full reprogramming of somatic cells to iPSC status have not yet been elucidated. Clarification of the metabolites underlying reprogramming mechanisms should enable further optimization to enhance the efficiency of obtaining fully reprogrammed iPSCs. In this study, we characterized the metabolites of human fully reprogrammed iPSCs, partially reprogrammed iPSCs, and embryonic stem cells (ESCs). Using capillary electrophoresis time-of-flight mass spectrometry-based metabolomics, we found that 89% of analyzed metabolites were similarly expressed in fully reprogrammed iPSCs and human ESCs (hESCs), whereas partially reprogrammed iPSCs shared only 74% similarly expressed metabolites with hESCs. Metabolomic profiling analysis suggested that converting mitochondrial respiration to glycolytic flux is critical for reprogramming of somatic cells into fully reprogrammed iPSCs. This characterization of metabolic reprogramming in iPSCs may enable the development of new reprogramming parameters for enhancing the generation of fully reprogrammed human iPSCs.
Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro
2015-09-02
Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds.
Dang, Vi T.; Huang, Aric; Zhong, Lexy H.; Shi, Yuanyuan; Werstuck, Geoff H.
2016-01-01
Atherosclerosis is the major underlying cause of most cardiovascular diseases. Despite recent advances, the molecular mechanisms underlying the pathophysiology of atherogenesis are not clear. In this study, comprehensive plasma metabolomics were used to investigate early-stage atherosclerotic development and progression in chow-fed apolipoprotein E-deficient mice at 5, 10 and 15 weeks of age. Comprehensive plasma metabolomic profiles, based on 4365 detected metabolite features, differentiate atherosclerosis-prone from atherosclerosis-resistant models. Metabolites in the sphingomyelin pathway were significantly altered prior to detectable lesion formation and at all subsequent time-points. The cytidine diphosphate-diacylglycerol pathway was up-regulated during stage I of atherosclerosis, while metabolites in the phosphatidylethanolamine and glycosphingolipid pathways were augmented in mice with stage II lesions. These pathways, involving glycerophospholipid and sphingolipid metabolism, were also significantly affected during the course of atherosclerotic progression. Our findings suggest that distinct plasma metabolomic profiles can differentiate the different stages of atherosclerotic progression. This study reveals that alteration of specific, previously unreported pathways of glycerophospholipid and sphingolipid metabolism are associated with atherosclerosis. The clear difference in the level of several metabolites supports the use of plasma lipid profiling as a diagnostic tool of atherogenesis. PMID:27721472
Daemen, Anneleen; Peterson, David; Sahu, Nisebita; McCord, Ron; Du, Xiangnan; Liu, Bonnie; Kowanetz, Katarzyna; Hong, Rebecca; Moffat, John; Gao, Min; Boudreau, Aaron; Mroue, Rana; Corson, Laura; O’Brien, Thomas; Qing, Jing; Sampath, Deepak; Merchant, Mark; Yauch, Robert; Manning, Gerard; Settleman, Jeffrey; Hatzivassiliou, Georgia; Evangelista, Marie
2015-01-01
Although targeting cancer metabolism is a promising therapeutic strategy, clinical success will depend on an accurate diagnostic identification of tumor subtypes with specific metabolic requirements. Through broad metabolite profiling, we successfully identified three highly distinct metabolic subtypes in pancreatic ductal adenocarcinoma (PDAC). One subtype was defined by reduced proliferative capacity, whereas the other two subtypes (glycolytic and lipogenic) showed distinct metabolite levels associated with glycolysis, lipogenesis, and redox pathways, confirmed at the transcriptional level. The glycolytic and lipogenic subtypes showed striking differences in glucose and glutamine utilization, as well as mitochondrial function, and corresponded to differences in cell sensitivity to inhibitors of glycolysis, glutamine metabolism, lipid synthesis, and redox balance. In PDAC clinical samples, the lipogenic subtype associated with the epithelial (classical) subtype, whereas the glycolytic subtype strongly associated with the mesenchymal (QM-PDA) subtype, suggesting functional relevance in disease progression. Pharmacogenomic screening of an additional ∼200 non-PDAC cell lines validated the association between mesenchymal status and metabolic drug response in other tumor indications. Our findings highlight the utility of broad metabolite profiling to predict sensitivity of tumors to a variety of metabolic inhibitors. PMID:26216984
Metabolic profiling of sourdough fermented wheat and rye bread.
Koistinen, Ville M; Mattila, Outi; Katina, Kati; Poutanen, Kaisa; Aura, Anna-Marja; Hanhineva, Kati
2018-04-09
Sourdough fermentation by lactic acid bacteria is commonly used in bread baking, affecting several attributes of the final product. We analyzed whole-grain wheat and rye breads and doughs prepared with baker's yeast or a sourdough starter including Candida milleri, Lactobacillus brevis and Lactobacillus plantarum using non-targeted metabolic profiling utilizing LC-QTOF-MS. The aim was to determine the fermentation-induced changes in metabolites potentially contributing to the health-promoting properties of whole-grain wheat and rye. Overall, we identified 118 compounds with significantly increased levels in sourdough, including branched-chain amino acids (BCAAs) and their metabolites, small peptides with high proportion of BCAAs, microbial metabolites of phenolic acids and several other potentially bioactive compounds. We also identified 69 compounds with significantly decreased levels, including phenolic acid precursors, nucleosides, and nucleobases. Intensive sourdough fermentation had a higher impact on the metabolite profile of whole-grain rye compared to milder whole-grain wheat sourdough fermentation. We hypothesize that the increased amount of BCAAs and potentially bioactive small peptides may contribute to the insulin response of rye bread, and in more general, the overall protective effect against T2DM and CVD.
Metabolomic Change Precedes Apple Superficial Scald Symptoms
USDA-ARS?s Scientific Manuscript database
Metabolic profiling of 621 metabolites was employed to characterize metabolomic changes associated with ‘Granny Smith’ apple superficial scald development following 1-MCP or DPA treatment. Partial least squares-discriminant analyses were used to link metabolites with scald, postharvest treatments, ...
Living GenoChemetics by hyphenating synthetic biology and synthetic chemistry in vivo.
Sharma, Sunil V; Tong, Xiaoxue; Pubill-Ulldemolins, Cristina; Cartmell, Christopher; Bogosyan, Emma J A; Rackham, Emma J; Marelli, Enrico; Hamed, Refaat B; Goss, Rebecca J M
2017-08-09
Marrying synthetic biology with synthetic chemistry provides a powerful approach toward natural product diversification, combining the best of both worlds: expediency and synthetic capability of biogenic pathways and chemical diversity enabled by organic synthesis. Biosynthetic pathway engineering can be employed to insert a chemically orthogonal tag into a complex natural scaffold affording the possibility of site-selective modification without employing protecting group strategies. Here we show that, by installing a sufficiently reactive handle (e.g., a C-Br bond) and developing compatible mild aqueous chemistries, synchronous biosynthesis of the tagged metabolite and its subsequent chemical modification in living culture can be achieved. This approach can potentially enable many new applications: for example, assay of directed evolution of enzymes catalyzing halo-metabolite biosynthesis in living cells or generating and following the fate of tagged metabolites and biomolecules in living systems. We report synthetic biological access to new-to-nature bromo-metabolites and the concomitant biorthogonal cross-coupling of halo-metabolites in living cultures.Coupling synthetic biology and chemical reactions in cells is a challenging task. The authors engineer bacteria capable of generating bromo-metabolites, develop a mild Suzuki-Miyaura cross-coupling reaction compatible with cell growth and carry out the cross-coupling chemistry in live cell cultures.
Menthol smokers: metabolomic profiling and smoking behavior
Hsu, Ping-Ching; Lan, Renny S.; Brasky, Theodore M.; Marian, Catalin; Cheema, Amrita K.; Ressom, Habtom W.; Loffredo, Christopher A.; Pickworth, Wallace B.; Shields, Peter G.
2016-01-01
Background The use of menthol in cigarettes and marketing is under consideration for regulation by the FDA. However, the effects of menthol on smoking behavior and carcinogen exposure have been inconclusive. We previously reported metabolomic profiling for cigarette smokers, and novelly identified a menthol-glucuronide (MG) as the most significant metabolite directly related to smoking. Here, MG is studied in relation to smoking behavior and metabolomic profiles. Methods A cross-sectional study of 105 smokers who smoked two cigarettes in the laboratory one hour apart. Blood nicotine, MG and exhaled carbon monoxide (CO) boosts were determined (the difference before and after smoking). Spearman's correlation, Chi-Square and ANCOVA adjusted for gender, race and cotinine levels for menthol smokers assessed the relationship of MG boost, smoking behavior, and metabolic profiles. Multivariate metabolite characterization using supervised Partial Least Squares-Discriminant Analysis (PLS-DA) was carried out for the classification of metabolomics profiles. Results MG boost was positively correlated with CO boost, nicotine boost, average puff volume, puff duration, and total smoke exposure. Classification using PLS-DA, MG was the top metabolite discriminating metabolome of menthol vs. non-menthol smokers. Among menthol smokers, forty-two metabolites were significantly correlated with MG boost, which linked to cellular functions such as of cell death, survival, and movement. Conclusion Plasma MG boost is a new smoking behavior biomarker that may provides novel information over self-reported use of menthol cigarettes by integrating different smoking measures for understanding smoking behavior and harm of menthol cigarettes. Impacts These results provide insight into the biological effect of menthol smoking. PMID:27628308
Lyons, J.E.; Collazo, J.A.; Guglielmo, C.
2005-01-01
Assessing stopover habitat quality and refueling performance of individual birds is crucial to the conservation and management of migratory shorebirds. Plasma lipid metabolites indicate the trajectory of mass change in individuals and may be a more accurate measure of refueling performance at a particular site than static measures such as nutrient reserves. We measured lipid metabolites of Semipalmated Sandpipers at 4 coastal stopover sites during northward migration: Merritt Island, FL; Georgetown, SC; Pea Island, NC; and Delaware Bay, NJ. We described spatial and temporal variation in metabolic profiles among the 4 stopovers and evaluated the effects of body mass, age, and date on metabolite concentrations. Triglyceride concentration, an indicator of fat deposition, declined during the migration, whereas B-OH-Butyrate, a measure of fasting, increased. Triglyceride concentration correlated with phospholipids and inversely related to B-OH-butyrate, but was not related to body mass or age. Triglyceride levels and estimated percent fat were greater at Delaware Bay than at any stopovers to the south. Plasma metabolite profiles accurately reflected stopover refueling performance and provide an important new technique for assessing stopover habitat quality for migratory shorebirds.
NASA Astrophysics Data System (ADS)
Darnall, Robert A.; Chen, Xi; Nemani, Krishnamurthy V.; Sirieix, Chrystelle M.; Gimi, Barjor
2017-03-01
Most premature infants born at less than 30 weeks gestation are exposed to periods of mild intermittent hypoxia (IH) associated with apnea of prematurity and periodic breathing. In adults, IH associated with sleep apnea causes neurochemical and structural alterations in the brain. However, it is unknown whether IH in the premature infant leads to neurodevelopmental impairment. Quantification of biochemical markers that can precisely identify infants at risk of adverse neurodevelopmental outcome is essential. In vivo 1H magnetic resonance spectroscopy (1H MRS) facilitates the quantification of metabolites from distinct regions of the developing brain. We report the changes in metabolite profiles in the brainstem and hippocampal regions of developing rat brains, resulting from exposure to IH. Rat pups were chosen for study because there is rapid postnatal hippocampal development that occurs during the first 4 weeks in the developing rat brain, which corresponds to the first 2-3 postnatal years of development in humans. The brainstem was examined because of our interest in respiratory control disorders in the newborn and because of brainstem gliosis described in infants who succumb to Sudden Infant Death Syndrome (SIDS). Metabolite profiles were compared between hypoxia treated rat pups (n = 9) and normoxic controls (n = 6). Metabolite profiles were acquired using the Point-RESolved spectroscopy (PRESS) MRS sequence and were quantified using the TARQUIN software. There was a significant difference in the concentrations of creatine (p = 0.031), total creatine (creatine + phosphocreatine) (p = 0.028), and total choline (p = 0.001) in the brainstem, and glycine (p = 0.031) in the hippocampal region. The changes are consistent with altered cellular bioenergetics and metabolism associated with hypoxic insult.
Chen, Chi; Krausz, Kristopher W.; Idle, Jeffrey R.; Gonzalez, Frank J.
2008-01-01
CYP2E1 is recognized as the most important enzyme for initiation of acetaminophen (APAP)-induced toxicity. In this study, the resistance of Cyp2e1-null mice to APAP treatment was confirmed by comparing serum aminotransferase activities and blood urea nitrogen levels in wild-type and Cyp2e1-null mice. However, unexpectedly, profiling of major known APAP metabolites in urine and serum revealed that the contribution of CYP2E1 to APAP metabolism decreased with increasing APAP doses administered. Measurement of hepatic glutathione and hydrogen peroxide levels exposed the importance of oxidative stress in determining the consequence of APAP overdose. Subsequent metabolomic analysis was capable of constructing a principal components analysis (PCA) model that delineated a relationship between urinary metabolomes and the responses to APAP treatment. Urinary ions high in wild-type mice treated with 400 mg/kg APAP were elucidated as 3-methoxy-APAP glucuronide (VII) and three novel APAP metabolites, including S-(5-acetylamino-2-hydroxyphenyl)mercaptopyruvic acid (VI, formed by a Cys-APAP transamination reaction in kidney), 3,3′-biacetaminophen (VIII, an APAP dimer) and a benzothiazine compound (IX, originated from deacetylated APAP), through mass isotopomer analysis, accurate mass measurement, tandem MS fragmentation, in vitro reactions and chemical treatments. Dose-, time- and genotype-dependent appearance of these minor APAP metabolites implied their association with the APAP-induced toxicity and potential biomarker application. Overall, the oxidative stress elicited by CYP2E1-mediated APAP metabolism might significantly contribute to APAP-induced toxicity. The combination of genetically-modified animal models, mass isotopomer analysis and metabolomics provides a powerful and efficient technical platform to characterize APAP-induced toxicity through identifying novel biomarkers and unravelling novel mechanisms. PMID:18093979
Unbiased plasma metabolomics reveal the correlation of metabolic pathways and Prakritis of humans.
Shirolkar, Amey; Chakraborty, Sutapa; Mandal, Tusharkanti; Dabur, Rajesh
2017-11-25
Ayurveda, an ancient Indian medicinal system, has categorized human body constitutions in three broad constitutional types (prakritis) i.e. Vata, Pitta and Kapha. Analysis of plasma metabolites and related pathways to classify Prakriti specific dominant marker metabolites and metabolic pathways. 38 healthy male individuals were assessed for dominant Prakritis and their fasting blood samples were collected. The processed plasma samples were subjected to rapid resolution liquid chromatography-electrospray ionization-quadrupole time of flight mass spectrometry (RRLC-ESI-QTOFMS). Mass profiles were aligned and subjected to multivariate analysis. Partial least square discriminant analysis (PLS-DA) model showed 97.87% recognition capability. List of PLS-DA metabolites was subjected to permutative Benjamini-Hochberg false discovery rate (FDR) correction and final list of 76 metabolites with p < 0.05 and fold-change > 2.0 was identified. Pathway analysis using metascape and JEPETTO plugins in Cytoscape revealed that steroidal hormone biosynthesis, amino acid, and arachidonic acid metabolism are major pathways varying with different constitution. Biological Go processes analysis showed that aromatic amino acids, sphingolipids, and pyrimidine nucleotides metabolic processes were dominant in kapha type of body constitution. Fat soluble vitamins, cellular amino acid, and androgen biosynthesis process along with branched chain amino acid and glycerolipid catabolic processes were dominant in pitta type individuals. Vata Prakriti was found to have dominant catecholamine, arachidonic acid and hydrogen peroxide metabolomics processes. The neurotransmission and oxidative stress in vata, BCAA catabolic, androgen, xenobiotics metabolic processes in pitta, and aromatic amino acids, sphingolipid, and pyrimidine metabolic process in kaphaPrakriti were the dominant marker pathways. Copyright © 2017 Transdisciplinary University, Bangalore and World Ayurveda Foundation. Published by Elsevier B.V. All rights reserved.
Global metabolomic profiling targeting childhood obesity in the Hispanic population
USDA-ARS?s Scientific Manuscript database
Metabolomics may unravel important biological pathways involved in the pathophysiology of childhood obesity. We aimed to 1) identify metabolites that differ significantly between nonobese and obese Hispanic children; 2) collapse metabolites into principal components (PCs) associated with obesity and...
METABOLOMICS AS A DIAGNOSTIC TOOL FOR SMALL FISH TOXICOLOGY RESEARCH
Metabolomics involves the application of advanced analytical and statistical tools to profile changes in levels of endogenous metabolites in tissues and biofluids resulting from disease onset or stress. While certain metabolites are being specifically targeted in these studies, w...
Bhattacharya, Sayanti; Granger, Christopher B; Craig, Damian; Haynes, Carol; Bain, James; Stevens, Robert D; Hauser, Elizabeth R; Newgard, Christopher B; Kraus, William E; Newby, L Kristin; Shah, Svati H
2014-01-01
To validate independent associations between branched-chain amino acids (BCAA) and other metabolites with coronary artery disease (CAD). We conducted mass-spectrometry-based profiling of 63 metabolites in fasting plasma from 1983 sequential patients undergoing cardiac catheterization. Significant CAD was defined as CADindex ≥ 32 (at least one vessel with ≥ 95% stenosis; N = 995) and no CAD as CADindex ≤ 23 and no previous cardiac events (N = 610). Individuals (N = 378) with CAD severity between these extremes were excluded. Principal components analysis (PCA) reduced large numbers of correlated metabolites into uncorrelated factors. Association between metabolite factors and significant CAD vs. no CAD was tested using logistic regression; and between metabolite factors and severity of CAD was tested using linear regression. Of twelve PCA-derived metabolite factors, two were associated with CAD in multivariable models: factor 10, composed of BCAA (adjusted odds ratio, OR, 1.20; 95% CI 1.05-1.35, p = 0.005) and factor 7, composed of short-chain acylcarnitines, which include byproducts of BCAA metabolism (adjusted OR 1.30; 95% CI 1.14-1.48, p = 0.001). After adjustment for glycated albumin (marker of insulin resistance [IR]) both factors 7 (p = 0.0001) and 10 (p = 0.004) remained associated with CAD. Severity of CAD as a continuous variable (including patients with non-obstructive disease) was associated with metabolite factors 2, 3, 6, 7, 8 and 9; only factors 7 and 10 were associated in multivariable models. We validated the independent association of metabolites involved in BCAA metabolism with CAD extremes. These metabolites may be reporting on novel mechanisms of CAD pathogenesis that are independent of IR and diabetes. Copyright © 2013. Published by Elsevier Ireland Ltd.
Hasegawa, Kohei; Stewart, Christopher J; Mansbach, Jonathan M; Linnemann, Rachel W; Ajami, Nadim J; Petrosino, Joseph F; Camargo, Carlos A
2017-07-26
Emerging evidence demonstrated that the structure of fecal microbiome is associated with the likelihood of bronchiolitis in infants. However, no study has examined functional profiles of fecal microbiome in infants with bronchiolitis. In this context, we conducted a case-control study. As a part of multicenter prospective study, we collected stool samples from 40 infants hospitalized with bronchiolitis (cases). We concurrently enrolled 115 age-matched healthy controls. First, by applying 16S rRNA gene sequencing to these 155 fecal samples, we identified the taxonomic profiles of fecal microbiome. Next, based on the taxonomy data, we inferred the functional capabilities of fecal microbiome and tested for differences in the functional capabilities between cases and controls. Overall, the median age was 3 months and 45% were female. Among 274 metabolic pathways surveyed, there were significant differences between bronchiolitis cases and healthy controls for 37 pathways, including lipid metabolic pathways (false discovery rate [FDR] <0.05). Particularly, the fecal microbiome of bronchiolitis cases had consistently higher abundances of gene function related to the sphingolipid metabolic pathways compared to that of controls (FDR <0.05). These pathways were more abundant in infants with Bacteroides-dominant microbiome profile compared to the others (FDR <0.001). On the basis of the predicted metagenome in this case-control study, we found significant differences in the functional potential of fecal microbiome between infants with bronchiolitis and healthy controls. Although causal inferences remain premature, our data suggest a potential link between the bacteria-derived metabolites, modulations of host immune response, and development of bronchiolitis.
Sun, Hui; Wang, Mo; Zhang, Aihua; Ni, Bei; Dong, Hui; Wang, Xijun
2013-01-01
Metabolomics is an 'omics' approach that aims to comprehensively analyse all metabolites in a biological sample, and has great potential for directly elucidating plant metabolic processes. Increasing evidence supports the view that plants produce a broad range of low-molecular-weight secondary metabolites responsible for variation from species to species, thus enabling the use of secondary metabolite profiling in the chemotaxonomy. To gain deeper insights into the metabolites to increasing plant diversity, we performed systematic untargeted metabolite profiling to exploit the different parts and species of Aconitum as a case study. Application of ultraperformance liquid chromatography-quadrupole time-of-flight-high-definition mass spectrometry (UPLC-QTOF-HDMS) equipped with electrospray ionisation and coupled with pattern recognition analyses to study constituents in the root of two kinds of Aconitum species. Twenty-two metabolites between the mother root of Aconitum carmichaelii Debx (CHW) and lateral root of Aconitum carmichaelii Debx (SFZ) and 13 metabolites between the CHW and root of Aconitum kusnezoffii Reichb (CW) have been identified. Of note, songorine, carmichaeline and isotalatizidine did not exist in CW, whereas they are present in the SFZ and CHW. Metabolomics based UPLC-QTOF-HDMS with multivariate statistical models was effective for analysis of constituents in the root of two kinds of Aconitum species. Copyright © 2012 John Wiley & Sons, Ltd.
Akiyama, Tomoyuki; Hayashi, Yumiko; Hanaoka, Yoshiyuki; Shibata, Takashi; Akiyama, Mari; Nakamura, Kazuyuki; Tsuyusaki, Yu; Kubota, Masaya; Yoshinaga, Harumi; Kobayashi, Katsuhiro
2017-02-01
We describe a new method for simultaneous measurement of monoamine metabolites (3-O-methyldopa [3-OMD], 3-methoxy-4-hydroxyphenylethyleneglycol [MHPG], 5-hydroxyindoleacetic acid [5-HIAA], and homovanillic acid [HVA]) and 5-methyltetrahydrofolate (5-MTHF) and its use on cerebrospinal fluid (CSF) samples from pediatric patients. Monoamine metabolites and 5-MTHF were measured by high-performance liquid chromatography with fluorescence detection. CSF samples were prospectively collected from children according to a standardized collection protocol in which the first 1-ml fraction was used for analysis. Monoamine metabolites and 5-MTHF were separated within 10min. They showed linearity from the limit of detection to 1024nmol/l. The limit of quantification of each metabolite was sufficiently low for the CSF sample assay. In 42 CSF samples after excluding cases with possibly altered neurotransmitter profiles, the concentrations of 3-OMD, MHPG, 5-HIAA, HVA, and 5-MTHF showed significant age dependence and their ranges were comparable with the reference values in the literature. The metabolite profiles of aromatic l-amino acid decarboxylase deficiency, Segawa disease, and folate receptor α defect by this method were compatible with those in the literature. This method is a simple means of measuring CSF monoamine metabolites and 5-MTHF, and is especially useful for laboratories not equipped with electrochemical detectors. Copyright © 2016 Elsevier B.V. All rights reserved.
Fischer, Robert; Konkel, Anne; Mehling, Heidrun; Blossey, Katrin; Gapelyuk, Andrej; Wessel, Niels; von Schacky, Clemens; Dechend, Ralf; Muller, Dominik N.; Rothe, Michael; Luft, Friedrich C.; Weylandt, Karsten; Schunck, Wolf-Hagen
2014-01-01
Cytochrome P450 (CYP)-dependent metabolites of arachidonic acid (AA) contribute to the regulation of cardiovascular function. CYP enzymes also accept EPA and DHA to yield more potent vasodilatory and potentially anti-arrhythmic metabolites, suggesting that the endogenous CYP-eicosanoid profile can be favorably shifted by dietary omega-3 fatty acids. To test this hypothesis, 20 healthy volunteers were treated with an EPA/DHA supplement and analyzed for concomitant changes in the circulatory and urinary levels of AA-, EPA-, and DHA-derived metabolites produced by the cyclooxygenase-, lipoxygenase (LOX)-, and CYP-dependent pathways. Raising the Omega-3 Index from about four to eight primarily resulted in a large increase of EPA-derived CYP-dependent epoxy-metabolites followed by increases of EPA- and DHA-derived LOX-dependent monohydroxy-metabolites including the precursors of the resolvin E and D families; resolvins themselves were not detected. The metabolite/precursor fatty acid ratios indicated that CYP epoxygenases metabolized EPA with an 8.6-fold higher efficiency and DHA with a 2.2-fold higher efficiency than AA. Effects on leukotriene, prostaglandin E, prostacyclin, and thromboxane formation remained rather weak. We propose that CYP-dependent epoxy-metabolites of EPA and DHA may function as mediators of the vasodilatory and cardioprotective effects of omega-3 fatty acids and could serve as biomarkers in clinical studies investigating the cardiovascular effects of EPA/DHA supplementation. PMID:24634501
Gehring, R; Coetzee, J F; Tarus-Sang, J; Apley, M D
2009-04-01
The objective of this study was to evaluate the plasma pharmacokinetics of ketamine and its active metabolite norketamine administered intravenously at a dose of 0.1 mg/kg together with xylazine (0.05 mg/kg) to control the pain associated with castration in calves. A two-compartment model with an additional metabolite compartment linked to the central compartment was used to simultaneously describe the time-concentration profiles of both ketamine and its major metabolite norketamine. Parameter values estimated from the time-concentration profiles observed in this study were volume of the central compartment (V(c) = 132.82 +/- 68.23 mL/kg), distribution clearance (CL(D) = 15.49 +/- 2.56 mL/min/kg), volume of the peripheral compartment (V(T) = 257.05 +/- 41.65 mL/kg), ketamine clearance by the formation of the norketamine metabolite (CL(2M) = 8.56 +/- 7.37 mL/kg/min) and ketamine clearance by other routes (CL(o) = 16.41 +/- 3.42 mL/kg/min). Previously published data from rats suggest that the metabolite norketamine contributes to the analgesic effect of ketamine, with a potency that is one-third of the parent drug. An understanding of the time-concentration relationships and the disposition of the parent drug and its metabolite is therefore important for a better understanding of the analgesic potential of ketamine in cattle.
Chua, Lee Suan
2016-09-01
The identification of plant metabolites is very important for the understanding of plant physiology including plant growth, development and defense mechanism, particularly for herbal medicinal plants. The metabolite profile could possibly be used for future drug discovery since the pharmacological activities of the indigenous herbs have been proven for centuries. An untargeted mass spectrometric approach was used to identify metabolites from the leaves and stems of Impatiens balsamina using LC-DAD-MS/MS. The putative compounds are mostly from the groups of phenolic, organic and amino acids which are essential for plant growth and as intermediates for other compounds. Alanine appeared to be the main amino acid in the plant because many alanine derived metabolites were detected. There are also several secondary metabolites from the groups of benzopyrones, benzofuranones, naphthoquinones, alkaloids and flavonoids. The widely reported bioactive components such as kaempferol, quercetin and their glycosylated, lawsone and its derivatives were detected in this study. The results also revealed that aqueous methanol could extract flavonoids better than water, and mostly, flavonoids were detected from the leaf samples. The score plots of component analysis show that there is a minor variance in the metabolite profiles of water and aqueous methanolic extracts with 21.5 and 30.5% of the total variance for the first principal component at the positive and negative ion modes, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Efficient biotransformation of herbicide diuron by bacterial strain Micrococcus sp. PS-1.
Sharma, Priyanka; Chopra, Adity; Cameotra, Swaranjit Singh; Suri, C Raman
2010-11-01
A Gram-positive, Micrococcus sp. strain PS-1 capable of utilizing phenylurea herbicide diuron as a sole carbon source at a high concentration (up to 250 ppm) was isolated from diuron storage site by selective enrichment study. The taxonomic characterization with 16S rRNA gene sequencing (1,477 bp) identified PS-1 as a member of Micrococcus sp. It was studied for the degradation of diuron and a range of its analogues (monuron, linuron, monolinuron, chlortoluron and fenuron). The shake flasks experiments demonstrated fast degradation of diuron (up to 96% at 250 ppm within 30 h incubation) with the addition of small quantity (0.01%) of non-ionic detergent. The relative degradation profile by the isolate was in the order of fenuron > monuron > diuron > linuron > monolinuron > chlortoluron. Further, the biochemical characterization of catabolic pathway by spectroscopic and chromatographic techniques demonstrated that the degradation proceeded via formation of dealkylated metabolites to form 3,4-dichloroaniline (3,4-DCA). It was the major metabolite formed, associated with profound increase in degradation kinetics in presence of appropriate additive.
2015-01-01
Although both rhizome and root of Panax notoginseng are officially utilized as notoginseng in “Chinese Pharmacopoeia”, individual parts of the root were differently used in practice. To provide chemical evidence for the differentiated usage, quantitative comparison and metabolite profiling of different portions derived from the whole root, as well as commercial samples, were carried out, showing an overall higher content of saponins in rhizome, followed by main root, branch root, and fibrous root. Ginsenoside Rb2 was proposed as a potential marker with a content of 0.5 mg/g as a threshold value for differentiating rhizome from other parts. Multivariate analysis of the metabolite profile further suggested 32 saponins as potential markers for the discrimination of different parts of notoginseng. Collectively, the study provided comprehensive chemical evidence for the distinct usage of different parts of notoginseng and, hence, is of great importance for the rational application and exploitation of individual parts of notoginseng. PMID:25118819
Real-time metabolome profiling of the metabolic switch between starvation and growth.
Link, Hannes; Fuhrer, Tobias; Gerosa, Luca; Zamboni, Nicola; Sauer, Uwe
2015-11-01
Metabolic systems are often the first networks to respond to environmental changes, and the ability to monitor metabolite dynamics is key for understanding these cellular responses. Because monitoring metabolome changes is experimentally tedious and demanding, dynamic data on time scales from seconds to hours are scarce. Here we describe real-time metabolome profiling by direct injection of living bacteria, yeast or mammalian cells into a high-resolution mass spectrometer, which enables automated monitoring of about 300 compounds in 15-30-s cycles over several hours. We observed accumulation of energetically costly biomass metabolites in Escherichia coli in carbon starvation-induced stationary phase, as well as the rapid use of these metabolites upon growth resumption. By combining real-time metabolome profiling with modeling and inhibitor experiments, we obtained evidence for switch-like feedback inhibition in amino acid biosynthesis and for control of substrate availability through the preferential use of the metabolically cheaper one-step salvaging pathway over costly ten-step de novo purine biosynthesis during growth resumption.
Yanagida, Akio; Yamakawa, Yutaka; Noji, Ryoko; Oda, Ako; Shindo, Heisaburo; Ito, Yoichiro; Shibusawa, Yoichi
2007-06-01
High-speed counter-current chromatography (HSCCC) using the three-phase solvent system n-hexane-methyl acetate-acetonitrile-water at a volume ratio of 4:4:3:4 was applied to the comprehensive separation of secondary metabolites in several natural product extracts. A wide variety of secondary metabolites in each natural product was effectively extracted with the three-phase solvent system, and the filtered extract was directly submitted to the HSCCC separation using the same three-phase system. In the HSCCC profiles of crude natural drugs listed in the Japanese Pharmacopoeia, several physiologically active compounds were clearly separated from other components in the extracts. The HSCCC profiles of several tea products, each manufactured by a different process, clearly showed their compositional difference in main compounds such as catechins, caffeine, and pigments. These HSCCC profiles also provide useful information about hydrophobic diversity of whole components present in each natural product.
Biomarkers of Fatigue: Metabolomics Profiles Predictive of Cognitive Performance
2013-05-01
metabolites. The latest version of the Human Metabolome Database (v. 2.5; released August , 2009) includes approximately 8,000 identified mammalian...monoamine oxidase; COMT , catechol-O-methyl transferase. (Modiefied from Rubí and Maechler, 2010). Ovals indicate metabolites found to be significantly
McCoin, Colin S.; Piccolo, Brian D.; Knotts, Trina A.; Matern, Dietrich; Vockley, Jerry; Gillingham, Melanie B.; Adams, Sean H.
2016-01-01
Blood and urine acylcarnitine profiles are commonly used to diagnose long-chain fatty acid oxidation disorders (FAOD: i.e., long-chain hydroxy-acyl-CoA dehydrogenase [LCHAD] and carnitine palmitoyltransferase 2 [CPT2] deficiency), but the global metabolic impact of long-chain FAOD has not been reported. We utilized untargeted metabolomics to characterize plasma metabolites in 12 overnight-fasted individuals with FAOD (10 LCHAD, 2 CPT2) and 11 healthy age-, sex-, and body mass index (BMI)-matched controls, with the caveat that individuals with FAOD consume a low-fat diet supplemented with medium-chain triglycerides (MCT) while matched controls consume a typical American diet. 832 metabolites were identified in plasma, and partial least squared-discriminant analysis (PLS-DA) identified 114 non-acylcarnitine variables that discriminated FAOD subjects and controls. FAOD individuals had significantly higher triglycerides and lower specific phosphatidylethanolamines, ceramides and sphingomyelins. Differences in phosphatidylcholines were also found but the directionality differed by species. Further, there were few differences in non-lipid metabolites indicating the metabolic impact of FAOD specifically on lipid pathways. This analysis provides evidence that LCHAD/CPT2 deficiency significantly alters complex lipid pathway flux. This metabolic signature may provide powerful clinical tools capable of confirming or diagnosing FAOD, even in subjects with a mild phenotype, and provide clues regarding the biochemical and metabolic impact of FAOD that could be relevant to the etiology of FAOD symptoms. PMID:26907176
Baran, Richard; Northen, Trent R
2013-10-15
Untargeted metabolite profiling using liquid chromatography and mass spectrometry coupled via electrospray ionization is a powerful tool for the discovery of novel natural products, metabolic capabilities, and biomarkers. However, the elucidation of the identities of uncharacterized metabolites from spectral features remains challenging. A critical step in the metabolite identification workflow is the assignment of redundant spectral features (adducts, fragments, multimers) and calculation of the underlying chemical formula. Inspection of the data by experts using computational tools solving partial problems (e.g., chemical formula calculation for individual ions) can be performed to disambiguate alternative solutions and provide reliable results. However, manual curation is tedious and not readily scalable or standardized. Here we describe an automated procedure for the robust automated mass spectra interpretation and chemical formula calculation using mixed integer linear programming optimization (RAMSI). Chemical rules among related ions are expressed as linear constraints and both the spectra interpretation and chemical formula calculation are performed in a single optimization step. This approach is unbiased in that it does not require predefined sets of neutral losses and positive and negative polarity spectra can be combined in a single optimization. The procedure was evaluated with 30 experimental mass spectra and was found to effectively identify the protonated or deprotonated molecule ([M + H](+) or [M - H](-)) while being robust to the presence of background ions. RAMSI provides a much-needed standardized tool for interpreting ions for subsequent identification in untargeted metabolomics workflows.
USDA-ARS?s Scientific Manuscript database
Non-targeted metabolite profiling can identify robust biological markers of dietary exposure that can lead to a better understanding of causal interactions between diet and health. In this study, pigs were used as an animal model to develop an efficient procedure to discover metabolites in biolog...
NASA Astrophysics Data System (ADS)
Vergara-Diaz, O.; Obata, T., Sr.; Kefauver, S. C.; Fernie, A., Sr.; Araus, J. L.
2017-12-01
The advance on metabolomics has led to a better understanding of plant-environment interactions and how the levels of specific metabolites may be used as indicators of plant performance. In cereals, the accumulation of certain metabolites -such as proline and sugars- has been related with water stress and drought tolerance/susceptibility, even revealing significant relationships with yield. On the other hand, recent studies relating plant biochemicals with spectral reflectance open the door to a deep assessment of plant status which would have implications on plant breeding and ecosystem studies. In this study, we investigated in durum wheat the relationship between the reflectance in the visible and near infrared regions (400-2500 µm wavelength) of the spectrum of the flag leaf, the ears and canopy levels with their respective metabolite profiles as well as its relationship with yield. To this aim, five durum wheat genotypes grown in four environments in the field were examined. PLS regression models indicated a strong determination of yield by using the spectrum of either leaves, ears and canopy. Additionally, grain yield was strongly predicted by the metabolite content of leaves and ears with multivariate regression analysis. Further preliminary results showed a promising performance of hyperspectral remote-proximal sensing for the calibration of plant metabolite content.
Gogna, Navdeep; Hamid, Neda; Dorai, Kavita
2015-11-10
Extracts from the Carica papaya L. plant are widely reported to contain metabolites with antibacterial, antioxidant and anticancer activity. This study aims to analyze the metabolic profiles of papaya leaves and seeds in order to gain insights into their phytomedicinal constituents. We performed metabolite fingerprinting using 1D and 2D 1H NMR experiments and used multivariate statistical analysis to identify those plant parts that contain the most concentrations of metabolites of phytomedicinal value. Secondary metabolites such as phenyl propanoids, including flavonoids, were found in greater concentrations in the leaves as compared to the seeds. UPLC-ESI-MS verified the presence of significant metabolites in the papaya extracts suggested by the NMR analysis. Interestingly, the concentration of eleven secondary metabolites namely caffeic, cinnamic, chlorogenic, quinic, coumaric, vanillic, and protocatechuic acids, naringenin, hesperidin, rutin, and kaempferol, were higher in young as compared to old papaya leaves. The results of the NMR analysis were corroborated by estimating the total phenolic and flavonoid content of the extracts. Estimation of antioxidant activity in leaves and seed extracts by DPPH and ABTS in-vitro assays and antioxidant capacity in C2C12 cell line also showed that papaya extracts exhibit high antioxidant activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Kimbara, Junji; Yoshida, Miho; Ito, Hirotaka; Kitagawa, Mamiko; Takada, Wataru; Hayashi, Kayoko; Shibutani, Yusuke; Kusano, Miyako; Okazaki, Yozo; Nakabayashi, Ryo; Mori, Tetsuya; Saito, Kazuki; Ariizumi, Tohru; Ezura, Hiroshi
2013-09-01
Tomato (Solanum lycopersicum) fruit cuticle has been extensively studied due to its effect on the biochemical and physiological properties of the fruit. To date, several tomato mutants defective in proper cuticle formation have been identified. To gain insight into tomato cuticle formation, we investigated one such mutant, sticky peel/light green (pe lg). We verified the responsible gene by fine mapping and obtained the same conclusion as a previous report. To elucidate the pleiotropic effects of cuticle deficiency caused by the cd2 mutation, CD2 suppression lines were constructed. As found in the pe lg mutant, the suppression lines showed enhanced water permeability and aberrant leaf and fruit cuticles. Water use efficiency of the suppression line was lower than that of the wild type. However, photosynthetic ability was not affected in the suppression line. Since these phenotypes are related to altered deposition of wax and cutin, other lipidic metabolites might be changed, too. To confirm this hypothesis, we conducted metabolite profiling. The metabolite profiling revealed that not only lipid but also sugar, flavonoid and glycoalkaloid metabolites in fruit were changed in the cd2 mutant. These results indicate that CD2 is essential both for normal cutin and wax deposition and for proper accumulation of specific metabolites in tomato fruit.
NASA Astrophysics Data System (ADS)
Yogabaanu, U.; Weber, Jean-Frederic Faizal; Convey, Peter; Rizman-Idid, Mohammed; Alias, Siti Aisyah
2017-12-01
The Arctic and Antarctic share environmental extremes. To survive in such environments, microbes such as soil fungi need to compete with or protect themselves effectively from other soil microbiota and to obtain the often scarce nutrients available, and many use secondary metabolites to facilitate this. We therefore (i) screened for antimicrobial properties of cold-environment Arctic and Antarctic soil fungi, and (ii) identified changes in the secreted secondary metabolite profiles of a subset of these strains in response to temperature variation. A total of 40 polar soil fungal strains from King George Island, maritime Antarctic and Hornsund, Svalbard, High Arctic, were obtained from the Malaysian National Antarctic Research Centre culture collections. The plug assay technique was used to screen for antimicrobial potential against Gram-positive and Gram-negative human pathogenic bacteria (Bacillus subtilis, B. cereus, Pseudomonas aeruginosa, Enterococcus faecalis and Escherichia coli). About 45% of the tested fungal strains showed antimicrobial activity against at least one tested microorganism. Three fungal isolates showed good bioactivity and were subjected to secondary metabolite profiling at different temperatures (4, 10, 15 and 28 °C). We observed a range of responses in fungal metabolite production when incubated at varying temperatures, confirming an influence of environmental conditions such as temperature on the production of secondary metabolites.
Farag, Mohamed A; Meyer, Achim; Ali, Sara E; Salem, Mohamed A; Giavalisco, Patrick; Westphal, Hildegard; Wessjohann, Ludger A
2018-06-01
Chronic exposure to ocean acidification and elevated sea-surface temperatures pose significant stress to marine ecosystems. This in turn necessitates costly acclimation responses in corals in both the symbiont and host, with a reorganization of cell metabolism and structure. A large-scale untargeted metabolomics approach comprising gas chromatography mass spectrometry (GC-MS) and ultraperformance liquid chromatography coupled to high resolution mass spectrometry (UPLC-MS) was applied to profile the metabolite composition of the soft coral Sarcophyton ehrenbergi and its dinoflagellate symbiont. Metabolite profiling compared ambient conditions with response to simulated climate change stressors and with the sister species, S. glaucum. Among ∼300 monitored metabolites, 13 metabolites were modulated. Incubation experiments providing four selected upregulated metabolites (alanine, GABA, nicotinic acid, and proline) in the culturing water failed to subside the bleaching response at temperature-induced stress, despite their known ability to mitigate heat stress in plants or animals. Thus, the results hint to metabolite accumulation (marker) during heat stress. This study provides the first detailed map of metabolic pathways transition in corals in response to different environmental stresses, accounting for the superior thermal tolerance of S. ehrenbergi versus S. glaucum, which can ultimately help maintain a viable symbiosis and mitigate against coral bleaching.
Tamiya, Hiroyuki; Ochiai, Eri; Kikuchi, Kazuyo; Yahiro, Maki; Toyotome, Takahito; Watanabe, Akira; Yaguchi, Takashi; Kamei, Katsuhiko
2015-05-01
The incidence of Aspergillus infection has been increasing in the past few years. Also, new Aspergillus fumigatus-related species, namely Aspergillus lentulus, Aspergillus udagawae, and Aspergillus viridinutans, were shown to infect humans. These fungi exhibit marked morphological similarities to A. fumigatus, albeit with different clinical courses and antifungal drug susceptibilities. The present study used liquid chromatography/time-of-flight mass spectrometry to identify the secondary metabolites secreted as virulence factors by these Aspergillus species and compared their antifungal susceptibility. The metabolite profiles varied widely among A. fumigatus, A. lentulus, A. udagawae, and A. viridinutans, producing 27, 13, 8, and 11 substances, respectively. Among the mycotoxins, fumifungin, fumiquinazoline A/B and D, fumitremorgin B, gliotoxin, sphingofungins, pseurotins, and verruculogen were only found in A. fumigatus, whereas auranthine was only found in A. lentulus. The amount of gliotoxin, one of the most abundant mycotoxins in A. fumigatus, was negligible in these related species. In addition, they had decreased susceptibility to antifungal agents such as itraconazole and voriconazole, even though metabolites that were shared in the isolates showing higher minimum inhibitory concentrations than epidemiological cutoff values were not detected. These strikingly different secondary metabolite profiles may lead to the development of more discriminative identification protocols for such closely related Aspergillus species as well as improved treatment outcomes. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Metabolomic homeostasis shifts after callus formation and shoot regeneration in tomato
Kumari, Alka; Ray, Kamalika; Sadhna, Sadhna; Pandey, Arun Kumar; Sreelakshmi, Yellamaraju; Sharma, Rameshwar
2017-01-01
Plants can regenerate from a variety of tissues on culturing in appropriate media. However, the metabolic shifts involved in callus formation and shoot regeneration are largely unknown. The metabolic profiles of callus generated from tomato (Solanum lycopersicum) cotyledons and that of shoot regenerated from callus were compared with the pct1-2 mutant that exhibits enhanced polar auxin transport and the shr mutant that exhibits elevated nitric oxide levels. The transformation from cotyledon to callus involved a major shift in metabolite profiles with denser metabolic networks in the callus. In contrast, the transformation from callus to shoot involved minor changes in the networks. The metabolic networks in pct1-2 and shr mutants were distinct from wild type and were rewired with shifts in endogenous hormones and metabolite interactions. The callus formation was accompanied by a reduction in the levels of metabolites involved in cell wall lignification and cellular immunity. On the contrary, the levels of monoamines were upregulated in the callus and regenerated shoot. The callus formation and shoot regeneration were accompanied by an increase in salicylic acid in wild type and mutants. The transformation to the callus and also to the shoot downregulated LST8 and upregulated TOR transcript levels indicating a putative linkage between metabolic shift and TOR signalling pathway. The network analysis indicates that shift in metabolite profiles during callus formation and shoot regeneration is governed by a complex interaction between metabolites and endogenous hormones. PMID:28481937
Kårlund, Anna; Hanhineva, Kati; Lehtonen, Marko; McDougall, Gordon J; Stewart, Derek; Karjalainen, Reijo O
2017-05-01
The non-edible parts of horticultural crops, such as leaves, contain substantial amounts of valuable bioactive compounds which are currently only little exploited. For example, strawberry (Fragaria × ananassa) leaves may be a promising bioresource for diverse health-related applications. However, product standardization sets a real challenge, especially when the leaf material comes from varying cultivars. The first step towards better quality control of berry fruit leaf-based ingredients and supplements is to understand metabolites present and their stability in different plant cultivars, so this study surveyed the distribution of potentially bioactive strawberry leaf metabolites in six different strawberry cultivars. Non-targeted metabolite profiling analysis using LC/qTOF-ESI-MS with data processing via principal component analysis and k-means clustering analysis was utilized to examine differences and commonalities between the leaf metabolite profiles. Quercetin and kaempferol derivatives were the dominant flavonol groups in strawberry leaves. Previously described and novel caffeic and chlorogenic acid derivatives were among the major phenolic acids. In addition, ellagitannins were one of the distinguishing compound classes in strawberry leaves. In general, strawberry leaves also contained high levels of octadecatrienoic acid derivatives, precursors of valuable odour compounds. The specific bioactive compounds found in the leaves of different strawberry cultivars offer the potential for the selection of optimized leaf materials for added-value food and non-food applications. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Lee, Jong Suk; Kim, Yong-Sook; Park, Sooyeon; Kim, Jihoon; Kang, So-Jung; Lee, Mi-Hwa; Ryu, Sangryeol; Choi, Jong Myoung; Oh, Tae-Kwang; Yoon, Jung-Hoon
2011-01-01
A Gram-negative, red-pigment-producing marine bacterial strain, designated S1-1, was isolated from the tidal flat sediment of the Yellow Sea, Korea. On the basis of phenotypic, phylogenetic, and genetic data, strain S1-1 (KCTC 11448BP) represented a new species of the genus Zooshikella. Thus, we propose the name Zooshikella rubidus sp. nov. Liquid chromatography and mass spectrometry of the red pigments produced by strain S1-1 revealed that the major metabolic compounds were prodigiosin and cycloprodigiosin. In addition, this organism produced six minor prodigiosin analogues, including two new structures that were previously unknown. To our knowledge, this is the first description of a microorganism that simultaneously produces prodigiosin and cycloprodigiosin as two major metabolites. Both prodigiosin and cycloprodigiosin showed antimicrobial activity against several microbial species. These bacteria were approximately 1.5-fold more sensitive to cycloprodigiosin than to prodigiosin. The metabolites also showed anticancer activity against human melanoma cells, which showed significantly more sensitivity to prodigiosin than to cycloprodigiosin. The secondary metabolite profiles of strain S1-1 and two reference bacterial strains were compared by liquid chromatography-mass spectrometry. Multivariate statistical analyses based on secondary metabolite profiles by liquid chromatography-mass spectrometry indicated that the metabolite profile of strain S1-1 could clearly be distinguished from those of two phylogenetically related, prodigiosin-producing bacterial strains. PMID:21642414
Wang, Cheng; Peng, Jingjin; Kuang, Yanling; Zhang, Jiaqiang; Dai, Luming
2017-01-01
Pleural effusion is a common clinical manifestation with various causes. Current diagnostic and therapeutic methods have exhibited numerous limitations. By involving the analysis of dynamic changes in low molecular weight catabolites, metabolomics has been widely applied in various types of disease and have provided platforms to distinguish many novel biomarkers. However, to the best of our knowledge, there are few studies regarding the metabolic profiling for pleural effusion. In the current study, 58 pleural effusion samples were collected, among which 20 were malignant pleural effusions, 20 were tuberculous pleural effusions and 18 were transudative pleural effusions. The small molecule metabolite spectrums were obtained by adopting 1H nuclear magnetic resonance technology, and pattern-recognition multi-variable statistical analysis was used to screen out different metabolites. One-way analysis of variance, and Student-Newman-Keuls and the Kruskal-Wallis test were adopted for statistical analysis. Over 400 metabolites were identified in the untargeted metabolomic analysis and 26 metabolites were identified as significantly different among tuberculous, malignant and transudative pleural effusions. These metabolites were predominantly involved in the metabolic pathways of amino acids metabolism, glycometabolism and lipid metabolism. Statistical analysis revealed that eight metabolites contributed to the distinction between the three groups: Tuberculous, malignant and transudative pleural effusion. In the current study, the feasibility of identifying small molecule biochemical profiles in different types of pleural effusion were investigated reveal novel biological insights into the underlying mechanisms. The results provide specific insights into the biology of tubercular, malignant and transudative pleural effusion and may offer novel strategies for the diagnosis and therapy of associated diseases, including tuberculosis, advanced lung cancer and congestive heart failure. PMID:28627685
Brown, Dustin G.; Borresen, Erica C.; Brown, Regina J.; Ryan, Elizabeth P.
2017-01-01
Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts. PMID:28643618
Sex differences in hepatic and intestinal contributions to nevirapine biotransformation in rats.
Pinheiro, P F; Marinho, A T; Antunes, A M M; Marques, M M; Pereira, S A; Miranda, J P
2015-05-25
The understanding of the intestine contribution to drug biotransformation improved significantly in recent years. However, the sources of inter-individual variability in intestinal drug biotransformation, namely sex-differences, are still elusive. Nevirapine (NVP) is an orally taken anti-HIV drug associated with severe idiosyncratic reactions elicited by toxic metabolites, with women at increased risk. As such, NVP is a good model to assess sex-dimorphic metabolism. The aim of this study was to perform a comparative profiling of NVP biotransformation in rat intestine and liver and evaluate whether or not it is organ- and sex-dependent. Therefore, nevirapine-containing solutions were perfused through the intestine, in a specially designed chamber, or incubated with liver slices, from male and female Wistar rats. The levels of NVP and its Phase I metabolites were quantified by HPLC-UV. Liver incubation experiments yielded the metabolites 2-, 3-, 8-, and 12-OH-NVP, being 12-OH-NVP and 2-OH-NVP the major metabolites in males and females, respectively. Inter-sex differences in the metabolic profile were also detected in the intestine perfusion experiments. Herein, the metabolites 3- and 12-OH-NVP were only found in male rats, whereas 2-OH-NVP levels were higher in females, both in extraluminal (p<0.01) and intraluminal media. The metabolite 8-OH-NVP was not detected in the intraluminal media from either males or females. In this study, important inter-sex differences were detected in both organs, providing further clues to the sex-dimorphic profile of NVP toxicity. Moreover, an extra-hepatic contribution to NVP biotransformation was observed, strengthening the relevance of the intestinal contribution in the biotransformation of orally taken-drugs. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Multi-platform metabolomics assays for human lung lavage fluids in an air pollution exposure study.
Surowiec, Izabella; Karimpour, Masoumeh; Gouveia-Figueira, Sandra; Wu, Junfang; Unosson, Jon; Bosson, Jenny A; Blomberg, Anders; Pourazar, Jamshid; Sandström, Thomas; Behndig, Annelie F; Trygg, Johan; Nording, Malin L
2016-07-01
Metabolomics protocols are used to comprehensively characterize the metabolite content of biological samples by exploiting cutting-edge analytical platforms, such as gas chromatography (GC) or liquid chromatography (LC) coupled to mass spectrometry (MS) assays, as well as nuclear magnetic resonance (NMR) assays. We have developed novel sample preparation procedures combined with GC-MS, LC-MS, and NMR metabolomics profiling for analyzing bronchial wash (BW) and bronchoalveolar lavage (BAL) fluid from 15 healthy volunteers following exposure to biodiesel exhaust and filtered air. Our aim was to investigate the responsiveness of metabolite profiles in the human lung to air pollution exposure derived from combustion of biofuels, such as rapeseed methyl ester biodiesel, which are increasingly being promoted as alternatives to conventional fossil fuels. Our multi-platform approach enabled us to detect the greatest number of unique metabolites yet reported in BW and BAL fluid (82 in total). All of the metabolomics assays indicated that the metabolite profiles of the BW and BAL fluids differed appreciably, with 46 metabolites showing significantly different levels in the corresponding lung compartments. Furthermore, the GC-MS assay revealed an effect of biodiesel exhaust exposure on the levels of 1-monostearylglycerol, sucrose, inosine, nonanoic acid, and ethanolamine (in BAL) and pentadecanoic acid (in BW), whereas the LC-MS assay indicated a shift in the levels of niacinamide (in BAL). The NMR assay only identified lactic acid (in BW) as being responsive to biodiesel exhaust exposure. Our findings demonstrate that the proposed multi-platform approach is useful for wide metabolomics screening of BW and BAL fluids and can facilitate elucidation of metabolites responsive to biodiesel exhaust exposure. Graphical Abstract Graphical abstract illustrating the study workflow. NMR Nuclear Magnetic Resonance, LC-TOFMS Liquid chromatography-Time Of Flight Mass Spectrometry, GC Gas Chromatography-Mass spectrometry.
Abdominal obesity and circulating metabolites: A twin study approach.
Bogl, Leonie H; Kaye, Sanna M; Rämö, Joel T; Kangas, Antti J; Soininen, Pasi; Hakkarainen, Antti; Lundbom, Jesper; Lundbom, Nina; Ortega-Alonso, Alfredo; Rissanen, Aila; Ala-Korpela, Mika; Kaprio, Jaakko; Pietiläinen, Kirsi H
2016-03-01
To investigate how obesity, insulin resistance and low-grade inflammation link to circulating metabolites, and whether the connections are due to genetic or environmental factors. Circulating serum metabolites were determined by proton NMR spectroscopy. Data from 1368 (531 monozygotic (MZ) and 837 dizygotic (DZ)) twins were used for bivariate twin modeling to derive the genetic (rg) and environmental (re) correlations between waist circumference (WC) and serum metabolites. Detailed examination of the associations between fat distribution (DEXA) and metabolic health (HOMA-IR, CRP) was performed among 286 twins including 33 BMI-discordant MZ pairs (intrapair BMI difference ≥3 kg/m(2)). Fat, especially in the abdominal area (i.e. WC, android fat % and android to gynoid fat ratio), together with HOMA-IR and CRP correlated significantly with an atherogenic lipoprotein profile, higher levels of branched-chain (BCAA) and aromatic amino acids, higher levels of glycoprotein, and a more saturated fatty acid profile. In contrast, a higher proportion of gynoid to total fat associated with a favorable metabolite profile. There was a significant genetic overlap between WC and several metabolites, most strongly with phenylalanine (rg=0.40), glycoprotein (rg=0.37), serum triglycerides (rg=0.36), BCAAs (rg=0.30-0.40), HDL particle diameter (rg=-0.33) and HDL cholesterol (rg=-0.30). The effect of acquired obesity within the discordant MZ pairs was particularly strong for atherogenic lipoproteins. A wide range of unfavorable alterations in the serum metabolome was associated with abdominal obesity, insulin resistance and low-grade inflammation. Twin modeling and obesity-discordant twin analysis suggest that these associations are partly explained by shared genes but also reflect mechanisms independent of genetic liability. Copyright © 2015 Elsevier Inc. All rights reserved.
Brown, Dustin G; Borresen, Erica C; Brown, Regina J; Ryan, Elizabeth P
2017-05-01
Rice bran (RB) consumption has been shown to reduce colorectal cancer (CRC) growth in mice and modify the human stool microbiome. Changes in host and microbial metabolism induced by RB consumption was hypothesised to modulate the stool metabolite profile in favour of promoting gut health and inhibiting CRC growth. The objective was to integrate gut microbial metabolite profiles and identify metabolic pathway networks for CRC chemoprevention using non-targeted metabolomics. In all, nineteen CRC survivors participated in a parallel randomised controlled dietary intervention trial that included daily consumption of study-provided foods with heat-stabilised RB (30 g/d) or no additional ingredient (control). Stool samples were collected at baseline and 4 weeks and analysed using GC-MS and ultra-performance liquid chromatography-MS. Stool metabolomics revealed 93 significantly different metabolites in individuals consuming RB. A 264-fold increase in β-hydroxyisovaleroylcarnitine and 18-fold increase in β-hydroxyisovalerate exemplified changes in leucine, isoleucine and valine metabolism in the RB group. A total of thirty-nine stool metabolites were significantly different between RB and control groups, including increased hesperidin (28-fold) and narirutin (14-fold). Metabolic pathways impacted in the RB group over time included advanced glycation end products, steroids and bile acids. Fatty acid, leucine/valine and vitamin B6 metabolic pathways were increased in RB compared with control. There were 453 metabolites identified in the RB food metabolome, thirty-nine of which were identified in stool from RB consumers. RB consumption favourably modulated the stool metabolome of CRC survivors and these findings suggest the need for continued dietary CRC chemoprevention efforts.
von Roepenack-Lahaye, Edda; Degenkolb, Thomas; Zerjeski, Michael; Franz, Mathias; Roth, Udo; Wessjohann, Ludger; Schmidt, Jürgen; Scheel, Dierk; Clemens, Stephan
2004-02-01
Large-scale metabolic profiling is expected to develop into an integral part of functional genomics and systems biology. The metabolome of a cell or an organism is chemically highly complex. Therefore, comprehensive biochemical phenotyping requires a multitude of analytical techniques. Here, we describe a profiling approach that combines separation by capillary liquid chromatography with the high resolution, high sensitivity, and high mass accuracy of quadrupole time-of-flight mass spectrometry. About 2000 different mass signals can be detected in extracts of Arabidopsis roots and leaves. Many of these originate from Arabidopsis secondary metabolites. Detection based on retention times and exact masses is robust and reproducible. The dynamic range is sufficient for the quantification of metabolites. Assessment of the reproducibility of the analysis showed that biological variability exceeds technical variability. Tools were optimized or established for the automatic data deconvolution and data processing. Subtle differences between samples can be detected as tested with the chalcone synthase deficient tt4 mutant. The accuracy of time-of-flight mass analysis allows to calculate elemental compositions and to tentatively identify metabolites. In-source fragmentation and tandem mass spectrometry can be used to gain structural information. This approach has the potential to significantly contribute to establishing the metabolome of Arabidopsis and other model systems. The principles of separation and mass analysis of this technique, together with its sensitivity and resolving power, greatly expand the range of metabolic profiling.
Ahn, Joong Kyong; Kim, Jungyeon; Hwang, Jiwon; Song, Juhwan; Kim, Kyoung Heon; Cha, Hoon-Suk
2017-11-02
Diagnosing Behcet's disease (BD) is challenging because of the lack of a diagnostic biomarker. The purposes of this study were to investigate distinctive metabolic changes in urine samples of BD patients and to identify urinary metabolic biomarkers for diagnosis of BD using gas chromatography/time-of-flight-mass spectrometry (GC/TOF-MS). Metabolomic profiling of urine samples from 44 BD patients and 41 healthy controls (HC) were assessed using GC/TOF-MS, in conjunction with multivariate statistical analysis. A total of 110 urinary metabolites were identified. The urine metabolite profiles obtained from GC/TOF-MS analysis could distinguish BD patients from the HC group in the discovery set. The parameter values of the orthogonal partial least squared-discrimination analysis (OPLS-DA) model were R ² X of 0.231, R ² Y of 0.804, and Q ² of 0.598. A biomarker panel composed of guanine, pyrrole-2-carboxylate, 3-hydroxypyridine, mannose, l-citrulline, galactonate, isothreonate, sedoheptuloses, hypoxanthine, and gluconic acid lactone were selected and adequately validated as putative biomarkers of BD (sensitivity 96.7%, specificity 93.3%, area under the curve 0.974). OPLS-DA showed clear discrimination of BD and HC groups by a biomarker panel of ten metabolites in the independent set (accuracy 88%). We demonstrated characteristic urinary metabolic profiles and potential urinary metabolite biomarkers that have clinical value in the diagnosis of BD using GC/TOF-MS.
Evaluation of 1H NMR metabolic profiling using biofluid mixture design.
Athersuch, Toby J; Malik, Shahid; Weljie, Aalim; Newton, Jack; Keun, Hector C
2013-07-16
A strategy for evaluating the performance of quantitative spectral analysis tools in conditions that better approximate background variation in a metabonomics experiment is presented. Three different urine samples were mixed in known proportions according to a {3, 3} simplex lattice experimental design and analyzed in triplicate by 1D (1)H NMR spectroscopy. Fifty-four urinary metabolites were subsequently quantified from the sample spectra using two methods common in metabolic profiling studies: (1) targeted spectral fitting and (2) targeted spectral integration. Multivariate analysis using partial least-squares (PLS) regression showed the latent structure of the spectral set recapitulated the experimental mixture design. The goodness-of-prediction statistic (Q(2)) of each metabolite variable in a PLS model was calculated as a metric for the reliability of measurement, across the sample compositional space. Several metabolites were observed to have low Q(2) values, largely as a consequence of their spectral resonances having low s/n or strong overlap with other sample components. This strategy has the potential to allow evaluation of spectral features obtained from metabolic profiling platforms in the context of the compositional background found in real biological sample sets, which may be subject to considerable variation. We suggest that it be incorporated into metabolic profiling studies to improve the estimation of matrix effects that confound accurate metabolite measurement. This novel method provides a rational basis for exploiting information from several samples in an efficient manner and avoids the use of multiple spike-in authentic standards, which may be difficult to obtain.
Zheng, Jiamin; Dixon, Roger A; Li, Liang
2012-12-18
Saliva is a readily available biofluid that may contain metabolites of interest for diagnosis and prognosis of diseases. In this work, a differential (13)C/(12)C isotope dansylation labeling method, combined with liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), is described for quantitative profiling of the human salivary metabolome. New strategies are presented to optimize the sample preparation and LC-MS detection processes. The strategies allow the use of as little of 5 μL of saliva sample as a starting material to determine the concentration changes of an average of 1058 ion pairs or putative metabolites in comparative saliva samples. The overall workflow consists of several steps including acetone-induced protein precipitation, (12)C-dansylation labeling of the metabolites, and LC-UV measurement of the total concentration of the labeled metabolites in individual saliva samples. A pooled sample was prepared from all the individual samples and labeled with (13)C-dansylation to serve as a reference. Using this metabolome profiling method, it was found that compatible metabolome results could be obtained after saliva samples were stored in tubes normally used for genetic material collection at room temperature, -20 °C freezer, and -80 °C freezer over a period of 1 month, suggesting that many saliva samples already collected in genomic studies could become a valuable resource for metabolomics studies, although the effect of much longer term of storage remains to be determined. Finally, the developed method was applied for analyzing the metabolome changes of two different groups: normal healthy older adults and comparable older adults with mild cognitive impairment (MCI). Top-ranked 18 metabolites successfully distinguished the two groups, among which seven metabolites were putatively identified while one metabolite, taurine, was definitively identified.
Li, Chun-Fang; Xu, Yan-Xia; Ma, Jian-Qiang; Jin, Ji-Qiang; Huang, Dan-Juan; Yao, Ming-Zhe; Ma, Chun-Lei; Chen, Liang
2016-09-08
The new shoots of the albino tea cultivar 'Anji Baicha' are yellow or white at low temperatures and turn green as the environmental temperatures increase during the early spring. 'Anji Baicha' metabolite profiles exhibit considerable variability over three color and developmental stages, especially regarding the carotenoid, chlorophyll, and theanine concentrations. Previous studies focused on physiological characteristics, gene expression differences, and variations in metabolite abundances in albino tea plant leaves at specific growth stages. However, the molecular mechanisms regulating metabolite biosynthesis in various color and developmental stages in albino tea leaves have not been fully characterized. We used RNA-sequencing to analyze 'Anji Baicha' leaves at the yellow-green, albescent, and re-greening stages. The leaf transcriptomes differed considerably among the three stages. Functional classifications based on Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes enrichment analyses revealed that differentially expressed unigenes were mainly related to metabolic pathways, biosynthesis of secondary metabolites, phenylpropanoid biosynthesis, and carbon fixation in photosynthetic organisms. Chemical analyses revealed higher β-carotene and theanine levels, but lower chlorophyll a levels, in the albescent stage than in the green stage. Furthermore, unigenes involved in carotenoid, chlorophyll, and theanine biosyntheses were identified, and the expression patterns of the differentially expressed unigenes in these biosynthesis pathways were characterized. Through co-expression analyses, we identified the key genes in these pathways. These genes may be responsible for the metabolite biosynthesis differences among the different leaf color and developmental stages of 'Anji Baicha' tea plants. Our study presents the results of transcriptomic and biochemical analyses of 'Anji Baicha' tea plants at various stages. The distinct transcriptome profiles for each color and developmental stage enabled us to identify changes to biosynthesis pathways and revealed the contributions of such variations to the albino phenotype of tea plants. Furthermore, comparisons of the transcriptomes and related metabolites helped clarify the molecular regulatory mechanisms underlying the secondary metabolic pathways in different stages.
Panamanian frog species host unique skin bacterial communities
Belden, Lisa K.; Hughey, Myra C.; Rebollar, Eria A.; Umile, Thomas P.; Loftus, Stephen C.; Burzynski, Elizabeth A.; Minbiole, Kevin P. C.; House, Leanna L.; Jensen, Roderick V.; Becker, Matthew H.; Walke, Jenifer B.; Medina, Daniel; Ibáñez, Roberto; Harris, Reid N.
2015-01-01
Vertebrates, including amphibians, host diverse symbiotic microbes that contribute to host disease resistance. Globally, and especially in montane tropical systems, many amphibian species are threatened by a chytrid fungus, Batrachochytrium dendrobatidis (Bd), that causes a lethal skin disease. Bd therefore may be a strong selective agent on the diversity and function of the microbial communities inhabiting amphibian skin. In Panamá, amphibian population declines and the spread of Bd have been tracked. In 2012, we completed a field survey in Panamá to examine frog skin microbiota in the context of Bd infection. We focused on three frog species and collected two skin swabs per frog from a total of 136 frogs across four sites that varied from west to east in the time since Bd arrival. One swab was used to assess bacterial community structure using 16S rRNA amplicon sequencing and to determine Bd infection status, and one was used to assess metabolite diversity, as the bacterial production of anti-fungal metabolites is an important disease resistance function. The skin microbiota of the three Panamanian frog species differed in OTU (operational taxonomic unit, ~bacterial species) community composition and metabolite profiles, although the pattern was less strong for the metabolites. Comparisons between frog skin bacterial communities from Panamá and the US suggest broad similarities at the phylum level, but key differences at lower taxonomic levels. In our field survey in Panamá, across all four sites, only 35 individuals (~26%) were Bd infected. There was no clustering of OTUs or metabolite profiles based on Bd infection status and no clear pattern of west-east changes in OTUs or metabolite profiles across the four sites. Overall, our field survey data suggest that different bacterial communities might be producing broadly similar sets of metabolites across frog hosts and sites. Community structure and function may not be as tightly coupled in these skin symbiont microbial systems as it is in many macro-systems. PMID:26579083
Integrative functional genomics of salt acclimatization in the model legume Lotus japonicus.
Sanchez, Diego H; Lippold, Felix; Redestig, Henning; Hannah, Matthew A; Erban, Alexander; Krämer, Ute; Kopka, Joachim; Udvardi, Michael K
2008-03-01
The model legume Lotus japonicus was subjected to non-lethal long-term salinity and profiled at the ionomic, transcriptomic and metabolomic levels. Two experimental designs with various stress doses were tested: a gradual step acclimatization and an initial acclimatization approach. Ionomic profiling by inductively coupled plasma/atomic emission spectrometry (ICP-AES) revealed salt stress-induced reductions in potassium, phosphorus, sulphur, zinc and molybdenum. Microarray profiling using the Lotus Genechip allowed the identification of 912 probesets that were differentially expressed under the acclimatization regimes. Gas chromatography/mass spectrometry-based metabolite profiling identified 147 differentially accumulated soluble metabolites, indicating a change in metabolic phenotype upon salt acclimatization. Metabolic changes were characterized by a general increase in the steady-state levels of many amino acids, sugars and polyols, with a concurrent decrease in most organic acids. Transcript and metabolite changes exhibited a stress dose-dependent response within the range of NaCl concentrations used, although threshold and plateau behaviours were also observed. The combined observations suggest a successive and increasingly global requirement for the reprogramming of gene expression and metabolic pathways to maintain ionic and osmotic homeostasis. A simple qualitative model is proposed to explain the systems behaviour of plants during salt acclimatization.
Metabolome and proteome profiling of complex I deficiency induced by rotenone.
Gielisch, Ina; Meierhofer, David
2015-01-02
Complex I (CI; NADH dehydrogenase) deficiency causes mitochondrial diseases, including Leigh syndrome. A variety of clinical symptoms of CI deficiency are known, including neurodegeneration. Here, we report an integrative study combining liquid chromatography-mass spectrometry (LC-MS)-based metabolome and proteome profiling in CI deficient HeLa cells. We report a rapid LC-MS-based method for the relative quantification of targeted metabolome profiling with an additional layer of confidence by applying multiple reaction monitoring (MRM) ion ratios for further identity confirmation and robustness. The proteome was analyzed by label-free quantification (LFQ). More than 6000 protein groups were identified. Pathway and network analyses revealed that the respiratory chain was highly deregulated, with metabolites such as FMN, FAD, NAD(+), and ADP, direct players of the OXPHOS system, and metabolites of the TCA cycle decreased up to 100-fold. Synthesis of functional iron-sulfur clusters, which are of central importance for the electron transfer chain, and degradation products like bilirubin were also significantly reduced. Glutathione metabolism on the pathway level, as well as individual metabolite components such as NADPH, glutathione (GSH), and oxidized glutathione (GSSG), was downregulated. Overall, metabolome and proteome profiles in CI deficient cells correlated well, supporting our integrated approach.
Simón-Manso, Yamil; Lowenthal, Mark S; Kilpatrick, Lisa E; Sampson, Maureen L; Telu, Kelly H; Rudnick, Paul A; Mallard, W Gary; Bearden, Daniel W; Schock, Tracey B; Tchekhovskoi, Dmitrii V; Blonder, Niksa; Yan, Xinjian; Liang, Yuxue; Zheng, Yufang; Wallace, William E; Neta, Pedatsur; Phinney, Karen W; Remaley, Alan T; Stein, Stephen E
2013-12-17
Recent progress in metabolomics and the development of increasingly sensitive analytical techniques have renewed interest in global profiling, i.e., semiquantitative monitoring of all chemical constituents of biological fluids. In this work, we have performed global profiling of NIST SRM 1950, "Metabolites in Human Plasma", using GC-MS, LC-MS, and NMR. Metabolome coverage, difficulties, and reproducibility of the experiments on each platform are discussed. A total of 353 metabolites have been identified in this material. GC-MS provides 65 unique identifications, and most of the identifications from NMR overlap with the LC-MS identifications, except for some small sugars that are not directly found by LC-MS. Also, repeatability and intermediate precision analyses show that the SRM 1950 profiling is reproducible enough to consider this material as a good choice to distinguish between analytical and biological variability. Clinical laboratory data shows that most results are within the reference ranges for each assay. In-house computational tools have been developed or modified for MS data processing and interactive web display. All data and programs are freely available online at http://peptide.nist.gov/ and http://srmd.nist.gov/ .
Chen, Quanmei; Liu, Xinyu; Zhao, Ping; Sun, Yanhui; Zhao, Xinjie; Xiong, Ying; Xu, Guowang; Xia, Qingyou
2015-02-01
Metabolic profiling of silkworm, especially the factors that affect silk synthesis at the metabolic level, is little known. Herein, metabolomic method based on gas chromatography-mass spectrometry was applied to identify key metabolic changes in silk synthesis deficient silkworms. Forty-six differential metabolites were identified in Nd group with the defect of silk synthesis. Significant changes in the levels of glycine and uric acid (up-regulation), carbohydrates and free fatty acids (down-regulation) were observed. The further metabolomics of silk synthesis deficient silkworms by decreasing silk proteins synthesis using knocking out fibroin heavy chain gene or extirpating silk glands operation showed that the changes of the metabolites were almost consistent with those of the Nd group. Furthermore, the increased silk yields by supplying more glycine or its related metabolite confirmed that glycine is a key metabolite to regulate silk synthesis. These findings provide important insights into the regulation between metabolic profiling and silk synthesis. Copyright © 2014 Elsevier Ltd. All rights reserved.
Reproducible diagnostic metabolites in plasma from typhoid fever patients in Asia and Africa
Näsström, Elin; Parry, Christopher M; Vu Thieu, Nga Tran; Maude, Rapeephan R; de Jong, Hanna K; Fukushima, Masako; Rzhepishevska, Olena; Marks, Florian; Panzner, Ursula; Im, Justin; Jeon, Hyonjin; Park, Seeun; Chaudhury, Zabeen; Ghose, Aniruddha; Samad, Rasheda; Van, Tan Trinh; Johansson, Anders; Dondorp, Arjen M; Thwaites, Guy E; Faiz, Abul; Antti, Henrik; Baker, Stephen
2017-01-01
Salmonella Typhi is the causative agent of typhoid. Typhoid is diagnosed by blood culture, a method that lacks sensitivity, portability and speed. We have previously shown that specific metabolomic profiles can be detected in the blood of typhoid patients from Nepal (Näsström et al., 2014). Here, we performed mass spectrometry on plasma from Bangladeshi and Senegalese patients with culture confirmed typhoid fever, clinically suspected typhoid, and other febrile diseases including malaria. After applying supervised pattern recognition modelling, we could significantly distinguish metabolite profiles in plasma from the culture confirmed typhoid patients. After comparing the direction of change and degree of multivariate significance, we identified 24 metabolites that were consistently up- or down regulated in a further Bangladeshi/Senegalese validation cohort, and the Nepali cohort from our previous work. We have identified and validated a metabolite panel that can distinguish typhoid from other febrile diseases, providing a new approach for typhoid diagnostics. DOI: http://dx.doi.org/10.7554/eLife.15651.001 PMID:28483042
Huang, Wenlin; Serra, Olga; Dastmalchi, Keyvan; Jin, Liqing; Yang, Lijia; Stark, Ruth E
2017-03-15
The potato (Solanum tuberosum L.) ranks third in worldwide consumption among food crops. Whereas disposal of potato peels poses significant challenges for the food industry, secondary metabolites in these tissues are also bioactive and essential to crop development. The diverse primary and secondary metabolites reported in whole tubers and wound-healing tissues prompted a comprehensive profiling study of native periderms from four cultivars with distinctive skin morphologies and commercial food uses. Polar and nonpolar soluble metabolites were extracted concurrently, analyzed chromatographically, and characterized with mass spectrometry; the corresponding solid interfacial polymeric residue was examined by solid-state 13 C NMR. In total, 112 secondary metabolites were found in the phellem tissues; multivariate analysis identified 10 polar and 30 nonpolar potential biomarkers that distinguish a single cultivar among Norkotah Russet, Atlantic, Chipeta, and Yukon Gold cultivars which have contrasting russeting features. Compositional trends are interpreted in the context of periderm protective function.
2011-01-01
Emerging evidence supporting chronic disease fighting properties of rice bran has advanced the development of stabilized rice bran for human use as a functional food and dietary supplement. A global and targeted metabolomic investigation of stabilized rice bran fermented with Saccharomyces boulardii was performed in three rice varieties. Metabolites from S. boulardii-fermented rice bran were detected by gas chromatography−mass spectrometry (GC−MS) and assessed for bioactivity compared to nonfermented rice bran in normal and malignant lymphocytes. Global metabolite profiling revealed significant differences in the metabolome that led to discovery of candidate compounds modulated by S. boulardii fermentation. Fermented rice bran extracts from three rice varieties reduced growth of human B lymphomas compared to each variety’s nonfermented control and revealed that fermentation differentially altered bioactive compounds. These data support that integration of global and targeted metabolite analysis can be utilized for assessing health properties of rice bran phytochemicals that are enhanced by yeast fermentation and that differ across rice varieties. PMID:21306106
High-resolution metabolic mapping of cell types in plant roots
Moussaieff, Arieh; Rogachev, Ilana; Brodsky, Leonid; Malitsky, Sergey; Toal, Ted W.; Belcher, Heather; Yativ, Merav; Brady, Siobhan M.; Benfey, Philip N.; Aharoni, Asaph
2013-01-01
Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations. PMID:23476065
Farag, Mohamed A; Khattab, Amira R; Ehrlich, Anja; Kropf, Matthias; Heiss, Andreas G; Wessjohann, Ludger A
2018-04-25
Lens culinaris and several Lupinus species are two legumes regarded as potential protein resources aside from their richness in phytochemicals. Consequently, characterization of their metabolite composition seems warranted to be considered as a sustainable commercial functional food. This study presents a discriminatory holistic approach for metabolite profiling in accessions of four lentil cultivars and four Lupinus species via gas chromatography/mass spectrometry. A total of 107 metabolites were identified, encompassing organic and amino acids, sugars, and sterols, along with antinutrients, viz., alkaloids and sugar phosphates. Among the examined specimens, four nutritionally valuable accessions ought to be prioritized for future breeding to include Lupinus hispanicus, enriched in organic ( ca. 11.7%) and amino acids ( ca. 5%), and Lupinus angustifolius, rich in sucrose ( ca. 40%), along with two dark-colored lentil cultivars 'verte du Puy' and 'Black Beluga' enriched in peptides. Antinutrient chemicals were observed in Lupinus polyphyllus, owing to its high alkaloid content. Several species-specific markers were also revealed using multivariate data analyses.
Lee, Sarah; Jung, Eun Sung; Do, Seon-Gil; Jung, Ga-Young; Song, Gwanpil; Song, Jung-Min; Lee, Choong Hwan
2014-03-05
Metabolite profiling of three blueberry species (Vaccinium bracteatum Thunb., V. oldhamii Miquel., and V. corymbosum L.) was performed using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultraperformance liquid chromatography-quadrupole-time-of-flight-mass spectrometry (UPLC-Q-TOF-MS) combined multivariate analysis. Partial least-squares discriminant analysis clearly showed metabolic differences among species. GC-TOF-MS analysis revealed significant differences in amino acids, organic acids, fatty acids, sugars, and phenolic acids among the three blueberry species. UPLC-Q-TOF-MS analysis indicated that anthocyanins were the major metabolites distinguishing V. bracteatum from V. oldhamii. The contents of anthocyanins such as glycosides of cyanidin were high in V. bracteatum, while glycosides of delphinidin, petunidin, and malvidin were high in V. oldhamii. Antioxidant activities assessed using ABTS and DPPH assays showed the greatest activity in V. oldhamii and revealed the highest correlation with total phenolic, total flavonoid, and total anthocyanin contents and their metabolites.
Heuberger, Adam L; Broeckling, Corey D; Lewis, Matthew R; Salazar, Lauren; Bouckaert, Peter; Prenni, Jessica E
2012-12-01
The effect of temperature on non-volatile compounds in beer has not been well characterised during storage. Here, a metabolomics approach was applied to characterise the effect of storage temperature on non-volatile metabolite variation after 16weeks of storage, using fresh beer as a control. The metabolite profile of room temperature stored (RT) and cold temperature stored (CT) beer differed significantly from fresh, with the most substantial variation observed between RT and fresh beer. Metabolites that changed during storage included prenylated flavonoids, purines, and peptides, and all showed reduced quantitative variation under the CT storage conditions. Corresponding sensory panel observations indicated significant beer oxidation after 12 and 16weeks of storage, with higher values reported for RT samples. These data support that temperature affected beer oxidation during short-term storage, and reveal 5-methylthioadenosine (5-MTA) as a candidate non-volatile metabolite marker for beer oxidation and staling. Copyright © 2012 Elsevier Ltd. All rights reserved.
Metabolic and miRNA Profiling of TMV Infected Plants Reveals Biphasic Temporal Changes
Bazzini, Ariel A.; Manacorda, Carlos A.; Tohge, Takayuki; Conti, Gabriela; Rodriguez, Maria C.; Nunes-Nesi, Adriano; Villanueva, Sofía; Fernie, Alisdair R.; Carrari, Fernando; Asurmendi, Sebastian
2011-01-01
Plant viral infections induce changes including gene expression and metabolic components. Identification of metabolites and microRNAs (miRNAs) differing in abundance along infection may provide a broad view of the pathways involved in signaling and defense that orchestrate and execute the response in plant-pathogen interactions. We used a systemic approach by applying both liquid and gas chromatography coupled to mass spectrometry to determine the relative level of metabolites across the viral infection, together with a miRs profiling using a micro-array based procedure. Systemic changes in metabolites were characterized by a biphasic response after infection. The first phase, detected at one dpi, evidenced the action of a systemic signal since no virus was detected systemically. Several of the metabolites increased at this stage were hormone-related. miRs profiling after infection also revealed a biphasic alteration, showing miRs alteration at 5 dpi where no virus was detected systemically and a late phase correlating with virus accumulation. Correlation analyses revealed a massive increase in the density of correlation networks after infection indicating a complex reprogramming of the regulatory pathways, either in response to the plant defense mechanism or to the virus infection itself. Our data propose the involvement of a systemic signaling on early miRs alteration. PMID:22174812
Greco, Mariana; Kemppainen, Minna; Pose, Graciela; Pardo, Alejandro
2015-01-01
Xerophilic fungal species of the genus Aspergillus are economically highly relevant due to their ability to grow on low water activity substrates causing spoilage of stored goods and animal feeds. These fungi can synthesize a variety of secondary metabolites, many of which show animal toxicity, creating a health risk for food production animals and to humans as final consumers, respectively. Animal feeds used for rabbit, chinchilla and rainbow trout production in Argentina were analysed for the presence of xerophilic Aspergillus section Aspergillus species. High isolation frequencies (>60%) were detected in all the studied rabbit and chinchilla feeds, while the rainbow trout feeds showed lower fungal charge (25%). These section Aspergillus contaminations comprised predominantly five taxa. Twenty isolates were subjected to taxonomic characterization using both ascospore SEM micromorphology and two independent DNA loci sequencing. The secondary metabolite profiles of the isolates were determined qualitatively by HPLC-MS. All the isolates produced neoechinulin A, 17 isolates were positive for cladosporin and echinulin, and 18 were positive for neoechinulin B. Physcion and preechinulin were detected in a minor proportion of the isolates. This is the first report describing the detailed species composition and the secondary metabolite profiles of Aspergillus section Aspergillus contaminating animal feeds. PMID:26364643
Xu, Wei; Chen, Deying; Wang, Nan; Zhang, Ting; Zhou, Ruokun; Huan, Tao; Lu, Yingfeng; Su, Xiaoling; Xie, Qing; Li, Liang; Li, Lanjuan
2015-01-20
Human fecal samples contain endogenous human metabolites, gut microbiota metabolites, and other compounds. Profiling the fecal metabolome can produce metabolic information that may be used not only for disease biomarker discovery, but also for providing an insight about the relationship of the gut microbiome and human health. In this work, we report a chemical isotope labeling liquid chromatography-mass spectrometry (LC-MS) method for comprehensive and quantitative analysis of the amine- and phenol-containing metabolites in fecal samples. Differential (13)C2/(12)C2-dansyl labeling of the amines and phenols was used to improve LC separation efficiency and MS detection sensitivity. Water, methanol, and acetonitrile were examined as an extraction solvent, and a sequential water-acetonitrile extraction method was found to be optimal. A step-gradient LC-UV setup and a fast LC-MS method were evaluated for measuring the total concentration of dansyl labeled metabolites that could be used for normalizing the sample amounts of individual samples for quantitative metabolomics. Knowing the total concentration was also useful for optimizing the sample injection amount into LC-MS to maximize the number of metabolites detectable while avoiding sample overloading. For the first time, dansylation isotope labeling LC-MS was performed in a simple time-of-flight mass spectrometer, instead of high-end equipment, demonstrating the feasibility of using a low-cost instrument for chemical isotope labeling metabolomics. The developed method was applied for profiling the amine/phenol submetabolome of fecal samples collected from three families. An average of 1785 peak pairs or putative metabolites were found from a 30 min LC-MS run. From 243 LC-MS runs of all the fecal samples, a total of 6200 peak pairs were detected. Among them, 67 could be positively identified based on the mass and retention time match to a dansyl standard library, while 581 and 3197 peak pairs could be putatively identified based on mass match using MyCompoundID against a Human Metabolome Database and an Evidence-based Metabolome Library, respectively. This represents the most comprehensive profile of the amine/phenol submetabolome ever detected in human fecal samples. The quantitative metabolome profiles of individual samples were shown to be useful to separate different groups of samples, illustrating the possibility of using this method for fecal metabolomics studies.
Nomeir, Amin A; Pramanik, Birendra N; Heimark, Larry; Bennett, Frank; Veals, John; Bartner, Peter; Hilbert, Maryjane; Saksena, Anil; McNamara, Paul; Girijavallabhan, Viyyoor; Ganguly, Ashit K; Lovey, Raymond; Pike, Russell; Wang, Haiyan; Liu, Yi-Tsung; Kumari, Pramila; Korfmacher, Walter; Lin, Chin-Chung; Cacciapuoti, Anthony; Loebenberg, David; Hare, Roberta; Miller, George; Pickett, Cecil
2008-04-01
Posaconazole (SCH 56592) is a novel triazole antifungal drug that is marketed in Europe and the United States under the trade name 'Noxafil' for prophylaxis against invasive fungal infections. SCH 56592 was discovered as a possible active metabolite of SCH 51048, an earlier lead. Initial studies have shown that serum concentrations determined by a microbiological assay were higher than those determined by HPLC from animals dosed with SCH 51048. Subsequently, several animals species were dosed with (3)H-SCH 51048 and the serum was analyzed for total radioactivity, SCH 51048 concentration and antifungal activity. The antifungal activity was higher than that expected based on SCH 51048 serum concentrations, confirming the presence of active metabolite(s). Metabolite profiling of serum samples at selected time intervals pinpointed the peak that was suspected to be the active metabolite. Consequently, (3)H-SCH 51048 was administered to a large group of mice, the serum was harvested and the metabolite was isolated by extraction and semipreparative HPLC. LC-MS/MS analysis suggested that the active metabolite is a secondary alcohol with the hydroxyl group in the aliphatic side chain of SCH 51048. All corresponding monohydroxylated diastereomeric mixtures were synthesized and characterized. The HPLC retention time and LC-MS/MS spectra of the diastereomeric secondary alcohols of SCH 51048 were similar to those of the isolated active metabolite. Finally, all corresponding individual monohydroxylated diasteriomers were synthesized and evaluated for in vitro and in vivo antifungal potencies, as well as pharmacokinetics. SCH 56592 emerged as the candidate with the best overall profile.
Li, Shuping; Teng, Liang; Liu, Wei; Cheng, Xuemei; Jiang, Bo; Wang, Zhengtao; Wang, Chang-Hong
2016-09-01
Context The β-carboline alkaloid harmane is widely distributed in common foods, beverages and hallucinogenic plants. Harmane exerts potential in therapies for Alzheimer's and depression diseases. However, little information on its dynamic metabolic profiles and pharmacokinetics in vivo is currently available. Objective This study investigates the dynamic metabolic profiles and pharmacokinetic properties of harmane and its metabolites in rats in vivo. Materials and methods A highly selective, sensitive and rapid ultra-performance liquid chromatography combined with electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and well-validated for simultaneous quantitative determination of harmane and its uncertain endogenous metabolite harmine, as well as for semiquantitative determination of 10 harmane metabolites in rats after intravenous injection and oral administration of harmane at 1.0 and 30.0 mg/kg, respectively. Results The calibration curves of harmane and harmine showed excellent linearity within the concentration range of 1-2000 ng/mL with acceptable accuracy, precision, selectivity, recovery, matrix effect and stability. Ten metabolites, including harmane but not harmine, were detected and identified after intravenous and oral administration of harmane. The absolute bioavailability of harmane following an oral dose was 19.41 ± 3.97%. According to the AUC0-t values of all the metabolites, the metabolic levels of phase II metabolites were higher than those of phase I metabolites, and the sulphation pathways were the dominant metabolic routes for harmane in both routes of administration. Discussion and conclusion The pharmacokinetic properties of harmane and its 10 metabolites in rats were determined. Sulphate conjugation was the predominant metabolic process of harmane in rats.
Hurley-Sanders, Jennifer L.; Levine, Jay F.; Nelson, Stacy A. C.; Law, J. M.; Showers, William J.; Stoskopf, Michael K.
2015-01-01
We used 1H nuclear magnetic resonance spectroscopy to describe key metabolites of the polar metabolome of the freshwater mussel, Elliptio complanata. Principal components analysis documented variability across tissue types and river of origin in mussels collected from two rivers in North Carolina (USA). Muscle, digestive gland, mantle and gill tissues yielded identifiable but overlapping metabolic profiles. Variation in digestive gland metabolic profiles between the two mussel collection sites was characterized by differences in mono- and disaccharides. Variation in mantle tissue metabolomes appeared to be associated with sex. Nuclear magnetic resonance spectroscopy is a sensitive means to detect metabolites in the tissues of E. complanata and holds promise as a tool for the investigation of freshwater mussel health and physiology. PMID:27293708
Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders
Kang, Dae-Wook; Ilhan, Zehra Esra; Isern, Nancy G.; ...
2017-12-22
Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Usingmore » 1H-NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites-caprate, nicotinate, glutamine, thymine, and aspartate-may potentially function as a modest biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of phylotypes most closely related to Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. In conclusion, despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further investigation of metabolites in larger cohorts.« less
Differences in fecal microbial metabolites and microbiota of children with autism spectrum disorders
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Dae-Wook; Ilhan, Zehra Esra; Isern, Nancy G.
Evidence supporting that gut problems are linked to ASD symptoms has been accumulating both in humans and animal models of ASD. Gut microbes and their metabolites may be linked not only to GI problems but also to ASD behavior symptoms. Despite this high interest, most previous studies have looked mainly at microbial structure, and studies on fecal metabolites are rare in the context of ASD. Thus, we aimed to detect fecal metabolites that may be present at significantly different concentrations between 21 children with ASD and 23 neurotypical children and to investigate its possible link to human gut microbiome. Usingmore » 1H-NMR spectroscopy and 16S rRNA gene amplicon sequencing, we examined metabolite profiles and microbial compositions in fecal samples, respectively. Of the 59 metabolites detected, isopropanol concentrations were significantly higher in feces of children with ASD after multiple testing corrections. We also observed similar trends of fecal metabolites to previous studies; children with ASD have higher fecal p-cresol and possibly lower GABA concentrations. In addition, Fisher Discriminant Analysis (FDA) with leave-out-validation suggested that a group of metabolites-caprate, nicotinate, glutamine, thymine, and aspartate-may potentially function as a modest biomarker to separate ASD participants from the neurotypical group (78% sensitivity and 81% specificity). Consistent with our previous Arizona cohort study, we also confirmed lower gut microbial diversity and reduced relative abundances of phylotypes most closely related to Prevotella copri in children with ASD. After multiple testing corrections, we also learned that relative abundances of Feacalibacterium prausnitzii and Haemophilus parainfluenzae were lower in feces of children with ASD. In conclusion, despite a relatively short list of fecal metabolites, the data in this study support that children with ASD have altered metabolite profiles in feces when compared with neurotypical children and warrant further investigation of metabolites in larger cohorts.« less
Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice
NASA Astrophysics Data System (ADS)
Moroz, Jennifer; Turner, Joan; Slupsky, Carolyn; Fallone, Gino; Syme, Alasdair
2011-02-01
The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.
Metabolomics: the apogee of the omic triology
Patti, Gary J; Yanes, Oscar; Siuzdak, Gary
2013-01-01
Metabolites, the chemical entities that are transformed during metabolism, provide a functional readout of cellular biochemistry. With emerging technologies in mass spectrometry, thousands of metabolites can now be quantitatively measured from minimal amounts of biological material, which has thereby enabled systems-level analyses. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanism are being revealed and shaping our understanding of cell biology, physiology, and medicine. PMID:22436749
Saffron Samples of Different Origin: An NMR Study of Microwave-Assisted Extracts
Sobolev, Anatoly P.; Carradori, Simone; Capitani, Donatella; Vista, Silvia; Trella, Agata; Marini, Federico; Mannina, Luisa
2014-01-01
An NMR analytical protocol is proposed to characterize saffron samples of different geographical origin (Greece, Spain, Hungary, Turkey and Italy). A microwave-assisted extraction procedure was developed to obtain a comparable recovery of metabolites with respect to the ISO specifications, reducing the solvent volume and the extraction time needed. Metabolite profiles of geographically different saffron extracts were compared showing significant differences in the content of some metabolites. PMID:28234327
Zhang, Rong; Watson, David G; Wang, Lijie; Westrop, Gareth D; Coombs, Graham H; Zhang, Tong
2014-10-03
It has been reported that HILIC column chemistry has a great effect on the number of detected metabolites in LC-HRMS-based untargeted metabolite profiling studies. However, no systematic investigation has been carried out with regard to the optimisation of mobile phase characteristics. In this study using 223 metabolite standards, we explored the retention mechanisms on three zwitterionic columns with varied mobile phase composition, demonstrated the interference from poor chromatographic peak shapes on the output of data extraction, and assessed the quality of chromatographic signals and the separation of isomers under each LC condition. As expected, on the ZIC-cHILIC column the acidic metabolites showed improved chromatographic performance at low pH which can be attributed to the opposite arrangement of the permanently charged groups on this column in comparison with the ZIC-HILIC column. Using extracts from the protozoan parasite Leishmania, we compared the numbers of repeatedly detected LC-HRMS features under different LC conditions with putative identification of metabolites not amongst the standards being based on accurate mass (±3ppm). Besides column chemistry, the pH of the mobile phase plays a key role in not only determining the retention mechanisms of solutes but also the output of the LC-HRMS data processing. Fast evaporation of ammonium carbonate produced less ion suppression in ESI source and consequently improved the detectability of the metabolites in low abundance in comparison with other ammonium salts. Our results show that the combination of a ZIC-pHILIC column with an ammonium carbonate mobile phase, pH 9.2, at 20mM in the aqueous phase or 10mM in both aqueous and organic mobile phase components, provided the most suitable LC conditions for LC-HRMS-based untargeted metabolite profiling of Leishmania parasite extracts. The signal reliability of the mass spectrometer used in this study (Exactive Orbitrap) was also investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji
2017-08-22
Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.
Drapal, Margit; Wheeler, Paul R; Fraser, Paul D
2018-06-26
Mycobacterium species can cause a range of nontuberculous infections of healthy and immunocompromised people as well as infect people during and after surgical procedures. The similarity of nontuberculous mycobacteria (NTM) to the tuberculosis bacilli (TB) could ultimately enable the use of anti-TB drugs for the genus. Hence, three NTM (M. smegmatis, M. phlei and M. avium) were cultured under different lab conditions, causing two mycobacterial phenotypes (active and dormant), and treated with isoniazid (INH) and ethambutol (EMB) independently or in combination. Metabolite profiling was applied to facilitate the investigation and characterisation of intracellular targets affected by the antibiotics. Aliquots of the cell culture were taken over the treatment period and the metabolite profile of the cells analysed by GC/MS. Comparative analysis of the metabolite levels to untreated mycobacteria confirmed the successful action of the antibiotics on the metabolism of all three species. Furthermore, single metabolites and metabolite pathways affected by the antibiotics could be identified and included, besides the known target sites for INH and EMB on mycobacterial cells, changes in e.g. nucleotide and saccharide levels. The combined treatment highlighted the property of EMB to enhance the effects of INH even under hypoxic culture conditions.
Ultrahigh Pressure Processing Produces Alterations in the Metabolite Profiles of Panax ginseng.
Lee, Mee Youn; Singh, Digar; Kim, Sung Han; Lee, Sang Jun; Lee, Choong Hwan
2016-06-22
Ultrahigh pressure (UHP) treatments are non-thermal processing methods that have customarily been employed to enhance the quality and productivity of plant consumables. We aimed to evaluate the effects of UHP treatments on ginseng samples (white ginseng: WG; UHP-treated WG: UWG; red ginseng: RG; UHP-treated RG: URG; ginseng berries: GB; and UHP-treated GB: UGB) using metabolite profiling based on ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-tandem mass spectrometry (UHPLC-LTQ-IT-MS/MS) and gas chromatography time-of-flight mass spectrometry (GC-TOF-MS). Multivariate data analyses revealed a clear demarcation among the GB and UGB samples, and the phenotypic evaluations correlated the highest antioxidant activities and the total phenolic and flavonoid compositions with the UGB samples. Overall, eight amino acids, seven organic acids, seven sugars and sugar derivatives, two fatty acids, three notoginsenosides, three malonylginsenosides, and three ginsenosides, were identified as significantly discriminant metabolites between the GB and UGB samples, with relatively higher proportions in the latter. Ideally, these metabolites can be used as quality biomarkers for the assessment of ginseng products and our results indicate that UHP treatment likely led to an elevation in the proportions of total extractable metabolites in ginseng samples.
Chen, Si; Li, Meihong; Zheng, Gongyu; Wang, Tingting; Lin, Jun; Wang, Shanshan; Wang, Xiaxia; Chao, Qianlin; Cao, Shixian; Yang, Zhenbiao; Yu, Xiaomin
2018-01-24
Wuyi Rock tea, well-recognized for rich flavor and long-lasting fragrance, is a premium subcategory of oolong tea mainly produced in Wuyi Mountain and nearby regions of China. The quality of tea is mainly determined by the chemical constituents in the tea leaves. However, this remains underexplored for Wuyi Rock tea cultivars. In this study, we investigated the leaf metabolite profiles of 14 major Wuyi Rock tea cultivars grown in the same producing region using UPLC-QTOF MS and UPLC-QqQ MS with data processing via principal component analysis and cluster analysis. Relative quantitation of 49 major metabolites including flavan-3-ols, proanthocyanidins, flavonol glycosides, flavone glycosides, flavonone glycosides, phenolic acid derivatives, hydrolysable tannins, alkaloids and amino acids revealed clear variations between tea cultivars. In particular, catechins, kaempferol and quercetin derivatives were key metabolites responsible for cultivar discrimination. Information on the varietal differences in the levels of bioactive/functional metabolites, such as methylated catechins, flavonol glycosides and theanine, offers valuable insights to further explore the nutritional values and sensory qualities of Wuyi Rock tea. It also provides potential markers for tea plant fingerprinting and cultivar identification.
Wang, Hualong; Lian, Kaoqi; Han, Bing; Wang, Yanyong; Kuo, Sheng-Han; Geng, Yuan; Qiang, Jing; Sun, Meiyu; Wang, Mingwei
2015-01-01
Alzheimer's disease (AD), the most common age-dependent neurodegenerative disorder, produces a progressive decline in cognitive function. The metabolic mechanism of AD has emerged in recent years. In this study, we used multivariate analyses of gas chromatography-mass spectrometry measurements to determine that learning and retention-related metabolic profiles are altered during aging in the hippocampus of the senescence-accelerated mouse prone 8 (SAMP8). Alterations in 17 metabolites were detected in mature and aged mice compared to young mice (13 decreased and 4 increased metabolites), including metabolites related to dysfunctional lipid metabolism (significantly increased cholesterol, oleic acid, and phosphoglyceride levels), decreased amino acid (alanine, serine, glycine, aspartic acid, glutamate, and gamma-aminobutyric acid), and energy-related metabolite levels (malic acid, butanedioic acid, fumaric acid, and citric acid), and other altered metabolites (increased N-acetyl-aspartic acid and decreased pyroglutamic acid, urea, and lactic acid) in the hippocampus. All of these alterations indicated that the metabolic mechanisms of age-related cognitive impairment in SAMP8 mice were related to multiple pathways and networks. Lipid metabolism, especially cholesterol metabolism, appears to play a distinct role in the hippocampus in AD. PMID:24284365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noecker, Cecilia; Eng, Alexander; Srinivasan, Sujatha
ABSTRACT Multiple molecular assays now enable high-throughput profiling of the ecology, metabolic capacity, and activity of the human microbiome. However, to date, analyses of such multi-omic data typically focus on statistical associations, often ignoring extensive prior knowledge of the mechanisms linking these various facets of the microbiome. Here, we introduce a comprehensive framework to systematically link variation in metabolomic data with community composition by utilizing taxonomic, genomic, and metabolic information. Specifically, we integrate available and inferred genomic data, metabolic network modeling, and a method for predicting community-wide metabolite turnover to estimate the biosynthetic and degradation potential of a given community.more » Our framework then compares variation in predicted metabolic potential with variation in measured metabolites’ abundances to evaluate whether community composition can explain observed shifts in the community metabolome, and to identify key taxa and genes contributing to the shifts. Focusing on two independent vaginal microbiome data sets, each pairing 16S community profiling with large-scale metabolomics, we demonstrate that our framework successfully recapitulates observed variation in 37% of metabolites. Well-predicted metabolite variation tends to result from disease-associated metabolism. We further identify several disease-enriched species that contribute significantly to these predictions. Interestingly, our analysis also detects metabolites for which the predicted variation negatively correlates with the measured variation, suggesting environmental control points of community metabolism. Applying this framework to gut microbiome data sets reveals similar trends, including prediction of bile acid metabolite shifts. This framework is an important first step toward a system-level multi-omic integration and an improved mechanistic understanding of the microbiome activity and dynamics in health and disease. IMPORTANCEStudies characterizing both the taxonomic composition and metabolic profile of various microbial communities are becoming increasingly common, yet new computational methods are needed to integrate and interpret these data in terms of known biological mechanisms. Here, we introduce an analytical framework to link species composition and metabolite measurements, using a simple model to predict the effects of community ecology on metabolite concentrations and evaluating whether these predictions agree with measured metabolomic profiles. We find that a surprisingly large proportion of metabolite variation in the vaginal microbiome can be predicted based on species composition (including dramatic shifts associated with disease), identify putative mechanisms underlying these predictions, and evaluate the roles of individual bacterial species and genes. Analysis of gut microbiome data using this framework recovers similar community metabolic trends. This framework lays the foundation for model-based multi-omic integrative studies, ultimately improving our understanding of microbial community metabolism.« less
Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon
2014-12-01
Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air. © 2014 Wiley Periodicals, Inc.
Wu, Bin; Jiang, Hongli; He, Quan; Wang, Meng; Xue, Jinhong; Liu, Hua; Shi, Kehui; Wei, Meng; Liang, Shanshan; Zhang, Liwen
2017-01-01
Chronic kidney disease is accompanied by changes in the gut microbiome and by an increase in the number of gut pathogenic bacteria. The aim of this study was to investigate the difference of the faecal metabolic profiles in rats with uremia, and to determine whether the altered metabolites in the rats with uremia can be restored by Lactobacillus. Thirty rats were randomly divided into 3 groups: sham, uremia and uremia + probiotic (UP) groups. The rats in uremia and UP groups were prepared through surgical renal mass 5/6 ablation. The rats in the UP group received Lactobacillus LB (1 ml, 109 CFU/ml) through gavage every day for 4 weeks. The rats were fed with a standard diet. Faecal samples were analysed through ultra performance liquid chromatography/mass spectrometry. Statistical analyses were performed using MetaboAnalyst and MATLAB. A total of 99, 324 and 177 significantly different ion peaks were selected between sham and uremia groups; sham and UP groups; and uremia and UP groups, respectively. In the 3 groups, 35 significantly altered metabolites were identified; of the 35 metabolites, 27 initially increased and then decreased; by contrast, 8 metabolites initially decreased and then increased. The 35 metabolites were subjected to pathway analysis in MetaboAnalyst. Faecal metabolites were significantly altered in rats with uremia; these changes were partially reversed by Lactobacillus. © 2016 S. Karger AG, Basel.
Son, Su Young; Kim, Na Kyung; Lee, Sunmin; Singh, Digar; Kim, Ga Ryun; Lee, Jong Seok; Yang, Hee-Sun; Yeo, Joohong; Lee, Sarah; Lee, Choong Hwan
2016-09-01
A multi-parallel approach gauging the mass spectrometry-based metabolite fingerprinting coupled with bioactivity and pathway evaluations could serve as an efficacious tool for inferring plant taxonomic orders. Thirty-four species from three plant families, namely Cornaceae (7), Fabaceae (9), and Rosaceae (18) were subjected to metabolite profiling using gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS) and ultrahigh performance liquid chromatography-linear trap quadrupole-ion trap-mass spectrometry (UHPLC-LTQ-IT-MS/MS), followed by multivariate analyses to determine the metabolites characteristic of these families. The partial least squares discriminant analysis (PLS-DA) revealed the distinct clustering pattern of metabolites for each family. The pathway analysis further highlighted the relatively higher proportions of flavonols and ellagitannins in the Cornaceae family than in the other two families. Higher levels of phenolic acids and flavan-3-ols were observed among species from the Rosaceae family, while amino acids, flavones, and isoflavones were more abundant among the Fabaceae family members. The antioxidant activities of plant extracts were measured using ABTS, DPPH, and FRAP assays, and indicated that extracts from the Rosaceae family had the highest activity, followed by those from Cornaceae and Fabaceae. The correlation map analysis positively links the proportional concentration of metabolites with their relative antioxidant activities, particularly in Cornaceae and Rosaceae. This work highlights the pre-eminence of the multi-parallel approach involving metabolite profiling and bioactivity evaluations coupled with metabolic pathways as an efficient methodology for the evaluation of plant phylogenies.
Bénard, Camille; Bernillon, Stéphane; Biais, Benoît; Osorio, Sonia; Maucourt, Mickaël; Ballias, Patricia; Deborde, Catherine; Colombié, Sophie; Cabasson, Cécile; Jacob, Daniel; Vercambre, Gilles; Gautier, Hélène; Rolin, Dominique; Génard, Michel; Fernie, Alisdair R.; Gibon, Yves; Moing, Annick
2015-01-01
A detailed study of the diurnal compositional changes was performed in tomato (Solanum lycopersicum cv. Moneymaker) leaves and fruits. Plants were cultivated in a commercial greenhouse under two growth conditions: control and shaded. Expanding fruits and the closest mature leaves were harvested during two different day/night cycles (cloudy or sunny day). High-throughput robotized biochemical phenotyping of major compounds, as well as proton nuclear magnetic resonance and mass spectrometry metabolomic profiling, were used to measure the contents of about 70 metabolites in the leaves and 60 metabolites in the fruits, in parallel with ecophysiological measurements. Metabolite data were processed using multivariate, univariate, or clustering analyses and correlation networks. The shaded carbon-limited plants adjusted their leaf area, decreased their sink carbon demand and showed subtle compositional modifications. For source leaves, several metabolites varied along a diel cycle, including those directly linked to photosynthesis and photorespiration. These metabolites peaked at midday in both conditions and diel cycles as expected. However, transitory carbon storage was limited in tomato leaves. In fruits, fewer metabolites showed diel fluctuations, which were also of lower amplitude. Several organic acids were among the fluctuating metabolites. Diel patterns observed in leaves and especially in fruits differed between the cloudy and sunny days, and between the two conditions. Relationships between compositional changes in leaves and fruits are in agreement with the fact that several metabolic processes of the fruit appeared linked to its momentary supply of sucrose. PMID:25873655
Clock Regulation of Metabolites Reveals Coupling between Transcription and Metabolism.
Krishnaiah, Saikumari Y; Wu, Gang; Altman, Brian J; Growe, Jacqueline; Rhoades, Seth D; Coldren, Faith; Venkataraman, Anand; Olarerin-George, Anthony O; Francey, Lauren J; Mukherjee, Sarmistha; Girish, Saiveda; Selby, Christopher P; Cal, Sibel; Er, Ubeydullah; Sianati, Bahareh; Sengupta, Arjun; Anafi, Ron C; Kavakli, I Halil; Sancar, Aziz; Baur, Joseph A; Dang, Chi V; Hogenesch, John B; Weljie, Aalim M
2017-04-04
The intricate connection between the circadian clock and metabolism remains poorly understood. We used high temporal resolution metabolite profiling to explore clock regulation of mouse liver and cell-autonomous metabolism. In liver, ∼50% of metabolites were circadian, with enrichment of nucleotide, amino acid, and methylation pathways. In U2 OS cells, 28% were circadian, including amino acids and NAD biosynthesis metabolites. Eighteen metabolites oscillated in both systems and a subset of these in primary hepatocytes. These 18 metabolites were enriched in methylation and amino acid pathways. To assess clock dependence of these rhythms, we used genetic perturbation. BMAL1 knockdown diminished metabolite rhythms, while CRY1 or CRY2 perturbation generally shortened or lengthened rhythms, respectively. Surprisingly, CRY1 knockdown induced 8 hr rhythms in amino acid, methylation, and vitamin metabolites, decoupling metabolite from transcriptional rhythms, with potential impact on nutrient sensing in vivo. These results provide the first comprehensive views of circadian liver and cell-autonomous metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Patients and animals with chronic kidney disease (CKD) exhibit profound alterations in the gut environment including shifts in microbial composition, increased fecal pH, and increased blood levels of gut microbe-derived metabolites (xeno-metabolites). The fermentable dietary fiber—high amylose maize...
The potential for profiling endogenous metabolites in urine from male fathead minnows (Pimephales promelas) to assess chemical exposures was explored using nuclear magnetic resonance (NMR) spectroscopy. Both one dimensional (1D) and two dimensional (2D) NMR spectroscopy w...
Roessner, Ute; Willmitzer, Lothar; Fernie, Alisdair R.
2001-01-01
We conducted a comprehensive metabolic phenotyping of potato (Solanum tuberosum L. cv Desiree) tuber tissue that had been modified either by transgenesis or exposure to different environmental conditions using a recently developed gas chromatography-mass spectrometry profiling protocol. Applying this technique, we were able to identify and quantify the major constituent metabolites of the potato tuber within a single chromatographic run. The plant systems that we selected to profile were tuber discs incubated in varying concentrations of fructose, sucrose, and mannitol and transgenic plants impaired in their starch biosynthesis. The resultant profiles were then compared, first at the level of individual metabolites and then using the statistical tools hierarchical cluster analysis and principal component analysis. These tools allowed us to assign clusters to the individual plant systems and to determine relative distances between these clusters; furthermore, analyzing the loadings of these analyses enabled identification of the most important metabolites in the definition of these clusters. The metabolic profiles of the sugar-fed discs were dramatically different from the wild-type steady-state values. When these profiles were compared with one another and also with those we assessed in previous studies, however, we were able to evaluate potential phenocopies. These comparisons highlight the importance of such an approach in the functional and qualitative assessment of diverse systems to gain insights into important mediators of metabolism. PMID:11706160
Functional nucleic acids as in vivo metabolite and ion biosensors.
Alsaafin, Alaa; McKeague, Maureen
2017-08-15
Characterizing the role of metabolites, metals, and proteins is required to understand normal cell function, and ultimately, elucidate the mechanism of disease. Metabolite concentration and transformation results collected from cell lysates or fixed-cells conceal important dynamic information and differences between individual cells that often have profound functional consequences. Functional nucleic acid-based biosensors are emerging tools that are capable of monitoring ions and metabolites in cell populations or whole animals. Functional nucleic acids (FNAs) are a class of biomolecules that can exhibit either ligand binding or enzymatic activity. Unlike their protein analogues or the use of instrument-based analysis, FNA-based biosensors are capable of entering cells without disruption to the cellular environment and can report on the concentration, dynamics, and spatial localization of molecules in cells. Here, we review the types of FNAs that have been used as in vivo biosensors, and how FNAs can be coupled to transduction systems and delivered inside cells. We also provide examples from the literature that demonstrate their impact in practical applications. Finally, we comment on the critical limitations that need to be addressed to enable their use for single-cell dynamic tracking of metabolites and ions in vivo. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.
Biotransformation of the platinum drug JM216 following oral administration to cancer patients.
Raynaud, F I; Mistry, P; Donaghue, A; Poon, G K; Kelland, L R; Barnard, C F; Murrer, B A; Harrap, K R
1996-01-01
This study evaluates the metabolic profile of JM216 [bis(acetato)ammine-dichloro(cyclohexylamine) platinum(IV)], the first orally administrable platinum complex, in plasma ultrafiltrates of 12 patients (n = 2-4 time points per patient) following different doses of drug (120, 200, 340, 420, 560 mg/m2). The biotransformation profile was evaluated by high-performance liquid chromatography (HPLC) followed by atomic absorption spectrophotometry (AA). The AA profiles were compared with those previously identified by HPLC on line with mass spectrometry (HPLC-MS) in plasma incubated with JM216. A total of six platinum peaks (Rt = 5.5, 7.2, 10.6, 12.4, 15.6, and 21.6 min, respectively) were observed in patients' plasma ultrafiltrate samples, of which only four appeared during the first 6 h post-treatment. Four of these coeluted with those observed and identified previously in plasma incubation medium. No parent JM216 was detected. The major metabolite seen in patients was the Pt II complex JM118 [cis-amminedichloro-(cyclohexylamine)platinum(II)] and was observed in all the patients. Interestingly, the second metabolite was shown to coelute with the Pt IV species JM383 [bis-acetatoammine(cyclohexylamine)dihydroxoplatinum (IV)]. Both JM118 and JM383 were identified by HPLC-MS in a clinical sample. Peak C, which was a minor product (less than 5% of the free platinum), coeluted with JM559 [bis-acetatoammine-chloro(cyclohexylalamine)hydroxoplatin um(IV)]. The cytotoxicity profile of all three metabolites in a panel of cisplatin-sensitive and -resistant human ovarian carcinoma cell lines was very close to that of the parent drug. In addition, the concentrations of JM118 reached in patients' plasma ultrafiltrate were comparable with the cytotoxic levels of the compound determined in the ovarian carcinoma panel of cell lines. Two metabolites were seen in patients but not in the in vitro incubation medium, suggesting the involvement of a possible enzymatic reaction. Thus, the biotransformation profile following oral administration of JM216 shows a variety of Pt(IV) and Pt(Il) metabolites in plasma that differ significantly from other systemically applied platinum drugs.
Gladine, Cécile; Newman, John W; Durand, Thierry; Pedersen, Theresa L; Galano, Jean-Marie; Demougeot, Céline; Berdeaux, Olivier; Pujos-Guillot, Estelle; Mazur, Andrzej; Comte, Blandine
2014-01-01
The anti-atherogenic effects of omega 3 fatty acids, namely eicosapentaenoic (EPA) and docosahexaenoic acids (DHA) are well recognized but the impact of dietary intake on bioactive lipid mediator profiles remains unclear. Such a profiling effort may offer novel targets for future studies into the mechanism of action of omega 3 fatty acids. The present study aimed to determine the impact of DHA supplementation on the profiles of polyunsaturated fatty acids (PUFA) oxygenated metabolites and to investigate their contribution to atherosclerosis prevention. A special emphasis was given to the non-enzymatic metabolites knowing the high susceptibility of DHA to free radical-mediated peroxidation and the increased oxidative stress associated with plaque formation. Atherosclerosis prone mice (LDLR(-/-)) received increasing doses of DHA (0, 0.1, 1 or 2% of energy) during 20 weeks leading to a dose-dependent reduction of atherosclerosis (R(2) = 0.97, p = 0.02), triglyceridemia (R(2) = 0.97, p = 0.01) and cholesterolemia (R(2) = 0.96, p<0.01). Targeted lipidomic analyses revealed that both the profiles of EPA and DHA and their corresponding oxygenated metabolites were substantially modulated in plasma and liver. Notably, the hepatic level of F4-neuroprostanes, a specific class of DHA peroxidized metabolites, was strongly correlated with the hepatic DHA level. Moreover, unbiased statistical analysis including correlation analyses, hierarchical cluster and projection to latent structure discriminate analysis revealed that the hepatic level of F4-neuroprostanes was the variable most negatively correlated with the plaque extent (p<0.001) and along with plasma EPA-derived diols was an important mathematical positive predictor of atherosclerosis prevention. Thus, oxygenated n-3 PUFAs, and F4-neuroprostanes in particular, are potential biomarkers of DHA-associated atherosclerosis prevention. While these may contribute to the anti-atherogenic effects of DHA, further in vitro investigations are needed to confirm such a contention and to decipher the molecular mechanisms of action.
GLS-Finder: A Platform for Fast Profiling of Glucosinolates in Brassica Vegetables.
Sun, Jianghao; Zhang, Mengliang; Chen, Pei
2016-06-01
Mass spectrometry combined with related tandem techniques has become the most popular method for plant secondary metabolite characterization. We introduce a new strategy based on in-database searching, mass fragmentation behavior study, formula predicting for fast profiling of glucosinolates, a class of important compounds in brassica vegetables. A MATLAB script-based expert system computer program, "GLS-Finder", was developed. It is capable of qualitative and semi-quantitative analyses of glucosinolates in samples using data generated by ultrahigh-performance liquid chromatography-high-resolution accurate mass with multi-stage mass fragmentation (UHPLC-HRAM/MS(n)). A suite of bioinformatic tools was integrated into the "GLS-Finder" to perform raw data deconvolution, peak alignment, glucosinolate putative assignments, semi-quantitation, and unsupervised principal component analysis (PCA). GLS-Finder was successfully applied to identify intact glucosinolates in 49 commonly consumed Brassica vegetable samples in the United States. It is believed that this work introduces a new way of fast data processing and interpretation for qualitative and quantitative analyses of glucosinolates, where great efficacy was improved in comparison to identification manually.
Fratianni, Florinda; Cefola, Maria; Pace, Bernardo; Cozzolino, Rosaria; De Giulio, Beatrice; Cozzolino, Autilia; d'Acierno, Antonio; Coppola, Raffaele; Logrieco, Antonio Francesco; Nazzaro, Filomena
2017-08-15
Leaves of three different sweet basil (Ocimum basilicum L.) cultivars (Italico a foglia larga, Cammeo, and Italiano classico) packed in macro-perforated polyethylene bags were stored at chilling (4°C) or non-chilling temperature (12°C) for 9days. During storage, visual quality, physiological (respiration rate, ethylene production, ammonium content) and chemical (antioxidant activity, total polyphenols and polyphenol profile) parameters were measured. Detached leaves stored at chilling temperature showed visual symptoms related to chilling injury, while ethylene production and ammonium content resulted associated to cultivar sensibility to damage at low temperature. Storage at 4°C caused a depletion in polyphenols content and antioxidant capability, which was preserved at 12°C. Regarding the polyphenols profile, stressful storage conditions did not enhance the phenolic metabolism. However, leaves stored at 12°C did not loss a significant amount of metabolites respect to fresh leaves, suggesting the possibility to extend the storability after the expiration date, for a possible recovery of bioactive compounds. Copyright © 2017 Elsevier Ltd. All rights reserved.
Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention.
Miller, Jessica A; Pappan, Kirk; Thompson, Patricia A; Want, Elizabeth J; Siskos, Alexandros P; Keun, Hector C; Wulff, Jacob; Hu, Chengcheng; Lang, Julie E; Chow, H-H Sherry
2015-01-01
Limonene is a lipophilic monoterpene found in high levels in citrus peel. Limonene demonstrates anticancer properties in preclinical models with effects on multiple cellular targets at varying potency. While of interest as a cancer chemopreventive, the biologic activity of limonene in humans is poorly understood. We conducted metabolite profiling in 39 paired (pre/postintervention) plasma samples from early-stage breast cancer patients receiving limonene treatment (2 g QD) before surgical resection of their tumor. Metabolite profiling was conducted using ultra-performance liquid chromatography coupled to a linear trap quadrupole system and gas chromatography-mass spectrometry. Metabolites were identified by comparison of ion features in samples to a standard reference library. Pathway-based interpretation was conducted using the human metabolome database and the MetaCyc database. Of the 397 named metabolites identified, 72 changed significantly with limonene intervention. Class-based changes included significant decreases in adrenal steroids (P < 0.01), and significant increases in bile acids (P ≤ 0.05) and multiple collagen breakdown products (P < 0.001). The pattern of changes also suggested alterations in glucose metabolism. There were 47 metabolites whose change with intervention was significantly correlated to a decrease in cyclin D1, a cell-cycle regulatory protein, in patient tumor tissues (P ≤ 0.05). Here, oral administration of limonene resulted in significant changes in several metabolic pathways. Furthermore, pathway-based changes were related to the change in tissue level cyclin D1 expression. Future controlled clinical trials with limonene are necessary to determine the potential role and mechanisms of limonene in the breast cancer prevention setting. ©2014 American Association for Cancer Research.
2013-01-01
Backgroud Isatis indigotica is a widely used herb for the clinical treatment of colds, fever, and influenza in Traditional Chinese Medicine (TCM). Various structural classes of compounds have been identified as effective ingredients. However, little is known at genetics level about these active metabolites. In the present study, we performed de novo transcriptome sequencing for the first time to produce a comprehensive dataset of I. indigotica. Results A database of 36,367 unigenes (average length = 1,115.67 bases) was generated by performing transcriptome sequencing. Based on the gene annotation of the transcriptome, 104 unigenes were identified covering most of the catalytic steps in the general biosynthetic pathways of indole, terpenoid, and phenylpropanoid. Subsequently, the organ-specific expression patterns of the genes involved in these pathways, and their responses to methyl jasmonate (MeJA) induction, were investigated. Metabolites profile of effective phenylpropanoid showed accumulation pattern of secondary metabolites were mostly correlated with the transcription of their biosynthetic genes. According to the analysis of UDP-dependent glycosyltransferases (UGT) family, several flavonoids were indicated to exist in I. indigotica and further identified by metabolic profile using UPLC/Q-TOF. Moreover, applying transcriptome co-expression analysis, nine new, putative UGTs were suggested as flavonol glycosyltransferases and lignan glycosyltransferases. Conclusions This database provides a pool of candidate genes involved in biosynthesis of effective metabolites in I. indigotica. Furthermore, the comprehensive analysis and characterization of the significant pathways are expected to give a better insight regarding the diversity of chemical composition, synthetic characteristics, and the regulatory mechanism which operate in this medical herb. PMID:24308360
Zheng, Hai-Kuo; Zhao, Jun-Han; Yan, Yi; Lian, Tian-Yu; Ye, Jue; Wang, Xiao-Jian; Wang, Zhe; Jing, Zhi-Cheng; He, Yang-Yang; Yang, Ping
2018-05-11
Pulmonary arterial hypertension (PAH) is a rare systemic disorder associated with considerable metabolic dysfunction. Although enormous metabolomic studies on PAH have been emerging, research remains lacking on metabolic reprogramming in experimental PAH models. We aim to evaluate the metabolic changes in PAH and provide new insight into endogenous metabolic disorders of PAH. A single subcutaneous injection of monocrotaline (MCT) (60 mg kg - 1 ) was used for rats to establish PAH model. Hemodynamics and right ventricular hypertrophy were adopted to evaluate the successful establishment of PAH model. Plasma samples were assessed through targeted metabolomic profiling platform to quantify 126 endogenous metabolites. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to discriminate between MCT-treated model and control groups. Metabolite Set Enrichment Analysis was adapted to exploit the most disturbed metabolic pathways. Endogenous metabolites of MCT treated PAH model and control group were well profiled using this platform. A total of 13 plasma metabolites were significantly altered between the two groups. Metabolite Set Enrichment Analysis highlighted that a disruption in the urea cycle pathway may contribute to PAH onset. Moreover, five novel potential biomarkers in the urea cycle, adenosine monophosphate, urea, 4-hydroxy-proline, ornithine, N-acetylornithine, and two candidate biomarkers, namely, O-acetylcarnitine and betaine, were found to be highly correlated with PAH. The present study suggests a new role of urea cycle disruption in the pathogenesis of PAH. We also found five urea cycle related biomarkers and another two candidate biomarkers to facilitate early diagnosis of PAH in metabolomic profile.
Santucci, Claudio; Tenori, Leonardo; Luchinat, Claudio
2015-09-01
The time-related changes of three agricultural products, coming from two distribution routes, have been followed using NMR fingerprinting to monitor metabolic variations occurring during several days of cold storage. An NMR profiling approach was employed to evaluate the variations in metabolic profile and metabolite content in three different agricultural products highly consumed in Italy (peaches, tomatoes and plums) coming from Tuscanian farms and how they change with time after collection. For each product, we followed the time-related changes during cold storage along three different collection periods. We monitored the variations in metabolic fingerprint and the trend of a set of metabolites, focusing our attention on nutritive and health-promoting metabolites (mainly, essential amino acids and antioxidants) as well as metabolites that contribute to the taste. Concurrently, for comparison, the time-dependent changes of the same kind of products coming from large-scale distribution have been also analyzed under the same conditions. In this second category, only slight variations in the metabolic fingerprint and metabolite levels were seen during cold storage. Unsupervised and supervised multivariate statistics was also employed to enlighten the differences between the three collections. In particular it seems that the metabolic fingerprint of large-scale distribution products is quite similar in the early, middle and late collection, while peaches and plums locally collected are markedly different among the three periods. The metabolic profiles of the agricultural products belonging to these two different distribution routes are intrinsically different, and they show different changes during the time of cold storage. Copyright © 2015 Elsevier Ltd. All rights reserved.
Metabolite profiling of human colon carcinoma--deregulation of TCA cycle and amino acid turnover.
Denkert, Carsten; Budczies, Jan; Weichert, Wilko; Wohlgemuth, Gert; Scholz, Martin; Kind, Tobias; Niesporek, Silvia; Noske, Aurelia; Buckendahl, Anna; Dietel, Manfred; Fiehn, Oliver
2008-09-18
Apart from genetic alterations, development and progression of colorectal cancer has been linked to influences from nutritional intake, hyperalimentation, and cellular metabolic changes that may be the basis for new diagnostic and therapeutic approaches. However, in contrast to genomics and proteomics, comprehensive metabolomic investigations of alterations in malignant tumors have rarely been conducted. In this study we investigated a set of paired samples of normal colon tissue and colorectal cancer tissue with gas-chromatography time-of-flight mass-spectrometry, which resulted in robust detection of a total of 206 metabolites. Metabolic phenotypes of colon cancer and normal tissues were different at a Bonferroni corrected significance level of p=0.00170 and p=0.00005 for the first two components of an unsupervised PCA analysis. Subsequent supervised analysis found 82 metabolites to be significantly different at p<0.01. Metabolites were connected to abnormalities in metabolic pathways by a new approach that calculates the distance of each pair of metabolites in the KEGG database interaction lattice. Intermediates of the TCA cycle and lipids were found down-regulated in cancer, whereas urea cycle metabolites, purines, pyrimidines and amino acids were generally found at higher levels compared to normal colon mucosa. This study demonstrates that metabolic profiling facilitates biochemical phenotyping of normal and neoplastic colon tissue at high significance levels and points to GC-TOF-based metabolomics as a new method for molecular pathology investigations.
Chamoun, Rony; Aliferis, Konstantinos A.; Jabaji, Suha
2015-01-01
Stachybotrys elegans is able to parasitize the fungal plant pathogen Rhizoctonia solani AG-3 following a complex and intimate interaction, which, among others, includes the production of cell wall-degrading enzymes, intracellular colonization, and expression of pathogenic process encoding genes. However, information on the metabolome level is non-existent during mycoparasitism. Here, we performed a direct-infusion mass spectrometry (DIMS) metabolomics analysis using an LTQ Orbitrap analyzer in order to detect changes in the profiles of induced secondary metabolites of both partners during this mycoparasitic interaction 4 and 5 days following its establishment. The diketopiperazine(s) (DKPs) cyclo(S-Pro-S-Leu)/cyclo(S-Pro-S-Ile), ethyl 2-phenylacetate, and 3-nitro-4-hydroxybenzoic acid were detected as the primary response of Rhizoctonia 4 days following dual-culturing with Stachybotrys, whereas only the latter metabolite was up-regulated 1 day later. On the other hand, trichothecenes and atranones were mycoparasite-derived metabolites identified during mycoparasitism 4 and 5 days following dual-culturing. All the above secondary metabolites are known to exhibit bioactivity, including fungitoxicity, and represent key elements that determine the outcome of the interaction being studied. Results could be further exploited in programs for the evaluation of the bioactivity of these metabolites per se or their chemical analogs, and/or genetic engineering programs to obtain more efficient mycoparasite strains with improved efficacy and toxicological profiles. PMID:25972848
Arbulu, M; Sampedro, M C; Gómez-Caballero, A; Goicolea, M A; Barrio, R J
2015-02-09
The current study presents a method for comprehensive untargeted metabolomic fingerprinting of the non-volatile profile of the Graciano Vitis vinifera wine variety, using liquid chromatography/electrospray ionization time of flight mass spectrometry (LC-ESI-QTOF). Pre-treatment of samples, chromatographic columns, mobile phases, elution gradients and ionization sources, were evaluated for the extraction of the maximum number of metabolites in red wine. Putative compounds were extracted from the raw data using the extraction algorithm, molecular feature extractor (MFE). For the metabolite identification the WinMet database was designed based on electronic databases and literature research and includes only the putative metabolites reported to be present in oenological matrices. The results from WinMet were compared with those in the METLIN database to evaluate how much the databases overlap for performing identifications. The reproducibility of the analysis was assessed using manual processing following replicate injections of Vitis vinifera cv. Graciano wine spiked with external standards. In the present work, 411 different metabolites in Graciano Vitis vinifera red wine were identified, including primary wine metabolites such as sugars (4%), amino acids (23%), biogenic amines (4%), fatty acids (2%), and organic acids (32%) and secondary metabolites such as phenols (27%) and esters (8%). Significant differences between varieties Tempranillo and Graciano were related to the presence of fifteen specific compounds. Copyright © 2014 Elsevier B.V. All rights reserved.
Promising Metabolite Profiles in the Plasma and CSF of Early Clinical Parkinson's Disease
Stoessel, Daniel; Schulte, Claudia; Teixeira dos Santos, Marcia C.; Scheller, Dieter; Rebollo-Mesa, Irene; Deuschle, Christian; Walther, Dirk; Schauer, Nicolas; Berg, Daniela; Nogueira da Costa, Andre; Maetzler, Walter
2018-01-01
Parkinson's disease (PD) shows high heterogeneity with regard to the underlying molecular pathogenesis involving multiple pathways and mechanisms. Diagnosis is still challenging and rests entirely on clinical features. Thus, there is an urgent need for robust diagnostic biofluid markers. Untargeted metabolomics allows establishing low-molecular compound biomarkers in a wide range of complex diseases by the measurement of various molecular classes in biofluids such as blood plasma, serum, and cerebrospinal fluid (CSF). Here, we applied untargeted high-resolution mass spectrometry to determine plasma and CSF metabolite profiles. We semiquantitatively determined small-molecule levels (≤1.5 kDa) in the plasma and CSF from early PD patients (disease duration 0–4 years; n = 80 and 40, respectively), and sex- and age-matched controls (n = 76 and 38, respectively). We performed statistical analyses utilizing partial least square and random forest analysis with a 70/30 training and testing split approach, leading to the identification of 20 promising plasma and 14 CSF metabolites. These metabolites differentiated the test set with an AUC of 0.8 (plasma) and 0.9 (CSF). Characteristics of the metabolites indicate perturbations in the glycerophospholipid, sphingolipid, and amino acid metabolism in PD, which underscores the high power of metabolomic approaches. Further studies will enable to develop a potential metabolite-based biomarker panel specific for PD. PMID:29556190
Settachaimongkon, Sarn; van Valenberg, Hein J F; Winata, Vera; Wang, Xiaoxi; Nout, M J Robert; van Hooijdonk, Toon C M; Zwietering, Marcel H; Smid, Eddy J
2015-08-01
The objective of this study was to investigate the effect of preculturing of Lactobacillus rhamnosus GG and Bifidobacterium animalis subsp. lactis BB12 under sublethal stress conditions on their survival and metabolite formation in set-yoghurt. Prior to co-cultivation with yoghurt starters in milk, the two probiotic strains were precultured under sublethal stress conditions (combinations of elevated NaCl and low pH) in a batch fermentor. The activity of sublethally precultured probiotics was evaluated during fermentation and refrigerated storage by monitoring bacterial population dynamics, milk acidification and changes in volatile and non-volatile metabolite profiles of set-yoghurt. The results demonstrated adaptive stress responses of the two probiotic strains resulting in their viability improvement without adverse influence on milk acidification. A complementary metabolomic approach using SPME-GC/MS and (1)H-NMR resulted in the identification of 35 volatiles and 43 non-volatile polar metabolites, respectively. Principal component analysis revealed substantial impact of the activity of sublethally precultured probiotics on metabolite formation demonstrated by distinctive volatile and non-volatile metabolite profiles of set-yoghurt. Changes in relative abundance of various aroma compounds suggest that incorporation of stress-adapted probiotics considerably influences the organoleptic quality of product. This study provides new information on the application of stress-adapted probiotics in an actual food-carrier environment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Park, Hye Min; Shon, Jong Cheol; Lee, Mee Youn; Liu, Kwang-Hyeon; Kim, Jeong Kee; Lee, Sang Jun; Lee, Choong Hwan
2014-01-01
Although many studies have been performed on the effects of ultraviolet (UV) radiation on the skin, only a limited number of reports have investigated these effects on non-skin tissue. This study aimed to describe the metabolite changes in the liver of hairless mice following chronic exposure to UVB radiation. We did not observe significant macroscopic changes or alterations in hepatic cholesterol and triglyceride levels in the liver of UVB-irradiated mice, compared with those for normal mice. In this study, we detected hepatic metabolite changes by UVB exposure and identified several amino acids, fatty acids, nucleosides, carbohydrates, phospholipids, lysophospholipids, and taurine-conjugated cholic acids as candidate biomarkers in response to UVB radiation in the mouse liver by using various mass spectrometry (MS)-based metabolite profiling including ultra-performance liquid chromatography-quadrupole time-of-flight (TOF)-MS, gas chromatography-TOF-MS and nanomate LTQ-MS. Glutamine exhibited the most dramatic change with a 5-fold increase in quantity. The results from altering several types of metabolites suggest that chronic UVB irradiation may impact significantly on major hepatic metabolism processes, despite the fact that the liver is not directly exposed to UVB radiation. MS-based metabolomic approach for determining regulatory hepatic metabolites following UV irradiation will provide a better understanding of the relationship between internal organs and UV light.
Wang, Weiwei; Li, Zhui; Gan, Liping; Fan, Hao; Guo, Yuming
2018-06-18
Metabolomics is used to evaluate the bioavailability of food components, as well as to validate the metabolic changes associated with food consumption. This study was conducted to investigate the effects of the dietary supplement Kluyveromyces marxianus on the serum metabolite profile in broiler chickens. A total of 240 1-d-old broilers were divided into 2 groups with 8 replicates. Birds were fed basal diets without or with K. marxianus supplementation (5 × 1010 CFU kg-1 of diet). Serum samples were collected on d 21 and were analyzed by high-performance liquid chromatography with quadrupole time-of flight/mass spectrometry. The results showed that supplemental K. marxianus altered the concentrations of a variety of metabolites in the serum. Thereinto, a total of 39 metabolites were identified at higher (P < 0.05) concentrations while 21 metabolites were identified at lower (P < 0.05) concentrations in the treatment group as compared with the control. These metabolites were primarily involved with the regulation of amino acids and carbohydrate metabolism. Further metabolic pathway analysis revealed that glutamine and glutamate metabolism was the most relevant and critical pathway identified from these two groups. The activated pathway may partially interpret the beneficial effects of K. marxianus. Overall, the present research could promote our understanding of the probiotic action of K. marxianus and provide new insight into the design and application of K. marxianus-containing functional foods.
Stewart, Christopher J; Mansbach, Jonathan M; Wong, Matthew C; Ajami, Nadim J; Petrosino, Joseph F; Camargo, Carlos A; Hasegawa, Kohei
2017-10-01
Bronchiolitis is the most common lower respiratory infection in infants; however, it remains unclear which infants with bronchiolitis will develop severe illness. In addition, although emerging evidence indicates associations of the upper-airway microbiome with bronchiolitis severity, little is known about the mechanisms linking airway microbes and host response to disease severity. To determine the relations among the nasopharyngeal airway metabolome profiles, microbiome profiles, and severity in infants with bronchiolitis. We conducted a multicenter prospective cohort study of infants (age <1 yr) hospitalized with bronchiolitis. By applying metabolomic and metagenomic (16S ribosomal RNA gene and whole-genome shotgun sequencing) approaches to 144 nasopharyngeal airway samples collected within 24 hours of hospitalization, we determined metabolome and microbiome profiles and their association with higher severity, defined by the use of positive pressure ventilation (i.e., continuous positive airway pressure and/or intubation). Nasopharyngeal airway metabolome profiles significantly differed by bronchiolitis severity (P < 0.001). Among 254 metabolites identified, a panel of 25 metabolites showed high sensitivity (84%) and specificity (86%) in predicting the use of positive pressure ventilation. The intensity of these metabolites was correlated with relative abundance of Streptococcus pneumoniae. In the pathway analysis, sphingolipid metabolism was the most significantly enriched subpathway in infants with positive pressure ventilation use compared with those without (P < 0.001). Enrichment of sphingolipid metabolites was positively correlated with the relative abundance of S. pneumoniae. Although further validation is needed, our multiomic analyses demonstrate the potential of metabolomics to predict bronchiolitis severity and better understand microbe-host interaction.
Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma
2018-06-01
The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hijaz, Faraj M; Manthey, John A; Folimonova, Svetlana Y; Davis, Craig L; Jones, Shelley E; Reyes-De-Corcuera, José I
2013-01-01
Huanglongbing (HLB) presumably caused by Candidatus Liberibacter asiaticus (CLas) threatens the commercial U.S. citrus crop of an annual value of $3 billion. The earliest shift in metabolite profiles of leaves from greenhouse-grown sweet orange trees infected with Clas, and of healthy leaves, was characterized by HPLC-MS concurrently with PCR testing for the presence of Clas bacteria and observation of disease symptoms. Twenty, 8-month-old 'Valencia' and 'Hamlin' trees were grafted with budwood from PCR-positive HLB source trees. Five graft-inoculated trees of each variety and three control trees were sampled biweekly and analyzed by HPLC-MS and PCR. Thirteen weeks after inoculation, Clas was detected in newly growing flushes in 33% and 55% of the inoculated 'Hamlin' and 'Valencia' trees, respectively. Inoculated trees remained asymptomatic in the first 20 weeks, but developed symptoms 30 weeks after grafting. No significant differences in the leaf metabolite profiles were detected in Clas-infected trees 23 weeks after inoculation. However, 27 weeks after inoculation, differences in metabolite profiles between control leaves and those of Clas-infected trees were evident. Affected compounds were identified with authentic standards or structurally classified by their UV and mass spectra. Included among these compounds are flavonoid glycosides, polymethoxylated flavones, and hydroxycinnamates. Four structurally related hydroxycinnamate compounds increased more than 10-fold in leaves from 'Hamlin' and 'Valencia' sweet orange trees in response to Clas infection. Possible roles of these hydroxycinnamates as plant defense compounds against the Clas infection are discussed.
Efflux systems in bacteria and their metabolic engineering applications.
Jones, Christopher M; Hernández Lozada, Néstor J; Pfleger, Brian F
2015-11-01
The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.
Maga-Nteve, Christoniki; Vasilopoulou, Catherine G; Constantinou, Caterina; Margarity, Marigoula; Klapa, Maria I
2017-01-15
A systematic data quality validation and normalization strategy is an important component of the omic profile meta-analysis, ensuring comparability of the profiles and exclusion of experimental biases from the derived biological conclusions. In this study, we present the normalization methodology applied on the sets of cerebellum gas chromatography-mass spectrometry metabolic profiles of 124days old male and female animals in an adult-onset-hypothyroidism (AOH) mouse model before combining them into a sex-comparative analysis. The employed AOH model concerns the monitoring of the brain physiology of Balb/cJ mice after eight-week administration of 1%w/v KClO 4 in the drinking water, initiated on the 60th day of their life. While originating from the same animal study, the tissues of the two sexes were processed and their profiles acquired and analyzed at different time periods. Hence, the previously published profile set of male mice was first re-annotated based on the presently available resources. Then, after being validated as acquired under the same analytical conditions, both profiles sets were corrected for derivatization biases and filtered for low-confidence measurements based on the same criteria. The final normalized 73-metabolite profiles contribute to the currently few available omic datasets of the AOH effect on brain molecular physiology, especially with respect to sex differentiation. Multivariate statistical analysis indicated one (unknown) and three (succinate, benzoate, myristate) metabolites with significantly higher and lower, respectively, cerebellum concentration in the hypothyroid compared to the euthyroid female mice. The respective numbers for the males were two and 24. Comparison of the euthyroid cerebellum metabolic profiles between the two sexes indicated 36 metabolites, including glucose, myo- and scyllo-inositol, with significantly lower concentration in the females versus the males. This implies that the female mouse cerebellum has been conditioned to smaller changes in its metabolic activity with respect to the pathways involving these metabolites compared to the male animals. In conclusion, our study indicated a much subtler AOH effect on the cerebellum metabolic activity of the female compared to the male mice. The leaner metabolic profile of the female mouse cerebellum was suggested as a potential factor contributing to this phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.
Regulatory cross talk and microbial induction of fungal secondary metabolite gene clusters.
Nützmann, Hans-Wilhelm; Schroeckh, Volker; Brakhage, Axel A
2012-01-01
Filamentous fungi are well-known producers of a wealth of secondary metabolites with various biological activities. Many of these compounds such as penicillin, cyclosporine, or lovastatin are of great importance for human health. Genome sequences of filamentous fungi revealed that the encoded potential to produce secondary metabolites is much higher than the actual number of compounds produced during cultivation in the laboratory. This finding encouraged research groups to develop new methods to exploit the silent reservoir of secondary metabolites. In this chapter, we present three successful strategies to induce the expression of secondary metabolite gene clusters. They are based on the manipulation of the molecular processes controlling the biosynthesis of secondary metabolites and the simulation of stimulating environmental conditions leading to altered metabolic profiles. The presented methods were successfully applied to identify novel metabolites. They can be also used to significantly increase product yields. Copyright © 2012 Elsevier Inc. All rights reserved.
A Potential Biofilm Metabolite Signature for Caries Activity - A Pilot Clinical Study
Zandona, F; Soini, HA; Novotny, MV; Santiago, E; Eckert, GJ; Preisser, JS; Benecha, HK; Arthur, RA; Zero, DT
2016-01-01
Background This study's aim was to compare the dental biofilm metabolite-profile of caries-active (N=11) or caries-free (N=4) children by gas chromatography-mass spectrometry (GC/MS) analyses. Methods Samples collected after overnight fasting, with or without a previous glucose rinse, were combined for each child based on the caries status of the site, re-suspended in ethanol and analyzed by GC/MS. Results Biofilm from caries-active sites exhibited a different chromatographic profile compared to caries-free sites. Qualitative and quantitative analysis suggested a special cluster of branched alcohols and esters present at substantially higher intensity in biofilms of caries-active sites. Conclusions This pilot study indicates that there are metabolites present in the biofilm which have the potential to provide a characteristic metabolomics signature for caries activity. PMID:27885354
Wang, Xiaoxue; Wang, Jianping; Rao, Benqiang; Deng, Li
2017-01-01
Colorectal cancer is one of the most common types of cancer in the world and its morbidity and mortality rates are increasing due to alterations to human lifestyle and dietary habits. The relationship between human gut flora and colorectal cancer has attracted increasing attention. In the present study, a metabolic fingerprinting technique that combined pyrosequencing with gas chromatography-mass spectrometry was utilized to compare the differences in gut flora profiling and fecal metabolites between healthy individuals and patients with colorectal cancer. The results demonstrated that there were no significant differences in the abundance and diversity of gut flora between healthy individuals and patients with colorectal cancer (P>0.05) and the dominant bacterial phyla present in the gut of both groups included Firmicutes, Bacteroidetes and Verrucomicrobia. At the bacterial strain/genus level, significant differences were observed in the relative abundance of 18 species of bacteria (P<0.05). Analysis of fecal metabolites demonstrated that the metabolic profiles of healthy individuals and patients with colorectal cancer were distinct. The levels of short-chain fatty acid metabolites, including acetic acid, valeric acid, isobutyric acid and isovaleric acid, and of nine amino acids in patients with colorectal cancer were significantly higher than those in healthy individuals (P<0.05). However, the levels of butyrate, oleic acid, trans-oleic acid, linoleic acid, glycerol, monoacyl glycerol, myristic acid, ursodesoxycholic acid and pantothenic acid in patients with colorectal cancer were significantly lower than those in healthy individuals (P<0.05). Pearson rank correlation analysis demonstrated that there was a correlation between gut flora profiling and metabolite composition. These findings suggest that gut flora disorder results in the alteration of bacterial metabolism, which may be associated with the pathogenesis of colorectal cancer. The results of the present study are useful as a foundation for further studies to elucidate a potential colorectal cancer diagnostic index and therapeutic targets. PMID:28587349
Wang, Xiaoxue; Wang, Jianping; Rao, Benqiang; Deng, Li
2017-06-01
Colorectal cancer is one of the most common types of cancer in the world and its morbidity and mortality rates are increasing due to alterations to human lifestyle and dietary habits. The relationship between human gut flora and colorectal cancer has attracted increasing attention. In the present study, a metabolic fingerprinting technique that combined pyrosequencing with gas chromatography-mass spectrometry was utilized to compare the differences in gut flora profiling and fecal metabolites between healthy individuals and patients with colorectal cancer. The results demonstrated that there were no significant differences in the abundance and diversity of gut flora between healthy individuals and patients with colorectal cancer (P>0.05) and the dominant bacterial phyla present in the gut of both groups included Firmicutes , Bacteroidetes and Verrucomicrobia . At the bacterial strain/genus level, significant differences were observed in the relative abundance of 18 species of bacteria (P<0.05). Analysis of fecal metabolites demonstrated that the metabolic profiles of healthy individuals and patients with colorectal cancer were distinct. The levels of short-chain fatty acid metabolites, including acetic acid, valeric acid, isobutyric acid and isovaleric acid, and of nine amino acids in patients with colorectal cancer were significantly higher than those in healthy individuals (P<0.05). However, the levels of butyrate, oleic acid, trans-oleic acid, linoleic acid, glycerol, monoacyl glycerol, myristic acid, ursodesoxycholic acid and pantothenic acid in patients with colorectal cancer were significantly lower than those in healthy individuals (P<0.05). Pearson rank correlation analysis demonstrated that there was a correlation between gut flora profiling and metabolite composition. These findings suggest that gut flora disorder results in the alteration of bacterial metabolism, which may be associated with the pathogenesis of colorectal cancer. The results of the present study are useful as a foundation for further studies to elucidate a potential colorectal cancer diagnostic index and therapeutic targets.
Das, Pritha; Tanious, Michelle; Fritz, Kristina; Dodd, Seetal; Dean, Olivia M; Berk, Michael; Malhi, Gin S
2013-04-01
Increased oxidative stress is thought to contribute to the pathophysiology of major depressive disorder (MDD), which is in part due to diminished levels of glutathione, the primary anti-oxidant of the brain. Oral administration of N-acetyl-cysteine (NAC) replenishes glutathione and has therefore been shown to reduce depressive symptoms. Proton magnetic spectroscopy ((1)H-MRS) that allows quantification of brain metabolites pertinent to both MDD and oxidative biology may provide some novel insights into the neurobiological effects of NAC, and in particular metabolite concentrations within the anterior cingulate cortex (ACC) are likely to be important given the key role of this region in the regulation of affect. The aim of this study was to determine whether the metabolite profile of the ACC in MDD patients predicts treatment with adjunctive NAC versus placebo. This study was nested within a multicentre, randomized, double-blind, placebo-controlled study of MDD participants treated with adjunctive NAC. Participants (n = 76) from one site completed the spectroscopy component at the end of treatment (12 weeks). Spectra from a single-voxel in the ACC were acquired and absolute concentrations of glutamate (Glu), glutamate-glutamine (Glx), N-acetyl-aspartate (NAA) and myo-inositol (mI) were obtained. Binary logistic regression analysis was performed to determine whether metabolite profiles could predict NAC versus placebo group membership. When predicting group outcome (NAC or placebo), Glx, NAA and mI were a significant model, and had 75% accuracy, while controlling for depression severity and sex. However, the Glu, NAA and mI profile was only predictive at a trend level, with 68.3% accuracy. For both models, the log of the odds of a participant being in the NAC group was positively related to NAA, Glx and Glu levels and negatively related to mI levels. The finding of higher Glx and NAA levels being predictive of the NAC group provides preliminary support for the putative anti-oxidative role of NAC in MDD.
Quan-Jun, Yang; Jian-Ping, Zhang; Jian-Hua, Zhang; Yong-Long, Han; Bo, Xin; Jing-Xian, Zhang; Bona, Dai; Yuan, Zhang; Cheng, Guo
2017-03-01
Inhaled budesonide and salbutamol represent the most important and frequently used drugs in asthmatic children during acute exacerbation. However, there is still no consensus about their resulting metabolic derangements; thus, this study was conducted to determine the distinct metabolic profiles of these two drugs. A total of 69 children with asthma during acute exacerbation were included, and their serum and urine were investigated using high-resolution nuclear magnetic resonance (NMR). A metabolomics analysis was performed using a principal component analysis and orthogonal signal correction-partial least squares using SIMCA-P. The different metabolites were identified, and the distinct metabolic profiles were analysed using MetPA. A high-resolution NMR-based serum and urine metabolomics approach was established to study the overall metabolic changes after inhaled budesonide and salbutamol in asthmatic children during acute exacerbation. The perturbed metabolites included 22 different metabolites in the serum and 21 metabolites in the urine. Based on an integrated analysis, the changed metabolites included the following: increased 4-hydroxybutyrate, lactate, cis-aconitate, 5-hydroxyindoleacetate, taurine, trans-4-hydroxy-l-proline, tiglylglycine, 3-hydroxybutyrate, 3-methylhistidine, glucose, cis-aconitate, 2-deoxyinosine and 2-aminoadipate; and decreased alanine, glycerol, arginine, glycylproline, 2-hydroxy-3-methylvalerate, creatine, citrulline, glutamate, asparagine, 2-hydroxyvalerate, citrate, homoserine, histamine, sn-glycero-3-phosphocholine, sarcosine, ornithine, creatinine, glycine, isoleucine and trimethylamine N-oxide. The MetPA analysis revealed seven involved metabolic pathways: arginine and proline metabolism; taurine and hypotaurine metabolism; glycine, serine and threonine metabolism; glyoxylate and dicarboxylate metabolism; methane metabolism; citrate cycle; and pyruvate metabolism. The perturbed metabolic profiles suggest potential metabolic reprogramming associated with a combination treatment of inhaled budesonide and salbutamol in asthmatic children. © 2016 The Authors. Basic & Clinical Pharmacology & Toxicology published by John Wiley & Sons Ltd on behalf of Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).
Gene-metabolite profile integration to understand the cause of spaceflight induced immunodeficiency.
Chakraborty, Nabarun; Cheema, Amrita; Gautam, Aarti; Donohue, Duncan; Hoke, Allison; Conley, Carolynn; Jett, Marti; Hammamieh, Rasha
2018-01-01
Spaceflight presents a spectrum of stresses very different from those associated with terrestrial conditions. Our previous study (BMC Genom. 15 : 659, 2014) integrated the expressions of mRNAs, microRNAs, and proteins and results indicated that microgravity induces an immunosuppressive state that can facilitate opportunistic pathogenic attack. However, the existing data are not sufficient for elucidating the molecular drivers of the given immunosuppressed state. To meet this knowledge gap, we focused on the metabolite profile of spaceflown human cells. Independent studies have attributed cellular energy deficiency as a major cause of compromised immunity of the host, and metabolites that are closely associated with energy production could be a robust signature of atypical energy fluctuation. Our protocol involved inoculation of human endothelial cells in cell culture modules in spaceflight and on the ground concurrently. Ten days later, the cells in space and on the ground were exposed to lipopolysaccharide (LPS), a ubiquitous membrane endotoxin of Gram-negative bacteria. Nucleic acids, proteins, and metabolites were collected 4 and 8 h post-LPS exposure. Untargeted profiling of metabolites was followed by targeted identification of amino acids and knowledge integration with gene expression profiles. Consistent with the past reports associating microgravity with increased energy expenditure, we identified several markers linked to energy deficiency, including various amino acids such as tryptophan, creatinine, dopamine, and glycine, and cofactors such as lactate and pyruvate. The present study revealed a molecular architecture linking energy metabolism and immunodeficiency in microgravity. The energy-deficient condition potentially cascaded into dysregulation of protein metabolism and impairment of host immunity. This project is limited by a small sample size. Although a strict statistical screening was carefully implemented, the present results further emphasize the need for additional studies with larger sample sizes. Validating this hypothesis using an in vivo model is essential to extend the knowledge towards identifying markers of diagnostic and therapeutic value.
Wang, Hanghang; Muehlbauer, Michael J.; O’Neal, Sara K.; Newgard, Christopher B.; Hauser, Elizabeth R.; Shah, Svati H.
2017-01-01
The field of metabolomics as applied to human disease and health is rapidly expanding. In recent efforts of metabolomics research, greater emphasis has been placed on quality control and method validation. In this study, we report an experience with quality control and a practical application of method validation. Specifically, we sought to identify and modify steps in gas chromatography-mass spectrometry (GC-MS)-based, non-targeted metabolomic profiling of human plasma that could influence metabolite identification and quantification. Our experimental design included two studies: (1) a limiting-dilution study, which investigated the effects of dilution on analyte identification and quantification; and (2) a concentration-specific study, which compared the optimal plasma extract volume established in the first study with the volume used in the current institutional protocol. We confirmed that contaminants, concentration, repeatability and intermediate precision are major factors influencing metabolite identification and quantification. In addition, we established methods for improved metabolite identification and quantification, which were summarized to provide recommendations for experimental design of GC-MS-based non-targeted profiling of human plasma. PMID:28841195
Metabolic profile of glyburide in human liver microsomes using LC-DAD-Q-TRAP-MS/MS.
Ravindran, Selvan; Basu, Sudipta; Gorti, Santosh Kapil Kumar; Surve, Prashant; Sloka, Navya
2013-05-01
The sulfonylurea urea drug glyburide (glibenclamide) is widely used for the treatment of diabetes milletus and gestational diabetes. In previous studies monohydroxylated metabolites were identified and characterized for glyburide in different species, but the metabolite owing to the loss of cyclohexyl ring was identified only in mouse. Glyburide upon incubation with hepatic microsomes resulted in 10 metabolites for human. The current study identifies new metabolites of glyburide along with the hydroxylated metabolites that were reported earlier. The newly identified drug metabolites are dihydroxylated metabolites, a metabolite owing to the loss of cyclohexyl ring and one owing to hydroxylation with dehydrogenation. Among the 10 identified metabolites, there were six monohydroxylated metabolites, one dihydroxylated metabolite, two metabolites owing to hydroxylation and dehydrogenation, and one metabolite owing to the loss of cyclohexyl ring. New metabolites of glyburide were identified and characterized using liquid chromatography-diode array detector-quadruple-ion trap-mass spectrometry/mass spectrometry (LC-DAD-Q-TRAP-MS/MS). An enhanced mass scan-enhanced product ion scan with information-dependent acquisition mode in a Q-TRAP-MS/MS system was used to characterize the metabolites. Liquid chromatography with diode array detection was used as a complimentary technique to confirm and identify the metabolites. Metabolites formed in higher amounts were detected in both diode array detection and mass spectrometry detection. Copyright © 2012 John Wiley & Sons, Ltd.
Yu, Lei-Min; Zhao, Ke-Jia; Wang, Shuang-Shuang; Wang, Xi; Lu, Bin
2018-01-01
AIM To study the role of microbial metabolites in the modulation of biochemical and physiological processes in irritable bowel syndrome (IBS). METHODS In the current study, using a metabolomic approach, we analyzed the key metabolites differentially excreted in the feces of control mice and mice with IBS, with or without Clostridium butyricum (C. butyricum) treatment. C57BL/6 mice were divided into control, IBS, and IBS + C. butyricum groups. In the IBS and IBS + C. butyricum groups, the mice were subjected to water avoidance stress (WAS) for 1 h/d for ten days. Gas chromatography/mass spectrometry (GC-MS) together with multivariate analysis was employed to compare the fecal samples between groups. RESULTS WAS exposure established an appropriate model of IBS in mice, with symptoms of visceral hyperalgesia and diarrhea. The differences in the metabolite profiles between the control group and IBS group significantly changed with the progression of IBS (days 0, 5, 10, and 17). A total of 14 differentially excreted metabolites were identified between the control and IBS groups, and phenylethylamine was a major metabolite induced by stress. In addition, phenylalanine metabolism was found to be the most relevant metabolic pathway. Between the IBS group and IBS + C. butyricum group, 10 differentially excreted metabolites were identified. Among these, pantothenate and coenzyme A (CoA) biosynthesis metabolites, as well as steroid hormone biosynthesis metabolites were identified as significantly relevant metabolic pathways. CONCLUSION The metabolic profile of IBS mice is significantly altered compared to control mice. Supplementation with C. butyricum to IBS mice may provide a considerable benefit by modulating host metabolism. PMID:29491683
A metabolomics-based method for studying the effect of yfcC gene in Escherichia coli on metabolism.
Wang, Xiyue; Xie, Yuping; Gao, Peng; Zhang, Sufang; Tan, Haidong; Yang, Fengxu; Lian, Rongwei; Tian, Jing; Xu, Guowang
2014-04-15
Metabolomics is a potent tool to assist in identifying the function of unknown genes through analysis of metabolite changes in the context of varied genetic backgrounds. However, the availability of a universal unbiased profiling analysis is still a big challenge. In this study, we report an optimized metabolic profiling method based on gas chromatography-mass spectrometry for Escherichia coli. It was found that physiological saline at -80°C could ensure satisfied metabolic quenching with less metabolite leakage. A solution of methanol/water (21:79, v/v) was proved to be efficient for intracellular metabolite extraction. This method was applied to investigate the metabolome difference among wild-type E. coli, its yfcC deletion, and overexpression mutants. Statistical and bioinformatic analysis of the metabolic profiling data indicated that the expression of yfcC potentially affected the metabolism of glyoxylate shunt. This finding was further validated by real-time quantitative polymerase chain reactions showing that expression of aceA and aceB, the key genes in glyoxylate shunt, was upregulated by yfcC. This study exemplifies the robustness of the proposed metabolic profiling analysis strategy and its potential roles in investigating unknown gene functions in view of metabolome difference. Copyright © 2014 Elsevier Inc. All rights reserved.
Organogenic nodule development in hop (Humulus lupulus L.): Transcript and metabolic responses
Fortes, Ana M; Santos, Filipa; Choi, Young H; Silva, Marta S; Figueiredo, Andreia; Sousa, Lisete; Pessoa, Fernando; Santos, Bartolomeu A; Sebastiana, Mónica; Palme, Klaus; Malhó, Rui; Verpoorte, Rob; Pais, Maria S
2008-01-01
Background Hop (Humulus lupulus L.) is an economically important plant forming organogenic nodules which can be used for genetic transformation and micropropagation. We are interested in the mechanisms underlying reprogramming of cells through stress and hormone treatments. Results An integrated molecular and metabolomic approach was used to investigate global gene expression and metabolic responses during development of hop's organogenic nodules. Transcript profiling using a 3,324-cDNA clone array revealed differential regulation of 133 unigenes, classified into 11 functional categories. Several pathways seem to be determinant in organogenic nodule formation, namely defense and stress response, sugar and lipid metabolism, synthesis of secondary metabolites and hormone signaling. Metabolic profiling using 1H NMR spectroscopy associated to two-dimensional techniques showed the importance of metabolites related to oxidative stress response, lipid and sugar metabolism and secondary metabolism in organogenic nodule formation. Conclusion The expression profile of genes pivotal for energy metabolism, together with metabolites profile, suggested that these morphogenic structures gain energy through a heterotrophic, transport-dependent and sugar-degrading anaerobic metabolism. Polyamines and auxins are likely to be involved in the regulation of expression of many genes related to organogenic nodule formation. These results represent substantial progress toward a better understanding of this complex developmental program and reveal novel information regarding morphogenesis in plants. PMID:18823540
Kusano, Miyako; Kobayashi, Makoto; Iizuka, Yumiko; Fukushima, Atsushi; Saito, Kazuki
2016-02-29
Plants produce and emit important volatile organic compounds (VOCs), which have an essential role in biotic and abiotic stress responses and in plant-plant and plant-insect interactions. In order to study the bouquets from plants qualitatively and quantitatively, a comprehensive, analytical method yielding reproducible results is required. We applied in-tube extraction (ITEX) and solid-phase microextraction (SPME) for studying the emissions of Allium plants. The collected HS samples were analyzed by gas chromatography-time-of-flight-mass spectrometry (GC-TOF-MS), and the results were subjected to multivariate analysis. In case of ITEX-method Allium cultivars released more than 300 VOCs, out of which we provisionally identified 50 volatiles. We also used the VOC profiles of Allium samples to discriminate among groups of A. fistulosum, A. chinense (rakkyo), and A. tuberosum (Oriental garlic). As we found 12 metabolite peaks including dipropyl disulphide with significant changes in A. chinense and A. tuberosum when compared to the control cultivar, these metabolite peaks can be used for chemotaxonomic classification of A. chinense, tuberosum, and A. fistulosum. Compared to SPME-method our ITEX-based VOC profiling technique contributes to automatic and reproducible analyses. Hence, it can be applied to high-throughput analyses such as metabolite profiling.
Alteration of metabolite profiling by cold atmospheric plasma treatment in human myeloma cells.
Xu, Dehui; Xu, Yujing; Ning, Ning; Cui, Qingjie; Liu, Zhijie; Wang, Xiaohua; Liu, Dingxin; Chen, Hailan; Kong, Michael G
2018-01-01
Despite new progress of chemotherapy in multiple myeloma (MM) clinical treatment, MM is still a refractory disease and new technology is needed to improve the outcomes and prolong the survival. Cold atmospheric plasma is a rapidly developed technology in recent years, which has been widely applied in biomedicine. Although plasma could efficiently inactivate various tumor cells, the effects of plasma on tumor cell metabolism have not been studied yet. In this study, we investigated the metabolite profiling of He plasma treatment on myeloma tumor cells by gas-chromatography time-of-flight (GC-TOF) mass-spectrometry. Meanwhile, by bioinformatic analysis such as GO and KEGG analysis we try to figure out the metabolism pathway that was significantly affected by gas plasma treatment. By GC-TOF mass-spectrometry, 573 signals were detected and evaluated using PCA and OPLS-DA. By KEGG analysis we listed all the differential metabolites and further classified into different metabolic pathways. The results showed that beta-alanine metabolism pathway was the most significant change after He gas plasma treatment in myeloma cells. Besides, propanoate metabolism and linoleic acid metabolism should also be concerned during gas plasma treatment of cancer cells. Cold atmospheric plasma treatment could significantly alter the metabolite profiling of myeloma tumor cells, among which, the beta-alanine metabolism pathway is the most susceptible to He gas plasma treatment.
Lee, AeJin; Jang, Han Byul; Ra, Moonjin; Choi, Youngshim; Lee, Hye-Ja; Park, Ju Yeon; Kang, Jae Heon; Park, Kyung-Hee; Park, Sang Ick; Song, Jihyun
2015-01-01
Childhood obesity is strongly related to future insulin resistance and metabolic syndrome. Thus, identifying early biomarkers of obesity-related diseases based on metabolic profiling is useful to control future metabolic disorders. We compared metabolic profiles between obese and normal-weight children and investigated specific biomarkers of future insulin resistance and metabolic syndrome. In all, 186 plasma metabolites were analysed at baseline and after 2 years in 109 Korean boys (age 10.5±0.4 years) from the Korean Child Obesity Cohort Study using the AbsoluteIDQ™ p180 Kit. We observed that levels of 41 metabolites at baseline and 40 metabolites at follow-up were significantly altered in obese children (p<0.05). Obese children showed significantly higher levels of branched-chain amino acids (BCAAs) and several acylcarnitines and lower levels of acyl-alkyl phosphatidylcholines. Also, baseline BCAAs were significantly positively correlated with both homeostasis model assessment for insulin resistance (HOMA-IR) and continuous metabolic risk score at the 2-year follow-up. In logistic regression analyses with adjustments for degree of obesity at baseline, baseline BCAA concentration, greater than the median value, was identified as a predictor of future risk of insulin resistance and metabolic syndrome. High BCAA concentration could be "early" biomarkers for predicting future metabolic diseases. Copyright © 2014 Asian Oceanian Association for the Study of Obesity. Published by Elsevier Ltd. All rights reserved.
Lihavainen, Jenna; Keinänen, Markku; Keski-Saari, Sarita; Kontunen-Soppela, Sari; Sõber, Anu; Oksanen, Elina
2016-01-01
Relative air humidity (RH) is expected to increase in northern Europe due to climate change. Increasing RH reduces the difference of water vapour pressure deficit (VPD) between the leaf and the atmosphere, and affects the gas exchange of plants. Little is known about the effects of decreased VPD on plant metabolism, especially under field conditions. This study was conducted to determine the effects of artificially decreased VPD on silver birch (Betula pendula Roth.) and hybrid aspen (Populus tremula L.×P. tremuloides Michx.) foliar metabolite and nutrient profiles in a unique free air humidity manipulation (FAHM) field experiment during the fourth season of humidity manipulation, in 2011. Long-term exposure to decreased VPD modified nutrient homeostasis in tree leaves, as demonstrated by a lower N concentration and N:P ratio in aspen leaves, and higher Na concentration and lower K:Na ratio in the leaves of both species in decreased VPD than in ambient VPD. Decreased VPD caused a shift in foliar metabolite profiles of both species, affecting primary and secondary metabolites. Metabolic adjustment to decreased VPD included elevated levels of starch and heptulose sugars, sorbitol, hemiterpenoid and phenolic glycosides, and α-tocopherol. High levels of carbon reserves, phenolic compounds, and antioxidants under decreased VPD may modify plant resistance to environmental stresses emerging under changing climate. PMID:27255929
Zhou, Jinglin; Hu, Huimin; Huang, Renhuan
2018-03-01
Orthodontically induced external apical root resorption (OIEARR) is one of the most severe complications of orthodontic treatment, which is hard to diagnose at early stage by merely radiographic examination. This study aimed to identify salivary metabolic products using unbiased metabolic profiling in order to discover biomarkers that may indicate OIEARR. Unstimulated saliva samples were analyzed from 19 healthy orthodontic patients with EARR (n=8) and non-EARR (n=11). Metabolite profiling was performed using 1 H Nuclear Magnetic Resonance (NMR) spectroscopy. A total of 187 metabolites were found in saliva samples. With supervised partial least squares discriminant analysis and regression analysis, samples from 2 groups were well separated, attributed by a series of metabolites of interest, including butyrate, propane-1,2-diol, α-linolenic acid (Ala), α-glucose, urea, fumarate, formate, guanosine, purine, etc. Indicating the increased inflammatory responses in the periodontal tissues possibly associated with energy metabolism and oxidative stress. The effective separation capacity of 1 H NMR based metabolomics suggested potential feasibility of clinical application in monitoring periodontal and apical condition in orthodontic patients during treatment and make early diagnosis of OIEARR. Metabolites detected in this study need further validation to identify exact biomarkers of OIEARR. Saliva biomarkers may assist in diagnosis and monitoring of this disease. Copyright © 2018 Elsevier B.V. All rights reserved.
Rationales and Approaches for Studying Metabolism in Eukaryotic Microalgae
Veyel, Daniel; Erban, Alexander; Fehrle, Ines; Kopka, Joachim; Schroda, Michael
2014-01-01
The generation of efficient production strains is essential for the use of eukaryotic microalgae for biofuel production. Systems biology approaches including metabolite profiling on promising microalgal strains, will provide a better understanding of their metabolic networks, which is crucial for metabolic engineering efforts. Chlamydomonas reinhardtii represents a suited model system for this purpose. We give an overview to genetically amenable microalgal strains with the potential for biofuel production and provide a critical review of currently used protocols for metabolite profiling on Chlamydomonas. We provide our own experimental data to underpin the validity of the conclusions drawn. PMID:24957022
USDA-ARS?s Scientific Manuscript database
Primaquine (PQ) is an important antimalarial agent because of its activity against exoerythrocytic forms of Plasmodium spp. However, hemolytic anemia is a dose-limiting side effect of primaquine therapy that limits its widespread use. The major plasma metabolite identified in humans and animals, car...
USDA-ARS?s Scientific Manuscript database
LC-MS/MS and GC-MS based targeted metabolomics is typically conducted by analyzing and quantifying a cascade of metabolites with methods specifically developed for the metabolite class. Here we describe an approach for the development of multi-residue analytical profiles, calibration standards, and ...
Wang, Yinan; Zhao, Min; Ou, Yingfu; Zeng, Bowen; Lou, Xinyu; Wang, Miao; Zhao, Chunjie
2016-05-01
Esculin, a coumarin derivative found in Fraxinus rhynchophylla, has been reported to possess multiple biological activities. This present study is designed to investigate the metabolic profile of esculin in vivo based on ultra high performance liquid chromatography coupled to Fourier transform ion cyclotron resonance mass spectrometry (UHPLC-FT-ICR-MS) for the first time. After oral administration of esculin (100 mg/kg) for rats, plasma, urine, feces and bile samples were collected to screen metabolites. As a result, a total of 19 metabolites (10 phase I metabolites and 9 phase II metabolites) were found and identified. Results showed that metabolic pathways of esculin included hydrolysis, dehydrogenation, hydroxylation, methylation, dehydrogenation, glucuronidation, sulfation, and glycine conjugation. It was also found that after oral administration of esculin, the esculin could be metabolized to esculetin in vivo via deglycosylation, and esculetin was found in all biological samples. This study also laid solid basis for in-depth development of esculin and provided important information for clarifying the biotransformation process of esculin in vivo. Copyright © 2016 Elsevier B.V. All rights reserved.
Spégel, Peter; Lindqvist, Andreas; Sandberg, Monica; Wierup, Nils
2014-02-10
Hypersecretion of the incretin hormone glucose-dependent insulinotropic polypeptide (GIP) has been associated with obesity and glucose intolerance. This condition has been suggested to be linked to GIP resistance. Besides its insulinotropic effect, GIP also directly affects glucose uptake and lipid metabolism. This notwithstanding, effects of GIP on other circulating metabolites than glucose have not been thoroughly investigated. Here, we examined effects of infusion of various concentrations of GIP in normo- and hyperglycemic rats on serum metabolite profiles. We found that, despite a decrease in serum glucose levels (-26%, p<0.01), the serum metabolite profile was largely unaffected by GIP infusion in normoglycemic rats. Interestingly, levels of branched chain amino acids and the ketone body β-hydroxybutyrate were decreased by 21% (p<0.05) and 27% (p<0.001), respectively, in hyperglycemic rats infused with 60 ng/ml GIP. Hence, our data suggest that GIP provokes a decrease in BCAA levels and ketone body production. Increased concentrations of these metabolites have been associated with obesity and T2D. Copyright © 2014. Published by Elsevier B.V.
Jin, Xiaofen; Wang, Rui-Sheng; Zhu, Mengmeng; Jeon, Byeong Wook; Albert, Reka; Chen, Sixue; Assmann, Sarah M.
2013-01-01
Individual metabolites have been implicated in abscisic acid (ABA) signaling in guard cells, but a metabolite profile of this specialized cell type is lacking. We used liquid chromatography–multiple reaction monitoring mass spectrometry for targeted analysis of 85 signaling-related metabolites in Arabidopsis thaliana guard cell protoplasts over a time course of ABA treatment. The analysis utilized ∼350 million guard cell protoplasts from ∼30,000 plants of the Arabidopsis Columbia accession (Col) wild type and the heterotrimeric G-protein α subunit mutant, gpa1, which has ABA-hyposensitive stomata. These metabolomes revealed coordinated regulation of signaling metabolites in unrelated biochemical pathways. Metabolites clustered into different temporal modules in Col versus gpa1, with fewer metabolites showing ABA-altered profiles in gpa1. Ca2+-mobilizing agents sphingosine-1-phosphate and cyclic adenosine diphosphate ribose exhibited weaker ABA-stimulated increases in gpa1. Hormone metabolites were responsive to ABA, with generally greater responsiveness in Col than in gpa1. Most hormones also showed different ABA responses in guard cell versus mesophyll cell metabolomes. These findings suggest that ABA functions upstream to regulate other hormones, and are also consistent with G proteins modulating multiple hormonal signaling pathways. In particular, indole-3-acetic acid levels declined after ABA treatment in Col but not gpa1 guard cells. Consistent with this observation, the auxin antagonist α-(phenyl ethyl-2-one)-indole-3-acetic acid enhanced ABA-regulated stomatal movement and restored partial ABA sensitivity to gpa1. PMID:24368793
Metabolomic signatures of aggressive prostate cancer.
McDunn, Jonathan E; Li, Zhen; Adam, Klaus-Peter; Neri, Bruce P; Wolfert, Robert L; Milburn, Michael V; Lotan, Yair; Wheeler, Thomas M
2013-10-01
Current diagnostic techniques have increased the detection of prostate cancer; however, these tools inadequately stratify patients to minimize mortality. Recent studies have identified a biochemical signature of prostate cancer metastasis, including increased sarcosine abundance. This study examined the association of tissue metabolites with other clinically significant findings. A state of the art metabolomics platform analyzed prostatectomy tissues (331 prostate tumor, 178 cancer-free prostate tissues) from two independent sites. Biochemicals were analyzed by gas chromatography-mass spectrometry and ultrahigh performance liquid chromatography-tandem mass spectrometry. Statistical analyses identified metabolites associated with cancer aggressiveness: Gleason score, extracapsular extension, and seminal vesicle and lymph node involvement. Prostate tumors had significantly altered metabolite profiles compared to cancer-free prostate tissues, including biochemicals associated with cell growth, energetics, stress, and loss of prostate-specific biochemistry. Many metabolites were further associated with clinical findings of aggressive disease. Aggressiveness-associated metabolites stratified prostate tumor tissues with high abundances of compounds associated with normal prostate function (e.g., citrate and polyamines) from more clinically advanced prostate tumors. These aggressive prostate tumors were further subdivided by abundance profiles of metabolites including NAD+ and kynurenine. When added to multiparametric nomograms, metabolites improved prediction of organ confinement (AUROC from 0.53 to 0.62) and 5-year recurrence (AUROC from 0.53 to 0.64). These findings support and extend earlier metabolomic studies in prostate cancer and studies where metabolic enzymes have been associated with carcinogenesis and/or outcome. Furthermore, these data suggest that panels of analytes may be valuable to translate metabolomic findings to clinically useful diagnostic tests. Copyright © 2013 Wiley Periodicals, Inc.
McDonald, Matthew G; Ray, Sutapa; Amorosi, Clara J; Sitko, Katherine A; Kowalski, John P; Paco, Lorela; Nath, Abhinav; Gallis, Byron; Totah, Rheem A; Dunham, Maitreya J; Fowler, Douglas M; Rettie, Allan E
2017-12-01
CYP4Z1 is an "orphan" cytochrome P450 (P450) enzyme that has provoked interest because of its hypothesized role in breast cancer through formation of the signaling molecule 20-hydroxyeicosatetraenoic acid (20-HETE). We expressed human CYP4Z1 in Saccharomyces cerevisiae and evaluated its catalytic capabilities toward arachidonic and lauric acids (AA and LA). Specific and sensitive mass spectrometry assays enabled discrimination of the regioselectivity of hydroxylation of these two fatty acids. CYP4Z1 generated 7-, 8-, 9-, 10-, and 11-hydroxy LA, whereas the 12-hydroxy metabolite was not detected. HET0016, the prototypic CYP4 inhibitor, only weakly inhibited laurate metabolite formation (IC 50 ∼15 μ M). CYP4Z1 preferentially oxidized AA to the 14(S),15(R)-epoxide with high regioselectivity and stereoselectivity, a reaction that was also insensitive to HET0016, but neither 20-HETE nor 20-carboxy-AA were detectable metabolites. Docking of LA and AA into a CYP4Z1 homology model was consistent with this preference for internal fatty acid oxidation. Thus, human CYP4Z1 has an inhibitor profile and product regioselectivity distinct from most other CYP4 enzymes, consistent with CYP4Z1's lack of a covalently linked heme. These data suggest that, if CYP4Z1 modulates breast cancer progression, it does so by a mechanism other than direct production of 20-HETE. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Ehrlich, Kenneth C; Mack, Brian M
2014-06-23
Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity.
Ehrlich, Kenneth C.; Mack, Brian M.
2014-01-01
Fifty six secondary metabolite biosynthesis gene clusters are predicted to be in the Aspergillus flavus genome. In spite of this, the biosyntheses of only seven metabolites, including the aflatoxins, kojic acid, cyclopiazonic acid and aflatrem, have been assigned to a particular gene cluster. We used RNA-seq to compare expression of secondary metabolite genes in gene clusters for the closely related fungi A. parasiticus, A. oryzae, and A. flavus S and L sclerotial morphotypes. The data help to refine the identification of probable functional gene clusters within these species. Our results suggest that A. flavus, a prevalent contaminant of maize, cottonseed, peanuts and tree nuts, is capable of producing metabolites which, besides aflatoxin, could be an underappreciated contributor to its toxicity. PMID:24960201
Zhang, Jingdan; Zhang, Xiaoxue; Zhao, Yangyang; Song, Aihua; Sun, Wei; Yin, Ran
2018-02-01
In this study, a reliable and sensitive ultra-high performance liquid chromatography coupled with fourier transform ion cyclotron resonance mass spectrometry method was developed for the systematic study of the metabolic profile of Kudiezi injection in rat plasma, bile, urine, and feces after intravenous administration of a single dose. The chromatographic separation was performed on an Agilent Eclipse Plus C 18 column (4.6 mm × 50 mm, 1.8 μm) and the identification of prototype components and metabolites was achieved on a Bruker Solarix 7.0 T ultra-high resolution spectrometer in negative ion mode. Results indicated that a total of 76 constituents including 29 prototype compounds and 47 metabolites (10 phase I metabolites and 37 phase II metabolites) were tentatively identified. And the metabolic pathways of these prototype compounds including hydroxylation, dehydrogenation, glucuronidation, and sulfate conjugation. In conclusion, the developed method with high resolution and sensitivity was effective for screening and identification of prototypes and metabolites of Kudiezi injection in vivo. Moreover, these results would provide significant information for further pharmacokinetic and pharmacological research of Kudiezi injection in vivo. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chintapalli, Venkateswara R; Al Bratty, Mohammed; Korzekwa, Dominika; Watson, David G; Dow, Julian A T
2013-01-01
Metabolomics can provide exciting insights into organismal function, but most work on simple models has focussed on the whole organism metabolome, so missing the contributions of individual tissues. Comprehensive metabolite profiles for ten tissues from adult Drosophila melanogaster were obtained here by two chromatographic methods, a hydrophilic interaction (HILIC) method for polar metabolites and a lipid profiling method also based on HILIC, in combination with an Orbitrap Exactive instrument. Two hundred and forty two polar metabolites were putatively identified in the various tissues, and 251 lipids were observed in positive ion mode and 61 in negative ion mode. Although many metabolites were detected in all tissues, every tissue showed characteristically abundant metabolites which could be rationalised against specific tissue functions. For example, the cuticle contained high levels of glutathione, reflecting a role in oxidative defence; the alimentary canal (like vertebrate gut) had high levels of acylcarnitines for fatty acid metabolism, and the head contained high levels of ether lipids. The male accessory gland uniquely contained decarboxylated S-adenosylmethionine. These data thus both provide valuable insights into tissue function, and a reference baseline, compatible with the FlyAtlas.org transcriptomic resource, for further metabolomic analysis of this important model organism, for example in the modelling of human inborn errors of metabolism, aging or metabolic imbalances such as diabetes.
Castro, Cecilia; Motto, Mario; Rossi, Vincenzo; Manetti, Cesare
2008-01-01
To shed light on the specific contribution of HDA101 in modulating metabolic pathways in the maize seed, changes in the metabolic profiles of kernels obtained from hda101 mutant plants have been investigated by a metabonomic approach. Dynamic properties of chromatin folding can be mediated by enzymes that modify DNA and histones. The enzymes responsible for the steady-state of histone acetylation are histone acetyltransferase and histone deacetylase (HDA). Therefore, it is interesting to evaluate the effects of up- and down-regulation of a Rpd-3 type HDA on the development of maize seeds in terms of metabolic changes. This has been reached by analysing nuclear magnetic resonance spectra by different chemometrician approaches, such as Orthogonal Projection to Latent Structure-Discriminant Analysis, Parallel Factors Analysis, and Multi-way Partial Least Squares-Discriminant Analysis (N-PLS-DA). In particular, the latter approaches were chosen because they explicitly take time into account, organizing data into a set of slices that refer to different steps of the developing process. The results show the good discriminating capabilities of the N-PLS-DA approach, even if the number of samples ought be increased to obtain better predictive capabilities. However, using this approach, it was possible to show differences in the accumulation of metabolites during development and to highlight the changes occuring in the modified seeds. In particular, the results confirm the role of this gene in cell cycle control. PMID:18836140
Metabolic profiles are principally different between cancers of the liver, pancreas and breast.
Budhu, Anuradha; Terunuma, Atsushi; Zhang, Geng; Hussain, S Perwez; Ambs, Stefan; Wang, Xin Wei
2014-01-01
Molecular profiling of primary tumors may facilitate the classification of patients with cancer into more homogenous biological groups to aid clinical management. Metabolomic profiling has been shown to be a powerful tool in characterizing the biological mechanisms underlying a disease but has not been evaluated for its ability to classify cancers by their tissue of origin. Thus, we assessed metabolomic profiling as a novel tool for multiclass cancer characterization. Global metabolic profiling was employed to identify metabolites in paired tumor and non-tumor liver (n=60), breast (n=130) and pancreatic (n=76) tissue specimens. Unsupervised principal component analysis showed that metabolites are principally unique to each tissue and cancer type. Such a difference can also be observed even among early stage cancers, suggesting a significant and unique alteration of global metabolic pathways associated with each cancer type. Our global high-throughput metabolomic profiling study shows that specific biochemical alterations distinguish liver, pancreatic and breast cancer and could be applied as cancer classification tools to differentiate tumors based on tissue of origin.
Seifert, Erin L; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R; Wohlgemuth, Gert; Adams, Sean H; Harper, Mary-Ellen
2010-03-24
Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA beta-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 microM; corresponding to low, intermediate and high oxidation rates) and 9 microM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle.
Seifert, Erin L.; Fiehn, Oliver; Bezaire, Véronic; Bickel, David R.; Wohlgemuth, Gert; Adams, Sean H.; Harper, Mary-Ellen
2010-01-01
Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle. PMID:20352092
Toubiana, David; Semel, Yaniv; Tohge, Takayuki; Beleggia, Romina; Cattivelli, Luigi; Rosental, Leah; Nikoloski, Zoran; Zamir, Dani; Fernie, Alisdair R.; Fait, Aaron
2012-01-01
To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs) grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL). Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i) reflect the extensive redundancy of the regulation underlying seed metabolism, (ii) demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii) emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study highlights the added value of integrating metabolic network analysis with mQTL mapping. PMID:22479206
Sherlock, Mark; Behan, Lucy Ann; Hannon, Mark J; Alonso, Aurora Aragon; Thompson, Christopher J; Murray, Robert D; Crabtree, Nicola; Hughes, Beverly A; Arlt, Wiebke; Agha, Amar; Toogood, Andrew A; Stewart, Paul M
2015-11-01
Patients with hypopituitarism have increased morbidity and mortality. There is ongoing debate about the optimum glucocorticoid (GC) replacement therapy. To assess the effect of GC replacement in hypopituitarism on corticosteroid metabolism and its impact on body composition. We assessed the urinary corticosteroid metabolite profile (using gas chromatography/mass spectrometry) and body composition (clinical parameters and full body DXA) of 53 patients (19 female, median age 46 years) with hypopituitarism (33 ACTH-deficient/20 ACTH-replete) (study A). The corticosteroid metabolite profile of ten patients with ACTH deficiency was then assessed prospectively in a cross over study using three hydrocortisone (HC) dosing regimens (20/10 mg, 10/10 mg and 10/5 mg) (study B) each for 6 weeks. 11 beta-hydroxysteroid dehydrogenase 1 (11β-HSD1) activity was assessed by urinary THF+5α-THF/THE. Endocrine Centres within University Teaching Hospitals in the UK and Ireland. Urinary corticosteroid metabolite profile and body composition assessment. In study A, when patients were divided into three groups - patients not receiving HC and patients receiving HC≤20 mg/day or HC>20 mg/day - patients in the group receiving the highest daily dose of HC had significantly higher waist-to-hip ratio (WHR) than the ACTH replete group. They also had significantly elevated THF+5α-THF/THE (P=0.0002) and total cortisol metabolites (P=0.015). In study B, patients on the highest HC dose had significantly elevated total cortisol metabolites and all patients on HC had elevated THF+5α-THF/THE ratios when compared to controls. In ACTH-deficient patients daily HC doses of >20 mg/day have increased WHR, THF+5α-THF/THE ratios and total cortisol metabolites. GC metabolism and induction of 11β-HSD1 may play a pivitol role in the development of the metabolically adverse hypopituitary phenotype. © 2015 European Society of Endocrinology.
Alterations of urinary metabolite profile in model diabetic nephropathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stec, Donald F.; Wang, Suwan; Stothers, Cody
2015-01-09
Highlights: • {sup 1}H NMR spectroscopy was employed to study urinary metabolite profile in diabetic mouse models. • Mouse urinary metabolome showed major changes that are also found in human diabetic nephropathy. • These models can be new tools to study urinary biomarkers that are relevant to human disease. - Abstract: Countering the diabetes pandemic and consequent complications, such as nephropathy, will require better understanding of disease mechanisms and development of new diagnostic methods. Animal models can be versatile tools in studies of diabetic renal disease when model pathology is relevant to human diabetic nephropathy (DN). Diabetic models using endothelialmore » nitric oxide synthase (eNOS) knock-out mice develop major renal lesions characteristic of human disease. However, it is unknown whether they can also reproduce changes in urinary metabolites found in human DN. We employed Type 1 and Type 2 diabetic mouse models of DN, i.e. STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db, with the goal of determining changes in urinary metabolite profile using proton nuclear magnetic resonance (NMR). Six urinary metabolites with significantly lower levels in diabetic compared to control mice have been identified. Specifically, major changes were found in metabolites from tricarboxylic acid (TCA) cycle and aromatic amino acid catabolism including 3-indoxyl sulfate, cis-aconitate, 2-oxoisocaproate, N-phenyl-acetylglycine, 4-hydroxyphenyl acetate, and hippurate. Levels of 4-hydroxyphenyl acetic acid and hippuric acid showed the strongest reverse correlation to albumin-to-creatinine ratio (ACR), which is an indicator of renal damage. Importantly, similar changes in urinary hydroxyphenyl acetate and hippurate were previously reported in human renal disease. We demonstrated that STZ-eNOS{sup −/−} C57BLKS and eNOS{sup −/−} C57BLKS db/db mouse models can recapitulate changes in urinary metabolome found in human DN and therefore can be useful new tools in metabolomic studies relevant to human pathology.« less
Targeted metabolomics profiles are strongly correlated with nutritional patterns in women.
Menni, Cristina; Zhai, Guangju; Macgregor, Alexander; Prehn, Cornelia; Römisch-Margl, Werner; Suhre, Karsten; Adamski, Jerzy; Cassidy, Aedin; Illig, Thomas; Spector, Tim D; Valdes, Ana M
2013-04-01
Nutrition plays an important role in human metabolism and health. Metabolomics is a promising tool for clinical, genetic and nutritional studies. A key question is to what extent metabolomic profiles reflect nutritional patterns in an epidemiological setting. We assessed the relationship between metabolomic profiles and nutritional intake in women from a large cross-sectional community study. Food frequency questionnaires (FFQs) were applied to 1,003 women from the TwinsUK cohort with targeted metabolomic analyses of serum samples using the Biocrates Absolute-IDQ™ Kit p150 (163 metabolites). We analyzed seven nutritional parameters: coffee intake, garlic intake and nutritional scores derived from the FFQs summarizing fruit and vegetable intake, alcohol intake, meat intake, hypo-caloric dieting and a "traditional English" diet. We studied the correlation between metabolite levels and dietary intake patterns in the larger population and identified for each trait between 14 and 20 independent monozygotic twins pairs discordant for nutritional intake and replicated results in this set. Results from both analyses were then meta-analyzed. For the metabolites associated with nutritional patterns, we calculated heritability using structural equation modelling. 42 metabolite nutrient intake associations were statistically significant in the discovery samples (Bonferroni P < 4 × 10 -5 ) and 11 metabolite nutrient intake associations remained significant after validation. We found the strongest associations for fruit and vegetables intake and a glycerophospholipid (Phosphatidylcholine diacyl C38:6, P = 1.39 × 10 -9 ) and a sphingolipid (Sphingomyeline C26:1, P = 6.95 × 10 -13 ). We also found significant associations for coffee (confirming a previous association with C10 reported in an independent study), garlic intake and hypo-caloric dieting. Using the twin study design we find that two thirds the metabolites associated with nutritional patterns have a significant genetic contribution, and the remaining third are solely environmentally determined. Our data confirm the value of metabolomic studies for nutritional epidemiologic research.
Mangalam, AK; Poisson, LM; Nemutlu, E; Datta, I; Denic, A; Dzeja, P; Rodriguez, M; Rattan, R; Giri, S
2013-01-01
Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disease of the CNS. Although, MS is well characterized in terms of the role played by immune cells, cytokines and CNS pathology, nothing is known about the metabolic alterations that occur during the disease process in circulation. Recently, metabolic aberrations have been defined in various disease processes either as contributing to the disease, as potential biomarkers, or as therapeutic targets. Thus in an attempt to define the metabolic alterations that may be associated with MS disease progression, we profiled the plasma metabolites at the chronic phase of disease utilizing relapsing remitting-experimental autoimmune encephalomyelitis (RR-EAE) model in SJL mice. At the chronic phase of the disease (day 45), untargeted global metabolomic profiling of plasma collected from EAE diseased SJL and healthy mice was performed, using a combination of high-throughput liquid-and-gas chromatography with mass spectrometry. A total of 282 metabolites were identified, with significant changes observed in 44 metabolites (32 up-regulated and 12 down-regulated), that mapped to lipid, amino acid, nucleotide and xenobiotic metabolism and distinguished EAE from healthy group (p<0.05, false discovery rate (FDR)<0.23). Mapping the differential metabolite signature to their respective biochemical pathways using the Kyoto Encyclopedia of Genes and Genomics (KEGG) database, we found six major pathways that were significantly altered (containing concerted alterations) or impacted (containing alteration in key junctions). These included bile acid biosynthesis, taurine metabolism, tryptophan and histidine metabolism, linoleic acid and D-arginine metabolism pathways. Overall, this study identified a 44 metabolite signature drawn from various metabolic pathways which correlated well with severity of the EAE disease, suggesting that these metabolic changes could be exploited as (1) biomarkers for EAE/MS progression and (2) to design new treatment paradigms where metabolic interventions could be combined with present and experimental therapeutics to achieve better treatment of MS. PMID:24273690
Mung, Dorothea; Li, Liang
2018-02-25
There is an increasing demand for donor human milk to feed infants for various reasons including that a mother may be unable to provide sufficient amounts of milk for their child or the milk is considered unsafe for the baby. Selling and buying human milk via the Internet has gained popularity. However, there is a risk of human milk sold containing other adulterants such as animal or plant milk. Analytical tools for rapid detection of adulterants in human milk are needed. We report a quantitative metabolomics method for detecting potential milk adulterants (soy, almond, cow, goat and infant formula milk) in human milk. It is based on the use of a high-performance chemical isotope labeling (CIL) LC-MS platform to profile the metabolome of an unknown milk sample, followed by multivariate or univariate comparison of the resultant metabolomic profile with that of human milk to determine the differences. Using dansylation LC-MS to profile the amine/phenol submetabolome, we could detect an average of 4129 ± 297 (n = 9) soy metabolites, 3080 ± 470 (n = 9) almond metabolites, 4256 ± 136 (n = 18) cow metabolites, 4318 ± 198 (n = 9) goat metabolites, 4444 ± 563 (n = 9) infant formula metabolites, and 4020 ± 375 (n = 30) human metabolites. This high level of coverage allowed us to readily differentiate the six different types of samples. From the analysis of binary mixtures of human milk containing 5, 10, 25, 50 and 75% other type of milk, we demonstrated that this method could be used to detect the presence of as low as 5% adulterant in human milk. We envisage that this method could be applied to detect contaminant or adulterant in other types of food or drinks. Copyright © 2017 Elsevier B.V. All rights reserved.
Denk, Michael K; Milutinović, Nicholas S
2018-01-01
The insecticide DDT is an omnipresent environmental contaminant and an ongoing toxicological concern. The recent discovery that methylenetetrahydrofolate (MTHF) models are capable of reducing a range of halocarbons to hydrocarbons under biomimetic conditions has prompted us to investigate the possible role of MTHF in the metabolism of DDT. We now report that the reaction of MTHF models with DDT produces no less than five known in vivo metabolites of DDT, namely DDD, DDE, DDMU, DBP, and DDM. The capability of the MTHF models to produce the full spectrum of known DDT dehalogenation products is strong evidence that the mechanistically obscure metabolism of DDT may involve MTHF. The findings also suggest that DDT should be capable of disrupting folate-dependent pathways. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Interoperability Framework and Capability Profiling for Manufacturing Software
NASA Astrophysics Data System (ADS)
Matsuda, M.; Arai, E.; Nakano, N.; Wakai, H.; Takeda, H.; Takata, M.; Sasaki, H.
ISO/TC184/SC5/WG4 is working on ISO16100: Manufacturing software capability profiling for interoperability. This paper reports on a manufacturing software interoperability framework and a capability profiling methodology which were proposed and developed through this international standardization activity. Within the context of manufacturing application, a manufacturing software unit is considered to be capable of performing a specific set of function defined by a manufacturing software system architecture. A manufacturing software interoperability framework consists of a set of elements and rules for describing the capability of software units to support the requirements of a manufacturing application. The capability profiling methodology makes use of the domain-specific attributes and methods associated with each specific software unit to describe capability profiles in terms of unit name, manufacturing functions, and other needed class properties. In this methodology, manufacturing software requirements are expressed in terns of software unit capability profiles.
The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis
Gray, Elizabeth; Larkin, James R.; Claridge, Tim D. W.; Talbot, Kevin; Sibson, Nicola R.; Turner, Martin R.
2015-01-01
Neurochemical biomarkers are urgently sought in ALS. Metabolomic analysis of cerebrospinal fluid (CSF) using proton nuclear magnetic resonance (1H-NMR) spectroscopy is a highly sensitive method capable of revealing nervous system cellular pathology. The 1H-NMR CSF metabolomic signature of ALS was sought in a longitudinal cohort. Six-monthly serial collection was performed in ALS patients across a range of clinical sub-types (n = 41) for up to two years, and in healthy controls at a single time-point (n = 14). A multivariate statistical approach, partial least squares discriminant analysis, was used to determine differences between the NMR spectra from patients and controls. Significantly predictive models were found using those patients with at least one year's interval between recruitment and the second sample. Glucose, lactate, citric acid and, unexpectedly, ethanol were the discriminating metabolites elevated in ALS. It is concluded that 1H-NMR captured the CSF metabolomic signature associated with derangements in cellular energy utilization connected with ALS, and was most prominent in comparisons using patients with longer disease duration. The specific metabolites identified support the concept of a hypercatabolic state, possibly involving mitochondrial dysfunction specifically. Endogenous ethanol in the CSF may be an unrecognized novel marker of neuronal tissue injury in ALS. PMID:26121274
Park, Soo-Yun; Lim, Sun-Hyung; Ha, Sun-Hwa; Yeo, Yunsoo; Park, Woo Tae; Kwon, Do Yeon; Park, Sang Un; Kim, Jae Kwang
2013-07-17
In the present study, carotenoids, anthocyanins, and phenolic acids of cauliflowers ( Brassica oleracea L. ssp. botrytis) with various colored florets (white, yellow, green, and purple) were characterized to determine their phytochemical diversity. Additionally, 48 metabolites comprising amino acids, organic acids, sugars, and sugar alcohols were identified using gas chromatography-time-of-flight mass spectrometry (GC-TOFMS). Carotenoid content was considerably higher in green cauliflower; anthocyanins were detected only in purple cauliflower. Phenolic acids were higher in both green and purple cauliflower. Results of partial least-squares discriminant, Pearson correlation, and hierarchical clustering analyses showed that green cauliflower is distinct on the basis of the high levels of amino acids and clusters derived from common or closely related biochemical pathways. These results suggest that GC-TOFMS-based metabolite profiling, combined with chemometrics, is a useful tool for determining phenotypic variation and identifying metabolic networks connecting primary and secondary metabolism.
Griffith, Corey M; Williams, Preston B; Tinoco, Luzineide W; Dinges, Meredith M; Wang, Yinsheng; Larive, Cynthia K
2017-09-01
Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1 H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance.
Curry, E; Roth, T L; MacKinnon, K M; Stoops, M A
2012-12-01
The objectives of this study were to assess the effects of season, breeding activity, age and latitude on fecal testosterone metabolite concentrations in captive, adult male polar bears (Ursus maritimus). Fourteen polar bears from 13 North American zoos were monitored for 12-36 months, producing 25-year-long testosterone profiles. Results indicated that testosterone was significantly higher during the breeding season (early January through the end of May) compared with the non-breeding season with the highest concentrations excreted from early January through late March. Variations in excretion patterns were observed among individuals and also between years within an individual, with testosterone peaks closely associated with breeding activity. Results indicate that fecal testosterone concentrations are influenced by season, breeding activity and age, but not by latitude. This is the first report describing longitudinal fecal testosterone metabolite concentrations in individual adult male polar bears. © 2012 Blackwell Verlag GmbH.
Web-based resources for mass-spectrometry-based metabolomics: a user's guide.
Tohge, Takayuki; Fernie, Alisdair R
2009-03-01
In recent years, a plethora of web-based tools aimed at supporting mass-spectrometry-based metabolite profiling and metabolomics applications have appeared. Given the huge hurdles presented by the chemical diversity and dynamic range of the metabolites present in the plant kingdom, profiling the levels of a broad range of metabolites is highly challenging. Given the scale and costs involved in defining the plant metabolome, it is imperative that data are effectively shared between laboratories pursuing this goal. However, ensuring accurate comparison of samples run on the same machine within the same laboratory, let alone cross-machine and cross-laboratory comparisons, requires both careful experimentation and data interpretation. In this review, we present an overview of currently available software that aids either in peak identification or in the related field of peak alignment as well as those with utility in defining structural information of compounds and metabolic pathways.
Discovery of piragliatin--first glucokinase activator studied in type 2 diabetic patients.
Sarabu, Ramakanth; Bizzarro, Fred T; Corbett, Wendy L; Dvorozniak, Mark T; Geng, Wanping; Grippo, Joseph F; Haynes, Nancy-Ellen; Hutchings, Stanley; Garofalo, Lisa; Guertin, Kevin R; Hilliard, Darryl W; Kabat, Marek; Kester, Robert F; Ka, Wang; Liang, Zhenmin; Mahaney, Paige E; Marcus, Linda; Matschinsky, Franz M; Moore, David; Racha, Jagdish; Radinov, Roumen; Ren, Yi; Qi, Lida; Pignatello, Michael; Spence, Cheryl L; Steele, Thomas; Tengi, John; Grimsby, Joseph
2012-08-23
Glucokinase (GK) activation as a potential strategy to treat type 2 diabetes (T2D) is well recognized. Compound 1, a glucokinase activator (GKA) lead that we have previously disclosed, caused reversible hepatic lipidosis in repeat-dose toxicology studies. We hypothesized that the hepatic lipidosis was due to the structure-based toxicity and later established that it was due to the formation of a thiourea metabolite, 2. Subsequent SAR studies of 1 led to the identification of a pyrazine-based lead analogue 3, lacking the thiazole moiety. In vivo metabolite identification studies, followed by the independent synthesis and profiling of the cyclopentyl keto- and hydroxyl- metabolites of 3, led to the selection of piragliatin, 4, as the clinical lead. Piragliatin was found to lower pre- and postprandial glucose levels, improve the insulin secretory profile, increase β-cell sensitivity to glucose, and decrease hepatic glucose output in patients with T2D.
Mass Spectrometry-Based Metabolomics to Elucidate Functions in Marine Organisms and Ecosystems
Goulitquer, Sophie; Potin, Philippe; Tonon, Thierry
2012-01-01
Marine systems are very diverse and recognized as being sources of a wide range of biomolecules. This review provides an overview of metabolite profiling based on mass spectrometry (MS) approaches in marine organisms and their environments, focusing on recent advances in the field. We also point out some of the technical challenges that need to be overcome in order to increase applications of metabolomics in marine systems, including extraction of chemical compounds from different matrices and data management. Metabolites being important links between genotype and phenotype, we describe added value provided by integration of data from metabolite profiling with other layers of omics, as well as their importance for the development of systems biology approaches in marine systems to study several biological processes, and to analyze interactions between organisms within communities. The growing importance of MS-based metabolomics in chemical ecology studies in marine ecosystems is also illustrated. PMID:22690147
Ohta, Daisaku; Kanaya, Shigehiko; Suzuki, Hideyuki
2010-02-01
Metabolomics, as an essential part of genomics studies, intends holistic understanding of metabolic networks through simultaneous analysis of a myriad of both known and unknown metabolites occurring in living organisms. The initial stage of metabolomics was designed for the reproducible analyses of known metabolites based on their comparison to available authentic compounds. Such metabolomics platforms were mostly based on mass spectrometry (MS) technologies enabled by a combination of different ionization methods together with a variety of separation steps including LC, GC, and CE. Among these, Fourier-transform ion cyclotron resonance MS (FT-ICR/MS) is distinguished from other MS technologies by its ultrahigh resolution power in mass to charge ratio (m/z). The potential of FT-ICR/MS as a distinctive metabolomics tool has been demonstrated in nontargeted metabolic profiling and functional characterization of novel genes. Here, we discuss both the advantages and difficulties encountered in the FT-ICR/MS metabolomics studies.
Data Reduction Approaches for Dissecting Transcriptional Effects on Metabolism
Schwahn, Kevin; Nikoloski, Zoran
2018-01-01
The availability of high-throughput data from transcriptomics and metabolomics technologies provides the opportunity to characterize the transcriptional effects on metabolism. Here we propose and evaluate two computational approaches rooted in data reduction techniques to identify and categorize transcriptional effects on metabolism by combining data on gene expression and metabolite levels. The approaches determine the partial correlation between two metabolite data profiles upon control of given principal components extracted from transcriptomics data profiles. Therefore, they allow us to investigate both data types with all features simultaneously without doing preselection of genes. The proposed approaches allow us to categorize the relation between pairs of metabolites as being under transcriptional or post-transcriptional regulation. The resulting classification is compared to existing literature and accumulated evidence about regulatory mechanism of reactions and pathways in the cases of Escherichia coli, Saccharomycies cerevisiae, and Arabidopsis thaliana. PMID:29731765
Cheng, Mei-Ling; Wang, Chao-Hung; Shiao, Ming-Shi; Liu, Min-Hui; Huang, Yu-Yen; Huang, Cheng-Yu; Mao, Chun-Tai; Lin, Jui-Fen; Ho, Hung-Yao; Yang, Ning-I
2015-04-21
Identification of novel biomarkers is needed to improve the diagnosis and prognosis of heart failure (HF). Metabolic disturbance is remarkable in patients with HF. This study sought to assess the diagnostic and prognostic values of metabolomics in HF. Mass spectrometry-based profiling of plasma metabolites was performed in 515 participants; the discovery phase study enrolled 51 normal control subjects and 183 HF patients, and the validation study enrolled 63 control subjects and 218 patients with stage C HF. Another independent group of 32 patients with stage C HF who recovered to New York Heart Association functional class I at 6 and 12 months was profiled as the "recovery" group. A panel of metabolites, including histidine, phenylalanine, spermidine, and phosphatidylcholine C34:4, has a diagnostic value similar to B-type natriuretic peptide (BNP). In the recovery group, the values of this panel significantly improved at 6 and 12 months. To evaluate the prognostic values, events were defined as the combined endpoints of death or HF-related re-hospitalization. A metabolite panel, which consisted of the asymmetric methylarginine/arginine ratio, butyrylcarnitine, spermidine, and the total amount of essential amino acids, provided significant prognostic values (p < 0.0001) independent of BNP and traditional risk factors. The prognostic value of the metabolite panel was better than that of BNP (area under the curve of 0.85 vs. 0.74 for BNP) and Kaplan-Meier curves (log rank: 17.5 vs. 9.95). These findings were corroborated in the validation study. Metabolomics demonstrate powerful diagnostic value in estimating HF-related metabolic disturbance. The profile of metabolites provides better prognostic value versus conventional biomarkers. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Comprehensive lipid analysis: a powerful metanomic tool for predictive and diagnostic medicine.
Watkins, S M
2000-09-01
The power and accuracy of predictive diagnostics stand to improve dramatically as a result of lipid metanomics. The high definition of data obtained with this approach allows multiple rather than single metabolites to be used in markers for a group. Since as many as 40 fatty acids are quantified from each lipid class, and up to 15 lipid classes can be quantified easily, more than 600 individual lipid metabolites can be measured routinely for each sample. Because these analyses are comprehensive, only the most appropriate and unique metabolites are selected for their predictive value. Thus, comprehensive lipid analysis promises to greatly improve predictive diagnostics for phenotypes that directly or peripherally involve lipids. A broader and possibly more exciting aspect of this technology is the generation of metabolic profiles that are not simply markers for disease, but metabolic maps that can be used to identify specific genes or activities that cause or influence the disease state. Metanomics is, in essence, functional genomics from metabolite analysis. By defining the metabolic basis for phenotype, researchers and clinicians will have an extraordinary opportunity to understand and treat disease. Much in the same way that gene chips allow researchers to observe the complex expression response to a stimulus, metanomics will enable researchers to observe the complex metabolic interplay responsible for defining phenotype. By extending this approach beyond the observation of individual dysregulations, medicine will begin to profile not single diseases, but health. As health is the proper balance of all vital metabolic pathways, comprehensive or metanomic analysis lends itself very well to identifying the metabolite distributions necessary for optimum health. Comprehensive and quantitative analysis of lipids would provide this degree of diagnostic power to researchers and clinicians interested in mining metabolic profiles for biological meaning.
Lewis, Gregory D; Ngo, Debby; Hemnes, Anna R; Farrell, Laurie; Domos, Carly; Pappagianopoulos, Paul P; Dhakal, Bishnu P; Souza, Amanda; Shi, Xu; Pugh, Meredith E; Beloiartsev, Arkadi; Sinha, Sumita; Clish, Clary B; Gerszten, Robert E
2016-01-19
Pulmonary hypertension and associated right ventricular (RV) dysfunction are important determinants of morbidity and mortality, which are optimally characterized by invasive hemodynamic measurements. This study sought to determine whether metabolite profiling could identify plasma signatures of right ventricular-pulmonary vascular (RV-PV) dysfunction. We measured plasma concentrations of 105 metabolites using targeted mass spectrometry in 71 individuals (discovery cohort) who underwent comprehensive physiological assessment with right-sided heart catheterization and radionuclide ventriculography at rest and during exercise. Our findings were validated in a second cohort undergoing invasive hemodynamic evaluations (n = 71), as well as in an independent cohort with or without known pulmonary arterial (PA) hypertension (n = 30). In the discovery cohort, 21 metabolites were associated with 2 or more hemodynamic indicators of RV-PV function (i.e., resting right atrial pressure, mean PA pressure, pulmonary vascular resistance [PVR], and PVR and PA pressure-flow response [ΔPQ] during exercise). We identified novel associations of RV-PV dysfunction with circulating indoleamine 2,3-dioxygenase (IDO)-dependent tryptophan metabolites (TMs), tricarboxylic acid intermediates, and purine metabolites and confirmed previously described associations with arginine-nitric oxide metabolic pathway constituents. IDO-TM levels were inversely related to RV ejection fraction and were particularly well correlated with exercise PVR and ΔPQ. Multisite sampling demonstrated transpulmonary release of IDO-TMs. IDO-TMs also identified RV-PV dysfunction in a validation cohort with known risk factors for pulmonary hypertension and in patients with established PA hypertension. Metabolic profiling identified reproducible signatures of RV-PV dysfunction, highlighting both new biomarkers and pathways for further functional characterization. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Plasma metabolomic profiles of breast cancer patients after short-term limonene intervention
Miller, Jessica A.; Pappan, Kirk; Thompson, Patricia A.; Want, Elizabeth J.; Siskos, Alexandros; Keun, Hector C.; Wulff, Jacob; Hu, Chengcheng; Lang, Julie E.; Chow, H-H. Sherry
2014-01-01
Limonene is a lipophilic monoterpene found in high levels in citrus peel. Limonene demonstrates anti-cancer properties in preclinical models with effects on multiple cellular targets at varying potency. While of interest as a cancer chemopreventive, the biological activity of limonene in humans is poorly understood. We conducted metabolite profiling in 39 paired (pre/post-intervention) plasma samples from early-stage breast cancer patients receiving limonene treatment (2 g QD) before surgical resection of their tumor. Metabolite profiling was conducted using ultra-performance liquid chromatography (UPLC) coupled to a linear trap quadrupole (LTQ) system and gas chromatography mass spectrometry (GC-MS). Metabolites were identified by comparison of ion features in samples to a standard reference library. Pathway-based interpretation was conducted using the human metabolome database (HMDB) and the MetaCyc database. Of the 397 named metabolites identified, 72 changed significantly with limonene intervention. Class-based changes included significant decreases in adrenal steroids (P’s<0.01), and significant increases in bile acids (P’s≤0.05) and multiple collagen breakdown products (P’s<0.001). The pattern of changes also suggested alterations in glucose metabolism. There were 47 metabolites whose change with intervention was significantly correlated to a decrease in cyclin D1, a cell cycle regulatory protein, in patient tumor tissues (P’s≤0.05). Here, oral administration of limonene resulted in significant changes in several metabolic pathways. Further, pathway-based changes were related to the change in tissue level cyclin D1 expression. Future controlled clinical trials with limonene are necessary to determine the potential role and mechanisms of limonene in the breast cancer prevention setting. PMID:25388013
Ennis, Kathleen; Lusczek, Elizabeth; Rao, Raghavendra
2017-07-13
Treatment of hypoglycemia in children is currently based on plasma glucose measurements. This approach may not ensure neuroprotection since plasma glucose does not reflect the dynamic state of cerebral energy metabolism. To determine whether cerebral metabolic changes during hypoglycemia could be better characterized using plasma metabolomic analysis, insulin-induced acute hypoglycemia was induced in 4-week-old rats. Brain tissue and concurrent plasma samples were collected from hypoglycemic (N=7) and control (N=7) rats after focused microwave fixation to prevent post-mortem metabolic changes. The concentration of 29 metabolites in brain and 34 metabolites in plasma were determined using 1 H NMR spectroscopy at 700MHz and examined using partial least squares-discriminant analysis. The sensitivity of plasma glucose for detecting cerebral energy failure was assessed by determining its relationship to brain phosphocreatine. The brain and plasma metabolite profiles of the hypoglycemia group were distinct from the control group (brain: R 2 =0.92, Q 2 =0.31; plasma: R 2 =0.95, Q 2 =0.74). Concentration differences in glucose, ketone bodies and amino acids were responsible for the intergroup separation. There was 45% concordance between the brain and plasma metabolite profiles. Brain phosphocreatine correlated with brain glucose (control group: R 2 =0.86; hypoglycemia group: R 2 =0.59; p<0.05), but not with plasma glucose. The results confirm that plasma glucose is an insensitive biomarker of cerebral energy changes during hypoglycemia and suggest that a plasma metabolite profile is superior for monitoring cerebral metabolism. Copyright © 2017 Elsevier B.V. All rights reserved.
Sarabia, Lenin D; Boughton, Berin A; Rupasinghe, Thusitha; van de Meene, Allison M L; Callahan, Damien L; Hill, Camilla B; Roessner, Ute
2018-01-01
Mass spectrometry imaging (MSI) is a technology that enables the visualization of the spatial distribution of hundreds to thousands of metabolites in the same tissue section simultaneously. Roots are below-ground plant organs that anchor plants to the soil, take up water and nutrients, and sense and respond to external stresses. Physiological responses to salinity are multifaceted and have predominantly been studied using whole plant tissues that cannot resolve plant salinity responses spatially. This study aimed to use a comprehensive approach to study the spatial distribution and profiles of metabolites, and to quantify the changes in the elemental content in young developing barley seminal roots before and after salinity stress. Here, we used a combination of liquid chromatography-mass spectrometry (LC-MS), inductively coupled plasma mass spectrometry (ICP-MS), and matrix-assisted laser desorption/ionization (MALDI-MSI) platforms to profile and analyze the spatial distribution of ions, metabolites and lipids across three anatomically different barley root zones before and after a short-term salinity stress (150 mM NaCl). We localized, visualized and discriminated compounds in fine detail along longitudinal root sections and compared ion, metabolite, and lipid composition before and after salt stress. Large changes in the phosphatidylcholine (PC) profiles were observed as a response to salt stress with PC 34:n showing an overall reduction in salt treated roots. ICP-MS analysis quantified changes in the elemental content of roots with increases of Na + and decreases of K + content. Our results established the suitability of combining three mass spectrometry platforms to analyze and map ionic and metabolic responses to salinity stress in plant roots and to elucidate tolerance mechanisms in response to abiotic stress, such as salinity stress.
Liu, Siwen; Bode, Liv; Zhang, Lujun; He, Peng; Huang, Rongzhong; Sun, Lin; Chen, Shigang; Zhang, Hong; Guo, Yujie; Zhou, Jingjing; Fu, Yuying; Zhu, Dan; Xie, Peng
2015-01-01
Borna disease virus (BDV) persists in the central nervous systems of a wide variety of vertebrates and causes behavioral disorders. Previous studies have revealed that metabolic perturbations are associated with BDV infection. However, the pathophysiological effects of different viral strains remain largely unknown. Rat cortical neurons infected with human strain BDV Hu-H1, laboratory BDV Strain V, and non-infected control (CON) cells were cultured in vitro. At day 12 post-infection, a gas chromatography coupled with mass spectrometry (GC–MS) metabonomic approach was used to differentiate the metabonomic profiles of 35 independent intracellular samples from Hu-H1-infected cells (n = 12), Strain V-infected cells (n = 12), and CON cells (n = 11). Partial least squares discriminant analysis (PLS-DA) was performed to demonstrate discrimination between the three groups. Further statistical testing determined which individual metabolites displayed significant differences between groups. PLS-DA demonstrated that the whole metabolic pattern enabled statistical discrimination between groups. We identified 31 differential metabolites in the Hu-H1 and CON groups (21 decreased and 10 increased in Hu-H1 relative to CON), 35 differential metabolites in the Strain V and CON groups (30 decreased and 5 increased in Strain V relative to CON), and 21 differential metabolites in the Hu-H1 and Strain V groups (8 decreased and 13 increased in Hu-H1 relative to Strain V). Comparative metabonomic profiling revealed divergent perturbations in key energy and amino acid metabolites between natural strain Hu-H1 and laboratory Strain V of BDV. The two BDV strains differentially alter metabolic pathways of rat cortical neurons in vitro. Their systematic classification provides a valuable template for improved BDV strain definition in future studies. PMID:26287181
Armah, Charlotte N; Traka, Maria H; Dainty, Jack R; Defernez, Marianne; Janssens, Astrid; Leung, Wing; Doleman, Joanne F; Potter, John F
2013-01-01
Background: Observational and experimental studies suggest that diets rich in cruciferous vegetables and glucosinolates may reduce the risk of cancer and cardiovascular disease (CVD). Objective: We tested the hypothesis that a 12-wk dietary intervention with high-glucoraphanin (HG) broccoli would modify biomarkers of CVD risk and plasma metabolite profiles to a greater extent than interventions with standard broccoli or peas. Design: Subjects were randomly assigned to consume 400 g standard broccoli, 400 g HG broccoli, or 400 g peas each week for 12 wk, with no other dietary restrictions. Biomarkers of CVD risk and 347 plasma metabolites were quantified before and after the intervention. Results: No significant differences in the effects of the diets on biomarkers of CVD risk were found. Multivariate analyses of plasma metabolites identified 2 discrete phenotypic responses to diet in individuals within the HG broccoli arm, differentiated by single nucleotide polymorphisms associated with the PAPOLG gene. Univariate analysis showed effects of sex (P < 0.001), PAPOLG genotype (P < 0.001), and PAPOLG genotype × diet (P < 0.001) on the plasma metabolic profile. In the HG broccoli arm, the consequence of the intervention was to reduce variation in lipid and amino acid metabolites, tricarboxylic acid (TCA) cycle intermediates, and acylcarnitines between the 2 PAPOLG genotypes. Conclusions: The metabolic changes observed with the HG broccoli diet are consistent with a rebalancing of anaplerotic and cataplerotic reactions and enhanced integration of fatty acid β-oxidation with TCA cycle activity. These modifications may contribute to the reduction in cancer risk associated with diets that are rich in cruciferous vegetables. This trial was registered at clinicaltrials.gov as NCT01114399. PMID:23964055
2015-01-01
Potato (Solanum tuberosum L.) is a worldwide food staple, but substantial waste accompanies the cultivation of this crop due to wounding of the outer skin and subsequent unfavorable healing conditions. Motivated by both economic and nutritional considerations, this metabolite profiling study aims to improve understanding of closing layer and wound periderm formation and guide the development of new methods to ensure faster and more complete healing after skin breakage. The polar metabolites of wound-healing tissues from four potato cultivars with differing patterns of tuber skin russeting (Norkotah Russet, Atlantic, Chipeta, and Yukon Gold) were analyzed at three and seven days after wounding, during suberized closing layer formation and nascent wound periderm development, respectively. The polar extracts were assessed using LC-MS and NMR spectroscopic methods, including multivariate analysis and tentative identification of 22 of the 24 biomarkers that discriminate among the cultivars at a given wound-healing time point or between developmental stages. Differences among the metabolites that could be identified from NMR- and MS-derived biomarkers highlight the strengths and limitations of each method, also demonstrating the complementarity of these approaches in terms of assembling a complete molecular picture of the tissue extracts. Both methods revealed that differences among the cultivar metabolite profiles diminish as healing proceeds during the period following wounding. The biomarkers included polyphenolic amines, flavonoid glycosides, phenolic acids and glycoalkaloids. Because wound healing is associated with oxidative stress, the free radical scavenging activities of the extracts from different cultivars were measured at each wounding time point, revealing significantly higher scavenging activity of the Yukon Gold periderm especially after 7 days of wounding. PMID:24998264
Pieper, Robert; Boudry, Christelle; Bindelle, Jérôme; Vahjen, Wilfried; Zentek, Jürgen
2014-01-01
Although fermentable carbohydrates (CHO) can reduce metabolites derived from dietary protein fermentation in the intestine of pigs, the interaction between site of fermentation and substrate availability along the gut is still unclear. The current study aimed at determining the impact of two different sources of carbohydrates in diets with low or very high protein content on microbial metabolite profiles along the gastrointestinal tract of piglets. Thirty-six piglets (n = 6 per group) were fed diets high (26%, HP) or low (18%, LP) in dietary protein and with or without two different sources of carbohydrates (12% sugar beet pulp, SBP, or 8% lignocellulose, LNC) in a 2 × 3 factorial design. After 3 weeks, contents from stomach, jejunum, ileum, caecum, proximal and distal colon were taken and analysed for major bacterial metabolites (D-lactate, L-lactate, short chain fatty acids, ammonia, amines, phenols and indols). Results indicate considerable fermentation of CHO and protein already in the stomach. HP diets increased the formation of ammonia, amines, phenolic and indolic compounds throughout the different parts of the intestine with most pronounced effects in the distal colon. Dietary SBP inclusion in LP diets favoured the formation of cadaverine in the proximal parts of the intestine. SBP mainly increased CHO-derived metabolites such as SCFA and lactate and decreased protein-derived metabolites in the large intestine. Based on metabolite profiles, LNC was partly fermented in the distal large intestine and reduced mainly phenols, indols and cadaverine, but not ammonia. Multivariate analysis confirmed more diet-specific metabolite patterns in the stomach, whereas the CHO addition was the main determinant in the caecum and proximal colon. The protein level mainly influenced the metabolite patterns in the distal colon. The results confirm the importance of CHO source to influence the formation of metabolites derived from protein fermentation along the intestinal tract of the pig.
Orlenko, Alena; Moore, Jason H; Orzechowski, Patryk; Olson, Randal S; Cairns, Junmei; Caraballo, Pedro J; Weinshilboum, Richard M; Wang, Liewei; Breitenstein, Matthew K
2018-01-01
With the maturation of metabolomics science and proliferation of biobanks, clinical metabolic profiling is an increasingly opportunistic frontier for advancing translational clinical research. Automated Machine Learning (AutoML) approaches provide exciting opportunity to guide feature selection in agnostic metabolic profiling endeavors, where potentially thousands of independent data points must be evaluated. In previous research, AutoML using high-dimensional data of varying types has been demonstrably robust, outperforming traditional approaches. However, considerations for application in clinical metabolic profiling remain to be evaluated. Particularly, regarding the robustness of AutoML to identify and adjust for common clinical confounders. In this study, we present a focused case study regarding AutoML considerations for using the Tree-Based Optimization Tool (TPOT) in metabolic profiling of exposure to metformin in a biobank cohort. First, we propose a tandem rank-accuracy measure to guide agnostic feature selection and corresponding threshold determination in clinical metabolic profiling endeavors. Second, while AutoML, using default parameters, demonstrated potential to lack sensitivity to low-effect confounding clinical covariates, we demonstrated residual training and adjustment of metabolite features as an easily applicable approach to ensure AutoML adjustment for potential confounding characteristics. Finally, we present increased homocysteine with long-term exposure to metformin as a potentially novel, non-replicated metabolite association suggested by TPOT; an association not identified in parallel clinical metabolic profiling endeavors. While warranting independent replication, our tandem rank-accuracy measure suggests homocysteine to be the metabolite feature with largest effect, and corresponding priority for further translational clinical research. Residual training and adjustment for a potential confounding effect by BMI only slightly modified the suggested association. Increased homocysteine is thought to be associated with vitamin B12 deficiency - evaluation for potential clinical relevance is suggested. While considerations for clinical metabolic profiling are recommended, including adjustment approaches for clinical confounders, AutoML presents an exciting tool to enhance clinical metabolic profiling and advance translational research endeavors.
Akimova, Darya; Wlodarczyk, Bogdan J.; Lin, Ying; Ross, M. Elizabeth; Finnell, Richard H.; Chen, Qiuying; Gross, Steven S.
2016-01-01
Background Valproic Acid (VPA) is prescribed therapeutically for multiple conditions, including epilepsy. When taken during pregnancy, VPA is teratogenic, increasing the risk of several birth and developmental defects including neural tube defects (NTDs). The mechanism by which VPA causes NTDs remains controversial and how VPA interacts with folic acid, a vitamin commonly recommended for the prevention of NTDs, remains uncertain. We sought to address both questions by applying untargeted metabolite profiling analysis to neural tube closure stage mouse embryos. Methods Pregnant SWV dams on either a 2ppm or 10ppm folic acid (FA) supplemented diet were injected with a single dose of VPA on gestational day E8.5. On day E9.5, the mouse embryos were collected and evaluated for neural tube closure status. LC/MS metabolomics analysis was performed to compare metabolite profiles of NTD-affected VPA-exposed whole mouse embryos to profiles from embryos that underwent normal neural tube closure from control dams. Results NTDs were observed in all embryos from VPA-treated dams and penetrance was not diminished by dietary folic acid supplementation. The most profound metabolic perturbations were found in the 10ppm FA VPA-exposed mouse embryos, compared to the other three treatment groups. Affected metabolites included amino acids, nucleobases and related phosphorylated nucleotides, lipids, and carnitines. Conclusions Maternal VPA treatment markedly perturbed purine and pyrimidine metabolism in E9.5 embryos. In combination with a high folic acid diet, VPA treatment resulted in gross metabolic changes, likely caused by a multiplicity of mechanisms, including an apparent disruption of mitochondrial beta-oxidation. PMID:27860192
Ranninger, Christina; Rurik, Marc; Limonciel, Alice; Ruzek, Silke; Reischl, Roland; Wilmes, Anja; Jennings, Paul; Hewitt, Philip; Dekant, Wolfgang; Kohlbacher, Oliver; Huber, Christian G.
2015-01-01
Untargeted metabolomics has the potential to improve the predictivity of in vitro toxicity models and therefore may aid the replacement of expensive and laborious animal models. Here we describe a long term repeat dose nephrotoxicity study conducted on the human renal proximal tubular epithelial cell line, RPTEC/TERT1, treated with 10 and 35 μmol·liter−1 of chloroacetaldehyde, a metabolite of the anti-cancer drug ifosfamide. Our study outlines the establishment of an automated and easy to use untargeted metabolomics workflow for HPLC-high resolution mass spectrometry data. Automated data analysis workflows based on open source software (OpenMS, KNIME) enabled a comprehensive and reproducible analysis of the complex and voluminous metabolomics data produced by the profiling approach. Time- and concentration-dependent responses were clearly evident in the metabolomic profiles. To obtain a more comprehensive picture of the mode of action, transcriptomics and proteomics data were also integrated. For toxicity profiling of chloroacetaldehyde, 428 and 317 metabolite features were detectable in positive and negative modes, respectively, after stringent removal of chemical noise and unstable signals. Changes upon treatment were explored using principal component analysis, and statistically significant differences were identified using linear models for microarray assays. The analysis revealed toxic effects only for the treatment with 35 μmol·liter−1 for 3 and 14 days. The most regulated metabolites were glutathione and metabolites related to the oxidative stress response of the cells. These findings are corroborated by proteomics and transcriptomics data, which show, among other things, an activation of the Nrf2 and ATF4 pathways. PMID:26055719
Bioavailability and Pharmacokinetics of Oral Cocaine in Humans.
Coe, Marion A; Jufer Phipps, Rebecca A; Cone, Edward J; Walsh, Sharon L
2018-06-01
The pharmacokinetic profile of oral cocaine has not been fully characterized and prospective data on oral bioavailability are limited. A within-subject study was performed to characterize the bioavailability and pharmacokinetics of oral cocaine. Fourteen healthy inpatient participants (six males) with current histories of cocaine use were administered two oral doses (100 and 200 mg) and one intravenous (IV) dose (40 mg) of cocaine during three separate dosing sessions. Plasma samples were collected for up to 24 h after dosing and analyzed for cocaine and metabolites by gas chromatography-mass spectrometry. Pharmacokinetic parameters were calculated by non-compartmental analysis, and a two-factor model was used to assess for dose and sex differences. The mean ± SEM oral cocaine bioavailability was 0.32 ± 0.04 after 100 and 0.45 ± 0.06 after 200 mg oral cocaine. Volume of distribution (Vd) and clearance (CL) were both greatest after 100 mg oral (Vd = 4.2 L/kg; CL = 116.2 mL/[min kg]) compared to 200 mg oral (Vd = 2.9 L/kg; CL = 87.5 mL/[min kg]) and 40 mg IV (Vd = 1.3 L/kg; CL = 32.7 mL/[min kg]). Oral cocaine area-under-thecurve (AUC) and peak concentration increased in a dose-related manner. AUC metabolite-to-parent ratios of benzoylecgonine and ecgonine methyl ester were significantly higher after oral compared to IV administration and highest after the lower oral dose. In addition, minor metabolites were detected in higher concentrations after oral compared to IV cocaine. Oral cocaine produced a pharmacokinetic profile different from IV cocaine, which appears as a rightward and downward shift in the concentration-time profile. Cocaine bioavailability values were similar to previous estimates. Oral cocaine also produced a unique metabolic profile, with greater concentrations of major and minor metabolites.
Quantitative Measurement of JWH-018 and JWH-073 Metabolites Excreted in Human Urine
Moran, Cindy L.; Le, Vi-Huyen; Chimalakonda, Krishna C.; Smedley, Amy L.; Lackey, Felisia D.; Owen, Suzanne N.; Kennedy, Paul D.; Endres, Gregory W.; Ciske, Fred L.; Kramer, James B.; Kornilov, Andrei M.; Bratton, L. D.; Dobrowolski, Paul J.; Wessinger, William D.; Fantegrossi, William E.; Prather, Paul P.; James, Laura P.; Radominska-Pandya, Anna; Moran, Jeffery H.
2011-01-01
'K2/SPICE' products are commonly laced with aminoalkylindole synthetic cannabinoids (i.e., JWH-018 and JWH-073) and are touted as ‘legal’ marijuana substitutes. Here we validate a liquid chromatography tandem mass spectrometry (LC-MS/MS) methsod for measuring urinary concentrations of JWH-018, JWH-073, and several potential metabolites of each. The analytical procedure has high capacity for sample throughput and does not require solid phase or liquid extraction. Evaluation of human urine specimens collected after the subjects reportedly administered JWH-018 or a mixture of JWH-018 and JWH-073 provides preliminary evidence of clinical utility. Two subjects that consumed JWH-018 primarily excreted glucuronidated conjugates of 5-(3-(1-naphthoyl)-1H-indol-1-yl)-pentanoic acid (> 50 ng/ml) and (1-(5-hydroxypentyl)- 1H -indol-3-yl)(naphthalene-1-yl)-methanone (> 30 ng/ml). Interestingly, oxidized metabolites of both JWH-018 and JWH-073 were detected in these specimens, suggesting either metabolic demethylation of JWH-018 to JWH-073 or a non-reported, previous JWH-073 exposure. Metabolic profiles generated from a subject who consumed a mixture of JWH-018 and JWH-073 were similar to profiles generated from subjects who presumably consumed JWH-018 exclusively. Oxidized metabolites of JWH-018 and JWH-073 were of the same pattern, but JWH-018 metabolites were excreted at lower concentrations. These results begin clinically validating the LC-MS/MS assay for detecting and quantifying aminoalkylindole metabolites. Full validation awaits further testing. PMID:21506519
Abdelrahman, Mostafa; Abdel-Motaal, Fatma; El-Sayed, Magdi; Jogaiah, Sudisha; Shigyo, Masayoshi; Ito, Shin-Ichi; Tran, Lam-Son Phan
2016-05-01
Trichoderma spp. are versatile opportunistic plant symbionts that can cause substantial changes in the metabolism of host plants, thereby increasing plant growth and activating plant defense to various diseases. Target metabolite profiling approach was selected to demonstrate that Trichoderma longibrachiatum isolated from desert soil can confer beneficial agronomic traits to onion and induce defense mechanism against Fusarium oxysporum f. sp. cepa (FOC), through triggering a number of primary and secondary metabolite pathways. Onion seeds primed with Trichoderma T1 strain displayed early seedling emergence and enhanced growth compared with Trichoderma T2-treatment and untreated control. Therefore, T1 was selected for further investigations under greenhouse conditions, which revealed remarkable improvement in the onion bulb growth parameters and resistance against FOC. The metabolite platform of T1-primed onion (T1) and T1-primed onion challenged with FOC (T1+FOC) displayed significant accumulation of 25 abiotic and biotic stress-responsive metabolites, representing carbohydrate, phenylpropanoid and sulfur assimilation metabolic pathways. In addition, T1- and T1+FOC-treated onion plants showed discrete antioxidant capacity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) compared with control. Our findings demonstrated the contribution of T. longibrachiatum to the accumulation of key metabolites, which subsequently leads to the improvement of onion growth, as well as its resistance to oxidative stress and FOC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Yu, Jian; Solon, Eric; Shen, Helen; Modi, Nishit B; Mittur, Aravind
2016-11-01
1. This study examined the pharmacokinetics, distribution, metabolism, and excretion of [(14)C] nefopam in rats after a single oral administration. Blood, plasma, and excreta were analyzed for total radioactivity, nefopam, and metabolites. Metabolites were profiled and identified. Radioactivity distribution was determined by quantitative whole-body autoradiography. 2. The pharmacokinetic profiles of total radioactivity and nefopam were similar in male and female rats. Radioactivity partitioned approximately equally between plasma and red blood cells. A majority of the radioactivity was excreted in urine within 24 hours and mass balance was achieved within 7 days. 3. Intact nefopam was a minor component in plasma and excreta. Numerous metabolites were identified in plasma and urine generated by multiple pathways including: hydroxylation/oxidation metabolites (M11, M22a and M22b, M16, M20), some of which were further glucuronidated (M6a to M6c, M7a to M7c, M8a and M8b, M3a to M3d); N-demethylation of nefopam to metabolite M21, which additionally undergoes single or multiple hydroxylations or sulfation (M9, M14, M23), with some of the hydroxylated metabolites further glucuronidated (M2a to M2d). 4. Total radioactivity rapidly distributed with highest concentrations found in the urinary bladder, stomach, liver, kidney medulla, small intestine, uveal tract, and kidney cortex without significant accumulation or persistence. Radioactivity reversibly associated with melanin-containing tissues.
Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize.
Riedelsheimer, Christian; Lisec, Jan; Czedik-Eysenberg, Angelika; Sulpice, Ronan; Flis, Anna; Grieder, Christoph; Altmann, Thomas; Stitt, Mark; Willmitzer, Lothar; Melchinger, Albrecht E
2012-06-05
The diversity of metabolites found in plants is by far greater than in most other organisms. Metabolic profiling techniques, which measure many of these compounds simultaneously, enabled investigating the regulation of metabolic networks and proved to be useful for predicting important agronomic traits. However, little is known about the genetic basis of metabolites in crops such as maize. Here, a set of 289 diverse maize inbred lines was genotyped with 56,110 SNPs and assayed for 118 biochemical compounds in the leaves of young plants, as well as for agronomic traits of mature plants in field trials. Metabolite concentrations had on average a repeatability of 0.73 and showed a correlation pattern that largely reflected their functional grouping. Genome-wide association mapping with correction for population structure and cryptic relatedness identified for 26 distinct metabolites strong associations with SNPs, explaining up to 32.0% of the observed genetic variance. On nine chromosomes, we detected 15 distinct SNP-metabolite associations, each of which explained more then 15% of the genetic variance. For lignin precursors, including p-coumaric acid and caffeic acid, we found strong associations (P values to ) with a region on chromosome 9 harboring cinnamoyl-CoA reductase, a key enzyme in monolignol synthesis and a target for improving the quality of lignocellulosic biomass by genetic engineering approaches. Moreover, lignin precursors correlated significantly with lignin content, plant height, and dry matter yield, suggesting that metabolites represent promising connecting links for narrowing the genotype-phenotype gap of complex agronomic traits.
Cheng, Ka-Wing; Wong, Chi C; Mattheolabakis, George; Xie, Gang; Huang, Liqun; Rigas, Basil
2013-09-01
Phospho-sulindac (PS) is a safe sulindac derivative with promising anticancer efficacy in colon cancer. We evaluated whether its combination with curcumin could enhance the efficacy in the treatment of lung cancer. Curcumin, the principal bioactive component in turmeric, has demonstrated versatile capabilities to modify the therapeutic efficacy of a wide range of anticancer agents. Here, we evaluated the effect of co-administration of curcumin on the anticancer activity of PS in a mouse xenograft model of human lung cancer. Curcumin enhanced the cellular uptake of PS in human lung and colon cancer cell lines. To assess the potential synergism between curcumin and PS in vivo, curcumin was suspended in 10% Tween-80 or formulated in micellar nanoparticles and given to mice by oral gavage prior to the administration of PS. Both formulations of curcumin significantly improved the pharmacokinetic profiles of PS, with the 10% Tween-80 suspension being much more effective than the nanoparticle formation. However, curcumin did not exhibit any significant modification of the metabolite profile of PS. Furthermore, in a mouse subcutaneous xenograft model of human lung cancer, PS (200 mg/kg) in combination with curcumin (500 mg/kg) suspended in 10% Tween-80 (51% inhibition, p<0.05) was significantly more efficacious than PS plus micelle curcumin (30%) or PS (25%) or curcumin alone (no effect). Consistent with the improved pharmacokinetics, the combination treatment group had higher levels of PS and its metabolites in the xenografts compared to PS alone. Our results show that curcumin substantially improves the pharmacokinetics of PS leading to synergistic inhibition of the growth of human lung cancer xenografts, representing a promising drug combination.
Chen, Zhidan; Coy, Stephen L; Pannkuk, Evan L; Laiakis, Evagelia C; Fornace, Albert J; Vouros, Paul
2018-05-07
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. Graphical Abstract.
NASA Astrophysics Data System (ADS)
Chen, Zhidan; Coy, Stephen L.; Pannkuk, Evan L.; Laiakis, Evagelia C.; Fornace, Albert J.; Vouros, Paul
2018-05-01
High-throughput methods to assess radiation exposure are a priority due to concerns that include nuclear power accidents, the spread of nuclear weapon capability, and the risk of terrorist attacks. Metabolomics, the assessment of small molecules in an easily accessible sample, is the most recent method to be applied for the identification of biomarkers of the biological radiation response with a useful dose-response profile. Profiling for biomarker identification is frequently done using an LC-MS platform which has limited throughput due to the time-consuming nature of chromatography. We present here a chromatography-free simplified method for quantitative analysis of seven metabolites in urine with radiation dose-response using urine samples provided from the Pannkuk et al. (2015) study of long-term (7-day) radiation response in nonhuman primates (NHP). The stable isotope dilution (SID) analytical method consists of sample preparation by strong cation exchange-solid phase extraction (SCX-SPE) to remove interferences and concentrate the metabolites of interest, followed by differential mobility spectrometry (DMS) ion filtration to select the ion of interest and reduce chemical background, followed by mass spectrometry (overall SID-SPE-DMS-MS). Since no chromatography is used, calibration curves were prepared rapidly, in under 2 h (including SPE) for six simultaneously analyzed radiation biomarkers. The seventh, creatinine, was measured separately after 2500× dilution. Creatinine plays a dual role, measuring kidney glomerular filtration rate (GFR), and indicating kidney damage at high doses. The current quantitative method using SID-SPE-DMS-MS provides throughput which is 7.5 to 30 times higher than that of LC-MS and provides a path to pre-clinical radiation dose estimation. [Figure not available: see fulltext.
Thermodynamics-Based Metabolic Flux Analysis
Henry, Christopher S.; Broadbelt, Linda J.; Hatzimanikatis, Vassily
2007-01-01
A new form of metabolic flux analysis (MFA) called thermodynamics-based metabolic flux analysis (TMFA) is introduced with the capability of generating thermodynamically feasible flux and metabolite activity profiles on a genome scale. TMFA involves the use of a set of linear thermodynamic constraints in addition to the mass balance constraints typically used in MFA. TMFA produces flux distributions that do not contain any thermodynamically infeasible reactions or pathways, and it provides information about the free energy change of reactions and the range of metabolite activities in addition to reaction fluxes. TMFA is applied to study the thermodynamically feasible ranges for the fluxes and the Gibbs free energy change, ΔrG′, of the reactions and the activities of the metabolites in the genome-scale metabolic model of Escherichia coli developed by Palsson and co-workers. In the TMFA of the genome scale model, the metabolite activities and reaction ΔrG′ are able to achieve a wide range of values at optimal growth. The reaction dihydroorotase is identified as a possible thermodynamic bottleneck in E. coli metabolism with a ΔrG′ constrained close to zero while numerous reactions are identified throughout metabolism for which ΔrG′ is always highly negative regardless of metabolite concentrations. As it has been proposed previously, these reactions with exclusively negative ΔrG′ might be candidates for cell regulation, and we find that a significant number of these reactions appear to be the first steps in the linear portion of numerous biosynthesis pathways. The thermodynamically feasible ranges for the concentration ratios ATP/ADP, NAD(P)/NAD(P)H, and \\documentclass[10pt]{article} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{pmc} \\pagestyle{empty} \\oddsidemargin -1.0in \\begin{document} \\begin{equation*}{\\mathrm{H}}_{{\\mathrm{extracellular}}}^{+}/{\\mathrm{H}}_{{\\mathrm{intracellular}}}^{+}\\end{equation*}\\end{document} are also determined and found to encompass the values observed experimentally in every case. Further, we find that the NAD/NADH and NADP/NADPH ratios maintained in the cell are close to the minimum feasible ratio and maximum feasible ratio, respectively. PMID:17172310
USDA-ARS?s Scientific Manuscript database
Metabolite profiling has been used to assess the impact of light exposure on the composition of potato (Solanum tuberosum L. cv. Desirée) tubers genetically modified (GM) to reduce glycoalkaloid (specifically a-solanine) content via the down-regulation of the SGT1 gene. Using a combination of liq...
Impacts of rising tropospheric ozone on photosynthesis and metabolite levels on field grown soybean
USDA-ARS?s Scientific Manuscript database
The response of leaf photosynthesis and metabolite profiles to ozone (O3) exposure ranging from 37 to 116 nL L-1 was investigated in two soybean cultivars Dwight and IA3010 in the field under fully open-air conditions. Leaf photosynthesis, total non-structural carbohydrates (TNC) and total free amin...
Furuhashi, Takeshi; Nakamura, Takemichi; Iwase, Koji
2016-01-01
Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha–Ipomoea and the Cuscuta–Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography), and conducted GC-MS (gas chromatography-mass spectrometry) analysis for polar metabolites (e.g., saccharides, polyols) and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta. Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta, but not in Cassytha. This metabolite profile difference points to different lifestyles and parasitic strategies. PMID:27941603
Furuhashi, Takeshi; Nakamura, Takemichi; Iwase, Koji
2016-12-07
Cuscuta and Cassytha are two well-known stem parasitic plant genera with reduced leaves and roots, inducing haustoria in their stems. Their similar appearance in the field has been recognized, but few comparative studies on their respective plant interactions are available. To compare their interactions, we conducted a metabolite analysis of both the Cassytha-Ipomoea and the Cuscuta-Momordica interaction. We investigated the energy charge of the metabolites by UFLC (ultra-high performance liquid chromatography), and conducted GC-MS (gas chromatography-mass spectrometry) analysis for polar metabolites (e.g., saccharides, polyols) and steroids. The energy charge after parasitization changed considerably in Cassytha but not in Cusucta . Cuscuta changed its steroid pattern during the plant interaction, whereas Cassytha did not. In the polar metabolite analysis, the laminaribiose increase after parasitization was conspicuous in Cuscuta , but not in Cassytha . This metabolite profile difference points to different lifestyles and parasitic strategies.
GC-MS based metabolite profiling of rice Koji fermentation by various fungi.
Kim, Ah Jin; Choi, Jung Nam; Kim, Jiyoung; Park, Sait Byul; Yeo, Soo Hwan; Choi, Ji Ho; Lee, Choong Hwan
2010-01-01
In this study, Aspergillus kawachii, Aspergillus oryzae, and Rhizopus sp., were utilized for rice Koji fermentation, and the metabolites were analyzed in a time-dependent manner by gas chromatography-mass spectrometry. On Principal Component Analysis, the metabolite patterns were clearly distinguished based on the fungi species. This approach revealed that the quantities of glucose, galactose, and glycerol gradually increased as a function of fermentation time in all trials rice Koji fermentation. The time-dependent changes of these metabolites showed significant increases in glucose in the A. oryzae-treated rice, and in glycerol and galactose in the A. kawachii-treated rice. In addition, glycolysis-related enzyme activities were correlated with the changes in these metabolites. The results indicate that time-dependent metabolite production has the potential to be a valuable tool in selecting inoculant fungi and the optimal fermentation time for rice koji.
NASA Astrophysics Data System (ADS)
Auslander, Noam; Yizhak, Keren; Weinstock, Adam; Budhu, Anuradha; Tang, Wei; Wang, Xin Wei; Ambs, Stefan; Ruppin, Eytan
2016-07-01
Disrupted regulation of cellular processes is considered one of the hallmarks of cancer. We analyze metabolomic and transcriptomic profiles jointly collected from breast cancer and hepatocellular carcinoma patients to explore the associations between the expression of metabolic enzymes and the levels of the metabolites participating in the reactions they catalyze. Surprisingly, both breast cancer and hepatocellular tumors exhibit an increase in their gene-metabolites associations compared to noncancerous adjacent tissues. Following, we build predictors of metabolite levels from the expression of the enzyme genes catalyzing them. Applying these predictors to a large cohort of breast cancer samples we find that depleted levels of key cancer-related metabolites including glucose, glycine, serine and acetate are significantly associated with improved patient survival. Thus, we show that the levels of a wide range of metabolites in breast cancer can be successfully predicted from the transcriptome, going beyond the limited set of those measured.
Da Silva, Laeticia; Collino, Sebastiano; Cominetti, Ornella; Martin, Francois-Pierre; Montoliu, Ivan; Moreno, Sergio Oller; Corthesy, John; Kaput, Jim; Kussmann, Martin; Monteiro, Jacqueline Pontes; Guiraud, Seu Ping
2016-09-01
There is increasing interest in the profiling and quantitation of methionine pathway metabolites for health management research. Currently, several analytical approaches are required to cover metabolites and co-factors. We report the development and the validation of a method for the simultaneous detection and quantitation of 13 metabolites in red blood cells. The method, validated in a cohort of healthy human volunteers, shows a high level of accuracy and reproducibility. This high-throughput protocol provides a robust coverage of central metabolites and co-factors in one single analysis and in a high-throughput fashion. In large-scale clinical settings, the use of such an approach will significantly advance the field of nutritional research in health and disease.
Dietary isoflavone absorption, excretion, and metabolism in captive cheetahs (Acinonyx jubatus).
Whitehouse-Tedd, Katherine M; Cave, Nicholas J; Ugarte, Claudia E; Waldron, Lucy A; Prasain, Jeevan K; Arabshahi, Alireza; Barnes, Stephen; Thomas, David G
2011-12-01
Dietary isoflavones, capable of influencing reproductive parameters in domestic cats (Felis catus), have been detected in commercial diets fed to captive cheetahs (Acinonyx jubatus). However, the absorptive and metabolic capacity of cheetahs towards isoflavones has not yet been studied. Experiments were designed to describe the plasma concentration-time curve, metabolite profile, and urinary and fecal excretion of genistein and daidzein in cheetahs following consumption of isoflavones. Four adult cheetahs were administered a single oral bolus of genistein and daidzein, and five juvenile cheetahs consuming a milk replacer formula found to contain isoflavones were also included. Urine was collected from all animals, and blood and feces were also collected from adult cheetahs following isoflavone exposure. Samples were analyzed for isoflavone metabolite concentration by liquid chromatography-electrospray ionization-multiple reaction ion monitoring mass spectrometry and high-performance liquid chromatography. Sulfate conjugates were the primary metabolites detected of both genistein and daidzein (60-80% of total isoflavones present) in the plasma and urine of cheetahs. A smaller proportion of daidzein was detected as conjugates in the urine of juvenile cheetahs, compared to adult cheetahs. Other metabolites included unconjugated genistein and daidzein, O-desmethylangolensin, and dihydrodaidzein, but not equol. Only 33% of the ingested genistein dose, and 9% of daidzein, was detected in plasma from adult cheetahs. However, of the ingested dose, 67% of genistein and 45% of daidzein were detected in the feces of adults. This study revealed that cheetahs appear efficient in their conjugation of absorbed dietary isoflavones and only a small fraction of ingested dose is absorbed. However, the capacity of the cheetah to conjugate genistein and daidzein with sulfate moieties appears lower than reported in the domestic cat. This may confer greater opportunity for biologic activity of isoflavones in the cheetah than would be predicted from findings in the domestic cat. However, further investigation is required.
Mutagenicity of 1-nitropyrene metabolites from lung S9.
King, L C; Kohan, M J; Ball, L M; Lewtas, J
1984-04-01
The mutagenicity of 1-nitropyrene metabolites from rabbit lung S9 incubates was evaluated using the Salmonella typhimurium plate incorporation assay with strain TA98, with and without Aroclor-induced rat liver S9. The following metabolites were isolated, identified and quantitated by HPLC: 1-nitropyrene -4,5- or -9,10-dihydrodiol (K-DHD), N-acetyl-1-aminopyrene ( NAAP ), 1-aminopyrene (1-AMP), 10-hydroxy-1-nitropyrene, 4-, 5-, 6-, 8- or 9-monohydroxy-1-nitropyrene (phenols) and 3-hydroxy-1-nitropyrene. The predominant metabolites formed by lung S9 incubates were K-DHD, 3-OH-1-nitropyrene and phenols. All of the metabolites were mutagenic in the absence of the exogenous rat liver S9 metabolic activation system, and several, including two unidentified metabolites were more potent than the parent 1-nitropyrene. The mutagenicity of 3 of the metabolites ( NAAP , 10-OH-1-nitropyrene and phenols) were enhanced by S9 while most of the other metabolites were less mutagenic in the presence of S9. These results indicate that lung tissue is capable of both oxidative and reductive metabolism which produced mutagenic metabolites, several of which were more potent than the parent compound, 1-NP.
Mamedes-Rodrigues, T C; Batista, D S; Vieira, N M; Matos, E M; Fernandes, D; Nunes-Nesi, A; Cruz, C D; Viccini, L F; Nogueira, F T S; Otoni, W C
2018-03-01
Brachypodium distachyon, a model species for forage grasses and cereal crops, has been used in studies seeking improved biomass production and increased crop yield for biofuel production purposes. Somatic embryogenesis (SE) is the morphogenetic pathway that supports in vitro regeneration of such species. However, there are gaps in terms of studies on the metabolic profile and genetic stability along successive subcultures. The physiological variables and the metabolic profile of embryogenic callus (EC) and embryogenic structures (ES) from successive subcultures (30, 60, 90, 120, 150, 180, 210, 240, and 360-day-old subcultures) were analyzed. Canonical discriminant analysis separated EC into three groups: 60, 90, and 120 to 240 days. EC with 60 and 90 days showed the highest regenerative potential. EC grown for 90 days and submitted to SE induction in 2 mg L -1 of kinetin-supplemented medium was the highest ES producer. The metabolite profiles of non-embryogenic callus (NEC), EC, and ES submitted to principal component analysis (PCA) separated into two groups: 30 to 240- and 360-day-old calli. The most abundant metabolites for these groups were malonic acid, tryptophan, asparagine, and erythrose. PCA of ES also separated ages into groups and ranked 60- and 90-day-old calli as the best for use due to their high levels of various metabolites. The key metabolites that distinguished the ES groups were galactinol, oxaloacetate, tryptophan, and valine. In addition, significant secondary metabolites (e.g., caffeoylquinic, cinnamic, and ferulic acids) were important in the EC phase. Ferulic, cinnamic, and phenylacetic acids marked the decreases in the regenerative capacity of ES in B. distachyon. Decreased accumulations of the amino acids aspartic acid, asparagine, tryptophan, and glycine characterized NEC, suggesting that these metabolites are indispensable for the embryogenic competence in B. distachyon. The genetic stability of the regenerated plants was evaluated by flow cytometry, showing that ploidy instability in regenerated plants from B. distachyon calli is not correlated with callus age. Taken together, our data indicated that the loss of regenerative capacity in B. distachyon EC occurs after 120 days of subcultures, demonstrating that the use of EC can be extended to 90 days.
Regulation and Role of Fungal Secondary Metabolites.
Macheleidt, Juliane; Mattern, Derek J; Fischer, Juliane; Netzker, Tina; Weber, Jakob; Schroeckh, Volker; Valiante, Vito; Brakhage, Axel A
2016-11-23
Fungi have the capability to produce a tremendous number of so-called secondary metabolites, which possess a multitude of functions, e.g., communication signals during coexistence with other microorganisms, virulence factors during pathogenic interactions with plants and animals, and in medical applications. Therefore, research on this topic has intensified significantly during the past 10 years and thus knowledge of regulatory mechanisms and the understanding of the role of secondary metabolites have drastically increased. This review aims to depict the complexity of all the regulatory elements involved in controlling the expression of secondary metabolite gene clusters, ranging from epigenetic control and signal transduction pathways to global and specific transcriptional regulators. Furthermore, we give a short overview on the role of secondary metabolites, focusing on the interaction with other microorganisms in the environment as well as on pathogenic relationships.
Lee, Ji-Yoon; Lee, Sang Yoon; Lee, KiHo; Oh, Soo Jin; Kim, Sang Kyum
2015-03-05
We investigated to compare species differences in amitriptyline (AMI) metabolism among mouse, rat, dog, and human liver microsomes. We developed a method for simultaneous determination of metabolic stability and metabolite profiling using predictive multiple reaction monitoring information-dependent acquisition-enhanced product ion (MRM-IDA-EPI) scanning. In the cofactor-dependent microsomal metabolism study, AMI was metabolized more rapidly in rat and human liver microsomes incubated with NADPH than UDPGA. AMI incubated with NADPH+UDPGA in rat, dog, or mouse liver microsomes disappeared rapidly with a half-life of 3.5, 8.4, or 9.2 min, respectively, but slowly in human liver microsomes with a half-life of 96 min. In total, 9, 10, 11, and 6 putative metabolites of AMI were detected in mouse, rat, dog, and human liver microsomes, respectively, based on mass spectrometric analyses. Kinetic analysis of metabolites in liver microsomes from each species over 120 min showed common metabolic routes of AMI, such as N-demethylation, hydroxylation, and glucuronidation, and subtle interspecies differences in AMI metabolism. The main metabolic routes in mouse, rat, dog, and human liver microsomes were hydroxylation followed by glucuronide conjugation, methyl hydroxylation, and N-demethylation, respectively. The MRM-IDA-EPI method can provide quantitative and qualitative information about metabolic stability and metabolite profiling simultaneously. Moreover, time course analysis of metabolites can not only eliminate false identification of metabolites, but also provide a rationale for proposed metabolic pathways. The MRM-IDA-EPI method combined with time course analysis of metabolites is useful for investigating drug metabolism at the early drug discovery stage. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Naser, Fuad J; Mahieu, Nathaniel G; Wang, Lingjue; Spalding, Jonathan L; Johnson, Stephen L; Patti, Gary J
2018-02-01
Although it is common in untargeted metabolomics to apply reversed-phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC) methods that have been systematically optimized for lipids and central carbon metabolites, here we show that these established protocols provide poor coverage of semipolar metabolites because of inadequate retention. Our objective was to develop an RPLC approach that improved detection of these metabolites without sacrificing lipid coverage. We initially evaluated columns recently released by Waters under the CORTECS line by analyzing 47 small-molecule standards that evenly span the nonpolar and semipolar ranges. An RPLC method commonly used in untargeted metabolomics was considered a benchmarking reference. We found that highly nonpolar and semipolar metabolites cannot be reliably profiled with any single method because of retention and solubility limitations of the injection solvent. Instead, we optimized a multiplexed approach using the CORTECS T3 column to analyze semipolar compounds and the CORTECS C 8 column to analyze lipids. Strikingly, we determined that combining these methods allowed detection of 41 of the total 47 standards, whereas our reference RPLC method detected only 10 of the 47 standards. We then applied credentialing to compare method performance at the comprehensive scale. The tandem method showed more than a fivefold increase in credentialing coverage relative to our RPLC benchmark. Our results demonstrate that comprehensive coverage of metabolites amenable to reversed-phase separation necessitates two reconstitution solvents and chromatographic methods. Thus, we suggest complementing HILIC methods with a dual T3 and C 8 RPLC approach to increase coverage of semipolar metabolites and lipids for untargeted metabolomics. Graphical abstract Analysis of semipolar and nonpolar metabolites necessitates two reversed-phase chromatography (RPLC) methods, which extend metabolome coverage more than fivefold for untargeted profiling. HILIC hydrophilic interaction liquid chromatography.
Sugimoto, Masahiro; Wong, David T; Hirayama, Akiyoshi; Soga, Tomoyoshi; Tomita, Masaru
2010-03-01
Saliva is a readily accessible and informative biofluid, making it ideal for the early detection of a wide range of diseases including cardiovascular, renal, and autoimmune diseases, viral and bacterial infections and, importantly, cancers. Saliva-based diagnostics, particularly those based on metabolomics technology, are emerging and offer a promising clinical strategy, characterizing the association between salivary analytes and a particular disease. Here, we conducted a comprehensive metabolite analysis of saliva samples obtained from 215 individuals (69 oral, 18 pancreatic and 30 breast cancer patients, 11 periodontal disease patients and 87 healthy controls) using capillary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS). We identified 57 principal metabolites that can be used to accurately predict the probability of being affected by each individual disease. Although small but significant correlations were found between the known patient characteristics and the quantified metabolites, the profiles manifested relatively higher concentrations of most of the metabolites detected in all three cancers in comparison with those in people with periodontal disease and control subjects. This suggests that cancer-specific signatures are embedded in saliva metabolites. Multiple logistic regression models yielded high area under the receiver-operating characteristic curves (AUCs) to discriminate healthy controls from each disease. The AUCs were 0.865 for oral cancer, 0.973 for breast cancer, 0.993 for pancreatic cancer, and 0.969 for periodontal diseases. The accuracy of the models was also high, with cross-validation AUCs of 0.810, 0.881, 0.994, and 0.954, respectively. Quantitative information for these 57 metabolites and their combinations enable us to predict disease susceptibility. These metabolites are promising biomarkers for medical screening. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-009-0178-y) contains supplementary material, which is available to authorized users.
Datta, Suprama; Timson, David J; Annapure, Uday S
2017-07-01
Saccharomyces cerevisiae var. boulardii is the only yeast species with probiotic properties. It is considered to have therapeutic significance in gastrointestinal disorders. In the present study, a comparative physiological study between this yeast and Saccharomyces cerevisiae (BY4742) was performed by evaluating two prominent traits of probiotic species, responses to different stress conditions and antioxidant capacity. A global metabolite profile was also developed aiming to identify which therapeutically important secondary metabolites are produced. Saccharomyces cerevisiae var. boulardii showed no significant difference in growth patterns but greater stress tolerance compared to S. cerevisiae. It also demonstrated a six- to 10-fold greater antioxidant potential (judged by the 1,1-diphenyl-2-picrylhydrazyl assay), with a 70-fold higher total phenolic content and a 20-fold higher total flavonoid content in the extracellular fraction. These features were clearly differentiated by principal component analysis and further indicated by metabolite profiling. The extracellular fraction of the S. cerevisiae var. boulardii cultures was found to be rich in polyphenolic metabolites: vanillic acid, cinnamic acid, phenyl ethyl alcohol (rose oil), erythromycin, amphetamine and vitamin B 6 , which results in the antioxidant capacity of this strain. The present study presents a new perspective for differentiating the two genetically related strains of yeast, S. cerevisiae and S. cerevisiae var. boulardii by assessing their metabolome fingerprints. In addition to the correlation of the phenotypic properties with the secretory metabolites of these two yeasts, the present study also emphasizes the potential to exploit S. cerevisiae var. boulardii in the industrial production of these metabolites. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Lee, Hyo Jung; Jung, Ji Young; Oh, Young Kyoon; Lee, Sang-Suk; Madsen, Eugene L.
2012-01-01
Pyrosequencing of 16S rRNA genes (targeting Bacteria and Archaea) and 1H nuclear magnetic resonance were applied to investigate the rumen microbiota and metabolites of Hanwoo steers in the growth stage (HGS), Hanwoo steers in the late fattening stage (HFS), Holstein-Friesian dairy cattle (HDC), and Korean native goats (KNG) in the late fattening stage. This was a two-part investigation. We began by comparing metabolites and microbiota of Hanwoo steers at two stages of husbandry. Statistical comparisons of metabolites and microbial communities showed no significant differences between HFS and HGS (differing by a dietary shift at 24 months and age [67 months versus 12 months]). We then augmented the study by extending the investigation to HDC and KNG. Overall, pyrosequencing of 16S rRNA genes showed that the rumens had highly diverse microbial communities containing many previously undescribed microorganisms. Bioinformatic analysis revealed that the bacterial sequences were predominantly affiliated with four phyla—Bacteroidetes, Firmicutes, Fibrobacteres, and Proteobacteria—in all ruminants. However, interestingly, the bacterial reads belonging to Fibrobacteres were present at a very low abundance (<0.1%) in KNG. Archaeal community analysis showed that almost all of these reads fell into a clade related to, but distinct from, known cultivated methanogens. Statistical analyses showed that the microbial communities and metabolites of KNG were clearly distinct from those of other ruminants. In addition, bacterial communities and metabolite profiles of HGS and HDC, fed similar diets, were distinctive. Our data indicate that bovine host breeds override diet as the key factor that determines bacterial community and metabolite profiles in the rumen. PMID:22706048
Pietzner, Maik; Kaul, Anne; Henning, Ann-Kristin; Kastenmüller, Gabi; Artati, Anna; Lerch, Markus M; Adamski, Jerzy; Nauck, Matthias; Friedrich, Nele
2017-11-30
Inflammation occurs as an immediate protective response of the immune system to a harmful stimulus, whether locally confined or systemic. In contrast, a persisting, i.e., chronic, inflammatory state, even at a low-grade, is a well-known risk factor in the development of common diseases like diabetes or atherosclerosis. In clinical practice, laboratory markers like high-sensitivity C-reactive protein (hsCRP), white blood cell count (WBC), and fibrinogen, are used to reveal inflammatory processes. In order to gain a deeper insight regarding inflammation-related changes in metabolism, the present study assessed the metabolic patterns associated with alterations in inflammatory markers. Based on mass spectrometry and nuclear magnetic resonance spectroscopy we determined a comprehensive panel of 613 plasma and 587 urine metabolites among 925 apparently healthy individuals. Associations between inflammatory markers, namely hsCRP, WBC, and fibrinogen, and metabolite levels were tested by linear regression analyses controlling for common confounders. Additionally, we tested for a discriminative signature of an advanced inflammatory state using random forest analysis. HsCRP, WBC, and fibrinogen were significantly associated with 71, 20, and 19 plasma and 22, 3, and 16 urine metabolites, respectively. Identified metabolites were related to the bradykinin system, involved in oxidative stress (e.g., glutamine or pipecolate) or linked to the urea cycle (e.g., ornithine or citrulline). In particular, urine 3'-sialyllactose was found as a novel metabolite related to inflammation. Prediction of an advanced inflammatory state based solely on 10 metabolites was well feasible (median AUC: 0.83). Comprehensive metabolic profiling confirmed the far-reaching impact of inflammatory processes on human metabolism. The identified metabolites included not only those already described as immune-modulatory but also completely novel patterns. Moreover, the observed alterations provide molecular links to inflammation-associated diseases like diabetes or cardiovascular disorders.
Chiu, Chih-Yung; Lin, Gigin; Cheng, Mei-Ling; Chiang, Meng-Han; Tsai, Ming-Han; Su, Kuan-Wen; Hua, Man-Chin; Liao, Sui-Ling; Lai, Shen-Hao; Yao, Tsung-Chieh; Yeh, Kuo-Wei; Huang, Jing-Long
2018-04-21
Several metabolites and altered metabolic pathways have been reported to be associated with asthma. However, longitudinal analysis of the dynamics of metabolites contributing to the development of asthma has not yet been fully clarified. We sought to identify the metabolic mechanisms underlying asthma development in early childhood. Thirty children with asthma and paired healthy controls from a prospective birth cohort were enrolled. Time-series analysis of urinary metabolites collected at ages 1, 2, 3, and 4 years were assessed using 1 H-nuclear magnetic resonance (NMR) spectroscopy coupled with partial least-squares discriminant analysis (PLS-DA). Metabolites identified were studied in relation to changes over time in a linear mixed model for repeated measures. A total of 172 urine samples collected from the enrolled children were analyzed. Urinary metabolomics identified four metabolites significantly associated with childhood asthma development, with longitudinal analysis. Among them, dimethylamine, a metabolite produced by intestinal bacteria, appeared to shift from higher to lower level during asthma development. A persistent lower level of 1-methylnicotinamide and allantoin was found in children with asthma, with a peak difference at age 3 years (P = 0.032 and P = 0.021 respectively). Furthermore, a significant inverse correlation was found between allantoin and house dust mite sensitization (Spearman's r = -0.297 P = 0.035). Longitudinal urinary metabolomic profiling provides a link of microbe-environment interactions in the development of childhood asthma. 1-Methylnicotinamide and allantoin may participate in allergic reactions in response to allergen exposure, potentially serving as specific biomarkers for asthma. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Xie, Yan; Hu, Longxing; Du, Zhimin; Sun, Xiaoyan; Amombo, Erick; Fan, Jibiao; Fu, Jinmin
2014-01-01
Metabolic responses to cadmium (Cd) may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid), four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid,) and three sugars (xylulose, galactose and talose) accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass. PMID:25545719
Xie, Yan; Hu, Longxing; Du, Zhimin; Sun, Xiaoyan; Amombo, Erick; Fan, Jibiao; Fu, Jinmin
2014-01-01
Metabolic responses to cadmium (Cd) may be associated with variations in Cd tolerance in plants. The objectives of this study were to examine changes in metabolic profiles in bermudagrass in response to Cd stress and to identify predominant metabolites associated with differential Cd tolerance using gas chromatography-mass spectrometry. Two genotypes of bermudagrass with contrasting Cd tolerance were exposed to 0 and 1.5 mM CdSO4 for 14 days in hydroponics. Physiological responses to Cd were evaluated by determining turf quality, growth rate, chlorophyll content and normalized relative transpiration. All these parameters exhibited higher tolerance in WB242 than in WB144. Cd treated WB144 transported more Cd to the shoot than in WB242. The metabolite analysis of leaf polar extracts revealed 39 Cd responsive metabolites in both genotypes, mainly consisting of amino acids, organic acids, sugars, fatty acids and others. A difference in the metabolic profiles was observed between the two bermudagrass genotypes exposed to Cd stress. Seven amino acids (norvaline, glycine, proline, serine, threonine, glutamic acid and gulonic acid), four organic acids (glyceric acid, oxoglutaric acid, citric acid and malic acid,) and three sugars (xylulose, galactose and talose) accumulated more in WB242 than WB144. However, compared to the control, WB144 accumulated higher quantities of sugars than WB242 in the Cd regime. The differential accumulation of these metabolites could be associated with the differential Cd tolerance in bermudagrass.
Pre-analytical method for NMR-based grape metabolic fingerprinting and chemometrics.
Ali, Kashif; Maltese, Federica; Fortes, Ana Margarida; Pais, Maria Salomé; Verpoorte, Robert; Choi, Young Hae
2011-10-10
Although metabolomics aims at profiling all the metabolites in organisms, data quality is quite dependent on the pre-analytical methods employed. In order to evaluate current methods, different pre-analytical methods were compared and used for the metabolic profiling of grapevine as a model plant. Five grape cultivars from Portugal in combination with chemometrics were analyzed in this study. A common extraction method with deuterated water and methanol was found effective in the case of amino acids, organic acids, and sugars. For secondary metabolites like phenolics, solid phase extraction with C-18 cartridges showed good results. Principal component analysis, in combination with NMR spectroscopy, was applied and showed clear distinction among the cultivars. Primary metabolites such as choline, sucrose, and leucine were found discriminating for 'Alvarinho', while elevated levels of alanine, valine, and acetate were found in 'Arinto' (white varieties). Among the red cultivars, higher signals for citrate and GABA in 'Touriga Nacional', succinate and fumarate in 'Aragonês', and malate, ascorbate, fructose and glucose in 'Trincadeira', were observed. Based on the phenolic profile, 'Arinto' was found with higher levels of phenolics as compared to 'Alvarinho'. 'Trincadeira' showed lowest phenolics content while higher levels of flavonoids and phenylpropanoids were found in 'Aragonês' and 'Touriga Nacional', respectively. It is shown that the metabolite composition of the extract is highly affected by the extraction procedure and this consideration has to be taken in account for metabolomics studies. Copyright © 2011 Elsevier B.V. All rights reserved.
Lu, Yonghai; Zou, Li; Su, Jin; Tai, E Shyong; Whitton, Clare; Dam, Rob M van; Ong, Choon Nam
2017-06-30
We examined the relationship between different patterns of meat and seafood consumption and plasma metabolic profiles in an Asian population. We selected 270 ethnic Chinese men and women from the Singapore Prospective Study Program based on their dietary habits assessed with a validated food frequency questionnaire. Participants were divided into four subgroups: high meat and high seafood ( n = 60), high meat and low seafood ( n = 64), low meat and high seafood ( n = 60), and low meat and low seafood ( n = 86) consumers. Plasma metabolites were measured using both targeted and untargeted mass spectroscopy-based analyses. A total of 42 metabolites differed significantly by dietary group. Higher concentrations of essential amino acids, polyunsaturated fatty acids, and d-glucose were found in high meat and/or seafood consumers as compared with the group with a low consumption of these animal foods. Red meat, poultry, fish, shellfish, soy products, and dairy were each correlated with at least one differential metabolite ( r = -0.308 to 0.448). Some observations, such as the correlation between fish and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), confirmed previous studies. Other observations, such as the correlation between shellfish and phosphatidylethanolamine (p36:4), were novel. We also observed significant correlations between plasma metabolites and clinical characteristics, such as CMPF with fasting blood glucose ( r = 0.401). These findings demonstrate a significant influence of meat and seafood consumption on metabolic profiles in the Asian population.
Nguyen, Hoa Q; Lin, Jian; Kimoto, Emi; Callegari, Ernesto; Tse, Susanna; Obach, R Scott
2017-09-01
The aim of this study was to evaluate a strategy based on static and dynamic physiologically based pharmacokinetic (PBPK) modeling for the prediction of metabolite and parent drug area under the time-concentration curve ratio (AUC m /AUC p ) and their PK profiles in humans using in vitro data when active transport processes are involved in disposition. The strategy was applied to losartan and its pharmacologically active metabolite carboxylosartan as test compounds. Hepatobiliary transport including transport-mediated uptake, canilicular and basolateral efflux, and metabolic clearance estimates were obtained from in vitro studies using human liver microsomes and sandwich-cultured hepatocytes. Human renal clearance of carboxylosartan was estimated from dog renal clearance using allometric scaling approach. All clearance mechanisms were mechanistically incorporated in a static model to predict the relative exposure of carboxylosartan versus losartan (AUC m /AUC p ). The predicted AUC m /AUC p were consistent with the observed data following intravenous and oral administration of losartan. Moreover, the in vitro parameters were used as initial parameters in PBPK permeability-limited disposition models to predict the concentration-time profiles for both parent and its active metabolite after oral administration of losartan. The PBPK model was able to recover the plasma profiles of both losartan and carboxylosartan, further substantiating the validity of this approach. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.
Lu, Yonghai; Zou, Li; Su, Jin; Tai, E. Shyong; Whitton, Clare; van Dam, Rob M.; Ong, Choon Nam
2017-01-01
We examined the relationship between different patterns of meat and seafood consumption and plasma metabolic profiles in an Asian population. We selected 270 ethnic Chinese men and women from the Singapore Prospective Study Program based on their dietary habits assessed with a validated food frequency questionnaire. Participants were divided into four subgroups: high meat and high seafood (n = 60), high meat and low seafood (n = 64), low meat and high seafood (n = 60), and low meat and low seafood (n = 86) consumers. Plasma metabolites were measured using both targeted and untargeted mass spectroscopy-based analyses. A total of 42 metabolites differed significantly by dietary group. Higher concentrations of essential amino acids, polyunsaturated fatty acids, and d-glucose were found in high meat and/or seafood consumers as compared with the group with a low consumption of these animal foods. Red meat, poultry, fish, shellfish, soy products, and dairy were each correlated with at least one differential metabolite (r = −0.308 to 0.448). Some observations, such as the correlation between fish and 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), confirmed previous studies. Other observations, such as the correlation between shellfish and phosphatidylethanolamine (p36:4), were novel. We also observed significant correlations between plasma metabolites and clinical characteristics, such as CMPF with fasting blood glucose (r = 0.401). These findings demonstrate a significant influence of meat and seafood consumption on metabolic profiles in the Asian population. PMID:28665358
Spatial mapping and profiling of metabolite distributions during germination
Feenstra, Adam D.; Alexander, Liza E.; Song, Zhihong; ...
2017-06-20
Germination is a highly complex process by which seeds begin to develop and establish themselves as viable organisms. In this paper, we utilize a combination of GC-MS, LC-fluorescence, and mass spectrometry imaging (MSI) approaches to profile and visualize the metabolic distributions of germinating seeds from two different inbreds of maize seeds, B73 and Mo17. GC and LC analyses demonstrate that the two inbreds are highly differentiated in their metabolite profiles throughout the course of germination, especially with regard to amino acids, sugar alcohols, and small organic acids. Crude dissection of the seed followed by GC-MS analysis of polar metabolites alsomore » revealed that many compounds were highly sequestered among the various seed tissue types. To further localize compounds, matrix-assisted laser desorption/ionization MSI is utilized to visualize compounds in fine detail in their native environments over the course of germination. Most notably, the fatty acyl chain-dependent differential localization of phospholipids and TAGs were observed within the embryo and radicle, showing correlation with the heterogeneous distribution of fatty acids. Furthermore, other interesting observations include unusual localization of ceramides on the endosperm/scutellum boundary, and subcellular localization of ferulate in the aleurone.« less
Xuan, Jiekun; Pan, Guihua; Qiu, Yunping; Yang, Lun; Su, Mingming; Liu, Yumin; Chen, Jian; Feng, Guoyin; Fang, Yiru; Jia, Wei; Xing, Qinghe; He, Lin
2011-12-02
Despite recent advances in understanding the pathophysiology of schizophrenia and the mechanisms of antipsychotic drug action, the development of biomarkers for diagnosis and therapeutic monitoring in schizophrenia remains challenging. Metabolomics provides a powerful approach to discover diagnostic and therapeutic biomarkers by analyzing global changes in an individual's metabolic profile in response to pathophysiological stimuli or drug intervention. In this study, we performed gas chromatography-mass spectrometry based metabolomic profiling in serum of unmedicated schizophrenic patients before and after an 8-week risperidone monotherapy, to detect potential biomarkers associated with schizophrenia and risperidone treatment. Twenty-two marker metabolites contributing to the complete separation of schizophrenic patients from matched healthy controls were identified, with citrate, palmitic acid, myo-inositol, and allantoin exhibiting the best combined classification performance. Twenty marker metabolites contributing to the complete separation between posttreatment and pretreatment patients were identified, with myo-inositol, uric acid, and tryptophan showing the maximum combined classification performance. Metabolic pathways including energy metabolism, antioxidant defense systems, neurotransmitter metabolism, fatty acid biosynthesis, and phospholipid metabolism were found to be disturbed in schizophrenic patients and partially normalized following risperidone therapy. Further study of these metabolites may facilitate the development of noninvasive biomarkers and more efficient therapeutic strategies for schizophrenia.
Urinary metabolic insights into host-gut microbial interactions in healthy and IBD children
Martin, Francois-Pierre; Su, Ming-Ming; Xie, Guo-Xiang; Guiraud, Seu Ping; Kussmann, Martin; Godin, Jean-Philippe; Jia, Wei; Nydegger, Andreas
2017-01-01
AIM To identify metabolic signatures in urine samples from healthy and inflammatory bowel disease (IBD) children. METHODS We applied liquid chromatography and gas chromatography coupled to targeted mass spectrometry (MS)-based metabolite profiling to identify and quantify bile acids and host-gut microbial metabolites in urine samples collected from 21 pediatric IBD patients monitored three times over one year (baseline, 6 and 12 mo), and 27 age- and gender-matched healthy children. RESULTS urinary metabolic profiles of IBD children differ significantly from healthy controls. Such metabolic differences encompass central energy metabolism, amino acids, bile acids and gut microbial metabolites. In particular, levels of pyroglutamic acid, glutamic acid, glycine and cysteine, were significantly higher in IBD children in the course of the study. This suggests that glutathione cannot be optimally synthesized and replenished. Whilst alterations of the enterohepatic circulation of bile acids in pediatric IBD patients is known, we show here that non-invasive urinary bile acid profiling can assess those altered hepatic and intestinal barrier dysfunctions. CONCLUSION The present study shows how non-invasive sampling of urine followed by targeted MS-based metabonomic analysis can elucidate and monitor the metabolic status of children with different GI health/disease status. PMID:28611517
Qi, Xiaozhe; Chen, Siyuan; Sheng, Yao; Guo, Mingzhang; Liu, Yifei; He, Xiaoyun; Huang, Kunlun; Xu, Wentao
2015-02-01
The genetically modified (GM) rice expressing human serum albumin (HSA) is used for non-food purposes; however, its food safety assessment should be conducted due to the probability of accidental mixture with conventional food. In this research, Sprague Dawley rats were fed diets containing 50% (wt/wt) GM rice expressing HSA or non-GM rice for 90 days. Urine metabolites were detected by (1)H NMR to examine the changes of the metabolites in the dynamic process of metabolism. Fecal bacterial profiles were detected by denaturing gradient gel electrophoresis to reflect intestinal health. Additionally, short chain fatty acids and fecal enzymes were investigated. The results showed that compared with rats fed the non-GM rice, some significant differences were observed in rats fed with the GM rice; however, these changes were not significantly different from the control diet group. Additionally, the gut microbiota was associated with blood indexes and urine metabolites. In conclusion, the GM rice diet is as safe as the traditional daily diet. Furthermore, urine metabonomics and fecal bacterial profiles provide a non-invasive food safety assessment rat model for genetically modified crops that are used for non-food/feed purposes. Fecal bacterial profiles have the potential for predicting the change of blood indexes in future. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background Diet therapies including calorie restriction, ketogenic diets, and fish-oil supplementation have been used to improve health and to treat a variety of neurological and non-neurological diseases. Methods We investigated the effects of three diets on circulating plasma metabolites (glucose and β-hydroxybutyrate), hormones (insulin and adiponectin), and lipids over a 32-day period in C57BL/6J mice. The diets evaluated included a standard rodent diet (SD), a ketogenic diet (KD), and a standard rodent diet supplemented with fish-oil (FO). Each diet was administered in either unrestricted (UR) or restricted (R) amounts to reduce body weight by 20%. Results The KD-UR increased body weight and glucose levels and promoted a hyperlipidemic profile, whereas the FO-UR decreased body weight and glucose levels and promoted a normolipidemic profile, compared to the SD-UR. When administered in restricted amounts, all three diets produced a similar plasma metabolite profile, which included decreased glucose levels and a normolipidemic profile. Linear regression analysis showed that circulating glucose most strongly predicted body weight and triglyceride levels, whereas calorie intake moderately predicted glucose levels and strongly predicted ketone body levels. Conclusions These results suggest that biomarkers of health can be improved when diets are consumed in restricted amounts, regardless of macronutrient composition. PMID:24910707
Cañas, Rafael A.; Canales, Javier; Muñoz-Hernández, Carmen; Granados, Jose M.; Ávila, Concepción; García-Martín, María L.; Cánovas, Francisco M.
2015-01-01
Conifers include long-lived evergreen trees of great economic and ecological importance, including pines and spruces. During their long lives conifers must respond to seasonal environmental changes, adapt to unpredictable environmental stresses, and co-ordinate their adaptive adjustments with internal developmental programmes. To gain insights into these responses, we examined metabolite and transcriptomic profiles of needles from naturally growing 25-year-old maritime pine (Pinus pinaster L. Aiton) trees over a year. The effect of environmental parameters such as temperature and rain on needle development were studied. Our results show that seasonal changes in the metabolite profiles were mainly affected by the needles’ age and acclimation for winter, but changes in transcript profiles were mainly dependent on climatic factors. The relative abundance of most transcripts correlated well with temperature, particularly for genes involved in photosynthesis or winter acclimation. Gene network analysis revealed relationships between 14 co-expressed gene modules and development and adaptation to environmental stimuli. Novel Myb transcription factors were identified as candidate regulators during needle development. Our systems-based analysis provides integrated data of the seasonal regulation of maritime pine growth, opening new perspectives for understanding the complex regulatory mechanisms underlying conifers’ adaptive responses. Taken together, our results suggest that the environment regulates the transcriptome for fine tuning of the metabolome during development. PMID:25873654
Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling.
Schelli, Katie; Rutowski, Joshua; Roubidoux, Julia; Zhu, Jiangjiang
2017-03-15
Recently, novel bioanalytical methods, such as NMR and mass spectrometry based metabolomics approaches, have started to show promise in providing rapid, sensitive and reproducible detection of Staphylococcus aureus antibiotic resistance. Here we performed a proof-of-concept study focused on the application of HPLC-MS/MS based targeted metabolic profiling for detecting and monitoring the bacterial metabolic profile changes in response to sub-lethal levels of methicillin exposure. One hundred seventy-seven targeted metabolites from over 20 metabolic pathways were specifically screened and one hundred and thirty metabolites from in vitro bacterial tests were confidently detected from both methicillin susceptible and methicillin resistant Staphylococcus aureus (MSSA and MRSA, respectively). The metabolic profiles can be used to distinguish the isogenic pairs of MSSA strains from MRSA strains, without or with sub-lethal levels of methicillin exposure. In addition, better separation between MSSA and MRSA strains can be achieved in the latter case using principal component analysis (PCA). Metabolite data from isogenic pairs of MSSA and MRSA strains were further compared without and with sub-lethal levels of methicillin exposure, with metabolic pathway analyses additionally performed. Both analyses suggested that the metabolic activities of MSSA strains were more susceptible to the perturbation of the sub-lethal levels of methicillin exposure compared to the MRSA strains. Copyright © 2016 Elsevier B.V. All rights reserved.
Gandhi, Adarsh S; Zhu, Mingshe; Pang, Shaokun; Wohlfarth, Ariane; Scheidweiler, Karl B; Huestis, Marilyn A
2014-01-01
Background Since 2009, scheduling legislation of synthetic cannabinoids prompted new compound emergence to circumvent legal restrictions. 2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone (RCS-4) is a potent cannabinoid receptor agonist sold in herbal smoking blends. Absence of parent synthetic cannabinoids in urine suggests the importance of metabolite identification for detecting RCS-4 consumption in clinical and forensic investigations. Materials & methods & Results With 1 h human hepatocyte incubation and TOF high-resolution MS, we identified 18 RCS-4 metabolites, many not yet reported. Most metabolites were hydroxylated with or without demethylation, carboxylation and dealkylation followed by glucuronidation. One additional sulfated metabolite was also observed. O-demethylation was the most common biotransformation and generated the major metabolite. Conclusion For the first time, we present a metabolic scheme of RCS-4 obtained from human hepatocytes, including Phase I and II metabolites. Metabolite structural information and associated high-resolution mass spectra can be employed for developing clinical and forensic laboratory RCS-4 urine screening methods. PMID:25046048
RapidRIP quantifies the intracellular metabolome of 7 industrial strains of E. coli.
McCloskey, Douglas; Xu, Julia; Schrübbers, Lars; Christensen, Hanne B; Herrgård, Markus J
2018-04-25
Fast metabolite quantification methods are required for high throughput screening of microbial strains obtained by combinatorial or evolutionary engineering approaches. In this study, a rapid RIP-LC-MS/MS (RapidRIP) method for high-throughput quantitative metabolomics was developed and validated that was capable of quantifying 102 metabolites from central, amino acid, energy, nucleotide, and cofactor metabolism in less than 5 minutes. The method was shown to have comparable sensitivity and resolving capability as compared to a full length RIP-LC-MS/MS method (FullRIP). The RapidRIP method was used to quantify the metabolome of seven industrial strains of E. coli revealing significant differences in glycolytic, pentose phosphate, TCA cycle, amino acid, and energy and cofactor metabolites were found. These differences translated to statistically and biologically significant differences in thermodynamics of biochemical reactions between strains that could have implications when choosing a host for bioprocessing. Copyright © 2018. Published by Elsevier Inc.
Zhao, Shuang; Luo, Xian; Li, Liang
2016-11-01
A key step in metabolomics is to perform accurate relative quantification of the metabolomes in comparative samples with high coverage. Hydroxyl-containing metabolites are an important class of the metabolome with diverse structures and physical/chemical properties; however, many of them are difficult to detect with high sensitivity. We present a high-performance chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) technique for in-depth profiling of the hydroxyl submetabolome, which involves the use of acidic liquid-liquid extraction to enrich hydroxyl metabolites into ethyl acetate from an aqueous sample. After drying and then redissolving in acetonitrile, the metabolite extract is labeled using a base-activated 12 C- or 13 C-dansylation reaction. A fast step-gradient LC-UV method is used to determine the total concentration of labeled metabolites. On the basis of the concentration information, a 12 C-labeled individual sample is mixed with an equal mole amount of a 13 C-labeled pool or control for relative metabolite quantification. The 12 C-/ 13 C-labeled mixtures are individually analyzed by LC-MS, and the resultant peak pairs of labeled metabolites in MS are measured for relative quantification and metabolite identification. A standard library of 85 hydroxyl compounds containing MS, retention time, and MS/MS information was constructed for positive metabolite identification based on matches of two or all three of these parameters with those of an unknown. Using human urine as an example, we analyzed samples of 1:1 12 C-/ 13 C-labeled urine in triplicate with triplicate runs per sample and detected an average of 3759 ± 45 peak pairs or metabolites per run and 3538 ± 71 pairs per sample with 3093 pairs in common (n = 9). Out of the 3093 peak pairs, 2304 pairs (75%) could be positively or putatively identified based on metabolome database searches, including 20 pairs positively identified using the dansylated hydroxyl standards library. The majority of detected metabolites were those containing hydroxyl groups. This technique opens a new avenue for the detailed characterization of the hydroxyl submetabolome in metabolomics research.
USDA-ARS?s Scientific Manuscript database
The fungus Aspergillus flavus is known for its ability to produce the toxic and carcinogenic aflatoxins in food and feed. While aflatoxins are of most concern, A. flavus is predicted to be capable of producing many more metabolites based on a study of its complete genome sequence. Some of these meta...
Al-Khelaifi, Fatima; Diboun, Ilhame; Donati, Francesco; Botrè, Francesco; Alsayrafi, Mohammed; Georgakopoulos, Costas; Suhre, Karsten; Yousri, Noha A; Elrayess, Mohamed A
2018-01-05
The outstanding performance of an elite athlete might be associated with changes in their blood metabolic profile. The aims of this study were to compare the blood metabolic profiles between moderate- and high-power and endurance elite athletes and to identify the potential metabolic pathways underlying these differences. Metabolic profiling of serum samples from 191 elite athletes from different sports disciplines (121 high- and 70 moderate-endurance athletes, including 44 high- and 144 moderate-power athletes), who participated in national or international sports events and tested negative for doping abuse at anti-doping laboratories, was performed using non-targeted metabolomics-based mass spectroscopy combined with ultrahigh-performance liquid chromatography. Multivariate analysis was conducted using orthogonal partial least squares discriminant analysis. Differences in metabolic levels between high- and moderate-power and endurance sports were assessed by univariate linear models. Out of 743 analyzed metabolites, gamma-glutamyl amino acids were significantly reduced in both high-power and high-endurance athletes compared to moderate counterparts, indicating active glutathione cycle. High-endurance athletes exhibited significant increases in the levels of several sex hormone steroids involved in testosterone and progesterone synthesis, but decreases in diacylglycerols and ecosanoids. High-power athletes had increased levels of phospholipids and xanthine metabolites compared to moderate-power counterparts. This pilot data provides evidence that high-power and high-endurance athletes exhibit a distinct metabolic profile that reflects steroid biosynthesis, fatty acid metabolism, oxidative stress, and energy-related metabolites. Replication studies are warranted to confirm differences in the metabolic profiles associated with athletes' elite performance in independent data sets, aiming ultimately for deeper understanding of the underlying biochemical processes that could be utilized as biomarkers with potential therapeutic implications.
Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J; Vuong, Daniel; Piggott, Andrew M; Hallegraeff, Gustaaf
2016-03-16
Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m³) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef.
Hayashi, Aiko; Crombie, Andrew; Lacey, Ernest; Richardson, Anthony J.; Vuong, Daniel; Piggott, Andrew M.; Hallegraeff, Gustaaf
2016-01-01
Dust has been widely recognised as an important source of nutrients in the marine environment and as a vector for transporting pathogenic microorganisms. Disturbingly, in the wake of a dust storm event along the eastern Australian coast line in 2009, the Continuous Plankton Recorder collected masses of fungal spores and mycelia (~150,000 spores/m3) forming a floating raft that covered a coastal area equivalent to 25 times the surface of England. Cultured A. sydowii strains exhibited varying metabolite profiles, but all produced sydonic acid, a chemotaxonomic marker for A. sydowii. The Australian marine fungal strains share major metabolites and display comparable metabolic diversity to Australian terrestrial strains and to strains pathogenic to Caribbean coral. Secondary colonisation of the rafts by other fungi, including strains of Cladosporium, Penicillium and other Aspergillus species with distinct secondary metabolite profiles, was also encountered. Our bioassays revealed that the dust-derived marine fungal extracts and known A. sydowii metabolites such as sydowic acid, sydowinol and sydowinin A adversely affect photophysiological performance (Fv/Fm) of the coral reef dinoflagellate endosymbiont Symbiodinium. Different Symbiodinium clades exhibited varying sensitivities, mimicking sensitivity to coral bleaching phenomena. The detection of such large amounts of A. sydowii following this dust storm event has potential implications for the health of coral environments such as the Great Barrier Reef. PMID:26999164
Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K
2015-01-01
Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.
Oh, Ji Sun; Seo, Hong Seong; Kim, Kyoung Heon; Pyo, Heesoo; Chung, Bong Chul; Lee, Jeongae
2017-09-01
Tryptophan (Trp) is an essential amino acid that plays an important role in protein synthesis and is a precursor of various substances related to diverse biological functions. An imbalance in Trp metabolites is associated with inflammatory diseases. The accurate and precise measurement of these compounds in biological specimens would provide meaningful information for understanding the biochemical states of various metabolic syndrome-related diseases, such as hyperlipidemia, hypertension, diabetes, and obesity. In this study, we developed a rapid, accurate, and sensitive liquid chromatography-tandem mass spectrometry-based method for the simultaneous targeted analysis of Trp and its related metabolites of the kynurenine (Kyn), serotonin, and tryptamine pathways in urine. The application of the developed method was tested using urine samples after protein precipitation. The detection limits of Trp and its metabolites were in the range of 0.01 to 0.1 μg/mL. The method was successfully validated and applied to urine samples from controls and patients with metabolic syndrome. Our results revealed high concentrations of Kyn, kynurenic acid, xanthurenic acid, and quinolinic acid as well as a high Kyn-to-Trp ratio (KTR) in patients with metabolic syndromes. The levels of urine Kyn and KTR were significantly increased in patients under 60 years old. The profiling of urinary Trp metabolites could be a useful indicator for age-related diseases including metabolic syndrome. ᅟ.
Du, Le-Yue; Tao, Jin-Hua; Jiang, Shu; Qian, Da-Wei; Guo, Jian-Ming; Duan, Jin-Ao
2017-02-01
Flos Abelmoschus manihot is a traditional herbal medicine widely used in clinical practice to tackle chronic kidney disease (CKD) for thousands of years. Nowadays, many studies indicate that gut bacteria are closely related to the progression of CKD and CKD-related complications. In this study, a UPLC-Q-TOF/MS method coupled with the MetaboLynx™ software was established and successfully applied to investigate the metabolites and metabolic profile of Flos A. manihot extract by intestinal bacteria from normal and CKD rats. Eight parent components and eight metabolites were characterized by their protonated ions. Among these compounds, 15 were detected in the two group samples while M16 was only determined in the CKD model samples. Compared with the quercetin-type glycosides, fewer myricetin-type and gossypetin-type metabolites were obtained in the two group samples. These metabolites suggested that deglycosylation and methylation are the major metabolic pathways of Flos A. manihot extract. Few differences of metabolite classes were observed in the two group samples. However, the concentrations of aglycones such as quercetin, myricetin and gossypetin in the normal samples were notably higher than those in the CKD model samples. The results are important in unravelling the pharmacological effects of A. manihot and clarifying its mechanism of action in vivo. Copyright © 2016 John Wiley & Sons, Ltd.
Secondary Metabolite Profiling of Species of the Genus Usnea by UHPLC-ESI-OT-MS-MS.
Salgado, Francisco; Albornoz, Laura; Cortéz, Carmen; Stashenko, Elena; Urrea-Vallejo, Kelly; Nagles, Edgar; Galicia-Virviescas, Cesar; Cornejo, Alberto; Ardiles, Alejandro; Simirgiotis, Mario; García-Beltrán, Olimpo; Areche, Carlos
2017-12-27
Lichens are symbiotic associations of fungi with microalgae and/or cyanobacteria, which are considered among the slowest growing organisms, with strong tolerance to adverse environmental conditions. There are about 400 genera and 1600 species of lichens and those belonging to the Usnea genus comprise about 360 of these species. Usnea lichens have been used since ancient times as dyes, cosmetics, preservatives, deodorants and folk medicines. The phytochemistry of the Usnea genus includes more than 60 compounds which belong to the following classes: depsides, depsidones, depsones, lactones, quinones, phenolics, polysaccharides, fatty acids and dibenzofurans. Due to scarce knowledge of metabolomic profiles of Usnea species ( U. barbata , U. antarctica , U. rubicunda and U. subfloridana ), a study based on UHPLC-ESI-OT-MS-MS was performed for a comprehensive characterization of their secondary metabolites. From the methanolic extracts of these species a total of 73 metabolites were identified for the first time using this hyphenated technique, including 34 compounds in U. barbata , 21 in U. antarctica , 38 in U. rubicunda and 37 in U. subfloridana . Besides, a total of 13 metabolites were not identified and reported so far, and could be new according to our data analysis. This study showed that this hyphenated technique is rapid, effective and accurate for phytochemical identification of lichen metabolites and the data collected could be useful for chemotaxonomic studies.
Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P B; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro
2017-09-21
The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals ( n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550-600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550-600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle.
Toda, Katsuki; Kokushi, Emiko; Uno, Seiichi; Shiiba, Ayaka; Hasunuma, Hiroshi; Fushimi, Yasuo; Wijayagunawardane, Missaka P. B.; Zhang, Chunhua; Yamato, Osamu; Taniguchi, Masayasu; Fink-Gremmels, Johanna; Takagi, Mitsuhiro
2017-01-01
The objective of this study was to evaluate the metabolic profile of cattle fed with or without zearalenone (ZEN) and sterigmatocystin (STC)-contaminated diets using a gas chromatography-mass spectrometry metabolomics approach. Urinary samples were collected from individual animals (n = 6 per herd) from fattening female Japanese Black (JB) cattle herds (23 months old, 550–600 kg). Herd 1 had persistently high urinary ZEN and STC concentrations due to the presence of contaminated rice straw. Herd 2, the second female JB fattening herd (23 months old, 550–600 kg), received the same dietary feed as Herd 1, with non-contaminated rice straw. Urine samples were collected from Herd 1, two weeks after the contaminated rice straw was replaced with uncontaminated rice straw (Herd 1N). Identified metabolites were subjected to principal component analysis (PCA) and ANOVA. The PCA revealed that the effects on cattle metabolites depended on ZEN and STC concentrations. The contamination of cattle feed with multiple mycotoxins may alter systemic metabolic processes, including metabolites associated with ATP generation, amino acids, glycine-conjugates, organic acids, and purine bases. The results obtained from Herd 1N indicate that a two-week remedy period was not sufficient to improve the levels of urinary metabolites, suggesting that chronic contamination with mycotoxins may have long-term harmful effects on the systemic metabolism of cattle. PMID:28934162
Tovar, Juscelino; de Mello, Vanessa D; Nilsson, Anne; Johansson, Maria; Paananen, Jussi; Lehtonen, Marko; Hanhineva, Kati; Björck, Inger
2017-02-01
Multifunctional diet (MFD), a diet based on multiple functional concepts and ingredients with anti-inflammatory activity, was previously shown to improve different cardiometabolic risk-associated markers in healthy subjects. Here, we assessed the impact of MFD on plasma metabolome and explored associations of the differential metabolites with clinical parameters, searching for metabolic determinants related to the effects of MFD. Forty-four overweight healthy volunteers completed a randomized crossover intervention comparing MFD with a control diet devoid of the active components of MFD. Fasting plasma samples were analyzed with nontargeted metabolite profiling at baseline and at the end (4 wk) of each diet period by LC coupled to quadrupole-TOF-MS system, revealing a vast impact of MFD on metabolic homeostasis. Main metabolite classes affected included acylcarnitines, furan fatty acids, phospholipids (plasmalogens, phosphatidylcholines, phosphatidylethanolamines), and various low-molecular weight products from the bioactivity of gut microbiota. Circulating levels of several of these metabolites correlated with changes in clinical blood lipid biomarkers. The metabolomics approach revealed that consumption of MFD affected different areas of metabolism, highlighting the impact of a healthy diet on plasma metabolome. This seems linked to reduced cardiometabolic risk and provides mechanistic insight into the effects of MFD. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rong, Weiwei; Guo, Sirui; Ding, Kewen; Yuan, Ziyue; Li, Qing; Bi, Kaishun
2018-04-25
An integrated strategy based on high-resolution mass spectrometry coupled with multiple data mining techniques was developed to screen the metabolites in rat biological fluids after the oral administration of Xanthoceras sorbifolia Bunge husks. Mass defect filtering, product ion filtering, and neutral loss filtering were applied to detect metabolites from the complex matrix. As a result, 55 metabolites were tentatively identified, among which 45 barrigenol-type triterpenoid metabolites were detected in the feces, and six flavonoids and four coumarins metabolites were in the urine. Moreover, eight prototype constituents in plasma, 36 in urine and 23 in feces were also discovered. Due to the poor bioavailability of barrigenol type triterpenoids, most of them were metabolized by intestinal flora. Phase I metabolic reactions such as deglycosylation, oxidation, demethylation, dehydrogenation, and internal hydrolysis were supposed to be their principal metabolic pathways. Coumarins were found in all the biosamples, whereas flavonoids were mainly in the urine. Unlike the saponins, they were mainly metabolized through phase II metabolic reactions like glucuronidation and sulfonation, which made them eliminated more easily by urine. This work suggested the metabolic profile of X. sorbifolia husks for the first time, which will be very valuable for its further development. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jin, Qing; Jiao, Chunyan; Sun, Shiwei; Song, Cheng; Cai, Yongping; Lin, Yi; Fan, Honghong; Zhu, Yanfang
2016-01-01
Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways. PMID:26752292
Jin, Qing; Jiao, Chunyan; Sun, Shiwei; Song, Cheng; Cai, Yongping; Lin, Yi; Fan, Honghong; Zhu, Yanfang
2016-01-01
Metabolomics technology has enabled an important method for the identification and quality control of Traditional Chinese Medical materials. In this study, we isolated metabolites from cultivated Dendrobium officinale and Dendrobium huoshanense stems of different growth years in the methanol/water phase and identified them using gas chromatography coupled with mass spectrometry (GC-MS). First, a metabolomics technology platform for Dendrobium was constructed. The metabolites in the Dendrobium methanol/water phase were mainly sugars and glycosides, amino acids, organic acids, alcohols. D. officinale and D. huoshanense and their growth years were distinguished by cluster analysis in combination with multivariate statistical analysis, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA). Eleven metabolites that contributed significantly to this differentiation were subjected to t-tests (P<0.05) to identify biomarkers that discriminate between D. officinale and D. huoshanense, including sucrose, glucose, galactose, succinate, fructose, hexadecanoate, oleanitrile, myo-inositol, and glycerol. Metabolic profiling of the chemical compositions of Dendrobium species revealed that the polysaccharide content of D. huoshanense was higher than that of D. officinale, indicating that the D. huoshanense was of higher quality. Based on the accumulation of Dendrobium metabolites, the optimal harvest time for Dendrobium was in the third year. This initial metabolic profiling platform for Dendrobium provides an important foundation for the further study of secondary metabolites (pharmaceutical active ingredients) and metabolic pathways.
Alphus D. Wilson
2015-01-01
Recent advancements in the use of electronic-nose (e-nose) devices to analyze human breath profiles for the presence of specific volatile metabolites, known as biomarkers or chemical bio-indicators of specific human diseases, metabolic disorders and the overall health status of individuals, are providing the potential for new noninvasive tools and techniques useful to...
Effects of dry-aging on meat quality attributes and metabolite profiles of beef loins.
Kim, Yuan H Brad; Kemp, Robert; Samuelsson, Linda M
2016-01-01
The objectives of this study were to evaluate different dry-aging regimes and their impacts on quality attributes and metabolite profiles of beef loins. Thirty loins (M. longissimus lumborum) from 15 beef carcasses at 2 days post-mortem were obtained. Each loin was cut in half yielding 60 sections, which were randomly assigned to six treatments including 4 dry-aging (2 temperatures (1 or 3°C) × 2 air-velocities (0.2 or 0.5 m/s)) and 2 wet-aging regimes for 3 weeks; n=10/treatment. The sensory panel found that dry-aged loins had better flavour and overall liking (P<0.05), but there were no differences in tenderness and juiciness. No differences in drip/cook-loss and colour were observed. Metabolite analysis showed that 7 metabolites, including several flavour precursors, were more abundant in the dry-aged beef compared to the wet-aged beef, which may contribute to the enhanced flavours of the dry-aged beef. Overall, dry-aging loins at 3°C with 0.2m/s resulted in the greatest improvement in beef palatability. Copyright © 2015 Elsevier Ltd. All rights reserved.
Ma, Yong; Clish, Clary; Florez, Jose C.; Wang, Thomas J.; Gerszten, Robert E.
2016-01-01
Identifying novel biomarkers of type 2 diabetes risk may improve prediction and prevention among individuals at high risk of the disease and elucidate new biological pathways relevant to diabetes development. We performed plasma metabolite profiling in the Diabetes Prevention Program (DPP), a completed trial that randomized high-risk individuals to lifestyle, metformin, or placebo interventions. Previously reported markers, branched-chain and aromatic amino acids and glutamine/glutamate, were associated with incident diabetes (P < 0.05 for all), but these associations were attenuated upon adjustment for clinical and biochemical measures. By contrast, baseline levels of betaine, also known as glycine betaine (hazard ratio 0.84 per SD log metabolite level, P = 0.02), and three other metabolites were associated with incident diabetes even after adjustment. Moreover, betaine was increased by the lifestyle intervention, which was the most effective approach to preventing diabetes, and increases in betaine at 2 years were also associated with lower diabetes incidence (P = 0.01). Our findings indicate betaine is a marker of diabetes risk among high-risk individuals both at baseline and during preventive interventions and they complement animal models demonstrating a direct role for betaine in modulating metabolic health. PMID:26861782
Rupcic, Zeljka; Rascher, Monique; Kanaki, Sae; Wittstein, Kathrin
2018-01-01
Basidiomycetes of the genus Hericium are among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor (NGF) or (as established more recently) brain-derived neurotrophic factor (BDNF) in cell-based bioassays. The present study reports on the metabolite profiles of a Lion’s Mane mushroom (Hericium erinaceus) strain and a strain of the rare species, Hericium flagellum (synonym H. alpestre). While we observed highly similar metabolite profiles between the two strains that were examined, we isolated two previously undescribed metabolites, given the trivial names erinacines Z1 and Z2. Their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry. Along with six further, previously identified cyathane diterpenes, the novel erinacines were tested for neurotrophin inducing effects. We found that erinacines act on BDNF, which is a neurotrophic factor that has been reported recently by us to be induced by the corallocins, but as well on NGF expression, which is consistent with the literature. PMID:29509661
Rupcic, Zeljka; Rascher, Monique; Kanaki, Sae; Köster, Reinhard W; Stadler, Marc; Wittstein, Kathrin
2018-03-06
Basidiomycetes of the genus Hericium are among the most praised medicinal and edible mushrooms, which are known to produce secondary metabolites with the potential to treat neurodegenerative diseases. This activity has been attributed to the discovery of various terpenoids that can stimulate the production of nerve growth factor ( NGF ) or (as established more recently) brain-derived neurotrophic factor ( BDNF ) in cell-based bioassays. The present study reports on the metabolite profiles of a Lion's Mane mushroom ( Hericium erinaceus ) strain and a strain of the rare species, Hericium flagellum (synonym H. alpestre ). While we observed highly similar metabolite profiles between the two strains that were examined, we isolated two previously undescribed metabolites, given the trivial names erinacines Z1 and Z2. Their chemical structures were elucidated by means of nuclear magnetic resonance (NMR) spectroscopy and high resolution mass spectrometry. Along with six further, previously identified cyathane diterpenes, the novel erinacines were tested for neurotrophin inducing effects. We found that erinacines act on BDNF , which is a neurotrophic factor that has been reported recently by us to be induced by the corallocins, but as well on NGF expression, which is consistent with the literature.
Integrative Analysis of Longitudinal Metabolomics Data from a Personal Multi-Omics Profile
Stanberry, Larissa; Mias, George I.; Haynes, Winston; Higdon, Roger; Snyder, Michael; Kolker, Eugene
2013-01-01
The integrative personal omics profile (iPOP) is a pioneering study that combines genomics, transcriptomics, proteomics, metabolomics and autoantibody profiles from a single individual over a 14-month period. The observation period includes two episodes of viral infection: a human rhinovirus and a respiratory syncytial virus. The profile studies give an informative snapshot into the biological functioning of an organism. We hypothesize that pathway expression levels are associated with disease status. To test this hypothesis, we use biological pathways to integrate metabolomics and proteomics iPOP data. The approach computes the pathways’ differential expression levels at each time point, while taking into account the pathway structure and the longitudinal design. The resulting pathway levels show strong association with the disease status. Further, we identify temporal patterns in metabolite expression levels. The changes in metabolite expression levels also appear to be consistent with the disease status. The results of the integrative analysis suggest that changes in biological pathways may be used to predict and monitor the disease. The iPOP experimental design, data acquisition and analysis issues are discussed within the broader context of personal profiling. PMID:24958148
Dynamic-SERS Optophysiology: A Nanosensor for Monitoring Cell Secretion Events.
Lussier, Félix; Brulé, Thibault; Vishwakarma, Medhavi; Das, Tamal; Spatz, Joachim P; Masson, Jean-François
2016-06-08
We monitored metabolite secretion near living cells using a plasmonic nanosensor. The nanosensor created from borosilicate nanopipettes analogous to the patch clamp was decorated with Au nanoparticles and served as a surface-enhanced Raman scattering (SERS) substrate with addressable location. With this nanosensor, we acquired SERS locally near Madin-Darby canine kidney (MDCKII) epithelial cells, and we detected multiple metabolites, such as pyruvate, lactate, ATP, and urea simultaneously. These plasmonic nanosensors were capable of monitoring metabolites in the extracellular medium with enough sensitivity to detect an increase in metabolite concentration following the lyses of MDCKII cells with a nonionic surfactant. The plasmonic nanosensors also allowed a relative quantification of a chemical gradient for a metabolite near cells, as demonstrated with a decrease in relative lactate to pyruvate concentration further away from the MDCKII cells. This SERS optophysiology technique for the sensitive and nondestructive monitoring of extracellular metabolites near living cells is broadly applicable to different cellular and tissue models and should therefore provide a powerful tool for cellular studies.
NMR and MS Methods for Metabolomics.
Amberg, Alexander; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Dieterle, Frank; Keck, Matthias
2017-01-01
Metabolomics, also often referred as "metabolic profiling," is the systematic profiling of metabolites in biofluids or tissues of organisms and their temporal changes. In the last decade, metabolomics has become more and more popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabolomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabolomics, i.e., NMR, UPLC-MS, and GC-MS, have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabolomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation to determining the measurement details of all analytical platforms, and finally to discussing the corresponding specific steps of data analysis.
NMR and MS methods for metabonomics.
Dieterle, Frank; Riefke, Björn; Schlotterbeck, Götz; Ross, Alfred; Senn, Hans; Amberg, Alexander
2011-01-01
Metabonomics, also often referred to as "metabolomics" or "metabolic profiling," is the systematic profiling of metabolites in bio-fluids or tissues of organisms and their temporal changes. In the last decade, metabonomics has become increasingly popular in drug development, molecular medicine, and other biotechnology fields, since it profiles directly the phenotype and changes thereof in contrast to other "-omics" technologies. The increasing popularity of metabonomics has been possible only due to the enormous development in the technology and bioinformatics fields. In particular, the analytical technologies supporting metabonomics, i.e., NMR, LC-MS, UPLC-MS, and GC-MS have evolved into sensitive and highly reproducible platforms allowing the determination of hundreds of metabolites in parallel. This chapter describes the best practices of metabonomics as seen today. All important steps of metabolic profiling in drug development and molecular medicine are described in great detail, starting from sample preparation, to determining the measurement details of all analytical platforms, and finally, to discussing the corresponding specific steps of data analysis.
Bunz, Svenja-Catharina; Neusüß, Christian
2013-01-01
Metabolite identification and metabolite profiling are of major importance in the pharmaceutical and clinical context. However, anions of biological relevance such as sulfates, sulfonates, and phosphates are rarely included in common techniques for metabolite studies. In this protocol, we demonstrate a unique method to selectively determine these anions. The method comprises a capillary electrophoresis separation using an acidic background electrolyte (pH ≤ 2) and anodic detection by mass spectrometry via negative electrospray ionization. In this way, only anions of strong acids like sulfates are determined. The selectivity for sulfur-containing species is proved based on the specific isotopic ratios. In conjunction with the accurate mass from the time-of-flight mass spectrometer, the presented method is well suited for clinical and pharmaceutical applications to identify possible metabolites and to quantify known metabolites.
Zhou, Ying; Hu, Pei; Jiang, Ji
2017-04-15
Remimazolam is a new chemical entity belonging to the benzodiazepine class of sedative drugs, which shows faster-acting onset and recovery than currently available short-acting sedatives. In the present study, ultra high performance liquid chromatography with synapt high-definition mass spectrometry method combined with MassLynx software was established to characterize metabolites of remimazolam in human plasma and urine. In total, 5 human metabolites were detected, including 3 phase I and 2 phase II metabolites. There was no novel human metabolite detected compared to that in rat. Hydrolysis, glucuronidation and oxidation were the major metabolic reactions. To our knowledge, this is the first report of the human metabolic profile of remimazolam. Copyright © 2017 Elsevier B.V. All rights reserved.
Costa, Fernanda das Neves; Jerz, Gerold; Figueiredo, Fabiana de Souza; Winterhalter, Peter; Leitão, Gilda Guimarães
2015-03-13
For the development of an efficient two-stage isolation process for high-speed countercurrent chromatography (HSCCC) with focus on principal metabolites from the ethyl acetate extract of the halophyte plant Salicornia gaudichaudiana, separation selectivities of two different biphasic solvent systems with similar polarities were evaluated using the elution and extrusion approach. Efficiency in isolation of target compounds is determined by the solvent system selectivity and their chronological use in multiple separation steps. The system n-hexane-ethyl acetate-methanol-water (0.5:6:0.5:6, v/v/v/v) resulted in a comprehensive separation of polyphenolic glycosides. The system n-hexane-n-butanol-water (1:1:2, v/v/v) was less universal but was highly efficient in the fractionation of positional isomers such as di-substituted cinnamic acid quinic acid derivatives. Multiple metabolite detection performed on recovered HSCCC tube fractions was done with rapid mass-spectrometry profiling by sequential off-line injections to electrospray mass-spectrometry (ESI-MS/MS). Selective ion traces of metabolites delivered reconstituted preparative HSCCC runs. Molecular weight distribution of target compounds in single HSCCC tube fractions and MS/MS fragment data were available. Chromatographic areas with strong co-elution effects and fractions of pure recoverable compounds were visualized. In total 11 metabolites have been identified and monitored. Result of this approach was a fast isolation protocol for S. gaudichaudiana metabolites using two solvent systems in a strategic sequence. The process could easily be scaled-up to larger lab-scale or industrial recovery. Copyright © 2015 Elsevier B.V. All rights reserved.
Urpi-Sarda, Mireia; Garrido, Ignacio; Monagas, María; Gómez-Cordovés, Carmen; Medina-Remón, Alexander; Andres-Lacueva, Cristina; Bartolomé, Begoña
2009-11-11
Nut skins are considered to be a rich source of polyphenols and may be partially responsible for the numerous health effects associated with nut consumption. However, more bioavailability studies of nut skin polyphenols are needed to understand the health effects derived from nut consumption. The aim of the present study was to determine the profiles of both phase II and microbial-derived phenolic metabolites in plasma and urine samples before and after the intake of almond skin polyphenols by healthy human subjects (n = 2). Glucuronide, O-methyl glucuronide, sulfate, and O-methyl sulfate derivatives of (epi)catechin, as well as the glucuronide conjugates of naringenin and glucuronide and sulfate conjugates of isorhamnetin, were detected in plasma and urine samples after consumption of almond skin polyphenols. The main microbial-derived metabolites of flavanols, such as 5-(dihydroxyphenyl)-gamma-valerolactone and 5-(hydroxymethoxyphenyl)-gamma-valerolactone, were also detected in their glucuronide and sulfate forms. In addition, numerous metabolites derived from further microbial degradation of hydroxyphenylvalerolactones, including hydroxyphenylpropionic, hydroxyphenylacetic, hydroxycinnamic, hydroxybenzoic, and hydroxyhippuric acids, registered major changes in urine after the consumption of almond skin polyphenols. The urinary excretion of these microbial metabolites was estimated to account for a larger proportion of the total polyphenol ingested than phase II metabolites of (epi)catechin, indicating the important role of intestinal bacteria in the metabolism of highly polymerized almond skin polyphenols. To the authors' knowledge this study constitutes the most complete report of the absorption of almond skin polyphenols in humans.
Li, Li; Zhang, Jinhui; Xing, Chengguo; Kim, Sung-Hoon; Jiang, Cheng; Lü, Junxuan
2013-11-01
The aim of this study is to investigate and compare the metabolic rate and profiles of pyranocoumarin isomers decursin and decursinol angelate using liver microsomes from humans and rodents, and to characterize the major metabolites of decursin and decursinol angelate in human liver microsomal incubations using LC-MS/MS. First, we conducted liver microsomal incubations of decursin and decursinol angelate in the presence or absence of NADPH. We found that in the absence of NADPH, decursin was efficiently hydrolyzed to decursinol by hepatic esterase(s), but decursinol angelate was not. In contrast, formation of decursinol from decursinol angelate was mediated mainly by cytochrome P450(s). Second, we measured the metabolic rate of decursin and decursinol angelate in liver S9 fractions from mice and humans. We found that human liver S9 fractions metabolized both decursin and decursinol angelate more slowly than those of the mouse. Third, we characterized the major metabolites of decursin and decursinol angelate from human liver microsomes incubations using HPLC-UV and LC-MS/MS methods and assessed the in vivo metabolites in mouse plasma from a one-dose PK study. Decursin and decursinol angelate have different metabolite profiles. Nine metabolites of decursin and nine metabolites of decursinol angelate were identified in human liver microsome incubations besides decursinol using a hybrid triple quadruple linear ion trap LC-MS/MS system, and many of them were later verified to be also present in plasma samples from rodent PK studies. Georg Thieme Verlag KG Stuttgart · New York.
Pal, Probir Kumar; Kumar, Rajender; Guleria, Vipan; Mahajan, Mitali; Prasad, Ramdeen; Pathania, Vijaylata; Gill, Baljinder Singh; Singh, Devinder; Chand, Gopi; Singh, Bikram; Singh, Rakesh Deosharan; Ahuja, Paramvir Singh
2015-02-27
Plant nutrition and climatic conditions play important roles on the growth and secondary metabolites of stevia (Stevia rebaudiana Bertoni); however, the nutritional dose is strongly governed by the soil properties and climatic conditions of the growing region. In northern India, the interactive effects of crop ecology and plant nutrition on yield and secondary metabolites of stevia are not yet properly understood. Thus, a field experiment comprising three levels of nitrogen, two levels of phosphorus and three levels of potassium was conducted at three locations to ascertain whether the spatial and nutritional variability would dominate the leaf yield and secondary metabolites profile of stevia. Principal component analysis (PCA) indicates that the applications of 90 kg N, 40 kg P2O5 and 40 kg K2O ha-1 are the best nutritional conditions in terms of dry leaf yield for CSIR-IHBT (Council of Scientific and Industrial Research- Institute Himalayan Bioresource Technology) and RHRS (Regional Horticultural Research Station) conditions. The spatial variability also exerted considerable effect on the leaf yield and stevioside content in leaves. Among the three locations, CSIR-IHBT was found most suitable in case of dry leaf yield and secondary metabolites accumulation in leaves. The results suggest that dry leaf yield and accumulation of stevioside are controlled by the environmental factors and agronomic management; however, the accumulation of rebaudioside-A (Reb-A) is not much influenced by these two factors. Thus, leaf yield and secondary metabolite profiles of stevia can be improved through the selection of appropriate growing locations and proper nutrient management.