Science.gov

Sample records for metabolome

  1. Microbial Metabolomics

    PubMed Central

    Tang, Jane

    2011-01-01

    Microbial metabolomics constitutes an integrated component of systems biology. By studying the complete set of metabolites within a microorganism and monitoring the global outcome of interactions between its development processes and the environment, metabolomics can potentially provide a more accurate snap shot of the actual physiological state of the cell. Recent advancement of technologies and post-genomic developments enable the study and analysis of metabolome. This unique contribution resulted in many scientific disciplines incorporating metabolomics as one of their “omics” platforms. This review focuses on metabolomics in microorganisms and utilizes selected topics to illustrate its impact on the understanding of systems microbiology. PMID:22379393

  2. Metabolomics in food science.

    PubMed

    Cevallos-Cevallos, Juan Manuel; Reyes-De-Corcuera, José Ignacio

    2012-01-01

    Metabolomics, the newest member of the omics techniques, has become an important tool in agriculture, pharmacy, and environmental sciences. Advances in compound extraction, separation, detection, identification, and data analysis have allowed metabolomics applications in food sciences including food processing, quality, and safety. This chapter discusses recent advances and applications of metabolomics in food science.

  3. Metabolomics and Epidemiology Working Group

    Cancer.gov

    The Metabolomics and Epidemiology (MetEpi) Working Group promotes metabolomics analyses in population-based studies, as well as advancement in the field of metabolomics for broader biomedical and public health research.

  4. Cancer Metabolomics and the Human Metabolome Database

    PubMed Central

    Wishart, David S.; Mandal, Rupasri; Stanislaus, Avalyn; Ramirez-Gaona, Miguel

    2016-01-01

    The application of metabolomics towards cancer research has led to a renewed appreciation of metabolism in cancer development and progression. It has also led to the discovery of metabolite cancer biomarkers and the identification of a number of novel cancer causing metabolites. The rapid growth of metabolomics in cancer research is also leading to challenges. In particular, with so many cancer-associate metabolites being identified, it is often difficult to keep track of which compounds are associated with which cancers. It is also challenging to track down information on the specific pathways that particular metabolites, drugs or drug metabolites may be affecting. Even more frustrating are the difficulties associated with identifying metabolites from NMR or MS spectra. Fortunately, a number of metabolomics databases are emerging that are designed to address these challenges. One such database is the Human Metabolome Database (HMDB). The HMDB is currently the world’s largest and most comprehensive, organism-specific metabolomics database. It contains more than 40,000 metabolite entries, thousands of metabolite concentrations, >700 metabolic and disease-associated pathways, as well as information on dozens of cancer biomarkers. This review is intended to provide a brief summary of the HMDB and to offer some guidance on how it can be used in metabolomic studies of cancer. PMID:26950159

  5. The Human Serum Metabolome

    PubMed Central

    Psychogios, Nikolaos; Hau, David D.; Peng, Jun; Guo, An Chi; Mandal, Rupasri; Bouatra, Souhaila; Sinelnikov, Igor; Krishnamurthy, Ramanarayan; Eisner, Roman; Gautam, Bijaya; Young, Nelson; Xia, Jianguo; Knox, Craig; Dong, Edison; Huang, Paul; Hollander, Zsuzsanna; Pedersen, Theresa L.; Smith, Steven R.; Bamforth, Fiona; Greiner, Russ; McManus, Bruce; Newman, John W.; Goodfriend, Theodore; Wishart, David S.

    2011-01-01

    Continuing improvements in analytical technology along with an increased interest in performing comprehensive, quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today's technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum compounds, their concentrations, related literature references and links to their known disease associations are freely available at http://www.serummetabolome.ca. PMID:21359215

  6. Metabolomics in chemical ecology.

    PubMed

    Kuhlisch, Constanze; Pohnert, Georg

    2015-07-01

    Chemical ecology elucidates the nature and role of natural products as mediators of organismal interactions. The emerging techniques that can be summarized under the concept of metabolomics provide new opportunities to study such environmentally relevant signaling molecules. Especially comparative tools in metabolomics enable the identification of compounds that are regulated during interaction situations and that might play a role as e.g. pheromones, allelochemicals or in induced and activated defenses. This approach helps overcoming limitations of traditional bioassay-guided structure elucidation approaches. But the power of metabolomics is not limited to the comparison of metabolic profiles of interacting partners. Especially the link to other -omics techniques helps to unravel not only the compounds in question but the entire biosynthetic and genetic re-wiring, required for an ecological response. This review comprehensively highlights successful applications of metabolomics in chemical ecology and discusses existing limitations of these novel techniques. It focuses on recent developments in comparative metabolomics and discusses the use of metabolomics in the systems biology of organismal interactions. It also outlines the potential of large metabolomics initiatives for model organisms in the field of chemical ecology.

  7. Current metabolomics: technological advances.

    PubMed

    Putri, Sastia P; Yamamoto, Shinya; Tsugawa, Hiroshi; Fukusaki, Eiichiro

    2013-07-01

    Metabolomics, the global quantitative assessment of metabolites in a biological system, has played a pivotal role in various fields of science in the post-genomic era. Metabolites are the result of the interaction of the system's genome with its environment and are not merely the end product of gene expression, but also form part of the regulatory system in an integrated manner. Therefore, metabolomics is often considered a powerful tool to provide an instantaneous snapshot of the physiology of a cell. The power of metabolomics lies on the acquisition of analytical data in which metabolites in a cellular system are quantified, and the extraction of the most meaningful elements of the data by using various data analysis tool. In this review, we discuss the latest development of analytical techniques and data analyses methods in metabolomics study.

  8. Multivariate Analysis in Metabolomics

    PubMed Central

    Worley, Bradley; Powers, Robert

    2015-01-01

    Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological fluids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high information content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclusions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis (PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and misconceptions. PMID:26078916

  9. Metabolomics and protozoan parasites.

    PubMed

    Paget, Timothy; Haroune, Nicolas; Bagchi, Sushmita; Jarroll, Edward

    2013-06-01

    In this review, we examine the state-of-the-art technologies (gas and liquid chromatography, mass spectroscopy and nuclear magnetic resonance, etc.) in the well-established area of metabolomics especially as they relate to protozoan parasites.

  10. Quality assurance of metabolomics.

    PubMed

    Bouhifd, Mounir; Beger, Richard; Flynn, Thomas; Guo, Lining; Harris, Georgina; Hogberg, Helena; Kaddurah-Daouk, Rima; Kamp, Hennicke; Kleensang, Andre; Maertens, Alexandra; Odwin-DaCosta, Shelly; Pamies, David; Robertson, Donald; Smirnova, Lena; Sun, Jinchun; Zhao, Liang; Hartung, Thomas

    2015-01-01

    Metabolomics promises a holistic phenotypic characterization of biological responses to toxicants. This technology is based on advanced chemical analytical tools with reasonable throughput, including mass-spectroscopy and NMR. Quality assurance, however - from experimental design, sample preparation, metabolite identification, to bioinformatics data-mining - is urgently needed to assure both quality of metabolomics data and reproducibility of biological models. In contrast to microarray-based transcriptomics, where consensus on quality assurance and reporting standards has been fostered over the last two decades, quality assurance of metabolomics is only now emerging. Regulatory use in safety sciences, and even proper scientific use of these technologies, demand quality assurance. In an effort to promote this discussion, an expert workshop discussed the quality assurance needs of metabolomics. The goals for this workshop were 1) to consider the challenges associated with metabolomics as an emerging science, with an emphasis on its application in toxicology and 2) to identify the key issues to be addressed in order to establish and implement quality assurance procedures in metabolomics-based toxicology. Consensus has still to be achieved regarding best practices to make sure sound, useful, and relevant information is derived from these new tools.

  11. COnsortium of METabolomics Studies (COMETS)

    Cancer.gov

    The COnsortium of METabolomics Studies (COMETS) is an extramural-intramural partnership that promotes collaboration among prospective cohort studies that follow participants for a range of outcomes and perform metabolomic profiling of individuals.

  12. Xenobiotic metabolomics: major impact on the metabolome.

    PubMed

    Johnson, Caroline H; Patterson, Andrew D; Idle, Jeffrey R; Gonzalez, Frank J

    2012-01-01

    Xenobiotics are encountered by humans on a daily basis and include drugs, environmental pollutants, cosmetics, and even components of the diet. These chemicals undergo metabolism and detoxication to produce numerous metabolites, some of which have the potential to cause unintended effects such as toxicity. They can also block the action of enzymes or receptors used for endogenous metabolism or affect the efficacy and/or bioavailability of a coadministered drug. Therefore, it is essential to determine the full metabolic effects that these chemicals have on the body. Metabolomics, the comprehensive analysis of small molecules in a biofluid, can reveal biologically relevant perturbations that result from xenobiotic exposure. This review discusses the impact that genetic, environmental, and gut microflora variation has on the metabolome, and how these variables may interact, positively and negatively, with xenobiotic metabolism.

  13. Capillary Electrophoresis in Metabolomics.

    PubMed

    Maier, Tanja Verena; Schmitt-Kopplin, Philippe

    2016-01-01

    Metabolomics is an analytical toolbox to describe (all) low-molecular-weight compounds in a biological system, as cells, tissues, urine, and feces, as well as in serum and plasma. To analyze such complex biological samples, high requirements on the analytical technique are needed due to the high variation in compound physico-chemistry (cholesterol derivatives, amino acids, fatty acids as SCFA, MCFA, or LCFA, or pathway-related metabolites belonging to each individual organism) and concentration dynamic range. All main separation techniques (LC-MS, GC-MS) are applied in routine to metabolomics hyphenated or not to mass spectrometry, and capillary electrophoresis is a powerful high-resolving technique but still underused in this field of complex samples. Metabolomics can be performed in the non-targeted way to gain an overview on metabolite profiles in biological samples. Targeted metabolomics is applied to analyze quantitatively pre-selected metabolites. This chapter reviews the use of capillary electrophoresis in the field of metabolomics and exemplifies solutions in metabolite profiling and analysis in urine and plasma. PMID:27645748

  14. Establishing Substantial Equivalence: Metabolomics

    NASA Astrophysics Data System (ADS)

    Beale, Michael H.; Ward, Jane L.; Baker, John M.

    Modern ‘metabolomic’ methods allow us to compare levels of many structurally diverse compounds in an automated fashion across a large number of samples. This technology is ideally suited to screening of populations of plants, including trials where the aim is the determination of unintended effects introduced by GM. A number of metabolomic methods have been devised for the determination of substantial equivalence. We have developed a methodology, using [1H]-NMR fingerprinting, for metabolomic screening of plants and have applied it to the study of substantial equivalence of field-grown GM wheat. We describe here the principles and detail of that protocol as applied to the analysis of flour generated from field plots of wheat. Particular emphasis is given to the downstream data processing and comparison of spectra by multivariate analysis, from which conclusions regarding metabolome changes due to the GM can be assessed against the background of natural variation due to environment.

  15. Metabolomics in agriculture.

    PubMed

    Nadella, K D; Marla, Soma S; Kumar, P Ananda

    2012-04-01

    Metabolome refers to the complete set of metabolites synthesized through a series of multiple enzymatic steps from various biochemical pathways processing the information encrypted in the plant genome. Knowledge about synthesis and regulation of various plant metabolic substances has improved substantially with availability of Omics data originating from sequencing of plant genomes. Metabolic profiling of crops is increasingly becoming popular in assessing plant phenotypes and genetic diversity. Metabolic compositional changes vividly reflect the changes occurring during plant growth, development, and in response to stress. Hence, study of plant metabolic pathways, the interconnections between them in context of systems biology is increasingly becoming popular in identification of candidate genes. The present article reviews recent developments in analysis of plant metabolomics, available bioinformatics techniques and databases employed for comparative pathway analysis, metabolic QTLs, and their application in plants.

  16. Metabolomics in transfusion medicine.

    PubMed

    Nemkov, Travis; Hansen, Kirk C; Dumont, Larry J; D'Alessandro, Angelo

    2016-04-01

    Biochemical investigations on the regulatory mechanisms of red blood cell (RBC) and platelet (PLT) metabolism have fostered a century of advances in the field of transfusion medicine. Owing to these advances, storage of RBCs and PLT concentrates has become a lifesaving practice in clinical and military settings. There, however, remains room for improvement, especially with regard to the introduction of novel storage and/or rejuvenation solutions, alternative cell processing strategies (e.g., pathogen inactivation technologies), and quality testing (e.g., evaluation of novel containers with alternative plasticizers). Recent advancements in mass spectrometry-based metabolomics and systems biology, the bioinformatics integration of omics data, promise to speed up the design and testing of innovative storage strategies developed to improve the quality, safety, and effectiveness of blood products. Here we review the currently available metabolomics technologies and briefly describe the routine workflow for transfusion medicine-relevant studies. The goal is to provide transfusion medicine experts with adequate tools to navigate through the otherwise overwhelming amount of metabolomics data burgeoning in the field during the past few years. Descriptive metabolomics data have represented the first step omics researchers have taken into the field of transfusion medicine. However, to up the ante, clinical and omics experts will need to merge their expertise to investigate correlative and mechanistic relationships among metabolic variables and transfusion-relevant variables, such as 24-hour in vivo recovery for transfused RBCs. Integration with systems biology models will potentially allow for in silico prediction of metabolic phenotypes, thus streamlining the design and testing of alternative storage strategies and/or solutions.

  17. Metabolomics and human nutrition.

    PubMed

    Primrose, Sandy; Draper, John; Elsom, Rachel; Kirkpatrick, Verity; Mathers, John C; Seal, Chris; Beckmann, Manfred; Haldar, Sumanto; Beattie, John H; Lodge, John K; Jenab, Mazda; Keun, Hector; Scalbert, Augustin

    2011-04-01

    The present report summarises a workshop convened by the UK Food Standards Agency (Agency) on 25 March 2010 to discuss the current Agency's funded research on the use of metabolomics technologies in human nutrition research. The objectives of this workshop were to review progress to date, to identify technical challenges and ways of overcoming them, and to discuss future research priorities and the application of metabolomics in public health nutrition research and surveys. Results from studies nearing completion showed that by using carefully designed dietary and sampling regimens, it is possible to identify novel biomarkers of food intake that could not have been predicted from current knowledge of food composition. These findings provide proof-of-principle that the metabolomics approach can be used to develop new putative biomarkers of dietary intake. The next steps will be to validate these putative biomarkers, to develop rapid and inexpensive assays for biomarkers of food intake of high public health relevance, and to test their utility in population cohort studies and dietary surveys. PMID:21255470

  18. The Human Urine Metabolome

    PubMed Central

    Bouatra, Souhaila; Aziat, Farid; Mandal, Rupasri; Guo, An Chi; Wilson, Michael R.; Knox, Craig; Bjorndahl, Trent C.; Krishnamurthy, Ramanarayan; Saleem, Fozia; Liu, Philip; Dame, Zerihun T.; Poelzer, Jenna; Huynh, Jessica; Yallou, Faizath S.; Psychogios, Nick; Dong, Edison; Bogumil, Ralf; Roehring, Cornelia; Wishart, David S.

    2013-01-01

    Urine has long been a “favored” biofluid among metabolomics researchers. It is sterile, easy-to-obtain in large volumes, largely free from interfering proteins or lipids and chemically complex. However, this chemical complexity has also made urine a particularly difficult substrate to fully understand. As a biological waste material, urine typically contains metabolic breakdown products from a wide range of foods, drinks, drugs, environmental contaminants, endogenous waste metabolites and bacterial by-products. Many of these compounds are poorly characterized and poorly understood. In an effort to improve our understanding of this biofluid we have undertaken a comprehensive, quantitative, metabolome-wide characterization of human urine. This involved both computer-aided literature mining and comprehensive, quantitative experimental assessment/validation. The experimental portion employed NMR spectroscopy, gas chromatography mass spectrometry (GC-MS), direct flow injection mass spectrometry (DFI/LC-MS/MS), inductively coupled plasma mass spectrometry (ICP-MS) and high performance liquid chromatography (HPLC) experiments performed on multiple human urine samples. This multi-platform metabolomic analysis allowed us to identify 445 and quantify 378 unique urine metabolites or metabolite species. The different analytical platforms were able to identify (quantify) a total of: 209 (209) by NMR, 179 (85) by GC-MS, 127 (127) by DFI/LC-MS/MS, 40 (40) by ICP-MS and 10 (10) by HPLC. Our use of multiple metabolomics platforms and technologies allowed us to identify several previously unknown urine metabolites and to substantially enhance the level of metabolome coverage. It also allowed us to critically assess the relative strengths and weaknesses of different platforms or technologies. The literature review led to the identification and annotation of another 2206 urinary compounds and was used to help guide the subsequent experimental studies. An online database containing

  19. MASS SPECTROMETRY-BASED METABOLOMICS

    PubMed Central

    Dettmer, Katja; Aronov, Pavel A.; Hammock, Bruce D.

    2007-01-01

    This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed. PMID:16921475

  20. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  1. Metabolomics of Genetically Modified Crops

    PubMed Central

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-01-01

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade. PMID:25334064

  2. Metabolomics of genetically modified crops.

    PubMed

    Simó, Carolina; Ibáñez, Clara; Valdés, Alberto; Cifuentes, Alejandro; García-Cañas, Virginia

    2014-10-20

    Metabolomic-based approaches are increasingly applied to analyse genetically modified organisms (GMOs) making it possible to obtain broader and deeper information on the composition of GMOs compared to that obtained from traditional analytical approaches. The combination in metabolomics of advanced analytical methods and bioinformatics tools provides wide chemical compositional data that contributes to corroborate (or not) the substantial equivalence and occurrence of unintended changes resulting from genetic transformation. This review provides insight into recent progress in metabolomics studies on transgenic crops focusing mainly in papers published in the last decade.

  3. Metabolomics in diabetic complications.

    PubMed

    Filla, Laura A; Edwards, James L

    2016-04-01

    With a global prevalence of 9%, diabetes is the direct cause of millions of deaths each year and is quickly becoming a health crisis. Major long-term complications of diabetes arise from persistent oxidative stress and dysfunction in multiple metabolic pathways. The most serious complications involve vascular damage and include cardiovascular disease as well as microvascular disorders such as nephropathy, neuropathy, and retinopathy. Current clinical analyses like glycated hemoglobin and plasma glucose measurements hold some value as prognostic indicators of the severity of complications, but investigations into the underlying pathophysiology are still lacking. Advancements in biotechnology hold the key to uncovering new pathways and establishing therapeutic targets. Metabolomics, the study of small endogenous molecules, is a powerful toolset for studying pathophysiological processes and has been used to elucidate metabolic signatures of diabetes in various biological systems. Current challenges in the field involve correlating these biomarkers to specific complications to provide a better prediction of future risk and disease progression. This review will highlight the progress that has been made in the field of metabolomics including technological advancements, the identification of potential biomarkers, and metabolic pathways relevant to macro- and microvascular diabetic complications.

  4. Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics

    PubMed Central

    Giacomoni, Franck; Le Corguillé, Gildas; Monsoor, Misharl; Landi, Marion; Pericard, Pierre; Pétéra, Mélanie; Duperier, Christophe; Tremblay-Franco, Marie; Martin, Jean-François; Jacob, Daniel; Goulitquer, Sophie; Thévenot, Etienne A.; Caron, Christophe

    2015-01-01

    Summary: The complex, rapidly evolving field of computational metabolomics calls for collaborative infrastructures where the large volume of new algorithms for data pre-processing, statistical analysis and annotation can be readily integrated whatever the language, evaluated on reference datasets and chained to build ad hoc workflows for users. We have developed Workflow4Metabolomics (W4M), the first fully open-source and collaborative online platform for computational metabolomics. W4M is a virtual research environment built upon the Galaxy web-based platform technology. It enables ergonomic integration, exchange and running of individual modules and workflows. Alternatively, the whole W4M framework and computational tools can be downloaded as a virtual machine for local installation. Availability and implementation: http://workflow4metabolomics.org homepage enables users to open a private account and access the infrastructure. W4M is developed and maintained by the French Bioinformatics Institute (IFB) and the French Metabolomics and Fluxomics Infrastructure (MetaboHUB). Contact: contact@workflow4metabolomics.org PMID:25527831

  5. Computational approaches for systems metabolomics.

    PubMed

    Krumsiek, Jan; Bartel, Jörg; Theis, Fabian J

    2016-06-01

    Systems genetics is defined as the simultaneous assessment and analysis of multi-omics datasets. In the past few years, metabolomics has been established as a robust tool describing an important functional layer in this approach. The metabolome of a biological system represents an integrated state of genetic and environmental factors and has been referred to as a 'link between genotype and phenotype'. In this review, we summarize recent progresses in statistical analysis methods for metabolomics data in combination with other omics layers. We put a special focus on complex, multivariate statistical approaches as well as pathway-based and network-based analysis methods. Moreover, we outline current challenges and pitfalls of metabolomics-focused multi-omics analyses and discuss future steps for the field.

  6. Food metabolomics: from farm to human.

    PubMed

    Kim, Sooah; Kim, Jungyeon; Yun, Eun Ju; Kim, Kyoung Heon

    2016-02-01

    Metabolomics, one of the latest components in the suite of systems biology, has been used to understand the metabolism and physiology of living systems, including microorganisms, plants, animals and humans. Food metabolomics can be defined as the application of metabolomics in food systems, including food resources, food processing and diet for humans. The study of food metabolomics has increased gradually in the recent years, because food systems are directly related to nutrition and human health. This review describes the recent trends and applications of metabolomics to food systems, from farm to human, including food resource production, industrial food processing and food intake by humans.

  7. Preprocessing of NMR metabolomics data.

    PubMed

    Euceda, Leslie R; Giskeødegård, Guro F; Bathen, Tone F

    2015-05-01

    Metabolomics involves the large scale analysis of metabolites and thus, provides information regarding cellular processes in a biological sample. Independently of the analytical technique used, a vast amount of data is always acquired when carrying out metabolomics studies; this results in complex datasets with large amounts of variables. This type of data requires multivariate statistical analysis for its proper biological interpretation. Prior to multivariate analysis, preprocessing of the data must be carried out to remove unwanted variation such as instrumental or experimental artifacts. This review aims to outline the steps in the preprocessing of NMR metabolomics data and describe some of the methods to perform these. Since using different preprocessing methods may produce different results, it is important that an appropriate pipeline exists for the selection of the optimal combination of methods in the preprocessing workflow.

  8. Metabolomics techniques in nanotoxicology studies.

    PubMed

    Schnackenberg, Laura K; Sun, Jinchun; Beger, Richard D

    2012-01-01

    The rapid growth in the development of nanoparticles for uses in a variety of applications including targeted drug delivery, cancer therapy, imaging, and as biological sensors has led to questions about potential toxicity of such particles to humans. High-throughput methods are necessary to evaluate the potential toxicity of nanoparticles. The omics technologies are particularly well suited to evaluate toxicity in both in vitro and in vivo systems. Metabolomics, specifically, can rapidly screen for biomarkers related to predefined pathways or processes in biofluids and tissues. Specifically, oxidative stress has been implicated as a potential mechanism of toxicity in nanoparticles and is generally difficult to measure by conventional methods. Furthermore, metabolomics can provide mechanistic insight into nanotoxicity. This chapter focuses on the application of both LC/MS and NMR-based metabolomics approaches to study the potential toxicity of nanoparticles.

  9. NMR-Based Milk Metabolomics

    PubMed Central

    Sundekilde, Ulrik K.; Larsen, Lotte B.; Bertram, Hanne C.

    2013-01-01

    Milk is a key component in infant nutrition worldwide and, in the Western parts of the world, also in adult nutrition. Milk of bovine origin is both consumed fresh and processed into a variety of dairy products including cheese, fermented milk products, and infant formula. The nutritional quality and processing capabilities of bovine milk is closely associated to milk composition. Metabolomics is ideal in the study of the low-molecular-weight compounds in milk, and this review focuses on the recent nuclear magnetic resonance (NMR)-based metabolomics trends in milk research, including applications linking the milk metabolite profiling with nutritional aspects, and applications which aim to link the milk metabolite profile to various technological qualities of milk. The metabolite profiling studies encompass the identification of novel metabolites, which potentially can be used as biomarkers or as bioactive compounds. Furthermore, metabolomics applications elucidating how the differential regulated genes affects milk composition are also reported. This review will highlight the recent advances in NMR-based metabolomics on milk, as well as give a brief summary of when NMR spectroscopy can be useful for gaining a better understanding of how milk composition is linked to nutritional or quality traits. PMID:24957988

  10. Brain Injury Alters Volatile Metabolome.

    PubMed

    Kimball, Bruce A; Cohen, Akiva S; Gordon, Amy R; Opiekun, Maryanne; Martin, Talia; Elkind, Jaclynn; Lundström, Johan N; Beauchamp, Gary K

    2016-06-01

    Chemical signals arising from body secretions and excretions communicate information about health status as have been reported in a range of animal models of disease. A potential common pathway for diseases to alter chemical signals is via activation of immune function-which is known to be intimately involved in modulation of chemical signals in several species. Based on our prior findings that both immunization and inflammation alter volatile body odors, we hypothesized that injury accompanied by inflammation might correspondingly modify the volatile metabolome to create a signature endophenotype. In particular, we investigated alteration of the volatile metabolome as a result of traumatic brain injury. Here, we demonstrate that mice could be trained in a behavioral assay to discriminate mouse models subjected to lateral fluid percussion injury from appropriate surgical sham controls on the basis of volatile urinary metabolites. Chemical analyses of the urine samples similarly demonstrated that brain injury altered urine volatile profiles. Behavioral and chemical analyses further indicated that alteration of the volatile metabolome induced by brain injury and alteration resulting from lipopolysaccharide-associated inflammation were not synonymous. Monitoring of alterations in the volatile metabolome may be a useful tool for rapid brain trauma diagnosis and for monitoring recovery. PMID:26926034

  11. Translating metabolomics to cardiovascular biomarkers.

    PubMed

    Senn, Todd; Hazen, Stanley L; Tang, W H Wilson

    2012-01-01

    Metabolomics is the systematic study of the unique chemical fingerprints of small molecules or metabolite profiles that are related to a variety of cellular metabolic processes in a cell, organ, or organism. Although messenger RNA gene expression data and proteomic analyses do not tell the whole story of what might be happening in a cell, metabolic profiling provides direct and indirect physiologic insights that can potentially be detectable in a wide range of biospecimens. Although not specific to cardiac conditions, translating metabolomics to cardiovascular biomarkers has followed the traditional path of biomarker discovery from identification and confirmation to clinical validation and bedside testing. With technological advances in metabolomic tools (such as nuclear magnetic resonance spectroscopy and mass spectrometry) and more sophisticated bioinformatics and analytical techniques, the ability to measure low-molecular-weight metabolites in biospecimens provides a unique insight into established and novel metabolic pathways. Systemic metabolomics may provide physiologic understanding of cardiovascular disease states beyond traditional profiling and may involve descriptions of metabolic responses of an individual or population to therapeutic interventions or environmental exposures.

  12. Metabolomics in toxicology and preclinical research.

    PubMed

    Ramirez, Tzutzuy; Daneshian, Mardas; Kamp, Hennicke; Bois, Frederic Y; Clench, Malcolm R; Coen, Muireann; Donley, Beth; Fischer, Steven M; Ekman, Drew R; Fabian, Eric; Guillou, Claude; Heuer, Joachim; Hogberg, Helena T; Jungnickel, Harald; Keun, Hector C; Krennrich, Gerhard; Krupp, Eckart; Luch, Andreas; Noor, Fozia; Peter, Erik; Riefke, Bjoern; Seymour, Mark; Skinner, Nigel; Smirnova, Lena; Verheij, Elwin; Wagner, Silvia; Hartung, Thomas; van Ravenzwaay, Bennard; Leist, Marcel

    2013-01-01

    Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological status of a biological system, and about the changes caused by chemicals. Metabolomics analysis is used in many fields, ranging from the analysis of the physiological status of genetically modified organisms in safety science to the evaluation of human health conditions. In toxicology, metabolomics is the -omics discipline that is most closely related to classical knowledge of disturbed biochemical pathways. It allows rapid identification of the potential targets of a hazardous compound. It can give information on target organs and often can help to improve our understanding regarding the mode-of-action of a given compound. Such insights aid the discovery of biomarkers that either indicate pathophysiological conditions or help the monitoring of the efficacy of drug therapies. The first toxicological applications of metabolomics were for mechanistic research, but different ways to use the technology in a regulatory context are being explored. Ideally, further progress in that direction will position the metabolomics approach to address the challenges of toxicology of the 21st century. To address these issues, scientists from academia, industry, and regulatory bodies came together in a workshop to discuss the current status of applied metabolomics and its potential in the safety assessment of compounds. We report here on the conclusions of three working groups addressing questions regarding 1) metabolomics for in vitro studies 2) the appropriate use of metabolomics in systems toxicology, and 3) use of metabolomics in a regulatory context. PMID:23665807

  13. Metabolomics techniques for nanotoxicity investigations.

    PubMed

    Lv, Mengying; Huang, Wanqiu; Chen, Zhipeng; Jiang, Hulin; Chen, Jiaqing; Tian, Yuan; Zhang, Zunjian; Xu, Fengguo

    2015-01-01

    Nanomaterials are commonly defined as engineered structures with at least one dimension of 100 nm or less. Investigations of their potential toxicological impact on biological systems and the environment have yet to catch up with the rapid development of nanotechnology and extensive production of nanoparticles. High-throughput methods are necessary to assess the potential toxicity of nanoparticles. The omics techniques are well suited to evaluate toxicity in both in vitro and in vivo systems. Besides genomic, transcriptomic and proteomic profiling, metabolomics holds great promises for globally evaluating and understanding the molecular mechanism of nanoparticle-organism interaction. This manuscript presents a general overview of metabolomics techniques, summarizes its early application in nanotoxicology and finally discusses opportunities and challenges faced in nanotoxicology. PMID:26168257

  14. HMDB: the Human Metabolome Database

    PubMed Central

    Wishart, David S.; Tzur, Dan; Knox, Craig; Eisner, Roman; Guo, An Chi; Young, Nelson; Cheng, Dean; Jewell, Kevin; Arndt, David; Sawhney, Summit; Fung, Chris; Nikolai, Lisa; Lewis, Mike; Coutouly, Marie-Aude; Forsythe, Ian; Tang, Peter; Shrivastava, Savita; Jeroncic, Kevin; Stothard, Paul; Amegbey, Godwin; Block, David; Hau, David. D.; Wagner, James; Miniaci, Jessica; Clements, Melisa; Gebremedhin, Mulu; Guo, Natalie; Zhang, Ying; Duggan, Gavin E.; MacInnis, Glen D.; Weljie, Alim M.; Dowlatabadi, Reza; Bamforth, Fiona; Clive, Derrick; Greiner, Russ; Li, Liang; Marrie, Tom; Sykes, Brian D.; Vogel, Hans J.; Querengesser, Lori

    2007-01-01

    The Human Metabolome Database (HMDB) is currently the most complete and comprehensive curated collection of human metabolite and human metabolism data in the world. It contains records for more than 2180 endogenous metabolites with information gathered from thousands of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the HMDB also contains an extensive collection of experimental metabolite concentration data compiled from hundreds of mass spectra (MS) and Nuclear Magnetic resonance (NMR) metabolomic analyses performed on urine, blood and cerebrospinal fluid samples. This is further supplemented with thousands of NMR and MS spectra collected on purified, reference metabolites. Each metabolite entry in the HMDB contains an average of 90 separate data fields including a comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, biofluid concentrations, disease associations, pathway information, enzyme data, gene sequence data, SNP and mutation data as well as extensive links to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided. The HMDB is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. The HMDB is available at: PMID:17202168

  15. Metabolomic assessment of embryo viability.

    PubMed

    Uyar, Asli; Seli, Emre

    2014-03-01

    Preimplantation embryo metabolism demonstrates distinctive characteristics associated with the developmental potential of embryos. On this basis, metabolite content of culture media was hypothesized to reflect the implantation potential of individual embryos. This hypothesis was tested in consecutive studies reporting a significant association between culture media metabolites and embryo development or clinical pregnancy. The need for a noninvasive, reliable, and rapid embryo assessment strategy promoted metabolomics studies in vitro fertilization (IVF) in an effort to increase success rates of single embryo transfers. With the advance of analytical techniques and bioinformatics, commercial instruments were developed to predict embryo viability using spectroscopic analysis of surplus culture media. However, despite the initial promising results from proof-of-principal studies, recent randomized controlled trials using commercial instruments failed to show a consistent benefit in improving pregnancy rates when metabolomics is used as an adjunct to morphology. At present, the application of metabolomics technology in clinical IVF laboratory requires the elimination of factors underlying inconsistent findings, when possible, and development of reliable predictive models accounting for all possible sources of bias throughout the embryo selection process. PMID:24515909

  16. Recent advances in plant metabolomics and greener pastures.

    PubMed

    Sumner, Lloyd W

    2010-01-27

    Metabolomics is an extension of the omics concept and experimental approaches. However, is metabolomics just another trendy omics fashion perturbation or is metabolomics actually delivering novel content and value? This article highlights some recent advances that definitely support the role of plant metabolomics in the movement toward greener pastures.

  17. Recent advances in plant metabolomics and greener pastures

    PubMed Central

    2010-01-01

    Metabolomics is an extension of the omics concept and experimental approaches. However, is metabolomics just another trendy omics fashion perturbation or is metabolomics actually delivering novel content and value? This article highlights some recent advances that definitely support the role of plant metabolomics in the movement toward greener pastures. PMID:20948782

  18. Tissue-Based Metabolomics to Analyze the Breast Cancer Metabolome.

    PubMed

    Budczies, Jan; Denkert, Carsten

    2016-01-01

    Mass spectrometry and nuclear magnetic resonance-based metabolomics have been developed into mature technologies that can be utilized to analyze hundreds of biological samples in a high-throughput manner. Over the past few years, both technologies were utilized to analyze large cohorts of fresh frozen breast cancer tissues. Metabolite biomarkers were shown to separate breast cancer tissues from normal breast tissues with high sensitivity and specificity. Furthermore, the metabolome differed between hormone receptor positive (HR+) and hormone receptor negative (HR-) breast cancer, but was unchanged in HER2+ tumors compared to HER2- tumors. New metabolism-related biomarkers were discovered including the 4-aminobutyrate aminotransferase ABAT, where low mRNA expression led to an accumulation of beta-alanine and shortened relapse-free survival. The glutamate-to-glutamine ratio (GGR) represents another new biomarker that was increased in 88 % of HR- tumors and 56 % of HR+ tumors compared to normal breast tissues. The GGR might help to stratify patients for the treatment with specific glutaminase inhibitors that were recently developed and are currently being tested in phase I clinical studies. Surprisingly, 2-hydroxyglutarate (2-HG), initially found to accumulate in isocitrate dehydrogenase (IDH) mutated gliomas and leukemias and described as an oncometabolite, was detected to be drastically increased in several breast carcinomas in the absence of IDH mutations. In summary, metabolomics analysis of breast cancer tissues is a reliable method and has produced many new biological insights that may impact breast cancer diagnostics and treatment over the coming years. PMID:27557538

  19. Metabolomics in neonatology: fact or fiction?

    PubMed

    Fanos, V; Van den Anker, J; Noto, A; Mussap, M; Atzori, L

    2013-02-01

    The newest 'omics' science is metabolomics, the latest offspring of genomics, considered the most innovative of the 'omics' sciences. Metabolomics, also called the 'new clinical biochemistry', is an approach based on the systematic study of the complete set of metabolites in a biological sample. The metabolome is considered the most predictive phenotype and is capable of considering epigenetic differences. It is so close to the phenotype that it can be considered the phenotype itself. In the last three years about 5000 papers have been listed in PubMed on this topic, but few data are available in the newborn. The aim of this review, after a description of background and technical procedures, is to analyse the clinical applications of metabolomics in neonatology, covering the following points: gestational age, postnatal age, type of delivery, zygosity, perinatal asphyxia, intrauterine growth restriction, prenatal inflammation and brain injury, respiratory, cardiovascular renal, metabolic diseases; sepsis, necrotizing enterocolitis and antibiotic treatment; nutritional studies on maternal milk and formula, pharma-metabolomics, long-term diseases. Pros and cons of metabolomics are also discussed. All this comes about with the non-invasive collection of a few drops of urine (exceptionally important for the neonate, especially those of low birth weight). Only time and large-scale studies to validate initial results will place metabolomics within neonatology. In any case, it is important for perinatologists to learn and understand this new technology to offer their patients the utmost in diagnostic and therapeutic opportunities.

  20. Metabolomics applied to the pancreatic islet

    PubMed Central

    Gooding, Jessica R.; Jensen, Mette V.; Newgard, Christopher B.

    2016-01-01

    Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies. PMID:26116790

  1. Metabolomic profiling of tumor-bearing mice.

    PubMed

    Wettersten, Hiromi I; Ganti, Sheila; Weiss, Robert H

    2014-01-01

    Metabolomics is one of the newcomers among the "omics" techniques, perhaps also constituting the most relevant for the study of pathophysiological conditions. Metabolomics may indeed yield not only disease-specific biomarkers but also profound insights into the etiology and progression of a variety of human disorders. Various metabolomic approaches are currently available to study oncogenesis and tumor progression in vivo, in murine tumor models. Many of these models rely on the xenograft of human cancer cells into immunocompromised mice. Understanding how the metabolism of these cells evolves in vivo is critical to evaluate the actual pertinence of xenograft models to human pathology. Here, we discuss various tumor xenograft models and methods for their metabolomic profiling to provide a short guide to investigators interested in this field of research. PMID:24924138

  2. Metabolomics in Population-Based Research

    Cancer.gov

    Metabolomics is the study of small molecules of both endogenous and exogenous origin, such as metabolic substrates and their products, lipids, small peptides, vitamins and other protein cofactors generated by metabolism, which are downstream from genes.

  3. Metabolomic profiling of tumor-bearing mice.

    PubMed

    Wettersten, Hiromi I; Ganti, Sheila; Weiss, Robert H

    2014-01-01

    Metabolomics is one of the newcomers among the "omics" techniques, perhaps also constituting the most relevant for the study of pathophysiological conditions. Metabolomics may indeed yield not only disease-specific biomarkers but also profound insights into the etiology and progression of a variety of human disorders. Various metabolomic approaches are currently available to study oncogenesis and tumor progression in vivo, in murine tumor models. Many of these models rely on the xenograft of human cancer cells into immunocompromised mice. Understanding how the metabolism of these cells evolves in vivo is critical to evaluate the actual pertinence of xenograft models to human pathology. Here, we discuss various tumor xenograft models and methods for their metabolomic profiling to provide a short guide to investigators interested in this field of research.

  4. ECMDB: the E. coli Metabolome Database.

    PubMed

    Guo, An Chi; Jewison, Timothy; Wilson, Michael; Liu, Yifeng; Knox, Craig; Djoumbou, Yannick; Lo, Patrick; Mandal, Rupasri; Krishnamurthy, Ram; Wishart, David S

    2013-01-01

    The Escherichia coli Metabolome Database (ECMDB, http://www.ecmdb.ca) is a comprehensively annotated metabolomic database containing detailed information about the metabolome of E. coli (K-12). Modelled closely on the Human and Yeast Metabolome Databases, the ECMDB contains >2600 metabolites with links to ∼1500 different genes and proteins, including enzymes and transporters. The information in the ECMDB has been collected from dozens of textbooks, journal articles and electronic databases. Each metabolite entry in the ECMDB contains an average of 75 separate data fields, including comprehensive compound descriptions, names and synonyms, chemical taxonomy, compound structural and physicochemical data, bacterial growth conditions and substrates, reactions, pathway information, enzyme data, gene/protein sequence data and numerous hyperlinks to images, references and other public databases. The ECMDB also includes an extensive collection of intracellular metabolite concentration data compiled from our own work as well as other published metabolomic studies. This information is further supplemented with thousands of fully assigned reference nuclear magnetic resonance and mass spectrometry spectra obtained from pure E. coli metabolites that we (and others) have collected. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of E. coli's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers but also to molecular biologists, systems biologists and individuals in the biotechnology industry.

  5. Clinical impact of human breast milk metabolomics.

    PubMed

    Cesare Marincola, Flaminia; Dessì, Angelica; Corbu, Sara; Reali, Alessandra; Fanos, Vassilios

    2015-12-01

    Metabolomics is a research field concerned with the analysis of metabolome, the complete set of metabolites in a given cell, tissue, or biological sample. Being able to provide a molecular snapshot of biological systems, metabolomics has emerged as a functional methodology in a wide range of research areas such as toxicology, pharmacology, food technology, nutrition, microbial biotechnology, systems biology, and plant biotechnology. In this review, we emphasize the applications of metabolomics in investigating the human breast milk (HBM) metabolome. HBM is the recommended source of nutrition for infants since it contains the optimal balance of nutrients for developing babies, and it provides a range of benefits for growth, immunity, and development. The molecular mechanisms beyond the inter- and intra-variability of HBM that make its composition unique are yet to be well-characterized. Although still in its infancy, the study of HBM metabolome has already proven itself to be of great value in providing insights into this biochemical variability in relation to mother phenotype, diet, disease, and lifestyle. The results of these investigations lay the foundation for further developments useful to identify normal and aberrant biochemical changes as well as to develop strategies to promote healthy infant feeding practices.

  6. Sample normalization methods in quantitative metabolomics.

    PubMed

    Wu, Yiman; Li, Liang

    2016-01-22

    To reveal metabolomic changes caused by a biological event in quantitative metabolomics, it is critical to use an analytical tool that can perform accurate and precise quantification to examine the true concentration differences of individual metabolites found in different samples. A number of steps are involved in metabolomic analysis including pre-analytical work (e.g., sample collection and storage), analytical work (e.g., sample analysis) and data analysis (e.g., feature extraction and quantification). Each one of them can influence the quantitative results significantly and thus should be performed with great care. Among them, the total sample amount or concentration of metabolites can be significantly different from one sample to another. Thus, it is critical to reduce or eliminate the effect of total sample amount variation on quantification of individual metabolites. In this review, we describe the importance of sample normalization in the analytical workflow with a focus on mass spectrometry (MS)-based platforms, discuss a number of methods recently reported in the literature and comment on their applicability in real world metabolomics applications. Sample normalization has been sometimes ignored in metabolomics, partially due to the lack of a convenient means of performing sample normalization. We show that several methods are now available and sample normalization should be performed in quantitative metabolomics where the analyzed samples have significant variations in total sample amounts.

  7. The Steroid Metabolome of Adrenarche

    PubMed Central

    Rege, Juilee; Rainey, William E.

    2014-01-01

    Adrenarche is an endocrine developmental process whereby humans and select nonhuman primates increase adrenal output of a series of steroids, especially dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEAS). The timing of adrenarche varies between primates, but in humans, serum levels of DHEAS are seen to increase around 6 years of age. This phenomenon corresponds with the development and expansion of the zona reticularis (ZR) of the adrenal gland. The physiological phenomena that trigger the onset of adrenarche are still unknown; however the biochemical pathways leading to this event have been elucidated in detail. There are numerous reviews examining the process of adrenarche, most of which, have focused on the changes within the adrenal as well as the phenotypic results of adrenarche. This article reviews the recent and past studies that show the breadth of changes in the circulating steroid metabolome that occurs during the process of adrenarche. PMID:22715193

  8. NMR-based Metabolomics Applications in Biological and Environmental Science

    EPA Science Inventory

    As a complimentary tool to other omics platforms, metabolomics is increasingly being used bybiologists to study the dynamic response of biological systems (cells, tissues, or wholeorganisms) under diverse physiological or pathological conditions. Metabolomics deals with the quali...

  9. METABOLOMICS IN SMALL FISH TOXICOLOGY AND OTHER ENVIRONMENTAL APPLICATIONS

    EPA Science Inventory

    Although lagging behind applications targeted to human endpoints, metabolomics offers great potential in environmental applications, including ecotoxicology. Indeed, the advantages of metabolomics (relative to other 'omic techniques) may be more tangible in ecotoxicology because...

  10. Role of Metabolomics in Traumatic Brain Injury Research.

    PubMed

    Wolahan, Stephanie M; Hirt, Daniel; Braas, Daniel; Glenn, Thomas C

    2016-10-01

    Metabolomics is an important member of the omics community in that it defines which small molecules may be responsible for disease states. This article reviews the essential principles of metabolomics from specimen preparation, chemical analysis, to advanced statistical methods. Metabolomics in traumatic brain injury has so far been underutilized. Future metabolomics-based studies focused on the diagnoses, prognoses, and treatment effects need to be conducted across all types of traumatic brain injury. PMID:27637396

  11. THE METABOLOMIC WINDOW INTO HEPATOBILIARY DISEASE

    PubMed Central

    Beyoğlu, Diren; Idle, Jeffrey R.

    2014-01-01

    Summary The emergent discipline of metabolomics has attracted considerable research effort in hepatology. Here we review the metabolomic data for nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH), cirrhosis, hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), alcoholic liver disease (ALD), hepatitis B and C, cholecystitis, cholestasis, liver transplantation and acute hepatotoxicity in animal models. A metabolomic window has permitted a view into the changing biochemistry occurring in the transitional phases between a healthy liver and hepatocellular carcinoma or cholangiocarcinoma. Whether provoked by obesity and diabetes, alcohol use or oncogenic viruses, the liver develops a core metabolomic phenotype (CMP) that involves dysregulation of bile acid and phospholipid homeostasis. The CMP commences at the transition between the healthy liver (Phase 0) and NAFLD/NASH, ALD or viral hepatitis (Phase 1). This CMP is maintained in the presence or absence of cirrhosis (Phase 2) and whether or not either HCC or CCA (Phase 3) develop. Inflammatory signalling in the liver triggers the appearance of the CMP. Many other metabolomic markers distinguish between Phases 0, 1, 2 and 3. A metabolic remodelling in HCC has been described but metabolomic data from all four Phases demonstrate that the Warburg shift from mitochondrial respiration to cytosolic glycolysis foreshadows HCC and may occur as early as Phase 1. The metabolic remodelling also involves an upregulation of fatty acid β-oxidation, also beginning in Phase 1. The storage of triglycerides in fatty liver provides high energy-yielding substrates for Phases 2 and 3 of liver pathology. The metabolomic window into hepatobiliary disease sheds new light on the systems pathology of the liver. PMID:23714158

  12. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data.

    PubMed

    Barnes, Stephen; Benton, H Paul; Casazza, Krista; Cooper, Sara J; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K; Renfrow, Matthew B; Tiwari, Hemant K

    2016-07-01

    The study of metabolism has had a long history. Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. The National Institutes of Health Common Fund Metabolomics Program was established in 2012 to stimulate interest in the approaches and technologies of metabolomics. To deliver one of the program's goals, the University of Alabama at Birmingham has hosted an annual 4-day short course in metabolomics for faculty, postdoctoral fellows and graduate students from national and international institutions. This paper is the first part of a summary of the training materials presented in the course to be used as a resource for all those embarking on metabolomics research. The complete set of training materials including slide sets and videos can be viewed at http://www.uab.edu/proteomics/metabolomics/workshop/workshop_june_2015.php. Copyright © 2016 John Wiley & Sons, Ltd. PMID:27434804

  13. Metabolomics: Applications and Promise in Mycobacterial Disease

    PubMed Central

    Banoei, Mohammad Mehdi; Winston, Brent W.; Schraufnagel, Dean E.

    2015-01-01

    Until recently, the study of mycobacterial diseases was trapped in culture-based technology that is more than a century old. The use of nucleic acid amplification is changing this, and powerful new technologies are on the horizon. Metabolomics, which is the study of sets of metabolites of both the bacteria and host, is being used to clarify mechanisms of disease, and can identify changes leading to better diagnosis, treatment, and prognostication of mycobacterial diseases. Metabolomic profiles are arrays of biochemical products of genes in their environment. These complex patterns are biomarkers that can allow a more complete understanding of cell function, dysfunction, and perturbation than genomics or proteomics. Metabolomics could herald sweeping advances in personalized medicine and clinical trial design, but the challenges in metabolomics are also great. Measured metabolite concentrations vary with the timing within a condition, the intrinsic biology, the instruments, and the sample preparation. Metabolism profoundly changes with age, sex, variations in gut microbial flora, and lifestyle. Validation of biomarkers is complicated by measurement accuracy, selectivity, linearity, reproducibility, robustness, and limits of detection. The statistical challenges include analysis, interpretation, and description of the vast amount of data generated. Despite these drawbacks, metabolomics provides great opportunity and the potential to understand and manage mycobacterial diseases. PMID:26196272

  14. Systematic Applications of Metabolomics in Metabolic Engineering

    PubMed Central

    Dromms, Robert A.; Styczynski, Mark P.

    2012-01-01

    The goals of metabolic engineering are well-served by the biological information provided by metabolomics: information on how the cell is currently using its biochemical resources is perhaps one of the best ways to inform strategies to engineer a cell to produce a target compound. Using the analysis of extracellular or intracellular levels of the target compound (or a few closely related molecules) to drive metabolic engineering is quite common. However, there is surprisingly little systematic use of metabolomics datasets, which simultaneously measure hundreds of metabolites rather than just a few, for that same purpose. Here, we review the most common systematic approaches to integrating metabolite data with metabolic engineering, with emphasis on existing efforts to use whole-metabolome datasets. We then review some of the most common approaches for computational modeling of cell-wide metabolism, including constraint-based models, and discuss current computational approaches that explicitly use metabolomics data. We conclude with discussion of the broader potential of computational approaches that systematically use metabolomics data to drive metabolic engineering. PMID:24957776

  15. Basics of mass spectrometry based metabolomics.

    PubMed

    Courant, Frédérique; Antignac, Jean-Philippe; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2014-11-01

    The emerging field of metabolomics, aiming to characterize small molecule metabolites present in biological systems, promises immense potential for different areas such as medicine, environmental sciences, agronomy, etc. The purpose of this article is to guide the reader through the history of the field, then through the main steps of the metabolomics workflow, from study design to structure elucidation, and help the reader to understand the key phases of a metabolomics investigation and the rationale underlying the protocols and techniques used. This article is not intended to give standard operating procedures as several papers related to this topic were already provided, but is designed as a tutorial aiming to help beginners understand the concept and challenges of MS-based metabolomics. A real case example is taken from the literature to illustrate the application of the metabolomics approach in the field of doping analysis. Challenges and limitations of the approach are then discussed along with future directions in research to cope with these limitations. This tutorial is part of the International Proteomics Tutorial Programme (IPTP18).

  16. The metabolomics of oxidative stress.

    PubMed

    Noctor, Graham; Lelarge-Trouverie, Caroline; Mhamdi, Amna

    2015-04-01

    Oxidative stress resulting from increased availability of reactive oxygen species (ROS) is a key component of many responses of plants to challenging environmental conditions. The consequences for plant metabolism are complex and manifold. We review data on small compounds involved in oxidative stress, including ROS themselves and antioxidants and redox buffers in the membrane and soluble phases, and we discuss the wider consequences for plant primary and secondary metabolism. While metabolomics has been exploited in many studies on stress, there have been relatively few non-targeted studies focused on how metabolite signatures respond specifically to oxidative stress. As part of the discussion, we present results and reanalyze published datasets on metabolite profiles in catalase-deficient plants, which can be considered to be model oxidative stress systems. We emphasize the roles of ROS-triggered changes in metabolites as potential oxidative signals, and discuss responses that might be useful as markers for oxidative stress. Particular attention is paid to lipid-derived compounds, the status of antioxidants and antioxidant breakdown products, altered metabolism of amino acids, and the roles of phytohormone pathways. PMID:25306398

  17. Metabolomics and diabetes: analytical and computational approaches.

    PubMed

    Sas, Kelli M; Karnovsky, Alla; Michailidis, George; Pennathur, Subramaniam

    2015-03-01

    Diabetes is characterized by altered metabolism of key molecules and regulatory pathways. The phenotypic expression of diabetes and associated complications encompasses complex interactions between genetic, environmental, and tissue-specific factors that require an integrated understanding of perturbations in the network of genes, proteins, and metabolites. Metabolomics attempts to systematically identify and quantitate small molecule metabolites from biological systems. The recent rapid development of a variety of analytical platforms based on mass spectrometry and nuclear magnetic resonance have enabled identification of complex metabolic phenotypes. Continued development of bioinformatics and analytical strategies has facilitated the discovery of causal links in understanding the pathophysiology of diabetes and its complications. Here, we summarize the metabolomics workflow, including analytical, statistical, and computational tools, highlight recent applications of metabolomics in diabetes research, and discuss the challenges in the field. PMID:25713200

  18. Metabolomics in rheumatic diseases: desperately seeking biomarkers

    PubMed Central

    Guma, Monica; Tiziani, Stefano; Firestein, Gary S.

    2016-01-01

    Metabolomics enables the profiling of large numbers of small molecules in cells, tissues and biological fluids. These molecules, which include amino acids, carbohydrates, lipids, nucleotides and their metabolites, can be detected quantitatively. Metabolomic methods, often focused on the information-rich analytical techniques of NMR spectroscopy and mass spectrometry, have potential for early diagnosis, monitoring therapy and defining disease pathogenesis in many therapeutic areas, including rheumatic diseases. By performing global metabolite profiling, also known as untargeted metabolomics, new discoveries linking cellular pathways to biological mechanisms are being revealed and are shaping our understanding of cell biology, physiology and medicine. These pathways can potentially be targeted to diagnose and treat patients with immune-mediated diseases. PMID:26935283

  19. Metabolomics to Explore Impact of Dairy Intake.

    PubMed

    Zheng, Hong; Clausen, Morten R; Dalsgaard, Trine K; Bertram, Hanne C

    2015-06-17

    Dairy products are an important component in the Western diet and represent a valuable source of nutrients for humans. However, a reliable dairy intake assessment in nutrition research is crucial to correctly elucidate the link between dairy intake and human health. Metabolomics is considered a potential tool for assessment of dietary intake instead of traditional methods, such as food frequency questionnaires, food records, and 24-h recalls. Metabolomics has been successfully applied to discriminate between consumption of different dairy products under different experimental conditions. Moreover, potential metabolites related to dairy intake were identified, although these metabolites need to be further validated in other intervention studies before they can be used as valid biomarkers of dairy consumption. Therefore, this review provides an overview of metabolomics for assessment of dairy intake in order to better clarify the role of dairy products in human nutrition and health.

  20. [Metabolomics analysis of taxadiene producing yeasts].

    PubMed

    Yan, Huifang; Ding, Mingzhu; Yuan, Yingjin

    2014-02-01

    In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.

  1. Metabolomics and Diabetes: Analytical and Computational Approaches

    PubMed Central

    Sas, Kelli M.; Karnovsky, Alla; Michailidis, George

    2015-01-01

    Diabetes is characterized by altered metabolism of key molecules and regulatory pathways. The phenotypic expression of diabetes and associated complications encompasses complex interactions between genetic, environmental, and tissue-specific factors that require an integrated understanding of perturbations in the network of genes, proteins, and metabolites. Metabolomics attempts to systematically identify and quantitate small molecule metabolites from biological systems. The recent rapid development of a variety of analytical platforms based on mass spectrometry and nuclear magnetic resonance have enabled identification of complex metabolic phenotypes. Continued development of bioinformatics and analytical strategies has facilitated the discovery of causal links in understanding the pathophysiology of diabetes and its complications. Here, we summarize the metabolomics workflow, including analytical, statistical, and computational tools, highlight recent applications of metabolomics in diabetes research, and discuss the challenges in the field. PMID:25713200

  2. Microbiome, Metabolome and Inflammatory Bowel Disease.

    PubMed

    Ahmed, Ishfaq; Roy, Badal C; Khan, Salman A; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn's Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis. PMID:27681914

  3. Microbiome, Metabolome and Inflammatory Bowel Disease

    PubMed Central

    Ahmed, Ishfaq; Roy, Badal C.; Khan, Salman A.; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis.

  4. Microbiome, Metabolome and Inflammatory Bowel Disease

    PubMed Central

    Ahmed, Ishfaq; Roy, Badal C.; Khan, Salman A.; Septer, Seth; Umar, Shahid

    2016-01-01

    Inflammatory Bowel Disease (IBD) is a multifactorial disorder that conceptually occurs as a result of altered immune responses to commensal and/or pathogenic gut microbes in individuals most susceptible to the disease. During Crohn’s Disease (CD) or Ulcerative Colitis (UC), two components of the human IBD, distinct stages define the disease onset, severity, progression and remission. Epigenetic, environmental (microbiome, metabolome) and nutritional factors are important in IBD pathogenesis. While the dysbiotic microbiota has been proposed to play a role in disease pathogenesis, the data on IBD and diet are still less convincing. Nonetheless, studies are ongoing to examine the effect of pre/probiotics and/or FODMAP reduced diets on both the gut microbiome and its metabolome in an effort to define the healthy diet in patients with IBD. Knowledge of a unique metabolomic fingerprint in IBD could be useful for diagnosis, treatment and detection of disease pathogenesis. PMID:27681914

  5. Metabolomics to Explore Impact of Dairy Intake

    PubMed Central

    Zheng, Hong; Clausen, Morten R.; Dalsgaard, Trine K.; Bertram, Hanne C.

    2015-01-01

    Dairy products are an important component in the Western diet and represent a valuable source of nutrients for humans. However, a reliable dairy intake assessment in nutrition research is crucial to correctly elucidate the link between dairy intake and human health. Metabolomics is considered a potential tool for assessment of dietary intake instead of traditional methods, such as food frequency questionnaires, food records, and 24-h recalls. Metabolomics has been successfully applied to discriminate between consumption of different dairy products under different experimental conditions. Moreover, potential metabolites related to dairy intake were identified, although these metabolites need to be further validated in other intervention studies before they can be used as valid biomarkers of dairy consumption. Therefore, this review provides an overview of metabolomics for assessment of dairy intake in order to better clarify the role of dairy products in human nutrition and health. PMID:26091233

  6. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data

    PubMed Central

    Barnes, Stephen; Benton, H. Paul; Casazza, Krista; Cooper, Sara J.; Cui, Xiangqin; Du, Xiuxia; Engler, Jeffrey; Kabarowski, Janusz H.; Li, Shuzhao; Pathmasiri, Wimal; Prasain, Jeevan K.; Renfrow, Matthew B.; Tiwari, Hemant K.

    2016-01-01

    The study of metabolism has had a long history. Metabolomics, a systems biology discipline representing analysis of known and unknown pathways of metabolism, has grown tremendously over the past 20 years. Because of its comprehensive nature, metabolomics requires careful consideration of the question(s) being asked, the scale needed to answer the question(s), collection and storage of the sample specimens, methods for extraction of the metabolites from biological matrices, the analytical method(s) to be employed and the quality control of the analyses, how collected data are correlated, the statistical methods to determine metabolites undergoing significant change, putative identification of metabolites and the use of stable isotopes to aid in verifying metabolite identity and establishing pathway connections and fluxes. The National Institutes of Health Common Fund Metabolomics Program was established in 2012 to stimulate interest in the approaches and technologies of metabolomics. To deliver one of the program’s goals, the University of Alabama at Birmingham has hosted an annual 4-day short course in metabolomics for faculty, postdoctoral fellows and graduate students from national and international institutions. This paper is the first part of a summary of the training materials presented in the course to be used as a resource for all those embarking on metabolomics research. PMID:27434804

  7. Microbial metabolomics in open microscale platforms.

    PubMed

    Barkal, Layla J; Theberge, Ashleigh B; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A; Wang, Clay C C; Beebe, David J; Keller, Nancy P; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid-liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  8. Metabolomic Change Precedes Apple Superficial Scald Symptoms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolic profiling of 621 metabolites was employed to characterize metabolomic changes associated with ‘Granny Smith’ apple superficial scald development following 1-MCP or DPA treatment. Partial least squares-discriminant analyses were used to link metabolites with scald, postharvest treatments, ...

  9. Metabolomic Approaches for Characterizing Aquatic Ecosystems

    EPA Science Inventory

    Metabolomics is becoming a well-established tool for studying how organisms, such as fish, respond to various stressors. For example, the literature is rich with laboratory studies involving analysis of samples from organisms exposed to individual chemical toxicants. These studie...

  10. Metabolomics in the fight against malaria

    PubMed Central

    Salinas, Jorge L; Kissinger, Jessica C; Jones, Dean P; Galinski, Mary R

    2014-01-01

    Metabolomics uses high-resolution mass spectrometry to provide a chemical fingerprint of thousands of metabolites present in cells, tissues or body fluids. Such metabolic phenotyping has been successfully used to study various biologic processes and disease states. High-resolution metabolomics can shed new light on the intricacies of host-parasite interactions in each stage of the Plasmodium life cycle and the downstream ramifications on the host’s metabolism, pathogenesis and disease. Such data can become integrated with other large datasets generated using top-down systems biology approaches and be utilised by computational biologists to develop and enhance models of malaria pathogenesis relevant for identifying new drug targets or intervention strategies. Here, we focus on the promise of metabolomics to complement systems biology approaches in the quest for novel interventions in the fight against malaria. We introduce the Malaria Host-Pathogen Interaction Center (MaHPIC), a new systems biology research coalition. A primary goal of the MaHPIC is to generate systems biology datasets relating to human and non-human primate (NHP) malaria parasites and their hosts making these openly available from an online relational database. Metabolomic data from NHP infections and clinical malaria infections from around the world will comprise a unique global resource. PMID:25185001

  11. NMR-based Metabolomics for Cancer Research

    EPA Science Inventory

    Metabolomics is considered as a complementary tool to other omics platforms to provide a snapshot of the cellular biochemistry and physiology taking place at any instant. Metabolmics approaches have been widely used to provide comprehensive and quantitative analyses of the metabo...

  12. Cellular Metabolomics for Exposure and Toxicity Assessment

    EPA Science Inventory

    We have developed NMR automation and cell quench methods for cell culture-based metabolomics to study chemical exposure and toxicity. Our flow automation method is robust and free of cross contamination. The direct cell quench method is rapid and effective. Cell culture-based met...

  13. Metabolome Analysis of Drosophila melanogaster during Embryogenesis

    PubMed Central

    An, Phan Nguyen Thuy; Yamaguchi, Masamitsu; Bamba, Takeshi; Fukusaki, Eiichiro

    2014-01-01

    The Drosophila melanogaster embryo has been widely utilized as a model for genetics and developmental biology due to its small size, short generation time, and large brood size. Information on embryonic metabolism during developmental progression is important for further understanding the mechanisms of Drosophila embryogenesis. Therefore, the aim of this study is to assess the changes in embryos’ metabolome that occur at different stages of the Drosophila embryonic development. Time course samples of Drosophila embryos were subjected to GC/MS-based metabolome analysis for profiling of low molecular weight hydrophilic metabolites, including sugars, amino acids, and organic acids. The results showed that the metabolic profiles of Drosophila embryo varied during the course of development and there was a strong correlation between the metabolome and different embryonic stages. Using the metabolome information, we were able to establish a prediction model for developmental stages of embryos starting from their high-resolution quantitative metabolite composition. Among the important metabolites revealed from our model, we suggest that different amino acids appear to play distinct roles in different developmental stages and an appropriate balance in trehalose-glucose ratio is crucial to supply the carbohydrate source for the development of Drosophila embryo. PMID:25121768

  14. Microbial metabolomics in open microscale platforms

    PubMed Central

    Barkal, Layla J.; Theberge, Ashleigh B.; Guo, Chun-Jun; Spraker, Joe; Rappert, Lucas; Berthier, Jean; Brakke, Kenneth A.; Wang, Clay C. C.; Beebe, David J.; Keller, Nancy P.; Berthier, Erwin

    2016-01-01

    The microbial secondary metabolome encompasses great synthetic diversity, empowering microbes to tune their chemical responses to changing microenvironments. Traditional metabolomics methods are ill-equipped to probe a wide variety of environments or environmental dynamics. Here we introduce a class of microscale culture platforms to analyse chemical diversity of fungal and bacterial secondary metabolomes. By leveraging stable biphasic interfaces to integrate microculture with small molecule isolation via liquid–liquid extraction, we enable metabolomics-scale analysis using mass spectrometry. This platform facilitates exploration of culture microenvironments (including rare media typically inaccessible using established methods), unusual organic solvents for metabolite isolation and microbial mutants. Utilizing Aspergillus, a fungal genus known for its rich secondary metabolism, we characterize the effects of culture geometry and growth matrix on secondary metabolism, highlighting the potential use of microscale systems to unlock unknown or cryptic secondary metabolites for natural products discovery. Finally, we demonstrate the potential for this class of microfluidic systems to study interkingdom communication between fungi and bacteria. PMID:26842393

  15. Metabolomics of Clostridial Biofuel Production

    SciTech Connect

    Rabinowitz, Joshua D; Aristilde, Ludmilla; Amador-Noguez, Daniel

    2015-09-08

    Members of the genus Clostridium collectively have the ideal set of the metabolic capabilities for fermentative biofuel production: cellulose degradation, hydrogen production, and solvent excretion. No single organism, however, can effectively convert cellulose into biofuels. Here we developed, using metabolomics and isotope tracers, basic science knowledge of Clostridial metabolism of utility for future efforts to engineer such an organism. In glucose fermentation carried out by the biofuel producer Clostridium acetobutylicum, we observed a remarkably ordered series of metabolite concentration changes as the fermentation progressed from acidogenesis to solventogenesis. In general, high-energy compounds decreased while low-energy species increased during solventogenesis. These changes in metabolite concentrations were accompanied by large changes in intracellular metabolic fluxes, with pyruvate directed towards acetyl-CoA and solvents instead of oxaloacetate and amino acids. Thus, the solventogenic transition involves global remodeling of metabolism to redirect resources from biomass production into solvent production. In contrast to C. acetobutylicum, which is an avid fermenter, C. cellulolyticum metabolizes glucose only slowly. We find that glycolytic intermediate concentrations are radically different from fast fermenting organisms. Associated thermodynamic and isotope tracer analysis revealed that the full glycolytic pathway in C. cellulolyticum is reversible. This arises from changes in cofactor utilization for phosphofructokinase and an alternative pathway from phosphoenolpyruvate to pyruvate. The net effect is to increase the high-energy phosphate bond yield of glycolysis by 150% (from 2 to 5) at the expense of lower net flux. Thus, C. cellulolyticum prioritizes glycolytic energy efficiency over speed. Degradation of cellulose results in other sugars in addition to glucose. Simultaneous feeding of stable isotope-labeled glucose and unlabeled pentose sugars

  16. Present and foreseeable future of metabolomics in forensic analysis.

    PubMed

    Castillo-Peinado, L S; Luque de Castro, M D

    2016-06-21

    The revulsive publications during the last years on the precariousness of forensic sciences worldwide have promoted the move of major steps towards improvement of this science. One of the steps (viz. a higher involvement of metabolomics in the new era of forensic analysis) deserves to be discussed under different angles. Thus, the characteristics of metabolomics that make it a useful tool in forensic analysis, the aspects in which this omics is so far implicit, but not mentioned in forensic analyses, and how typical forensic parameters such as the post-mortem interval or fingerprints take benefits from metabolomics are critically discussed in this review. The way in which the metabolomics-forensic binomial succeeds when either conventional or less frequent samples are used is highlighted here. Finally, the pillars that should support future developments involving metabolomics and forensic analysis, and the research required for a fruitful in-depth involvement of metabolomics in forensic analysis are critically discussed.

  17. Metabolomics and its application to studying metal toxicity.

    PubMed

    Booth, Sean C; Workentine, Matthew L; Weljie, Aalim M; Turner, Raymond J

    2011-11-01

    Here we explain the omics approach of metabolomics and how it can be applied to study a physiological response to toxic metal exposure. This review aims to educate the metallomics field to the tool of metabolomics. Metabolomics is becoming an increasingly used tool to compare natural and challenged states of various organisms, from disease states in humans to toxin exposure to environmental systems. This approach is key to understanding and identifying the cellular or biochemical targets of metals and the underlying physiological response. Metabolomics steps are described and overviews of its application to metal toxicity to organisms are given. As this approach is very new there are yet only a small number of total studies and therefore only a brief overview of some metal metabolomics studies is described. A frank critical evaluation of the approach is given to provide newcomers to the method a clear idea of the challenges and the rewards of applying metabolomics to their research.

  18. An LC-MS-based metabolomics approach for exploring urinary metabolome modifications after cocoa consumption.

    PubMed

    Llorach, Rafael; Urpi-Sarda, Mireia; Jauregui, Olga; Monagas, Maria; Andres-Lacueva, Cristina

    2009-11-01

    Cocoa-phytochemicals have been related to the health-benefits of cocoa consumption. Metabolomics has been proposed as a powerful tool to characterize both the intake and the effects on the metabolism of dietary components. Human urine metabolome modifications after single cocoa intake were explored in a randomized, crossed, and controlled trial. After overnight fasting, 10 subjects consumed randomly either a single dose of cocoa powder with milk or water, or milk without cocoa. Urine samples were collected before the ingestion and at 0-6, 6-12, and 12-24-h after test-meals consumption. Samples were analyzed by HPLC-q-ToF, followed by multivariate data analysis. Results revealed an important effect on urinary metabolome during the 24 h after cocoa powder intake. These changes were not influenced by matrix as no global differences were found between cocoa powder consumption with milk or with water. Overall, 27 metabolites related to cocoa-phytochemicals, including alkaloid derivatives, polyphenol metabolites (both host and microbial metabolites) and processing-derived products such as diketopiperazines, were identified as the main contributors to the urinary modifications after cocoa powder intake. These results confirm that metabolomics will contribute to better characterization of the urinary metabolome in order to further explore the metabolism of phytochemicals and its relation with human health.

  19. Plant single-cell and single-cell-type metabolomics.

    PubMed

    Misra, Biswapriya B; Assmann, Sarah M; Chen, Sixue

    2014-10-01

    In conjunction with genomics, transcriptomics, and proteomics, plant metabolomics is providing large data sets that are paving the way towards a comprehensive and holistic understanding of plant growth, development, defense, and productivity. However, dilution effects from organ- and tissue-based sampling of metabolomes have limited our understanding of the intricate regulation of metabolic pathways and networks at the cellular level. Recent advances in metabolomics methodologies, along with the post-genomic expansion of bioinformatics knowledge and functional genomics tools, have allowed the gathering of enriched information on individual cells and single cell types. Here we review progress, current status, opportunities, and challenges presented by single cell-based metabolomics research in plants.

  20. MVAPACK: A Complete Data Handling Package for NMR Metabolomics

    PubMed Central

    2015-01-01

    Data handling in the field of NMR metabolomics has historically been reliant on either in-house mathematical routines or long chains of expensive commercial software. Thus, while the relatively simple biochemical protocols of metabolomics maintain a low barrier to entry, new practitioners of metabolomics experiments are forced to either purchase expensive software packages or craft their own data handling solutions from scratch. This inevitably complicates the standardization and communication of data handling protocols in the field. We report a newly developed open-source platform for complete NMR metabolomics data handling, MVAPACK, and describe its application on an example metabolic fingerprinting data set. PMID:24576144

  1. Metabolomics and metabolite profiling: past heroes and future developments.

    PubMed

    Griffiths, W J; Karu, K; Hornshaw, M; Woffendin, G; Wang, Y

    2007-01-01

    Following the sequencing of the human and other genomes, much research effort is now invested in post- genomic science, particularly in the related disciplines of proteomics and metabolomics. In this paper, we will attempt to provide an overview of mass spectrometry-based metabolomic strategies, discuss the evolution of metabolomics from its predecessor, Hmetabolite profiling", and provide some pointers to future methodological and technological direction. Current data from the authors' laboratory will also be presented, highlighting our efforts in the field of "targeted metabolomics", namely, "steroidomics in the brain".

  2. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools.

    PubMed

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Azam, Kenan; Vadivelu, Ilango; Burant, Charles; Edison, Arthur; Fiehn, Oliver; Higashi, Richard; Nair, K Sreekumaran; Sumner, Susan; Subramaniam, Shankar

    2016-01-01

    The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world.

  3. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools

    PubMed Central

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Azam, Kenan; Vadivelu, Ilango; Burant, Charles; Edison, Arthur; Fiehn, Oliver; Higashi, Richard; Nair, K. Sreekumaran; Sumner, Susan; Subramaniam, Shankar

    2016-01-01

    The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world. PMID:26467476

  4. Metabolomics Workbench: An international repository for metabolomics data and metadata, metabolite standards, protocols, tutorials and training, and analysis tools.

    PubMed

    Sud, Manish; Fahy, Eoin; Cotter, Dawn; Azam, Kenan; Vadivelu, Ilango; Burant, Charles; Edison, Arthur; Fiehn, Oliver; Higashi, Richard; Nair, K Sreekumaran; Sumner, Susan; Subramaniam, Shankar

    2016-01-01

    The Metabolomics Workbench, available at www.metabolomicsworkbench.org, is a public repository for metabolomics metadata and experimental data spanning various species and experimental platforms, metabolite standards, metabolite structures, protocols, tutorials, and training material and other educational resources. It provides a computational platform to integrate, analyze, track, deposit and disseminate large volumes of heterogeneous data from a wide variety of metabolomics studies including mass spectrometry (MS) and nuclear magnetic resonance spectrometry (NMR) data spanning over 20 different species covering all the major taxonomic categories including humans and other mammals, plants, insects, invertebrates and microorganisms. Additionally, a number of protocols are provided for a range of metabolite classes, sample types, and both MS and NMR-based studies, along with a metabolite structure database. The metabolites characterized in the studies available on the Metabolomics Workbench are linked to chemical structures in the metabolite structure database to facilitate comparative analysis across studies. The Metabolomics Workbench, part of the data coordinating effort of the National Institute of Health (NIH) Common Fund's Metabolomics Program, provides data from the Common Fund's Metabolomics Resource Cores, metabolite standards, and analysis tools to the wider metabolomics community and seeks data depositions from metabolomics researchers across the world. PMID:26467476

  5. Metabolomics analysis of shucked mussels' freshness.

    PubMed

    Aru, Violetta; Pisano, Maria Barbara; Savorani, Francesco; Engelsen, Søren Balling; Cosentino, Sofia; Cesare Marincola, Flaminia

    2016-08-15

    In this work a NMR metabolomics approach was applied to analyze changes in the metabolic profile of the bivalve mollusk Mytilus galloprovincialis upon storage at 0°C and 4°C for 10 and 6 days, respectively. The most significant microbial groups involved in spoilage of mussels were also investigated. The time-related metabolic signature of mussels was analysed by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) which revealed a clear discrimination between the fresh samples and those stored at 0°C and 4°C. The results evidenced a noticeable increase in acetate, lactate, succinate, alanine, branched chain amino acids, trimethylamine and a progressive decline of osmolytes like betaine, homarine and taurine during storage. Exploration of the correlations of these metabolites with microbial counts suggested their use as potential biomarkers of spoilage. The results support the use of NMR metabolomics as a valuable tool to provide information on seafood freshness.

  6. Metabolomic Imaging for Human Prostate Cancer Detection

    PubMed Central

    Wu, Chin-Lee; Jordan, Kate W.; Ratai, Eva M.; Sheng, Jinhua; Adkins, Christen B.; DeFeo, Elita M; Jenkins, Bruce G.; Ying, Leslie; McDougal, W. Scott; Cheng, Leo L.

    2010-01-01

    As current radiological approaches cannot accurately localize prostate cancer in vivo, biopsies are conducted at random within prostates for at-risk patients, leading to high false-negative rates. Metabolomic imaging can map cancer-specific biomolecular profile values onto anatomical structures to direct biopsy. In this preliminary study, we evaluated five prostatectomy-removed whole prostates from biopsy-proven cancer patients on a 7 Tesla human, whole-body magnetic resonance scanner. Localized, multi-cross-sectional, multi-voxel magnetic resonance spectra were used to construct a malignancy index based on prostate cancer metabolomic profiles obtained from previous, intact tissue analyses by a 14 Tesla spectrometer. This calculated Malignancy Index shows linear correlation with lesion size (p<0.013) and demonstrates a 93–97% overall accuracy for detecting the presence of prostate cancer lesions. PMID:20371475

  7. Metabolomics analysis of shucked mussels' freshness.

    PubMed

    Aru, Violetta; Pisano, Maria Barbara; Savorani, Francesco; Engelsen, Søren Balling; Cosentino, Sofia; Cesare Marincola, Flaminia

    2016-08-15

    In this work a NMR metabolomics approach was applied to analyze changes in the metabolic profile of the bivalve mollusk Mytilus galloprovincialis upon storage at 0°C and 4°C for 10 and 6 days, respectively. The most significant microbial groups involved in spoilage of mussels were also investigated. The time-related metabolic signature of mussels was analysed by Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) which revealed a clear discrimination between the fresh samples and those stored at 0°C and 4°C. The results evidenced a noticeable increase in acetate, lactate, succinate, alanine, branched chain amino acids, trimethylamine and a progressive decline of osmolytes like betaine, homarine and taurine during storage. Exploration of the correlations of these metabolites with microbial counts suggested their use as potential biomarkers of spoilage. The results support the use of NMR metabolomics as a valuable tool to provide information on seafood freshness. PMID:27006214

  8. Innovation in metabolomics to improve personalized healthcare.

    PubMed

    Cacciatore, Stefano; Loda, Massimo

    2015-06-01

    Metabolomics is the systemic study of all small molecules (metabolites) and their concentration as affected by pathological and physiological alterations or environmental or other factors. Metabolic alterations represent a "window" on the complex interactions between genetic expression, enzyme activity, and metabolic reactions. Techniques, including nuclear magnetic resonance spectroscopy, mass spectrometry, Fourier-transform infrared, and Raman spectroscopy, have led to significant advances in metabolomics. The field is shifting from feasibility studies to biological and clinical applications. Fields of application range from cancer biology to stem cell research and assessment of xenobiotics and drugs in tissues and single cells. Cross-validation across high-throughput platforms has allowed findings from expression profiling to be confirmed with metabolomics. Specific genetic alterations appear to drive unique metabolic programs. These, in turn, can be used as biomarkers of genetic subtypes of prostate cancer or as discovery tools for therapeutic targeting of metabolic enzymes. Thus, metabolites in blood may serve as biomarkers of tumor state, including inferring driving oncogenes. Novel applications such as these suggest that metabolic profiling may be utilized in refining personalized medicine.

  9. Innovation in Metabolomics to Improve Personalized Healthcare

    PubMed Central

    Cacciatore, Stefano; Loda, Massimo

    2016-01-01

    Metabolomics is the systemic study of all small molecules (metabolites) and their concentration as affected by pathological and physiological alterations or environmental or other factors. Metabolic alterations represent a “window” on the complex interactions between genetic expression, enzyme activity, and metabolic reactions. Techniques, including nuclear magnetic resonance spectroscopy, mass spectrometry, Fourier-transform infrared, and Raman spectroscopy, have led to significant advances in metabolomics. The field is shifting from feasibility studies to biological and clinical applications. Fields of application range from cancer biology to stem cell research and assessment of xenobiotics and drugs in tissues and single cells. Cross-validation across high-throughput platforms has allowed findings from expression profiling to be confirmed with metabolomics. Specific genetic alterations appear to drive unique metabolic programs. These, in turn, can be used as biomarkers of genetic subtypes of prostate cancer or as discovery tools for therapeutic targeting of metabolic enzymes. Thus, metabolites in blood may serve as biomarkers of tumor state, including inferring driving oncogenes. Novel applications such as these suggest that metabolic profiling may be utilized in refining personalized medicine. PMID:26014591

  10. HMDB: a knowledgebase for the human metabolome

    PubMed Central

    Wishart, David S.; Knox, Craig; Guo, An Chi; Eisner, Roman; Young, Nelson; Gautam, Bijaya; Hau, David D.; Psychogios, Nick; Dong, Edison; Bouatra, Souhaila; Mandal, Rupasri; Sinelnikov, Igor; Xia, Jianguo; Jia, Leslie; Cruz, Joseph A.; Lim, Emilia; Sobsey, Constance A.; Shrivastava, Savita; Huang, Paul; Liu, Philip; Fang, Lydia; Peng, Jun; Fradette, Ryan; Cheng, Dean; Tzur, Dan; Clements, Melisa; Lewis, Avalyn; De Souza, Andrea; Zuniga, Azaret; Dawe, Margot; Xiong, Yeping; Clive, Derrick; Greiner, Russ; Nazyrova, Alsu; Shaykhutdinov, Rustem; Li, Liang; Vogel, Hans J.; Forsythe, Ian

    2009-01-01

    The Human Metabolome Database (HMDB, http://www.hmdb.ca) is a richly annotated resource that is designed to address the broad needs of biochemists, clinical chemists, physicians, medical geneticists, nutritionists and members of the metabolomics community. Since its first release in 2007, the HMDB has been used to facilitate the research for nearly 100 published studies in metabolomics, clinical biochemistry and systems biology. The most recent release of HMDB (version 2.0) has been significantly expanded and enhanced over the previous release (version 1.0). In particular, the number of fully annotated metabolite entries has grown from 2180 to more than 6800 (a 300% increase), while the number of metabolites with biofluid or tissue concentration data has grown by a factor of five (from 883 to 4413). Similarly, the number of purified compounds with reference to NMR, LC-MS and GC-MS spectra has more than doubled (from 380 to more than 790 compounds). In addition to this significant expansion in database size, many new database searching tools and new data content has been added or enhanced. These include better algorithms for spectral searching and matching, more powerful chemical substructure searches, faster text searching software, as well as dedicated pathway searching tools and customized, clickable metabolic maps. Changes to the user-interface have also been implemented to accommodate future expansion and to make database navigation much easier. These improvements should make the HMDB much more useful to a much wider community of users. PMID:18953024

  11. Metabolomic changes in autopsy confirmed Alzheimer's disease

    PubMed Central

    Kaddurah-Daouk, Rima; Rozen, Steve; Matson, Wayne; Han, Xianlin; Hulette, Christine M.; Burke, James R.; Doraiswamy, P. Murali; Welsh-Bohmer, Kathleen A.

    2010-01-01

    Metabolomics, the global science of biochemistry, provides powerful tools to map perturbations in the metabolic network and enables simultaneous quantification of a large number of metabolites to identify metabolic perturbances that might provide insights into disease. In this pilot study we take a targeted electrochemistry based metabolomics approach where liquid chromatography followed by coulometric array detection enables quantification of over thirty metabolites within key neurotransmitter pathways (dopamine and serotonin) and pathways involved in oxidative stress. Using samples from post-mortem ventricular cerebrospinal fluid (CSF) (15 AD and 15 non-demented subjects with autopsy confirmed diagnoses) and using regression models, correlations, Wilcoxon rank-sum tests and t-tests we identified alterations in tyrosine, tryptophan, purine, and tocopherol pathways in patients with AD. Reductions in norepinephrine and its related metabolites were also seen, consistent with prior literature. These data support further investigation of metabolomics in larger samples of clinical AD as well as in those with preclinical disease for utility as biomarkers. PMID:21075060

  12. Integration of metabolomics data into metabolic networks

    PubMed Central

    Töpfer, Nadine; Kleessen, Sabrina; Nikoloski, Zoran

    2015-01-01

    Metabolite levels together with their corresponding metabolic fluxes are integrative outcomes of biochemical transformations and regulatory processes and they can be used to characterize the response of biological systems to genetic and/or environmental changes. However, while changes in transcript or to some extent protein levels can usually be traced back to one or several responsible genes, changes in fluxes and particularly changes in metabolite levels do not follow such rationale and are often the outcome of complex interactions of several components. The increasing quality and coverage of metabolomics technologies have fostered the development of computational approaches for integrating metabolic read-outs with large-scale models to predict the physiological state of a system. Constraint-based approaches, relying on the stoichiometry of the considered reactions, provide a modeling framework amenable to analyses of large-scale systems and to the integration of high-throughput data. Here we review the existing approaches that integrate metabolomics data in variants of constrained-based approaches to refine model reconstructions, to constrain flux predictions in metabolic models, and to relate network structural properties to metabolite levels. Finally, we discuss the challenges and perspectives in the developments of constraint-based modeling approaches driven by metabolomics data. PMID:25741348

  13. Untargeted Metabolomics Strategies—Challenges and Emerging Directions

    NASA Astrophysics Data System (ADS)

    Schrimpe-Rutledge, Alexandra C.; Codreanu, Simona G.; Sherrod, Stacy D.; McLean, John A.

    2016-09-01

    Metabolites are building blocks of cellular function. These species are involved in enzyme-catalyzed chemical reactions and are essential for cellular function. Upstream biological disruptions result in a series of metabolomic changes and, as such, the metabolome holds a wealth of information that is thought to be most predictive of phenotype. Uncovering this knowledge is a work in progress. The field of metabolomics is still maturing; the community has leveraged proteomics experience when applicable and developed a range of sample preparation and instrument methodology along with myriad data processing and analysis approaches. Research focuses have now shifted toward a fundamental understanding of the biology responsible for metabolomic changes. There are several types of metabolomics experiments including both targeted and untargeted analyses. While untargeted, hypothesis generating workflows exhibit many valuable attributes, challenges inherent to the approach remain. This Critical Insight comments on these challenges, focusing on the identification process of LC-MS-based untargeted metabolomics studies—specifically in mammalian systems. Biological interpretation of metabolomics data hinges on the ability to accurately identify metabolites. The range of confidence associated with identifications that is often overlooked is reviewed, and opportunities for advancing the metabolomics field are described.

  14. Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats).

    PubMed

    Miller, Marion G

    2007-02-01

    Metabolomic approaches have the potential to make an exceptional contribution to understanding how chemicals and other environmental stressors can affect both human and environmental health. However, the application of metabolomics to environmental exposures, although getting underway, has not yet been extensively explored. This review will use a SWOT analysis model to discuss some of the strengths, weaknesses, opportunities, and threats that are apparent to an investigator venturing into this relatively new field. SWOT has been used extensively in business settings to uncover new outlooks and identify problems that would impede progress. The field of environmental metabolomics provides great opportunities for discovery, and this is recognized by a high level of interest in potential applications. However, understanding the biological consequence of environmental exposures can be confounded by inter- and intra-individual differences. Metabolomic profiles can yield a plethora of data, the interpretation of which is complex and still being evaluated and researched. The development of the field will depend on the availability of technologies for data handling and that permit ready access metabolomic databases. Understanding the relevance of metabolomic endpoints to organism health vs adaptation vs variation is an important step in understanding what constitutes a substantive environmental threat. Metabolomic applications in reproductive research are discussed. Overall, the development of a comprehensive mechanistic-based interpretation of metabolomic changes offers the possibility of providing information that will significantly contribute to the protection of human health and the environment. PMID:17269710

  15. Metabolomics for Undergraduates: Identification and Pathway Assignment of Mitochondrial Metabolites

    ERIC Educational Resources Information Center

    Marques, Ana Patrícia; Serralheiro, Maria Luisa; Ferreira, António E. N.; Freire, Ana Ponces; Cordeiro, Carlos; Silva, Marta Sousa

    2016-01-01

    Metabolomics is a key discipline in systems biology, together with genomics, transcriptomics, and proteomics. In this omics cascade, the metabolome represents the biochemical products that arise from cellular processes and is often regarded as the final response of a biological system to environmental or genetic changes. The overall screening…

  16. Application of Metabolomics for High Resolution Phenotype Analysis

    PubMed Central

    Fukusaki, Eiichiro

    2014-01-01

    Metabolome, a total profile of whole metabolites, is placed on downstream of proteome. Metabolome is thought to be results of implementation of genomic information. In other words, metabolome can be called as high resolution phenotype. The easiest operation of metabolomics is the integration to the upstream ome information including transcriptome and/or proteome. Those trials have been reported at a certain scientific level. In addition, metabolomics can be operated in stand-alone mode without any other ome information. Among metabolomics tactics, the author’s group is particularly focusing on metabolic fingerprinting, in which metabolome information is employed as explanatory variant to evaluate response variant. Metabolic fingerprinting technique is expected not only for analyzing slight difference depending on genotype difference but also for expressing dynamic variation of living organisms. The author introduces several good examples which he performed. Those are useful for easy understanding of the power of metabolomics. In addition, the author mentions the latest technology for analysis of metabolic dynamism. The author’s group developed a facile analytical method for semi-quantitative metabolic dynamism. The author introduces the novel method that uses time dependent variation of isotope distribution based on stable isotope dilution. PMID:26819889

  17. Environmental metabolomics: a SWOT analysis (strengths, weaknesses, opportunities, and threats).

    PubMed

    Miller, Marion G

    2007-02-01

    Metabolomic approaches have the potential to make an exceptional contribution to understanding how chemicals and other environmental stressors can affect both human and environmental health. However, the application of metabolomics to environmental exposures, although getting underway, has not yet been extensively explored. This review will use a SWOT analysis model to discuss some of the strengths, weaknesses, opportunities, and threats that are apparent to an investigator venturing into this relatively new field. SWOT has been used extensively in business settings to uncover new outlooks and identify problems that would impede progress. The field of environmental metabolomics provides great opportunities for discovery, and this is recognized by a high level of interest in potential applications. However, understanding the biological consequence of environmental exposures can be confounded by inter- and intra-individual differences. Metabolomic profiles can yield a plethora of data, the interpretation of which is complex and still being evaluated and researched. The development of the field will depend on the availability of technologies for data handling and that permit ready access metabolomic databases. Understanding the relevance of metabolomic endpoints to organism health vs adaptation vs variation is an important step in understanding what constitutes a substantive environmental threat. Metabolomic applications in reproductive research are discussed. Overall, the development of a comprehensive mechanistic-based interpretation of metabolomic changes offers the possibility of providing information that will significantly contribute to the protection of human health and the environment.

  18. Potential of mass spectrometry metabolomics for chemical food safety.

    PubMed

    Gallart-Ayala, Hector; Chéreau, Sylvain; Dervilly-Pinel, Gaud; Le Bizec, Bruno

    2015-01-01

    This review aims to describe the most significant applications of mass spectrometry-based metabolomics in the field of chemical food safety. A particular discussion of all the different analytical steps involved in the metabolomics workflow (sample preparation, mass spectrometry analytical platform and data processing) will be addressed.

  19. Review: Microfluidic Applications in Metabolomics and Metabolic Profiling

    PubMed Central

    Kraly, James R.; Holcomb, Ryan E.; Guan, Qian; Henry, Charles S.

    2009-01-01

    Metabolomics is an emerging area of research focused on measuring small molecules in biological samples. There are a number of different types of metabolomics, ranging from global profiling of all metabolites in a single sample to measurement of a selected group of analytes. Microfluidics and related technologies have been used in this research area with good success. The aim of this review article is to summarize the use of microfluidics in metabolomics. Direct application of microfluidics to the determination of small molecules is covered first. Next, important sample preparation methods developed for microfluidics and applicable to metabolomics are covered. Finally, a summary of metabolomic work as it relates to analysis of cellular events using microfluidics is covered. PMID:19800473

  20. Metabolomic profiling of cultured cancer cells.

    PubMed

    Scoazec, Marie; Durand, Sylvere; Chery, Alexis; Galluzzi, Lorenzo; Kroemer, Guido

    2014-01-01

    Quantitative proteomics approaches have been developed-and now begin to be implemented on a high-throughput basis-to fill-in the large gap between the genomic/transcriptomic setup of (cancer) cells and their phenotypic/behavioral traits, reflecting a significant degree of posttranscriptional regulation in gene expression as well as a robust posttranslational regulation of protein function. However, proteomic profiling assays not only fail to detect labile posttranslational modifications as well as unstable protein-to-protein interactions but also are intrinsically incapable of assessing the enzymatic activity, as opposed to the mere abundance, of a given protein. Thus, determining the abundance of theoretically all the metabolites contained in a cell/tissue/organ/organism may significantly improve the informational value of proteomic approaches. Several techniques have been developed to this aim, including high-performance liquid chromatography (HPLC) coupled to quadrupole time-of-flight (Q-TOF) high-resolution mass spectrometry (HRMS). This approach is particularly advantageous for metabolomic profiling as it offers elevated accuracy and improved sensitivity. Here, we describe a simple procedure to determine the complete complement of intracellular metabolites in cultured malignant cells by HPLC coupled to Q-TOF HRMS. According to this method, (1) cells are collected and processed to minimize contaminations as well as fluctuations in their metabolic profile; (2) samples are separated by HPLC and analyzed on a Q-TOF spectrometer; and (3) data are extracted, normalized, and deconvoluted according to refined mathematical methods. This protocol constitutes a simple approach to determine the intracellular metabolomic profile of cultured cancer cells. With minimal variations (mostly related to sample collection and processing), this method is expected to provide reliable metabolomic data on a variety of cellular samples.

  1. Development of quantitative metabolomics for Pichia pastoris.

    PubMed

    Carnicer, Marc; Canelas, André B; Ten Pierick, Angela; Zeng, Zhen; van Dam, Jan; Albiol, Joan; Ferrer, Pau; Heijnen, Joseph J; van Gulik, Walter

    2012-04-01

    Accurate, reliable and reproducible measurement of intracellular metabolite levels has become important for metabolic studies of microbial cell factories. A first critical step for metabolomic studies is the establishment of an adequate quenching and washing protocol, which ensures effective arrest of all metabolic activity and removal of extracellular metabolites, without causing leakage of metabolites from the cells. Five different procedures based on cold methanol quenching and cell separation by filtration were tested for metabolomics of Pichia pastoris regarding methanol content and temperature of the quenching solution as key parameters. Quantitative evaluation of these protocols was carried out through mass balance analysis, based on metabolite measurements in all sample fractions, those are whole broth, quenched and washed cells, culture filtrate and quenching and washing solution. Finally, the optimal method was used to study the time profiles of free amino acid and central carbon metabolism intermediates in glucose-limited chemostat cultures. Acceptable recoveries (>90%) were obtained for all quenching procedures tested. However, quenching at -27°C in 60% v/v methanol performed slightly better in terms of leakage minimization. We could demonstrate that five residence times under glucose limitation are enough to reach stable intracellular metabolite pools. Moreover, when comparing P. pastoris and S. cerevisiae metabolomes, under the same cultivation conditions, similar metabolite fingerprints were found in both yeasts, except for the lower glycolysis, where the levels of these metabolites in P. pastoris suggested an enzymatic capacity limitation in that part of the metabolism. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11306-011-0308-1) contains supplementary material, which is available to authorized users.

  2. Biological variation of Vanilla planifolia leaf metabolome.

    PubMed

    Palama, Tony Lionel; Fock, Isabelle; Choi, Young Hae; Verpoorte, Robert; Kodja, Hippolyte

    2010-04-01

    The metabolomic analysis of Vanilla planifolia leaves collected at different developmental stages was carried out using (1)H-nuclear magnetic resonance (NMR) spectroscopy and multivariate data analysis in order to evaluate their variation. Ontogenic changes of the metabolome were considered since leaves of different ages were collected at two different times of the day and in two different seasons. Principal component analysis (PCA) and partial least square modeling discriminate analysis (PLS-DA) of (1)H NMR data provided a clear separation according to leaf age, time of the day and season of collection. Young leaves were found to have higher levels of glucose, bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-isopropyltartrate (glucoside A) and bis[4-(beta-D-glucopyranosyloxy)-benzyl]-2-(2-butyl)-tartrate (glucoside B), whereas older leaves had more sucrose, acetic acid, homocitric acid and malic acid. Results obtained from PLS-DA analysis showed that leaves collected in March 2008 had higher levels of glucosides A and B as compared to those collected in August 2007. However, the relative standard deviation (RSD) exhibited by the individual values of glucosides A and B showed that those compounds vary more according to their developmental stage (50%) than to the time of day or the season in which they were collected (19%). Although morphological variations of the V. planifolia accessions were observed, no clear separation of the accessions was determined from the analysis of the NMR spectra. The results obtained in this study, show that this method based on the use of (1)H NMR spectroscopy in combination with multivariate analysis has a great potential for further applications in the study of vanilla leaf metabolome.

  3. Metabolome in progression to Alzheimer's disease

    PubMed Central

    Orešič, M; Hyötyläinen, T; Herukka, S-K; Sysi-Aho, M; Mattila, I; Seppänan-Laakso, T; Julkunen, V; Gopalacharyulu, P V; Hallikainen, M; Koikkalainen, J; Kivipelto, M; Helisalmi, S; Lötjönen, J; Soininen, H

    2011-01-01

    Mild cognitive impairment (MCI) is considered as a transition phase between normal aging and Alzheimer's disease (AD). MCI confers an increased risk of developing AD, although the state is heterogeneous with several possible outcomes, including even improvement back to normal cognition. We sought to determine the serum metabolomic profiles associated with progression to and diagnosis of AD in a prospective study. At the baseline assessment, the subjects enrolled in the study were classified into three diagnostic groups: healthy controls (n=46), MCI (n=143) and AD (n=47). Among the MCI subjects, 52 progressed to AD in the follow-up. Comprehensive metabolomics approach was applied to analyze baseline serum samples and to associate the metabolite profiles with the diagnosis at baseline and in the follow-up. At baseline, AD patients were characterized by diminished ether phospholipids, phosphatidylcholines, sphingomyelins and sterols. A molecular signature comprising three metabolites was identified, which was predictive of progression to AD in the follow-up. The major contributor to the predictive model was 2,4-dihydroxybutanoic acid, which was upregulated in AD progressors (P=0.0048), indicating potential involvement of hypoxia in the early AD pathogenesis. This was supported by the pathway analysis of metabolomics data, which identified upregulation of pentose phosphate pathway in patients who later progressed to AD. Together, our findings primarily implicate hypoxia, oxidative stress, as well as membrane lipid remodeling in progression to AD. Establishment of pathogenic relevance of predictive biomarkers such as ours may not only facilitate early diagnosis, but may also help identify new therapeutic avenues. PMID:22832349

  4. Metabolomics of cocaine: implications in toxicity.

    PubMed

    Dinis-Oliveira, Ricardo Jorge

    2015-01-01

    Cocaine is the most commonly used illicit drug among those seeking care in Emergency Departments or drug detoxification centers. Cocaine, chemically known as benzoylmethylecgonine, is a naturally occurring substance found in the leaves of the Erythroxylum coca plant. The pharmacokinetics of cocaine is dependent on multiple factors, such as physical/chemical form, route of administration, genetics and concurrent consumption of alcohol. This review aims to discuss metabolomics of cocaine, namely by presenting all known metabolites of cocaine and their roles in the cocaine-mediated toxic effects.

  5. Metabolomics of cocaine: implications in toxicity.

    PubMed

    Dinis-Oliveira, Ricardo Jorge

    2015-01-01

    Cocaine is the most commonly used illicit drug among those seeking care in Emergency Departments or drug detoxification centers. Cocaine, chemically known as benzoylmethylecgonine, is a naturally occurring substance found in the leaves of the Erythroxylum coca plant. The pharmacokinetics of cocaine is dependent on multiple factors, such as physical/chemical form, route of administration, genetics and concurrent consumption of alcohol. This review aims to discuss metabolomics of cocaine, namely by presenting all known metabolites of cocaine and their roles in the cocaine-mediated toxic effects. PMID:26249365

  6. Metabolomic Studies of Oral Biofilm, Oral Cancer, and Beyond

    PubMed Central

    Washio, Jumpei; Takahashi, Nobuhiro

    2016-01-01

    Oral diseases are known to be closely associated with oral biofilm metabolism, while cancer tissue is reported to possess specific metabolism such as the ‘Warburg effect’. Metabolomics might be a useful method for clarifying the whole metabolic systems that operate in oral biofilm and oral cancer, however, technical limitations have hampered such research. Fortunately, metabolomics techniques have developed rapidly in the past decade, which has helped to solve these difficulties. In vivo metabolomic analyses of the oral biofilm have produced various findings. Some of these findings agreed with the in vitro results obtained in conventional metabolic studies using representative oral bacteria, while others differed markedly from them. Metabolomic analyses of oral cancer tissue not only revealed differences between metabolomic profiles of cancer and normal tissue, but have also suggested a specific metabolic system operates in oral cancer tissue. Saliva contains a variety of metabolites, some of which might be associated with oral or systemic disease; therefore, metabolomics analysis of saliva could be useful for identifying disease-specific biomarkers. Metabolomic analyses of the oral biofilm, oral cancer, and saliva could contribute to the development of accurate diagnostic, techniques, safe and effective treatments, and preventive strategies for oral and systemic diseases. PMID:27271597

  7. The Utility of Metabolomics in Natural Product and Biomarker Characterization

    PubMed Central

    Cox, Daniel G.; Oh, Joonseok; Keasling, Adam; Colson, Kim

    2014-01-01

    Background Metabolomics is a well-established rapidly developing research field involving quantitative and qualitative metabolite assessment within biological systems. Recent improvements in metabolomics technologies reveal the unequivocal value of metabolomics tools in natural products discovery, gene-function analysis, systems biology and diagnostic platforms. Scope of review We review of some of the prominent metabolomics methodologies employed in data acquisition and analysis of natural products and disease-related biomarkers. Major conclusions This review demonstrates that metabolomics represents a highly adaptable technology with diverse applications ranging from environmental toxicology to disease diagnosis. Metabolomic analysis is shown to provide a unique snapshot of the functional genetic status of an organism by examining its biochemical profile, with relevance toward resolving phylogenetic associations involving horizontal gene transfer and distinguishing subgroups of genera possessing high genetic homology, as well as an increasing role in both elucidating biosynthetic transformations of natural products and detecting preclinical biomarkers of numerous disease states. General significance This review expands the interest in multiplatform combinatorial metabolomic analysis. The applications reviewed range from phylogenetic assignment, biosynthetic transformations of natural products, and the detection of preclinical biomarkers. PMID:25151044

  8. Metabolomics analysis for biomarker discovery: advances and challenges.

    PubMed

    Monteiro, M S; Carvalho, M; Bastos, M L; Guedes de Pinho, P

    2013-01-01

    Over the last decades there has been a change in biomedical research with the search for single genes, transcripts, proteins, or metabolites being substituted by the coverage of the entire genome, transcriptome, proteome, and metabolome with the "omics" approaches. The emergence of metabolomics, defined as the comprehensive analysis of all metabolites in a system, is still recent compared to other "omics" fields, but its particular features and the improvement of both analytical techniques and pattern recognition methods has contributed greatly to its increasingly use. The feasibility of metabolomics for biomarker discovery is supported by the assumption that metabolites are important players in biological systems and that diseases cause disruption of biochemical pathways, which are not new concepts. In fact, metabolomics, meaning the parallel assessment of multiple metabolites, has been shown to have benefits in various clinical areas. Compared to classical diagnostic approaches and conventional clinical biomarkers, metabolomics offers potential advantages in sensitivity and specificity. Despite its potential, metabolomics still retains several intrinsic limitations which have a great impact on its widespread implementation - these limitations in biological and experimental measurements. This review will provide an insight to the characteristics, strengths, limitations, and recent advances in metabolomics, always keeping in mind its potential application in clinical/ health areas as a biomarker discovery tool. PMID:23210853

  9. Growth and preparation of Staphylococcus epidermidis for NMR metabolomic analysis.

    PubMed

    Somerville, Greg A; Powers, Robert

    2014-01-01

    The "omics" era began with transcriptomics and this progressed into proteomics. While useful, these approaches provide only circumstantial information about carbon flow, metabolic status, redox poise, etc. To more directly address these metabolic concerns, researchers have turned to the emerging field of metabolomics. In our laboratories, we frequently use NMR metabolomics to acquire a snapshot of bacterial metabolomes during stressful or transition events. Irrespective of the "omics" method of choice, the experimental outcome depends on the proper cultivation and preparation of bacterial samples. In addition, the integration of these large datasets requires that these cultivation conditions be clearly defined.

  10. [Metabolomics analysis revealing multiple compounds changed in rhubarb after processing].

    PubMed

    Zhao, Nan; Zhang, Xiao-Zhe; Hu, Chang-Jiang; Jia, Tian-Zhu; Xiao, Hong-Bin

    2014-05-01

    Untargeted metabolomics analysis of rhubarb and stewed rhubarb samples shows that the determined samples clearly clustered in to two groups, indicating that the processing procedures caused changes in the composition and/or content of components in rhubarb. Ten components were identified by UHPLC-Q-TOF-MS/MS and references, which intensity declined in rhubarb after processing. Targeted metabolomics analysis of rhubarb and stewed rhubarb samples indicated that aloe-emodin, rhein, emodin and physcion were detected with lower intensity in stewed rhubarb samples than in rhubarb samples. Metabolomics analysis of rhubarb and stewed rhubarb indicated the various components of rhubarb changed after processing.

  11. Error Propagation Analysis for Quantitative Intracellular Metabolomics

    PubMed Central

    Tillack, Jana; Paczia, Nicole; Nöh, Katharina; Wiechert, Wolfgang; Noack, Stephan

    2012-01-01

    Model-based analyses have become an integral part of modern metabolic engineering and systems biology in order to gain knowledge about complex and not directly observable cellular processes. For quantitative analyses, not only experimental data, but also measurement errors, play a crucial role. The total measurement error of any analytical protocol is the result of an accumulation of single errors introduced by several processing steps. Here, we present a framework for the quantification of intracellular metabolites, including error propagation during metabolome sample processing. Focusing on one specific protocol, we comprehensively investigate all currently known and accessible factors that ultimately impact the accuracy of intracellular metabolite concentration data. All intermediate steps are modeled, and their uncertainty with respect to the final concentration data is rigorously quantified. Finally, on the basis of a comprehensive metabolome dataset of Corynebacterium glutamicum, an integrated error propagation analysis for all parts of the model is conducted, and the most critical steps for intracellular metabolite quantification are detected. PMID:24957773

  12. Systems biology of host-microbe metabolomics.

    PubMed

    Heinken, Almut; Thiele, Ines

    2015-01-01

    The human gut microbiota performs essential functions for host and well-being, but has also been linked to a variety of disease states, e.g., obesity and type 2 diabetes. The mammalian body fluid and tissue metabolomes are greatly influenced by the microbiota, with many health-relevant metabolites being considered 'mammalian-microbial co-metabolites'. To systematically investigate this complex host-microbial co-metabolism, a systems biology approach integrating high-throughput data and computational network models is required. Here, we review established top-down and bottom-up systems biology approaches that have successfully elucidated relationships between gut microbiota-derived metabolites and host health and disease. We focus particularly on the constraint-based modeling and analysis approach, which enables the prediction of mechanisms behind metabolic host-microbe interactions on the molecular level. We illustrate that constraint-based models are a useful tool for the contextualization of metabolomic measurements and can further our insight into host-microbe interactions, yielding, e.g., in potential novel drugs and biomarkers.

  13. The Human Blood Metabolome-Transcriptome Interface.

    PubMed

    Bartel, Jörg; Krumsiek, Jan; Schramm, Katharina; Adamski, Jerzy; Gieger, Christian; Herder, Christian; Carstensen, Maren; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Strauch, Konstantin; Suhre, Karsten; Kastenmüller, Gabi; Prokisch, Holger; Theis, Fabian J

    2015-06-01

    Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the 'human blood metabolome-transcriptome interface' (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease. PMID:26086077

  14. Radiation Metabolomics: Current Status and Future Directions

    PubMed Central

    Menon, Smrithi S.; Uppal, Medha; Randhawa, Subeena; Cheema, Mehar S.; Aghdam, Nima; Usala, Rachel L.; Ghosh, Sanchita P.; Cheema, Amrita K.; Dritschilo, Anatoly

    2016-01-01

    Human exposure to ionizing radiation (IR) disrupts normal metabolic processes in cells and organs by inducing complex biological responses that interfere with gene and protein expression. Conventional dosimetry, monitoring of prodromal symptoms, and peripheral lymphocyte counts are of limited value as organ- and tissue-specific biomarkers for personnel exposed to radiation, particularly, weeks or months after exposure. Analysis of metabolites generated in known stress-responsive pathways by molecular profiling helps to predict the physiological status of an individual in response to environmental or genetic perturbations. Thus, a multi-metabolite profile obtained from a high-resolution mass spectrometry-based metabolomics platform offers potential for identification of robust biomarkers to predict radiation toxicity of organs and tissues resulting from exposures to therapeutic or non-therapeutic IR. Here, we review the status of radiation metabolomics and explore applications as a standalone technology, as well as its integration in systems biology, to facilitate a better understanding of the molecular basis of radiation response. Finally, we draw attention to the identification of specific pathways that can be targeted for the development of therapeutics to alleviate or mitigate harmful effects of radiation exposure. PMID:26870697

  15. The Human Blood Metabolome-Transcriptome Interface

    PubMed Central

    Schramm, Katharina; Adamski, Jerzy; Gieger, Christian; Herder, Christian; Carstensen, Maren; Peters, Annette; Rathmann, Wolfgang; Roden, Michael; Strauch, Konstantin; Suhre, Karsten; Kastenmüller, Gabi; Prokisch, Holger; Theis, Fabian J.

    2015-01-01

    Biological systems consist of multiple organizational levels all densely interacting with each other to ensure function and flexibility of the system. Simultaneous analysis of cross-sectional multi-omics data from large population studies is a powerful tool to comprehensively characterize the underlying molecular mechanisms on a physiological scale. In this study, we systematically analyzed the relationship between fasting serum metabolomics and whole blood transcriptomics data from 712 individuals of the German KORA F4 cohort. Correlation-based analysis identified 1,109 significant associations between 522 transcripts and 114 metabolites summarized in an integrated network, the ‘human blood metabolome-transcriptome interface’ (BMTI). Bidirectional causality analysis using Mendelian randomization did not yield any statistically significant causal associations between transcripts and metabolites. A knowledge-based interpretation and integration with a genome-scale human metabolic reconstruction revealed systematic signatures of signaling, transport and metabolic processes, i.e. metabolic reactions mainly belonging to lipid, energy and amino acid metabolism. Moreover, the construction of a network based on functional categories illustrated the cross-talk between the biological layers at a pathway level. Using a transcription factor binding site enrichment analysis, this pathway cross-talk was further confirmed at a regulatory level. Finally, we demonstrated how the constructed networks can be used to gain novel insights into molecular mechanisms associated to intermediate clinical traits. Overall, our results demonstrate the utility of a multi-omics integrative approach to understand the molecular mechanisms underlying both normal physiology and disease. PMID:26086077

  16. Training in metabolomics research. I. Designing the experiment, collecting and extracting samples and generating metabolomics data.

    PubMed

    Barnes, S; Benton, H P; Casazza, K; Cooper, S J; Cui, X; Du, X; Engler, J A; Kabarowski, J H; Li, S; Pathmasiri, W; Prasain, J K; Renfrow, M B; Tiwari, H K

    2016-07-01

    Metabolomics is perhaps the most challenging of the -omics fields, given the complexity of an organism's metabolome and the rapid rate at which it changes. When one sets out to study metabolism there are numerous dynamic variables that can influence metabolism that must be considered. Recognizing the experimental challenges confronting researchers who undertake metabolism studies, workshops like the one at University of Alabama at Birmingham have been established to offer instructional guidance. A summary of the UAB course training materials is being published as a two-part Special Feature Tutorial. In this month's Part I the authors discuss details of good experimental design and sample collection and handling. In an upcoming Part II, the authors discuss in detail the various aspects of data analysis.

  17. Dissemination of metabolomics results: role of MetaboLights and COSMOS.

    PubMed

    Salek, Reza M; Haug, Kenneth; Steinbeck, Christoph

    2013-05-17

    With ever-increasing amounts of metabolomics data produced each year, there is an even greater need to disseminate data and knowledge produced in a standard and reproducible way. To assist with this a general purpose, open source metabolomics repository, MetaboLights, was launched in 2012. To promote a community standard, initially culminated as metabolomics standards initiative (MSI), COordination of Standards in MetabOlomicS (COSMOS) was introduced. COSMOS aims to link life science e-infrastructures within the worldwide metabolomics community as well as develop and maintain open source exchange formats for raw and processed data, ensuring better flow of metabolomics information.

  18. Metabolomic determinants of necrotizing enterocolitis in preterm piglets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies in premature infants and animals show that carbohydrate malabsorption and gut microbiota colonisation are key elements for triggering necrotizing enterocolitis (NEC). Our aim was to determine how dietary carbohydrate composition affects the metabolomic profile and whether unique metabolite s...

  19. Applying Metabolomics to differentiate amphibian responses to multiple stressors

    EPA Science Inventory

    Introduction/Objectives/Methods One of the biggest challenges in ecological risk assessment is determining the impact of multiple stressors on individual organisms and populations in ‘real world’ scenarios. Emerging ‘omic technologies, notably, metabolomics, pr...

  20. Interpreting Metabolomics Data to Mode of Action of Chemicals

    EPA Science Inventory

    Metabolomics approach utilizes high-throughput identification, quantification, and characterization of low molecular weight endogenous metabolites from numerous metabolic pathways. Exposure to environmental chemicals, which act through multiple mechanisms, cause perturbation of...

  1. Global metabolomic profiling targeting childhood obesity in the Hispanic population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolomics may unravel important biological pathways involved in the pathophysiology of childhood obesity. We aimed to 1) identify metabolites that differ significantly between nonobese and obese Hispanic children; 2) collapse metabolites into principal components (PCs) associated with obesity and...

  2. Is there a role for stool metabolomics in cystic fibrosis?

    PubMed

    Kaakoush, Nadeem O; Pickford, Russell; Jaffe, Adam; Ooi, Chee Y

    2016-08-01

    A number of studies utilizing metabolomics have focused on the pathophysiology of cystic fibrosis (CF) lung disease. Here, we performed fecal metabolomics on pancreatic insufficient (PI) and sufficient (PS) children with CF and compared them with healthy controls (HC). Fecal metabolomics can differentiate between PS-CF and PI-CF. We identified a potential biomarker of disease severity or cystic fibrosis transmembrane conductance regulator function (m/z, 463.247; retention time, 0.570717 min) that discriminates between HC versus PS-CF versus PI-CF. We also identified lipoyl-GMP as a potential novel inflammatory biomarker, and elevation in fecal glycerol 1,2-didodecanoate 3-tetradecanoate may provide clues to the pathogenesis of intestinal inflammation. For the first time, we demonstrate the potential applications of fecal metabolomics in CF. PMID:27553892

  3. Analysis of bacterial biofilms using NMR-based metabolomics

    PubMed Central

    Zhang, Bo; Powers, Robert

    2013-01-01

    Infectious diseases can be difficult to cure, especially if the pathogen forms a biofilm. After decades of extensive research into the morphology, physiology and genomics of biofilm formation, attention has recently been directed toward the analysis of the cellular metabolome in order to understand the transformation of a planktonic cell to a biofilm. Metabolomics can play an invaluable role in enhancing our understanding of the underlying biological processes related to the structure, formation and antibiotic resistance of biofilms. A systematic view of metabolic pathways or processes responsible for regulating this ‘social structure’ of microorganisms may provide critical insights into biofilm-related drug resistance and lead to novel treatments. This review will discuss the development of NMR-based metabolomics as a technology to study medically relevant biofilms. Recent advancements from case studies reviewed in this manuscript have shown the potential of metabolomics to shed light on numerous biological problems related to biofilms. PMID:22800371

  4. (Video 6 of 8) Metabolomics: You Are What You Eat

    NASA Video Gallery

    NASA’s Human Research Program releases “Metabolomics: You Are What You Eat” video to highlight its Twins Study which uses omics to study Mark and Scott Kelly’s metabolites. Omics is an evolving fie...

  5. Field-based Metabolomics for Assessing Contaminated Surface Waters

    EPA Science Inventory

    Metabolomics is becoming well-established for studying chemical contaminant-induced alterations to normal biological function. For example, the literature contains a wealth of laboratory-based studies involving analysis of samples from organisms exposed to individual chemical tox...

  6. International NMR-based Environmental Metabolomics Intercomparison Exercise

    EPA Science Inventory

    Several fundamental requirements must be met so that NMR-based metabolomics and the related technique of metabonomics can be formally adopted into environmental monitoring and chemical risk assessment. Here we report an intercomparison exercise which has evaluated the effectivene...

  7. METABOLOMICS IN SMALL FISH TOXICOLOGY AND ECOLOGICAL RISK ASSESSMENTS

    EPA Science Inventory

    The US EPA is tasked with protecting not only humans, but also ecosystems from potentially harmful effects of chemical pollutants. Although lagging behind applications targeted to human endpoints, metabolomics offers great potential in ecotoxicology. Indeed, the advantages of met...

  8. Spectral Relative Standard Deviation: A Practical Benchmark in Metabolomics

    EPA Science Inventory

    Metabolomics datasets, by definition, comprise of measurements of large numbers of metabolites. Both technical (analytical) and biological factors will induce variation within these measurements that is not consistent across all metabolites. Consequently, criteria are required to...

  9. LC-MS-based metabolomics in drug metabolism.

    PubMed

    Chen, Chi; Gonzalez, Frank J; Idle, Jeffrey R

    2007-01-01

    Xenobiotic metabolism, a ubiquitous natural response to foreign compounds, elicits initiating signals for many pathophysiological events. Currently, most widely used techniques for identifying xenobiotic metabolites and metabolic pathways are empirical and largely based on in vitro incubation assays and in vivo radiotracing experiments. Recent work in our lab has shown that LC-MS-based metabolomic techniques are useful tools for xenobiotic metabolism research since multivariate data analysis in metabolomics can significantly rationalize the processes of xenobiotic metabolite identification and metabolic pathway analysis. In this review, the technological elements of LC-MS-based metabolomics for constructing high-quality datasets and conducting comprehensive data analysis are examined. Four novel approaches of using LC-MS-based metabolomic techniques in xenobiotic metabolism research are proposed and illustrated by case studies and proof-of-concept experiments, and the perspective on their application is further discussed.

  10. METABOLOMICS AS A DIAGNOSTIC TOOL FOR SMALL FISH TOXICOLOGY RESEARCH

    EPA Science Inventory

    Metabolomics involves the application of advanced analytical and statistical tools to profile changes in levels of endogenous metabolites in tissues and biofluids resulting from disease onset or stress. While certain metabolites are being specifically targeted in these studies, w...

  11. Stable isotope-resolved metabolomics and applications for drug development

    PubMed Central

    Fan, Teresa W-M.; Lorkiewicz, Pawel; Sellers, Katherine; Moseley, Hunter N.B.; Higashi, Richard M.; Lane, Andrew N.

    2012-01-01

    Advances in analytical methodologies, principally nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS), during the last decade have made large-scale analysis of the human metabolome a reality. This is leading to the reawakening of the importance of metabolism in human diseases, particularly cancer. The metabolome is the functional readout of the genome, functional genome, and proteome; it is also an integral partner in molecular regulations for homeostasis. The interrogation of the metabolome, or metabolomics, is now being applied to numerous diseases, largely by metabolite profiling for biomarker discovery, but also in pharmacology and therapeutics. Recent advances in stable isotope tracer-based metabolomic approaches enable unambiguous tracking of individual atoms through compartmentalized metabolic networks directly in human subjects, which promises to decipher the complexity of the human metabolome at an unprecedented pace. This knowledge will revolutionize our understanding of complex human diseases, clinical diagnostics, as well as individualized therapeutics and drug response. In this review, we focus on the use of stable isotope tracers with metabolomics technologies for understanding metabolic network dynamics in both model systems and in clinical applications. Atom-resolved isotope tracing via the two major analytical platforms, NMR and MS, has the power to determine novel metabolic reprogramming in diseases, discover new drug targets, and facilitates ADME studies. We also illustrate new metabolic tracer-based imaging technologies, which enable direct visualization of metabolic processes in vivo. We further outline current practices and future requirements for biochemoinformatics development, which is an integral part of translating stable isotope-resolved metabolomics into clinical reality. PMID:22212615

  12. Metabolomics and Its Application to Acute Lung Diseases

    PubMed Central

    Stringer, Kathleen A.; McKay, Ryan T.; Karnovsky, Alla; Quémerais, Bernadette; Lacy, Paige

    2016-01-01

    Metabolomics is a rapidly expanding field of systems biology that is gaining significant attention in many areas of biomedical research. Also known as metabonomics, it comprises the analysis of all small molecules or metabolites that are present within an organism or a specific compartment of the body. Metabolite detection and quantification provide a valuable addition to genomics and proteomics and give unique insights into metabolic changes that occur in tangent to alterations in gene and protein activity that are associated with disease. As a novel approach to understanding disease, metabolomics provides a “snapshot” in time of all metabolites present in a biological sample such as whole blood, plasma, serum, urine, and many other specimens that may be obtained from either patients or experimental models. In this article, we review the burgeoning field of metabolomics in its application to acute lung diseases, specifically pneumonia and acute respiratory disease syndrome (ARDS). We also discuss the potential applications of metabolomics for monitoring exposure to aerosolized environmental toxins. Recent reports have suggested that metabolomics analysis using nuclear magnetic resonance (NMR) and mass spectrometry (MS) approaches may provide clinicians with the opportunity to identify new biomarkers that may predict progression to more severe disease, such as sepsis, which kills many patients each year. In addition, metabolomics may provide more detailed phenotyping of patient heterogeneity, which is needed to achieve the goal of precision medicine. However, although several experimental and clinical metabolomics studies have been conducted assessing the application of the science to acute lung diseases, only incremental progress has been made. Specifically, little is known about the metabolic phenotypes of these illnesses. These data are needed to substantiate metabolomics biomarker credentials so that clinicians can employ them for clinical decision

  13. The food metabolome: a window over dietary exposure.

    PubMed

    Scalbert, Augustin; Brennan, Lorraine; Manach, Claudine; Andres-Lacueva, Cristina; Dragsted, Lars O; Draper, John; Rappaport, Stephen M; van der Hooft, Justin J J; Wishart, David S

    2014-06-01

    The food metabolome is defined as the part of the human metabolome directly derived from the digestion and biotransformation of foods and their constituents. With >25,000 compounds known in various foods, the food metabolome is extremely complex, with a composition varying widely according to the diet. By its very nature it represents a considerable and still largely unexploited source of novel dietary biomarkers that could be used to measure dietary exposures with a high level of detail and precision. Most dietary biomarkers currently have been identified on the basis of our knowledge of food compositions by using hypothesis-driven approaches. However, the rapid development of metabolomics resulting from the development of highly sensitive modern analytic instruments, the availability of metabolite databases, and progress in (bio)informatics has made agnostic approaches more attractive as shown by the recent identification of novel biomarkers of intakes for fruit, vegetables, beverages, meats, or complex diets. Moreover, examples also show how the scrutiny of the food metabolome can lead to the discovery of bioactive molecules and dietary factors associated with diseases. However, researchers still face hurdles, which slow progress and need to be resolved to bring this emerging field of research to maturity. These limits were discussed during the First International Workshop on the Food Metabolome held in Glasgow. Key recommendations made during the workshop included more coordination of efforts; development of new databases, software tools, and chemical libraries for the food metabolome; and shared repositories of metabolomic data. Once achieved, major progress can be expected toward a better understanding of the complex interactions between diet and human health.

  14. Ultrasound: a subexploited tool for sample preparation in metabolomics.

    PubMed

    Luque de Castro, M D; Delgado-Povedano, M M

    2014-01-01

    Metabolomics, one of the most recently emerged "omics", has taken advantage of ultrasound (US) to improve sample preparation (SP) steps. The metabolomics-US assisted SP step binomial has experienced a dissimilar development that has depended on the area (vegetal or animal) and the SP step. Thus, vegetal metabolomics and US assisted leaching has received the greater attention (encompassing subdisciplines such as metallomics, xenometabolomics and, mainly, lipidomics), but also liquid-liquid extraction and (bio)chemical reactions in metabolomics have taken advantage of US energy. Also clinical and animal samples have benefited from US assisted SP in metabolomics studies but in a lesser extension. The main effects of US have been shortening of the time required for the given step, and/or increase of its efficiency or availability for automation; nevertheless, attention paid to potential degradation caused by US has been scant or nil. Achievements and weak points of the metabolomics-US assisted SP step binomial are discussed and possible solutions to the present shortcomings are exposed. PMID:24331041

  15. Clinical Applications of Metabolomics in Oncology: A Review

    PubMed Central

    Spratlin, Jennifer L.; Serkova, Natalie J.; Gail Eckhardt, S.

    2009-01-01

    Metabolomics, an omic science in systems biology, is the global quantitative assessment of endogenous metabolites within a biological system. Either individually or grouped as a metabolomic profile, detection of metabolites is carried out in cells, tissues, or biofluids by either nuclear magnetic resonance spectroscopy or mass spectrometry. There is potential for the metabolome to have a multitude of uses in oncology, including the early detection and diagnosis of cancer and as both a predictive and pharmacodynamic marker of drug effect. Despite this, there is lack of knowledge in the oncology community regarding metabolomics and confusion about its methodologic processes, technical challenges, and clinical applications. Metabolomics, when used as a translational research tool, can provide a link between the laboratory and clinic, particularly because metabolic and molecular imaging technologies, such as positron emission tomography and magnetic resonance spectroscopic imaging, enable the discrimination of metabolic markers noninvasively in vivo. Here, we review the current and potential applications of metabolomics, focusing on its use as a biomarker for cancer diagnosis, prognosis, and therapeutic evaluation. PMID:19147747

  16. Impact of dietary polydextrose fiber on the human gut metabolome.

    PubMed

    Lamichhane, Santosh; Yde, Christian C; Forssten, Sofia; Ouwehand, Arthur C; Saarinen, Markku; Jensen, Henrik Max; Gibson, Glenn R; Rastall, Robert; Fava, Francesca; Bertram, Hanne Christine

    2014-10-01

    The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R(2) = 0.66) and Bacteroides (R(2) = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut. PMID:25231382

  17. SMART: Statistical Metabolomics Analysis-An R Tool.

    PubMed

    Liang, Yu-Jen; Lin, Yu-Ting; Chen, Chia-Wei; Lin, Chien-Wei; Chao, Kun-Mao; Pan, Wen-Harn; Yang, Hsin-Chou

    2016-06-21

    Metabolomics data provide unprecedented opportunities to decipher metabolic mechanisms by analyzing hundreds to thousands of metabolites. Data quality concerns and complex batch effects in metabolomics must be appropriately addressed through statistical analysis. This study developed an integrated analysis tool for metabolomics studies to streamline the complete analysis flow from initial data preprocessing to downstream association analysis. We developed Statistical Metabolomics Analysis-An R Tool (SMART), which can analyze input files with different formats, visually represent various types of data features, implement peak alignment and annotation, conduct quality control for samples and peaks, explore batch effects, and perform association analysis. A pharmacometabolomics study of antihypertensive medication was conducted and data were analyzed using SMART. Neuromedin N was identified as a metabolite significantly associated with angiotensin-converting-enzyme inhibitors in our metabolome-wide association analysis (p = 1.56 × 10(-4) in an analysis of covariance (ANCOVA) with an adjustment for unknown latent groups and p = 1.02 × 10(-4) in an ANCOVA with an adjustment for hidden substructures). This endogenous neuropeptide is highly related to neurotensin and neuromedin U, which are involved in blood pressure regulation and smooth muscle contraction. The SMART software, a user guide, and example data can be downloaded from http://www.stat.sinica.edu.tw/hsinchou/metabolomics/SMART.htm .

  18. The Brain Metabolome of Male Rats across the Lifespan

    PubMed Central

    Zheng, Xiaojiao; Chen, Tianlu; Zhao, Aihua; Wang, Xiaoyan; Xie, Guoxiang; Huang, Fengjie; Liu, Jiajian; Zhao, Qing; Wang, Shouli; Wang, Chongchong; Zhou, Mingmei; Panee, Jun; He, Zhigang; Jia, Wei

    2016-01-01

    Comprehensive and accurate characterization of brain metabolome is fundamental to brain science, but has been hindered by technical limitations. We profiled the brain metabolome in male Wistar rats at different ages (day 1 to week 111) using high-sensitivity and high-resolution mass spectrometry. Totally 380 metabolites were identified and 232 of them were quantitated. Compared with anatomical regions, age had a greater effect on variations in the brain metabolome. Lipids, fatty acids and amino acids accounted for the largest proportions of the brain metabolome, and their concentrations varied across the lifespan. The levels of polyunsaturated fatty acids were higher in infancy (week 1 to week 3) compared with later ages, and the ratio of omega-6 to omega-3 fatty acids increased in the aged brain (week 56 to week 111). Importantly, a panel of 20 bile acids were quantitatively measured, most of which have not previously been documented in the brain metabolome. This study extends the breadth of the mammalian brain metabolome as well as our knowledge of functional brain development, both of which are critically important to move the brain science forward. PMID:27063670

  19. Applications of NMR-based metabolomics in biological and environmental research

    EPA Science Inventory

    As a complimentary tool to other omics platforms, metabolomics is increasingly being used by biologists to study the dynamic response of biological systems (cells, tissues, or whole organisms) under diverse physiological or pathological conditions. Metabolomics deals with the qu...

  20. Metabolomics in Small Fish Toxicology: Assessing the Impacts of Model EDCs

    EPA Science Inventory

    Although lagging behind applications targeted to human endpoints, metabolomics offers great potential in environmental applications, including ecotoxicology. Indeed, the advantages of metabolomics (relative to other ‘omic techniques) may be more tangible in ecotoxicology because...

  1. Standard Reporting Requirements for Biological Samples in Metabolomics Experiments: Environmental Context

    EPA Science Inventory

    Metabolomic technologies are increasingly being applied to study biological questions in a range of different settings from clinical through to environmental. As with other high-throughput technologies, such as those used in transcriptomics and proteomics, metabolomics continues...

  2. Metabolomics in Toxicology and Preclinical Research, a t4 Workshop Report

    EPA Science Inventory

    Metabolomics, the comprehensive analysis of metabolites in a biological system, provides detailed information about the biochemical/physiological condition of the test system, and of changes affected by anthropogenic chemicals. Metabolomic analysis is used in many fields, ranging...

  3. Metabolomics: Bridging the Gap between Pharmaceutical Development and Population Health

    PubMed Central

    Tolstikov, Vladimir

    2016-01-01

    Metabolomics has emerged as an essential tool for studying metabolic processes, stratification of patients, as well as illuminating the fundamental metabolic alterations in disease onset, progression, or response to therapeutic intervention. Metabolomics materialized within the pharmaceutical industry as a standalone assay in toxicology and disease pathology and eventually evolved towards aiding in drug discovery and pre-clinical studies via supporting pharmacokinetic and pharmacodynamic characterization of a drug or a candidate. Recent progress in the field is illustrated by coining of the new term—Pharmacometabolomics. Integration of data from metabolomics with large-scale omics along with clinical, molecular, environmental and behavioral analysis has demonstrated the enhanced utility of deconstructing the complexity of health, disease, and pharmaceutical intervention(s), which further highlight it as an essential component of systems medicine. This review presents the current state and trend of metabolomics applications in pharmaceutical development, and highlights the importance and potential of clinical metabolomics as an essential part of multi-omics protocols that are directed towards shaping precision medicine and population health. PMID:27399792

  4. Can NMR solve some significant challenges in metabolomics?

    NASA Astrophysics Data System (ADS)

    Nagana Gowda, G. A.; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory.

  5. The Progress of Metabolomics Study in Traditional Chinese Medicine Research.

    PubMed

    Wang, Pengcheng; Wang, Qiuhong; Yang, Bingyou; Zhao, Shan; Kuang, Haixue

    2015-01-01

    Traditional Chinese medicine (TCM) has played important roles in health protection and disease treatment for thousands of years in China and has gained the gradual acceptance of the international community. However, many intricate issues, which cannot be explained by traditional methods, still remain, thus, new ideas and technologies are needed. As an emerging system biology technology, the holistic view adopted by metabolomics is similar to that of TCM, which allows us to investigate TCM with complicated conditions and multiple factors in depth. In this paper, we tried to give a timely and comprehensive update about the methodology progression of metabolomics, as well as its applications, in different fields of TCM studies including quality control, processing, safety and efficacy evaluation. The herbs investigated by metabolomics were selected for detailed examination, including Anemarrhena asphodeloides Bunge, Atractylodes macrocephala Kidd, Pinellia ternate, etc.; furthermore, some valuable results have been obtained and summarized. In conclusion, although the study of metabolomics is at the early phase and requires further scrutiny and validation, it still provides bright prospects to dissect the synergistic action of multiple components from TCM. Overall, with the further development of analytical techniques, especially multi-analysis techniques, we expect that metabolomics will greatly promote TCM research and the establishment of international standards, which is beneficial to TCM modernization. PMID:26477800

  6. Can NMR solve some significant challenges in metabolomics?

    PubMed

    Nagana Gowda, G A; Raftery, Daniel

    2015-11-01

    The field of metabolomics continues to witness rapid growth driven by fundamental studies, methods development, and applications in a number of disciplines that include biomedical science, plant and nutrition sciences, drug development, energy and environmental sciences, toxicology, etc. NMR spectroscopy is one of the two most widely used analytical platforms in the metabolomics field, along with mass spectrometry (MS). NMR's excellent reproducibility and quantitative accuracy, its ability to identify structures of unknown metabolites, its capacity to generate metabolite profiles using intact bio-specimens with no need for separation, and its capabilities for tracing metabolic pathways using isotope labeled substrates offer unique strengths for metabolomics applications. However, NMR's limited sensitivity and resolution continue to pose a major challenge and have restricted both the number and the quantitative accuracy of metabolites analyzed by NMR. Further, the analysis of highly complex biological samples has increased the demand for new methods with improved detection, better unknown identification, and more accurate quantitation of larger numbers of metabolites. Recent efforts have contributed significant improvements in these areas, and have thereby enhanced the pool of routinely quantifiable metabolites. Additionally, efforts focused on combining NMR and MS promise opportunities to exploit the combined strength of the two analytical platforms for direct comparison of the metabolite data, unknown identification and reliable biomarker discovery that continue to challenge the metabolomics field. This article presents our perspectives on the emerging trends in NMR-based metabolomics and NMR's continuing role in the field with an emphasis on recent and ongoing research from our laboratory. PMID:26476597

  7. Review of mass spectrometry-based metabolomics in cancer research

    PubMed Central

    Liesenfeld, David B.; Habermann, Nina; Owen, Robert W.; Scalbert, Augustin; Ulrich, Cornelia M.

    2014-01-01

    Metabolomics, the systematic investigation of all metabolites present within a biological system, is used in biomarker development for many human diseases, including cancer. In this review we investigate the current role of mass spectrometry-based metabolomics in cancer research. A literature review was carried out within the databases PubMed, Embase and Web of Knowledge. We included 106 studies reporting on 21 different types of cancer in 7 different sample types. Metabolomics in cancer research is most often used for case-control comparisons. Secondary applications include translational areas, such as patient prognosis, therapy control and tumor classification or grading. Metabolomics is at a developmental stage with respect to epidemiology, with the majority of studies including <100 patients. Standardization is required especially concerning sample preparation and data analysis. In a second part of this review, we reconstructed a metabolic network of cancer patients by quantitatively extracting all reports of altered metabolites: Alterations in energy metabolism, membrane and fatty acid synthesis emerged, with tryptophan levels changed most frequently in various cancers. Metabolomics has the potential to evolve into a standard tool for future applications in epidemiology and translational cancer research, but further, large-scale studies including prospective validation are needed. PMID:24096148

  8. [Application of Metabolomics to Multiple Chemical Sensitivity Research].

    PubMed

    Katoh, Takahiko; Fujiwara, Yuki; Nakashita, Chihiro; Lu, Xi; Hisada, Aya; Miyazaki, Wataru; Azuma, Kenichi; Tanigawa, Mari; Uchiyama, Iwao; Kunugita, Naoki

    2016-01-01

    Multiple chemical sensitivity (MCS) is an acquired chronic disorder characterized by nonspecific symptoms in multiple organ systems associated with exposure to low-level chemicals. Diagnosis of MCS can be difficult because of the inability to assess the causal relationship between exposure and symptoms. No standardized objective measures for the identification of MCS and no precise definition of this disorder have been established. Recent technological advances in mass spectrometry have significantly improved our capacity to obtain more data from each biological sample. Metabolomics comprises the methods and techniques that are used to determine the small-level molecules in biofluids and tissues. The metabolomic profile-the metabolome-has multiple applications in many biological sciences, including the development of new diagnostic tools for medicine. We performed metabolomics to detect the difference between 9 patients with MCS and 9 controls. We identified 183 substances whose levels were beyond the normal detection limit. The most prominent differences included significant increases in the levels of both hexanoic acid and pelargonic acid, and also a significant decrease in the level of acetylcarnitine in patients with MCS. In conclusion, using metabolomics analysis, we uncovered a hitherto unrecognized alteration in the levels of metabolites in MCS. These changes may have important biological implications and may have a significant potential for use as biomarkers.

  9. Effect of acute stresses on zebra fish (Danio rerio) metabolome measured by NMR-based metabolomics.

    PubMed

    Mushtaq, Mian Yahya; Marçal, Rosilene Moretti; Champagne, Danielle L; van der Kooy, Frank; Verpoorte, Robert; Choi, Young Hae

    2014-09-01

    We applied an acute stress model to zebra fish in order to measure the changes in the metabolome due to biological stress. This was done by submitting the fish to fifteen minutes of acute confinement (netting) stress, and then five minutes for the open field and light/dark field tests. A polar extract of the zebra fish was then subjected to (1)H nuclear magnetic spectroscopy. Multivariate data analysis of the spectra showed a clear separation associated to a wide range of metabolites between zebra fish that were submitted to open field and light/dark field tests. Alanine, taurine, adenosine, creatine, lactate, and histidine were high in zebra fish to which the light/dark field test was applied, regardless of stress, while acetate and isoleucine/lipids appeared to be higher in zebra fish exposed to the open field test. These results show that any change in the environment, even for a small period of time, has a noticeable physiological impact. This research provides an insight of how different mechanisms are activated under different environments to maintain the homeostasis of the body. It should also contribute to establish zebra fish as a model for metabolomics studies. PMID:25098933

  10. Metabolomics in plants and humans: applications in the prevention and diagnosis of diseases.

    PubMed

    Gomez-Casati, Diego F; Zanor, Maria I; Busi, María V

    2013-01-01

    In the recent years, there has been an increase in the number of metabolomic approaches used, in parallel with proteomic and functional genomic studies. The wide variety of chemical types of metabolites available has also accelerated the use of different techniques in the investigation of the metabolome. At present, metabolomics is applied to investigate several human diseases, to improve their diagnosis and prevention, and to design better therapeutic strategies. In addition, metabolomic studies are also being carried out in areas such as toxicology and pharmacology, crop breeding, and plant biotechnology. In this review, we emphasize the use and application of metabolomics in human diseases and plant research to improve human health.

  11. Radiation metabolomics and its potential in biodosimetry

    PubMed Central

    Coy, Stephen L.; Cheema, Amrita K.; Tyburski, John B.; Laiakis, Evagelia C.; Collins, Sean P.; Fornace, Albert J.

    2013-01-01

    Purpose Radiation exposure triggers a complex network of molecular and cellular responses that impacts metabolic processes and alters the levels of metabolites. Such metabolites have potential as biomarkers for radiation dosimetry. This review provides an overview of radiation signalling and metabolism, of metabolomic approaches used in the discovery phase, and of instrumentation with the potential to assess radiation injury in the field. Approach Recent developments in fast, high-resolution chromatography and mass spectrometry and new data analysis methods allow the quantitative assessment of thousands of metabolites based on biofluids obtained non-invasively. This complex analysis leads to the discovery-phase identification of groups of metabolites useful for screening and biodosimetry by targeted quantitative measurement. Instrumentation for target analysis can be simpler than that used for discovery, so we examine current technologies based on ion mobility. Conclusions Recent published results and ongoing studies examine the complex changes in the levels of many metabolites caused by radiation exposure, and identify groups of small-molecule biomarkers for radiation biodosimetry. Based on results showing separation orthogonal to mass, chemical noise suppression, and high sensitivity, differential mobility mass spectrometry (DMS-MS) ion mobility spectrometry appears highly promising for the development of deployable instrumentation. PMID:21692691

  12. The Siderophore Metabolome of Azotobacter vinelandii

    PubMed Central

    Baars, Oliver; Zhang, Xinning

    2015-01-01

    In this study, we performed a detailed characterization of the siderophore metabolome, or “chelome,” of the agriculturally important and widely studied model organism Azotobacter vinelandii. Using a new high-resolution liquid chromatography-mass spectrometry (LC-MS) approach, we found over 35 metal-binding secondary metabolites, indicative of a vast chelome in A. vinelandii. These include vibrioferrin, a siderophore previously observed only in marine bacteria. Quantitative analyses of siderophore production during diazotrophic growth with different sources and availabilities of Fe showed that, under all tested conditions, vibrioferrin was present at the highest concentration of all siderophores and suggested new roles for vibrioferrin in the soil environment. Bioinformatic searches confirmed the capacity for vibrioferrin production in Azotobacter spp. and other bacteria spanning multiple phyla, habitats, and lifestyles. Moreover, our studies revealed a large number of previously unreported derivatives of all known A. vinelandii siderophores and rationalized their origins based on genomic analyses, with implications for siderophore diversity and evolution. Together, these insights provide clues as to why A. vinelandii harbors multiple siderophore biosynthesis gene clusters. Coupled with the growing evidence for alternative functions of siderophores, the vast chelome in A. vinelandii may be explained by multiple, disparate evolutionary pressures that act on siderophore production. PMID:26452553

  13. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  14. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science

    PubMed Central

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality. PMID:27258266

  15. Mass spectrometry as a quantitative tool in plant metabolomics.

    PubMed

    Jorge, Tiago F; Mata, Ana T; António, Carla

    2016-10-28

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'.

  16. Plant Metabolomics: An Indispensable System Biology Tool for Plant Science.

    PubMed

    Hong, Jun; Yang, Litao; Zhang, Dabing; Shi, Jianxin

    2016-01-01

    As genomes of many plant species have been sequenced, demand for functional genomics has dramatically accelerated the improvement of other omics including metabolomics. Despite a large amount of metabolites still remaining to be identified, metabolomics has contributed significantly not only to the understanding of plant physiology and biology from the view of small chemical molecules that reflect the end point of biological activities, but also in past decades to the attempts to improve plant behavior under both normal and stressed conditions. Hereby, we summarize the current knowledge on the genetic and biochemical mechanisms underlying plant growth, development, and stress responses, focusing further on the contributions of metabolomics to practical applications in crop quality improvement and food safety assessment, as well as plant metabolic engineering. We also highlight the current challenges and future perspectives in this inspiring area, with the aim to stimulate further studies leading to better crop improvement of yield and quality.

  17. Metabolomics in the Rhizosphere: Tapping into Belowground Chemical Communication.

    PubMed

    van Dam, Nicole M; Bouwmeester, Harro J

    2016-03-01

    The rhizosphere is densely populated with a variety of organisms. Interactions between roots and rhizosphere community members are mostly achieved via chemical communication. Root exudates contain an array of primary and secondary plant metabolites that can attract, deter, or kill belowground insect herbivores, nematodes, and microbes, and inhibit competing plants. Metabolomics of root exudates can potentially help us to better understand this chemical dialogue. The main limitations are the proper sampling of the exudate, the sensitivity of the metabolomics platforms, and the multivariate data analysis to identify causal relations. Novel technologies may help to generate a spatially explicit metabolome of the root and its exudates at a scale that is relevant for the rhizosphere community.

  18. Nutritional metabolomics: Progress in addressing complexity in diet and health

    PubMed Central

    Jones, Dean P.; Park, Youngja; Ziegler, Thomas R.

    2013-01-01

    Nutritional metabolomics is rapidly maturing to use small molecule chemical profiling to support integration of diet and nutrition in complex biosystems research. These developments are critical to facilitate transition of nutritional sciences from population-based to individual-based criteria for nutritional research, assessment and management. This review addresses progress in making these approaches manageable for nutrition research. Important concept developments concerning the exposome, predictive health and complex pathobiology, serve to emphasize the central role of diet and nutrition in integrated biosystems models of health and disease. Improved analytic tools and databases for targeted and non-targeted metabolic profiling, along with bioinformatics, pathway mapping and computational modeling, are now used for nutrition research on diet, metabolism, microbiome and health associations. These new developments enable metabolome-wide association studies (MWAS) and provide a foundation for nutritional metabolomics, along with genomics, epigenomics and health phenotyping, to support integrated models required for personalized diet and nutrition forecasting. PMID:22540256

  19. Unintended effects in genetically modified crops: revealed by metabolomics?

    PubMed

    Rischer, Heiko; Oksman-Caldentey, Kirsi-Marja

    2006-03-01

    In Europe the commercialization of food derived from genetically modified plants has been slow because of the complex regulatory process and the concerns of consumers. Risk assessment is focused on potential adverse effects on humans and the environment, which could result from unintended effects of genetic modifications: unintended effects are connected to changes in metabolite levels in the plants. One of the major challenges is how to analyze the overall metabolite composition of GM plants in comparison to conventional cultivars, and one possible solution is offered by metabolomics. The ultimate aim of metabolomics is the identification and quantification of all small molecules in an organism; however, a single method enabling complete metabolome analysis does not exist. Given a comprehensive extraction method, a hierarchical strategy--starting with global fingerprinting and followed by complementary profiling attempts--is the most logical and economic approach to detect unintended effects in GM crops.

  20. Analyzing methods for path mining with applications in metabolomics.

    PubMed

    Tagore, Somnath; Chowdhury, Nirmalya; De, Rajat K

    2014-01-25

    Metabolomics is one of the key approaches of systems biology that consists of studying biochemical networks having a set of metabolites, enzymes, reactions and their interactions. As biological networks are very complex in nature, proper techniques and models need to be chosen for their better understanding and interpretation. One of the useful strategies in this regard is using path mining strategies and graph-theoretical approaches that help in building hypothetical models and perform quantitative analysis. Furthermore, they also contribute to analyzing topological parameters in metabolome networks. Path mining techniques can be based on grammars, keys, patterns and indexing. Moreover, they can also be used for modeling metabolome networks, finding structural similarities between metabolites, in-silico metabolic engineering, shortest path estimation and for various graph-based analysis. In this manuscript, we have highlighted some core and applied areas of path-mining for modeling and analysis of metabolic networks. PMID:24230973

  1. Metabolome progression during early gut microbial colonization of gnotobiotic mice

    PubMed Central

    Marcobal, Angela; Yusufaly, Tahir; Higginbottom, Steven; Snyder, Michael; Sonnenburg, Justin L.; Mias, George I.

    2015-01-01

    The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology. PMID:26118551

  2. Serum Metabolomics in Rats after Acute Paraquat Poisoning.

    PubMed

    Wang, Zhiyi; Ma, Jianshe; Zhang, Meiling; Wen, Congcong; Huang, Xueli; Sun, Fa; Wang, Shuanghu; Hu, Lufeng; Lin, Guanyang; Wang, Xianqin

    2015-01-01

    Paraquat is one of the most widely used herbicides in the world and is highly toxic to humans and animals. In this study, we developed a serum metabolomic method based on GC/MS to evaluate the effects of acute paraquat poisoning on rats. Pattern recognition analysis, including both principal component analysis and partial least squares-discriminate analysis revealed that acute paraquat poisoning induced metabolic perturbations. Compared with the control group, the level of octadecanoic acid, L-serine, L-threonine, L-valine, and glycerol in the acute paraquat poisoning group (36 mg/kg) increased, while the levels of hexadecanoic acid, D-galactose, and decanoic acid decreased. These findings provide an overview of systematic responses to paraquat exposure and metabolomic insight into the toxicological mechanism of paraquat. Our results indicate that metabolomic methods based on GC/MS may be useful to elucidate the mechanism of acute paraquat poisoning through the exploration of biomarkers. PMID:26133715

  3. Profiling the reactive metabolites of xenobiotics using metabolomic technologies.

    PubMed

    Li, Feng; Lu, Jie; Ma, Xiaochao

    2011-05-16

    A predominant pathway of xenobiotic-induced toxicity is initiated by bioactivation. Characterizing reactive intermediates will provide information on the structure of reactive species, thereby defining a potential bioactivation mechanism. Because most reactive metabolites are not stable, it is difficult to detect them directly. Reactive metabolites can form adducts with trapping reagents, such as glutathione, which makes the reactive metabolites detectable. However, it is challenging to "fish" these adducts out from a complex biological matrix, especially for adducts generated via uncommon metabolic pathways. In this regard, we developed a novel approach based upon metabolomic technologies to screen trapped reactive metabolites. The bioactivation of pulegone, acetaminophen, and clozapine were reexamined by using this metabolomic approach. In all these cases, a large number of trapped reactive metabolites were readily identified. These data indicate that this metabolomic approach is an efficient tool to profile xenobiotic bioactivation.

  4. Metabolomics-Based Methods for Early Disease Diagnostics: A Review

    PubMed Central

    Nagana Gowda, G. A.; Zhang, Shucha; Gu, Haiwei; Asiago, Vincent; Shanaiah, Narasimhamurthy; Raftery, Daniel

    2013-01-01

    The emerging field of “metabolomics,” in which a large number of small molecule metabolites from body fluids or tissues are detected quantitatively in a single step, promises immense potential for early diagnosis, therapy monitoring and for understanding the pathogenesis of many diseases. Metabolomics methods are mostly focused on the information rich analytical techniques of nuclear magnetic resonance (NMR) spectroscopy and mass spectrometry (MS). Analysis of the data from these high-resolution methods using advanced chemometric approaches provides a powerful platform for translational and clinical research, and diagnostic applications. In this review, the current trends and recent advances in NMR- and MS-based metabolomics are described with a focus on the development of advanced NMR and MS methods, improved multivariate statistical data analysis and recent applications in the area of cancer, diabetes, inborn errors of metabolism, and cardiovascular diseases. PMID:18785810

  5. Mass spectrometry as a quantitative tool in plant metabolomics.

    PubMed

    Jorge, Tiago F; Mata, Ana T; António, Carla

    2016-10-28

    Metabolomics is a research field used to acquire comprehensive information on the composition of a metabolite pool to provide a functional screen of the cellular state. Studies of the plant metabolome include the analysis of a wide range of chemical species with very diverse physico-chemical properties, and therefore powerful analytical tools are required for the separation, characterization and quantification of this vast compound diversity present in plant matrices. In this review, challenges in the use of mass spectrometry (MS) as a quantitative tool in plant metabolomics experiments are discussed, and important criteria for the development and validation of MS-based analytical methods provided.This article is part of the themed issue 'Quantitative mass spectrometry'. PMID:27644967

  6. The Metabolomic Signature of Malignant Glioma Reflects Accelerated Anabolic Metabolism

    PubMed Central

    Chinnaiyan, Prakash; Kensicki, Elizabeth; Bloom, Gregory; Prabhu, Antony; Sarcar, Bhaswati; Kahali, Soumen; Eschrich, Steven; Qu, Xiaotao; Forsyth, Peter; Gillies, Robert

    2015-01-01

    Although considerable progress has been made toward understanding glioblastoma biology through large-scale genetic and protein expression analyses, little is known about the underlying metabolic alterations promoting their aggressive phenotype. We conducted global metabolomic profiling on patient-derived glioma specimens and identified specific metabolic programs differentiating low- and high-grade tumors, with the metabolic signature of glioblastoma reflecting accelerated anabolic metabolism. When coupled with transcriptional profiles, we identified the metabolic phenotype of the mesenchymal subtype to consist of accumulation of the glycolytic intermediate phosphoenolpyruvate and decreased pyruvate kinase activity. Unbiased hierarchical clustering of metabolomic profiles identified three subclasses, which we term energetic, anabolic, and phospholipid catabolism with prognostic relevance. These studies represent the first global metabolomic profiling of glioma, offering a previously undescribed window into their metabolic heterogeneity, and provide the requisite framework for strategies designed to target metabolism in this rapidly fatal malignancy. PMID:23026133

  7. Metabolome progression during early gut microbial colonization of gnotobiotic mice.

    PubMed

    Marcobal, Angela; Yusufaly, Tahir; Higginbottom, Steven; Snyder, Michael; Sonnenburg, Justin L; Mias, George I

    2015-01-01

    The microbiome has been implicated directly in host health, especially host metabolic processes and development of immune responses. These are particularly important in infants where the gut first begins being colonized, and such processes may be modeled in mice. In this investigation we follow longitudinally the urine metabolome of ex-germ-free mice, which are colonized with two bacterial species, Bacteroides thetaiotaomicron and Bifidobacterium longum. High-throughput mass spectrometry profiling of urine samples revealed dynamic changes in the metabolome makeup, associated with the gut bacterial colonization, enabled by our adaptation of non-linear time-series analysis to urine metabolomics data. Results demonstrate both gradual and punctuated changes in metabolite production and that early colonization events profoundly impact the nature of small molecules circulating in the host. The identified small molecules are implicated in amino acid and carbohydrate metabolic processes, and offer insights into the dynamic changes occurring during the colonization process, using high-throughput longitudinal methodology. PMID:26118551

  8. What Have Metabolomics Approaches Taught Us About Type 2 Diabetes?

    PubMed

    Gonzalez-Franquesa, Alba; Burkart, Alison M; Isganaitis, Elvira; Patti, Mary-Elizabeth

    2016-08-01

    Type 2 diabetes (T2D) is increasing worldwide, making identification of biomarkers for detection, staging, and effective prevention strategies an especially critical scientific and medical goal. Fortunately, advances in metabolomics techniques, together with improvements in bioinformatics and mathematical modeling approaches, have provided the scientific community with new tools to describe the T2D metabolome. The metabolomics signatures associated with T2D and obesity include increased levels of lactate, glycolytic intermediates, branched-chain and aromatic amino acids, and long-chain fatty acids. Conversely, tricarboxylic acid cycle intermediates, betaine, and other metabolites decrease. Future studies will be required to fully integrate these and other findings into our understanding of diabetes pathophysiology and to identify biomarkers of disease risk, stage, and responsiveness to specific treatments. PMID:27319324

  9. Genetic Influences on Metabolite Levels: A Comparison across Metabolomic Platforms.

    PubMed

    Yet, Idil; Menni, Cristina; Shin, So-Youn; Mangino, Massimo; Soranzo, Nicole; Adamski, Jerzy; Suhre, Karsten; Spector, Tim D; Kastenmüller, Gabi; Bell, Jordana T

    2016-01-01

    Metabolomic profiling is a powerful approach to characterize human metabolism and help understand common disease risk. Although multiple high-throughput technologies have been developed to assay the human metabolome, no technique is capable of capturing the entire human metabolism. Large-scale metabolomics data are being generated in multiple cohorts, but the datasets are typically profiled using different metabolomics platforms. Here, we compared analyses across two of the most frequently used metabolomic platforms, Biocrates and Metabolon, with the aim of assessing how complimentary metabolite profiles are across platforms. We profiled serum samples from 1,001 twins using both targeted (Biocrates, n = 160 metabolites) and non-targeted (Metabolon, n = 488 metabolites) mass spectrometry platforms. We compared metabolite distributions and performed genome-wide association analyses to identify shared genetic influences on metabolites across platforms. Comparison of 43 metabolites named for the same compound on both platforms indicated strong positive correlations, with few exceptions. Genome-wide association scans with high-throughput metabolic profiles were performed for each dataset and identified genetic variants at 7 loci associated with 16 unique metabolites on both platforms. The 16 metabolites showed consistent genetic associations and appear to be robustly measured across platforms. These included both metabolites named for the same compound across platforms as well as unique metabolites, of which 2 (nonanoylcarnitine (C9) [Biocrates]/Unknown metabolite X-13431 [Metabolon] and PC aa C28:1 [Biocrates]/1-stearoylglycerol [Metabolon]) are likely to represent the same or related biochemical entities. The results demonstrate the complementary nature of both platforms, and can be informative for future studies of comparative and integrative metabolomics analyses in samples profiled on different platforms. PMID:27073872

  10. Medicinal plants: a public resource for metabolomics and hypothesis development.

    PubMed

    Wurtele, Eve Syrkin; Chappell, Joe; Jones, A Daniel; Celiz, Mary Dawn; Ransom, Nick; Hur, Manhoi; Rizshsky, Ludmila; Crispin, Matthew; Dixon, Philip; Liu, Jia; P Widrlechner, Mark; Nikolau, Basil J

    2012-01-01

    Specialized compounds from photosynthetic organisms serve as rich resources for drug development. From aspirin to atropine, plant-derived natural products have had a profound impact on human health. Technological advances provide new opportunities to access these natural products in a metabolic context. Here, we describe a database and platform for storing, visualizing and statistically analyzing metabolomics data from fourteen medicinal plant species. The metabolomes and associated transcriptomes (RNAseq) for each plant species, gathered from up to twenty tissue/organ samples that have experienced varied growth conditions and developmental histories, were analyzed in parallel. Three case studies illustrate different ways that the data can be integrally used to generate testable hypotheses concerning the biochemistry, phylogeny and natural product diversity of medicinal plants. Deep metabolomics analysis of Camptotheca acuminata exemplifies how such data can be used to inform metabolic understanding of natural product chemical diversity and begin to formulate hypotheses about their biogenesis. Metabolomics data from Prunella vulgaris, a species that contains a wide range of antioxidant, antiviral, tumoricidal and anti-inflammatory constituents, provide a case study of obtaining biosystematic and developmental fingerprint information from metabolite accumulation data in a little studied species. Digitalis purpurea, well known as a source of cardiac glycosides, is used to illustrate how integrating metabolomics and transcriptomics data can lead to identification of candidate genes encoding biosynthetic enzymes in the cardiac glycoside pathway. Medicinal Plant Metabolomics Resource (MPM) [1] provides a framework for generating experimentally testable hypotheses about the metabolic networks that lead to the generation of specialized compounds, identifying genes that control their biosynthesis and establishing a basis for modeling metabolism in less studied species. The

  11. Untargeted Metabolomics To Ascertain Antibiotic Modes of Action.

    PubMed

    Vincent, Isabel M; Ehmann, David E; Mills, Scott D; Perros, Manos; Barrett, Michael P

    2016-04-01

    Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance. Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are mediated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications. Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cyclobutylmethoxy)-5'-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanidem-chlorophenylhydrazone (CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5'-deoxyadenosine. Changes to cell wall metabolites were seen in ceftazidime treatments, although other changes, presumably relating to off-target effects, dominated spectral outputs in the untargeted approach. Drugs which do not work through metabolic pathways, such as the proton carrier CCCP, have no discernible impact on the metabolome. The untargeted metabolomics approach also revealed modifications to two compounds, namely, fosmidomycin and AZ7. An untreated control was also analyzed, and changes to the metabolome were seen over 4 h, highlighting the necessity for careful controls in these types of studies. Metabolomics is a useful tool in the analysis of drug modes of action and can complement other technologies already in use. PMID:26833150

  12. Metabolomic Fingerprint of Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Zordoky, Beshay N.; Sung, Miranda M.; Ezekowitz, Justin; Mandal, Rupasri; Han, Beomsoo; Bjorndahl, Trent C.; Bouatra, Souhaila; Anderson, Todd; Oudit, Gavin Y.; Wishart, David S.; Dyck, Jason R. B.

    2015-01-01

    Background Heart failure (HF) with preserved ejection fraction (HFpEF) is increasingly recognized as an important clinical entity. Preclinical studies have shown differences in the pathophysiology between HFpEF and HF with reduced ejection fraction (HFrEF). Therefore, we hypothesized that a systematic metabolomic analysis would reveal a novel metabolomic fingerprint of HFpEF that will help understand its pathophysiology and assist in establishing new biomarkers for its diagnosis. Methods and Results Ambulatory patients with clinical diagnosis of HFpEF (n = 24), HFrEF (n = 20), and age-matched non-HF controls (n = 38) were selected for metabolomic analysis as part of the Alberta HEART (Heart Failure Etiology and Analysis Research Team) project. 181 serum metabolites were quantified by LC-MS/MS and 1H-NMR spectroscopy. Compared to non-HF control, HFpEF patients demonstrated higher serum concentrations of acylcarnitines, carnitine, creatinine, betaine, and amino acids; and lower levels of phosphatidylcholines, lysophosphatidylcholines, and sphingomyelins. Medium and long-chain acylcarnitines and ketone bodies were higher in HFpEF than HFrEF patients. Using logistic regression, two panels of metabolites were identified that can separate HFpEF patients from both non-HF controls and HFrEF patients with area under the receiver operating characteristic (ROC) curves of 0.942 and 0.981, respectively. Conclusions The metabolomics approach employed in this study identified a unique metabolomic fingerprint of HFpEF that is distinct from that of HFrEF. This metabolomic fingerprint has been utilized to identify two novel panels of metabolites that can separate HFpEF patients from both non-HF controls and HFrEF patients. Clinical Trial Registration ClinicalTrials.gov NCT02052804 PMID:26010610

  13. Overview of Mass Spectrometry-Based Metabolomics: Opportunities and Challenges

    PubMed Central

    Gowda, G.A. Nagana; Djukovic, Danijel

    2015-01-01

    The field of metabolomics has witnessed an exponential growth in the last decade driven by important applications spanning a wide range of areas in the basic and life sciences and beyond. Mass spectrometry in combination with chromatography and nuclear magnetic resonance are the two major analytical avenues for the analysis of metabolic species in complex biological mixtures. Owing to its inherent significantly higher sensitivity and fast data acquisition, MS plays an increasingly dominant role in the metabolomics field. Propelled by the need to develop simple methods to diagnose and manage the numerous and widespread human diseases, mass spectrometry has witnessed tremendous growth with advances in instrumentation, experimental methods, software, and databases. In response, the metabolomics field has moved far beyond qualitative methods and simple pattern recognition approaches to a range of global and targeted quantitative approaches that are now routinely used and provide reliable data, which instill greater confidence in the derived inferences. Powerful isotope labeling and tracing methods have become very popular. The newly emerging ambient ionization techniques such as desorption ionization and rapid evaporative ionization have allowed direct MS analysis in real time, as well as new MS imaging approaches. While the MS-based metabolomics has provided insights into metabolic pathways and fluxes, and metabolite biomarkers associated with numerous diseases, the increasing realization of the extremely high complexity of biological mixtures underscores numerous challenges including unknown metabolite identification, biomarker validation, and interlaboratory reproducibility that need to be dealt with for realization of the full potential of MS-based metabolomics. This chapter provides a glimpse at the current status of the mass spectrometry-based metabolomics field highlighting the opportunities and challenges. PMID:25270919

  14. Untargeted Metabolomics To Ascertain Antibiotic Modes of Action

    PubMed Central

    Vincent, Isabel M.; Ehmann, David E.; Mills, Scott D.; Perros, Manos

    2016-01-01

    Deciphering the mode of action (MOA) of new antibiotics discovered through phenotypic screening is of increasing importance. Metabolomics offers a potentially rapid and cost-effective means of identifying modes of action of drugs whose effects are mediated through changes in metabolism. Metabolomics techniques also collect data on off-target effects and drug modifications. Here, we present data from an untargeted liquid chromatography-mass spectrometry approach to identify the modes of action of eight compounds: 1-[3-fluoro-4-(5-methyl-2,4-dioxo-pyrimidin-1-yl)phenyl]-3-[2-(trifluoromethyl)phenyl]urea (AZ1), 2-(cyclobutylmethoxy)-5′-deoxyadenosine, triclosan, fosmidomycin, CHIR-090, carbonyl cyanide m-chlorophenylhydrazone (CCCP), 5-chloro-2-(methylsulfonyl)-N-(1,3-thiazol-2-yl)-4-pyrimidinecarboxamide (AZ7), and ceftazidime. Data analysts were blind to the compound identities but managed to identify the target as thymidylate kinase for AZ1, isoprenoid biosynthesis for fosmidomycin, acyl-transferase for CHIR-090, and DNA metabolism for 2-(cyclobutylmethoxy)-5′-deoxyadenosine. Changes to cell wall metabolites were seen in ceftazidime treatments, although other changes, presumably relating to off-target effects, dominated spectral outputs in the untargeted approach. Drugs which do not work through metabolic pathways, such as the proton carrier CCCP, have no discernible impact on the metabolome. The untargeted metabolomics approach also revealed modifications to two compounds, namely, fosmidomycin and AZ7. An untreated control was also analyzed, and changes to the metabolome were seen over 4 h, highlighting the necessity for careful controls in these types of studies. Metabolomics is a useful tool in the analysis of drug modes of action and can complement other technologies already in use. PMID:26833150

  15. [Application and research advances of metabolomics in the field of orthopedics].

    PubMed

    Sun, Zhijian; Qiu, Guixing; Zhao, Yu

    2015-06-01

    Metabolomics is a subject of systematic, qualitative and quantitative analysis of all metabolites in all organisms, which is applied to finding biomarkers and studying pathogenesis of diseases. Study procedures of metabolomics include data acquisition by spectroscopic/spectrometric techniques, multivariate statistical analysis and projection of the acquired metabolomic information. In recent years, metabolomics have gained popularity in orthopedic field. Metabolomic study of osteoarthritis was firstly conducted and widely developed. Metabolite profiles of different samples, including serum/plasma, urine, synovial fluid and synovial tissue, were studied and dozens of differential metabolites and several disturbed metabolic pathways were found. In addition, metabolomic studies of osteoporosis, ankylosing spondylitis and bone tumors were also conducted, which identified many potential biomarkers and made further understanding of pathogenesis of corresponding disease. However, metabolomic studies in orthopedic field just begin. More orthopedic diseases will be researched thank to the satisfactory results of previous reports.

  16. An emerging role for metabolomics in nutrition science.

    PubMed

    Astarita, Giuseppe; Langridge, James

    2013-01-01

    Nutritional research is undergoing a remarkable transformation driven by new technological tools. Because of the complexity of the components present in food and how they may interact with the biochemical networks of living organisms, nutrition cannot be considered a reductionist discipline. More holistic approaches, which are capable of gathering comprehensive, high-throughput amounts of data, appear to best enhance our understanding of the role of food in health and disease. In this context, global metabolite analysis, or 'metabolomics', is becoming an appealing research tool for nutrigenomics and nutrigenetics scientists. The purpose of the present review is to highlight some potential applications of metabolomics in nutrition research.

  17. Omics-Based Biomarkers: Application of Metabolomics in Neuropsychiatric Disorders

    PubMed Central

    Sethi, Sumit

    2016-01-01

    One of the major concerns of modern society is to identify putative biomarkers that serve as a valuable early diagnostic tool to identify a subset of patients with increased risk to develop neuropsychiatric disorders. Biomarker identification in neuropsychiatric disorders is proposed to offer a number of important benefits to patient well-being, including prediction of forthcoming disease, diagnostic precision, and a level of disease description that would guide treatment choice. Nowadays, the metabolomics approach has unlocked new possibilities in diagnostics of devastating disorders like neuropsychiatric disorders. Metabolomics-based technologies have the potential to map early biochemical changes in disease and hence provide an opportunity to develop predictive biomarkers that can be used as indicators of pathological abnormalities prior to development of clinical symptoms of neuropsychiatric disorders. This review highlights different -omics strategies for biomarker discovery in neuropsychiatric disorders. We also highlight initial outcomes from metabolomics studies in psychiatric disorders such as schizophrenia, bipolar disorder, and addictive disorders. This review will also present issues and challenges regarding the implementation of the metabolomics approach as a routine diagnostic tool in the clinical laboratory in context with neuropsychiatric disorders. PMID:26453695

  18. Metabolomics of aging assessed in individual parasitoid wasps

    PubMed Central

    Kapranas, Apostolos; Snart, Charles J. P.; Williams, Huw; Hardy, Ian C. W.; Barrett, David A.

    2016-01-01

    Metabolomics studies of low-biomass organisms, such as small insects, have previously relied on the pooling of biological samples to overcome detection limits, particularly using NMR. We show that the differentiation of metabolite profiles of individual 1 mg parasitoid wasps of different ages is possible when using a modified sample preparation and a combination of untargeted NMR and LC-MS based metabolomics. Changes were observed between newly emerged and older wasps in glycerolipids, amino acids and circulatory sugars. This advance in chemical profiling has important implications for the study of the behaviour and ecology of parasitoids and many other species of small organisms because predictions and observations are typically made at the level of the individual. Thus, the metabolomic state of low-biomass individuals can now be related to their behaviour and ecological performance. We discuss specifically the utility of age-related metabolomic profiling but our new approach can be applied to a wide range of biological research. PMID:27713504

  19. Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies.

    PubMed

    Treutler, Hendrik; Tsugawa, Hiroshi; Porzel, Andrea; Gorzolka, Karin; Tissier, Alain; Neumann, Steffen; Balcke, Gerd Ulrich

    2016-08-16

    The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS(1) abundances and MS/MS spectra, the identification of regulated metabolite families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics. We implemented our approach in the web application "MetFamily", which is freely available at http://msbi.ipb-halle.de/MetFamily/ . MetFamily provides a dynamic link between the patterns based on MS(1)-signal intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint examination with principal component analysis of MS(1) patterns, where this annotation is preserved in the loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications and with NMR. PMID:27452369

  20. Improved drug therapy: triangulating phenomics with genomics and metabolomics

    PubMed Central

    2014-01-01

    Embracing the complexity of biological systems has a greater likelihood to improve prediction of clinical drug response. Here we discuss limitations of a singular focus on genomics, epigenomics, proteomics, transcriptomics, metabolomics, or phenomics—highlighting the strengths and weaknesses of each individual technique. In contrast, ‘systems biology’ is proposed to allow clinicians and scientists to extract benefits from each technique, while limiting associated weaknesses by supplementing with other techniques when appropriate. Perfect predictive modeling is not possible, whereas modeling of intertwined phenomic responses using genomic stratification with metabolomic modifications may greatly improve predictive values for drug therapy. We thus propose a novel-integrated approach to personalized medicine that begins with phenomic data, is stratified by genomics, and ultimately refined by metabolomic pathway data. Whereas perfect prediction of efficacy and safety of drug therapy is not possible, improvements can be achieved by embracing the complexity of the biological system. Starting with phenomics, the combination of linking metabolomics to identify common biologic pathways and then stratifying by genomic architecture, might increase predictive values. This systems biology approach has the potential, in specific subsets of patients, to avoid drug therapy that will be either ineffective or unsafe. PMID:25181945

  1. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate.

    PubMed

    Misra, Biswapriya B; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage.

  2. METABOLOMIC STUDIES OF ENDOCRINE DISRUPTION IN SMALL FISH MODELS

    EPA Science Inventory

    Metabolomics is now being widely used to obtain complementary information to genomic and proteomic studies. To better understand temporal, compensatory and dose responses to endocrine-disrupting chemicals (EDCs) within the hypothalamic-pituitary¬gonadal (HPG) axis, we have carrie...

  3. Improved drug therapy: triangulating phenomics with genomics and metabolomics.

    PubMed

    Monte, Andrew A; Brocker, Chad; Nebert, Daniel W; Gonzalez, Frank J; Thompson, David C; Vasiliou, Vasilis

    2014-01-01

    Embracing the complexity of biological systems has a greater likelihood to improve prediction of clinical drug response. Here we discuss limitations of a singular focus on genomics, epigenomics, proteomics, transcriptomics, metabolomics, or phenomics-highlighting the strengths and weaknesses of each individual technique. In contrast, 'systems biology' is proposed to allow clinicians and scientists to extract benefits from each technique, while limiting associated weaknesses by supplementing with other techniques when appropriate. Perfect predictive modeling is not possible, whereas modeling of intertwined phenomic responses using genomic stratification with metabolomic modifications may greatly improve predictive values for drug therapy. We thus propose a novel-integrated approach to personalized medicine that begins with phenomic data, is stratified by genomics, and ultimately refined by metabolomic pathway data. Whereas perfect prediction of efficacy and safety of drug therapy is not possible, improvements can be achieved by embracing the complexity of the biological system. Starting with phenomics, the combination of linking metabolomics to identify common biologic pathways and then stratifying by genomic architecture, might increase predictive values. This systems biology approach has the potential, in specific subsets of patients, to avoid drug therapy that will be either ineffective or unsafe.

  4. Discovering Regulated Metabolite Families in Untargeted Metabolomics Studies.

    PubMed

    Treutler, Hendrik; Tsugawa, Hiroshi; Porzel, Andrea; Gorzolka, Karin; Tissier, Alain; Neumann, Steffen; Balcke, Gerd Ulrich

    2016-08-16

    The identification of metabolites by mass spectrometry constitutes a major bottleneck which considerably limits the throughput of metabolomics studies in biomedical or plant research. Here, we present a novel approach to analyze metabolomics data from untargeted, data-independent LC-MS/MS measurements. By integrated analysis of MS(1) abundances and MS/MS spectra, the identification of regulated metabolite families is achieved. This approach offers a global view on metabolic regulation in comparative metabolomics. We implemented our approach in the web application "MetFamily", which is freely available at http://msbi.ipb-halle.de/MetFamily/ . MetFamily provides a dynamic link between the patterns based on MS(1)-signal intensity and the corresponding structural similarity at the MS/MS level. Structurally related metabolites are annotated as metabolite families based on a hierarchical cluster analysis of measured MS/MS spectra. Joint examination with principal component analysis of MS(1) patterns, where this annotation is preserved in the loadings, facilitates the interpretation of comparative metabolomics data at the level of metabolite families. As a proof of concept, we identified two trichome-specific metabolite families from wild-type tomato Solanum habrochaites LA1777 in a fully unsupervised manner and validated our findings based on earlier publications and with NMR.

  5. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate

    PubMed Central

    Misra, Biswapriya B.; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  6. Plant metabolomics: from holistic hope, to hype, to hot topic.

    PubMed

    Hall, Robert D

    2006-01-01

    In a short time, plant metabolomics has gone from being just an ambitious concept to being a rapidly growing, valuable technology applied in the stride to gain a more global picture of the molecular organization of multicellular organisms. The combination of improved analytical capabilities with newly designed, dedicated statistical, bioinformatics and data mining strategies, is beginning to broaden the horizons of our understanding of how plants are organized and how metabolism is both controlled but highly flexible. Metabolomics is predicted to play a significant, if not indispensable role in bridging the phenotype-genotype gap and thus in assisting us in our desire for full genome sequence annotation as part of the quest to link gene to function. Plants are a fabulously rich source of diverse functional biochemicals and metabolomics is also already proving valuable in an applied context. By creating unique opportunities for us to interrogate plant systems and characterize their biochemical composition, metabolomics will greatly assist in identifying and defining much of the still unexploited biodiversity available today. PMID:16411949

  7. Plant metabolomics: from holistic hope, to hype, to hot topic.

    PubMed

    Hall, Robert D

    2006-01-01

    In a short time, plant metabolomics has gone from being just an ambitious concept to being a rapidly growing, valuable technology applied in the stride to gain a more global picture of the molecular organization of multicellular organisms. The combination of improved analytical capabilities with newly designed, dedicated statistical, bioinformatics and data mining strategies, is beginning to broaden the horizons of our understanding of how plants are organized and how metabolism is both controlled but highly flexible. Metabolomics is predicted to play a significant, if not indispensable role in bridging the phenotype-genotype gap and thus in assisting us in our desire for full genome sequence annotation as part of the quest to link gene to function. Plants are a fabulously rich source of diverse functional biochemicals and metabolomics is also already proving valuable in an applied context. By creating unique opportunities for us to interrogate plant systems and characterize their biochemical composition, metabolomics will greatly assist in identifying and defining much of the still unexploited biodiversity available today.

  8. A METABOLOMIC APPROACH TO UNDERSTANDING ENDOCRINE DISRUPTION IN FATHEAD MINNOW

    EPA Science Inventory

    Although widely used in the study of rodent toxicity responses to assess human risk, metabolomics is now finding utility in toxicity assessments in a wide variety of other organisms including environmentally relevant small fish species such as fathead minnow (FHM) and medaka. To...

  9. Nuclear magnetic resonance metabolomics of iron deficiency in soybean leaves

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Iron (Fe) deficiency is an important agricultural concern leading to lower yields and crop quality. A better understanding of the condition, at the metabolome level, could contribute to the design of strategies to ameliorate Fe deficiency problems. Fe-sufficient and Fe-deficient soybean leaf extract...

  10. Metabolomic approach for improving ethanol stress tolerance in Saccharomyces cerevisiae.

    PubMed

    Ohta, Erika; Nakayama, Yasumune; Mukai, Yukio; Bamba, Takeshi; Fukusaki, Eiichiro

    2016-04-01

    The budding yeast Saccharomyces cerevisiae is widely used for brewing and ethanol production. The ethanol sensitivity of yeast cells is still a serious problem during ethanol fermentation, and a variety of genetic approaches (e.g., random mutant screening under selective pressure of ethanol) have been developed to improve ethanol tolerance. In this study, we developed a strategy for improving ethanol tolerance of yeast cells based on metabolomics as a high-resolution quantitative phenotypic analysis. We performed gas chromatography-mass spectrometry analysis to identify and quantify 36 compounds on 14 mutant strains including knockout strains for transcription factor and metabolic enzyme genes. A strong relation between metabolome of these mutants and their ethanol tolerance was observed. Data mining of the metabolomic analysis showed that several compounds (such as trehalose, valine, inositol and proline) contributed highly to ethanol tolerance. Our approach successfully detected well-known ethanol stress related metabolites such as trehalose and proline thus, to further prove our strategy, we focused on valine and inositol as the most promising target metabolites in our study. Our results show that simultaneous deletion of LEU4 and LEU9 (leading to accumulation of valine) or INM1 and INM2 (leading to reduction of inositol) significantly enhanced ethanol tolerance. This study shows the potential of the metabolomic approach to identify target genes for strain improvement of S. cerevisiae with higher ethanol tolerance.

  11. Metabolomic Analysis in Brain Research: Opportunities and Challenges.

    PubMed

    Vasilopoulou, Catherine G; Margarity, Marigoula; Klapa, Maria I

    2016-01-01

    Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results. PMID:27252656

  12. APPLICATION OF METABOLOMICS FOR IMPROVING ECOLOGICAL EXPOSURE AND RISK ASSESSMENTS

    EPA Science Inventory

    We have developed a research program in metabolomics that involves numerous partners across EPA, other federal labs, academia, and the private sector. A primary goal is to develop metabolite-based markers that can be used by EPA in ecological exposure and risk assessments. We are...

  13. Metabolomic Analysis in Brain Research: Opportunities and Challenges

    PubMed Central

    Vasilopoulou, Catherine G.; Margarity, Marigoula; Klapa, Maria I.

    2016-01-01

    Metabolism being a fundamental part of molecular physiology, elucidating the structure and regulation of metabolic pathways is crucial for obtaining a comprehensive perspective of cellular function and understanding the underlying mechanisms of its dysfunction(s). Therefore, quantifying an accurate metabolic network activity map under various physiological conditions is among the major objectives of systems biology in the context of many biological applications. Especially for CNS, metabolic network activity analysis can substantially enhance our knowledge about the complex structure of the mammalian brain and the mechanisms of neurological disorders, leading to the design of effective therapeutic treatments. Metabolomics has emerged as the high-throughput quantitative analysis of the concentration profile of small molecular weight metabolites, which act as reactants and products in metabolic reactions and as regulatory molecules of proteins participating in many biological processes. Thus, the metabolic profile provides a metabolic activity fingerprint, through the simultaneous analysis of tens to hundreds of molecules of pathophysiological and pharmacological interest. The application of metabolomics is at its standardization phase in general, and the challenges for paving a standardized procedure are even more pronounced in brain studies. In this review, we support the value of metabolomics in brain research. Moreover, we demonstrate the challenges of designing and setting up a reliable brain metabolomic study, which, among other parameters, has to take into consideration the sex differentiation and the complexity of brain physiology manifested in its regional variation. We finally propose ways to overcome these challenges and design a study that produces reproducible and consistent results. PMID:27252656

  14. Fully Bayesian Analysis of High-throughput Targeted Metabolomics Assays

    EPA Science Inventory

    High-throughput metabolomic assays that allow simultaneous targeted screening of hundreds of metabolites have recently become available in kit form. Such assays provide a window into understanding changes to biochemical pathways due to chemical exposure or disease, and are usefu...

  15. [Metabolomics in ischaemic stroke, new diagnostic and prognostic biomarkers].

    PubMed

    Mauri-Capdevila, Gerard; Jove, Mariona; Suarez-Luis, Idalmis; Portero-Otin, Manuel; Purroy, Francisco

    2013-07-01

    The study of biomarkers related with ischaemic stroke is becoming increasingly more important as a way to further our knowledge of the pathophysiological changes that occur in cerebrovascular disease and to make it easier to reach an early diagnosis. Within this field, metabolomics offers a novel approach. The field is defined as the study of the small-molecule metabolites derived from cell metabolism. Its interest lies in the fact that, using a biological sample, it offers a snapshot of the cellular changes that are taking place. Today, the application of metabolomics requires a complex methodology that includes the application of laboratory separation techniques, multivariant statistical analyses and the use of bioinformatic tools. A number of studies conducted within the field of cardiovascular disease have focused on the application of this approach. In recent years there has been a steady growth in the number of publications referring to the metabolic changes related with ischaemic stroke, both in animal models and in patients. Metabolomics makes it possible to obtain the profiles of metabolites that identify patients who have suffered an ischaemic stroke. Furthermore, since studies have been carried out that relate certain metabolites with the most common causations of ischaemic stroke, metabolomics may eventually play a significant role in the study of cryptogenic stroke. The most exhaustive knowledge of the changes in the metabolic pathways involved in cerebrovascular disease could lay the foundations for the development of new neuroprotector strategies.

  16. The nutritional phenotype in the age of metabolomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The concept of the nutritional phenotype is proposed as a defined and integrated set of genetic, proteomic, metabolomic, functional, and behavioral factors that, when measured, form the basis for assessment of human nutritional status. The nutritional phenotype integrates the effects of diet on dise...

  17. Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone.

    PubMed

    Watkins, Steven M; Reifsnyder, Peter R; Pan, Huei-ju; German, J Bruce; Leiter, Edward H

    2002-11-01

    Successful therapy for chronic diseases must normalize a targeted aspect of metabolism without disrupting the regulation of other metabolic pathways essential for maintaining health. Use of a limited number of single molecule surrogates for disease, or biomarkers, to monitor the efficacy of a therapy may fail to predict undesirable side effects. In this study, a comprehensive metabolomic assessment of lipid metabolites was employed to determine the specific effects of the peroxisome proliferator-activated receptor gamma (PPARgamma) agonist rosiglitazone on structural lipid metabolism in a new mouse model of Type 2 diabetes. Dietary supplementation with rosiglitazone (200 mg/kg diet) suppressed Type 2 diabetes in obese (NZO x NON)F1 male mice, but chronic treatment markedly exacerbated hepatic steatosis. The metabolomic data revealed that rosiglitazone i) induced hypolipidemia (by dysregulating liver-plasma lipid exchange), ii) induced de novo fatty acid synthesis, iii) decreased the biosynthesis of lipids within the peroxisome, iv) substantially altered free fatty acid and cardiolipin metabolism in heart, and v) elicited an unusual accumulation of polyunsaturated fatty acids within adipose tissue. These observations suggest that the phenotypes induced by rosiglitazone are mediated by multiple tissue-specific metabolic variables. Because many of the effects of rosiglitazone on tissue metabolism were reflected in the plasma lipid metabolome, metabolomics has excellent potential for developing clinical assessments of metabolic response to drug therapy. PMID:12401879

  18. Computational Tools for the Secondary Analysis of Metabolomics Experiments

    PubMed Central

    Booth, Sean C.; Weljie, Aalim M.; Turner, Raymond J.

    2013-01-01

    Metabolomics experiments have become commonplace in a wide variety of disciplines. By identifying and quantifying metabolites researchers can achieve a systems level understanding of metabolism. These studies produce vast swaths of data which are often only lightly interpreted due to the overwhelmingly large amount of variables that are measured. Recently, a number of computational tools have been developed which enable much deeper analysis of metabolomics data. These data have been difficult to interpret as understanding the connections between dozens of altered metabolites has often relied on the biochemical knowledge of researchers and their speculations. Modern biochemical databases provide information about the interconnectivity of metabolism which can be automatically polled using metabolomics secondary analysis tools. Starting with lists of altered metabolites, there are two main types of analysis: enrichment analysis computes which metabolic pathways have been significantly altered whereas metabolite mapping contextualizes the abundances and significances of measured metabolites into network visualizations. Many different tools have been developed for one or both of these applications. In this review the functionality and use of these software is discussed. Together these novel secondary analysis tools will enable metabolomics researchers to plumb the depths of their data and produce farther reaching biological conclusions than ever before. PMID:24688685

  19. Advances in metabolomic applications in plant genetics and breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolomics is a systems biology discipline wherein abundances of endogenous metabolites from biological samples are identified and quantitatively measured across a large range of metabolites and/or a large number of samples. Since all developmental, physiological and response to the environment ph...

  20. Metabolomics: Insulin Resistance and Type 2 Diabetes Mellitus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Type 2 diabetes mellitus (T2DM) develops over many years, providing an opportunity to consider early prognostic tools that guide interventions to thwart disease. Advancements in analytical chemistry enable quantitation of hundreds of metabolites in biofluids and tissues (metabolomics), providing in...

  1. Impact of Intestinal Microbiota on Intestinal Luminal Metabolome

    PubMed Central

    Matsumoto, Mitsuharu; Kibe, Ryoko; Ooga, Takushi; Aiba, Yuji; Kurihara, Shin; Sawaki, Emiko; Koga, Yasuhiro; Benno, Yoshimi

    2012-01-01

    Low–molecular-weight metabolites produced by intestinal microbiota play a direct role in health and disease. In this study, we analyzed the colonic luminal metabolome using capillary electrophoresis mass spectrometry with time-of-flight (CE-TOFMS) —a novel technique for analyzing and differentially displaying metabolic profiles— in order to clarify the metabolite profiles in the intestinal lumen. CE-TOFMS identified 179 metabolites from the colonic luminal metabolome and 48 metabolites were present in significantly higher concentrations and/or incidence in the germ-free (GF) mice than in the Ex-GF mice (p < 0.05), 77 metabolites were present in significantly lower concentrations and/or incidence in the GF mice than in the Ex-GF mice (p < 0.05), and 56 metabolites showed no differences in the concentration or incidence between GF and Ex-GF mice. These indicate that intestinal microbiota highly influenced the colonic luminal metabolome and a comprehensive understanding of intestinal luminal metabolome is critical for clarifying host-intestinal bacterial interactions. PMID:22724057

  2. Metabolomic Responses of Guard Cells and Mesophyll Cells to Bicarbonate.

    PubMed

    Misra, Biswapriya B; de Armas, Evaldo; Tong, Zhaohui; Chen, Sixue

    2015-01-01

    Anthropogenic CO2 presently at 400 ppm is expected to reach 550 ppm in 2050, an increment expected to affect plant growth and productivity. Paired stomatal guard cells (GCs) are the gate-way for water, CO2, and pathogen, while mesophyll cells (MCs) represent the bulk cell-type of green leaves mainly for photosynthesis. We used the two different cell types, i.e., GCs and MCs from canola (Brassica napus) to profile metabolomic changes upon increased CO2 through supplementation with bicarbonate (HCO3-). Two metabolomics platforms enabled quantification of 268 metabolites in a time-course study to reveal short-term responses. The HCO3- responsive metabolomes of the cell types differed in their responsiveness. The MCs demonstrated increased amino acids, phenylpropanoids, redox metabolites, auxins and cytokinins, all of which were decreased in GCs in response to HCO3-. In addition, the GCs showed differential increases of primary C-metabolites, N-metabolites (e.g., purines and amino acids), and defense-responsive pathways (e.g., alkaloids, phenolics, and flavonoids) as compared to the MCs, indicating differential C/N homeostasis in the cell-types. The metabolomics results provide insights into plant responses and crop productivity under future climatic changes where elevated CO2 conditions are to take center-stage. PMID:26641455

  3. Metabolomics of Apc Min/+ mice genetically susceptible to intestinal cancer

    PubMed Central

    2014-01-01

    Background To determine how diets high in saturated fat could increase polyp formation in the mouse model of intestinal neoplasia, Apc Min/+ , we conducted large-scale metabolome analysis and association study of colon and small intestine polyp formation from plasma and liver samples of Apc Min/+ vs. wild-type littermates, kept on low vs. high-fat diet. Label-free mass spectrometry was used to quantify untargeted plasma and acyl-CoA liver compounds, respectively. Differences in contrasts of interest were analyzed statistically by unsupervised and supervised modeling approaches, namely Principal Component Analysis and Linear Model of analysis of variance. Correlation between plasma metabolite concentrations and polyp numbers was analyzed with a zero-inflated Generalized Linear Model. Results Plasma metabolome in parallel to promotion of tumor development comprises a clearly distinct profile in Apc Min/+ mice vs. wild type littermates, which is further altered by high-fat diet. Further, functional metabolomics pathway and network analyses in Apc Min/+ mice on high-fat diet revealed associations between polyp formation and plasma metabolic compounds including those involved in amino-acids metabolism as well as nicotinamide and hippuric acid metabolic pathways. Finally, we also show changes in liver acyl-CoA profiles, which may result from a combination of Apc Min/+ -mediated tumor progression and high fat diet. The biological significance of these findings is discussed in the context of intestinal cancer progression. Conclusions These studies show that high-throughput metabolomics combined with appropriate statistical modeling and large scale functional approaches can be used to monitor and infer changes and interactions in the metabolome and genome of the host under controlled experimental conditions. Further these studies demonstrate the impact of diet on metabolic pathways and its relation to intestinal cancer progression. Based on our results, metabolic signatures

  4. Developing Urinary Metabolomic Signatures as Early Bladder Cancer Diagnostic Markers

    PubMed Central

    Shen, Chong; Sun, Zeyu; Chen, Deying; Su, Xiaoling; Jiang, Jing; Li, Gonghui; Lin, Biaoyang

    2015-01-01

    Abstract Early detection is vital to improve the overall survival rate of bladder cancer (BCa) patients, yet there is a lack of a reliable urine-based assay for early detection of BCa. Urine metabolites represented a potential rich source of biomarkers for BCa. This study aimed to develop a metabolomics approach for high coverage discovery and identification of metabolites in urine samples. Urine samples from 23 early stage BCa patients and 21 healthy volunteers with minimum sample preparations were analyzed by a short 30 min UPLC-HRMS method. We detected and quantified over 9000 unique UPLC-HRMS features, which is more than four times than about 2000 features detected in previous urine metabolomic studies. Furthermore, multivariate OPLS-DA classification models were established to differentiate urine samples from bladder cancer cohort and normal health cohort. We identified three BCa-upregulated metabolites: nicotinuric acid, trehalose, AspAspGlyTrp, and three BCa-downregulated metabolites: inosinic acid, ureidosuccinic acid, GlyCysAlaLys. Finally, analysis of six post-surgery BCa urine samples showed that these BCa-metabolomic features reverted to normal state after tumor removal, suggesting that they reflected metabolomic features associated with BCa. ROC analyses using two linear regression models to combine the identified markers showed a high diagnostic performance for detecting BCa with AUC (area under the ROC curve) values of 0.919 to 0.934. In summary, we developed a high coverage metabolomic approach that has potential for biomarker discovery in cancers. PMID:25562196

  5. Metabolomics of AS-1 RBC storage

    PubMed Central

    Roback, John D.; Josephson, Cassandra D.; Waller, Edmund K.; Newman, James L.; Karatela, Sulaiman; Uppal, Karan; Jones, Dean; Zimring, James C.; Dumont, Larry J.

    2014-01-01

    Background Population based investigations suggest that red blood cells (RBCs) are therapeutically effective when collected, processed and stored for up to 42 days under validated conditions prior to transfusion. However, some retrospective clinical studies have shown worse patient outcomes when transfused RBCs have been stored for the longest times. Furthermore, studies of RBC persistence in the circulation after transfusion have suggested that considerable donor-to-donor variability exists, and may affect transfusion efficacy. To understand the limitations of current blood storage technologies and to develop approaches to improve RBC storage and transfusion efficacy, we investigated the global metabolic alterations that occur when RBCs are stored in AS-1 (AS1-RBC). Methods Leukoreduced AS1-RBC units prepared from 9 volunteer research donors (12 total donated units) were serially sampled for metabolomics analysis over 42 days of refrigerated storage. Samples were tested by GC/MS and LC/MS/MS, and specific biochemical compounds were identified by comparison to a library of purified standards. Results Over three experiments, 185–264 defined metabolites were quantified in stored RBC samples. Kinetic changes in these biochemicals confirmed known alterations in glycolysis and other pathways previously identified in RBCs stored in SAGM (SAGM-RBC). Furthermore, we identified additional alterations not previously seen in SAGM-RBCs (e.g., stable pentose phosphate pathway flux, progressive decreases in oxidized glutathione), and we delineated changes occurring in other metabolic pathways not previously studied (e.g., S-adenosyl methionine cycle). These data are presented in the context of a detailed comparison with previous studies of SAGM-RBCs from human donors and murine AS1-RBCs. Conclusion Global metabolic profiling of AS1-RBCs revealed a number of biochemical alterations in stored blood that may affect RBC viability during storage as well as therapeutic effectiveness

  6. The Role of Metabolomics in the Study of Cancer Biomarkers and in the Development of Diagnostic Tools.

    PubMed

    Trezzi, Jean-Pierre; Vlassis, Nikos; Hiller, Karsten

    2015-01-01

    This chapter introduces the emerging field of metabolomics and its application in the context of cancer biomarker research. Taking advantage of modern high-throughput technologies, and enhanced computational power, metabolomics has a high potential for cancer biomarker identification and the development of diagnostic tools. This chapter describes current metabolomics technologies used in cancer research, starting with metabolomics sample preparation, elaborating on current analytical methodologies for metabolomics measurement and introducing existing software for data analysis. The last part of this chapter deals with the statistical analysis of very large metabolomics datasets and their relevance for cancer biomarker identification.

  7. NMR-based metabolomics reveals urinary metabolome modifications in female Sprague-Dawley rats by cranberry procyanidins.

    PubMed

    Liu, Haiyan; Tayyari, Fariba; Edison, Arthur S; Su, Zhihua; Gu, Liwei

    2016-08-01

    A (1)H NMR global metabolomics approach was used to investigate the urinary metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) or partially purified apple procyanidins (PPAP). After collecting 24-h baseline urine, 24 female Sprague-Dawley rats were randomly separated into two groups and gavaged with PPCP or PPAP twice using a dose of 250 mg extracts per kilogram body weight. The 24-h urine samples were collected after the gavage. Urine samples were analyzed using (1)H NMR. Multivariate analyses showed that the urinary metabolome in rats was modified after administering PPCP or PPAP compared to baseline urine metabolic profiles. 2D (1)H-(13)C HSQC NMR was conducted to assist identification of discriminant metabolites. An increase of hippurate, lactate and succinate and a decrease of citrate and α-ketoglutarate were observed in rat urine after administering PPCP. Urinary levels of d-glucose, d-maltose, 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid, formate and phenol increased but citrate, α-ketoglutarate and creatinine decreased in rats after administering PPAP. Furthermore, the NMR analysis showed that the metabolome in the urine of rats administered with PPCP differed from those gavaged with PPAP. Compared to PPAP, PPCP caused an increase of urinary excretion of hippurate but a decrease of 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid and phenol. These metabolome changes caused by cranberry procyanidins may help to explain its reported health benefits and identify biomarkers of cranberry procyanidin intake. PMID:27309592

  8. NMR-based metabolomics reveals urinary metabolome modifications in female Sprague-Dawley rats by cranberry procyanidins.

    PubMed

    Liu, Haiyan; Tayyari, Fariba; Edison, Arthur S; Su, Zhihua; Gu, Liwei

    2016-08-01

    A (1)H NMR global metabolomics approach was used to investigate the urinary metabolome changes in female rats gavaged with partially purified cranberry procyanidins (PPCP) or partially purified apple procyanidins (PPAP). After collecting 24-h baseline urine, 24 female Sprague-Dawley rats were randomly separated into two groups and gavaged with PPCP or PPAP twice using a dose of 250 mg extracts per kilogram body weight. The 24-h urine samples were collected after the gavage. Urine samples were analyzed using (1)H NMR. Multivariate analyses showed that the urinary metabolome in rats was modified after administering PPCP or PPAP compared to baseline urine metabolic profiles. 2D (1)H-(13)C HSQC NMR was conducted to assist identification of discriminant metabolites. An increase of hippurate, lactate and succinate and a decrease of citrate and α-ketoglutarate were observed in rat urine after administering PPCP. Urinary levels of d-glucose, d-maltose, 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid, formate and phenol increased but citrate, α-ketoglutarate and creatinine decreased in rats after administering PPAP. Furthermore, the NMR analysis showed that the metabolome in the urine of rats administered with PPCP differed from those gavaged with PPAP. Compared to PPAP, PPCP caused an increase of urinary excretion of hippurate but a decrease of 3-(3'-hydroxyphenyl)-3-hydroxypropanoic acid, p-hydroxyphenylacetic acid and phenol. These metabolome changes caused by cranberry procyanidins may help to explain its reported health benefits and identify biomarkers of cranberry procyanidin intake.

  9. Analytical methods in untargeted metabolomics: state of the art in 2015.

    PubMed

    Alonso, Arnald; Marsal, Sara; Julià, Antonio

    2015-01-01

    Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile - the metabolome - has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance and mass spectrometry are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review, we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high-throughput biotechnologies is also reviewed.

  10. Metabolomics: a state-of-the-art technology for better understanding of male infertility.

    PubMed

    Minai-Tehrani, A; Jafarzadeh, N; Gilany, K

    2016-08-01

    Male factor infertility affects approximately half of the infertile couples, in spite of many years of research on male infertility treatment and diagnosis; several outstanding questions remain to be addressed. In this regard, metabolomics as a novel field of omics has been suggested to be applied for male infertility problems. A variety of terms associated with metabolite quantity and quality have been established to demonstrate mixtures of metabolites. Despite metabolomics and metabolite analyses have been around more than decades, a limited number of studies concerning male infertility have been carried out. In this review, we summarised the latest finding in metabolomics techniques and metabolomics biomarkers correlated with male infertility. The rapid progress of a variety of metabolomics platforms, such as nonoptical and optical spectroscopy, could ease separation, recognition, classification and quantification of several metabolites and their metabolic pathways. Here, we recommend that the novel biomarkers determined in the course of metabolomics analysis may stand for potential application of treatment and future clinical practice.

  11. Analytical Methods in Untargeted Metabolomics: State of the Art in 2015

    PubMed Central

    Alonso, Arnald; Marsal, Sara; Julià, Antonio

    2015-01-01

    Metabolomics comprises the methods and techniques that are used to measure the small molecule composition of biofluids and tissues, and is actually one of the most rapidly evolving research fields. The determination of the metabolomic profile – the metabolome – has multiple applications in many biological sciences, including the developing of new diagnostic tools in medicine. Recent technological advances in nuclear magnetic resonance and mass spectrometry are significantly improving our capacity to obtain more data from each biological sample. Consequently, there is a need for fast and accurate statistical and bioinformatic tools that can deal with the complexity and volume of the data generated in metabolomic studies. In this review, we provide an update of the most commonly used analytical methods in metabolomics, starting from raw data processing and ending with pathway analysis and biomarker identification. Finally, the integration of metabolomic profiles with molecular data from other high-throughput biotechnologies is also reviewed. PMID:25798438

  12. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement.

    PubMed

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T; Weckwerth, Wolfram; Varshney, Rajeev K

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several

  13. Proteomics and Metabolomics: Two Emerging Areas for Legume Improvement

    PubMed Central

    Ramalingam, Abirami; Kudapa, Himabindu; Pazhamala, Lekha T.; Weckwerth, Wolfram; Varshney, Rajeev K.

    2015-01-01

    The crop legumes such as chickpea, common bean, cowpea, peanut, pigeonpea, soybean, etc. are important sources of nutrition and contribute to a significant amount of biological nitrogen fixation (>20 million tons of fixed nitrogen) in agriculture. However, the production of legumes is constrained due to abiotic and biotic stresses. It is therefore imperative to understand the molecular mechanisms of plant response to different stresses and identify key candidate genes regulating tolerance which can be deployed in breeding programs. The information obtained from transcriptomics has facilitated the identification of candidate genes for the given trait of interest and utilizing them in crop breeding programs to improve stress tolerance. However, the mechanisms of stress tolerance are complex due to the influence of multi-genes and post-transcriptional regulations. Furthermore, stress conditions greatly affect gene expression which in turn causes modifications in the composition of plant proteomes and metabolomes. Therefore, functional genomics involving various proteomics and metabolomics approaches have been obligatory for understanding plant stress tolerance. These approaches have also been found useful to unravel different pathways related to plant and seed development as well as symbiosis. Proteome and metabolome profiling using high-throughput based systems have been extensively applied in the model legume species, Medicago truncatula and Lotus japonicus, as well as in the model crop legume, soybean, to examine stress signaling pathways, cellular and developmental processes and nodule symbiosis. Moreover, the availability of protein reference maps as well as proteomics and metabolomics databases greatly support research and understanding of various biological processes in legumes. Protein-protein interaction techniques, particularly the yeast two-hybrid system have been advantageous for studying symbiosis and stress signaling in legumes. In this review, several

  14. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry.

    PubMed

    Spur, Eva-Margarete; Decelle, Emily A; Cheng, Leo L

    2013-07-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases.

  15. Metabolomic Imaging of Prostate Cancer with Magnetic Resonance Spectroscopy and Mass Spectrometry

    PubMed Central

    Spur, Eva-Margarete; Decelle, Emily A.; Cheng, Leo L.

    2013-01-01

    Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized non-invasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth for newly biopsy-diagnosed, asymptomatic PCa patients. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, the study of PCa metabolomics is mainly accomplished utilizing magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness non-invasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be possible not only with PCa, but applied to different tissues and organs to evaluate other human malignancies or metabolic diseases. PMID:23549758

  16. Metabolomics of Δ9-tetrahydrocannabinol: implications in toxicity.

    PubMed

    Dinis-Oliveira, Ricardo Jorge

    2016-01-01

    Cannabis sativa is the most commonly used recreational drug, Δ(9)-tetrahydrocannabinol (Δ(9)-THC) being the main addictive compound. Biotransformation of cannabinoids is an important field of xenobiochemistry and toxicology and the study of the metabolism can lead to the discovery of new compounds, unknown metabolites with unique structures and new therapeutic effects. The pharmacokinetics of Δ(9)-THC is dependent on multiple factors such as physical/chemical form, route of administration, genetics, and concurrent consumption of alcohol. This review aims to discuss metabolomics of Δ(9)-THC, namely by presenting all known metabolites of Δ(9)-THC described both in vitro and in vivo, and their roles in the Δ(9)-THC-mediated toxic effects. Since medicinal use is increasing, metabolomics of Δ(9)-THC will also be discussed in order to uncover potential active metabolites that can be made available for this purpose. PMID:26828228

  17. Human gut microbes impact host serum metabolome and insulin sensitivity.

    PubMed

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn; Hyotylainen, Tuulia; Nielsen, Trine; Jensen, Benjamin A H; Forslund, Kristoffer; Hildebrand, Falk; Prifti, Edi; Falony, Gwen; Le Chatelier, Emmanuelle; Levenez, Florence; Doré, Joel; Mattila, Ismo; Plichta, Damian R; Pöhö, Päivi; Hellgren, Lars I; Arumugam, Manimozhiyan; Sunagawa, Shinichi; Vieira-Silva, Sara; Jørgensen, Torben; Holm, Jacob Bak; Trošt, Kajetan; Kristiansen, Karsten; Brix, Susanne; Raes, Jeroen; Wang, Jun; Hansen, Torben; Bork, Peer; Brunak, Søren; Oresic, Matej; Ehrlich, S Dusko; Pedersen, Oluf

    2016-07-21

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders. PMID:27409811

  18. Human gut microbes impact host serum metabolome and insulin sensitivity.

    PubMed

    Pedersen, Helle Krogh; Gudmundsdottir, Valborg; Nielsen, Henrik Bjørn; Hyotylainen, Tuulia; Nielsen, Trine; Jensen, Benjamin A H; Forslund, Kristoffer; Hildebrand, Falk; Prifti, Edi; Falony, Gwen; Le Chatelier, Emmanuelle; Levenez, Florence; Doré, Joel; Mattila, Ismo; Plichta, Damian R; Pöhö, Päivi; Hellgren, Lars I; Arumugam, Manimozhiyan; Sunagawa, Shinichi; Vieira-Silva, Sara; Jørgensen, Torben; Holm, Jacob Bak; Trošt, Kajetan; Kristiansen, Karsten; Brix, Susanne; Raes, Jeroen; Wang, Jun; Hansen, Torben; Bork, Peer; Brunak, Søren; Oresic, Matej; Ehrlich, S Dusko; Pedersen, Oluf

    2016-07-21

    Insulin resistance is a forerunner state of ischaemic cardiovascular disease and type 2 diabetes. Here we show how the human gut microbiome impacts the serum metabolome and associates with insulin resistance in 277 non-diabetic Danish individuals. The serum metabolome of insulin-resistant individuals is characterized by increased levels of branched-chain amino acids (BCAAs), which correlate with a gut microbiome that has an enriched biosynthetic potential for BCAAs and is deprived of genes encoding bacterial inward transporters for these amino acids. Prevotella copri and Bacteroides vulgatus are identified as the main species driving the association between biosynthesis of BCAAs and insulin resistance, and in mice we demonstrate that P. copri can induce insulin resistance, aggravate glucose intolerance and augment circulating levels of BCAAs. Our findings suggest that microbial targets may have the potential to diminish insulin resistance and reduce the incidence of common metabolic and cardiovascular disorders.

  19. Metabolome Consistency: Additional Parazoanthines from the Mediterranean Zoanthid Parazoanthus Axinellae

    PubMed Central

    Audoin, Coralie; Cocandeau, Vincent; Thomas, Olivier P.; Bruschini, Adrien; Holderith, Serge; Genta-Jouve, Grégory

    2014-01-01

    Ultra-high pressure liquid chromatography coupled to high resolution mass spectrometry (UHPLC-MS/MS) analysis of the organic extract obtained from the Mediterranean zoanthid Parazoanthus axinellae yielded to the identification of five new parazoanthines F-J. The structures were fully determined by comparison of fragmentation patterns with those of previously isolated parazoathines and MS/MS spectra simulation of in silico predicted compounds according to the metabolome consistency. The absolute configuration of the new compounds has been assigned using on-line electronic circular dichroism (UHPLC-ECD). We thus demonstrated the potential of highly sensitive hyphenated techniques to characterize the structures of a whole family of natural products within the metabolome of a marine species. Minor compounds can be characterized using these techniques thus avoiding long isolation processes that may alter the structure of the natural products. These results are also of interest to identify putative bioactive compounds present at low concentration in a complex mixture. PMID:24957034

  20. Metabolomic analysis of bronchoalveolar lavage fluid from cystic fibrosis patients

    PubMed Central

    Wolak, Justyna E.; Esther, Charles R.; O’Connell, Thomas M.

    2013-01-01

    Metabolite profiles of bronchoalveolar lavage fluid (BALF) from pediatric patients with cystic fibrosis (CF) were correlated to the degree of airway inflammation using nuclear magnetic resonance spectroscopy-based metabolomics. BALF was collected from 11 children with CF during clinically indicated bronchoscopy. The spectra from BALF with high levels of neutrophilic airway inflammation displayed signals from numerous metabolites, whereas the spectra from subjects with low levels of inflammation were very sparse. The metabolites identified in samples taken from subjects with high inflammation include known markers of inflammation such as amino acids and lactate, as well as many novel signals. Statistical analysis highlighted the most important metabolites that distinguished the high- from the low-inflammation groups. This first demonstration of metabolomics of human BALF shows that clear distinctions in the metabolic profiles can be observed between subjects experiencing high versus low inflammation and is a first step toward the goal of discovering novel biomarkers of airway inflammation. PMID:19283525

  1. The MetaboLights repository: curation challenges in metabolomics

    PubMed Central

    Salek, Reza M.; Haug, Kenneth; Conesa, Pablo; Hastings, Janna; Williams, Mark; Mahendraker, Tejasvi; Maguire, Eamonn; González-Beltrán, Alejandra N.; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Steinbeck, Christoph

    2013-01-01

    MetaboLights is the first general-purpose open-access curated repository for metabolomic studies, their raw experimental data and associated metadata, maintained by one of the major open-access data providers in molecular biology. Increases in the number of depositions, number of samples per study and the file size of data submitted to MetaboLights present a challenge for the objective of ensuring high-quality and standardized data in the context of diverse metabolomic workflows and data representations. Here, we describe the MetaboLights curation pipeline, its challenges and its practical application in quality control of complex data depositions. Database URL: http://www.ebi.ac.uk/metabolights PMID:23630246

  2. Postgenomics Diagnostics: Metabolomics Approaches to Human Blood Profiling

    PubMed Central

    Lokhov, Petr; Archakov, Alexander

    2013-01-01

    Abstract We live in exciting times with the prospects of postgenomics diagnostics. Metabolomics is a novel “omics” data-intensive science that is accelerating the development of postgenomics diagnostics, particularly with use of accessible peripheral tissue compartments. Metabolomics involves the study of a comprehensive set of low molecular weight substances (metabolites) present in biological systems. The metabolite profiles represent the molecular phenotype of biological systems and reflect the information encoded at the genomic level and implemented at the transcriptomic and proteomic levels. Analysis of the human blood metabolite profile is a universal and highly promising tool for clinical postgenomics applications because it reflects both the endogenous and exogenous (environmental) factors influencing an individual organism. This article presents a critical synthesis and original analysis of both the technical implementation of metabolic profiling of blood and statistical analysis of metabolite profiles for effective disease diagnostics and risk assessment in the present postgenomics era. PMID:24044364

  3. Metabolomic characterization of laborers exposed to welding fumes.

    PubMed

    Wang, Kuo-Ching; Kuo, Ching-Hua; Tian, Tze-Feng; Tsai, Mong-Hsun; Chiung, Yin-Mei; Hsiech, Chun-Ming; Tsai, Sung-Jeng; Wang, San-Yuan; Tsai, Dong-Ming; Huang, Chiang-Ching; Tseng, Y Jane

    2012-03-19

    The complex composition of welding fumes, multiplicity of molecular targets, diverse cellular effects, and lifestyles associated with laborers vastly complicate the assessment of welding fume exposure. The urinary metabolomic profiles of 35 male welders and 16 male office workers at a Taiwanese shipyard were characterized via (1)H NMR spectroscopy and pattern recognition methods. Blood samples for the same 51 individuals were also collected, and the expression levels of the cytokines and other inflammatory markers were examined. This study dichotomized the welding exposure variable into high (welders) versus low (office workers) exposures to examine the differences of continuous outcome markers-metabolites and inflammatory markers-between the two groups. Fume particle assessments showed that welders were exposed to different concentrations of chromium, nickel, and manganese particles. Multivariate statistical analysis of urinary metabolomic patterns showed higher levels of glycine, taurine, betaine/TMAO, serine, S-sulfocysteine, hippurate, gluconate, creatinine, and acetone and lower levels of creatine among welders, while only TNF-α was significantly associated with welding fume exposure among all cytokines and other inflammatory markers measured. Of the identified metabolites, the higher levels of glycine, taurine, and betaine among welders were suspected to play some roles in modulating inflammatory and oxidative tissue injury processes. In this metabolomics experiment, we also discovered that the association of the identified metabolites with welding exposure was confounded by smoking, but not with drinking, which is a finding consistent with known modified response of inflammatory markers among smokers. Our results correspond with prior studies that utilized nonmetabolomic analytical techniques and suggest that the metabolomic profiling is an efficient method to characterize the overall effect of welding fume exposure and other confounders.

  4. Preterm gut microbiota and metabolome following discharge from intensive care.

    PubMed

    Stewart, Christopher J; Skeath, Tom; Nelson, Andrew; Fernstad, Sara J; Marrs, Emma C L; Perry, John D; Cummings, Stephen P; Berrington, Janet E; Embleton, Nicholas D

    2015-01-01

    The development of the preterm gut microbiome is important for immediate and longer-term health following birth. We aimed to determine if modifications to the preterm gut on the neonatal intensive care unit (NICU) impacted the gut microbiota and metabolome long-term. Stool samples were collected from 29 infants ages 1-3 years post discharge (PD) from a single NICU. Additional NICU samples were included from 14/29 infants. Being diagnosed with disease or receiving increased antibiotics while on the NICU did not significantly impact the microbiome PD. Significant decreases in common NICU organisms including K. oxytoca and E. faecalis and increases in common adult organisms including Akkermansia sp., Blautia sp., and Bacteroides sp. and significantly different Shannon diversity was shown between NICU and PD samples. The metabolome increased in complexity, but while PD samples had unique bacterial profiles we observed comparable metabolomic profiles. The preterm gut microbiome is able to develop complexity comparable to healthy term infants despite limited environmental exposures, high levels of antibiotic administration, and of the presence of serious disease. Further work is needed to establish the direct effect of weaning as a key event in promoting future gut health.

  5. Current Advances in the Metabolomics Study on Lotus Seeds

    PubMed Central

    Zhu, Mingzhi; Liu, Ting; Guo, Mingquan

    2016-01-01

    Lotus (Nelumbo nucifera), which is distributed widely throughout Asia, Australia and North America, is an aquatic perennial that has been cultivated for over 2,000 years. It is very stimulating that almost all parts of lotus have been consumed as vegetable as well as food, especially the seeds. Except for the nutritive values of lotus, there has been increasing interest in its potential as functional food due to its rich secondary metabolites, such as flavonoids and alkaloids. Not only have these metabolites greatly contributed to the biological process of lotus seeds, but also have been reported to possess multiple health-promoting effects, including antioxidant, anti-amnesic, anti-inflammatory, and anti-tumor activities. Thus, comprehensive metabolomic profiling of these metabolites is of key importance to help understand their biological activities, and other chemical biology features. In this context, this review will provide an update on the current technological platforms, and workflow associated with metabolomic studies on lotus seeds, as well as insights into the application of metabolomics for the improvement of food safety and quality, assisting breeding, and promotion of the study of metabolism and pharmacokinetics of lotus seeds; meanwhile it will also help explore new perspectives and outline future challenges in this fast-growing research subject. PMID:27379154

  6. Earthworm metabolomic responses after exposure to aged PCB contaminated soils.

    PubMed

    Whitfield Åslund, Melissa; Simpson, Myrna J; Simpson, André J; Zeeb, Barbara A; Rutter, Allison

    2012-10-01

    (1)H NMR metabolomics was used to measure earthworm sub-lethal responses to polychlorinated biphenyls (PCBs) in historically contaminated (>30 years) soils (91-280 mg/kg Aroclor 1254/1260) after two and 14 days of exposure. Although our previous research detected a distinct earthworm metabolic response to PCBs in freshly spiked soil at lower concentrations (0.5-25 mg/kg Aroclor 1254), the results of this study suggest only weak or non-significant relationships between earthworm metabolic profiles and soil PCB concentrations. This concurs with the expectation that decades of contaminant aging have likely decreased PCB bioavailability and toxicity in the field. Instead of being influenced by soil contaminant concentration, earthworm metabolic profiles were more closely correlated to soil properties such as total soil carbon and soil inorganic carbon. Overall, these results suggested that (1)H NMR metabolomics may be capable of detecting both site specific responses and decreased contaminant bioavailability to earthworms after only two days of exposure, whereas traditional toxicity tests require much more time (e.g. 14 days for acute toxicity and >50 days for reproduction tests). Therefore, there is significant opportunity to develop earthworm metabolomics as a sensitive tool for rapid assessment of the toxicity associated with contaminated field soils.

  7. The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis

    PubMed Central

    Gray, Elizabeth; Larkin, James R.; Claridge, Tim D. W.; Talbot, Kevin; Sibson, Nicola R.; Turner, Martin R.

    2015-01-01

    Neurochemical biomarkers are urgently sought in ALS. Metabolomic analysis of cerebrospinal fluid (CSF) using proton nuclear magnetic resonance (1H-NMR) spectroscopy is a highly sensitive method capable of revealing nervous system cellular pathology. The 1H-NMR CSF metabolomic signature of ALS was sought in a longitudinal cohort. Six-monthly serial collection was performed in ALS patients across a range of clinical sub-types (n = 41) for up to two years, and in healthy controls at a single time-point (n = 14). A multivariate statistical approach, partial least squares discriminant analysis, was used to determine differences between the NMR spectra from patients and controls. Significantly predictive models were found using those patients with at least one year's interval between recruitment and the second sample. Glucose, lactate, citric acid and, unexpectedly, ethanol were the discriminating metabolites elevated in ALS. It is concluded that 1H-NMR captured the CSF metabolomic signature associated with derangements in cellular energy utilization connected with ALS, and was most prominent in comparisons using patients with longer disease duration. The specific metabolites identified support the concept of a hypercatabolic state, possibly involving mitochondrial dysfunction specifically. Endogenous ethanol in the CSF may be an unrecognized novel marker of neuronal tissue injury in ALS. PMID:26121274

  8. Potential of metabolomics in preclinical and clinical drug development.

    PubMed

    Kumar, Baldeep; Prakash, Ajay; Ruhela, Rakesh Kumar; Medhi, Bikash

    2014-12-01

    Metabolomics is an upcoming technology system which involves detailed experimental analysis of metabolic profiles. Due to its diverse applications in preclinical and clinical research, it became an useful tool for the drug discovery and drug development process. This review covers the brief outline about the instrumentation and interpretation of metabolic profiles. The applications of metabolomics have a considerable scope in the pharmaceutical industry, almost at each step from drug discovery to clinical development. These include finding drug target, potential safety and efficacy biomarkers and mechanisms of drug action, the validation of preclinical experimental models against human disease profiles, and the discovery of clinical safety and efficacy biomarkers. As we all know, nowadays the drug discovery and development process is a very expensive, and risky business. Failures at any stage of drug discovery and development process cost millions of dollars to the companies. Some of these failures or the associated risks could be prevented or minimized if there were better ways of drug screening, drug toxicity profiling and monitoring adverse drug reactions. Metabolomics potentially offers an effective route to address all the issues associated with the drug discovery and development. PMID:25443721

  9. Mapping Microbial Response Metabolomes for Induced Natural Product Discovery.

    PubMed

    Derewacz, Dagmara K; Covington, Brett C; McLean, John A; Bachmann, Brian O

    2015-09-18

    Intergeneric microbial interactions may originate a significant fraction of secondary metabolic gene regulation in nature. Herein, we expose a genomically characterized Nocardiopsis strain, with untapped polyketide biosynthetic potential, to intergeneric interactions via coculture with low inoculum exposure to Escherichia, Bacillus, Tsukamurella, and Rhodococcus. The challenge-induced responses of extracted metabolites were characterized via multivariate statistical and self-organizing map (SOM) analyses, revealing the magnitude and selectivity engendered by the limiting case of low inoculum exposure. The collected inventory of cocultures revealed substantial metabolomic expansion in comparison to monocultures with nearly 14% of metabolomic features in cocultures undetectable in monoculture conditions and many features unique to coculture genera. One set of SOM-identified responding features was isolated, structurally characterized by multidimensional NMR, and revealed to comprise previously unreported polyketides containing an unusual pyrrolidinol substructure and moderate and selective cytotoxicity. Designated ciromicin A and B, they are detected across mixed cultures with intergeneric preferences under coculture conditions. The structural novelty of ciromicin A is highlighted by its ability to undergo a diastereoselective photochemical 12-π electron rearrangement to ciromicin B at visible wavelengths. This study shows how organizing trends in metabolomic responses under coculture conditions can be harnessed to characterize multipartite cultures and identify previously silent secondary metabolism. PMID:26039241

  10. Solid-phase microextraction and the human fecal VOC metabolome.

    PubMed

    Dixon, Emma; Clubb, Cynthia; Pittman, Sara; Ammann, Larry; Rasheed, Zeehasham; Kazmi, Nazia; Keshavarzian, Ali; Gillevet, Pat; Rangwala, Huzefa; Couch, Robin D

    2011-01-01

    The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein. PMID:21494609

  11. Solid-Phase Microextraction and the Human Fecal VOC Metabolome

    PubMed Central

    Dixon, Emma; Clubb, Cynthia; Pittman, Sara; Ammann, Larry; Rasheed, Zeehasham; Kazmi, Nazia; Keshavarzian, Ali; Gillevet, Pat; Rangwala, Huzefa; Couch, Robin D.

    2011-01-01

    The diagnostic potential and health implications of volatile organic compounds (VOCs) present in human feces has begun to receive considerable attention. Headspace solid-phase microextraction (SPME) has greatly facilitated the isolation and analysis of VOCs from human feces. Pioneering human fecal VOC metabolomic investigations have utilized a single SPME fiber type for analyte extraction and analysis. However, we hypothesized that the multifarious nature of metabolites present in human feces dictates the use of several diverse SPME fiber coatings for more comprehensive metabolomic coverage. We report here an evaluation of eight different commercially available SPME fibers, in combination with both GC-MS and GC-FID, and identify the 50/30 µm CAR-DVB-PDMS, 85 µm CAR-PDMS, 65 µm DVB-PDMS, 7 µm PDMS, and 60 µm PEG SPME fibers as a minimal set of fibers appropriate for human fecal VOC metabolomics, collectively isolating approximately 90% of the total metabolites obtained when using all eight fibers. We also evaluate the effect of extraction duration on metabolite isolation and illustrate that ex vivo enteric microbial fermentation has no effect on metabolite composition during prolonged extractions if the SPME is performed as described herein. PMID:21494609

  12. The Time Is Right to Focus on Model Organism Metabolomes.

    PubMed

    Edison, Arthur S; Hall, Robert D; Junot, Christophe; Karp, Peter D; Kurland, Irwin J; Mistrik, Robert; Reed, Laura K; Saito, Kazuki; Salek, Reza M; Steinbeck, Christoph; Sumner, Lloyd W; Viant, Mark R

    2016-02-15

    Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research.

  13. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome

    PubMed Central

    MacMillan, Heath A.; Knee, Jose M.; Dennis, Alice B.; Udaka, Hiroko; Marshall, Katie E.; Merritt, Thomas J. S.; Sinclair, Brent J.

    2016-01-01

    Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography – mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na+-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca2+ signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance. PMID:27357258

  14. The Time Is Right to Focus on Model Organism Metabolomes

    PubMed Central

    Edison, Arthur S.; Hall, Robert D.; Junot, Christophe; Karp, Peter D.; Kurland, Irwin J.; Mistrik, Robert; Reed, Laura K.; Saito, Kazuki; Salek, Reza M.; Steinbeck, Christoph; Sumner, Lloyd W.; Viant, Mark R.

    2016-01-01

    Model organisms are an essential component of biological and biomedical research that can be used to study specific biological processes. These organisms are in part selected for facile experimental study. However, just as importantly, intensive study of a small number of model organisms yields important synergies as discoveries in one area of science for a given organism shed light on biological processes in other areas, even for other organisms. Furthermore, the extensive knowledge bases compiled for each model organism enable systems-level understandings of these species, which enhance the overall biological and biomedical knowledge for all organisms, including humans. Building upon extensive genomics research, we argue that the time is now right to focus intensively on model organism metabolomes. We propose a grand challenge for metabolomics studies of model organisms: to identify and map all metabolites onto metabolic pathways, to develop quantitative metabolic models for model organisms, and to relate organism metabolic pathways within the context of evolutionary metabolomics, i.e., phylometabolomics. These efforts should focus on a series of established model organisms in microbial, animal and plant research. PMID:26891337

  15. The longitudinal cerebrospinal fluid metabolomic profile of amyotrophic lateral sclerosis.

    PubMed

    Gray, Elizabeth; Larkin, James R; Claridge, Tim D W; Talbot, Kevin; Sibson, Nicola R; Turner, Martin R

    2015-01-01

    Neurochemical biomarkers are urgently sought in ALS. Metabolomic analysis of cerebrospinal fluid (CSF) using proton nuclear magnetic resonance ((1)H-NMR) spectroscopy is a highly sensitive method capable of revealing nervous system cellular pathology. The (1)H-NMR CSF metabolomic signature of ALS was sought in a longitudinal cohort. Six-monthly serial collection was performed in ALS patients across a range of clinical sub-types (n = 41) for up to two years, and in healthy controls at a single time-point (n = 14). A multivariate statistical approach, partial least squares discriminant analysis, was used to determine differences between the NMR spectra from patients and controls. Significantly predictive models were found using those patients with at least one year's interval between recruitment and the second sample. Glucose, lactate, citric acid and, unexpectedly, ethanol were the discriminating metabolites elevated in ALS. It is concluded that (1)H-NMR captured the CSF metabolomic signature associated with derangements in cellular energy utilization connected with ALS, and was most prominent in comparisons using patients with longer disease duration. The specific metabolites identified support the concept of a hypercatabolic state, possibly involving mitochondrial dysfunction specifically. Endogenous ethanol in the CSF may be an unrecognized novel marker of neuronal tissue injury in ALS.

  16. Computational Metabolomics Operations at BioCyc.org.

    PubMed

    Karp, Peter D; Billington, Richard; Holland, Timothy A; Kothari, Anamika; Krummenacker, Markus; Weaver, Daniel; Latendresse, Mario; Paley, Suzanne

    2015-05-22

    BioCyc.org is a genome and metabolic pathway web portal covering 5500 organisms, including Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Escherichia coli. These organism-specific databases have undergone variable degrees of curation. The EcoCyc (Escherichia coli Encyclopedia) database is the most highly curated; its contents have been derived from 27,000 publications. The MetaCyc (Metabolic Encyclopedia) database within BioCyc is a "universal" metabolic database that describes pathways, reactions, enzymes and metabolites from all domains of life. Metabolic pathways provide an organizing framework for analyzing metabolomics data, and the BioCyc website provides computational operations for metabolomics data that include metabolite search and translation of metabolite identifiers across multiple metabolite databases. The site allows researchers to store and manipulate metabolite lists using a facility called SmartTables, which supports metabolite enrichment analysis. That analysis operation identifies metabolite sets that are statistically over-represented for the substrates of specific metabolic pathways. BioCyc also enables visualization of metabolomics data on individual pathway diagrams and on the organism-specific metabolic map diagrams that are available for every BioCyc organism. Most of these operations are available both interactively and as programmatic web services.

  17. Metabolome of human gut microbiome is predictive of host dysbiosis

    SciTech Connect

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent on its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.

  18. Metabolome of human gut microbiome is predictive of host dysbiosis

    DOE PAGES

    Larsen, Peter E.; Dai, Yang

    2015-09-14

    Background: Humans live in constant and vital symbiosis with a closely linked bacterial ecosystem called the microbiome, which influences many aspects of human health. When this microbial ecosystem becomes disrupted, the health of the human host can suffer; a condition called dysbiosis. The community compositions of human microbiomes also vary dramatically from individual to individual, and over time, making it difficult to uncover the underlying mechanisms linking the microbiome to human health. We propose that a microbiome’s interaction with its human host is not necessarily dependent upon the presence or absence of particular bacterial species, but instead is dependent onmore » its community metabolome; an emergent property of the microbiome. Results: Using data from a previously published, longitudinal study of microbiome populations of the human gut, we extrapolated information about microbiome community enzyme profiles and metabolome models. Using machine learning techniques, we demonstrated that the aggregate predicted community enzyme function profiles and modeled metabolomes of a microbiome are more predictive of dysbiosis than either observed microbiome community composition or predicted enzyme function profiles. Conclusions: Specific enzyme functions and metabolites predictive of dysbiosis provide insights into the molecular mechanisms of microbiome–host interactions. The ability to use machine learning to predict dysbiosis from microbiome community interaction data provides a potentially powerful tool for understanding the links between the human microbiome and human health, pointing to potential microbiome-based diagnostics and therapeutic interventions.« less

  19. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization

    PubMed Central

    Adkins, Daniel E.; McClay, Joseph L.; Vunck, Sarah A.; Batman, Angela M.; Vann, Robert E.; Clark, Shaunna L.; Souza, Renan P.; Crowley, James J.; Sullivan, Patrick F.; van den Oord, Edwin J.C.G.; Beardsley, Patrick M.

    2014-01-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In the present study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate < 0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent methamphetamine levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization. PMID:24034544

  20. Current Advances in the Metabolomics Study on Lotus Seeds.

    PubMed

    Zhu, Mingzhi; Liu, Ting; Guo, Mingquan

    2016-01-01

    Lotus (Nelumbo nucifera), which is distributed widely throughout Asia, Australia and North America, is an aquatic perennial that has been cultivated for over 2,000 years. It is very stimulating that almost all parts of lotus have been consumed as vegetable as well as food, especially the seeds. Except for the nutritive values of lotus, there has been increasing interest in its potential as functional food due to its rich secondary metabolites, such as flavonoids and alkaloids. Not only have these metabolites greatly contributed to the biological process of lotus seeds, but also have been reported to possess multiple health-promoting effects, including antioxidant, anti-amnesic, anti-inflammatory, and anti-tumor activities. Thus, comprehensive metabolomic profiling of these metabolites is of key importance to help understand their biological activities, and other chemical biology features. In this context, this review will provide an update on the current technological platforms, and workflow associated with metabolomic studies on lotus seeds, as well as insights into the application of metabolomics for the improvement of food safety and quality, assisting breeding, and promotion of the study of metabolism and pharmacokinetics of lotus seeds; meanwhile it will also help explore new perspectives and outline future challenges in this fast-growing research subject.

  1. Behavioral metabolomics analysis identifies novel neurochemical signatures in methamphetamine sensitization.

    PubMed

    Adkins, D E; McClay, J L; Vunck, S A; Batman, A M; Vann, R E; Clark, S L; Souza, R P; Crowley, J J; Sullivan, P F; van den Oord, E J C G; Beardsley, P M

    2013-11-01

    Behavioral sensitization has been widely studied in animal models and is theorized to reflect neural modifications associated with human psychostimulant addiction. While the mesolimbic dopaminergic pathway is known to play a role, the neurochemical mechanisms underlying behavioral sensitization remain incompletely understood. In this study, we conducted the first metabolomics analysis to globally characterize neurochemical differences associated with behavioral sensitization. Methamphetamine (MA)-induced sensitization measures were generated by statistically modeling longitudinal activity data for eight inbred strains of mice. Subsequent to behavioral testing, nontargeted liquid and gas chromatography-mass spectrometry profiling was performed on 48 brain samples, yielding 301 metabolite levels per sample after quality control. Association testing between metabolite levels and three primary dimensions of behavioral sensitization (total distance, stereotypy and margin time) showed four robust, significant associations at a stringent metabolome-wide significance threshold (false discovery rate, FDR <0.05). Results implicated homocarnosine, a dipeptide of GABA and histidine, in total distance sensitization, GABA metabolite 4-guanidinobutanoate and pantothenate in stereotypy sensitization, and myo-inositol in margin time sensitization. Secondary analyses indicated that these associations were independent of concurrent MA levels and, with the exception of the myo-inositol association, suggest a mechanism whereby strain-based genetic variation produces specific baseline neurochemical differences that substantially influence the magnitude of MA-induced sensitization. These findings demonstrate the utility of mouse metabolomics for identifying novel biomarkers, and developing more comprehensive neurochemical models, of psychostimulant sensitization.

  2. Preterm gut microbiota and metabolome following discharge from intensive care

    PubMed Central

    Stewart, Christopher J.; Skeath, Tom; Nelson, Andrew; Fernstad, Sara J.; Marrs, Emma C. L.; Perry, John D.; Cummings, Stephen P.; Berrington, Janet E.; Embleton, Nicholas D.

    2015-01-01

    The development of the preterm gut microbiome is important for immediate and longer-term health following birth. We aimed to determine if modifications to the preterm gut on the neonatal intensive care unit (NICU) impacted the gut microbiota and metabolome long-term. Stool samples were collected from 29 infants ages 1–3 years post discharge (PD) from a single NICU. Additional NICU samples were included from 14/29 infants. Being diagnosed with disease or receiving increased antibiotics while on the NICU did not significantly impact the microbiome PD. Significant decreases in common NICU organisms including K. oxytoca and E. faecalis and increases in common adult organisms including Akkermansia sp., Blautia sp., and Bacteroides sp. and significantly different Shannon diversity was shown between NICU and PD samples. The metabolome increased in complexity, but while PD samples had unique bacterial profiles we observed comparable metabolomic profiles. The preterm gut microbiome is able to develop complexity comparable to healthy term infants despite limited environmental exposures, high levels of antibiotic administration, and of the presence of serious disease. Further work is needed to establish the direct effect of weaning as a key event in promoting future gut health. PMID:26598071

  3. Cold acclimation wholly reorganizes the Drosophila melanogaster transcriptome and metabolome.

    PubMed

    MacMillan, Heath A; Knee, Jose M; Dennis, Alice B; Udaka, Hiroko; Marshall, Katie E; Merritt, Thomas J S; Sinclair, Brent J

    2016-01-01

    Cold tolerance is a key determinant of insect distribution and abundance, and thermal acclimation can strongly influence organismal stress tolerance phenotypes, particularly in small ectotherms like Drosophila. However, there is limited understanding of the molecular and biochemical mechanisms that confer such impressive plasticity. Here, we use high-throughput mRNA sequencing (RNA-seq) and liquid chromatography - mass spectrometry (LC-MS) to compare the transcriptomes and metabolomes of D. melanogaster acclimated as adults to warm (rearing) (21.5 °C) or cold conditions (6 °C). Cold acclimation improved cold tolerance and led to extensive biological reorganization: almost one third of the transcriptome and nearly half of the metabolome were differentially regulated. There was overlap in the metabolic pathways identified via transcriptomics and metabolomics, with proline and glutathione metabolism being the most strongly-supported metabolic pathways associated with increased cold tolerance. We discuss several new targets in the study of insect cold tolerance (e.g. dopamine signaling and Na(+)-driven transport), but many previously identified candidate genes and pathways (e.g. heat shock proteins, Ca(2+) signaling, and ROS detoxification) were also identified in the present study, and our results are thus consistent with and extend the current understanding of the mechanisms of insect chilling tolerance. PMID:27357258

  4. An exome array study of the plasma metabolome.

    PubMed

    Rhee, Eugene P; Yang, Qiong; Yu, Bing; Liu, Xuan; Cheng, Susan; Deik, Amy; Pierce, Kerry A; Bullock, Kevin; Ho, Jennifer E; Levy, Daniel; Florez, Jose C; Kathiresan, Sek; Larson, Martin G; Vasan, Ramachandran S; Clish, Clary B; Wang, Thomas J; Boerwinkle, Eric; O'Donnell, Christopher J; Gerszten, Robert E

    2016-01-01

    The study of rare variants may enhance our understanding of the genetic determinants of the metabolome. Here, we analyze the association between 217 plasma metabolites and exome variants on the Illumina HumanExome Beadchip in 2,076 participants in the Framingham Heart Study, with replication in 1,528 participants of the Atherosclerosis Risk in Communities Study. We identify an association between GMPS and xanthosine using single variant analysis and associations between HAL and histidine, PAH and phenylalanine, and UPB1 and ureidopropionate using gene-based tests (P<5 × 10(-8) in meta-analysis), highlighting novel coding variants that may underlie inborn errors of metabolism. Further, we show how an examination of variants across the spectrum of allele frequency highlights independent association signals at select loci and generates a more integrated view of metabolite heritability. These studies build on prior metabolomics genome wide association studies to provide a more complete picture of the genetic architecture of the plasma metabolome. PMID:27453504

  5. A Combined Metabolomic and Proteomic Analysis of Gestational Diabetes Mellitus.

    PubMed

    Hajduk, Joanna; Klupczynska, Agnieszka; Dereziński, Paweł; Matysiak, Jan; Kokot, Piotr; Nowak, Dorota M; Gajęcka, Marzena; Nowak-Markwitz, Ewa; Kokot, Zenon J

    2015-12-16

    The aim of this pilot study was to apply a novel combined metabolomic and proteomic approach in analysis of gestational diabetes mellitus. The investigation was performed with plasma samples derived from pregnant women with diagnosed gestational diabetes mellitus (n = 18) and a matched control group (n = 13). The mass spectrometry-based analyses allowed to determine 42 free amino acids and low molecular-weight peptide profiles. Different expressions of several peptides and altered amino acid profiles were observed in the analyzed groups. The combination of proteomic and metabolomic data allowed obtaining the model with a high discriminatory power, where amino acids ethanolamine, L-citrulline, L-asparagine, and peptide ions with m/z 1488.59; 4111.89 and 2913.15 had the highest contribution to the model. The sensitivity (94.44%) and specificity (84.62%), as well as the total group membership classification value (90.32%) calculated from the post hoc classification matrix of a joint model were the highest when compared with a single analysis of either amino acid levels or peptide ion intensities. The obtained results indicated a high potential of integration of proteomic and metabolomics analysis regardless the sample size. This promising approach together with clinical evaluation of the subjects can also be used in the study of other diseases.

  6. An exome array study of the plasma metabolome

    PubMed Central

    Rhee, Eugene P.; Yang, Qiong; Yu, Bing; Liu, Xuan; Cheng, Susan; Deik, Amy; Pierce, Kerry A.; Bullock, Kevin; Ho, Jennifer E.; Levy, Daniel; Florez, Jose C.; Kathiresan, Sek; Larson, Martin G.; Vasan, Ramachandran S.; Clish, Clary B.; Wang, Thomas J.; Boerwinkle, Eric; O'Donnell, Christopher J.; Gerszten, Robert E.

    2016-01-01

    The study of rare variants may enhance our understanding of the genetic determinants of the metabolome. Here, we analyze the association between 217 plasma metabolites and exome variants on the Illumina HumanExome Beadchip in 2,076 participants in the Framingham Heart Study, with replication in 1,528 participants of the Atherosclerosis Risk in Communities Study. We identify an association between GMPS and xanthosine using single variant analysis and associations between HAL and histidine, PAH and phenylalanine, and UPB1 and ureidopropionate using gene-based tests (P<5 × 10−8 in meta-analysis), highlighting novel coding variants that may underlie inborn errors of metabolism. Further, we show how an examination of variants across the spectrum of allele frequency highlights independent association signals at select loci and generates a more integrated view of metabolite heritability. These studies build on prior metabolomics genome wide association studies to provide a more complete picture of the genetic architecture of the plasma metabolome. PMID:27453504

  7. Computational Metabolomics Operations at BioCyc.org

    PubMed Central

    Karp, Peter D.; Billington, Richard; Holland, Timothy A.; Kothari, Anamika; Krummenacker, Markus; Weaver, Daniel; Latendresse, Mario; Paley, Suzanne

    2015-01-01

    BioCyc.org is a genome and metabolic pathway web portal covering 5500 organisms, including Homo sapiens, Arabidopsis thaliana, Saccharomyces cerevisiae and Escherichia coli. These organism-specific databases have undergone variable degrees of curation. The EcoCyc (Escherichia coli Encyclopedia) database is the most highly curated; its contents have been derived from 27,000 publications. The MetaCyc (Metabolic Encyclopedia) database within BioCyc is a “universal” metabolic database that describes pathways, reactions, enzymes and metabolites from all domains of life. Metabolic pathways provide an organizing framework for analyzing metabolomics data, and the BioCyc website provides computational operations for metabolomics data that include metabolite search and translation of metabolite identifiers across multiple metabolite databases. The site allows researchers to store and manipulate metabolite lists using a facility called SmartTables, which supports metabolite enrichment analysis. That analysis operation identifies metabolite sets that are statistically over-represented for the substrates of specific metabolic pathways. BioCyc also enables visualization of metabolomics data on individual pathway diagrams and on the organism-specific metabolic map diagrams that are available for every BioCyc organism. Most of these operations are available both interactively and as programmatic web services. PMID:26011592

  8. Metabolomics methods for the synthetic biology of secondary metabolism.

    PubMed

    Nguyen, Quoc-Thai; Merlo, Maria E; Medema, Marnix H; Jankevics, Andris; Breitling, Rainer; Takano, Eriko

    2012-07-16

    Many microbial secondary metabolites are of high biotechnological value for medicine, agriculture, and the food industry. Bacterial genome mining has revealed numerous novel secondary metabolite biosynthetic gene clusters, which encode the potential to synthesize a large diversity of compounds that have never been observed before. The stimulation or "awakening" of this cryptic microbial secondary metabolism has naturally attracted the attention of synthetic microbiologists, who exploit recent advances in DNA sequencing and synthesis to achieve unprecedented control over metabolic pathways. One of the indispensable tools in the synthetic biology toolbox is metabolomics, the global quantification of small biomolecules. This review illustrates the pivotal role of metabolomics for the synthetic microbiology of secondary metabolism, including its crucial role in novel compound discovery in microbes, the examination of side products of engineered metabolic pathways, as well as the identification of major bottlenecks for the overproduction of compounds of interest, especially in combination with metabolic modeling. We conclude by highlighting remaining challenges and recent technological advances that will drive metabolomics towards fulfilling its potential as a cornerstone technology of synthetic microbiology.

  9. THE ATHENS LAB'S ROLE IN EPA'S COMPUTATIONAL TOXICOLOGY PROGRAM WITH AN EMPHASIS ON METABOLOMICS AS A DIAGNOSTIC TOOL FOR TOXICOLOGY

    EPA Science Inventory

    This presentation gives a brief introduction to EPA's computational toxicology program and the Athens Lab's role in it. The talk also covered a brief introduction to metabolomics; advantages/disadvanage of metabolomics for toxicity assessment; goals of the EPA Athens metabolomics...

  10. Metabolomics study of human urinary metabolome modifications after intake of almond (Prunus dulcis (Mill.) D.A. Webb) skin polyphenols.

    PubMed

    Llorach, Rafael; Garrido, Ignacio; Monagas, Maria; Urpi-Sarda, Mireia; Tulipani, Sara; Bartolome, Begona; Andres-Lacueva, Cristina

    2010-11-01

    Almond, as a part of the nut family, is an important source of biological compounds, and specifically, almond skins have been considered an important source of polyphenols, including flavan-3-ols and flavonols. Polyphenol metabolism may produce several classes of metabolites that could often be more biologically active than their dietary precursor and could also become a robust new biomarker of almond polyphenol intake. In order to study urinary metabolome modifications during the 24 h after a single dose of almond skin extract, 24 volunteers (n = 24), who followed a polyphenol-free diet for 48 h before and during the study, ingested a dietary supplement of almond skin phenolic compounds (n = 12) or a placebo (n = 12). Urine samples were collected before ((-2)-0 h) and after (0-2 h, 2-6 h, 6-10 h, and 10-24 h) the intake and were analyzed by liquid chromatography-mass spectrometry (LC-q-TOF) and multivariate statistical analysis (principal component analysis (PCA) and orthogonal projection to latent structures (OPLS)). Putative identification of relevant biomarkers revealed a total of 34 metabolites associated with the single dose of almond extract, including host and, in particular, microbiota metabolites. As far as we know, this is the first time that conjugates of hydroxyphenylvaleric, hydroxyphenylpropionic, and hydroxyphenylacetic acids have been identified in human samples after the consumption of flavan-3-ols through a metabolomic approach. The results showed that this non-targeted approach could provide new intake biomarkers, contributing to the development of the food metabolome as an important part of the human urinary metabolome.

  11. Taking Metabolomics to the Field: A Pilot Study in a Great Lakes Area of Concern (AOC)

    EPA Science Inventory

    Measurement of changes in endogenous metabolites via 1H-NMR-based metabolomics has shown great potential for assessing organisms exposed to environmental pollutants, and thus could aid the efforts of risk assessors. However, to date, the application of metabolomics to ecologi...

  12. Impacts on the metabolome of down-regulating polyphenol oxidase in transgenic potato tubers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tubers of potato (Solanum tuberosum L. cv. Estima) genetically modified (GM) to reduce polyphenol oxidase (PPO) activity and enzymatic discolouration were assessed for changes in the metabolome using Liquid Chromatography-Mass Spectrometry (LC-MS) and Gas Chromatography (GC)-MS. Metabolome changes ...

  13. Metabolomics for phytochemical discovery: development of statistical approaches using a cranberry model system.

    PubMed

    Turi, Christina E; Finley, Jamie; Shipley, Paul R; Murch, Susan J; Brown, Paula N

    2015-04-24

    Metabolomics is the qualitative and quantitative analysis of all of the small molecules in a biological sample at a specific time and influence. Technologies for metabolomics analysis have developed rapidly as new analytical tools for chemical separations, mass spectrometry, and NMR spectroscopy have emerged. Plants have one of the largest metabolomes, and it is estimated that the average plant leaf can contain upward of 30 000 phytochemicals. In the past decade, over 1200 papers on plant metabolomics have been published. A standard metabolomics data set contains vast amounts of information and can either investigate or generate hypotheses. The key factors in using plant metabolomics data most effectively are the experimental design, authentic standard availability, extract standardization, and statistical analysis. Using cranberry (Vaccinium macrocarpon) as a model system, this review will discuss and demonstrate strategies and tools for analysis and interpretation of metabolomics data sets including eliminating false discoveries and determining significance, metabolite clustering, and logical algorithms for discovery of new metabolites and pathways. Together these metabolomics tools represent an entirely new pipeline for phytochemical discovery. PMID:25751407

  14. The sensitivity of metabolomics versus classical regulatory toxicology from a NOAEL perspective.

    PubMed

    van Ravenzwaay, B; Montoya, G A; Fabian, E; Herold, M; Krennrich, G; Looser, R; Mellert, W; Peter, E; Strauss, V; Walk, T; Kamp, H

    2014-05-16

    The identification of the no observed adverse effect level (NOAEL) is the key regulatory outcome of toxicity studies. With the introduction of "omics" technologies into toxicological research, the question arises as to how sensitive these technologies are relative to classical regulatory toxicity parameters. BASF SE and metanomics developed the in vivo metabolome database MetaMap®Tox containing metabolome data for more than 500 reference compounds. For several years metabolome analysis has been routinely performed in regulatory toxicity studies (REACH mandated testing or new compound development), mostly in the context of 28 day studies in rats (OECD 407 guideline). For those chemicals for which a toxicological NOAEL level was obtained at either high or mid-dose level, we evaluated the associated metabolome to investigate the sensitivity of metabolomics versus classical toxicology with respect to the NOAEL. For the definition of a metabolomics NOAEL the ECETOC criteria (ECETOC, 2007) were used. In this context we evaluated 104 cases. Comparable sensitivity was noted in 75% of the cases, increased sensitivity of metabolomics in 8%, and decreased sensitivity in 18% of the cases. In conclusion, these data suggest that metabolomics profiling has a similar sensitivity to the classical toxicological study (e.g. OECD 407) design. PMID:24657160

  15. Metabolomics for phytochemical discovery: development of statistical approaches using a cranberry model system.

    PubMed

    Turi, Christina E; Finley, Jamie; Shipley, Paul R; Murch, Susan J; Brown, Paula N

    2015-04-24

    Metabolomics is the qualitative and quantitative analysis of all of the small molecules in a biological sample at a specific time and influence. Technologies for metabolomics analysis have developed rapidly as new analytical tools for chemical separations, mass spectrometry, and NMR spectroscopy have emerged. Plants have one of the largest metabolomes, and it is estimated that the average plant leaf can contain upward of 30 000 phytochemicals. In the past decade, over 1200 papers on plant metabolomics have been published. A standard metabolomics data set contains vast amounts of information and can either investigate or generate hypotheses. The key factors in using plant metabolomics data most effectively are the experimental design, authentic standard availability, extract standardization, and statistical analysis. Using cranberry (Vaccinium macrocarpon) as a model system, this review will discuss and demonstrate strategies and tools for analysis and interpretation of metabolomics data sets including eliminating false discoveries and determining significance, metabolite clustering, and logical algorithms for discovery of new metabolites and pathways. Together these metabolomics tools represent an entirely new pipeline for phytochemical discovery.

  16. Think Tank on Metabolomics and Prospective Cohorts: How to Leverage Resources

    Cancer.gov

    This Think Tank identified resources that can be used collaboratively across prospective cohorts; developed strategies to leverage resources for advancing the use of metabolomics in prospective cohort studies; identified the best strategies for performing analyses using metabolomics data across multiple studies; and, established a collaborative group that will identify and tackle research projects that cannot be effectively investigated by one independent group.

  17. MetaboLights: towards a new COSMOS of metabolomics data management.

    PubMed

    Steinbeck, Christoph; Conesa, Pablo; Haug, Kenneth; Mahendraker, Tejasvi; Williams, Mark; Maguire, Eamonn; Rocca-Serra, Philippe; Sansone, Susanna-Assunta; Salek, Reza M; Griffin, Julian L

    2012-10-01

    Exciting funding initiatives are emerging in Europe and the US for metabolomics data production, storage, dissemination and analysis. This is based on a rich ecosystem of resources around the world, which has been build during the past ten years, including but not limited to resources such as MassBank in Japan and the Human Metabolome Database in Canada. Now, the European Bioinformatics Institute has launched MetaboLights, a database for metabolomics experiments and the associated metadata (http://www.ebi.ac.uk/metabolights). It is the first comprehensive, cross-species, cross-platform metabolomics database maintained by one of the major open access data providers in molecular biology. In October, the European COSMOS consortium will start its work on Metabolomics data standardization, publication and dissemination workflows. The NIH in the US is establishing 6-8 metabolomics services cores as well as a national metabolomics repository. This communication reports about MetaboLights as a new resource for Metabolomics research, summarises the related developments and outlines how they may consolidate the knowledge management in this third large omics field next to proteomics and genomics.

  18. The metabolome and transcriptome of the interaction between Ustilago maydis and Fusarium verticillioides in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The metabolome and transcriptome of the maize-infecting fungi Ustilago maydis and Fusarium verticillioides were analyzed as the two fungi interact. Both fungi were grown for seven days in liquid medium alone or together in order to study how this interaction changes their metabolomic and transcripto...

  19. NMR-BASED METABOLOMIC STUDIES OF ENDOCRINE DISRUPTION IN SMALL FISH MODELS

    EPA Science Inventory

    Metabolomics is now being widely used to obtain complementary information to genomic and proteomic studies. Among the various approaches used in metabolomics, NMR spectroscopy is particularly powerful, in part because it is relatively non-selective, and is amenable to the study o...

  20. Metabolomics for measuring phytochemicals, and assessing human and animal responses to phytochemicals, in food science.

    PubMed

    McGhie, Tony K; Rowan, Daryl D

    2012-01-01

    Metabolomics, comprehensive metabolite analysis, is finding increasing application as a tool to measure and enable the manipulation of the phytochemical content of foods, to identify the measures of dietary intake, and to understand human and animal responses to phytochemicals in the diet. Recent applications of metabolomics directed toward understanding the role of phytochemicals in food and nutrition are reviewed.

  1. Single-Cell Metabolomics: Changes in the Metabolome of Freshly Isolated and Cultured Neurons

    PubMed Central

    2012-01-01

    Metabolites are involved in a diverse range of intracellular processes, including a cell’s response to a changing extracellular environment. Using single-cell capillary electrophoresis coupled to electrospray ionization mass spectrometry, we investigated how placing individual identified neurons in culture affects their metabolic profile. First, glycerol-based cell stabilization was evaluated using metacerebral neurons from Aplysia californica; the measurement error was reduced from ∼24% relative standard deviation to ∼6% for glycerol-stabilized cells compared to those isolated without glycerol stabilization. In order to determine the changes induced by culturing, 14 freshly isolated and 11 overnight-cultured neurons of two metabolically distinct cell types from A. californica, the B1 and B2 buccal neurons, were characterized. Of the more than 300 distinctive cell-related signals detected, 35 compounds were selected for their known biological roles and compared among each measured cell. Unsupervised multivariate and statistical analysis revealed robust metabolic differences between these two identified neuron types. We then compared the changes induced by overnight culturing; metabolite concentrations were distinct for 26 compounds in the cultured B1 cells. In contrast, culturing had less influence on the metabolic profile of the B2 neurons, with only five compounds changing significantly. As a result of these culturing-induced changes, the metabolic composition of the B1 neurons became indistinguishable from the cultured B2 cells. This observation suggests that the two cell types differentially regulate their in vivo or in vitro metabolomes in response to a changing environment. PMID:23077722

  2. Teaching (and learning from) metabolomics: the 2006 PlantMetaNet ETNA Metabolomics Research School.

    PubMed

    Böttcher, Christoph; Centeno, Danilo; Freitag, Jens; Höfgen, Rainer; Köhl, Karin; Kopka, Joachim; Kroymann, Juergen; Matros, Andrea; Mock, Hans-Peter; Neumann, Stefan; Pfalz, Marina; von Roepenack-Lahaye, Edda; Schauer, Nicolas; Trenkamp, Sandra; Zurbriggen, Matias; Fernie, Alisdair R

    2008-02-01

    Under the auspices of the European Training and Networking Activity programme of the European Union, a 'Metabolic Profiling and Data Analysis' Plant Genomics and Bioinformatics Summer School was hosted in Potsdam, Germany between 20 and 29 September 2006. Sixteen early career researchers were invited from the European Union partner nations and the so-called developing nations (Appendix). Lectures from invited leading European researchers provided an overview of the state of the art of these fields and seeded discussion regarding major challenges for their future advancement. Hands-on experience was provided by an example experiment - that of defining the metabolic response of Arabidopsis to treatment of a commercial herbicide of defined mode of action. This experiment was performed throughout the duration of the course in order to teach the concepts underlying extraction and machine handling as well as to provide a rich data set with which the required computation and statistical skills could be illustrated. Here we review the state of the field by describing both key lectures given at and practical aspects taught at the summer school. In addition, we disclose results that were obtained using the four distinct technical platforms at the different participating institutes. While the effects of the chosen herbicide are well documented, this study looks at a broader number of metabolites than in previous investigations. This allowed, on the one hand, not only to characterise further effects of the herbicide than previously observed but also to detect molecules other than the herbicide that were obviously present in the commercial formulation. These data and the workshop in general are all discussed in the context of the teaching of metabolomics.

  3. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    PubMed

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.

  4. Stable isotope-labeling studies in metabolomics: new insights into structure and dynamics of metabolic networks

    PubMed Central

    Chokkathukalam, Achuthanunni; Kim, Dong-Hyun; Barrett, Michael P; Breitling, Rainer; Creek, Darren J

    2014-01-01

    The rapid emergence of metabolomics has enabled system-wide measurements of metabolites in various organisms. However, advances in the mechanistic understanding of metabolic networks remain limited, as most metabolomics studies cannot routinely provide accurate metabolite identification, absolute quantification and flux measurement. Stable isotope labeling offers opportunities to overcome these limitations. Here we describe some current approaches to stable isotope-labeled metabolomics and provide examples of the significant impact that these studies have had on our understanding of cellular metabolism. Furthermore, we discuss recently developed software solutions for the analysis of stable isotope-labeled metabolomics data and propose the bioinformatics solutions that will pave the way for the broader application and optimal interpretation of system-scale labeling studies in metabolomics. PMID:24568354

  5. Aqueous and lipid nuclear magnetic resonance metabolomic profiles of the earthworm Aporrectodea caliginosa show potential as an indicator species for environmental metabolomics.

    PubMed

    Brown, Jeffrey N; Samuelsson, Linda; Bernardi, Giuliana; Gooneratne, Ravi; Larsson, D G Joakim

    2014-10-01

    The common pasture earthworm Aporrectodea caliginosa has often been neglected in environmental metabolomics in favor of species easily bred in the laboratory. The present study assigns aqueous metabolites in A. caliginosa using high-resolution 1- and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. In total, 51 aqueous metabolites were identified, including typical amino acids (alanine, leucine, asparagine, phenylalanine), sugars (maltose, glucose), the dominant earthworm-specific 2-hexyl-5-ethyl-furansulfonate, and several previously unreported metabolites (oxoglutarate, putrescine). Examining the lesser-known earthworm lipid metabolome showed various lipid fatty acyl chains, cholesterol, and phosphatidylcholine. To briefly test if the NMR metabolomic techniques could differentiate A. caliginosa from different sites, earthworms were collected from 2 adjacent farms. Orthogonal partial least squares discriminant analysis detected metabolomic differences, suggesting the worms from the 2 sites differed in their energy metabolism, as indicated by altered levels of alanine, glutamine, glutamate, malate, fumarate, and lipids. Evidence of greater utilization of lipid energy reserves and onset of protein catabolism was also present. While the precise cause of the metabolomic differences could not be determined, the results show the potential of this species for further environmental metabolomic studies.

  6. Aqueous and lipid nuclear magnetic resonance metabolomic profiles of the earthworm Aporrectodea caliginosa show potential as an indicator species for environmental metabolomics.

    PubMed

    Brown, Jeffrey N; Samuelsson, Linda; Bernardi, Giuliana; Gooneratne, Ravi; Larsson, D G Joakim

    2014-10-01

    The common pasture earthworm Aporrectodea caliginosa has often been neglected in environmental metabolomics in favor of species easily bred in the laboratory. The present study assigns aqueous metabolites in A. caliginosa using high-resolution 1- and 2-dimensional nuclear magnetic resonance (NMR) spectroscopy. In total, 51 aqueous metabolites were identified, including typical amino acids (alanine, leucine, asparagine, phenylalanine), sugars (maltose, glucose), the dominant earthworm-specific 2-hexyl-5-ethyl-furansulfonate, and several previously unreported metabolites (oxoglutarate, putrescine). Examining the lesser-known earthworm lipid metabolome showed various lipid fatty acyl chains, cholesterol, and phosphatidylcholine. To briefly test if the NMR metabolomic techniques could differentiate A. caliginosa from different sites, earthworms were collected from 2 adjacent farms. Orthogonal partial least squares discriminant analysis detected metabolomic differences, suggesting the worms from the 2 sites differed in their energy metabolism, as indicated by altered levels of alanine, glutamine, glutamate, malate, fumarate, and lipids. Evidence of greater utilization of lipid energy reserves and onset of protein catabolism was also present. While the precise cause of the metabolomic differences could not be determined, the results show the potential of this species for further environmental metabolomic studies. PMID:24995628

  7. Plasma metabolomics in human pulmonary tuberculosis disease: a pilot study.

    PubMed

    Frediani, Jennifer K; Jones, Dean P; Tukvadze, Nestan; Uppal, Karan; Sanikidze, Eka; Kipiani, Maia; Tran, ViLinh T; Hebbar, Gautam; Walker, Douglas I; Kempker, Russell R; Kurani, Shaheen S; Colas, Romain A; Dalli, Jesmond; Tangpricha, Vin; Serhan, Charles N; Blumberg, Henry M; Ziegler, Thomas R

    2014-01-01

    We aimed to characterize metabolites during tuberculosis (TB) disease and identify new pathophysiologic pathways involved in infection as well as biomarkers of TB onset, progression and resolution. Such data may inform development of new anti-tuberculosis drugs. Plasma samples from adults with newly diagnosed pulmonary TB disease and their matched, asymptomatic, sputum culture-negative household contacts were analyzed using liquid chromatography high-resolution mass spectrometry (LC-MS) to identify metabolites. Statistical and bioinformatics methods were used to select accurate mass/charge (m/z) ions that were significantly different between the two groups at a false discovery rate (FDR) of q<0.05. Two-way hierarchical cluster analysis (HCA) was used to identify clusters of ions contributing to separation of cases and controls, and metabolomics databases were used to match these ions to known metabolites. Identity of specific D-series resolvins, glutamate and Mycobacterium tuberculosis (Mtb)-derived trehalose-6-mycolate was confirmed using LC-MS/MS analysis. Over 23,000 metabolites were detected in untargeted metabolomic analysis and 61 metabolites were significantly different between the two groups. HCA revealed 8 metabolite clusters containing metabolites largely upregulated in patients with TB disease, including anti-TB drugs, glutamate, choline derivatives, Mycobacterium tuberculosis-derived cell wall glycolipids (trehalose-6-mycolate and phosphatidylinositol) and pro-resolving lipid mediators of inflammation, known to stimulate resolution, efferocytosis and microbial killing. The resolvins were confirmed to be RvD1, aspirin-triggered RvD1, and RvD2. This study shows that high-resolution metabolomic analysis can differentiate patients with active TB disease from their asymptomatic household contacts. Specific metabolites upregulated in the plasma of patients with active TB disease, including Mtb-derived glycolipids and resolvins, have potential as biomarkers

  8. Challenges of Inversely Estimating Jacobian from Metabolomics Data.

    PubMed

    Sun, Xiaoliang; Länger, Bettina; Weckwerth, Wolfram

    2015-01-01

    Inferring dynamics of metabolic networks directly from metabolomics data provides a promising way to elucidate the underlying mechanisms of biological systems, as reported in our previous studies (Weckwerth, 2011; Sun and Weckwerth, 2012; Nägele et al., 2014) by a differential Jacobian approach. The Jacobian is solved from an overdetermined system of equations as JC + CJ(T)  = -2D, called Lyapunov Equation in its generic form, where J is the Jacobian, C is the covariance matrix of metabolomics data, and D is the fluctuation matrix. Lyapunov Equation can be further simplified as the linear form Ax = b. Frequently, this linear equation system is ill-conditioned, i.e., a small variation in the right side b results in a big change in the solution x, thus making the solution unstable and error-prone. At the same time, inaccurate estimation of covariance matrix and uncertainties in the fluctuation matrix bring biases to the solution x. Here, we first reviewed common approaches to circumvent the ill-conditioned problems, including total least squares, Tikhonov regularization, and truncated singular value decomposition. Then, we benchmarked these methods on several in silico kinetic models with small to large perturbations on the covariance and fluctuation matrices. The results identified that the accuracy of the reverse Jacobian is mainly dependent on the condition number of A, the perturbation amplitude of C, and the stiffness of the kinetic models. Our research contributes a systematical comparison of methods to inversely solve Jacobian from metabolomics data. PMID:26636075

  9. Toxicogenomics and Metabolomics of Pentamethylchromanol (PMCol)-Induced Hepatotoxicity

    PubMed Central

    Parman, Toufan; Bunin, Deborah I.; Ng, Hanna H.; McDunn, Jonathan E.; Wulff, Jacob E.; Wang, Abraham; Swezey, Robert; Rasay, Laura; Fairchild, David G.; Kapetanovic, Izet M.; Green, Carol E.

    2011-01-01

    Pentamethyl-6-chromanol (PMCol), a chromanol-type compound related to vitamin E, was proposed as an anticancer agent with activity against androgen-dependent cancers. In repeat dose-toxicity studies in rats and dogs, PMCol caused hepatotoxicity, nephrotoxicity, and hematological effects. The objectives of this study were to determine the mechanisms of the observed toxicity and identify sensitive early markers of target organ injury by integrating classical toxicology, toxicogenomics, and metabolomic approaches. PMCol was administered orally to male Sprague-Dawley rats at 200 and 2000 mg/kg daily for 7 or 28 days. Changes in clinical chemistry included elevated alanine aminotransferase, total bilirubin, cholesterol and triglycerides—indicative of liver toxicity that was confirmed by microscopic findings (periportal hepatocellular hydropic degeneration and cytomegaly) in treated rats. Metabolomic evaluations of liver revealed time- and dose-dependent changes, including depletion of total glutathione and glutathione conjugates, decreased methionine, and increased S-adenosylhomocysteine, cysteine, and cystine. PMCol treatment also decreased cofactor levels, namely, FAD and increased NAD(P)+. Microarray analysis of liver found that differentially expressed genes were enriched in the glutathione and cytochrome P450 pathways by PMCol treatment. Reverse transcription-polymerase chain reaction of six upregulated genes and one downregulated gene confirmed the microarray results. In conclusion, the use of metabolomics and toxicogenomics demonstrates that chronic exposure to high doses of PMCol induces liver damage and dysfunction, probably due to both direct inhibition of glutathione synthesis and modification of drug metabolism pathways. Depletion of glutathione due to PMCol exposure ultimately results in a maladaptive response, increasing the consumption of hepatic dietary antioxidants and resulting in elevated reactive oxygen species levels associated with hepatocellular

  10. Salivary Microbiota and Metabolome Associated with Celiac Disease

    PubMed Central

    Francavilla, Ruggiero; Ercolini, Danilo; Piccolo, Maria; Vannini, Lucia; Siragusa, Sonya; De Filippis, Francesca; De Pasquale, Ilaria; Di Cagno, Raffaella; Di Toma, Michele; Gozzi, Giorgia; Serrazanetti, Diana I.; Gobbetti, Marco

    2014-01-01

    This study aimed to investigate the salivary microbiota and metabolome of 13 children with celiac disease (CD) under a gluten-free diet (treated celiac disease [T-CD]). The same number of healthy children (HC) was used as controls. The salivary microbiota was analyzed by an integrated approach using culture-dependent and -independent methods. Metabolome analysis was carried out by gas chromatography-mass spectrometry–solid-phase microextraction. Compared to HC, the number of some cultivable bacterial groups (e.g., total anaerobes) significantly (P < 0.05) differed in the saliva samples of the T-CD children. As shown by community-level catabolic profiles, the highest Shannon's diversity and substrate richness were found in HC. Pyrosequencing data showed the highest richness estimator and diversity index values for HC. Levels of Lachnospiraceae, Gemellaceae, and Streptococcus sanguinis were highest for the T-CD children. Streptococcus thermophilus levels were markedly decreased in T-CD children. The saliva of T-CD children showed the largest amount of Bacteroidetes (e.g., Porphyromonas sp., Porphyromonas endodontalis, and Prevotella nanceiensis), together with the smallest amount of Actinobacteria. T-CD children were also characterized by decreased levels of some Actinomyces species, Atopobium species, and Corynebacterium durum. Rothia mucilaginosa was the only Actinobacteria species found at the highest level in T-CD children. As shown by multivariate statistical analyses, the levels of organic volatile compounds markedly differentiated T-CD children. Some compounds (e.g., ethyl-acetate, nonanal, and 2-hexanone) were found to be associated with T-CD children. Correlations (false discovery rate [FDR], <0.05) were found between the relative abundances of bacteria and some volatile organic compounds (VOCs). The findings of this study indicated that CD is associated with oral dysbiosis that could affect the oral metabolome. PMID:24657864

  11. Metabolomic insights into system-wide coordination of vertebrate metamorphosis

    PubMed Central

    2014-01-01

    Background After completion of embryogenesis, many organisms experience an additional obligatory developmental transition to attain a substantially different juvenile or adult form. During anuran metamorphosis, the aquatic tadpole undergoes drastic morphological changes and remodelling of tissues and organs to become a froglet. Thyroid hormones are required to initiate the process, but the mechanism whereby the many requisite changes are coordinated between organs and tissues is poorly understood. Metabolites are often highly conserved biomolecules between species and are the closest reflection of phenotype. Due to the extensive distribution of blood throughout the organism, examination of the metabolites contained therein provides a system-wide overview of the coordinated changes experienced during metamorphosis. We performed an untargeted metabolomic analysis on serum samples from naturally-metamorphosing Rana catesbeiana from tadpoles to froglets using ultraperformance liquid chromatography coupled to a mass spectrometer. Total and aqueous metabolite extracts were obtained from each serum sample to select for nonpolar and polar metabolites, respectively, and selected metabolites were validated by running authentic compounds. Results The majority of the detected metabolites (74%) showed statistically significant abundance changes (padj < 0.001) between metamorphic stages. We observed extensive remodelling of five core metabolic pathways: arginine and purine/pyrimidine, cysteine/methionine, sphingolipid, and eicosanoid metabolism and the urea cycle, and found evidence for a major role for lipids during this postembryonic process. Metabolites traditionally linked to human disease states were found to have biological linkages to the system-wide changes occuring during the events leading up to overt morphological change. Conclusions To our knowledge, this is the first wide-scale metabolomic study of vertebrate metamorphosis identifying fundamental pathways

  12. Metabolome-Proteome Differentiation Coupled to Microbial Divergence

    SciTech Connect

    Wilmes, P; Bowen, Benjamin P.; Thomas, Brian; Mueller, Ryan; Denef, Vincent; Verberkmoes, Nathan C; Hettich, Robert {Bob} L; Northen, Trent R.; Banfield, Jillian F.

    2010-01-01

    Tandem high-throughput proteomics and metabolomics were employed to functionally characterize natural microbial biofilm communities. Distinct molecular signatures exist for each analyzed sample. Deconvolution of the high-resolution molecular data demonstrates that identified proteins and detected metabolites exhibit organism-specific correlation patterns. These patterns are reflective of the functional differentiation of two bacterial species that share the same genus and that co-occur in the sampled microbial communities. Our analyses indicate that the two species have similar niche breadths and are not in strong competition with one another.

  13. Serum Metabolomic Profiling of Rats by Intervention of Aconitum soongaricum.

    PubMed

    Zhang, Fan; Liu, Jiao; Lei, Jun; He, Wenjing; Sun, Yun

    2015-12-01

    To understand the toxic mechanism and to find the changes in the endogenous metabolites of Aconitum soongaricum Stapf for clinical detection, a combination of 1H NMR spectroscopy and multivariate statistical analysis was applied to examine the metabolic profiles of the blood serum samples collected from the rat model. In total, thirteen biomarkers of A. soongaricum were found and identified. It turned out that A. soongaricum treatment may partially disorder the metabolism. The study has shown the potential application of NMR-based metabolomic analysis in providing further insights into the toxicity caused by A. soongaricum. PMID:26882691

  14. Metabolomics and detection of colorectal cancer in humans: a systematic review.

    PubMed

    Wang, Haili; Tso, Victor K; Slupsky, Carolyn M; Fedorak, Richard N

    2010-09-01

    Metabolomics represents one of the new omics sciences and capitalizes on the unique presence and concentration of small molecules in tissues and body fluids to construct a 'fingerprint' that can be unique to the individual and, within that individual, unique to environmental influences, including health and disease states. As such, metabolomics has the potential to serve an important role in diagnosis and management of human conditions. Colorectal cancer is a major public health concern. Current population-based screening methods are suboptimal and whether metabolomics could represent a new tool of screening is under investigation. The purpose of this systematic review is to summarize existing literature on metabolomics and colorectal cancer, in terms of diagnostic accuracies and distinguishing metabolites. Eight studies are included. A total of 12 metabolites (taurine, lactate, choline, inositol, glycine, phosphocholine, proline, phenylalanine, alanine, threonine, valine and leucine) were found to be more prevalent in colorectal cancer and glucose was found to be in higher proportion in control specimens using tissue metabolomics. Serum and urine metabolomics identified several other differential metabolites between controls and colorectal cancer patients. This article highlights the novelty of the field of metabolomics in colorectal oncology.

  15. Metabolomics and Type 2 Diabetes: Translating Basic Research into Clinical Application

    PubMed Central

    Klein, Matthias S.; Shearer, Jane

    2016-01-01

    Type 2 diabetes (T2D) and its comorbidities have reached epidemic proportions, with more than half a billion cases expected by 2030. Metabolomics is a fairly new approach for studying metabolic changes connected to disease development and progression and for finding predictive biomarkers to enable early interventions, which are most effective against T2D and its comorbidities. In metabolomics, the abundance of a comprehensive set of small biomolecules (metabolites) is measured, thus giving insight into disease-related metabolic alterations. This review shall give an overview of basic metabolomics methods and will highlight current metabolomics research successes in the prediction and diagnosis of T2D. We summarized key metabolites changing in response to T2D. Despite large variations in predictive biomarkers, many studies have replicated elevated plasma levels of branched-chain amino acids and their derivatives, aromatic amino acids and α-hydroxybutyrate ahead of T2D manifestation. In contrast, glycine levels and lysophosphatidylcholine C18:2 are depressed in both predictive studies and with overt disease. The use of metabolomics for predicting T2D comorbidities is gaining momentum, as are our approaches for translating basic metabolomics research into clinical applications. As a result, metabolomics has the potential to enable informed decision-making in the realm of personalized medicine. PMID:26636104

  16. Metabolomic application in toxicity evaluation and toxicological biomarker identification of natural product.

    PubMed

    Chen, Dan-Qian; Chen, Hua; Chen, Lin; Tang, Dan-Dan; Miao, Hua; Zhao, Ying-Yong

    2016-05-25

    Natural product plays a vital role in disease prevention and treatment since the appearance of civilization, but the toxicity severely hinders its wide use. In order to avoid toxic effect as far as possible and use natural product safely, more comprehensive understandings of toxicity are urgently required. Since the metabolome represents the physiological or pathological status of organisms, metabolomics-based toxicology is of significance to observe potential injury before toxins have caused physiological or pathological damages. Metabolomics-based toxicology can evaluate toxicity and identify toxicological biomarker of natural product, which is helpful to guide clinical medication and reduce adverse drug reactions. In the past decades, dozens of metabolomic researches have been implemented on toxicity evaluation, toxicological biomarker identification and potential mechanism exploration of nephrotoxicity, hepatotoxicity, cardiotoxicity and central nervous system toxicity induced by pure compounds, extracts and compound prescriptions. In this paper, metabolomic technology, sample preparation, data process and analysis, and metabolomics-based toxicological research of natural product are reviewed, and finally, the potential problems and further perspectives in toxicological metabolomic investigations of natural product are discussed.

  17. Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism.

    PubMed

    Li, Kefeng; Wang, Xu; Pidatala, Venkataramana R; Chang, Chi-Peng; Cao, Xiaohong

    2014-12-01

    Quantitative metabolomics (qMetabolomics) is a powerful tool for understanding the intricate metabolic processes involved in plant abiotic stress responses. qMetabolomics is hindered by the limited coverage and high cost of isotopically labeled standards. In this study, we first selected 271 metabolites which might play important roles in abiotic stress responses as the targets and established a comprehensive LC-MS/MS based qMetabolomic method. We then developed a novel metabolic labeling method using E. coli-Saccharomyces cerevisiae two-step cultivation for the production of uniformly (13)C-labeled metabolites as internal standards. Finally, we applied the developed qMetabolomic method to investigate the influence of Pb stress on maize root metabolism. The absolute concentration of 226 metabolites in maize roots was accurately quantified in a single run within 30 min. Our study also revealed that glycolysis, purine, pyrimidine, and phospholipids were the main metabolic pathways in maize roots involved in Pb stress response. To our knowledge, this is the most comprehensive qMetabolomic method for plant metabolomics thus far. We developed a simple and inexpensive metabolic labeling method which dramatically expanded the availability of uniformly (13)C labeled metabolites. Our findings also provided new insights of maize metabolic responses to Pb stress. PMID:25327737

  18. Nuclear magnetic resonance based metabolomics and liver diseases: Recent advances and future clinical applications.

    PubMed

    Amathieu, Roland; Triba, Mohamed Nawfal; Goossens, Corentine; Bouchemal, Nadia; Nahon, Pierre; Savarin, Philippe; Le Moyec, Laurence

    2016-01-01

    Metabolomics is defined as the quantitative measurement of the dynamic multiparametric metabolic response of living systems to pathophysiological stimuli or genetic modification. It is an "omics" technique that is situated downstream of genomics, transcriptomics and proteomics. Metabolomics is recognized as a promising technique in the field of systems biology for the evaluation of global metabolic changes. During the last decade, metabolomics approaches have become widely used in the study of liver diseases for the detection of early biomarkers and altered metabolic pathways. It is a powerful technique to improve our pathophysiological knowledge of various liver diseases. It can be a useful tool to help clinicians in the diagnostic process especially to distinguish malignant and non-malignant liver disease as well as to determine the etiology or severity of the liver disease. It can also assess therapeutic response or predict drug induced liver injury. Nevertheless, the usefulness of metabolomics is often not understood by clinicians, especially the concept of metabolomics profiling or fingerprinting. In the present work, after a concise description of the different techniques and processes used in metabolomics, we will review the main research on this subject by focusing specifically on in vitro proton nuclear magnetic resonance spectroscopy based metabolomics approaches in human studies. We will first consider the clinical point of view enlighten physicians on this new approach and emphasis its future use in clinical "routine".

  19. Novel quantitative metabolomic approach for the study of stress responses of plant root metabolism.

    PubMed

    Li, Kefeng; Wang, Xu; Pidatala, Venkataramana R; Chang, Chi-Peng; Cao, Xiaohong

    2014-12-01

    Quantitative metabolomics (qMetabolomics) is a powerful tool for understanding the intricate metabolic processes involved in plant abiotic stress responses. qMetabolomics is hindered by the limited coverage and high cost of isotopically labeled standards. In this study, we first selected 271 metabolites which might play important roles in abiotic stress responses as the targets and established a comprehensive LC-MS/MS based qMetabolomic method. We then developed a novel metabolic labeling method using E. coli-Saccharomyces cerevisiae two-step cultivation for the production of uniformly (13)C-labeled metabolites as internal standards. Finally, we applied the developed qMetabolomic method to investigate the influence of Pb stress on maize root metabolism. The absolute concentration of 226 metabolites in maize roots was accurately quantified in a single run within 30 min. Our study also revealed that glycolysis, purine, pyrimidine, and phospholipids were the main metabolic pathways in maize roots involved in Pb stress response. To our knowledge, this is the most comprehensive qMetabolomic method for plant metabolomics thus far. We developed a simple and inexpensive metabolic labeling method which dramatically expanded the availability of uniformly (13)C labeled metabolites. Our findings also provided new insights of maize metabolic responses to Pb stress.

  20. Novel biological insights through metabolomics and 13C-flux analysis.

    PubMed

    Zamboni, Nicola; Sauer, Uwe

    2009-10-01

    Metabolomics and (13)C-flux analysis have become instrumental for analyzing cellular metabolism and its regulation. Driven primarily by technical advances in mass spectrometry-based analytics, they provide unmatched readouts on metabolic state and activity. Functional genomics leverages metabolomics for the discovery of novel enzymes and unexpected secondary activities of annotated enzymes. (13)C-flux analyses are frequently used for empirical elucidation of pathways in poorly characterized species and for network-wide analysis of mechanisms that realize energy and redox balancing. Integration of metabolomics, (13)C-flux analysis and other data enable the condition-dependent characterization of regulatory circuits that ultimately govern the metabolic phenotype.

  1. Multi-platform characterization of the human cerebrospinal fluid metabolome: a comprehensive and quantitative update

    PubMed Central

    2012-01-01

    Background Human cerebral spinal fluid (CSF) is known to be a rich source of small molecule biomarkers for neurological and neurodegenerative diseases. In 2007, we conducted a comprehensive metabolomic study and performed a detailed literature review on metabolites that could be detected (via metabolomics or other techniques) in CSF. A total of 308 detectable metabolites were identified, of which only 23% were shown to be routinely identifiable or quantifiable with the metabolomics technologies available at that time. The continuing advancement in analytical technologies along with the growing interest in CSF metabolomics has led us to re-visit the human CSF metabolome and to re-assess both its size and the level of coverage than can be achieved with today's technologies. Methods We used five analytical platforms, including nuclear magnetic resonance (NMR), gas chromatography-mass spectrometry (GC-MS), liquid chromatography-mass spectrometry (LC-MS), direct flow injection-mass spectrometry (DFI-MS/MS) and inductively coupled plasma-mass spectrometry (ICP-MS) to perform quantitative metabolomics on multiple human CSF samples. This experimental work was complemented with an extensive literature review to acquire additional information on reported CSF compounds, their concentrations and their disease associations. Results NMR, GC-MS and LC-MS methods allowed the identification and quantification of 70 CSF metabolites (as previously reported). DFI-MS/MS allowed the quantification of 78 metabolites (6 acylcarnitines, 13 amino acids, hexose, 42 phosphatidylcholines, 2 lyso-phosphatidylcholines and 14 sphingolipids), while ICP-MS provided quantitative results for 33 metal ions in CSF. Literature analysis led to the identification of 57 more metabolites. In total, 476 compounds have now been confirmed to exist in human CSF. Conclusions The use of improved metabolomic and other analytical techniques has led to a 54% increase in the known size of the human CSF metabolome

  2. High Resolution Separations and Improved Ion Production and Transmission in Metabolomics

    SciTech Connect

    Metz, Thomas O.; Page, Jason S.; Baker, Erin Shammel; Tang, Keqi; Ding, Jie; Shen, Yufeng; Smith, Richard D.

    2008-03-31

    The goal of metabolomics experiments is the detection and quantitation of as many sample components as reasonably possible in order to identify “features” that can be used to characterize the samples under study. When utilizing electrospray ionization to produce ions for analysis by mass spectrometry (MS), it is imperative that metabolome sample constituents be efficiently separated prior to ion production, in order to minimize the phenomenon of ionization suppression. Similarly, optimization of the MS inlet can lead to increased measurement sensitivity. This review will focus on the role of high resolution liquid chromatography (LC) separations in conjunction with improved ion production and transmission for LC-MS-based metabolomics.

  3. Metabolomics: a valuable tool for stem cell monitoring in regenerative medicine

    PubMed Central

    McNamara, Laura E.; Sjöström, Terje; Meek, R. M. Dominic; Oreffo, Richard O. C.; Su, Bo; Dalby, Matthew J.; Burgess, Karl E. V.

    2012-01-01

    Metabolomics is a method for investigation of changes in the global metabolite profile of cells. This paper discusses the technical application of the approach, considering metabolite extraction, separation, mass spectrometry and data interpretation. A particular focus is on the application of metabolomics to the study of stem cell physiology in the context of biomaterials and regenerative medicine. Case studies are used to illustrate key points, focusing on the use of metabolomics in the examination of mesenchymal stem cell responses to titania-nanopillared substrata designed for orthopaedic applications. PMID:22628210

  4. Integrated LC-MS/MS system for plant metabolomics

    PubMed Central

    Sawada, Yuji; Hirai, Masami Yokota

    2013-01-01

    Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is highly sensitive, selective, and enables extensive detection of metabolites within a sample. The result allows us to characterize comprehensive metabolite accumulation patterns without dependence on authentic standard compounds and isolation of the individual metabolites. A reference database search is essential for the structural assignment process of un-targeted MS and MS/MS data. Moreover, the characterization of unknown metabolites is challenging, since these cannot be assigned a candidate structure by using a reference database. In this case study, integrated LC-MS/MS based plant metabolomics allows us to detect several hundred metabolites in a sample; and integrated omics analyses, e.g., large-scale reverse genetics, linkage mapping, and association mapping, provides a powerful tool for candidate structure selection or rejection. We also examine emerging technology and applications for LC-MS/MS-based un-targeted plant metabolomics. These activities promote the characterization of massive extended detectable metabolites. PMID:24688692

  5. Metabolomics: approaches to assessing oocyte and embryo quality.

    PubMed

    Singh, R; Sinclair, K D

    2007-09-01

    Morphological evaluation remains the primary method of embryo assessment during IVF cycles, but its modest predictive power and inherent inter- and intra-observer variability limits its value. Low-molecular weight metabolites represent the end products of cell regulatory processes and therefore reveal the response of biological systems to a variety of genetic, nutrient or environmental influences. It follows that the non-invasive quantification of oocyte and embryo metabolism, from the analyses of follicular fluid or culture media, may be a useful predictor of pregnancy outcome following embryo transfer, a potential supported by recent clinical studies working with specific classes of metabolites such as glycolytic intermediates and amino acids. Such selective approaches, however, whilst adhering closely to known cellular processes, may fail to harness the full potential of contemporary metabolomic methodologies, which can measure a wider spectrum of metabolites. However, an important technical drawback with many existing methodologies is the limited number of metabolites that can be determined by a single analytical platform. Vibrational spectroscopy methodologies such as Fourier transform infrared and near infrared spectroscopy may overcome these limitations by generating unique spectral signatures of functional groups and bonds, but their application in embryo quality assessment remains to be fully validated. Ultimately, a combination of evaluation criteria that include morphometry with metabolomics may provide the best predictive assessment of embryo viability.

  6. Global isotope metabolomics reveals adaptive strategies for nitrogen assimilation

    DOE PAGES

    Kurczy, Michael E.; Forsberg, Erica M.; Thorgersen, Michael P.; Poole, Farris L.; Benton, H. Paul; Ivanisevic, Julijana; Tran, Minerva L.; Wall, Judy D.; Elias, Dwayne A.; Adams, Michael W. W.; et al

    2016-04-05

    Nitrogen cycling is a microbial metabolic process essential for global ecological/agricultural balance. To investigate the link between the well-established ammonium and the alternative nitrate assimilation metabolic pathways, global isotope metabolomics was employed to examine three nitrate reducing bacteria using 15NO3 as a nitrogen source. In contrast to a control (Pseudomonas stutzeri RCH2), the results show that two of the isolates from Oak Ridge, Tennessee (Pseudomonas N2A2 and N2E2) utilize nitrate and ammonia for assimilation concurrently with differential labeling observed across multiple classes of metabolites including amino acids and nucleotides. The data reveal that the N2A2 and N2E2 strains conserve nitrogen-containingmore » metabolites, indicating that the nitrate assimilation pathway is a conservation mechanism for the assimilation of nitrogen. Co-utilization of nitrate and ammonia is likely an adaption to manage higher levels of nitrite since the denitrification pathways utilized by the N2A2 and N2E2 strains from the Oak Ridge site are predisposed to the accumulation of the toxic nitrite. In conclusion, the use of global isotope metabolomics allowed for this adaptive strategy to be investigated, which would otherwise not have been possible to decipher.« less

  7. Mass-based metabolomic analysis of soybean sprouts during germination.

    PubMed

    Gu, Eun-Ji; Kim, Dong Wook; Jang, Gwang-Ju; Song, Seong Hwa; Lee, Jae-In; Lee, Sang Bong; Kim, Bo-Min; Cho, Yeongrae; Lee, Hyeon-Jeong; Kim, Hyun-Jin

    2017-02-15

    We investigated the metabolite profile of soybean sprouts at 0, 1, 2, 3, and 4days after germination using gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-MS (LC-MS) to understand the relationship between germination and nutritional quality. Data were analyzed by partial least squares-discriminant analysis (PLS-DA), and sprout samples were separated successfully using their PLS-DA scores. Fifty-eight metabolites, including macromolecular derivatives related to energy production, amino acids, myo-inositol metabolites, phytosterols, antioxidants, isoflavones, and soyasaponins, contributed to the separation. Amino acids, myo-inositol metabolites, isoflavone aglycones, B soyasaponins, antioxidants, and phytosterols, associated with health benefits and/or taste quality, increased with germination time while isoflavone glycosides and DDMP soyasaponins decreased. Based on these metabolites, the metabolomic pathway associated with energy production in soybean sprouts is suggested. Our data suggest that sprouting is a useful processing step to improve soybean nutritional quality, and metabolomic analysis is useful in understanding nutritional change during sprouting. PMID:27664639

  8. Arteriovenous Blood Metabolomics: A Readout of Intra-Tissue Metabostasis.

    PubMed

    Ivanisevic, Julijana; Elias, Darlene; Deguchi, Hiroshi; Averell, Patricia M; Kurczy, Michael; Johnson, Caroline H; Tautenhahn, Ralf; Zhu, Zhengjiang; Watrous, Jeramie; Jain, Mohit; Griffin, John; Patti, Gary J; Siuzdak, Gary

    2015-01-01

    The human circulatory system consists of arterial blood that delivers nutrients to tissues, and venous blood that removes the metabolic by-products. Although it is well established that arterial blood generally has higher concentrations of glucose and oxygen relative to venous blood, a comprehensive biochemical characterization of arteriovenous differences has not yet been reported. Here we apply cutting-edge, mass spectrometry-based metabolomic technologies to provide a global characterization of metabolites that vary in concentration between the arterial and venous blood of human patients. Global profiling of paired arterial and venous plasma from 20 healthy individuals, followed up by targeted analysis made it possible to measure subtle (<2 fold), yet highly statistically significant and physiologically important differences in water soluble human plasma metabolome. While we detected changes in lactic acid, alanine, glutamine, and glutamate as expected from skeletal muscle activity, a number of unanticipated metabolites were also determined to be significantly altered including Krebs cycle intermediates, amino acids that have not been previously implicated in transport, and a few oxidized fatty acids. This study provides the most comprehensive assessment of metabolic changes in the blood during circulation to date and suggests that such profiling approach may offer new insights into organ homeostasis and organ specific pathology. PMID:26244428

  9. Metabolomic Tools for Secondary Metabolite Discovery from Marine Microbial Symbionts

    PubMed Central

    Macintyre, Lynsey; Zhang, Tong; Viegelmann, Christina; Juarez Martinez, Ignacio; Cheng, Cheng; Dowdells, Catherine; Abdelmohsen, Usama Ramadan; Gernert, Christine; Hentschel, Ute; Edrada-Ebel, RuAngelie

    2014-01-01

    Marine invertebrate-associated symbiotic bacteria produce a plethora of novel secondary metabolites which may be structurally unique with interesting pharmacological properties. Selection of strains usually relies on literature searching, genetic screening and bioactivity results, often without considering the chemical novelty and abundance of secondary metabolites being produced by the microorganism until the time-consuming bioassay-guided isolation stages. To fast track the selection process, metabolomic tools were used to aid strain selection by investigating differences in the chemical profiles of 77 bacterial extracts isolated from cold water marine invertebrates from Orkney, Scotland using liquid chromatography-high resolution mass spectrometry (LC-HRMS) and nuclear magnetic resonance (NMR) spectroscopy. Following mass spectrometric analysis and dereplication using an Excel macro developed in-house, principal component analysis (PCA) was employed to differentiate the bacterial strains based on their chemical profiles. NMR 1H and correlation spectroscopy (COSY) were also employed to obtain a chemical fingerprint of each bacterial strain and to confirm the presence of functional groups and spin systems. These results were then combined with taxonomic identification and bioassay screening data to identify three bacterial strains, namely Bacillus sp. 4117, Rhodococcus sp. ZS402 and Vibrio splendidus strain LGP32, to prioritize for scale-up based on their chemically interesting secondary metabolomes, established through dereplication and interesting bioactivities, determined from bioassay screening. PMID:24905482

  10. Towards the Fecal Metabolome Derived from Moderate Red Wine Intake

    PubMed Central

    Jiménez-Girón, Ana; Muñoz-González, Irene; Martín-Álvarez, Pedro J.; Moreno-Arribas, María Victoria; Bartolomé, Begoña

    2014-01-01

    Dietary polyphenols, including red wine phenolic compounds, are extensively metabolized during their passage through the gastrointestinal tract; and their biological effects at the gut level (i.e., anti-inflammatory activity, microbiota modulation, interaction with cells, among others) seem to be due more to their microbial-derived metabolites rather than to the original forms found in food. In an effort to improve our understanding of the biological effects that phenolic compounds exert at the gut level, this paper summarizes the changes observed in the human fecal metabolome after an intervention study consisting of a daily consumption of 250 mL of wine during four weeks by healthy volunteers (n = 33). It assembles data from two analytical approaches: (1) UPLC-ESI-MS/MS analysis of phenolic metabolites in fecal solutions (targeted analysis); and (2) UHPLC-TOF MS analysis of the fecal solutions (non-targeted analysis). Both approaches revealed statistically-significant changes in the concentration of several metabolites as a consequence of the wine intake. Similarity and complementarity between targeted and non-targeted approaches in the analysis of the fecal metabolome are discussed. Both strategies allowed the definition of a complex metabolic profile derived from wine intake. Likewise, the identification of endogenous markers could lead to new hypotheses to unravel the relationship between moderate wine consumption and the metabolic functionality of gut microbiota. PMID:25532710

  11. Proteomics and Metabolomics in Renal Transplantation-Quo Vadis?

    PubMed Central

    Bohra, Rahul; Klepacki, Jacek; Klawitter, Jelena; Klawitter, Jost; Thurman, Joshua; Christians, Uwe

    2014-01-01

    The improvement of long-term transplant organ and patient survival remains a critical challenge following kidney transplantation. Proteomics and biochemical profiling (metabolomics) may allow for the detection of early changes in cell signal transduction regulation and biochemistry with high sensitivity and specificity. Hence, these analytical strategies hold the promise to detect and monitor disease processes and drug effects before histopathological and pathophysiological changes occur. In addition they will identify enriched populations and enable individualize drug therapy. However, proteomics and metabolomics have not yet lived up to such high expectations. Renal transplant patients are highly complex, making it difficult to establish cause-effect relationships between surrogate markers and disease processes. Appropriate study design, adequate sample handling, storage and processing, quality and reproducibility of bioanalytical multi-analyte assays, data analysis and interpretation, mechanistic verification and clinical qualification (=establishment of sensitivity and specificity in adequately powered prospective clinical trials) are important factors for the success of molecular marker discovery and development in renal transplantation. However, a newly developed and appropriately qualified molecular marker can only be successful if it is realistic that it can be implemented in a clinical setting. The development of combinatorial markers with supporting software tools is an attractive goal. PMID:23350848

  12. Metabolomic profiles delineate mycolactone signature in Buruli ulcer disease

    PubMed Central

    Niang, Fatoumata; Sarfo, Fred S.; Frimpong, Michael; Guenin-Macé, Laure; Wansbrough-Jones, Mark; Stinear, Timothy; Phillips, Richard O.; Demangel, Caroline

    2015-01-01

    Infection of human skin with Mycobacterium ulcerans, the causative agent of Buruli ulcer, is associated with the systemic diffusion of a bacterial macrolide named mycolactone. Patients with progressive disease show alterations in their serum proteome, likely reflecting the inhibition of secreted protein production by mycolactone at the cellular level. Here, we used semi-quantitative metabolomics to characterize metabolic perturbations in serum samples of infected individuals, and human cells exposed to mycolactone. Among the 430 metabolites profiled across 20 patients and 20 healthy endemic controls, there were significant differences in the serum levels of hexoses, steroid hormones, acylcarnitines, purine, heme, bile acids, riboflavin and lysolipids. In parallel, analysis of 292 metabolites in human T cells treated or not with mycolactone showed alterations in hexoses, lysolipids and purine catabolites. Together, these data demonstrate that M. ulcerans infection causes systemic perturbations in the serum metabolome that can be ascribed to mycolactone. Of particular importance to Buruli ulcer pathogenesis is that changes in blood sugar homeostasis in infected patients are mirrored by alterations in hexose metabolism in mycolactone-exposed cells. PMID:26634444

  13. Isotopic Ratio Outlier Analysis Global Metabolomics of Caenorhabditis elegans

    PubMed Central

    Szewc, Mark A.; Garrett, Timothy; Menger, Robert F.; Yost, Richard A.; Beecher, Chris; Edison, Arthur S.

    2014-01-01

    We demonstrate the global metabolic analysis of Caenorhabditis elegans stress responses using a mass spectrometry-based technique called Isotopic Ratio Outlier Analysis (IROA). In an IROA protocol, control and experimental samples are isotopically labeled with 95% and 5% 13C, and the two sample populations are mixed together for uniform extraction, sample preparation, and LC-MS analysis. This labeling strategy provides several advantages over conventional approaches: 1) compounds arising from biosynthesis are easily distinguished from artifacts, 2) errors from sample extraction and preparation are minimized because the control and experiment are combined into a single sample, 3) measurement of both the molecular weight and the exact number of carbon atoms in each molecule provides extremely accurate molecular formulae, and 4) relative concentrations of all metabolites are easily determined. A heat shock perturbation was conducted on C. elegans to demonstrate this approach. We identified many compounds that significantly changed upon heat shock, including several from the purine metabolism pathway, which we use to demonstrate the approach. The metabolomic response information by IROA may be interpreted in the context of a wealth of genetic and proteomic information available for C. elegans. Furthermore, the IROA protocol can be applied to any organism that can be isotopically labeled, making it a powerful new tool in a global metabolomics pipeline. PMID:24274725

  14. Regularized MANOVA (rMANOVA) in untargeted metabolomics.

    PubMed

    Engel, J; Blanchet, L; Bloemen, B; van den Heuvel, L P; Engelke, U H F; Wevers, R A; Buydens, L M C

    2015-10-29

    Many advanced metabolomics experiments currently lead to data where a large number of response variables were measured while one or several factors were changed. Often the number of response variables vastly exceeds the sample size and well-established techniques such as multivariate analysis of variance (MANOVA) cannot be used to analyze the data. ANOVA simultaneous component analysis (ASCA) is an alternative to MANOVA for analysis of metabolomics data from an experimental design. In this paper, we show that ASCA assumes that none of the metabolites are correlated and that they all have the same variance. Because of these assumptions, ASCA may relate the wrong variables to a factor. This reduces the power of the method and hampers interpretation. We propose an improved model that is essentially a weighted average of the ASCA and MANOVA models. The optimal weight is determined in a data-driven fashion. Compared to ASCA, this method assumes that variables can correlate, leading to a more realistic view of the data. Compared to MANOVA, the model is also applicable when the number of samples is (much) smaller than the number of variables. These advantages are demonstrated by means of simulated and real data examples. The source code of the method is available from the first author upon request, and at the following github repository: https://github.com/JasperE/regularized-MANOVA.

  15. Alcohol Induced Alterations to the Human Fecal VOC Metabolome

    PubMed Central

    Couch, Robin D.; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B.; Mutlu, Ece; Engen, Phillip A.; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  16. Alcohol induced alterations to the human fecal VOC metabolome.

    PubMed

    Couch, Robin D; Dailey, Allyson; Zaidi, Fatima; Navarro, Karl; Forsyth, Christopher B; Mutlu, Ece; Engen, Phillip A; Keshavarzian, Ali

    2015-01-01

    Studies have shown that excessive alcohol consumption impacts the intestinal microbiota composition, causing disruption of homeostasis (dysbiosis). However, this observed change is not indicative of the dysbiotic intestinal microbiota function that could result in the production of injurious and toxic products. Thus, knowledge of the effects of alcohol on the intestinal microbiota function and their metabolites is warranted, in order to better understand the role of the intestinal microbiota in alcohol associated organ failure. Here, we report the results of a differential metabolomic analysis comparing volatile organic compounds (VOC) detected in the stool of alcoholics and non-alcoholic healthy controls. We performed the analysis with fecal samples collected after passage as well as with samples collected directly from the sigmoid lumen. Regardless of the approach to fecal collection, we found a stool VOC metabolomic signature in alcoholics that is different from healthy controls. The most notable metabolite alterations in the alcoholic samples include: (1) an elevation in the oxidative stress biomarker tetradecane; (2) a decrease in five fatty alcohols with anti-oxidant property; (3) a decrease in the short chain fatty acids propionate and isobutyrate, important in maintaining intestinal epithelial cell health and barrier integrity; (4) a decrease in alcohol consumption natural suppressant caryophyllene; (5) a decrease in natural product and hepatic steatosis attenuator camphene; and (6) decreased dimethyl disulfide and dimethyl trisulfide, microbial products of decomposition. Our results showed that intestinal microbiota function is altered in alcoholics which might promote alcohol associated pathologies. PMID:25751150

  17. Arteriovenous Blood Metabolomics: A Readout of Intra-Tissue Metabostasis

    PubMed Central

    Ivanisevic, Julijana; Elias, Darlene; Deguchi, Hiroshi; Averell, Patricia M.; Kurczy, Michael; Johnson, Caroline H.; Tautenhahn, Ralf; Zhu, Zhengjiang; Watrous, Jeramie; Jain, Mohit; Griffin, John; Patti, Gary J.; Siuzdak, Gary

    2015-01-01

    The human circulatory system consists of arterial blood that delivers nutrients to tissues, and venous blood that removes the metabolic by-products. Although it is well established that arterial blood generally has higher concentrations of glucose and oxygen relative to venous blood, a comprehensive biochemical characterization of arteriovenous differences has not yet been reported. Here we apply cutting-edge, mass spectrometry-based metabolomic technologies to provide a global characterization of metabolites that vary in concentration between the arterial and venous blood of human patients. Global profiling of paired arterial and venous plasma from 20 healthy individuals, followed up by targeted analysis made it possible to measure subtle (<2 fold), yet highly statistically significant and physiologically important differences in water soluble human plasma metabolome. While we detected changes in lactic acid, alanine, glutamine, and glutamate as expected from skeletal muscle activity, a number of unanticipated metabolites were also determined to be significantly altered including Krebs cycle intermediates, amino acids that have not been previously implicated in transport, and a few oxidized fatty acids. This study provides the most comprehensive assessment of metabolic changes in the blood during circulation to date and suggests that such profiling approach may offer new insights into organ homeostasis and organ specific pathology. PMID:26244428

  18. Metabolomics Profiling for Obstructive Sleep Apnea and Simple Snorers

    PubMed Central

    Xu, Huajun; Zheng, Xiaojiao; Qian, Yingjun; Guan, Jian; Yi, Hongliang; Zou, Jianyin; Wang, Yuyu; Meng, Lili; Zhao, Aihua; Yin, Shankai; Jia, Wei

    2016-01-01

    Few clinical studies have explored altered urinary metabolite levels in patients with obstructive sleep apnea (OSA). Thus, we applied a metabolomics approach to analyze urinary metabolites in three groups of participants: patients with polysomnography (PSG)-confirmed OSA, simple snorers (SS), and normal subjects. Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry and gas chromatography coupled with time-of-flight mass spectrometry were used. A total of 21 and 31 metabolites were differentially expressed in the SS and OSA groups, respectively. Patients with OSA had 18 metabolites different from those with SS. Of the 56 metabolites detected among the 3 groups, 24 were consistently higher or lower. A receiver operator curve analysis revealed that the combination of 4-hydroxypentenoic acid, arabinose, glycochenodeoxycholate-3-sulfate, isoleucine, serine, and xanthine produced a moderate diagnostic score with a sensitivity (specificity) of 75% (78%) for distinguishing OSA from those without OSA. The combination of 4-hydroxypentenoic acid, 5-dihydrotestosterone sulfate, serine, spermine, and xanthine distinguished OSA from SS with a sensitivity of 85% and specificity of 80%. Multiple metabolites and metabolic pathways associated with SS and OSA were identified using the metabolomics approach, and the altered metabolite signatures could potentially serve as an alternative diagnostic method to PSG. PMID:27480913

  19. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach

    PubMed Central

    Righetti, Laura; Rubert, Josep; Galaverna, Gianni; Folloni, Silvia; Ranieri, Roberto; Stranska-Zachariasova, Milena; Hajslova, Jana; Dall’Asta, Chiara

    2016-01-01

    Hulled, or ancient, wheats were the earliest domesticated wheats by mankind and the ancestors of current wheats. Their cultivation drastically decreased during the 1960s; however, the increasing demand for a healthy and equilibrated diet led to rediscovering these grains. Our aim was to use a non-targeted metabolomic approach to discriminate and characterize similarities and differences between ancient Triticum varieties. For this purpose, 77 hulled wheat samples from three different varieties were collected: Garfagnana T. turgidum var. dicoccum L. (emmer), ID331 T. monococcum L. (einkorn) and Rouquin T. spelta L. (spelt). The ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-QTOF) metabolomics approach highlighted a pronounced sample clustering according to the wheat variety, with an excellent predictability (Q2), for all the models built. Fifteen metabolites were tentatively identified based on accurate masses, isotopic pattern, and product ion spectra. Among these, alkylresorcinols (ARs) were found to be significantly higher in spelt and emmer, showing different homologue composition. Furthermore, phosphatidylcholines (PC) and lysophosphatidylcholines (lysoPC) levels were higher in einkorn variety. The results obtained in this study confirmed the importance of ARs as markers to distinguish between Triticum species and revealed their values as cultivar markers, being not affected by the environmental influences. PMID:27472322

  20. Biomarkers of whale shark health: a metabolomic approach.

    PubMed

    Dove, Alistair D M; Leisen, Johannes; Zhou, Manshui; Byrne, Jonathan J; Lim-Hing, Krista; Webb, Harry D; Gelbaum, Leslie; Viant, Mark R; Kubanek, Julia; Fernández, Facundo M

    2012-01-01

    In a search for biomarkers of health in whale sharks and as exploration of metabolomics as a modern tool for understanding animal physiology, the metabolite composition of serum in six whale sharks (Rhincodon typus) from an aquarium collection was explored using (1)H nuclear magnetic resonance (NMR) spectroscopy and direct analysis in real time (DART) mass spectrometry (MS). Principal components analysis (PCA) of spectral data showed that individual animals could be resolved based on the metabolite composition of their serum and that two unhealthy individuals could be discriminated from the remaining healthy animals. The major difference between healthy and unhealthy individuals was the concentration of homarine, here reported for the first time in an elasmobranch, which was present at substantially lower concentrations in unhealthy whale sharks, suggesting that this metabolite may be a useful biomarker of health status in this species. The function(s) of homarine in sharks remain uncertain but it likely plays a significant role as an osmolyte. The presence of trimethylamine oxide (TMAO), another well-known protective osmolyte of elasmobranchs, at 0.1-0.3 mol L(-1) was also confirmed using both NMR and MS. Twenty-three additional potential biomarkers were identified based on significant differences in the frequency of their occurrence between samples from healthy and unhealthy animals, as detected by DART MS. Overall, NMR and MS provided complementary data that showed that metabolomics is a useful approach for biomarker prospecting in poorly studied species like elasmobranchs.

  1. Identification of salivary metabolomic biomarkers for oral cancer screening

    PubMed Central

    Ishikawa, Shigeo; Sugimoto, Masahiro; Kitabatake, Kenichiro; Sugano, Ayako; Nakamura, Marina; Kaneko, Miku; Ota, Sana; Hiwatari, Kana; Enomoto, Ayame; Soga, Tomoyoshi; Tomita, Masaru; Iino, Mitsuyoshi

    2016-01-01

    The objective of this study was to explore salivary metabolite biomarkers by profiling both saliva and tumor tissue samples for oral cancer screening. Paired tumor and control tissues were obtained from oral cancer patients and whole unstimulated saliva samples were collected from patients and healthy controls. The comprehensive metabolomic analysis for profiling hydrophilic metabolites was conducted using capillary electrophoresis time-of-flight mass spectrometry. In total, 85 and 45 metabolites showed significant differences between tumor and matched control samples, and between salivary samples from oral cancer and controls, respectively (P < 0.05 correlated by false discovery rate); 17 metabolites showed consistent differences in both saliva and tissue-based comparisons. Of these, a combination of only two biomarkers yielded a high area under receiver operating characteristic curves (0.827; 95% confidence interval, 0.726–0.928, P < 0.0001) for discriminating oral cancers from controls. Various validation tests confirmed its high generalization ability. The demonstrated approach, integrating both saliva and tumor tissue metabolomics, helps eliminate pseudo-molecules that are coincidentally different between oral cancers and controls. These combined salivary metabolites could be the basis of a clinically feasible method of non-invasive oral cancer screening. PMID:27539254

  2. MetaboAnalyst 3.0--making metabolomics more meaningful.

    PubMed

    Xia, Jianguo; Sinelnikov, Igor V; Han, Beomsoo; Wishart, David S

    2015-07-01

    MetaboAnalyst (www.metaboanalyst.ca) is a web server designed to permit comprehensive metabolomic data analysis, visualization and interpretation. It supports a wide range of complex statistical calculations and high quality graphical rendering functions that require significant computational resources. First introduced in 2009, MetaboAnalyst has experienced more than a 50X growth in user traffic (>50 000 jobs processed each month). In order to keep up with the rapidly increasing computational demands and a growing number of requests to support translational and systems biology applications, we performed a substantial rewrite and major feature upgrade of the server. The result is MetaboAnalyst 3.0. By completely re-implementing the MetaboAnalyst suite using the latest web framework technologies, we have been able substantially improve its performance, capacity and user interactivity. Three new modules have also been added including: (i) a module for biomarker analysis based on the calculation of receiver operating characteristic curves; (ii) a module for sample size estimation and power analysis for improved planning of metabolomics studies and (iii) a module to support integrative pathway analysis for both genes and metabolites. In addition, popular features found in existing modules have been significantly enhanced by upgrading the graphical output, expanding the compound libraries and by adding support for more diverse organisms.

  3. Regularized MANOVA (rMANOVA) in untargeted metabolomics.

    PubMed

    Engel, J; Blanchet, L; Bloemen, B; van den Heuvel, L P; Engelke, U H F; Wevers, R A; Buydens, L M C

    2015-10-29

    Many advanced metabolomics experiments currently lead to data where a large number of response variables were measured while one or several factors were changed. Often the number of response variables vastly exceeds the sample size and well-established techniques such as multivariate analysis of variance (MANOVA) cannot be used to analyze the data. ANOVA simultaneous component analysis (ASCA) is an alternative to MANOVA for analysis of metabolomics data from an experimental design. In this paper, we show that ASCA assumes that none of the metabolites are correlated and that they all have the same variance. Because of these assumptions, ASCA may relate the wrong variables to a factor. This reduces the power of the method and hampers interpretation. We propose an improved model that is essentially a weighted average of the ASCA and MANOVA models. The optimal weight is determined in a data-driven fashion. Compared to ASCA, this method assumes that variables can correlate, leading to a more realistic view of the data. Compared to MANOVA, the model is also applicable when the number of samples is (much) smaller than the number of variables. These advantages are demonstrated by means of simulated and real data examples. The source code of the method is available from the first author upon request, and at the following github repository: https://github.com/JasperE/regularized-MANOVA. PMID:26547490

  4. Characterization and Discrimination of Ancient Grains: A Metabolomics Approach.

    PubMed

    Righetti, Laura; Rubert, Josep; Galaverna, Gianni; Folloni, Silvia; Ranieri, Roberto; Stranska-Zachariasova, Milena; Hajslova, Jana; Dall'Asta, Chiara

    2016-01-01

    Hulled, or ancient, wheats were the earliest domesticated wheats by mankind and the ancestors of current wheats. Their cultivation drastically decreased during the 1960s; however, the increasing demand for a healthy and equilibrated diet led to rediscovering these grains. Our aim was to use a non-targeted metabolomic approach to discriminate and characterize similarities and differences between ancient Triticum varieties. For this purpose, 77 hulled wheat samples from three different varieties were collected: Garfagnana T. turgidum var. dicoccum L. (emmer), ID331 T. monococcum L. (einkorn) and Rouquin T. spelta L. (spelt). The ultra high performance liquid chromatography coupled to high resolution tandem mass spectrometry (UHPLC-QTOF) metabolomics approach highlighted a pronounced sample clustering according to the wheat variety, with an excellent predictability (Q²), for all the models built. Fifteen metabolites were tentatively identified based on accurate masses, isotopic pattern, and product ion spectra. Among these, alkylresorcinols (ARs) were found to be significantly higher in spelt and emmer, showing different homologue composition. Furthermore, phosphatidylcholines (PC) and lysophosphatidylcholines (lysoPC) levels were higher in einkorn variety. The results obtained in this study confirmed the importance of ARs as markers to distinguish between Triticum species and revealed their values as cultivar markers, being not affected by the environmental influences. PMID:27472322

  5. Development of isotope labeling liquid chromatography mass spectrometry for mouse urine metabolomics: quantitative metabolomic study of transgenic mice related to Alzheimer's disease.

    PubMed

    Peng, Jun; Guo, Kevin; Xia, Jianguo; Zhou, Jianjun; Yang, Jing; Westaway, David; Wishart, David S; Li, Liang

    2014-10-01

    Because of a limited volume of urine that can be collected from a mouse, it is very difficult to apply the common strategy of using multiple analytical techniques to analyze the metabolites to increase the metabolome coverage for mouse urine metabolomics. We report an enabling method based on differential isotope labeling liquid chromatography mass spectrometry (LC-MS) for relative quantification of over 950 putative metabolites using 20 μL of urine as the starting material. The workflow involves aliquoting 10 μL of an individual urine sample for ¹²C-dansylation labeling that target amines and phenols. Another 10 μL of aliquot was taken from each sample to generate a pooled sample that was subjected to ¹³C-dansylation labeling. The ¹²C-labeled individual sample was mixed with an equal volume of the ¹³C-labeled pooled sample. The mixture was then analyzed by LC-MS to generate information on metabolite concentration differences among different individual samples. The interday repeatability for the LC-MS runs was assessed, and the median relative standard deviation over 4 days was 5.0%. This workflow was then applied to a metabolomic biomarker discovery study using urine samples obtained from the TgCRND8 mouse model of early onset familial Alzheimer's disease (FAD) throughout the course of their pathological deposition of beta amyloid (Aβ). It was showed that there was a distinct metabolomic separation between the AD prone mice and the wild type (control) group. As early as 15-17 weeks of age (presymptomatic), metabolomic differences were observed between the two groups, and after the age of 25 weeks the metabolomic alterations became more pronounced. The metabolomic changes at different ages corroborated well with the phenotype changes in this transgenic mice model. Several useful candidate biomarkers including methionine, desaminotyrosine, taurine, N1-acetylspermidine, and 5-hydroxyindoleacetic acid were identified. Some of them were found in previous

  6. Applications of metabolomics for kidney disease research: from biomarkers to therapeutic targets.

    PubMed

    Wettersten, Hiromi I; Weiss, Robert H

    2013-01-01

    Metabolomics is one of the relative newcomers of the omics techniques and is likely the one most closely related to actual real-time disease pathophysiology. Hence, it has the power to yield not only specific biomarkers but also insight into the pathophysiology of disease. Despite this power, metabolomics as applied to kidney disease is still in its early adolescence and has not yet reached the mature stage of clinical application, i.e., specific biomarker and therapeutic target discovery. On the other hand, the insight gained from hints into what makes these diseases tick, as is evident from the metabolomics pathways which have been found to be altered in kidney cancer, are now beginning to bear fruit in leading to potential therapeutic targets. It is quite likely that, with greater numbers of clinical materials and with more investigators jumping into the field, metabolomics may well change the course of kidney disease research. PMID:23538740

  7. Recent Progress in the Development of Metabolome Databases for Plant Systems Biology

    PubMed Central

    Fukushima, Atsushi; Kusano, Miyako

    2013-01-01

    Metabolomics has grown greatly as a functional genomics tool, and has become an invaluable diagnostic tool for biochemical phenotyping of biological systems. Over the past decades, a number of databases involving information related to mass spectra, compound names and structures, statistical/mathematical models and metabolic pathways, and metabolite profile data have been developed. Such databases complement each other and support efficient growth in this area, although the data resources remain scattered across the World Wide Web. Here, we review available metabolome databases and summarize the present status of development of related tools, particularly focusing on the plant metabolome. Data sharing discussed here will pave way for the robust interpretation of metabolomic data and advances in plant systems biology. PMID:23577015

  8. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology

    PubMed Central

    Aretz, Ina; Meierhofer, David

    2016-01-01

    Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology. PMID:27128910

  9. Highlights of the 2012 Research Workshop: Using nutrigenomics and metabolomics in clinical nutrition research.

    PubMed

    Zeisel, Steven H; Waterland, Robert A; Ordovás, José M; Muoio, Deborah M; Jia, Wei; Fodor, Anthony

    2013-03-01

    The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research Workshop, "Using Nutrigenomics and Metabolomics in Clinical Nutrition Research," was held on January 21, 2012, in Orlando, Florida. The conference brought together experts in human nutrition who use nutrigenomic and metabolomic methods to better understand metabolic individuality and nutrition effects on health. We are beginning to understand how genetic variation and epigenetic events alter requirements for and responses to foods in our diet (the field of nutrigenetics/nutrigenomics and epigenetics). At the same time, methods for profiling almost all of the products of metabolism in plasma, urine, and tissues (metabolomics) are being refined. The relationships between diet and nutrigenomic-metabolomic profiles, as well as between these profiles and health, are being elucidated, and this will dramatically alter clinical practice in nutrition.

  10. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    SciTech Connect

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  11. RAMAN SPECTROSCOPY-BASED METABOLOMICS FOR DIFFERENTIATING EXPOSURES TO TRIAZOLE FUNGICIDES USING RAT URINE

    EPA Science Inventory

    Normal Raman spectroscopy was evaluated as a metabolomic tool for assessing the impacts of exposure to environmental contaminants, using rat urine collected during the course of a toxicological study. Specifically, one of three triazole fungicides, myclobutanil, propiconazole or ...

  12. USING PHARMACOKINETIC DATA TO INTERPRET METABOLOMIC CHANGES IN CD-1 MICE TREATED WITH TRIAZOLE FUNGICIDES

    EPA Science Inventory

    Triazoles are a class of fungicides widely used in both pharmaceutical and agricultural applications. These compounds elicit a variety of toxic effects including disruption of normal metabolic processes such as steroidogenesis. Metabolomics is used to measure dynamic changes in e...

  13. Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects.

    PubMed

    Sumner, Lloyd W; Lei, Zhentian; Nikolau, Basil J; Saito, Kazuki

    2015-02-01

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This review covers the approximate period of 2000 to 2014, and highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR for metabolite identifications, and X-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.

  14. Metabolomics and its potential in diagnosis, prognosis and treatment of rheumatic diseases

    PubMed Central

    Zdrojewski, Zbigniew

    2015-01-01

    The main aim of metabolomics is to make a comprehensive study of metabolites, the intermediates of biochemical processes in living organisms. Any pathophysiological mechanism caused by disease will inevitably lead to related changes in the concentrations of specific metabolites. In line with this, metabolomics offers a promising laboratory tool for the analysis of potential diagnostic biomarkers that may be used to assess susceptibility to a disease and to evaluate the prognosis and therapeutic response to treatment. Recent data have shown that metabolomics analysis in rheumatoid arthritis has made possible more efficient diagnosis, discrimination between patients with regard to disease activity, prediction of the response to a particular treatment approach, differentiation between rheumatic disease subtypes and greater understanding of the pathophysiology of this disease. Here we characterize metabolomics as a comprehensive laboratory tool and review its potential in the diagnosis, prognosis and treatment of rheumatic diseases such as rheumatoid arthritis. PMID:27407242

  15. INVESTIGATING THE ENANTIOSELECTIVE TOXICITY OF CONAZOLE FUNGICIDES IN RAINBOW TROUT THROUGH NMR BASED METABOLOMICS

    EPA Science Inventory

    Recently, metabolomics, or the quantitative measurement of a broad spectrum of metabolic responses of living systems in response to disease onset or genetic modification, has been employed to enable rapid identification of the mechanisms of toxicity for compounds of environmental...

  16. Advantages and Pitfalls of Mass Spectrometry Based Metabolome Profiling in Systems Biology.

    PubMed

    Aretz, Ina; Meierhofer, David

    2016-04-27

    Mass spectrometry-based metabolome profiling became the method of choice in systems biology approaches and aims to enhance biological understanding of complex biological systems. Genomics, transcriptomics, and proteomics are well established technologies and are commonly used by many scientists. In comparison, metabolomics is an emerging field and has not reached such high-throughput, routine and coverage than other omics technologies. Nevertheless, substantial improvements were achieved during the last years. Integrated data derived from multi-omics approaches will provide a deeper understanding of entire biological systems. Metabolome profiling is mainly hampered by its diversity, variation of metabolite concentration by several orders of magnitude and biological data interpretation. Thus, multiple approaches are required to cover most of the metabolites. No software tool is capable of comprehensively translating all the data into a biologically meaningful context yet. In this review, we discuss the advantages of metabolome profiling and main obstacles limiting progress in systems biology.

  17. METABOLOMICS FOR DEVELOPING MARKERS OF CHEMICAL EXPOSURE AND DISTINGUISHING TOXICITY PATHWAYS

    EPA Science Inventory

    Metabolomics involves the application of advanced analytical and statistical tools to profile changes in levels of endogenous metabolites in tissues and biofluids resulting from disease onset, stress, or chemical exposure. Nuclear Magnetic Resonance (NMR) spectroscopy-based meta...

  18. Metabolomics from the Lab to the Field: Lessons Learned Along the Way

    EPA Science Inventory

    Use of metabolomics in laboratory studies for chemical toxicity evaluation is fast becoming an established technique in environmental science, displaying excellent sensitivity, physiological relevance, and providing valuable information regarding toxic mode(s)-of-action. These qu...

  19. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways

    PubMed Central

    Prosser, Gareth A; Larrouy-Maumus, Gerald; de Carvalho, Luiz Pedro S

    2014-01-01

    Recent technological advances in accurate mass spectrometry and data analysis have revolutionized metabolomics experimentation. Activity-based and global metabolomic profiling methods allow simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes, making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By using the metabolome of the relevant organism or close species, these methods capitalize on biological relevance, avoiding the assignment of artificial and non-physiological functions. This review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic activities across diverse biological sources. PMID:24829223

  20. Modern plant metabolomics: Advanced natural product gene discoveries, improved technologies, and future prospects

    DOE PAGES

    Sumner, Lloyd W.; Lei, Zhentian; Nikolau, Basil J.; Saito, Kazuki

    2014-10-24

    Plant metabolomics has matured and modern plant metabolomics has accelerated gene discoveries and the elucidation of a variety of plant natural product biosynthetic pathways. This study highlights specific examples of the discovery and characterization of novel genes and enzymes associated with the biosynthesis of natural products such as flavonoids, glucosinolates, terpenoids, and alkaloids. Additional examples of the integration of metabolomics with genome-based functional characterizations of plant natural products that are important to modern pharmaceutical technology are also reviewed. This article also provides a substantial review of recent technical advances in mass spectrometry imaging, nuclear magnetic resonance imaging, integrated LC-MS-SPE-NMR formore » metabolite identifications, and x-ray crystallography of microgram quantities for structural determinations. The review closes with a discussion on the future prospects of metabolomics related to crop species and herbal medicine.« less

  1. Linkage of exposure and effects using genomics, proteomics and metabolomics in small fish models (presentation)

    EPA Science Inventory

    This research project combines the use of whole organism endpoints, genomic, proteomic and metabolomic approaches, and computational modeling in a systems biology approach to 1) identify molecular indicators of exposure and biomarkers of effect to EDCs representing several modes/...

  2. Establishment of local searching methods for orbitrap-based high throughput metabolomics analysis.

    PubMed

    Tang, Haiping; Wang, Xueying; Xu, Lina; Ran, Xiaorong; Li, Xiangjun; Chen, Ligong; Zhao, Xinbin; Deng, Haiteng; Liu, Xiaohui

    2016-08-15

    Our method aims to establish local endogenous metabolite databases economically without purchasing chemical standards, giving strong bases for following orbitrap based high throughput untargeted metabolomics analysis. A new approach here is introduced to construct metabolite databases on the base of biological sample analysis and mathematic extrapolation. Building local metabolite databases traditionally requires expensive chemical standards, which is barely affordable for most research labs. As a result, most labs working on metabolomics analysis have to refer public libraries, which is time consuming and limited for high throughput analysis. Using this strategy, a high throughput orbitrap based metabolomics platform can be established at almost no cost within a couple of months. It enables to facilitate the application of high throughput metabolomics analysis to identify disease-related biomarkers or investigate biological functions using orbitrap. PMID:27260449

  3. Metabolomic strategies for the identification of new enzyme functions and metabolic pathways.

    PubMed

    Prosser, Gareth A; Larrouy-Maumus, Gerald; de Carvalho, Luiz Pedro S

    2014-06-01

    Recent technological advances in accurate mass spectrometry and data analysis have revolutionized metabolomics experimentation. Activity-based and global metabolomic profiling methods allow simultaneous and rapid screening of hundreds of metabolites from a variety of chemical classes, making them useful tools for the discovery of novel enzymatic activities and metabolic pathways. By using the metabolome of the relevant organism or close species, these methods capitalize on biological relevance, avoiding the assignment of artificial and non-physiological functions. This review discusses state-of-the-art metabolomic approaches and highlights recent examples of their use for enzyme annotation, discovery of new metabolic pathways, and gene assignment of orphan metabolic activities across diverse biological sources.

  4. Applications of metabolomics for kidney disease research: from biomarkers to therapeutic targets.

    PubMed

    Wettersten, Hiromi I; Weiss, Robert H

    2013-01-01

    Metabolomics is one of the relative newcomers of the omics techniques and is likely the one most closely related to actual real-time disease pathophysiology. Hence, it has the power to yield not only specific biomarkers but also insight into the pathophysiology of disease. Despite this power, metabolomics as applied to kidney disease is still in its early adolescence and has not yet reached the mature stage of clinical application, i.e., specific biomarker and therapeutic target discovery. On the other hand, the insight gained from hints into what makes these diseases tick, as is evident from the metabolomics pathways which have been found to be altered in kidney cancer, are now beginning to bear fruit in leading to potential therapeutic targets. It is quite likely that, with greater numbers of clinical materials and with more investigators jumping into the field, metabolomics may well change the course of kidney disease research.

  5. Influence of the collection tube on metabolomic changes in serum and plasma.

    PubMed

    López-Bascón, M A; Priego-Capote, F; Peralbo-Molina, A; Calderón-Santiago, M; Luque de Castro, M D

    2016-04-01

    Major threats in metabolomics clinical research are biases in sampling and preparation of biological samples. Bias in sample collection is a frequently forgotten aspect responsible for uncontrolled errors in metabolomics analysis. There is a great diversity of blood collection tubes for sampling serum or plasma, which are widely used in metabolomics analysis. Most of the existing studies dealing with the influence of blood collection on metabolomics analysis have been restricted to comparison between plasma and serum. However, polymeric gel tubes, which are frequently proposed to accelerate the separation of serum and plasma, have not been studied. In the present research, samples of serum or plasma collected in polymeric gel tubes were compared with those taken in conventional tubes from a metabolomics perspective using an untargeted GC-TOF/MS approach. The main differences between serum and plasma collected in conventional tubes affected to critical pathways such as the citric acid cycle, metabolism of amino acids, fructose and mannose metabolism and that of glycerolipids, and pentose and glucuronate interconversion. On the other hand, the polymeric gel only promoted differences at the metabolite level in serum since no critical differences were observed between plasma collected with EDTA tubes and polymeric gel tubes. Thus, the main changes were attributable to serum collected in gel and affected to the metabolism of amino acids such as alanine, proline and threonine, the glycerolipids metabolism, and two primary metabolites such as aconitic acid and lactic acid. Therefore, these metabolite changes should be taken into account in planning an experimental protocol for metabolomics analysis.

  6. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity

    SciTech Connect

    Beger, Richard D.; Sun, Jinchun; Schnackenberg, Laura K.

    2010-03-01

    Hepatotoxicity and nephrotoxicity are two major reasons that drugs are withdrawn post-market, and hence it is of major concern to both the FDA and pharmaceutical companies. The number of cases of serious adverse effects (SAEs) in marketed drugs has climbed faster than the number of total drug prescriptions issued. In some cases, preclinical animal studies fail to identify the potential toxicity of a new chemical entity (NCE) under development. The current clinical chemistry biomarkers of liver and kidney injury are inadequate in terms of sensitivity and/or specificity, prompting the need to discover new translational specific biomarkers of organ injury. Metabolomics along with genomics and proteomics technologies have the capability of providing translational diagnostic and prognostic biomarkers specific for early stages of liver and kidney injury. Metabolomics has several advantages over the other omics platforms such as ease of sample preparation, data acquisition and use of biofluids collected through minimally invasive procedures in preclinical and clinical studies. The metabolomics platform is reviewed with particular emphasis on applications involving drug-induced hepatotoxicity and nephrotoxicity. Analytical platforms for metabolomics, chemometrics for mining metabolomics data and the applications of the metabolomics technologies are covered in detail with emphasis on recent work in the field.

  7. Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline

    PubMed Central

    Sha, Wei; da Costa, Kerry-Ann; Fischer, Leslie M.; Milburn, Michael V.; Lawton, Kay A.; Berger, Alvin; Jia, Wei; Zeisel, Steven H.

    2010-01-01

    Choline is an essential nutrient, and deficiency causes liver and muscle dysfunction. Common genetic variations alter the risk of developing organ dysfunction when choline deficient, probably by causing metabolic inefficiencies that should be detectable even while ingesting a normal choline-adequate diet. We determined whether metabolomic profiling of plasma at baseline could predict whether humans will develop liver dysfunction when deprived of dietary choline. Fifty-three participants were fed a diet containing 550 mg choline/70 kg/d for 10 d and then fed <50 mg choline/70 kg/d for up to 42 d. Participants who developed organ dysfunction on this diet were repleted with a choline-adequate diet for ≥3 d. Plasma samples, obtained at baseline, end of depletion, and end of repletion, were used for targeted and nontargeted metabolomic profiling. Liver fat was assessed using magnetic resonance spectroscopy. Metabolomic profiling and targeted biochemical analyses were highly correlated for the analytes assessed by both procedures. In addition, we report relative concentration changes of other small molecules detected by the nontargeted metabolomic analysis after choline depletion. Finally, we show that metabolomic profiles of participants when they were consuming a control baseline diet could predict whether they would develop liver dysfunction when deprived of dietary choline.—Sha, W., da Costa, K., Fischer, L. M., Milburn, M. V., Lawton, K. A., Berger, A., Jia, W., Zeisel, S. H. Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline. PMID:20371621

  8. MetaboLights: An Open-Access Database Repository for Metabolomics Data.

    PubMed

    Kale, Namrata S; Haug, Kenneth; Conesa, Pablo; Jayseelan, Kalaivani; Moreno, Pablo; Rocca-Serra, Philippe; Nainala, Venkata Chandrasekhar; Spicer, Rachel A; Williams, Mark; Li, Xuefei; Salek, Reza M; Griffin, Julian L; Steinbeck, Christoph

    2016-01-01

    MetaboLights is the first general purpose, open-access database repository for cross-platform and cross-species metabolomics research at the European Bioinformatics Institute (EMBL-EBI). Based upon the open-source ISA framework, MetaboLights provides Metabolomics Standard Initiative (MSI) compliant metadata and raw experimental data associated with metabolomics experiments. Users can upload their study datasets into the MetaboLights Repository. These studies are then automatically assigned a stable and unique identifier (e.g., MTBLS1) that can be used for publication reference. The MetaboLights Reference Layer associates metabolites with metabolomics studies in the archive and is extensively annotated with data fields such as structural and chemical information, NMR and MS spectra, target species, metabolic pathways, and reactions. The database is manually curated with no specific release schedules. MetaboLights is also recommended by journals for metabolomics data deposition. This unit provides a guide to using MetaboLights, downloading experimental data, and depositing metabolomics datasets using user-friendly submission tools.

  9. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health.

    PubMed

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies. PMID:27507964

  10. Faecal metabolomic fingerprint after moderate consumption of red wine by healthy subjects.

    PubMed

    Jiménez-Girón, Ana; Ibáñez, Clara; Cifuentes, Alejandro; Simó, Carolina; Muñoz-González, Irene; Martín-Álvarez, Pedro J; Bartolomé, Begoña; Moreno-Arribas, M Victoria

    2015-02-01

    Faecal metabolome contains information on the metabolites found in the intestine, from which knowledge about the metabolic function of the gut microbiota can be obtained. Changes in the metabolomic profile of faeces reflect, among others, changes in the composition and activity of the intestinal microorganisms. In an effort to improve our understanding of the biological effects that phenolic compounds (including red wine polyphenols) exert at the gut level, in this foodomic study we have undertaken a metabolome characterization of human faeces after moderate consumption of red wine by healthy subjects for 4 weeks. Namely, a nontargeted metabolomic approach based on the use of UHPLC-TOF MS was developed to achieve the maximum metabolite information on 82 human faecal samples. After data processing and statistical analysis, 37 metabolites were related to wine intake, from which 20 could be tentatively or completely identified, including the following: (A) wine compounds, (B) microbial-derived metabolites of wine polyphenols, and (C) endogenous metabolites and/or others derived from other nutrient pathways. After wine consumption, faecal metabolome was fortified in flavan-3-ols metabolites. Also, of relevance was the down regulation of xanthine and bilirubin-derived metabolites such as urobilinogen and stercobilin after moderate wine consumption. As far as we know, this is the first study of the faecal metabolome after wine intake.

  11. Plasma metabolomic profiles enhance precision medicine for volunteers of normal health

    PubMed Central

    Guo, Lining; Milburn, Michael V.; Ryals, John A.; Lonergan, Shaun C.; Mitchell, Matthew W.; Wulff, Jacob E.; Alexander, Danny C.; Evans, Anne M.; Bridgewater, Brandi; Miller, Luke; Gonzalez-Garay, Manuel L.; Caskey, C. Thomas

    2015-01-01

    Precision medicine, taking account of human individuality in genes, environment, and lifestyle for early disease diagnosis and individualized therapy, has shown great promise to transform medical care. Nontargeted metabolomics, with the ability to detect broad classes of biochemicals, can provide a comprehensive functional phenotype integrating clinical phenotypes with genetic and nongenetic factors. To test the application of metabolomics in individual diagnosis, we conducted a metabolomics analysis on plasma samples collected from 80 volunteers of normal health with complete medical records and three-generation pedigrees. Using a broad-spectrum metabolomics platform consisting of liquid chromatography and GC coupled with MS, we profiled nearly 600 metabolites covering 72 biochemical pathways in all major branches of biosynthesis, catabolism, gut microbiome activities, and xenobiotics. Statistical analysis revealed a considerable range of variation and potential metabolic abnormalities across the individuals in this cohort. Examination of the convergence of metabolomics profiles with whole-exon sequences (WESs) provided an effective approach to assess and interpret clinical significance of genetic mutations, as shown in a number of cases, including fructose intolerance, xanthinuria, and carnitine deficiency. Metabolic abnormalities consistent with early indications of diabetes, liver dysfunction, and disruption of gut microbiome homeostasis were identified in several volunteers. Additionally, diverse metabolic responses to medications among the volunteers may assist to identify therapeutic effects and sensitivity to toxicity. The results of this study demonstrate that metabolomics could be an effective approach to complement next generation sequencing (NGS) for disease risk analysis, disease monitoring, and drug management in our goal toward precision care. PMID:26283345

  12. MetaboLights: An Open-Access Database Repository for Metabolomics Data.

    PubMed

    Kale, Namrata S; Haug, Kenneth; Conesa, Pablo; Jayseelan, Kalaivani; Moreno, Pablo; Rocca-Serra, Philippe; Nainala, Venkata Chandrasekhar; Spicer, Rachel A; Williams, Mark; Li, Xuefei; Salek, Reza M; Griffin, Julian L; Steinbeck, Christoph

    2016-01-01

    MetaboLights is the first general purpose, open-access database repository for cross-platform and cross-species metabolomics research at the European Bioinformatics Institute (EMBL-EBI). Based upon the open-source ISA framework, MetaboLights provides Metabolomics Standard Initiative (MSI) compliant metadata and raw experimental data associated with metabolomics experiments. Users can upload their study datasets into the MetaboLights Repository. These studies are then automatically assigned a stable and unique identifier (e.g., MTBLS1) that can be used for publication reference. The MetaboLights Reference Layer associates metabolites with metabolomics studies in the archive and is extensively annotated with data fields such as structural and chemical information, NMR and MS spectra, target species, metabolic pathways, and reactions. The database is manually curated with no specific release schedules. MetaboLights is also recommended by journals for metabolomics data deposition. This unit provides a guide to using MetaboLights, downloading experimental data, and depositing metabolomics datasets using user-friendly submission tools. PMID:27010336

  13. Metabolomics approaches for discovering biomarkers of drug-induced hepatotoxicity and nephrotoxicity.

    PubMed

    Beger, Richard D; Sun, Jinchun; Schnackenberg, Laura K

    2010-03-01

    Hepatotoxicity and nephrotoxicity are two major reasons that drugs are withdrawn post-market, and hence it is of major concern to both the FDA and pharmaceutical companies. The number of cases of serious adverse effects (SAEs) in marketed drugs has climbed faster than the number of total drug prescriptions issued. In some cases, preclinical animal studies fail to identify the potential toxicity of a new chemical entity (NCE) under development. The current clinical chemistry biomarkers of liver and kidney injury are inadequate in terms of sensitivity and/or specificity, prompting the need to discover new translational specific biomarkers of organ injury. Metabolomics along with genomics and proteomics technologies have the capability of providing translational diagnostic and prognostic biomarkers specific for early stages of liver and kidney injury. Metabolomics has several advantages over the other omics platforms such as ease of sample preparation, data acquisition and use of biofluids collected through minimally invasive procedures in preclinical and clinical studies. The metabolomics platform is reviewed with particular emphasis on applications involving drug-induced hepatotoxicity and nephrotoxicity. Analytical platforms for metabolomics, chemometrics for mining metabolomics data and the applications of the metabolomics technologies are covered in detail with emphasis on recent work in the field.

  14. Gut Microbiota Profiling: Metabolomics Based Approach to Unravel Compounds Affecting Human Health

    PubMed Central

    Vernocchi, Pamela; Del Chierico, Federica; Putignani, Lorenza

    2016-01-01

    The gut microbiota is composed of a huge number of different bacteria, that produce a large amount of compounds playing a key role in microbe selection and in the construction of a metabolic signaling network. The microbial activities are affected by environmental stimuli leading to the generation of a wide number of compounds, that influence the host metabolome and human health. Indeed, metabolite profiles related to the gut microbiota can offer deep insights on the impact of lifestyle and dietary factors on chronic and acute diseases. Metagenomics, metaproteomics and metabolomics are some of the meta-omics approaches to study the modulation of the gut microbiota. Metabolomic research applied to biofluids allows to: define the metabolic profile; identify and quantify classes and compounds of interest; characterize small molecules produced by intestinal microbes; and define the biochemical pathways of metabolites. Mass spectrometry and nuclear magnetic resonance spectroscopy are the principal technologies applied to metabolomics in terms of coverage, sensitivity and quantification. Moreover, the use of biostatistics and mathematical approaches coupled with metabolomics play a key role in the extraction of biologically meaningful information from wide datasets. Metabolomic studies in gut microbiota-related research have increased, focusing on the generation of novel biomarkers, which could lead to the development of mechanistic hypotheses potentially applicable to the development of nutritional and personalized therapies. PMID:27507964

  15. Improvements to define mitochondrial metabolomics using nonaqueous fractionation.

    PubMed

    Fly, Richard; Lloyd, James; Krueger, Stephan; Fernie, Alisdair; van der Merwe, Margaretha J

    2015-01-01

    Defining metabolite abundance and resulting fractional isotope enrichments, within and between cellular compartments, still remain a major challenge in modern plant biochemistry. Optimized protocols for rapid isolation of mitochondria (e.g., silicone oil centrifugation or membrane filters) or visualization of metabolites/metabolic states (e.g., fluorescence resonance energy transfer (FRET) or redox-sensitive fluorescent markers (roGFP)) have significantly improved and expanded our knowledge regarding mitochondrial metabolism. However, the application of nonaqueous fractionation (NAQF) to separate and quantify metabolites across subcellular compartments remains popular as a nontargeted, validated approach towards studying metabolism, and provides a top-down overview of metabolite distribution across the majority of the subcellular compartments in a single preparation. Unfortunately, of all the organelles resolved using this method, the mitochondrion still remains the most poorly defined. Here, the development and suggested improvements to resolve the mitochondrial metabolome are described.

  16. Metabolomics Analyses of Cancer Cells in Controlled Microenvironments.

    PubMed

    Gravel, Simon-Pierre; Avizonis, Daina; St-Pierre, Julie

    2016-01-01

    The tumor microenvironment is a complex and heterogeneous milieu in which cancer cells undergo metabolic reprogramming to fuel their growth. Cancer cell lines grown in vitro using traditional culture methods represent key experimental models to gain a mechanistic understanding of tumor biology. This protocol describes the use of gas chromatography-mass spectrometry (GC-MS) to assess metabolic changes in cancer cells grown under varied levels of oxygen and nutrients that may better mimic the tumor microenvironment. Intracellular metabolite changes, metabolite uptake and release, as well as stable isotope ((13)C) tracer analyses are done in a single experimental setup to provide an integrated understanding of metabolic adaptation. Overall, this chapter describes some essential tools and methods to perform comprehensive metabolomics analyses. PMID:27581029

  17. Evolution of metabolomics profile of crab paste during fermentation.

    PubMed

    Chen, Daian; Ye, Yangfang; Chen, Juanjuan; Yan, Xiaojun

    2016-02-01

    Crab paste is regularly consumed by people in the coastal area of China. The fermentation time plays a key role on the quality of crab paste. Here, we investigated the dynamic evolution of metabolite profile of crab paste during fermentation by combined use of NMR spectroscopy and multivariate data analysis. Our results showed that crab paste quality was significantly affected by fermentation. The quality change was manifested in the decline of lactate, betaine, taurine, trimethylamine-N-oxide, trigonelline, inosine, adenosine diphosphate, and 2-pyridinemethanol, and in the fluctuation of a range of amino acids as well as in the accumulation of glutamate, sucrose, formate, acetate, trimethylamine, and hypoxanthine. Trimethylamine production and its increased level with fermentation could be considered as a freshness index of crab paste. These results contribute to quality assessment of crab paste and confirm the metabolomics technique as a useful tool to provide important information on the crab paste quality.

  18. Integrated metabolomics for abiotic stress responses in plants.

    PubMed

    Nakabayashi, Ryo; Saito, Kazuki

    2015-04-01

    Plants are considered to biosynthesize specialized (traditionally called secondary) metabolites to adapt to environmental stresses such as biotic and abiotic stresses. The majority of specialized metabolites induced by abiotic stress characteristically exhibit antioxidative activity in vitro, but their function in vivo is largely yet to be experimentally confirmed. In this review, we highlight recent advances in the identification of the role of abiotic stress-responsive specialized metabolites with an emphasis on flavonoids. Integrated 'omics' analysis, centered on metabolomics with a series of plant resources differing in their flavonoid accumulation, showed experimentally that flavonoids play a major role in antioxidation in vivo. In addition, the results also suggest the role of flavonoids in the vacuole. To obtain more in-depth insights, chemical and biological challenges need to be addressed for the identification of unknown specialized metabolites and their in vivo functions.

  19. Metabolomics reveals elevated macromolecular degradation in periodontal disease.

    PubMed

    Barnes, V M; Ciancio, S G; Shibly, O; Xu, T; Devizio, W; Trivedi, H M; Guo, L; Jönsson, T J

    2011-11-01

    Periodontitis is a chronic inflammatory disease characterized by tissue destruction. In the diseased oral environment, saliva has primarily been considered to act as a protectant by lubricating the tissue, mineralizing the bones, neutralizing the pH, and combating microbes. To understand the metabolic role that saliva plays in the diseased state, we performed untargeted metabolomic profiling of saliva from healthy and periodontitic individuals. Several classes of biochemicals, including dipeptide, amino acid, carbohydrate, lipids, and nucleotide metabolites, were altered, consistent with increased macromolecular degradation of proteins, triacylglycerol, glycerolphospholipids, polysaccharides, and polynucleotides in the individuals with periodontal disease. These changes partially reflected the enhanced host-bacterial interactions in the diseased state as supported by increased levels of bacterially modified amino acids and creatine metabolite. More importantly, the increased lipase, protease, and glycosidase activities associated with periodontitis generated a more favorable energy environment for oral bacteria, potentially exacerbating the disease state. PMID:21856966

  20. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis

    PubMed Central

    Aguiar-Pulido, Vanessa; Huang, Wenrui; Suarez-Ulloa, Victoria; Cickovski, Trevor; Mathee, Kalai; Narasimhan, Giri

    2016-01-01

    Microbiomes are ubiquitous and are found in the ocean, the soil, and in/on other living organisms. Changes in the microbiome can impact the health of the environmental niche in which they reside. In order to learn more about these communities, different approaches based on data from multiple omics have been pursued. Metagenomics produces a taxonomical profile of the sample, metatranscriptomics helps us to obtain a functional profile, and metabolomics completes the picture by determining which byproducts are being released into the environment. Although each approach provides valuable information separately, we show that, when combined, they paint a more comprehensive picture. We conclude with a review of network-based approaches as applied to integrative studies, which we believe holds the key to in-depth understanding of microbiomes. PMID:27199545

  1. Amyotrophic Lateral Sclerosis and Metabolomics: Clinical Implication and Therapeutic Approach

    PubMed Central

    Kumar, Alok; Ghosh, Devlina; Singh, R. L.

    2013-01-01

    Amyotrophic lateral sclerosis (ALS) is one of the most common motor neurodegenerative disorders, primarily affecting upper and lower motor neurons in the brain, brainstem, and spinal cord, resulting in paralysis due to muscle weakness and atrophy. The majority of patients die within 3–5 years of symptom onset as a consequence of respiratory failure. Due to relatively fast progression of the disease, early diagnosis is essential. Metabolomics offer a unique opportunity to understand the spatiotemporal metabolic crosstalks through the assessment of body fluids and tissue. So far, one of the most challenging issues related to ALS is to understand the variation of metabolites in body fluids and CNS with the progression of disease. In this paper we will review the changes in metabolic profile in response to disease progression condition and also see the therapeutic implication of various drugs in ALS patients. PMID:26317018

  2. The human NAD metabolome: Functions, metabolism and compartmentalization

    PubMed Central

    Nikiforov, Andrey; Kulikova, Veronika; Ziegler, Mathias

    2015-01-01

    Abstract The metabolism of NAD has emerged as a key regulator of cellular and organismal homeostasis. Being a major component of both bioenergetic and signaling pathways, the molecule is ideally suited to regulate metabolism and major cellular events. In humans, NAD is synthesized from vitamin B3 precursors, most prominently from nicotinamide, which is the degradation product of all NAD-dependent signaling reactions. The scope of NAD-mediated regulatory processes is wide including enzyme regulation, control of gene expression and health span, DNA repair, cell cycle regulation and calcium signaling. In these processes, nicotinamide is cleaved from NAD+ and the remaining ADP-ribosyl moiety used to modify proteins (deacetylation by sirtuins or ADP-ribosylation) or to generate calcium-mobilizing agents such as cyclic ADP-ribose. This review will also emphasize the role of the intermediates in the NAD metabolome, their intra- and extra-cellular conversions and potential contributions to subcellular compartmentalization of NAD pools. PMID:25837229

  3. Symbiodinium—Invertebrate Symbioses and the Role of Metabolomics

    PubMed Central

    Gordon, Benjamin R.; Leggat, William

    2010-01-01

    Symbioses play an important role within the marine environment. Among the most well known of these symbioses is that between coral and the photosynthetic dinoflagellate, Symbiodinium spp. Understanding the metabolic relationships between the host and the symbiont is of the utmost importance in order to gain insight into how this symbiosis may be disrupted due to environmental stressors. Here we summarize the metabolites related to nutritional roles, diel cycles and the common metabolites associated with the invertebrate-Symbiodinium relationship. We also review the more obscure metabolites and toxins that have been identified through natural products and biomarker research. Finally, we discuss the key role that metabolomics and functional genomics will play in understanding these important symbioses. PMID:21116405

  4. Metabolomics reveals elevated macromolecular degradation in periodontal disease.

    PubMed

    Barnes, V M; Ciancio, S G; Shibly, O; Xu, T; Devizio, W; Trivedi, H M; Guo, L; Jönsson, T J

    2011-11-01

    Periodontitis is a chronic inflammatory disease characterized by tissue destruction. In the diseased oral environment, saliva has primarily been considered to act as a protectant by lubricating the tissue, mineralizing the bones, neutralizing the pH, and combating microbes. To understand the metabolic role that saliva plays in the diseased state, we performed untargeted metabolomic profiling of saliva from healthy and periodontitic individuals. Several classes of biochemicals, including dipeptide, amino acid, carbohydrate, lipids, and nucleotide metabolites, were altered, consistent with increased macromolecular degradation of proteins, triacylglycerol, glycerolphospholipids, polysaccharides, and polynucleotides in the individuals with periodontal disease. These changes partially reflected the enhanced host-bacterial interactions in the diseased state as supported by increased levels of bacterially modified amino acids and creatine metabolite. More importantly, the increased lipase, protease, and glycosidase activities associated with periodontitis generated a more favorable energy environment for oral bacteria, potentially exacerbating the disease state.

  5. Metagenomics, Metatranscriptomics, and Metabolomics Approaches for Microbiome Analysis.

    PubMed

    Aguiar-Pulido, Vanessa; Huang, Wenrui; Suarez-Ulloa, Victoria; Cickovski, Trevor; Mathee, Kalai; Narasimhan, Giri

    2016-01-01

    Microbiomes are ubiquitous and are found in the ocean, the soil, and in/on other living organisms. Changes in the microbiome can impact the health of the environmental niche in which they reside. In order to learn more about these communities, different approaches based on data from multiple omics have been pursued. Metagenomics produces a taxonomical profile of the sample, metatranscriptomics helps us to obtain a functional profile, and metabolomics completes the picture by determining which byproducts are being released into the environment. Although each approach provides valuable information separately, we show that, when combined, they paint a more comprehensive picture. We conclude with a review of network-based approaches as applied to integrative studies, which we believe holds the key to in-depth understanding of microbiomes. PMID:27199545

  6. Carbon backbone topology of the metabolome of a cell.

    PubMed

    Bingol, Kerem; Zhang, Fengli; Bruschweiler-Li, Lei; Brüschweiler, Rafael

    2012-05-30

    The complex metabolic makeup of a biological system, such as a cell, is a key determinant of its biological state providing unique insights into its function. Here we characterize the metabolome of a cell by a novel homonuclear (13)C 2D NMR approach applied to a nonfractionated uniformly (13)C-enriched lysate of E. coli cells and determine de novo their carbon backbone topologies that constitute the "topolome". A protocol was developed, which first identifies traces in a constant-time (13)C-(13)C TOCSY NMR spectrum that are unique for individual mixture components and then assembles for each trace the corresponding carbon-bond topology network by consensus clustering. This led to the determination of 112 topologies of unique metabolites from a single sample. The topolome is dominated by carbon topologies of carbohydrates (34.8%) and amino acids (45.5%) that can constitute building blocks of more complex structures. PMID:22540339

  7. Atmospheric vs. anaerobic processing of metabolome samples for the metabolite profiling of a strict anaerobic bacterium, Clostridium acetobutylicum.

    PubMed

    Lee, Sang-Hyun; Kim, Sooah; Kwon, Min-A; Jung, Young Hoon; Shin, Yong-An; Kim, Kyoung Heon

    2014-12-01

    Well-established metabolome sample preparation is a prerequisite for reliable metabolomic data. For metabolome sampling of a Gram-positive strict anaerobe, Clostridium acetobutylicum, fast filtration and metabolite extraction with acetonitrile/methanol/water (2:2:1, v/v) at -20°C under anaerobic conditions has been commonly used. This anaerobic metabolite processing method is laborious and time-consuming since it is conducted in an anaerobic chamber. Also, there have not been any systematic method evaluation and development of metabolome sample preparation for strict anaerobes and Gram-positive bacteria. In this study, metabolome sampling and extraction methods were rigorously evaluated and optimized for C. acetobutylicum by using gas chromatography/time-of-flight mass spectrometry-based metabolomics, in which a total of 116 metabolites were identified. When comparing the atmospheric (i.e., in air) and anaerobic (i.e., in an anaerobic chamber) processing of metabolome sample preparation, there was no significant difference in the quality and quantity of the metabolomic data. For metabolite extraction, pure methanol at -20°C was a better solvent than acetonitrile/methanol/water (2:2:1, v/v/v) at -20°C that is frequently used for C. acetobutylicum, and metabolite profiles were significantly different depending on extraction solvents. This is the first evaluation of metabolite sample preparation under aerobic processing conditions for an anaerobe. This method could be applied conveniently, efficiently, and reliably to metabolome analysis for strict anaerobes in air.

  8. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine.

    PubMed

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-04-14

    Uropathogenic Escherichia coli (UPEC) growth in women's bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the "interactive metabolome", which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI.

  9. Accurate, Fully-Automated NMR Spectral Profiling for Metabolomics

    PubMed Central

    Ravanbakhsh, Siamak; Liu, Philip; Bjordahl, Trent C.; Mandal, Rupasri; Grant, Jason R.; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S.

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person’s biofluids, which means such diseases can often be readily detected from a person’s “metabolic profile"—i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person’s metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the “signatures” of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively—with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications

  10. Amniotic Fluid Metabolomic Analysis in Spontaneous Preterm Birth

    PubMed Central

    Jones, Janice; Gunst, Phillip R.; Kacerovsky, Marian; Fortunato, Stephen J.; Saade, George R.; Basraon, Sanmaan

    2014-01-01

    Objective: To identify metabolic changes associated with early spontaneous preterm birth (PTB; <34 weeks) and term births, using high-throughput metabolomics of amniotic fluid (AF) in African American population. Method: In this study, AF samples retrieved from spontaneous PTB (<34 weeks [n = 25]) and normal term birth (n = 25) by transvaginal amniocentesis at the time of labor prior to delivery were subjected to metabolomics analysis. Equal volumes of samples were subjected to a standard solvent extraction method and analyzed using gas chromatography/mass spectrometry (MS) and liquid chromatography/MS/MS. Biochemicals were identified through matching of ion features to a library of biochemical standards. After log transformation and imputation of minimum observed values for each compound, t test, correlation tests, and false discovery rate corrections were used to identify differentially regulated metabolites. Data were controlled for clinical/demographic variables and medication during pregnancy. Results: Of 348 metabolites measured in AF samples, 121 metabolites had a gestational age effect and 116 differed significantly between PTB and term births. A majority of significantly altered metabolites could be classified into 3 categories, namely, (1) liver function, (2) fatty acid and coenzyme A (CoA) metabolism, and (3) histidine metabolism. The signature of altered liver function was apparent in many cytochrome P450-related pathways including bile acids, steroids, xanthines, heme, and phase II detoxification of xenobiotics with the largest fold change seen with pantothenol, a CoA synthesis inhibitor that was 8-fold more abundant in PTB. Conclusion: Global metabolic profiling of AF revealed alteration in hepatic metabolites involving xenobiotic detoxification and CoA metabolism in PTB. Maternal and/or fetal hepatic function differences may be developmentally related and its contribution PTB as a cause or effect of PTB is still unclear. PMID:24440995

  11. Evaluating effects of penicillin treatment on the metabolome of rats.

    PubMed

    Sun, Jinchun; Schnackenberg, Laura K; Khare, Sangeeta; Yang, Xi; Greenhaw, James; Salminen, William; Mendrick, Donna L; Beger, Richard D

    2013-08-01

    Penicillin (PEN) V, a well-known antibiotic widely used in the treatment of Gram-positive bacterial infections, was evaluated in this study. LC/MS- and NMR-based metabolic profiling were employed to examine the effects of PEN on the host's metabolic phenotype. Male Sprague Dawley rats were randomly divided into groups that were orally administered either 0.5% methylcellulose vehicle, 100 or 2400mg PEN/kg body weight once daily for up to 14 consecutive days. Urine, plasma and tissue were collected from groups sacrificed at 6h, 24h or 14d. The body fluids were subjected to clinical chemistry and metabolomics analysis; the tissue samples were processed for histopathology. The only notable clinical chemistry observation was that gamma glutamyltransferase (GGT) significantly decreased at 24h for both dose groups, and significantly decreased at 14d for the high-dose groups. Partial least squares discriminant analysis scores plots of the metabolomics data from urine and plasma samples showed dose- and time-dependent grouping patterns. Time- and dose-dependent decreases in urinary metabolites including indole-containing metabolites (such as 3-methyldioxyindole sulfate generated from bacterial metabolism of tryptophan), organic acids containing phenyl groups (such as hippuric acid, phenyllactic acid and 3-hydroxyanthranilic acid), and metabolites conjugated with sulfate or glucuronide (such as cresol sulfate and aminophenol sulfate) indicated that the gut microflora population was suppressed. Decreases in many host-gut microbiota urinary co-metabolites (indole- and phenyl-containing metabolites, amino acids, vitamins, nucleotides and bile acids) suggested gut microbiota play important roles in the regulation of host metabolism, including dietary nutrient absorption and reprocessing the absorbed nutrients. Decreases in urinary conjugated metabolites (sulfate, glucuronide and glycine conjugates) implied that gut microbiota might have an impact on chemical detoxification

  12. Accurate, fully-automated NMR spectral profiling for metabolomics.

    PubMed

    Ravanbakhsh, Siamak; Liu, Philip; Bjorndahl, Trent C; Bjordahl, Trent C; Mandal, Rupasri; Grant, Jason R; Wilson, Michael; Eisner, Roman; Sinelnikov, Igor; Hu, Xiaoyu; Luchinat, Claudio; Greiner, Russell; Wishart, David S

    2015-01-01

    Many diseases cause significant changes to the concentrations of small molecules (a.k.a. metabolites) that appear in a person's biofluids, which means such diseases can often be readily detected from a person's "metabolic profile"-i.e., the list of concentrations of those metabolites. This information can be extracted from a biofluids Nuclear Magnetic Resonance (NMR) spectrum. However, due to its complexity, NMR spectral profiling has remained manual, resulting in slow, expensive and error-prone procedures that have hindered clinical and industrial adoption of metabolomics via NMR. This paper presents a system, BAYESIL, which can quickly, accurately, and autonomously produce a person's metabolic profile. Given a 1D 1H NMR spectrum of a complex biofluid (specifically serum or cerebrospinal fluid), BAYESIL can automatically determine the metabolic profile. This requires first performing several spectral processing steps, then matching the resulting spectrum against a reference compound library, which contains the "signatures" of each relevant metabolite. BAYESIL views spectral matching as an inference problem within a probabilistic graphical model that rapidly approximates the most probable metabolic profile. Our extensive studies on a diverse set of complex mixtures including real biological samples (serum and CSF), defined mixtures and realistic computer generated spectra; involving > 50 compounds, show that BAYESIL can autonomously find the concentration of NMR-detectable metabolites accurately (~ 90% correct identification and ~ 10% quantification error), in less than 5 minutes on a single CPU. These results demonstrate that BAYESIL is the first fully-automatic publicly-accessible system that provides quantitative NMR spectral profiling effectively-with an accuracy on these biofluids that meets or exceeds the performance of trained experts. We anticipate this tool will usher in high-throughput metabolomics and enable a wealth of new applications of NMR in

  13. anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data

    PubMed Central

    Zamboni, Nicola; Kümmel, Anne; Heinemann, Matthias

    2008-01-01

    Background Compared to other omics techniques, quantitative metabolomics is still at its infancy. Complex sample preparation and analytical procedures render exact quantification extremely difficult. Furthermore, not only the actual measurement but also the subsequent interpretation of quantitative metabolome data to obtain mechanistic insights is still lacking behind the current expectations. Recently, the method of network-embedded thermodynamic (NET) analysis was introduced to address some of these open issues. Building upon principles of thermodynamics, this method allows for a quality check of measured metabolite concentrations and enables to spot metabolic reactions where active regulation potentially controls metabolic flux. So far, however, widespread application of NET analysis in metabolomics labs was hindered by the absence of suitable software. Results We have developed in Matlab a generalized software called 'anNET' that affords a user-friendly implementation of the NET analysis algorithm. anNET supports the analysis of any metabolic network for which a stoichiometric model can be compiled. The model size can span from a single reaction to a complete genome-wide network reconstruction including compartments. anNET can (i) test quantitative data sets for thermodynamic consistency, (ii) predict metabolite concentrations beyond the actually measured data, (iii) identify putative sites of active regulation in the metabolic reaction network, and (iv) help in localizing errors in data sets that were found to be thermodynamically infeasible. We demonstrate the application of anNET with three published Escherichia coli metabolome data sets. Conclusion Our user-friendly and generalized implementation of the NET analysis method in the software anNET allows users to rapidly integrate quantitative metabolome data obtained from virtually any organism. We envision that use of anNET in labs working on quantitative metabolomics will provide the systems biology and

  14. Perplexing Metabolomes in Fungal-Insect Trophic Interactions: A Terra Incognita of Mycobiocontrol Mechanisms

    PubMed Central

    Singh, Digar; Son, Su Y.; Lee, Choong H.

    2016-01-01

    The trophic interactions of entomopathogenic fungi in different ecological niches viz., soil, plants, or insect themselves are effectively regulated by their maneuvered metabolomes and the plethora of metabotypes. In this article, we discuss a holistic framework of co-evolutionary metabolomes and metabotypes to model the interactions of biocontrol fungi especially with mycosed insects. Conventionally, the studies involving fungal biocontrol mechanisms are reported in the context of much aggrandized fungal entomotoxins while the adaptive response mechanisms of host insects are relatively overlooked. The present review asserts that the selective pressure exerted among the competing or interacting species drives alterations in their overall metabolomes which ultimately implicates in corresponding metabotypes. Quintessentially, metabolomics offers a most generic and tractable model to assess the fungal-insect antagonism in terms of interaction biomarkers, biosynthetic pathway plasticity, and their co-evolutionary defense. The fungi chiefly rely on a battery of entomotoxins viz., secondary metabolites falling in the categories of NRP’s (non-ribosomal peptides), PK’s (polyketides), lysine derive alkaloids, and terpenoids. On the contrary, insects overcome mycosis through employing different layers of immunity manifested as altered metabotypes (phenoloxidase activity) and overall metabolomes viz., carbohydrates, lipids, fatty acids, amino acids, and eicosanoids. Here, we discuss the recent findings within conventional premise of fungal entomotoxicity and the evolution of truculent immune response among host insect. The metabolomic frameworks for fungal–insect interaction can potentially transmogrify our current comprehensions of biocontrol mechanisms to develop the hypervirulent biocontrol strains with least environmental concerns. Moreover, the interaction metabolomics (interactome) in complementation with other -omics cascades could further be applied to address

  15. MetaboLyzer: a novel statistical workflow for analyzing Postprocessed LC-MS metabolomics data.

    PubMed

    Mak, Tytus D; Laiakis, Evagelia C; Goudarzi, Maryam; Fornace, Albert J

    2014-01-01

    Metabolomics, the global study of small molecules in a particular system, has in the past few years risen to become a primary -omics platform for the study of metabolic processes. With the ever-increasing pool of quantitative data yielded from metabolomic research, specialized methods and tools with which to analyze and extract meaningful conclusions from these data are becoming more and more crucial. Furthermore, the depth of knowledge and expertise required to undertake a metabolomics oriented study is a daunting obstacle to investigators new to the field. As such, we have created a new statistical analysis workflow, MetaboLyzer, which aims to both simplify analysis for investigators new to metabolomics, as well as provide experienced investigators the flexibility to conduct sophisticated analysis. MetaboLyzer's workflow is specifically tailored to the unique characteristics and idiosyncrasies of postprocessed liquid chromatography-mass spectrometry (LC-MS)-based metabolomic data sets. It utilizes a wide gamut of statistical tests, procedures, and methodologies that belong to classical biostatistics, as well as several novel statistical techniques that we have developed specifically for metabolomics data. Furthermore, MetaboLyzer conducts rapid putative ion identification and putative biologically relevant analysis via incorporation of four major small molecule databases: KEGG, HMDB, Lipid Maps, and BioCyc. MetaboLyzer incorporates these aspects into a comprehensive workflow that outputs easy to understand statistically significant and potentially biologically relevant information in the form of heatmaps, volcano plots, 3D visualization plots, correlation maps, and metabolic pathway hit histograms. For demonstration purposes, a urine metabolomics data set from a previously reported radiobiology study in which samples were collected from mice exposed to γ radiation was analyzed. MetaboLyzer was able to identify 243 statistically significant ions out of a total of

  16. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A.

    PubMed

    Nagato, Edward G; Simpson, André J; Simpson, Myrna J

    2016-01-01

    (1)H nuclear magnetic resonance (NMR)-based metabolomics was used to study the response of Daphnia magna to increasing sub-lethal concentrations of either an organophosphate (diazinon or malathion) or bisphenol-A (BPA). Principal component analysis (PCA) of (1)H NMR spectra were used to screen metabolome changes after 48h of contaminant exposure. The PCA scores plots showed that diazinon exposures resulted in aberrant metabolomic profiles at all exposure concentrations tested (0.009-0.135 μg/L), while for malathion the second lowest (0.08μg/L) and two highest exposure concentrations (0.32μg/L and 0.47μg/L) caused significant shifts from the control. Individual metabolite changes for both organophosphates indicated that the response to increasing exposure was non-linear and described perturbations in the metabolome that were characteristic of the severity of exposure. For example, intermediate concentrations of diazinon (0.045μg/L and 0.09μg/L) and malathion (0.08μg/L) elicited a decrease in amino acids such as leucine, valine, arginine, glycine, lysine, glutamate, glutamine, phenylalanine and tyrosine, with concurrent increases in glucose and lactate, suggesting a mobilization of energy resources to combat stress. At the highest exposure concentrations for both organophosphates there was evidence of a cessation in metabolic activity, where the same amino acids increased and glucose and lactate decreased, suggesting a slowdown in protein synthesis and depletion of energy stocks. This demonstrated a similar response in the metabolome between two organophosphates but also that intermediate and severe stress levels could be differentiated by changes in the metabolome. For BPA exposures, the PCA scores plot showed a significant change in metabolome at 0.1mg/L, 1.4mg/L and 2.1mg/L of exposure. Individual metabolite changes from 0.7 to 2.1mg/L of BPA exposure showed increases in amino acids such as alanine, valine, isoleucine, leucine, arginine, phenylalanine and

  17. Metabolomics reveals energetic impairments in Daphnia magna exposed to diazinon, malathion and bisphenol-A.

    PubMed

    Nagato, Edward G; Simpson, André J; Simpson, Myrna J

    2016-01-01

    (1)H nuclear magnetic resonance (NMR)-based metabolomics was used to study the response of Daphnia magna to increasing sub-lethal concentrations of either an organophosphate (diazinon or malathion) or bisphenol-A (BPA). Principal component analysis (PCA) of (1)H NMR spectra were used to screen metabolome changes after 48h of contaminant exposure. The PCA scores plots showed that diazinon exposures resulted in aberrant metabolomic profiles at all exposure concentrations tested (0.009-0.135 μg/L), while for malathion the second lowest (0.08μg/L) and two highest exposure concentrations (0.32μg/L and 0.47μg/L) caused significant shifts from the control. Individual metabolite changes for both organophosphates indicated that the response to increasing exposure was non-linear and described perturbations in the metabolome that were characteristic of the severity of exposure. For example, intermediate concentrations of diazinon (0.045μg/L and 0.09μg/L) and malathion (0.08μg/L) elicited a decrease in amino acids such as leucine, valine, arginine, glycine, lysine, glutamate, glutamine, phenylalanine and tyrosine, with concurrent increases in glucose and lactate, suggesting a mobilization of energy resources to combat stress. At the highest exposure concentrations for both organophosphates there was evidence of a cessation in metabolic activity, where the same amino acids increased and glucose and lactate decreased, suggesting a slowdown in protein synthesis and depletion of energy stocks. This demonstrated a similar response in the metabolome between two organophosphates but also that intermediate and severe stress levels could be differentiated by changes in the metabolome. For BPA exposures, the PCA scores plot showed a significant change in metabolome at 0.1mg/L, 1.4mg/L and 2.1mg/L of exposure. Individual metabolite changes from 0.7 to 2.1mg/L of BPA exposure showed increases in amino acids such as alanine, valine, isoleucine, leucine, arginine, phenylalanine and

  18. Are the metabolomic responses to folivory of closely related plant species linked to macroevolutionary and plant-folivore coevolutionary processes?

    PubMed

    Rivas-Ubach, Albert; Hódar, José A; Sardans, Jordi; Kyle, Jennifer E; Kim, Young-Mo; Oravec, Michal; Urban, Otmar; Guenther, Alex; Peñuelas, Josep

    2016-07-01

    The debate whether the coevolution of plants and insects or macroevolutionary processes (phylogeny) is the main driver determining the arsenal of molecular defensive compounds of plants remains unresolved. Attacks by herbivorous insects affect not only the composition of defensive compounds in plants but also the entire metabolome. Metabolomes are the final products of genotypes and are constrained by macroevolutionary processes, so closely related species should have similar metabolomic compositions and may respond in similar ways to attacks by folivores. We analyzed the elemental compositions and metabolomes of needles from three closely related Pinus species with distant coevolutionary histories with the caterpillar of the processionary moth respond similarly to its attack. All pines had different metabolomes and metabolic responses to herbivorous attack. The metabolomic variation among the species and the responses to folivory reflected their macroevolutionary relationships, with P. pinaster having the most divergent metabolome. The concentrations of terpenes were in the attacked trees supporting the hypothesis that herbivores avoid plant individuals with higher concentrations. Our results suggest that macroevolutionary history plays important roles in the metabolomic responses of these pine species to folivory, but plant-insect coevolution probably constrains those responses. Combinations of different evolutionary factors and trade-offs are likely responsible for the different responses of each species to folivory, which is not necessarily exclusively linked to plant-insect coevolution. PMID:27386082

  19. Siderophore biosynthesis coordinately modulated the virulence-associated interactive metabolome of uropathogenic Escherichia coli and human urine

    PubMed Central

    Su, Qiao; Guan, Tianbing; Lv, Haitao

    2016-01-01

    Uropathogenic Escherichia coli (UPEC) growth in women’s bladders during urinary tract infection (UTI) incurs substantial chemical exchange, termed the “interactive metabolome”, which primarily accounts for the metabolic costs (utilized metabolome) and metabolic donations (excreted metabolome) between UPEC and human urine. Here, we attempted to identify the individualized interactive metabolome between UPEC and human urine. We were able to distinguish UPEC from non-UPEC by employing a combination of metabolomics and genetics. Our results revealed that the interactive metabolome between UPEC and human urine was markedly different from that between non-UPEC and human urine, and that UPEC triggered much stronger perturbations in the interactive metabolome in human urine. Furthermore, siderophore biosynthesis coordinately modulated the individualized interactive metabolome, which we found to be a critical component of UPEC virulence. The individualized virulence-associated interactive metabolome contained 31 different metabolites and 17 central metabolic pathways that were annotated to host these different metabolites, including energetic metabolism, amino acid metabolism, and gut microbe metabolism. Changes in the activities of these pathways mechanistically pinpointed the virulent capability of siderophore biosynthesis. Together, our findings provide novel insights into UPEC virulence, and we propose that siderophores are potential targets for further discovery of drugs to treat UPEC-induced UTI. PMID:27076285

  20. REVIEW ARTICLE: Current trends and future requirements for the mass spectrometric investigation of microbial, mammalian and plant metabolomes

    NASA Astrophysics Data System (ADS)

    Dunn, Warwick B.

    2008-03-01

    The functional levels of biological cells or organisms can be separated into the genome, transcriptome, proteome and metabolome. Of these the metabolome offers specific advantages to the investigation of the phenotype of biological systems. The investigation of the metabolome (metabolomics) has only recently appeared as a mainstream scientific discipline and is currently developing rapidly for the study of microbial, plant and mammalian metabolomes. The metabolome pipeline or workflow encompasses the processes of sample collection and preparation, collection of analytical data, raw data pre-processing, data analysis and data storage. Of these processes the collection of analytical data will be discussed in this review with specific interest shown in the application of mass spectrometry in the metabolomics pipeline. The current developments in mass spectrometry platforms (GC-MS, LC-MS, DIMS and imaging MS) and applications of specific interest will be highlighted. The current limitations of these platforms and applications will be discussed with areas requiring further development also highlighted. These include the detectable coverage of the metabolome, the identification of metabolites and the process of converting raw data to biological knowledge.

  1. Development of isotope labeling LC-MS for human salivary metabolomics and application to profiling metabolome changes associated with mild cognitive impairment.

    PubMed

    Zheng, Jiamin; Dixon, Roger A; Li, Liang

    2012-12-18

    Saliva is a readily available biofluid that may contain metabolites of interest for diagnosis and prognosis of diseases. In this work, a differential (13)C/(12)C isotope dansylation labeling method, combined with liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry (LC-FTICR-MS), is described for quantitative profiling of the human salivary metabolome. New strategies are presented to optimize the sample preparation and LC-MS detection processes. The strategies allow the use of as little of 5 μL of saliva sample as a starting material to determine the concentration changes of an average of 1058 ion pairs or putative metabolites in comparative saliva samples. The overall workflow consists of several steps including acetone-induced protein precipitation, (12)C-dansylation labeling of the metabolites, and LC-UV measurement of the total concentration of the labeled metabolites in individual saliva samples. A pooled sample was prepared from all the individual samples and labeled with (13)C-dansylation to serve as a reference. Using this metabolome profiling method, it was found that compatible metabolome results could be obtained after saliva samples were stored in tubes normally used for genetic material collection at room temperature, -20 °C freezer, and -80 °C freezer over a period of 1 month, suggesting that many saliva samples already collected in genomic studies could become a valuable resource for metabolomics studies, although the effect of much longer term of storage remains to be determined. Finally, the developed method was applied for analyzing the metabolome changes of two different groups: normal healthy older adults and comparable older adults with mild cognitive impairment (MCI). Top-ranked 18 metabolites successfully distinguished the two groups, among which seven metabolites were putatively identified while one metabolite, taurine, was definitively identified. PMID:23150892

  2. Nutri-metabolomics: subtle serum metabolic differences in healthy subjects by NMR-based metabolomics after a short-term nutritional intervention with two tomato sauces.

    PubMed

    Bondia-Pons, Isabel; Cañellas, Nicolau; Abete, Itziar; Rodríguez, Miguel Ángel; Perez-Cornago, Aurora; Navas-Carretero, Santiago; Zulet, M Ángeles; Correig, Xavier; Martínez, J Alfredo

    2013-12-01

    Postgenomics research and development is witnessing novel intersections of omics data intensive technology and applications in health and personalized nutrition. Chief among these is the nascent field of nutri-metabolomics that harnesses metabolomics platforms to discern person-to-person variations in nutritional responses. To this end, differences in the origin and ripening stage of fruits might have a strong impact on their phytochemical composition, and consequently, on their potential nutri-metabolomics effects on health. The objective of the present study was to evaluate the effects of a 4-week cross-over nutritional intervention on the metabolic status of 24 young healthy subjects. The intervention was carried out with two tomato sauces differing in their natural lycopene content, which was achieved by using tomatoes harvested at different times. Blood samples were drawn from each subject before and after each intervention period. Aqueous and lipid extracts from serum samples were analyzed by 1H-NMR metabolic profiling combined with analysis of variance simultaneous component analysis (ASCA) and multilevel simultaneous component analysis (MSCA). These methods allowed the interpretation of the variation induced by the main factors of the study design (sauce treatment and time). The levels of creatine, creatinine, leucine, choline, methionine, and acetate in aqueous extracts were increased after the intervention with the high-lycopene content sauce, while those of ascorbic acid, lactate, pyruvate, isoleucine, alanine were increased after the normal-lycopene content sauce. In conclusion, NMR-based metabolomics of aqueous and lipid extracts allowed the detection of different metabolic changes after the nutritional intervention. This outcome might partly be due to the different ripening state of the fruits used in production of the tomato sauces. The findings presented herein collectively attest to the emergence of the field of nutri-metabolomics as a novel

  3. Complementing reversed-phase selectivity with porous graphitized carbon to increase the metabolome coverage in an on-line two-dimensional LC-MS setup for metabolomics.

    PubMed

    Ortmayr, Karin; Hann, Stephan; Koellensperger, Gunda

    2015-05-21

    Efficient and robust separation methods are indispensable in modern LC-MS based metabolomics, where high-resolution mass spectrometers are challenged by isomeric and isobaric metabolites. The optimization of chromatographic separation hence remains an invaluable tool in the comprehensive analysis of the chemically diverse intracellular metabolome. While it is widely accepted that a single method with comprehensive metabolome coverage does not exist, the potential of combining different chromatographic selectivities in two-dimensional liquid chromatography is underestimated in the field. Here, we introduce a novel separation system combining reversed-phase and porous graphitized carbon liquid chromatography in a heart-cut on-line two-dimensional setup for mass spectrometry. The proposed experimental setup can be readily implemented using standard HPLC equipment with only one additional HPLC pump and a two-position six-port valve. The method proved to be robust with excellent retention time stability (average 0.4%) even in the presence of biological matrix. Testing the presented approach on a test mixture of 82 relevant intracellular metabolites, the number of metabolites that are retained could be doubled as compared to reversed-phase liquid chromatography alone. The presented work further demonstrates how the distinct selectivity of porous graphitized carbon complements reversed-phase liquid chromatography and extends the metabolome coverage of conventional LC-MS based methods in metabolomics to biologically important, but analytically challenging compound groups such as sugar phosphates. Both metabolic profiling and metabolic fingerprinting benefit from this method's increased separation capabilities that enhance sample throughput and the biological information content of LC-MS data. An inter-platform comparison with GC- and LC-tandem MS analyses confirmed the validity of the presented two-dimensional approach in the analysis of yeast cell extracts from P

  4. Post-acquisition filtering of salt cluster artefacts for LC-MS based human metabolomic studies.

    PubMed

    McMillan, A; Renaud, J B; Gloor, G B; Reid, G; Sumarah, M W

    2016-01-01

    Liquid chromatography-high resolution mass spectrometry (LC-MS) has emerged as one of the most widely used platforms for untargeted metabolomics due to its unparalleled sensitivity and metabolite coverage. Despite its prevalence of use, the proportion of true metabolites identified in a given experiment compared to background contaminants and ionization-generated artefacts remains poorly understood. Salt clusters are well documented artefacts of electrospray ionization MS, recognized by their characteristically high mass defects (for this work simply generalized as the decimal numbers after the nominal mass). Exploiting this property, we developed a method to identify and remove salt clusters from LC-MS-based human metabolomics data using mass defect filtering. By comparing the complete set of endogenous metabolites in the human metabolome database to actual plasma, urine and stool samples, we demonstrate that up to 28.5 % of detected features are likely salt clusters. These clusters occur irrespective of ionization mode, column type, sweep gas and sample type, but can be easily removed post-acquisition using a set of R functions presented here. Our mass defect filter removes unwanted noise from LC-MS metabolomics datasets, while retaining true metabolites, and requires only a list of m/z and retention time values. Reducing the number of features prior to statistical analyses will result in more accurate multivariate modeling and differential feature selection, as well as decreased reporting of unknowns that often constitute the largest proportion of human metabolomics data. PMID:27606010

  5. Design and analysis of metabolomics studies in epidemiologic research: a primer on -omic technologies.

    PubMed

    Tzoulaki, Ioanna; Ebbels, Timothy M D; Valdes, Ana; Elliott, Paul; Ioannidis, John P A

    2014-07-15

    Metabolomics is the field of "-omics" research concerned with the comprehensive characterization of the small low-molecular-weight metabolites in biological samples. In epidemiology, it represents an emerging technology and an unprecedented opportunity to measure environmental and other exposures with improved precision and far less measurement error than with standard epidemiologic methods. Advances in the application of metabolomics in large-scale epidemiologic research are now being realized through a combination of improved sample preparation and handling, automated laboratory and processing methods, and reduction in costs. The number of epidemiologic studies that use metabolic profiling is still limited, but it is fast gaining popularity in this area. In the present article, we present a roadmap for metabolomic analyses in epidemiologic studies and discuss the various challenges these data pose to large-scale studies. We discuss the steps of data preprocessing, univariate and multivariate data analysis, correction for multiplicity of comparisons with correlated data, and finally the steps of cross-validation and external validation. As data from metabolomic studies accumulate in epidemiology, there is a need for large-scale replication and synthesis of findings, increased availability of raw data, and a focus on good study design, all of which will highlight the potential clinical impact of metabolomics in this field. PMID:24966222

  6. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

    PubMed

    Xia, Jianguo; Wishart, David S

    2016-01-01

    MetaboAnalyst (http://www.metaboanalyst.ca) is a comprehensive Web application for metabolomic data analysis and interpretation. MetaboAnalyst handles most of the common metabolomic data types from most kinds of metabolomics platforms (MS and NMR) for most kinds of metabolomics experiments (targeted, untargeted, quantitative). In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst also supports a number of data analysis and data visualization tasks using a range of univariate, multivariate methods such as PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), heatmap clustering and machine learning methods. MetaboAnalyst also offers a variety of tools for metabolomic data interpretation including MSEA (metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. This unit provides an overview of the main functional modules and the general workflow of the latest version of MetaboAnalyst (MetaboAnalyst 3.0), followed by eight detailed protocols. © 2016 by John Wiley & Sons, Inc. PMID:27603023

  7. Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data.

    PubMed

    Sakurai, Nozomu; Ara, Takeshi; Enomoto, Mitsuo; Motegi, Takeshi; Morishita, Yoshihiko; Kurabayashi, Atsushi; Iijima, Yoko; Ogata, Yoshiyuki; Nakajima, Daisuke; Suzuki, Hideyuki; Shibata, Daisuke

    2014-01-01

    A metabolome--the collection of comprehensive quantitative data on metabolites in an organism--has been increasingly utilized for applications such as data-intensive systems biology, disease diagnostics, biomarker discovery, and assessment of food quality. A considerable number of tools and databases have been developed to date for the analysis of data generated by various combinations of chromatography and mass spectrometry. We report here a web portal named KOMICS (The Kazusa Metabolomics Portal), where the tools and databases that we developed are available for free to academic users. KOMICS includes the tools and databases for preprocessing, mining, visualization, and publication of metabolomics data. Improvements in the annotation of unknown metabolites and dissemination of comprehensive metabolomic data are the primary aims behind the development of this portal. For this purpose, PowerGet and FragmentAlign include a manual curation function for the results of metabolite feature alignments. A metadata-specific wiki-based database, Metabolonote, functions as a hub of web resources related to the submitters' work. This feature is expected to increase citation of the submitters' work, thereby promoting data publication. As an example of the practical use of KOMICS, a workflow for a study on Jatropha curcas is presented. The tools and databases available at KOMICS should contribute to enhanced production, interpretation, and utilization of metabolomic Big Data. PMID:24949426

  8. Using MetaboAnalyst 3.0 for Comprehensive Metabolomics Data Analysis.

    PubMed

    Xia, Jianguo; Wishart, David S

    2016-09-07

    MetaboAnalyst (http://www.metaboanalyst.ca) is a comprehensive Web application for metabolomic data analysis and interpretation. MetaboAnalyst handles most of the common metabolomic data types from most kinds of metabolomics platforms (MS and NMR) for most kinds of metabolomics experiments (targeted, untargeted, quantitative). In addition to providing a variety of data processing and normalization procedures, MetaboAnalyst also supports a number of data analysis and data visualization tasks using a range of univariate, multivariate methods such as PCA (principal component analysis), PLS-DA (partial least squares discriminant analysis), heatmap clustering and machine learning methods. MetaboAnalyst also offers a variety of tools for metabolomic data interpretation including MSEA (metabolite set enrichment analysis), MetPA (metabolite pathway analysis), and biomarker selection via ROC (receiver operating characteristic) curve analysis, as well as time series and power analysis. This unit provides an overview of the main functional modules and the general workflow of the latest version of MetaboAnalyst (MetaboAnalyst 3.0), followed by eight detailed protocols. © 2016 by John Wiley & Sons, Inc.

  9. Recent advances in the application of metabolomics to Alzheimer’s Disease

    PubMed Central

    Trushina, Eugenia; Mielke, Michelle M.

    2013-01-01

    The pathophysiological changes associated with Alzheimer’s Disease (AD) begin decades before the emergence of clinical symptoms. Understanding the early mechanisms associated with AD pathology is, therefore, especially important for identifying disease-modifying therapeutic targets. While the majority of AD clinical trials to date have focused on anti-amyloid-beta (Aβ) treatments, other therapeutic approaches may be necessary. The ability to monitor changes in cellular networks that include both Aβ and non-Aβ pathways is essential to advance our understanding of the etiopathogenesis of AD and subsequent development of cognitive symptoms and dementia. Metabolomics is a powerful tool that detects perturbations in the metabolome, a pool of metabolites that reflects changes downstream of genomic, transcriptomic and proteomic fluctuations, and represents an accurate biochemical profile of the organism in health and disease. The application of metabolomics could help to identify biomarkers for early AD diagnosis, to discover novel therapeutic targets, and to monitor therapeutic response and disease progression. Moreover, given the considerable parallel between mouse and human metabolism, the use of metabolomics provides ready translation of animal research into human studies for accelerated drug design. In this review, we will summarize current progress in the application of metabolomics in both animal models and in humans to further understanding of the mechanisms involved in AD pathogenesis. PMID:23816564

  10. Emerging field of metabolomics: big promise for cancer biomarker identification and drug discovery.

    PubMed

    Patel, Seema; Ahmed, Shadab

    2015-03-25

    Most cancers are lethal and metabolic alterations are considered a hallmark of this deadly disease. Genomics and proteomics have contributed vastly to understand cancer biology. Still there are missing links as downstream to them molecular divergence occurs. Metabolomics, the omic science that furnishes a dynamic portrait of metabolic profile is expected to bridge these gaps and boost cancer research. Metabolites being the end products are more stable than mRNAs or proteins. Previous studies have shown the efficacy of metabolomics in identifying biomarkers associated with diagnosis, prognosis and treatment of cancer. Metabolites are highly informative about the functional status of the biological system, owing to their proximity to organismal phenotypes. Scores of publications have reported about high-throughput data generation by cutting-edge analytic platforms (mass spectrometry and nuclear magnetic resonance). Further sophisticated statistical softwares (chemometrics) have enabled meaningful information extraction from the metabolomic data. Metabolomics studies have demonstrated the perturbation in glycolysis, tricarboxylic acid cycle, choline and fatty acid metabolism as traits of cancer cells. This review discusses the latest progress in this field, the future trends and the deficiencies to be surmounted for optimally implementation in oncology. The authors scoured through the most recent, high-impact papers archived in Pubmed, ScienceDirect, Wiley and Springer databases to compile this review to pique the interest of researchers towards cancer metabolomics.

  11. Mass Spectrometry Strategies for Clinical Metabolomics and Lipidomics in Psychiatry, Neurology, and Neuro-Oncology

    PubMed Central

    Wood, Paul L

    2014-01-01

    Metabolomics research has the potential to provide biomarkers for the detection of disease, for subtyping complex disease populations, for monitoring disease progression and therapy, and for defining new molecular targets for therapeutic intervention. These potentials are far from being realized because of a number of technical, conceptual, financial, and bioinformatics issues. Mass spectrometry provides analytical platforms that address the technical barriers to success in metabolomics research; however, the limited commercial availability of analytical and stable isotope standards has created a bottleneck for the absolute quantitation of a number of metabolites. Conceptual and financial factors contribute to the generation of statistically under-powered clinical studies, whereas bioinformatics issues result in the publication of a large number of unidentified metabolites. The path forward in this field involves targeted metabolomics analyses of large control and patient populations to define both the normal range of a defined metabolite and the potential heterogeneity (eg, bimodal) in complex patient populations. This approach requires that metabolomics research groups, in addition to developing a number of analytical platforms, build sufficient chemistry resources to supply the analytical standards required for absolute metabolite quantitation. Examples of metabolomics evaluations of sulfur amino-acid metabolism in psychiatry, neurology, and neuro-oncology and of lipidomics in neurology will be reviewed. PMID:23842599

  12. Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data.

    PubMed

    Sakurai, Nozomu; Ara, Takeshi; Enomoto, Mitsuo; Motegi, Takeshi; Morishita, Yoshihiko; Kurabayashi, Atsushi; Iijima, Yoko; Ogata, Yoshiyuki; Nakajima, Daisuke; Suzuki, Hideyuki; Shibata, Daisuke

    2014-01-01

    A metabolome--the collection of comprehensive quantitative data on metabolites in an organism--has been increasingly utilized for applications such as data-intensive systems biology, disease diagnostics, biomarker discovery, and assessment of food quality. A considerable number of tools and databases have been developed to date for the analysis of data generated by various combinations of chromatography and mass spectrometry. We report here a web portal named KOMICS (The Kazusa Metabolomics Portal), where the tools and databases that we developed are available for free to academic users. KOMICS includes the tools and databases for preprocessing, mining, visualization, and publication of metabolomics data. Improvements in the annotation of unknown metabolites and dissemination of comprehensive metabolomic data are the primary aims behind the development of this portal. For this purpose, PowerGet and FragmentAlign include a manual curation function for the results of metabolite feature alignments. A metadata-specific wiki-based database, Metabolonote, functions as a hub of web resources related to the submitters' work. This feature is expected to increase citation of the submitters' work, thereby promoting data publication. As an example of the practical use of KOMICS, a workflow for a study on Jatropha curcas is presented. The tools and databases available at KOMICS should contribute to enhanced production, interpretation, and utilization of metabolomic Big Data.

  13. MyCompoundID: using an evidence-based metabolome library for metabolite identification.

    PubMed

    Li, Liang; Li, Ronghong; Zhou, Jianjun; Zuniga, Azeret; Stanislaus, Avalyn E; Wu, Yiman; Huan, Tao; Zheng, Jiamin; Shi, Yi; Wishart, David S; Lin, Guohui

    2013-03-19

    Identification of unknown metabolites is a major challenge in metabolomics. Without the identities of the metabolites, the metabolome data generated from a biological sample cannot be readily linked with the proteomic and genomic information for studies in systems biology and medicine. We have developed a web-based metabolite identification tool ( http://www.mycompoundid.org ) that allows searching and interpreting mass spectrometry (MS) data against a newly constructed metabolome library composed of 8,021 known human endogenous metabolites and their predicted metabolic products (375,809 compounds from one metabolic reaction and 10,583,901 from two reactions). As an example, in the analysis of a simple extract of human urine or plasma and the whole human urine by liquid chromatography-mass spectrometry and MS/MS, we are able to identify at least two times more metabolites in these samples than by using a standard human metabolome library. In addition, it is shown that the evidence-based metabolome library (EML) provides a much superior performance in identifying putative metabolites from a human urine sample, compared to the use of the ChemPub and KEGG libraries.

  14. Sweat: a sample with limited present applications and promising future in metabolomics.

    PubMed

    Mena-Bravo, A; Luque de Castro, M D

    2014-03-01

    Sweat is a biofluid with present scant use as clinical sample. This review tries to demonstrate the advantages of sweat over other biofluids such as blood or urine for routine clinical analyses and the potential when related to metabolomics. With this aim, critical discussion of sweat samplers and equipment for analysis of target compounds in this sample is made. Well established routine analyses in sweat as is that to diagnose cystic fibrosis, and the advantages and disadvantages of sweat versus urine or blood for doping control have also been discussed. Methods for analytes such as essential metals and xenometals, ethanol and electrolytes in sweat in fact constitute target metabolomics approaches or belong to any metabolomics subdiscipline such as metallomics, ionomics or xenometabolomics. The higher development of biomarkers based on genomics or proteomics as omics older than metabolomics is discussed and also the potential role of metabolomics in systems biology taking into account its emergent implementation. Normalization of the volume of sampled sweat constitutes a present unsolved shortcoming that deserves investigation. Foreseeable trends in this area are outlined.

  15. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior.

    PubMed

    Badri, Dayakar V; Zolla, Gaston; Bakker, Matthew G; Manter, Daniel K; Vivanco, Jorge M

    2013-04-01

    It is known that environmental factors can affect the biosynthesis of leaf metabolites. Similarly, specific pairwise plant-microbe interactions modulate the plant's metabolome by stimulating production of phytoalexins and other defense-related compounds. However, there is no information about how different soil microbiomes could affect the plant growth and the leaf metabolome. We analyzed experimentally how diverse soil microbiomes applied to the roots of Arabidopsis thaliana were able to modulate plant growth and the leaf metabolome, as assessed by GC-MS analyses. Further, we determined the effects of soil microbiome-driven changes in leaf metabolomics on the feeding behavior of Trichopulsia ni larvae. Soil microbiomes differentially impacted plant growth patterns as well as leaf metabolome composition. Similarly, most microbiome-treated plants showed inhibition to larvae feeding, compared with unamended control plants. Pyrosequencing analysis was conducted to determine the soil microbial composition and diversity of the soils used in this study. Correlation analyses were performed to determine relationships between various factors (soil microbial taxa, leaf chemical components, plant growth patterns and insect feeding behavior) and revealed that leaf amino acid content was positively correlated with both microbiome composition and insect feeding behavior. PMID:23347044

  16. A Metabolomic Approach to Understanding the Metabolic Link between Obesity and Diabetes

    PubMed Central

    Park, Seokjae; Sadanala, Krishna Chaitanya; Kim, Eun-Kyoung

    2015-01-01

    Obesity and diabetes arise from an intricate interplay between both genetic and environmental factors. It is well recognized that obesity plays an important role in the development of insulin resistance and diabetes. Yet, the exact mechanism of the connection between obesity and diabetes is still not completely understood. Metabolomics is an analytical approach that aims to detect and quantify small metabolites. Recently, there has been an increased interest in the application of metabolomics to the identification of disease biomarkers, with a number of well-known biomarkers identified. Metabolomics is a potent approach to unravel the intricate relationships between metabolism, obesity and progression to diabetes and, at the same time, has potential as a clinical tool for risk evaluation and monitoring of disease. Moreover, metabolomics applications have revealed alterations in the levels of metabolites related to obesity-associated diabetes. This review focuses on the part that metabolomics has played in elucidating the roles of metabolites in the regulation of systemic metabolism relevant to obesity and diabetes. It also explains the possible metabolic relation and association between the two diseases. The metabolites with altered profiles in individual disorders and those that are specifically and similarly altered in both disorders are classified, categorized and summarized. PMID:26072981

  17. Effects of pre-analytical processes on blood samples used in metabolomics studies.

    PubMed

    Yin, Peiyuan; Lehmann, Rainer; Xu, Guowang

    2015-07-01

    Every day, analytical and bio-analytical chemists make sustained efforts to improve the sensitivity, specificity, robustness, and reproducibility of their methods. Especially in targeted and non-targeted profiling approaches, including metabolomics analysis, these objectives are not easy to achieve; however, robust and reproducible measurements and low coefficients of variation (CV) are crucial for successful metabolomics approaches. Nevertheless, all efforts from the analysts are in vain if the sample quality is poor, i.e. if preanalytical errors are made by the partner during sample collection. Preanalytical risks and errors are more common than expected, even when standard operating procedures (SOP) are used. This risk is particularly high in clinical studies, and poor sample quality may heavily bias the CV of the final analytical results, leading to disappointing outcomes of the study and consequently, although unjustified, to critical questions about the analytical performance of the approach from the partner who provided the samples. This review focuses on the preanalytical phase of liquid chromatography-mass spectrometry-driven metabolomics analysis of body fluids. Several important preanalytical factors that may seriously affect the profile of the investigated metabolome in body fluids, including factors before sample collection, blood drawing, subsequent handling of the whole blood (transportation), processing of plasma and serum, and inadequate conditions for sample storage, will be discussed. In addition, a detailed description of latent effects on the stability of the blood metabolome and a suggestion for a practical procedure to circumvent risks in the preanalytical phase will be given.

  18. [The use of metabolomics in medicine - some examples of oncological and metabolic diseases].

    PubMed

    Zimny, Dominika; Szatkowska, Marta; Połubok, Joanna; Maciaszek, Julian; Machaj, Mikołaj; Barg, Ewa

    2015-01-01

    Metabolomics is a new field of medicine focused on examining and analyzing metabolites produced in biological cells. Biological fluids primarily used in this method include: plasma, cerebrospinal fluid, saliva and urine. The most common methods of evaluating the composition involve nuclear magnetic resonance (NMR) and magnetic resonance (MR) with addition of gas chromatography (GC-MS) or liquid chromatography (LC-MS). Metabolomics is used in a wide variety of medicine disciplines. The variability of biochemical processes in tumor cells in comparison to normal cells is the starting point of such studies. The metabolomic changes are observed not only in solid tumors, like the mammary tumor, ovarian cancer, prostate cancer but also in tumors of the hematopoietic and lymphoid tissues. Nowadays, the aim of studies is to find biomarkers which would help to diagnose a disease quickly, assess its progression, and implement effective treatment. Metabolomics is also widely applied in metabolic diseases, mainly the diabetes. The list of examined metabolites gives promising chances for a successful prognosis, diagnosis and comprehensive monitoring of the progression of this civilization disease. The development of metabolomics will also contribute to the individualization of treatment, proper drugs adjustment, which will make a therapy more successful, cause less side effects and improve the quality of patient's life.

  19. Two birds with one stone: Doing metabolomics with your proteomics kit

    PubMed Central

    Fischer, Roman; Bowness, Paul; Kessler, Benedikt M

    2013-01-01

    Proteomic research facilities and laboratories are facing increasing demands for the integration of biological data from multiple ‘-OMICS’ approaches. The aim to fully understand biological processes requires the integrated study of genomes, proteomes and metabolomes. While genomic and proteomic workflows are different, the study of the metabolome overlaps significantly with the latter, both in instrumentation and methodology. However, chemical diversity complicates an easy and direct access to the metabolome by mass spectrometry (MS). The present review provides an introduction into metabolomics workflows from the viewpoint of proteomic researchers. We compare the physicochemical properties of proteins and peptides with metabolites/small molecules to establish principle differences between these analyte classes based on human data. We highlight the implications this may have on sample preparation, separation, ionisation, detection and data analysis. We argue that a typical proteomic workflow (nLC-MS) can be exploited for the detection of a number of aliphatic and aromatic metabolites, including fatty acids, lipids, prostaglandins, di/tripeptides, steroids and vitamins, thereby providing a straightforward entry point for metabolomics-based studies. Limitations and requirements are discussed as well as extensions to the LC-MS workflow to expand the range of detectable molecular classes without investing in dedicated instrumentation such as GC-MS, CE-MS or NMR. PMID:24155035

  20. [The use of metabolomics in medicine - some examples of oncological and metabolic diseases].

    PubMed

    Zimny, Dominika; Szatkowska, Marta; Połubok, Joanna; Maciaszek, Julian; Machaj, Mikołaj; Barg, Ewa

    2015-01-01

    Metabolomics is a new field of medicine focused on examining and analyzing metabolites produced in biological cells. Biological fluids primarily used in this method include: plasma, cerebrospinal fluid, saliva and urine. The most common methods of evaluating the composition involve nuclear magnetic resonance (NMR) and magnetic resonance (MR) with addition of gas chromatography (GC-MS) or liquid chromatography (LC-MS). Metabolomics is used in a wide variety of medicine disciplines. The variability of biochemical processes in tumor cells in comparison to normal cells is the starting point of such studies. The metabolomic changes are observed not only in solid tumors, like the mammary tumor, ovarian cancer, prostate cancer but also in tumors of the hematopoietic and lymphoid tissues. Nowadays, the aim of studies is to find biomarkers which would help to diagnose a disease quickly, assess its progression, and implement effective treatment. Metabolomics is also widely applied in metabolic diseases, mainly the diabetes. The list of examined metabolites gives promising chances for a successful prognosis, diagnosis and comprehensive monitoring of the progression of this civilization disease. The development of metabolomics will also contribute to the individualization of treatment, proper drugs adjustment, which will make a therapy more successful, cause less side effects and improve the quality of patient's life. PMID:26615014

  1. Effect of Dietary Sodium Restriction on Human Urinary Metabolomic Profiles

    PubMed Central

    Klawitter, Jelena; Chonchol, Michel; Bassett, Candace J.; Racine, Matthew L.; Seals, Douglas R.

    2015-01-01

    Background and objectives Metabolomics is a relatively new field of “-omics” research, focusing on high-throughput identification of small molecular weight metabolites. Diet has both acute and chronic effects on metabolic profiles; however, alterations in response to dietary sodium restriction (DSR) are completely unknown. The goal of this study was to explore changes in urine metabolites in response to DSR, as well as their association with previously reported improvements in vascular function with DSR. Design, setting, participants, & measurements Using stored urine samples from a 10-week randomized placebo-controlled crossover study of DSR in 17 middle-aged/older adults (six men and 11 women; mean age 62±8 years) who had moderately elevated systolic BP (130–159 mmHg) and were otherwise healthy, a liquid chromatography/mass spectrometry–based analysis of 289 metabolites was performed. This study identified metabolites that were significantly altered between the typical (153±29 mmol/d) and low (70±29 mmol/d) sodium conditions, as well as their baseline (typical sodium) association with responsiveness to previously reported improvements in vascular endothelial function (brachial artery flow-mediated dilation) and large elastic artery stiffness (aortic pulse wave velocity). Results Of the 289 metabolites surveyed, 10 were significantly altered (nine were upregulated and one was downregulated) during the low sodium condition, and eight of these exceeded our prespecified clinically significant threshold of a >40% change. These metabolites were involved in biologic pathways broadly related to cardiovascular risk, nitric oxide production, oxidative stress, osmotic regulation, and metabolism. One metabolite, serine, was independently (positively) associated with previously reported improvements in the primary vascular outcome of brachial artery flow-mediated dilation. Conclusions This proof-of-concept study provides the first evidence that DSR is a stimulus

  2. The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine.

    PubMed

    Cao, Hongxin; Zhang, Aihua; Zhang, Huamin; Sun, Hui; Wang, Xijun

    2015-02-01

    Metabolomics provides an opportunity to develop the systematic analysis of the metabolites and has been applied to discovering biomarkers and perturbed pathways which can clarify the action mechanism of traditional Chinese medicines (TCM). TCM is a comprehensive system of medical practice that has been used to diagnose, treat and prevent illnesses more than 3000 years. Metabolomics represents a powerful approach that provides a dynamic picture of the phenotype of biosystems through the study of endogenous metabolites, and its methods resemble those of TCM. Recently, metabolomics tools have been used for facilitating interactional effects of both Western medicine and TCM. We describe a protocol for investigating how metabolomics can be used to open up 'dialogue' between Chinese and Western medicine, and facilitate lead compound discovery and development from TCM. Metabolomics will bridge the cultural gap between TCM and Western medicine and improve development of integrative medicine, and maximally benefiting the human.

  3. Metabolomic Analysis of Diapausing and Noni-diapausing Larvae of the European Corn Borer Ostrinia nubilalis (Hbn.) (Lepidoptera: Crambidae).

    PubMed

    Purać, Jelena; Kojić, Danijela; Popović, Željko D; Vukašinović, Elvira; Tiziani, Stefano; Günther, Ulrich L; Grubor-Lajšić, Gordana

    2015-01-01

    In this study, an (1)H-NMR -based metabolomic approach was used to investigate the biochemical mechanisms of diapause and cold hardiness in diapausing larvae of the European corn borer Ostrinia nubilalis. Metabolomic patterns in polar hemolymph extracts from non-diapausing and diapausing larvae of O. nubilalis were compared. Analysis indicated 13 metabolites: 7 amino acids, glycerol, acetate, citrate, succinate, lactate and putrescine. Results show that diapausing larvae display different metabolomic patterns compared to active non-diapausing larvae, with predominant metabolites identified as glycerol, proline and alanine. In specific diapausing larvae initially kept at 5 °C then gradually chilled to –3 °C and –16 °C, alanine , glycerol and acetate were predominant metabolites. (1)H-NMR spectroscopy provides new insight into the metabolomic patterns associated with cold resistance and diapause in O. nubilalis larvae, suggesting distinct metabolomes function in actively developing and diapausing larvae. PMID:26680702

  4. Metabolomics profiling reveals novel markers for leukocyte telomere length

    PubMed Central

    Zierer, Jonas; Kastenmüller, Gabi; Suhre, Karsten; Gieger, Christian; Codd, Veryan; Tsai, Pei-Chien; Bell, Jordana; Peters, Annette; Strauch, Konstantin; Schulz, Holger; Weidinger, Stephan; Mohney, Robert P.; Samani, Nilesh J.; Spector, Tim; Mangino, Massimo; Menni, Cristina

    2016-01-01

    Leukocyte telomere length (LTL) is considered one of the most predictive markers of biological aging. The aim of this study was to identify novel pathways regulating LTL using a metabolomics approach. To this end, we tested associations between 280 blood metabolites and LTL in 3511 females from TwinsUK and replicated our results in the KORA cohort. We furthermore tested significant metabolites for associations with several aging-related phenotypes, gene expression markers and epigenetic markers to investigate potential underlying pathways. Five metabolites were associated with LTL: Two lysolipids, 1-stearoylglycerophosphoinositol (P=1.6×10−5) and 1-palmitoylglycerophosphoinositol (P=1.6×10−5), were found to be negatively associated with LTL and positively associated with phospholipase A2 expression levels suggesting an involvement of fatty acid metabolism and particularly membrane composition in biological aging. Moreover, two gamma-glutamyl amino acids, gamma-glutamyltyrosine (P=2.5×10−6) and gamma-glutamylphenylalanine (P=1.7×10−5), were negatively correlated with LTL. Both are products of the glutathione cycle and markers for increased oxidative stress. Metabolites were also correlated with functional measures of aging, i.e. higher blood pressure and HDL cholesterol levels and poorer lung, liver and kidney function. Our results suggest an involvement of altered fatty acid metabolism and increased oxidative stress in human biological aging, reflected by LTL and age-related phenotypes of vital organ systems. PMID:26797767

  5. Stable Isotope Resolved Metabolomics Studies in Ex Vivo TIssue Slices

    PubMed Central

    Fan, Teresa W-M.; Lane, Andrew N.; Higashi, Richard M.

    2016-01-01

    An important component of this methodology is to assess the role of the tumor microenvironment on tumor growth and survival. To tackle this problem, we have adapted the original approach of Warburg 1, by combining thin tissue slices with Stable Isotope Resolved Metabolomics (SIRM) to determine detailed metabolic activity of human tissues. SIRM enables the tracing of metabolic transformations of source molecules such as glucose or glutamine over defined time periods, and is a requirement for detailed pathway tracing and flux analysis. In our approach, we maintain freshly resected tissue slices (both cancerous and non- cancerous from the same organ of the same subject) in cell culture media, and treat with appropriate stable isotope-enriched nutrients, e.g. 13C6-glucose or 13C5, 15N2 -glutamine. These slices are viable for at least 24 h, and make it possible to eliminate systemic influence on the target tissue metabolism while maintaining the original 3D cellular architecture. It is therefore an excellent pre-clinical platform for assessing the effect of therapeutic agents on target tissue metabolism and their therapeutic efficacy on individual patients 2,3. PMID:27158639

  6. Loss-of-function variants influence the human serum metabolome.

    PubMed

    Yu, Bing; Li, Alexander H; Metcalf, Ginger A; Muzny, Donna M; Morrison, Alanna C; White, Simon; Mosley, Thomas H; Gibbs, Richard A; Boerwinkle, Eric

    2016-08-01

    The metabolome is a collection of small molecules resulting from multiple cellular and biological processes that can act as biomarkers of disease, and African-Americans exhibit high levels of genetic diversity. Exome sequencing of a sample of deeply phenotyped African-Americans allowed us to analyze the effects of annotated loss-of-function (LoF) mutations on 308 serum metabolites measured by untargeted liquid and gas chromatography coupled with mass spectrometry. In an independent sample, we identified and replicated four genes harboring six LoF mutations that significantly affected five metabolites. These sites were related to a 19 to 45% difference in geometric mean metabolite levels, with an average effect size of 25%. We show that some of the affected metabolites are risk predictors or diagnostic biomarkers of disease and, using the principle of Mendelian randomization, are in the causal pathway of disease. For example, LoF mutations in SLCO1B1 elevate the levels of hexadecanedioate, a fatty acid significantly associated with increased blood pressure levels and risk of incident heart failure in both African-Americans and an independent sample of European-Americans. We show that SLCO1B1 LoF mutations significantly increase the risk of incident heart failure, thus implicating the metabolite in the causal pathway of disease. These results reveal new avenues into gene function and the understanding of disease etiology by integrating -omic technologies into a deeply phenotyped population study. PMID:27602404

  7. Metabolomic screening and identification of bioactivation pathways of ritonavir

    PubMed Central

    Li, Feng; Lu, Jie; Ma, Xiaochao

    2011-01-01

    Ritonavir-boosted protease inhibitor regimens are widely used for HIV chemotherapy. However, ritonavir causes multiple side effects, and the mechanisms are not fully understood. The current study was designed to explore the metabolic pathways of ritonavir that may be related to its toxicity. Metabolomic analysis screened out 26 ritonavir metabolites in mice, and half of them are novel. These novel ritonavir metabolites include two glycine conjugated, two N-acetylcysteine conjugated and three ring-open products. Accompanied with the generation of ritonavir ring-open metabolites, the formation of methanethioamide and 2-methylpropanethioamide were expected. Based upon the structures of these novel metabolites, five bioactivation pathways are proposed, which may be associated with sulfation and epoxidation. By using Cyp3a-null mice, we confirmed that CYP3A is involved in four pathways of RTV bioactivation. In addition, all these five bioactivation pathways were recapitulated in the incubation of ritonavir in human liver microsomes. Further studies are suggested to determine the role of CYP3A and these bioactivation pathways in ritonavir toxicity. PMID:22040299

  8. An investigation of boron toxicity in barley using metabolomics.

    PubMed

    Roessner, Ute; Patterson, John H; Forbes, Megan G; Fincher, Geoffrey B; Langridge, Peter; Bacic, Anthony

    2006-11-01

    Boron (B) is an essential micronutrient that affects plant growth at either deficient or toxic concentrations in soil. The aim of this work was to investigate the adaptation of barley (Hordeum vulgare) plants to toxic B levels and to increase our understanding of B toxicity tolerance mechanisms. We used a metabolomics approach to compare metabolite profiles in root and leaf tissues of an intolerant, commercial cultivar (cv Clipper) and a B-tolerant Algerian landrace (cv Sahara). After exposure to elevated B (200 and 1,000 microM), the number and amplitude of metabolite changes in roots was greater in Clipper than in Sahara. In contrast, leaf metabolites of both cultivars only responded following 1,000 microM treatment, at which B toxicity symptoms (necrosis) were visible. In addition, metabolite levels were dramatically altered in the tips of leaves of the sensitive cultivar Clipper after growth in 1,000 microM B compared to those of Sahara. This correlates with a gradual accumulation of B from leaf base to tip in B-intolerant cultivars. Overall, there were always greater differences between tissue types (roots and leaves) than between the two cultivars. This work has provided insights into metabolic differences of two genetically distinct barley cultivars and information about how they respond metabolically to increasing B levels. PMID:16998089

  9. Metabolomics integrated elementary flux mode analysis in large metabolic networks.

    PubMed

    Gerstl, Matthias P; Ruckerbauer, David E; Mattanovich, Diethard; Jungreuthmayer, Christian; Zanghellini, Jürgen

    2015-03-10

    Elementary flux modes (EFMs) are non-decomposable steady-state pathways in metabolic networks. They characterize phenotypes, quantify robustness or identify engineering targets. An EFM analysis (EFMA) is currently restricted to medium-scale models, as the number of EFMs explodes with the network's size. However, many topologically feasible EFMs are biologically irrelevant. We present thermodynamic EFMA (tEFMA), which calculates only the small(er) subset of thermodynamically feasible EFMs. We integrate network embedded thermodynamics into EFMA and show that we can use the metabolome to identify and remove thermodynamically infeasible EFMs during an EFMA without losing biologically relevant EFMs. Calculating only the thermodynamically feasible EFMs strongly reduces memory consumption and program runtime, allowing the analysis of larger networks. We apply tEFMA to study the central carbon metabolism of E. coli and find that up to 80% of its EFMs are thermodynamically infeasible. Moreover, we identify glutamate dehydrogenase as a bottleneck, when E. coli is grown on glucose and explain its inactivity as a consequence of network embedded thermodynamics. We implemented tEFMA as a Java package which is available for download at https://github.com/mpgerstl/tEFMA.

  10. Unraveling Biochemical Pathways Affected by Mitochondrial Dysfunctions Using Metabolomic Approaches

    PubMed Central

    Demine, Stéphane; Reddy, Nagabushana; Renard, Patricia; Raes, Martine; Arnould, Thierry

    2014-01-01

    Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic. PMID:25257998

  11. Metabolomics analysis in rats after administration of Datura stramonium.

    PubMed

    Zhang, Meiling; Bao, Shihui; Lin, Feiou; Lin, Yingying; Zhang, Lijing; Xu, Mengzhi; Huang, Xueli; Wen, Congcong; Hu, Lufeng; Lin, Guanyang

    2015-01-01

    This study aimed to evaluate the effect of Datura stramonium on rats by examining the differences in urine and serum metabolites between Datura stramonium groups and control group. SIMCA-P+12.0.1.0 software was used for partial least-squares discriminant analysis (PLS-DA) to screen for the differential metabolites. Fifteen metabolites in urine including malonic acid, pentanedioic acid, D-xylose, D-ribose, xylulose, azelaic acid, threitol, glycine, butanoic acid, D-mannose, D-gluconic acid, galactonic acid, myo-inositol, octadecanoic acid, pseudouridine and ten metabolites in serum including alanine, butanedioic acid, L-methionine, propanedioic acid, hexadecanoic acid, D-fructose, tetradecanoic acid, D-glucose, D-galactose, oleic acid were selected as the characteristic metabolites. The PLS-DA scores plot indicated that serum and urine metabolites have a variety of changes among low dose group, high dose group and control group. These metabolites were related with amino metabolism, lipid metabolism and energy metabolism. The result reflected the relationship between metabolites in rat fluid and Datura stramonium spectra. Potential differences in metabolites and metabolic pathway analysis showed that the establishment of urine and serum metabolomics methods for further evaluating drug has great significance. PMID:26885052

  12. Sum of the Parts: Mass Spectrometry-Based Metabolomics

    PubMed Central

    Milne, Stephen B.; Mathews, Thomas P.; Myers, David S.; Ivanova, Pavlina T.; Brown, H. Alex

    2013-01-01

    Metabolomics is a rapidly growing field of research used in the identification and quantification of the small molecule metabolites within an organism, thereby providing insights into cell metabolism and bioenergetics as well as processes important in clinical medicine, such as disposition of pharmaceutical compounds. It offers comprehensive information on thousands of low molecular weight compounds (<1500 Da) that represent a wide range of pathways and intermediary metabolism. Due to its vast expansion in the last two decades mass spectrometry has become an indispensable tool in “omic” analyses. The use of different ionization techniques such as the more traditional electrospray (ESI) and matrix-assisted laser desorption (MALDI), as well as recently popular desorption electrospray ionization (DESI), has allowed the analysis of a wide range of biomolecules (e.g. peptides, proteins, lipids and sugars), and their imaging and analysis in the original sample environment in a workup free fashion. An overview of the current state of the methodology is given, as well as examples of application. PMID:23442130

  13. Human Aging Is a Metabolome-related Matter of Gender.

    PubMed

    Jové, Mariona; Maté, Ianire; Naudí, Alba; Mota-Martorell, Natalia; Portero-Otín, Manuel; De la Fuente, Mónica; Pamplona, Reinald

    2016-05-01

    A molecular description of the mechanisms by which aging is produced is still very limited. Here, we have determined the plasma metabolite profile by using high-throughput metabolome profiling technologies of 150 healthy humans ranging from 30 to 100 years of age. Using a nontargeted approach, we detected 2,678 metabolite species in plasma, and the multivariate analyses separated perfectly two groups indicating a specific signature for each gender. In addition, there is a set of gender-shared metabolites, which change significantly during aging with a similar tendency. Among the identified molecules, we found vitamin D2-related compound, phosphoserine (40:5), monoacylglyceride (22:1), diacylglyceride (33:2), and resolvin D6, all of them decreasing with the aging process. Finally, we found three molecules that directly correlate with age and seven that inversely correlate with age, independently of gender. Among the identified molecules (6 of 10 according to exact mass and retention time), we found a proteolytic product (l-γ-glutamyl-l-leucine), which increased with age. On the contrary, a hydroxyl fatty acid (25-hydroxy-hexacosanoic), a polyunsaturated fatty acid (eicosapentaenoic acid), two phospholipids (phosphocholine [42:9]and phosphoserine [42:3]) and a prostaglandin (15-keto-prostaglandin F2α) decreased with aging. These results suggest that lipid species and their metabolism are closely linked to the aging process.

  14. Effects of Sleep Restriction on the Human Plasma Metabolome

    PubMed Central

    Bell, Lauren N.; Kilkus, Jennifer M.; Booth, John N.; Bromley, Lindsay E.; Imperial, Jacqueline G.; Penev, Plamen D.

    2013-01-01

    This study examined the effects of recurrent sleep restriction on the plasma metabolome of adults with familial risk of type 2 diabetes. Eleven healthy adults (6M/5F; mean [SD] age: 26 [3] years; BMI 23.5 [2.3] kg/m2) with parental history of type 2 diabetes participated in a two-condition, two-period randomized crossover study at the Clinical Resource Center at an academic hospital. Each participant completed two 8-night inpatient sessions with restricted (5.5-h time-in-bed) vs. adequate (8.5-h time-in-bed) sleep opportunity while daily food intake and physical activity were carefully controlled. A combination of two UHPLC/MS/MS platforms and one GC/MS platform was used to measure 362 biochemicals in fasting plasma samples collected from study participants the morning after each 8-night sleep treatment. Relative concentrations of 12 amino acids and related metabolites were increased when sleep was curtailed. Sleep restriction also induced elevations in several fatty acid, bile acid, steroid hormone, and tricarboxylic acid cycle intermediates. In contrast, circulating levels of glucose, some monosaccharides, gluconate, and five-carbon sugar alcohols tended to decline when sleep was reduced. Recurrent sleep curtailment affected multiple pathways of intermediary metabolism in adults at risk for type 2 diabetes. An elevation in plasma amino acids and related biochemicals was the most pronounced metabolic signature seen in response to 8 nights of sleep restriction. PMID:23954406

  15. Loss-of-function variants influence the human serum metabolome

    PubMed Central

    Yu, Bing; Li, Alexander H.; Metcalf, Ginger A.; Muzny, Donna M.; Morrison, Alanna C.; White, Simon; Mosley, Thomas H.; Gibbs, Richard A.; Boerwinkle, Eric

    2016-01-01

    The metabolome is a collection of small molecules resulting from multiple cellular and biological processes that can act as biomarkers of disease, and African-Americans exhibit high levels of genetic diversity. Exome sequencing of a sample of deeply phenotyped African-Americans allowed us to analyze the effects of annotated loss-of-function (LoF) mutations on 308 serum metabolites measured by untargeted liquid and gas chromatography coupled with mass spectrometry. In an independent sample, we identified and replicated four genes harboring six LoF mutations that significantly affected five metabolites. These sites were related to a 19 to 45% difference in geometric mean metabolite levels, with an average effect size of 25%. We show that some of the affected metabolites are risk predictors or diagnostic biomarkers of disease and, using the principle of Mendelian randomization, are in the causal pathway of disease. For example, LoF mutations in SLCO1B1 elevate the levels of hexadecanedioate, a fatty acid significantly associated with increased blood pressure levels and risk of incident heart failure in both African-Americans and an independent sample of European-Americans. We show that SLCO1B1 LoF mutations significantly increase the risk of incident heart failure, thus implicating the metabolite in the causal pathway of disease. These results reveal new avenues into gene function and the understanding of disease etiology by integrating -omic technologies into a deeply phenotyped population study. PMID:27602404

  16. Metabolomics connects aberrant bioenergetic, transmethylation, and gut microbiota in sarcoidosis

    PubMed Central

    Geamanu, Andreea; Gupta, Smiti V.; Bauerfeld, Christian

    2016-01-01

    Sarcoidosis is a systemic granulomatous disease of unknown etiology. Granulomatous inflammation in sarcoidosis may affect multiple organs, including the lungs, skin, CNS, and the eyes, leading to severe morbidity and mortality. The underlying mechanisms for sustained inflammation in sarcoidosis are unknown. We hypothesized that metabolic changes play a critical role in perpetuation of inflammation in sarcoidosis. 1H nuclear magnetic resonance (NMR)-based untargeted metabolomic analysis was used to identify circulating molecules in serum to discriminate sarcoidosis patients from healthy controls. Principal component analyses (PCA) were performed to identify different metabolic markers and explore the changes of associated biochemical pathways. Using Chenomx 7.6 NMR Suite software, we identified and quantified metabolites responsible for such separation in the PCA models. Quantitative analysis showed that the levels of metabolites, such as 3-hydroxybutyrate, acetoacetate, carnitine, cystine, homocysteine, pyruvate, and trimethylamine N-oxide were significantly increased in sarcoidosis patients. Interestingly, succinate, a major intermediate metabolite involved in the tricyclic acid cycle was significantly decreased in sarcoidosis patients. Application of integrative pathway analyses identified deregulation of butanoate, ketone bodies, citric cycle metabolisms, and transmethylation. This may be used for development of new drugs or nutritional modification. PMID:27489531

  17. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    PubMed Central

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-01-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states. PMID:26154191

  18. Metabolomics analysis in rats after administration of Datura stramonium

    PubMed Central

    Zhang, Meiling; Bao, Shihui; Lin, Feiou; Lin, Yingying; Zhang, Lijing; Xu, Mengzhi; Huang, Xueli; Wen, Congcong; Hu, Lufeng; Lin, Guanyang

    2015-01-01

    This study aimed to evaluate the effect of Datura stramonium on rats by examining the differences in urine and serum metabolites between Datura stramonium groups and control group. SIMCA-P+12.0.1.0 software was used for partial least-squares discriminant analysis (PLS-DA) to screen for the differential metabolites. Fifteen metabolites in urine including malonic acid, pentanedioic acid, D-xylose, D-ribose, xylulose, azelaic acid, threitol, glycine, butanoic acid, D-mannose, D-gluconic acid, galactonic acid, myo-inositol, octadecanoic acid, pseudouridine and ten metabolites in serum including alanine, butanedioic acid, L-methionine, propanedioic acid, hexadecanoic acid, D-fructose, tetradecanoic acid, D-glucose, D-galactose, oleic acid were selected as the characteristic metabolites. The PLS-DA scores plot indicated that serum and urine metabolites have a variety of changes among low dose group, high dose group and control group. These metabolites were related with amino metabolism, lipid metabolism and energy metabolism. The result reflected the relationship between metabolites in rat fluid and Datura stramonium spectra. Potential differences in metabolites and metabolic pathway analysis showed that the establishment of urine and serum metabolomics methods for further evaluating drug has great significance. PMID:26885052

  19. Metabolomics Approach Reveals Integrated Metabolic Network Associated with Serotonin Deficiency

    NASA Astrophysics Data System (ADS)

    Weng, Rui; Shen, Sensen; Tian, Yonglu; Burton, Casey; Xu, Xinyuan; Liu, Yi; Chang, Cuilan; Bai, Yu; Liu, Huwei

    2015-07-01

    Serotonin is an important neurotransmitter that broadly participates in various biological processes. While serotonin deficiency has been associated with multiple pathological conditions such as depression, schizophrenia, Alzheimer’s disease and Parkinson’s disease, the serotonin-dependent mechanisms remain poorly understood. This study therefore aimed to identify novel biomarkers and metabolic pathways perturbed by serotonin deficiency using metabolomics approach in order to gain new metabolic insights into the serotonin deficiency-related molecular mechanisms. Serotonin deficiency was achieved through pharmacological inhibition of tryptophan hydroxylase (Tph) using p-chlorophenylalanine (pCPA) or genetic knockout of the neuronal specific Tph2 isoform. This dual approach improved specificity for the serotonin deficiency-associated biomarkers while minimizing nonspecific effects of pCPA treatment or Tph2 knockout (Tph2-/-). Non-targeted metabolic profiling and a targeted pCPA dose-response study identified 21 biomarkers in the pCPA-treated mice while 17 metabolites in the Tph2-/- mice were found to be significantly altered compared with the control mice. These newly identified biomarkers were associated with amino acid, energy, purine, lipid and gut microflora metabolisms. Oxidative stress was also found to be significantly increased in the serotonin deficient mice. These new biomarkers and the overall metabolic pathways may provide new understanding for the serotonin deficiency-associated mechanisms under multiple pathological states.

  20. Loss-of-function variants influence the human serum metabolome

    PubMed Central

    Yu, Bing; Li, Alexander H.; Metcalf, Ginger A.; Muzny, Donna M.; Morrison, Alanna C.; White, Simon; Mosley, Thomas H.; Gibbs, Richard A.; Boerwinkle, Eric

    2016-01-01

    The metabolome is a collection of small molecules resulting from multiple cellular and biological processes that can act as biomarkers of disease, and African-Americans exhibit high levels of genetic diversity. Exome sequencing of a sample of deeply phenotyped African-Americans allowed us to analyze the effects of annotated loss-of-function (LoF) mutations on 308 serum metabolites measured by untargeted liquid and gas chromatography coupled with mass spectrometry. In an independent sample, we identified and replicated four genes harboring six LoF mutations that significantly affected five metabolites. These sites were related to a 19 to 45% difference in geometric mean metabolite levels, with an average effect size of 25%. We show that some of the affected metabolites are risk predictors or diagnostic biomarkers of disease and, using the principle of Mendelian randomization, are in the causal pathway of disease. For example, LoF mutations in SLCO1B1 elevate the levels of hexadecanedioate, a fatty acid significantly associated with increased blood pressure levels and risk of incident heart failure in both African-Americans and an independent sample of European-Americans. We show that SLCO1B1 LoF mutations significantly increase the risk of incident heart failure, thus implicating the metabolite in the causal pathway of disease. These results reveal new avenues into gene function and the understanding of disease etiology by integrating -omic technologies into a deeply phenotyped population study.

  1. Review: Metabolomics in the developmental origins of obesity and its cardiometabolic consequences

    PubMed Central

    Hivert, MF; Perng, W; Watkins, S; Newgard, CB; Kenny, LC; Kristal, BS; Patti, ME; Isganaitis, E; DeMeo, DL; Oken, E; Gillman, MW

    2015-01-01

    In this review, we discuss the potential role of metabolomics to enhance understanding of obesity-related developmental origins of health and disease (DOHaD). We first provide an overview of common techniques and analytical approaches to help interested investigators dive into this relatively novel field. Next, we describe how metabolomics may capture exposures that are notoriously difficult to quantify, and help to further refine phenotypes associated with excess adiposity and related metabolic sequelae over the life course. Together, these data can ultimately help to elucidate mechanisms that underlie fetal metabolic programming. Finally, we review current gaps in knowledge and identify areas where the field of metabolomics is likely to provide insights into mechanisms linked to DOHaD in human populations. PMID:25631626

  2. Metabolomics-driven quantitative analysis of ammonia assimilation in E. coli

    PubMed Central

    Yuan, Jie; Doucette, Christopher D; Fowler, William U; Feng, Xiao-Jiang; Piazza, Matthew; Rabitz, Herschel A; Wingreen, Ned S; Rabinowitz, Joshua D

    2009-01-01

    Despite extensive study of individual enzymes and their organization into pathways, the means by which enzyme networks control metabolite concentrations and fluxes in cells remains incompletely understood. Here, we examine the integrated regulation of central nitrogen metabolism in Escherichia coli through metabolomics and ordinary-differential-equation-based modeling. Metabolome changes triggered by modulating extracellular ammonium centered around two key intermediates in nitrogen assimilation, α-ketoglutarate and glutamine. Many other compounds retained concentration homeostasis, indicating isolation of concentration changes within a subset of the metabolome closely linked to the nutrient perturbation. In contrast to the view that saturated enzymes are insensitive to substrate concentration, competition for the active sites of saturated enzymes was found to be a key determinant of enzyme fluxes. Combined with covalent modification reactions controlling glutamine synthetase activity, such active-site competition was sufficient to explain and predict the complex dynamic response patterns of central nitrogen metabolites. PMID:19690571

  3. Chemometric methods in data processing of mass spectrometry-based metabolomics: A review.

    PubMed

    Yi, Lunzhao; Dong, Naiping; Yun, Yonghuan; Deng, Baichuan; Ren, Dabing; Liu, Shao; Liang, Yizeng

    2016-03-31

    This review focuses on recent and potential advances in chemometric methods in relation to data processing in metabolomics, especially for data generated from mass spectrometric techniques. Metabolomics is gradually being regarded a valuable and promising biotechnology rather than an ambitious advancement. Herein, we outline significant developments in metabolomics, especially in the combination with modern chemical analysis techniques, and dedicated statistical, and chemometric data analytical strategies. Advanced skills in the preprocessing of raw data, identification of metabolites, variable selection, and modeling are illustrated. We believe that insights from these developments will help narrow the gap between the original dataset and current biological knowledge. We also discuss the limitations and perspectives of extracting information from high-throughput datasets. PMID:26965324

  4. The Role of Mass Spectrometry-Based Metabolomics in Medical Countermeasures Against Radiation

    PubMed Central

    Patterson, Andrew D.; Lanz, Christian; Gonzalez, Frank J.; Idle, Jeffrey R.

    2013-01-01

    Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry (CMCR) was established to develop field-deployable biodosimeters based, in principle, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter. PMID:19890938

  5. Phosphonium labeling for increasing metabolomic coverage of neutral lipids using electrospray ionization mass spectrometry†

    PubMed Central

    Woo, Hin-Koon; Go, Eden P.; Hoang, Linh; Trauger, Sunia A.; Bowen, Benjamin; Siuzdak, Gary; Northen, Trent R.

    2011-01-01

    Mass spectrometry has become an indispensable tool for the global study of metabolites (metabolomics), primarily using electrospray ionization mass spectrometry (ESI-MS). However, many important classes of molecules such as neutral lipids do not ionize well by ESI and go undetected. Chemical derivatization of metabolites can enhance ionization for increased sensitivity and metabolomic coverage. Here we describe the use of tris(2,4,6,-trimethoxyphenyl)phosphonium acetic acid (TMPP-AA) to improve liquid chromatography (LC)/ESI-MS detection of hydroxylated metabolites (i.e. lipids) from serum extracts. Cholesterol which is not normally detected from serum using ESI is observed with attomole sensitivity. This approach was applied to identify four endogenous lipids (hexadecanoyl-sn-glycerol, dihydrotachysterol, octadecanol, and alpha-tocopherol) from human serum. Overall, this approach extends the types of metabolites which can be detected using standard ESI-MS instrumentation and demonstrates the potential for targeted metabolomics analysis. PMID:19449318

  6. Local false discovery rate estimation using feature reliability in LC/MS metabolomics data.

    PubMed

    Chong, Elizabeth Y; Huang, Yijian; Wu, Hao; Ghasemzadeh, Nima; Uppal, Karan; Quyyumi, Arshed A; Jones, Dean P; Yu, Tianwei

    2015-11-24

    False discovery rate (FDR) control is an important tool of statistical inference in feature selection. In mass spectrometry-based metabolomics data, features can be measured at different levels of reliability and false features are often detected in untargeted metabolite profiling as chemical and/or bioinformatics noise. The traditional false discovery rate methods treat all features equally, which can cause substantial loss of statistical power to detect differentially expressed features. We propose a reliability index for mass spectrometry-based metabolomics data with repeated measurements, which is quantified using a composite measure. We then present a new method to estimate the local false discovery rate (lfdr) that incorporates feature reliability. In simulations, our proposed method achieved better balance between sensitivity and controlling false discovery, as compared to traditional lfdr estimation. We applied our method to a real metabolomics dataset and were able to detect more differentially expressed metabolites that were biologically meaningful.

  7. Exceptional evolutionary divergence of human muscle and brain metabolomes parallels human cognitive and physical uniqueness.

    PubMed

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C; Hof, Patrick R; Ely, John J; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

    2014-05-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

  8. Assessment of fruit juice authenticity using UPLC-QToF MS: a metabolomics approach.

    PubMed

    Jandrić, Z; Roberts, D; Rathor, M N; Abrahim, A; Islam, M; Cannavan, A

    2014-04-01

    In recent years, with the growing complexity of global food supply chains and trade, food fraud, including adulteration of high value foods with cheaper substitutes, has become an increasingly important issue. A metabolomics approach can be applied to discover biomarkers that can be used to trace food adulteration. A study was undertaken to discover novel, potential biomarkers for the rapid detection of the adulteration of fruit juices with cheaper alternatives. Pineapple, orange, grapefruit, apple, clementine, and pomelo were investigated. Untargeted metabolite fingerprinting was performed by UPLC-QToF MS with multivariate data analysis. Twenty-one differential metabolites were selected, contributing to the separation between pineapple, orange and grapefruit juices, and their admixtures down to 1% adulteration level. A targeted metabolomics method was then optimised and adulteration could be detected at 1%. The results demonstrate that metabolomics has potential as a screening tool for the rapid detection of food adulteration.

  9. The guard cell metabolome: functions in stomatal movement and global food security.

    PubMed

    Misra, Biswapriya B; Acharya, Biswa R; Granot, David; Assmann, Sarah M; Chen, Sixue

    2015-01-01

    Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other "omics" approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security.

  10. Exceptional Evolutionary Divergence of Human Muscle and Brain Metabolomes Parallels Human Cognitive and Physical Uniqueness

    PubMed Central

    Bozek, Katarzyna; Wei, Yuning; Yan, Zheng; Liu, Xiling; Xiong, Jieyi; Sugimoto, Masahiro; Tomita, Masaru; Pääbo, Svante; Pieszek, Raik; Sherwood, Chet C.; Hof, Patrick R.; Ely, John J.; Steinhauser, Dirk; Willmitzer, Lothar; Bangsbo, Jens; Hansson, Ola; Call, Josep; Giavalisco, Patrick; Khaitovich, Philipp

    2014-01-01

    Metabolite concentrations reflect the physiological states of tissues and cells. However, the role of metabolic changes in species evolution is currently unknown. Here, we present a study of metabolome evolution conducted in three brain regions and two non-neural tissues from humans, chimpanzees, macaque monkeys, and mice based on over 10,000 hydrophilic compounds. While chimpanzee, macaque, and mouse metabolomes diverge following the genetic distances among species, we detect remarkable acceleration of metabolome evolution in human prefrontal cortex and skeletal muscle affecting neural and energy metabolism pathways. These metabolic changes could not be attributed to environmental conditions and were confirmed against the expression of their corresponding enzymes. We further conducted muscle strength tests in humans, chimpanzees, and macaques. The results suggest that, while humans are characterized by superior cognition, their muscular performance might be markedly inferior to that of chimpanzees and macaque monkeys. PMID:24866127

  11. Using fragmentation trees and mass spectral trees for identifying unknown compounds in metabolomics

    PubMed Central

    Vaniya, Arpana

    2015-01-01

    Identification of unknown metabolites is the bottleneck in advancing metabolomics, leaving interpretation of metabolomics results ambiguous. The chemical diversity of metabolism is vast, making structure identification arduous and time consuming. Currently, comprehensive analysis of mass spectra in metabolomics is limited to library matching, but tandem mass spectral libraries are small compared to the large number of compounds found in the biosphere, including xenobiotics. Resolving this bottleneck requires richer data acquisition and better computational tools. Multi-stage mass spectrometry (MSn) trees show promise to aid in this regard. Fragmentation trees explore the fragmentation process, generate fragmentation rules and aid in sub-structure identification, while mass spectral trees delineate the dependencies in multi-stage MS of collision-induced dissociations. This review covers advancements over the past 10 years as a tool for metabolite identification, including algorithms, software and databases used to build and to implement fragmentation trees and mass spectral annotations. PMID:26213431

  12. The impact of blood on liver metabolite profiling - a combined metabolomic and proteomic approach.

    PubMed

    Ly-Verdú, Saray; Schaefer, Alexander; Kahle, Melanie; Groeger, Thomas; Neschen, Susanne; Arteaga-Salas, Jose M; Ueffing, Marius; de Angelis, Martin Hrabe; Zimmermann, Ralf

    2014-02-01

    Metabolomics has entered the well-established omic sciences as it is an indispensable information resource to achieve a global picture of biological systems. The aim of the present study was to estimate the influence of blood removal from mice liver as part of sample preparation for metabolomic and proteomic studies. For this purpose, perfused mice liver tissue (i.e. with blood removed) and unperfused mice liver tissue (i.e. containing blood) were compared by two-dimensional gas chromatography time of flight mass spectrometry (GC × GC-TOFMS) for the metabolomic part, and by liquid chromatography tandem mass spectrometry (LC-MS/MS) for the proteomic part. Our data showed significant differences between the unperfused and perfused liver tissue samples. Furthermore, we also observed an overlap of blood and tissue metabolite profiles in our data, suggesting that the perfusion of liver tissue prior to analysis is beneficial for an accurate metabolic profile of this organ.

  13. The guard cell metabolome: functions in stomatal movement and global food security

    PubMed Central

    Misra, Biswapriya B.; Acharya, Biswa R.; Granot, David; Assmann, Sarah M.; Chen, Sixue

    2015-01-01

    Guard cells represent a unique single cell-type system for the study of cellular responses to abiotic and biotic perturbations that affect stomatal movement. Decades of effort through both classical physiological and functional genomics approaches have generated an enormous amount of information on the roles of individual metabolites in stomatal guard cell function and physiology. Recent application of metabolomics methods has produced a substantial amount of new information on metabolome control of stomatal movement. In conjunction with other “omics” approaches, the knowledge-base is growing to reach a systems-level description of this single cell-type. Here we summarize current knowledge of the guard cell metabolome and highlight critical metabolites that bear significant impact on future engineering and breeding efforts to generate plants/crops that are resistant to environmental challenges and produce high yield and quality products for food and energy security. PMID:26042131

  14. Agronomic, metabolomic and lipidomic characterisation of Sicilian Origanum vulgare (L.) ecotypes.

    PubMed

    Tuttolomondo, Teresa; Martinelli, Federico; Mariotti, Lorenzo; Leto, Claudio; Maggio, Antonella; La Bella, Salvatore

    2016-01-01

    Although Origanum vulgare (L.) has been deeply analysed at phytochemical level, poor knowledge is available regarding non-volatile compounds such as lipids. The aim of this work was to characterise five wild Sicilian Origanum ecotypes from an agronomic, metabolomic and lipidomic perspective. Serradifalco presented higher dry weight and inflorescences/plant than the others while Favara had a significantly higher number of branches per plant and more extensive flowered stratum. Metabolomic analysis, performed with LC-MS-TOF, allowed a preliminary characterisation of the non-volatile metabolome of the five oregano ecotypes Origanum vulgare ssp. hirtum. Twenty-five metabolites were identified belonging to organic acids, amino acids, lysophosphatidylcholines, carnithines, nucleic bases and lysophosphatidylethanolamines. Lipidomic analysis identified 115 polar plant membrane glycerolipid species. Thirteen of them were differentially present in the two chosen ecotypes. The role of these metabolites in plant physiology from a qualitative and pharmacological point of view was discussed.

  15. Metabolomic analysis of amino acid and energy metabolism in rats supplemented with chlorogenic acid

    PubMed Central

    Ruan, Zheng; Yang, Yuhui; Zhou, Yan; Wen, Yanmei; Ding, Sheng; Liu, Gang; Wu, Xin; Deng, Zeyuan; Assaad, Houssein; Wu, Guoyao

    2016-01-01

    This study was conducted to investigate effects of chlorogenic acid (CGA) supplementation on serum and hepatic metabolomes in rats. Rats received daily intragastric administration of either CGA (60 mg/kg body weight) or distilled water (control) for 4 weeks. Growth performance, serum biochemical profiles, and hepatic morphology were measured. Additionally, serum and liver tissue extracts were analyzed for metabolomes by high-resolution 1H nuclear magnetic resonance-based metabolomics and multivariate statistics. CGA did not affect rat growth performance, serum biochemical profiles, or hepatic morphology. However, supplementation with CGA decreased serum concentrations of lactate, pyruvate, succinate, citrate, β-hydroxybutyrate and acetoacetate, while increasing serum concentrations of glycine and hepatic concentrations of glutathione. These results suggest that CGA supplementation results in perturbation of energy and amino acid metabolism in rats. We suggest that glycine and glutathione in serum may be useful biomarkers for biological properties of CGA on nitrogen metabolism in vivo. PMID:24927697

  16. TISSUE METABOLOMICS OF HEPATOCELLULAR CARCINOMA: TUMOR ENERGY METABOLISM AND THE ROLE OF TRANSCRIPTOMIC CLASSIFICATION

    PubMed Central

    Beyoğlu, Diren; Imbeaud, Sandrine; Maurhofer, Olivier; Bioulac-Sage, Paulette; Zucman-Rossi, Jessica; Dufour, Jean-François; Idle, Jeffrey R.

    2013-01-01

    Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and downregulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding non-tumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS) based metabolomics. HCC was characterized by approximately two-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a four-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol or stearic acid tissue concentrations were found, suggesting that the Wnt/β-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. Conclusion Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process. PMID:23463346

  17. Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies.

    PubMed

    Lima, Ana Rita; Bastos, Maria de Lourdes; Carvalho, Márcia; Guedes de Pinho, Paula

    2016-08-01

    Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA) levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection.

  18. Biomarker Discovery in Human Prostate Cancer: an Update in Metabolomics Studies.

    PubMed

    Lima, Ana Rita; Bastos, Maria de Lourdes; Carvalho, Márcia; Guedes de Pinho, Paula

    2016-08-01

    Prostate cancer (PCa) is the most frequently diagnosed cancer and the second leading cause of cancer death among men in Western countries. Current screening techniques are based on the measurement of serum prostate specific antigen (PSA) levels and digital rectal examination. A decisive diagnosis of PCa is based on prostate biopsies; however, this approach can lead to false-positive and false-negative results. Therefore, it is important to discover new biomarkers for the diagnosis of PCa, preferably noninvasive ones. Metabolomics is an approach that allows the analysis of the entire metabolic profile of a biological system. As neoplastic cells have a unique metabolic phenotype related to cancer development and progression, the identification of dysfunctional metabolic pathways using metabolomics can be used to discover cancer biomarkers and therapeutic targets. In this study, we review several metabolomics studies performed in prostatic fluid, blood plasma/serum, urine, tissues and immortalized cultured cell lines with the objective of discovering alterations in the metabolic phenotype of PCa and thus discovering new biomarkers for the diagnosis of PCa. Encouraging results using metabolomics have been reported for PCa, with sarcosine being one of the most promising biomarkers identified to date. However, the use of sarcosine as a PCa biomarker in the clinic remains a controversial issue within the scientific community. Beyond sarcosine, other metabolites are considered to be biomarkers for PCa, but they still need clinical validation. Despite the lack of metabolomics biomarkers reaching clinical practice, metabolomics proved to be a powerful tool in the discovery of new biomarkers for PCa detection. PMID:27567960

  19. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease

    PubMed Central

    Lim, Yan Wei; Mak, Tytus D.; Whiteson, Katrine; Conrad, Douglas; Rohwer, Forest; Dorrestein, Pieter

    2016-01-01

    Background. Cystic fibrosis (CF) is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE) that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples) to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable). Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF) and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events) as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset. PMID:27602256

  20. Low-Level Environmental Phthalate Exposure Associates with Urine Metabolome Alteration in a Chinese Male Cohort.

    PubMed

    Zhang, Jie; Liu, Liangpo; Wang, Xiaofei; Huang, Qingyu; Tian, Meiping; Shen, Heqing

    2016-06-01

    The general population is exposed to phthalates through various sources and routes. Integration of omics data and epidemiological data is a key step toward directly linking phthalate biomonitoring data with biological response. Urine metabolomics is a powerful tool to identify exposure biomarkers and delineate the modes of action of environmental stressors. The objectives of this study are to investigate the association between low-level environmental phthalate exposure and urine metabolome alteration in male population, and to unveil the metabolic pathways involved in the mechanisms of phthalate toxicity. In this retrospective cross-sectional study, we studied the urine metabolomic profiles of 364 male subjects exposed to low-level environmental phthalates. Di(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP) are the most widely used phthalates. ∑DEHP and MBP (the major metabolite of DBP) were associated with significant alteration of global urine metabolome in the male population. We observed significant increase in the levels of acetylneuraminic acid, carnitine C8:1, carnitine C18:0, cystine, phenylglycine, phenylpyruvic acid and glutamylphenylalanine; and meanwhile, decrease in the levels of carnitine C16:2, diacetylspermine, alanine, taurine, tryptophan, ornithine, methylglutaconic acid, hydroxyl-PEG2 and keto-PGE2 in high exposure group. The observations indicated that low-level environmental phthalate exposure associated with increased oxidative stress and fatty acid oxidation and decreased prostaglandin metabolism. Urea cycle, tryptophan and phenylalanine metabolism disruption was also observed. The urine metabolome disruption effects associated with ∑DEHP and MBP were similar, but not identical. The multibiomarker models presented AUC values of 0.845 and 0.834 for ∑DEHP and MBP, respectively. The predictive accuracy rates of established models were 81% for ΣDEHP and 73% for MBP. Our results suggest that low-level environmental phthalate

  1. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila

    PubMed Central

    Laye, Matthew J; Tran, ViLinh; Jones, Dean P; Kapahi, Pankaj; Promislow, Daniel E L

    2015-01-01

    Dietary restriction (DR) is a robust intervention that extends lifespan and slows the onset of age-related diseases in diverse organisms. While significant progress has been made in attempts to uncover the genetic mechanisms of DR, there are few studies on the effects of DR on the metabolome. In recent years, metabolomic profiling has emerged as a powerful technology to understand the molecular causes and consequences of natural aging and disease-associated phenotypes. Here, we use high-resolution mass spectroscopy and novel computational approaches to examine changes in the metabolome from the head, thorax, abdomen, and whole body at multiple ages in Drosophila fed either a nutrient-rich ad libitum (AL) or nutrient-restricted (DR) diet. Multivariate analysis clearly separates the metabolome by diet in different tissues and different ages. DR significantly altered the metabolome and, in particular, slowed age-related changes in the metabolome. Interestingly, we observed interacting metabolites whose correlation coefficients, but not mean levels, differed significantly between AL and DR. The number and magnitude of positively correlated metabolites was greater under a DR diet. Furthermore, there was a decrease in positive metabolite correlations as flies aged on an AL diet. Conversely, DR enhanced these correlations with age. Metabolic set enrichment analysis identified several known (e.g., amino acid and NAD metabolism) and novel metabolic pathways that may affect how DR effects aging. Our results suggest that network structure of metabolites is altered upon DR and may play an important role in preventing the decline of homeostasis with age. PMID:26085309

  2. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease.

    PubMed

    Quinn, Robert A; Lim, Yan Wei; Mak, Tytus D; Whiteson, Katrine; Furlan, Mike; Conrad, Douglas; Rohwer, Forest; Dorrestein, Pieter

    2016-01-01

    Background. Cystic fibrosis (CF) is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE) that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples) to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable). Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF) and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events) as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset. PMID:27602256

  3. Metabolomics of pulmonary exacerbations reveals the personalized nature of cystic fibrosis disease

    PubMed Central

    Lim, Yan Wei; Mak, Tytus D.; Whiteson, Katrine; Conrad, Douglas; Rohwer, Forest; Dorrestein, Pieter

    2016-01-01

    Background. Cystic fibrosis (CF) is a genetic disease that results in chronic infections of the lungs. CF patients experience intermittent pulmonary exacerbations (CFPE) that are associated with poor clinical outcomes. CFPE involves an increase in disease symptoms requiring more aggressive therapy. Methods. Longitudinal sputum samples were collected from 11 patients (n = 44 samples) to assess the effect of exacerbations on the sputum metabolome using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The data was analyzed with MS/MS molecular networking and multivariate statistics. Results. The individual patient source had a larger influence on the metabolome of sputum than the clinical state (exacerbation, treatment, post-treatment, or stable). Of the 4,369 metabolites detected, 12% were unique to CFPE samples; however, the only known metabolites significantly elevated at exacerbation across the dataset were platelet activating factor (PAF) and a related monacylglycerophosphocholine lipid. Due to the personalized nature of the sputum metabolome, a single patient was followed for 4.2 years (capturing four separate exacerbation events) as a case study for the detection of personalized biomarkers with metabolomics. PAF and related lipids were significantly elevated during CFPEs of this patient and ceramide was elevated during CFPE treatment. Correlating the abundance of bacterial 16S rRNA gene amplicons to metabolomics data from the same samples during a CFPE demonstrated that antibiotics were positively correlated to Stenotrophomonas and Pseudomonas, while ceramides and other lipids were correlated with Streptococcus, Rothia, and anaerobes. Conclusions. This study identified PAF and other inflammatory lipids as potential biomarkers of CFPE, but overall, the metabolome of CF sputum was patient specific, supporting a personalized approach to molecular detection of CFPE onset.

  4. Genomic and Metabolomic Profile Associated to Clustering of Cardio-Metabolic Risk Factors

    PubMed Central

    Marrachelli, Vannina G.; Rentero, Pilar; Mansego, María L.; Morales, Jose Manuel; Galan, Inma; Pardo-Tendero, Mercedes; Martinez, Fernando; Martin-Escudero, Juan Carlos; Briongos, Laisa; Chaves, Felipe Javier; Redon, Josep; Monleon, Daniel

    2016-01-01

    Background To identify metabolomic and genomic markers associated with the presence of clustering of cardiometabolic risk factors (CMRFs) from a general population. Methods and Findings One thousand five hundred and two subjects, Caucasian, > 18 years, representative of the general population, were included. Blood pressure measurement, anthropometric parameters and metabolic markers were measured. Subjects were grouped according the number of CMRFs (Group 1: <2; Group 2: 2; Group 3: 3 or more CMRFs). Using SNPlex, 1251 SNPs potentially associated to clustering of three or more CMRFs were analyzed. Serum metabolomic profile was assessed by 1H NMR spectra using a Brucker Advance DRX 600 spectrometer. From the total population, 1217 (mean age 54±19, 50.6% men) with high genotyping call rate were analysed. A differential metabolomic profile, which included products from mitochondrial metabolism, extra mitochondrial metabolism, branched amino acids and fatty acid signals were observed among the three groups. The comparison of metabolomic patterns between subjects of Groups 1 to 3 for each of the genotypes associated to those subjects with three or more CMRFs revealed two SNPs, the rs174577_AA of FADS2 gene and the rs3803_TT of GATA2 transcription factor gene, with minimal or no statistically significant differences. Subjects with and without three or more CMRFs who shared the same genotype and metabolomic profile differed in the pattern of CMRFS cluster. Subjects of Group 3 and the AA genotype of the rs174577 had a lower prevalence of hypertension compared to the CC and CT genotype. In contrast, subjects of Group 3 and the TT genotype of the rs3803 polymorphism had a lower prevalence of T2DM, although they were predominantly males and had higher values of plasma creatinine. Conclusions The results of the present study add information to the metabolomics profile and to the potential impact of genetic factors on the variants of clustering of cardiometabolic risk factors

  5. NMR-based metabolomics of prostate cancer: a protagonist in clinical diagnostics.

    PubMed

    Kumar, Deepak; Gupta, Ashish; Nath, Kavindra

    2016-06-01

    Advances in the application of NMR spectroscopy-based metabolomic profiling of prostate cancer comprises a potential tactic for understanding the impaired biochemical pathways arising due to a disease evolvement and progression. This technique involves qualitative and quantitative estimation of plethora of small molecular weight metabolites of body fluids or tissues using state-of-the-art chemometric methods delivering an important platform for translational research from basic to clinical, to reveal the pathophysiological snapshot in a single step. This review summarizes the present arrays and recent advancements in NMR-based metabolomics and a glimpse of currently used medical imaging tactics, with their role in clinical diagnosis of prostate cancer. PMID:26959614

  6. What Have Mass Spectrometry-Based Proteomics and Metabolomics (Not) Taught Us about Psychiatric Disorders?

    PubMed Central

    Turck, Christoph W.; Filiou, Michaela D.

    2015-01-01

    Understanding the molecular causes and finding appropriate therapies for psychiatric disorders are challenging tasks for research; -omics technologies are used to elucidate the molecular mechanisms underlying brain dysfunction in a hypothesis-free manner. In this review, we will focus on mass spectrometry-based proteomics and metabolomics and address how these approaches have contributed to our understanding of psychiatric disorders. Specifically, we will discuss what we have learned from mass spectrometry-based proteomics and metabolomics studies in rodent models and human cohorts, outline current limitations and discuss the potential of these methods for future applications in psychiatry.

  7. Can metabolomics in addition to genomics add to prognostic and predictive information in breast cancer?

    PubMed

    Howell, Anthony

    2010-11-16

    Genomic data from breast cancers provide additional prognostic and predictive information that is beginning to be used for patient management. The question arises whether additional information derived from other 'omic' approaches such as metabolomics can provide additional information. In an article published this month in BMC Cancer, Borgan et al. add metabolomic information to genomic measures in breast tumours and demonstrate, for the first time, that it may be possible to further define subgroups of patients which could be of value clinically. See research article: http://www.biomedcentral.com/1471-2407/10/628.

  8. Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[S

    PubMed Central

    Jun, Hee-jin; Lee, Ji Hae; Kim, Jiyoung; Jia, Yaoyao; Kim, Kyoung Heon; Hwang, Kwang Yeon; Yun, Eun Ju; Do, Kyoung-Rok; Lee, Sung-Joon

    2014-01-01

    We investigated the hypotriglyceridemic mechanism of action of linalool, an aromatic monoterpene present in teas and fragrant herbs. Reporter gene and time-resolved fluorescence resonance energy transfer assays demonstrated that linalool is a direct ligand of PPARα. Linalool stimulation reduced cellular lipid accumulation regulating PPARα-responsive genes and significantly induced FA oxidation, and its effects were markedly attenuated by silencing PPARα expression. In mice, the oral administration of linalool for 3 weeks reduced plasma TG concentrations in Western-diet-fed C57BL/6J mice (31%, P < 0.05) and human apo E2 mice (50%, P < 0.05) and regulated hepatic PPARα target genes. However, no such effects were seen in PPARα-deficient mice. Transcriptome profiling revealed that linalool stimulation rewired global gene expression in lipid-loaded hepatocytes and that the effects of 1 mM linalool were comparable to those of 0.1 mM fenofibrate. Metabolomic analysis of the mouse plasma revealed that the global metabolite profiles were significantly distinguishable between linalool-fed mice and controls. Notably, the concentrations of saturated FAs were significantly reduced in linalool-fed mice. These findings suggest that the appropriate intake of a natural aromatic compound could exert beneficial metabolic effects by regulating a cellular nutrient sensor. PMID:24752549

  9. Understanding Aquatic Rhizosphere Processes Through Metabolomics and Metagenomics Approach

    NASA Astrophysics Data System (ADS)

    Lee, Yong Jian; Mynampati, Kalyan; Drautz, Daniela; Arumugam, Krithika; Williams, Rohan; Schuster, Stephan; Kjelleberg, Staffan; Swarup, Sanjay

    2013-04-01

    The aquatic rhizosphere is a region around the roots of aquatic plants. Many studies focusing on terrestrial rhizosphere have led to a good understanding of the interactions between the roots, its exudates and its associated rhizobacteria. The rhizosphere of free-floating roots, however, is a different habitat that poses several additional challenges, including rapid diffusion rates of signals and nutrient molecules, which are further influenced by the hydrodynamic forces. These can lead to rapid diffusion and complicates the studying of diffusible factors from both plant and/or rhizobacterial origins. These plant systems are being increasingly used for self purification of water bodies to provide sustainable solution. A better understanding of these processes will help in improving their performance for ecological engineering of freshwater systems. The same principles can also be used to improve the yield of hydroponic cultures. Novel toolsets and approaches are needed to investigate the processes occurring in the aquatic rhizosphere. We are interested in understanding the interaction between root exudates and the complex microbial communities that are associated with the roots, using a systems biology approach involving metabolomics and metagenomics. With this aim, we have developed a RhizoFlowCell (RFC) system that provides a controlled study of aquatic plants, observed the root biofilms, collect root exudates and subject the rhizosphere system to changes in various chemical or physical perturbations. As proof of concept, we have used RFC to test the response of root exudation patterns of Pandanus amaryllifolius after exposure to the pollutant naphthalene. Complexity of root exudates in the aquatic rhizosphere was captured using this device and analysed using LC-qTOF-MS. The highly complex metabolomic profile allowed us to study the dynamics of the response of roots to varying levels of naphthalene. The metabolic profile changed within 5mins after spiking with

  10. Thermal Degradation of Small Molecules: A Global Metabolomic Investigation

    PubMed Central

    2015-01-01

    Thermal processes are widely used in small molecule chemical analysis and metabolomics for derivatization, vaporization, chromatography, and ionization, especially in gas chromatography mass spectrometry (GC/MS). In this study the effect of heating was examined on a set of 64 small molecule standards and, separately, on human plasma metabolite extracts. The samples, either derivatized or underivatized, were heated at three different temperatures (60, 100, and 250 °C) at different exposure times (30 s, 60 s, and 300 s). All the samples were analyzed by liquid chromatography coupled to electrospray ionization mass spectrometry (LC/MS) and the data processed by XCMS Online (xcmsonline.scripps.edu). The results showed that heating at an elevated temperature of 100 °C had an appreciable effect on both the underivatized and derivatized molecules, and heating at 250 °C created substantial changes in the profile. For example, over 40% of the molecular peaks were altered in the plasma metabolite analysis after heating (250 °C, 300s) with a significant formation of degradation and transformation products. The analysis of 64 small molecule standards validated the temperature-induced changes observed on the plasma metabolites, where most of the small molecules degraded at elevated temperatures even after minimal exposure times (30 s). For example, tri- and diorganophosphates (e.g., adenosine triphosphate and adenosine diphosphate) were readily degraded into a mono-organophosphate (e.g., adenosine monophosphate) during heating. Nucleosides and nucleotides (e.g., inosine and inosine monophosphate) were also found to be transformed into purine derivatives (e.g., hypoxanthine). A newly formed transformation product, oleoyl ethyl amide, was identified in both the underivatized and derivatized forms of the plasma extracts and small molecule standard mixture, and was likely generated from oleic acid. Overall these analyses show that small molecules and metabolites undergo

  11. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations

    PubMed Central

    Sinha, Rashmi; Ahn, Jiyoung; Sampson, Joshua N.; Shi, Jianxin; Yu, Guoqin; Xiong, Xiaoqin; Hayes, Richard B.; Goedert, James J.

    2016-01-01

    Background and Aims Investigation of microbe-metabolite relationships in the gut is needed to understand and potentially reduce colorectal cancer (CRC) risk. Methods Microbiota and metabolomics profiling were performed on lyophilized feces from 42 CRC cases and 89 matched controls. Multivariable logistic regression was used to identify statistically independent associations with CRC. First principal coordinate-component pair (PCo1-PC1) and false discovery rate (0.05)-corrected P-values were calculated for 116,000 Pearson correlations between 530 metabolites and 220 microbes in a sex*case/control meta-analysis. Results Overall microbe-metabolite PCo1-PC1 was more strongly correlated in cases than in controls (Rho 0.606 vs 0.201, P = 0.01). CRC was independently associated with lower levels of Clostridia, Lachnospiraceae, p-aminobenzoate and conjugated linoleate, and with higher levels of Fusobacterium, Porphyromonas, p-hydroxy-benzaldehyde, and palmitoyl-sphingomyelin. Through postulated effects on cell shedding (palmitoyl-sphingomyelin), inflammation (conjugated linoleate), and innate immunity (p-aminobenzoate), metabolites mediated the CRC association with Fusobacterium and Porphyromonas by 29% and 34%, respectively. Overall, palmitoyl-sphingomyelin correlated directly with abundances of Enterobacteriaceae (Gammaproteobacteria), three Actinobacteria and five Firmicutes. Only Parabacteroides correlated inversely with palmitoyl-sphingomyelin. Other lipids correlated inversely with Alcaligenaceae (Betaproteobacteria). Six Bonferroni-significant correlations were found, including low indolepropionate and threnoylvaline with Actinobacteria and high erythronate and an uncharacterized metabolite with Enterobacteriaceae. Conclusions Feces from CRC cases had very strong microbe-metabolite correlations that were predominated by Enterobacteriaceae and Actinobacteria. Metabolites mediated a direct CRC association with Fusobacterium and Porphyromonas, but not an inverse

  12. Reconstruction of food webs in biological soil crusts using metabolomics.

    NASA Astrophysics Data System (ADS)

    Baran, Richard; Brodie, Eoin L.; Mayberry-Lewis, Jazmine; Nunes Da Rocha, Ulisses; Bowen, Benjamin P.; Karaoz, Ulas; Cadillo-Quiroz, Hinsby; Garcia-Pichel, Ferran; Northen, Trent R.

    2015-04-01

    Biological soil crusts (BSCs) are communities of organisms inhabiting the upper layer of soil in arid environments. BSCs persist in a dessicated dormant state for extended periods of time and experience pulsed periods of activity facilitated by infrequent rainfall. Microcoleus vaginatus, a non-diazotrophic filamentous cyanobacterium, is the key primary producer in BSCs in the Colorado Plateau and is an early pioneer in colonizing arid environments. Over decades, BSCs proceed through developmental stages with increasing complexity of constituent microorganisms and macroscopic properties. Metabolic interactions among BSC microorganisms probably play a key role in determining the community dynamics and cycling of carbon and nitrogen. However, these metabolic interactions have not been studied systematically. Towards this goal, exometabolomic analysis was performed using liquid chromatography coupled to tandem mass spectrometry on biological soil crust pore water and spent media of key soil bacterial isolates. Comparison of spent vs. fresh media was used to determine uptake or release of metabolites by specific microbes. To link pore water experiments with isolate studies, metabolite extracts of authentic soil were used as supplements for isolate exometabolomic profiling. Our soil metabolomics methods detected hundreds of metabolites from soils including many novel compounds. Overall, Microcoleus vaginatus was found to release and utilize a broad range of metabolites. Many of these metabolites were also taken up by heterotrophs but there were surprisingly few metabolites uptaken by all isolates. This points to a competition for a small set of central metabolites and specialization of individual heterotrophs towards a diverse pool of available organic nutrients. Overall, these data suggest that understanding the substrate specialization of biological soil crust bacteria can help link community structure to nutrient cycling.

  13. Metabolomic markers for intestinal ischemia in a mouse model

    PubMed Central

    Fahrner, René; Beyoğlu, Diren; Beldi, Guido; Idle, Jeffrey R.

    2013-01-01

    Background Diagnosis of intestinal ischemia remains a clinical challenge. The aim of the present study was to use a metabolomic protocol to identify upregulated and downregulated small molecules (Mr < 500) in the serum of mice with intestinal ischemia. Such molecules could have clinical utility when evaluated as biomarkers in human studies. Methods A mouse model for intestinal ischemia was established and validated using histology and serum tumor necrosis factor α concentrations. A second mouse model of peritoneal sepsis was used as a positive control. Serial serum samples were collected from these and from sham-operated animals. Sera were analyzed by gas chromatography–mass spectrometry for 40 small molecules as their trimethylsilyl and O-methyloxime derivatives. Peak areas were normalized against an internal standard and resultant peak area ratios subjected to multivariate data analysis using unsupervised principal components analysis and supervised orthogonal projection to latent structures–discriminant analysis. Upregulated and downregulated serum molecules were identified from their correlation to the orthogonal projection to latent structures–discriminant analysis model. Results Three highly significantly upregulated (fold-change) serum molecules in intestinal ischemia were inorganic phosphate (2.4), urea (4.3), and threonic acid (2.9). Five highly significantly downregulated (fold-change) serum molecules were stearic acid (1.7), arabinose (2.7), xylose (1.6), glucose (1.4), and ribose (2.2). Lactic acid remained unchanged in intestinal ischemia. Conclusions Distinct molecular changes are reported here for the first time in intestinal ischemia. They reveal impairments of gut microbiota metabolism, intestinal absorption, and renal function, together with increased oxidative stress. In contrast to other reports, lactic acid was not significantly changed. These molecular signatures may now be evaluated in clinical studies. PMID:22947700

  14. Exploring the Saccharomyces cerevisiae Volatile Metabolome: Indigenous versus Commercial Strains

    PubMed Central

    Alves, Zélia; Melo, André; Figueiredo, Ana Raquel; Coimbra, Manuel A.; Gomes, Ana C.; Rocha, Sílvia M.

    2015-01-01

    Winemaking is a highly industrialized process and a number of commercial Saccharomyces cerevisiae strains are used around the world, neglecting the diversity of native yeast strains that are responsible for the production of wines peculiar flavours. The aim of this study was to in-depth establish the S. cerevisiae volatile metabolome and to assess inter-strains variability. To fulfill this objective, two indigenous strains (BT2652 and BT2453 isolated from spontaneous fermentation of grapes collected in Bairrada Appellation, Portugal) and two commercial strains (CSc1 and CSc2) S. cerevisiae were analysed using a methodology based on advanced multidimensional gas chromatography (HS-SPME/GC×GC-ToFMS) tandem with multivariate analysis. A total of 257 volatile metabolites were identified, distributed over the chemical families of acetals, acids, alcohols, aldehydes, ketones, terpenic compounds, esters, ethers, furan-type compounds, hydrocarbons, pyrans, pyrazines and S-compounds. Some of these families are related with metabolic pathways of amino acid, carbohydrate and fatty acid metabolism as well as mono and sesquiterpenic biosynthesis. Principal Component Analysis (PCA) was used with a dataset comprising all variables (257 volatile components), and a distinction was observed between commercial and indigenous strains, which suggests inter-strains variability. In a second step, a subset containing esters and terpenic compounds (C10 and C15), metabolites of particular relevance to wine aroma, was also analysed using PCA. The terpenic and ester profiles express the strains variability and their potential contribution to the wine aromas, specially the BT2453, which produced the higher terpenic content. This research contributes to understand the metabolic diversity of indigenous wine microflora versus commercial strains and achieved knowledge that may be further exploited to produce wines with peculiar aroma properties. PMID:26600152

  15. BioSpider: a web server for automating metabolome annotations.

    PubMed

    Knox, Craig; Shrivastava, Savita; Stothard, Paul; Eisner, Roman; Wishart, David S

    2007-01-01

    One of the growing challenges in life science research lies in finding useful, descriptive or quantitative data about newly reported biomolecules (genes, proteins, metabolites and drugs). An even greater challenge is finding information that connects these genes, proteins, drugs or metabolites to each other. Much of this information is scattered through hundreds of different databases, abstracts or books and almost none of it is particularly well integrated. While some efforts are being undertaken at the NCBI and EBI to integrate many different databases together, this still falls short of the goal of having some kind of human-readable synopsis that summarizes the state of knowledge about a given biomolecule - especially small molecules. To address this shortfall, we have developed BioSpider. BioSpider is essentially an automated report generator designed specifically to tabulate and summarize data on biomolecules - both large and small. Specifically, BioSpider allows users to type in almost any kind of biological or chemical identifier (protein/gene name, sequence, accession number, chemical name, brand name, SMILES string, InCHI string, CAS number, etc.) and it returns an in-depth synoptic report (approximately 3-30 pages in length) about that biomolecule and any other biomolecule it may target. This summary includes physico-chemical parameters, images, models, data files, descriptions and predictions concerning the query molecule. BioSpider uses a web-crawler to scan through dozens of public databases and employs a variety of specially developed text mining tools and locally developed prediction tools to find, extract and assemble data for its reports. Because of its breadth, depth and comprehensiveness, we believe BioSpider will prove to be a particularly valuable tool for researchers in metabolomics. BioSpider is available at: www.biospider.ca PMID:17990488

  16. The human milk metabolome reveals diverse oligosaccharide profiles.

    PubMed

    Smilowitz, Jennifer T; O'Sullivan, Aifric; Barile, Daniela; German, J Bruce; Lönnerdal, Bo; Slupsky, Carolyn M

    2013-11-01

    Breast milk delivers nutrition and protection to the developing infant. There has been considerable research on the high-molecular-weight milk components; however, low-molecular-weight metabolites have received less attention. To determine the effect of maternal phenotype and diet on the human milk metabolome, milk collected at day 90 postpartum from 52 healthy women was analyzed by using proton nuclear magnetic resonance spectroscopy. Sixty-five milk metabolites were quantified (mono-, di-, and oligosaccharides; amino acids and derivatives; energy metabolites; fatty acids and associated metabolites; vitamins, nucleotides, and derivatives; and others). The biological variation, represented as the percentage CV of each metabolite, varied widely (4-120%), with several metabolites having low variation (<20%), including lactose, urea, glutamate, myo-inositol, and creatinine. Principal components analysis identified 2 clear groups of participants who were differentiable on the basis of milk oligosaccharide concentration and who were classified as secretors or nonsecretors of fucosyltransferase 2 (FUT2) gene products according to the concentration of 2'-fucosyllactose, lactodifucotetraose, and lacto-N-fucopentaose I. Exploration of the interrelations between the milk sugars by using Spearman rank correlations revealed significant positive and negative associations, including positive correlations between fucose and products of the FUT2 gene and negative correlations between fucose and products of the fucosyltransferase 3 (FUT3) gene. The total concentration of milk oligosaccharides was conserved among participants (%CV = 18%), suggesting tight regulation of total oligosaccharide production; however, concentrations of specific oligosaccharides varied widely between participants (%CV = 30.4-84.3%). The variability in certain milk metabolites suggests possible roles in infant or infant gut microbial development. This trial was registered at clinicaltrials.gov as NCT01817127.

  17. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes.

    PubMed

    Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K

    2015-01-01

    Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080

  18. Sample amount alternatives for data adjustment in comparative cyanobacterial metabolomics.

    PubMed

    Huege, Jan; Krall, Leonard; Steinhauser, Marie-Caroline; Giavalisco, Patrick; Rippka, Rosmarie; Tandeau de Marsac, Nicole; Steinhauser, Dirk

    2011-04-01

    Here we describe an integrative protocol for metabolite extraction and the measurement of three cellular constituents, chlorophyll a, total protein, and glycogen from the same small volume of cyanobacterial cultures that can be used as alternative sample amount parameters for data adjustment in comparative metabolome studies. We conducted recovery experiments to assess the robustness and reproducibility of the measurements obtained for the cellular constituents. Also, we have chosen three profile-intrinsic parameters derived from gas chromatography-mass spectrometry (GC/MS) data in order to test their utility for spectral data adjustment. To demonstrate the relevance of these six parameters, we analyzed three cyanobacteria with greatly different morphologies, comprising a unicellular, a filamentous, and a filamentous biofilm-forming strain. Comparative analysis of GC/MS data from cultures grown under standardized conditions indicated that adjustment of the corresponding metabolite profiles by any of the measured cellular constituents or chosen intrinsic parameters led to similar results with respect to sample cohesion and strain separation. Twenty-one metabolites significantly enriched for the carbohydrate and amine superclasses are mainly responsible for strain separation, with a majority of the remaining metabolites contributing to sample group cohesion. Therefore, we conclude that any of the parameters tested in this study can be used for spectral data adjustment of cyanobacterial strains grown under controlled conditions. However, their use for the differentiation between different stresses or physiological states within a strain remains to be shown. Interestingly, both the adjustment approaches and statistical tests applied effected the detection of metabolic differences and their patterns among the analyzed strains.

  19. Diet, the gut microbiome and the metabolome in IBD.

    PubMed

    Wu, Gary D

    2014-01-01

    The human gut contains a vast number of microorganisms known collectively as the gut microbiota. Despite its importance in maintaining the health of the host, growing evidence suggests the gut microbiota may also be an important factor in the pathogenesis of various diseases, a number of which have shown a rapid increase in incidence over the past few decades. In some of these diseases, such as inflammatory bowel disease (IBD), the microbiota is dysbiotic with an abnormal community structure and decrease in diversity. If the dysbiotic microbiota plays a role in disease pathogenesis, interventions that modify its composition to make it more similar to the microbiota observed in health, might be a strategy to treat certain disease processes. Indeed, the high-level efficacy of fecal microbiota transplantation in the treatment of refractory Clostridia difficile infection supports this notion as proof-of-principle. The composition of the microbiota can be influenced by many factors including age, genetics, host environment, and diet. With respect to the later, diet has an impact upon both the composition and function of the microbiota. There are epidemiologic data associating diet with the development of IBD as well as evidence that diet can influence both the form and function of the microbiome in a manner that impacts upon the development of intestinal inflammation. Based on this evidence, studies are now underway to examine the effect of defined formula diets, an effective therapeutic modality in Crohn's disease, on both the gut microbiome and its metabolome as a therapeutic probe with the hope of better defining the 'healthy' diet in patients with IBD.

  20. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes

    PubMed Central

    Kumari, Asha; Das, Paromita; Parida, Asish Kumar; Agarwal, Pradeep K.

    2015-01-01

    Halophytes are plants which naturally survive in saline environment. They account for ∼1% of the total flora of the world. They include both dicots and monocots and are distributed mainly in arid, semi-arid inlands and saline wet lands along the tropical and sub-tropical coasts. Salinity tolerance in halophytes depends on a set of ecological and physiological characteristics that allow them to grow and flourish in high saline conditions. The ability of halophytes to tolerate high salt is determined by the effective coordination between various physiological processes, metabolic pathways and protein or gene networks responsible for delivering salinity tolerance. The salinity responsive proteins belong to diverse functional classes such as photosynthesis, redox homeostasis; stress/defense, carbohydrate and energy metabolism, protein metabolism, signal transduction and membrane transport. The important metabolites which are involved in salt tolerance of halophytes are proline and proline analog (4-hydroxy-N-methyl proline), glycine betaine, pinitol, myo-inositol, mannitol, sorbitol, O-methylmucoinositol, and polyamines. In halophytes, the synthesis of specific proteins and osmotically active metabolites control ion and water flux and support scavenging of oxygen radicals under salt stress condition. The present review summarizes the salt tolerance mechanisms of halophytes by elucidating the recent studies that have focused on proteomic, metabolomic, and ionomic aspects of various halophytes in response to salinity. By integrating the information from halophytes and its comparison with glycophytes could give an overview of salt tolerance mechanisms in halophytes, thus laying down the pavement for development of salt tolerant crop plants through genetic modification and effective breeding strategies. PMID:26284080

  1. Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis

    PubMed Central

    Othman, Dk Seti Maimonah Pg; Schirra, Horst; McEwan, Alastair G.; Kappler, Ulrike

    2014-01-01

    Haemophilus influenzae is a host adapted human pathogen known to contribute to a variety of acute and chronic diseases of the upper and lower respiratory tract as well as the middle ear. At the sites of infection as well as during growth as a commensal the environmental conditions encountered by H. influenzae will vary significantly, especially in terms of oxygen availability, however, the mechanisms by which the bacteria can adapt their metabolism to cope with such changes have not been studied in detail. Using targeted metabolomics the spectrum of metabolites produced during growth of H. influenzae on glucose in RPMI-based medium was found to change from acetate as the main product during aerobic growth to formate as the major product during anaerobic growth. This change in end-product is likely caused by a switch in the major route of pyruvate degradation. Neither lactate nor succinate or fumarate were major products of H. influenzae growth under any condition studied. Gene expression studies and enzyme activity data revealed that despite an identical genetic makeup and very similar metabolite production profiles, H. influenzae strain Rd appeared to favor glucose degradation via the pentose phosphate pathway, while strain 2019, a clinical isolate, showed higher expression of enzymes involved in glycolysis. Components of the respiratory chain were most highly expressed during microaerophilic and anaerobic growth in both strains, but again clear differences existed in the expression of genes associated e.g., with NADH oxidation, nitrate and nitrite reduction in the two strains studied. Together our results indicate that H. influenzae uses a specialized type of metabolism that could be termed “respiration assisted fermentation” where the respiratory chain likely serves to alleviate redox imbalances caused by incomplete glucose oxidation, and at the same time provides a means of converting a variety of compounds including nitrite and nitrate that arise as part

  2. Metabolic versatility in Haemophilus influenzae: a metabolomic and genomic analysis.

    PubMed

    Othman, Dk Seti Maimonah Pg; Schirra, Horst; McEwan, Alastair G; Kappler, Ulrike

    2014-01-01

    Haemophilus influenzae is a host adapted human pathogen known to contribute to a variety of acute and chronic diseases of the upper and lower respiratory tract as well as the middle ear. At the sites of infection as well as during growth as a commensal the environmental conditions encountered by H. influenzae will vary significantly, especially in terms of oxygen availability, however, the mechanisms by which the bacteria can adapt their metabolism to cope with such changes have not been studied in detail. Using targeted metabolomics the spectrum of metabolites produced during growth of H. influenzae on glucose in RPMI-based medium was found to change from acetate as the main product during aerobic growth to formate as the major product during anaerobic growth. This change in end-product is likely caused by a switch in the major route of pyruvate degradation. Neither lactate nor succinate or fumarate were major products of H. influenzae growth under any condition studied. Gene expression studies and enzyme activity data revealed that despite an identical genetic makeup and very similar metabolite production profiles, H. influenzae strain Rd appeared to favor glucose degradation via the pentose phosphate pathway, while strain 2019, a clinical isolate, showed higher expression of enzymes involved in glycolysis. Components of the respiratory chain were most highly expressed during microaerophilic and anaerobic growth in both strains, but again clear differences existed in the expression of genes associated e.g., with NADH oxidation, nitrate and nitrite reduction in the two strains studied. Together our results indicate that H. influenzae uses a specialized type of metabolism that could be termed "respiration assisted fermentation" where the respiratory chain likely serves to alleviate redox imbalances caused by incomplete glucose oxidation, and at the same time provides a means of converting a variety of compounds including nitrite and nitrate that arise as part of

  3. Metabolomic Analysis of Pressure-overloaded and Infarcted Mouse Hearts

    PubMed Central

    Sansbury, Brian E.; De Martino, Angelica M.; Xie, Zhengzhi; Brooks, Alan C.; Brainard, Robert E.; Watson, Lewis J.; DeFilippis, Andrew P.; Cummins, Timothy D.; Harbeson, Matthew A.; Brittian, Kenneth R.; Prabhu, Sumanth D.; Bhatnagar, Aruni; Jones, Steven P.; Hill, Bradford G.

    2014-01-01

    Background Cardiac hypertrophy and heart failure are associated with metabolic dysregulation and a state of chronic energy deficiency. Although several disparate changes in individual metabolic pathways have been described, there has been no global assessment of metabolomic changes in hypertrophic and failing hearts in vivo. Here, we investigated the impact of pressure overload and infarction on myocardial metabolism. Methods and Results Male C57BL/6J mice were subjected to transverse aortic constriction (TAC) or permanent coronary occlusion (myocardial infarction; MI). A combination of LC/MS/MS and GC/MS techniques was used to measure 288 metabolites in these hearts. Both TAC and MI were associated with profound changes in myocardial metabolism affecting up to 40% of all metabolites measured. Prominent changes in branched amino acids acids (BCAAs) were observed after 1 week of TAC and 5 days after MI. Changes in BCAAs after MI were associated with myocardial insulin resistance. Longer duration of TAC and MI led to a decrease in purines, acylcarnitines, fatty acids and several lysolipid and sphingolipid species, but a marked increase in pyrimidines as well as ascorbate, heme and other indices of oxidative stress. Cardiac remodeling and contractile dysfunction in hypertrophied hearts were associated also with large increases in myocardial, but not plasma, levels of the polyamines putrescine and spermidine as well as the collagen breakdown product prolylhydroxyproline. Conclusions These findings reveal extensive metabolic remodeling common to both hypertrophic and failing hearts that are indicative of extensive extracellular matrix remodeling, insulin resistance and perturbations in amino acid, lipid and nucleotide metabolism. PMID:24762972

  4. Fecal metabolome of the Hadza hunter-gatherers: a host-microbiome integrative view.

    PubMed

    Turroni, Silvia; Fiori, Jessica; Rampelli, Simone; Schnorr, Stephanie L; Consolandi, Clarissa; Barone, Monica; Biagi, Elena; Fanelli, Flaminia; Mezzullo, Marco; Crittenden, Alyssa N; Henry, Amanda G; Brigidi, Patrizia; Candela, Marco

    2016-01-01

    The recent characterization of the gut microbiome of traditional rural and foraging societies allowed us to appreciate the essential co-adaptive role of the microbiome in complementing our physiology, opening up significant questions on how the microbiota changes that have occurred in industrialized urban populations may have altered the microbiota-host co-metabolic network, contributing to the growing list of Western diseases. Here, we applied a targeted metabolomics approach to profile the fecal metabolome of the Hadza of Tanzania, one of the world's few remaining foraging populations, and compared them to the profiles of urban living Italians, as representative of people in the post-industrialized West. Data analysis shows that during the rainy season, when the diet is primarily plant-based, Hadza are characterized by a distinctive enrichment in hexoses, glycerophospholipids, sphingolipids, and acylcarnitines, while deplete in the most common natural amino acids and derivatives. Complementary to the documented unique metagenomic features of their gut microbiome, our findings on the Hadza metabolome lend support to the notion of an alternate microbiome configuration befitting of a nomadic forager lifestyle, which helps maintain metabolic homeostasis through an overall scarcity of inflammatory factors, which are instead highly represented in the Italian metabolome. PMID:27624970

  5. Rumen fluid metabolomics analysis associated with feed efficiency on crossbred steers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The rumen plays a central role in the efficiency of digestion in ruminants. To identify potential differences in rumen function that lead to differences in feed efficiency, rumen metabolomic analysis by ultra-performance liquid chromatography/ time-of-flight mass spectrometry (MS) and multivariate/u...

  6. An initial non-targeted analysis of the peanut seed metabolome

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are likely a large number of compounds that constitute the peanut seed metabolome that have yet to be elucidated. Although the proximate composition and nutrients such as vitamins and minerals are well known, the composition of many other small molecule metabolites present have not been syste...

  7. Efficacy of Fluidized Bed Bioartificial Liver in Treating Fulminant Hepatic Failure in Pigs: A Metabolomics Study.

    PubMed

    Zhou, Pengcheng; Shao, Li; Zhao, Lifu; Lv, Guoliang; Pan, Xiaoping; Zhang, Anye; Li, Jianzhou; Zhou, Ning; Chen, Deying; Li, Lanjuan

    2016-01-01

    Bioartificial livers may act as a promising therapy for fulminant hepatic failure (FHF) with better accessibility and less injury compared to orthotopic liver transplantation. This study aims to evaluate the efficacy and safety of a fluidized bed bioartificial liver (FBBAL) and to explore its therapeutic mechanisms based on metabolomics. FHF was induced by D-galactosamine. Eighteen hours later, pigs were treated with an FBBAL containing encapsulated primary porcine hepatocytes (B group), with a sham FBBAL (containing cell-free capsules, S group) or with only intensive care (C group) for 6 h. Serum samples were assayed using ultra-performance liquid chromatography-mass spectrometry. The difference in survival time (51.6 ± 7.9 h vs. 49.3 ± 6.6 h) and serum metabolome was negligible between the S and C groups, whereas FBBAL treatment significantly prolonged survival time (70.4 ± 11.5h, P < 0.01) and perturbed the serum metabolome, resulting in a marked decrease in phosphatidylcholines, lysophosphatidylcholines, sphingomyelinase, and fatty acids and an increase in conjugated bile acids. The FBBAL exhibits some liver functions and may exert its therapeutic effect by altering the serum metabolome of FHF pigs. Moreover, alginate-chitosan capsules have less influence on serum metabolites. Nevertheless, the alterations were not universally beneficial, revealing that much should be done to improve the FBBAL. PMID:27194381

  8. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation.

  9. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Kim, Hak-Nam; Kim, Eun-Hee; Jung, Sungheuk; Lee, Hyosang; Lee, Sang-Jun; Hong, Young-Shick

    2015-05-01

    Numerous factors such as geographical origin, cultivar, climate, cultural practices, and manufacturing processes influence the chemical compositions of tea, in the same way as growing conditions and grape variety affect wine quality. However, the relationships between these factors and tea chemical compositions are not well understood. In this study, a new approach for non-targeted or global analysis, i.e., metabolomics, which is highly reproducible and statistically effective in analysing a diverse range of compounds, was used to better understand the metabolome of Camellia sinensis and determine the influence of environmental factors, including geography, climate, and cultural practices, on tea-making. We found a strong correlation between environmental factors and the metabolome of green, white, and oolong teas from China, Japan, and South Korea. In particular, multivariate statistical analysis revealed strong inter-country and inter-city relationships in the levels of theanine and catechin derivatives found in green and white teas. This information might be useful for assessing tea quality or producing distinct tea products across different locations, and highlights simultaneous identification of diverse tea metabolites through an NMR-based metabolomics approach. PMID:25529705

  10. 18O-assisted dynamic metabolomics for individualized diagnostics and treatment of human diseases.

    PubMed

    Nemutlu, Emirhan; Zhang, Song; Juranic, Nenad O; Terzic, Andre; Macura, Slobodan; Dzeja, Petras

    2012-12-01

    Technological innovations and translation of basic discoveries to clinical practice drive advances in medicine. Today's innovative technologies enable comprehensive screening of the genome, transcriptome, proteome, and metabolome. The detailed knowledge, converged in the integrated "omics" (genomics, transcriptomics, proteomics, and metabolomics), holds an immense potential for understanding mechanism of diseases, facilitating their early diagnostics, selecting personalized therapeutic strategies, and assessing their effectiveness. Metabolomics is the newest "omics" approach aimed to analyze large metabolite pools. The next generation of metabolomic screening requires technologies for high throughput and robust monitoring of metabolite levels and their fluxes. In this regard, stable isotope 18O-based metabolite tagging technology expands quantitative measurements of metabolite levels and turnover rates to all metabolites that include water as a reactant, most notably phosphometabolites. The obtained profiles and turnover rates are sensitive indicators of energy and metabolic imbalances like the ones created by genetic deficiencies, myocardial ischemia, heart failure, neurodegenerative disorders, etc. Here we describe and discuss briefly the potential use of dynamic phosphometabolomic platform for disease diagnostics currently under development at Mayo Clinic.

  11. Metabolomic unveiling of a diverse range of green tea (Camellia sinensis) metabolites dependent on geography.

    PubMed

    Lee, Jang-Eun; Lee, Bum-Jin; Chung, Jin-Oh; Kim, Hak-Nam; Kim, Eun-Hee; Jung, Sungheuk; Lee, Hyosang; Lee, Sang-Jun; Hong, Young-Shick

    2015-05-01

    Numerous factors such as geographical origin, cultivar, climate, cultural practices, and manufacturing processes influence the chemical compositions of tea, in the same way as growing conditions and grape variety affect wine quality. However, the relationships between these factors and tea chemical compositions are not well understood. In this study, a new approach for non-targeted or global analysis, i.e., metabolomics, which is highly reproducible and statistically effective in analysing a diverse range of compounds, was used to better understand the metabolome of Camellia sinensis and determine the influence of environmental factors, including geography, climate, and cultural practices, on tea-making. We found a strong correlation between environmental factors and the metabolome of green, white, and oolong teas from China, Japan, and South Korea. In particular, multivariate statistical analysis revealed strong inter-country and inter-city relationships in the levels of theanine and catechin derivatives found in green and white teas. This information might be useful for assessing tea quality or producing distinct tea products across different locations, and highlights simultaneous identification of diverse tea metabolites through an NMR-based metabolomics approach.

  12. Metabolomics and its Application to the Development of Clinical Laboratory Tests for Prostate Cancer

    PubMed Central

    McDunn, Jonathan E.; Stirdivant, Steven M.; Ford, Lisa A.

    2015-01-01

    Introduction There is a critical need to develop clinical laboratory assays that provide risk assessment for men at elevated risk for prostate cancer, and once diagnosed, could further identify those men with clinically significant disease. Methods Recent advancements in analytical instrumentation have enabled mass spectrometry-based metabolomics methodologies. Further advancements in chromatographic techniques have facilitated high throughput, quantitative assays for a broad spectrum of biochemicals. Results Screening metabolomics techniques have been applied to biospecimens from large cohorts of men comparing those individuals with prostate cancer to those with no evidence of malignancy. Work beginning in tissues has identified biochemical profiles that correlate with disease and disease severity, including tumor grade and stage. Some of these metabolic abnormalities, such as dramatic elevations in sarcosine, have been found to translate into biological fluids, especially blood and urine, which can be sampled in a minimally invasive manner. Discussion The differential abundances of these tumor-associated metabolites have been found to improve the performance of clinical prognostic/diagnostic tools. Conclusion The outlook is bright for metabolomic technology to address clinical diagnostic needs for prostate cancer patient management. Early validation of specific clinical tests provides a preview of further successes in this area. Metabolomics has shown its utility to complement and augment traditional clinical approaches as well as emerging genomic, transcriptomic and proteomic methodologies, and is expected to play a key role in the precision medicine-based management of the prostate cancer patient.

  13. Plantmetabolomics.org: mass spectrometry-based Arabidopsis metabolomics--database and tools update.

    PubMed

    Bais, Preeti; Moon-Quanbeck, Stephanie M; Nikolau, Basil J; Dickerson, Julie A

    2012-01-01

    The PlantMetabolomics (PM) database (http://www.plantmetabolomics.org) contains comprehensive targeted and untargeted mass spectrum metabolomics data for Arabidopsis mutants across a variety of metabolomics platforms. The database allows users to generate hypotheses about the changes in metabolism for mutants with genes of unknown function. Version 2.0 of PlantMetabolomics.org currently contains data for 140 mutant lines along with the morphological data. A web-based data analysis wizard allows researchers to select preprocessing and data-mining procedures to discover differences between mutants. This community resource enables researchers to formulate models of the metabolic network of Arabidopsis and enhances the research community's ability to formulate testable hypotheses concerning gene functions. PM features new web-based tools for data-mining analysis, visualization tools and enhanced cross links to other databases. The database is publicly available. PM aims to provide a hypothesis building platform for the researchers interested in any of the mutant lines or metabolites.

  14. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent investigations into its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole in mice; 2...

  15. Propiconazole induces alterations in the hepatic metabolome of mice: relevance to propiconazole-induced hepatocarcinogenesis

    EPA Science Inventory

    Propiconazole is a mouse hepatotumorigenic fungicide and has been the subject of recent mechanistic investigations on its carcinogenic mechanism of action. The goals of this study were: 1. To identify metabolomic changes induced in the liver by increasing doses of propiconazole i...

  16. Assessing metabolomic and chemical diversity of a soybean lineage representing 35 years of breeding

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Information on crop genotype- and phenotype-metabolite associations can be of value to trait development as well as to food security and safety. The unique study presented here assessed seed metabolomic and ionomic diversity in a soybean lineage representing ~35 years of breeding (launch years 1972-...

  17. Natural isotope correction of MS/MS measurements for metabolomics and (13)C fluxomics.

    PubMed

    Niedenführ, Sebastian; ten Pierick, Angela; van Dam, Patricia T N; Suarez-Mendez, Camilo A; Nöh, Katharina; Wahl, S Aljoscha

    2016-05-01

    Fluxomics and metabolomics are crucial tools for metabolic engineering and biomedical analysis to determine the in vivo cellular state. Especially, the application of (13)C isotopes allows comprehensive insights into the functional operation of cellular metabolism. Compared to single MS, tandem mass spectrometry (MS/MS) provides more detailed and accurate measurements of the metabolite enrichment patterns (tandem mass isotopomers), increasing the accuracy of metabolite concentration measurements and metabolic flux estimation. MS-type data from isotope labeling experiments is biased by naturally occurring stable isotopes (C, H, N, O, etc.). In particular, GC-MS(/MS) requires derivatization for the usually non-volatile intracellular metabolites introducing additional natural isotopes leading to measurements that do not directly represent the carbon labeling distribution. To make full use of LC- and GC-MS/MS mass isotopomer measurements, the influence of natural isotopes has to be eliminated (corrected). Our correction approach is analyzed for the two most common applications; (13)C fluxomics and isotope dilution mass spectrometry (IDMS) based metabolomics. Natural isotopes can have an impact on the calculated flux distribution which strongly depends on the substrate labeling and the actual flux distribution. Second, we show that in IDMS based metabolomics natural isotopes lead to underestimated concentrations that can and should be corrected with a nonlinear calibration. Our simulations indicate that the correction for natural abundance in isotope based fluxomics and quantitative metabolomics is essential for correct data interpretation. PMID:26479486

  18. A Metabolomics-driven Elucidation of the Anti-obesity Mechanisms of Xanthohumol*

    PubMed Central

    Kirkwood, Jay S.; Legette, LeeCole L.; Miranda, Cristobal L.; Jiang, Yuan; Stevens, Jan F.

    2013-01-01

    Mild, mitochondrial uncoupling increases energy expenditure and can reduce the generation of reactive oxygen species (ROS). Activation of cellular, adaptive stress response pathways can result in an enhanced capacity to reduce oxidative damage. Together, these strategies target energy imbalance and oxidative stress, both underlying factors of obesity and related conditions such as type 2 diabetes. Here we describe a metabolomics-driven effort to uncover the anti-obesity mechanism(s) of xanthohumol (XN), a prenylated flavonoid from hops. Metabolomics analysis of fasting plasma from obese, Zucker rats treated with XN revealed decreases in products of dysfunctional fatty acid oxidation and ROS, prompting us to explore the effects of XN on muscle cell bioenergetics. At low micromolar concentrations, XN acutely increased uncoupled respiration in several different cell types, including myocytes. Tetrahydroxanthohumol also increased respiration, suggesting electrophilicity did not play a role. At higher concentrations, XN inhibited respiration in a ROS-dependent manner. In myocytes, time course metabolomics revealed acute activation of glutathione recycling and long term induction of glutathione synthesis as well as several other changes indicative of short term elevated cellular stress and a concerted adaptive response. Based on these findings, we hypothesize that XN may ameliorate metabolic syndrome, at least in part, through mitochondrial uncoupling and stress response induction. In addition, time course metabolomics appears to be an effective strategy for uncovering metabolic events that occur during a stress response. PMID:23673658

  19. Two dimensional NMR spectroscopic approaches for exploring plant metabolome: A review

    PubMed Central

    Mahrous, Engy A.; Farag, Mohamed A.

    2014-01-01

    Today, most investigations of the plant metabolome tend to be based on either nuclear magnetic resonance (NMR) spectroscopy or mass spectrometry (MS), with or without hyphenation with chromatography. Although less sensitive than MS, NMR provides a powerful complementary technique for the identification and quantification of metabolites in plant extracts. NMR spectroscopy, well appreciated by phytochemists as a particularly information-rich method, showed recent paradigm shift for the improving of metabolome(s) structural and functional characterization and for advancing the understanding of many biological processes. Furthermore, two dimensional NMR (2D NMR) experiments and the use of chemometric data analysis of NMR spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the development of NMR in the field of metabolomics with special focus on 2D NMR spectroscopic techniques and their applications in phytomedicines quality control analysis and drug discovery from natural sources, raising more attention at its potential to reduce the gap between the pace of natural products research and modern drug discovery demand. PMID:25685540

  20. NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer

    PubMed Central

    Lin, Yan; Ma, Changchun; Liu, Chengkang; Wang, Zhening; Yang, Jurong; Liu, Xinmu; Shen, Zhiwei; Wu, Renhua

    2016-01-01

    Colorectal cancer (CRC) is a growing cause of mortality in developing countries, warranting investigation into its earlier detection for optimal disease management. A metabolomics based approach provides potential for noninvasive identification of biomarkers of colorectal carcinogenesis, as well as dissection of molecular pathways of pathophysiological conditions. Here, proton nuclear magnetic resonance spectroscopy (1HNMR) -based metabolomic approach was used to profile fecal metabolites of 68 CRC patients (stage I/II=20; stage III=25 and stage IV=23) and 32 healthy controls (HC). Pattern recognition through principal component analysis (PCA) and orthogonal partial least squares-discriminant analysis (OPLS-DA) was applied on 1H-NMR processed data for dimension reduction. OPLS-DA revealed that each stage of CRC could be clearly distinguished from HC based on their metabolomic profiles. Successive analyses identified distinct disturbances to fecal metabolites of CRC patients at various stages, compared with those in cancer free controls, including reduced levels of acetate, butyrate, propionate, glucose, glutamine, and elevated quantities of succinate, proline, alanine, dimethylglycine, valine, glutamate, leucine, isoleucine and lactate. These altered fecal metabolites potentially involved in the disruption of normal bacterial ecology, malabsorption of nutrients, increased glycolysis and glutaminolysis. Our findings revealed that the fecal metabolic profiles of healthy controls can be distinguished from CRC patients, even in the early stage (stage I/II), highlighting the potential utility of NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in CRC patients. PMID:27107423

  1. UPLC-MS(E) application in disease biomarker discovery: the discoveries in proteomics to metabolomics.

    PubMed

    Zhao, Ying-Yong; Lin, Rui-Chao

    2014-05-25

    In the last decade, proteomics and metabolomics have contributed substantially to our understanding of different diseases. Proteomics and metabolomics aims to comprehensively identify proteins and metabolites to gain insight into the cellular signaling pathways underlying disease and to discover novel biomarkers for screening, early detection and diagnosis, as well as for determining prognoses and predicting responses to specific treatments. For comprehensive analysis of cellular proteins and metabolites, analytical methods of wider dynamic range higher resolution and good sensitivity are required. Ultra performance liquid chromatography-mass spectrometry(Elevated Energy) (UPLC-MS(E)) is currently one of the most versatile techniques. UPLC-MS(E) is an established technology in proteomics studies and is now expanding into metabolite research. MS(E) was used for simultaneous acquisition of precursor ion information and fragment ion data at low and high collision energy in one analytical run, providing similar information to conventional MS(2). In this review, UPLC-MS(E) application in proteomics and metabolomics was highlighted to assess protein and metabolite changes in different diseases, including cancer, neuropsychiatric pharmacology studies from clinical trials and animal models. In addition, the future prospects for complete proteomics and metabolomics are discussed.

  2. The Current State of Drug Discovery and a Potential Role for NMR Metabolomics

    PubMed Central

    2015-01-01

    The pharmaceutical industry has significantly contributed to improving human health. Drugs have been attributed to both increasing life expectancy and decreasing health care costs. Unfortunately, there has been a recent decline in the creativity and productivity of the pharmaceutical industry. This is a complex issue with many contributing factors resulting from the numerous mergers, increase in out-sourcing, and the heavy dependency on high-throughput screening (HTS). While a simple solution to such a complex problem is unrealistic and highly unlikely, the inclusion of metabolomics as a routine component of the drug discovery process may provide some solutions to these problems. Specifically, as the binding affinity of a chemical lead is evolved during the iterative structure-based drug design process, metabolomics can provide feedback on the selectivity and the in vivo mechanism of action. Similarly, metabolomics can be used to evaluate and validate HTS leads. In effect, metabolomics can be used to eliminate compounds with potential efficacy and side effect problems while prioritizing well-behaved leads with druglike characteristics. PMID:24588729

  3. Jasmonate-mediated stomatal closure under elevated CO2 revealed by time-resolved metabolomics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Foliar stomatal movements are critical for regulating plant water status and gas exchange. Elevated carbon dioxide (CO2) concentrations are known to induce stomatal closure. However, current knowledge on CO2 signal transduction in stomatal guard cells is limited. Here we report the metabolomic respo...

  4. Potential for Metabolomics-Based Markers of Exposure:Encouraging Evidence from Studies using Model Organisms

    EPA Science Inventory

    Genomic techniques (transcriptomics, proteomics, and metabolomics) have the potential to significantly improve the way chemical risk is managed in the 21st century. Indeed, a significant amount of research has been devoted to the use of these techniques to screen chemicals for h...

  5. Metabolomic assessment reveals a stimulatory effect of calcium treatment on glucosinolates contents in broccoli microgreen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Preharvest calcium application has been shown to increase broccoli microgreen yield and extend shelf life. Here we investigated the effect of calcium application on its metabolome using ultra high-performance liquid chromatography (UHPLC) tandem with mass spectrometry (HRMS). The data collected were...

  6. RAMAN SPECTROSCOPY-BASED METABOLOMICS: EVALUATION OF SAMPLE PREPARATION AND OPTICAL ACCESSORIES

    EPA Science Inventory

    The field of metabonomics/metabolomics involves observing endogenous metabolites from organisms that change in response to exposure to a stressor or chemical of interest. Methods are being developed for measuring the Raman spectra of low-concentration metabolites in urine. The ...

  7. Circadian variation of the human metabolome captured by real-time breath analysis.

    PubMed

    Martinez-Lozano Sinues, Pablo; Tarokh, Leila; Li, Xue; Kohler, Malcolm; Brown, Steven A; Zenobi, Renato; Dallmann, Robert

    2014-01-01

    Circadian clocks play a significant role in the correct timing of physiological metabolism, and clock disruption might lead to pathological changes of metabolism. One interesting method to assess the current state of metabolism is metabolomics. Metabolomics tries to capture the entirety of small molecules, i.e. the building blocks of metabolism, in a given matrix, such as blood, saliva or urine. Using mass spectrometric approaches we and others have shown that a significant portion of the human metabolome in saliva and blood exhibits circadian modulation; independent of food intake or sleep/wake rhythms. Recent advances in mass spectrometry techniques have introduced completely non-invasive breathprinting; a method to instantaneously assess small metabolites in human breath. In this proof-of-principle study, we extend these findings about the impact of circadian clocks on metabolomics to exhaled breath. As previously established, our method allows for real-time analysis of a rich matrix during frequent non-invasive sampling. We sampled the breath of three healthy, non-smoking human volunteers in hourly intervals for 24 hours during total sleep deprivation, and found 111 features in the breath of all individuals, 36-49% of which showed significant circadian variation in at least one individual. Our data suggest that real-time mass spectrometric "breathprinting" has high potential to become a useful tool to understand circadian metabolism, and develop new biomarkers to easily and in real-time assess circadian clock phase and function in experimental and clinical settings. PMID:25545545

  8. Plastic responses in the metabolome and functional traits of maize plants to temperature variations.

    PubMed

    Sun, C X; Gao, X X; Li, M Q; Fu, J Q; Zhang, Y L

    2016-03-01

    Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and metabolite levels in the leaves of three maize inbred lines grown in different temperature conditions were examined with a nuclear magnetic resonance metabolomic technique. The relationship of functional traits to metabolome profiles and the metabolic mechanism underlying temperature variations were then explored. A comparative analysis showed that during heat and cold stress, maize plants shared common plastic responses in biomass accumulation, carbon, nitrogen, sugars, some amino acids and compatible solutes. We also found that the plastic response of maize plants to heat stress was different from that under cold stress, mainly involving biomass allocation, shikimate and its aromatic amino acid derivatives, and other non-polar metabolites. The plastic responsiveness of functional traits of maize lines to temperature variations was low, while the metabolic responsiveness in plasticity was high, indicating that functional and metabolic plasticity may play different roles in maize plant adaptation to temperature variations. A linear regression analysis revealed that the maize lines could adapt to growth temperature variations through the interrelation of plastic responses in the metabolomes and functional traits, such as biomass allocation and the status of carbon and nitrogen. We provide valuable insight into the plastic response strategy of maize plants to temperature variations that will permit the optimisation of crop cultivation in an increasingly variable environment. PMID:26280133

  9. Highlights of the 2012 research workshop: Using nutrigenomics and metabolomics in clinical nutrition research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) Research Workshop, "Using Nutrigenomics and Metabolomics in Clinical Nutrition Research," was held on January 21, 2012, in Orlando, Florida. The conference brought together experts in human nutrition who use nutrigenomic and meta...

  10. GIM3E: Condition-specific Models of Cellular Metabolism Developed from Metabolomics and Expression Data

    SciTech Connect

    Schmidt, Brian; Ebrahim, Ali; Metz, Thomas O.; Adkins, Joshua N.; Palsson, Bernard O.; Hyduke, Daniel R.

    2013-11-15

    Motivation: Genome-scale metabolic models have been used extensively to investigate alterations in cellular metabolism. The accuracy of these models to represent cellular metabolism in specific conditions has been improved by constraining the model with omics data sources. However, few practical methods for integrating metabolomics data with other omics data sources into genome-scale models of metabolism have been reported. Results: GIMMME (Gene Inactivation Moderated by Metabolism, Metabolomics, and Expression) is an algorithm that enables the development of condition-specific models based on an objective function, transcriptomics, and intracellular metabolomics data. GIMMME establishes metabolite utilization requirements with metabolomics data, uses model-paired transcriptomics data to find experimentally supported solutions, and also provides calculations of the turnover (production / consumption) flux of metabolites. GIMMME was employed to investigate the effects of integrating additional omics datasets to create increasingly constrained solution spaces of Salmonella Typhimurium metabolism during growth in both rich and virulence media. This integration proved to be informative and resulted in a requirement of additional active reactions (12 in each case) or metabolites (26 or 29, respectively). The addition of constraints from transcriptomics also impacted the allowed solution space, and the cellular metabolites with turnover fluxes that were necessarily altered by the change in conditions increased from 118 to 271 of 1397. Availability: GIMMME has been implemented in Python and requires a COBRApy 0.2.x. The algorithm and sample data described here are freely available at: http://opencobra.sourceforge.net/

  11. Global Metabolomic Analysis of a Mammalian Host Infected with Bacillus anthracis

    PubMed Central

    Nguyen, Chinh T. Q.; Shetty, Vivekananda

    2015-01-01

    Whereas DNA provides the information to design life and proteins provide the materials to construct it, the metabolome can be viewed as the physiology that powers it. As such, metabolomics, the field charged with the study of the dynamic small-molecule fluctuations that occur in response to changing biology, is now being used to study the basis of disease. Here, we describe a comprehensive metabolomic analysis of a systemic bacterial infection using Bacillus anthracis, the etiological agent of anthrax disease, as the model pathogen. An organ and blood analysis identified approximately 400 metabolites, including several key classes of lipids involved in inflammation, as being suppressed by B. anthracis. Metabolite changes were detected as early as 1 day postinfection, well before the onset of disease or the spread of bacteria to organs, which testifies to the sensitivity of this methodology. Functional studies using pharmacologic inhibition of host phospholipases support the idea of a role of these key enzymes and lipid mediators in host survival during anthrax disease. Finally, the results are integrated to provide a comprehensive picture of how B. anthracis alters host physiology. Collectively, the results of this study provide a blueprint for using metabolomics as a platform to identify and study novel host-pathogen interactions that shape the outcome of an infection. PMID:26438791

  12. Blood metabolome profiles of cattle colonized with Escherichia coli O157

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Metabolomics is being increasingly used for diagnosis of asymptomatic/difficult-to-diagnose diseases in humans including parasitic (i.e. protozoan, schistosomal), viral (i.e. cytomegalovirus), bacterial (i.e. cystic fibrosis caused by Pseudomonas), genetic (i.e. autism) and cancer (i.e. gastric canc...

  13. Urinary metabolomic fingerprinting after consumption of a probiotic strain in women with mastitis.

    PubMed

    Vázquez-Fresno, Rosa; Llorach, Rafael; Marinic, Jelena; Tulipani, Sara; Garcia-Aloy, Mar; Espinosa-Martos, Irene; Jiménez, Esther; Rodríguez, Juan Miguel; Andres-Lacueva, Cristina

    2014-09-01

    Infectious mastitis is a common condition among lactating women, with staphylococci and streptococci being the main aetiological agents. In this context, some lactobacilli strains isolated from breast milk appear to be particularly effective for treating mastitis and, therefore, constitute an attractive alternative to antibiotherapy. A (1)H NMR-based metabolomic approach was applied to detect metabolomic differences after consuming a probiotic strain (Lactobacillus salivarius PS2) in women with mastitis. 24h urine of women with lactational mastitis was collected at baseline and after 21 days of probiotic (PB) administration. Multivariate analysis (OSC-PLS-DA and hierarchical clustering) showed metabolome differences after PB treatment. The discriminant metabolites detected at baseline were lactose, and ibuprofen and acetaminophen (two pharmacological drugs commonly used for mastitis pain), while, after PB intake, creatine and the gut microbial co-metabolites hippurate and TMAO were detected. In addition, a voluntary desertion of the pharmacological drugs ibuprofen and acetaminophen was observed after probiotic administration. The application of NMR-based metabolomics enabled the identification of the overall effects of probiotic consumption among women suffering from mastitis and highlighted the potential of this approach in evaluating the outcomes of probiotics consumption. To our knowledge, this is the first time that this approach has been applied in women with mastitis during lactation. PMID:24880136

  14. Urinary metabolomic fingerprinting after consumption of a probiotic strain in women with mastitis.

    PubMed

    Vázquez-Fresno, Rosa; Llorach, Rafael; Marinic, Jelena; Tulipani, Sara; Garcia-Aloy, Mar; Espinosa-Martos, Irene; Jiménez, Esther; Rodríguez, Juan Miguel; Andres-Lacueva, Cristina

    2014-09-01

    Infectious mastitis is a common condition among lactating women, with staphylococci and streptococci being the main aetiological agents. In this context, some lactobacilli strains isolated from breast milk appear to be particularly effective for treating mastitis and, therefore, constitute an attractive alternative to antibiotherapy. A (1)H NMR-based metabolomic approach was applied to detect metabolomic differences after consuming a probiotic strain (Lactobacillus salivarius PS2) in women with mastitis. 24h urine of women with lactational mastitis was collected at baseline and after 21 days of probiotic (PB) administration. Multivariate analysis (OSC-PLS-DA and hierarchical clustering) showed metabolome differences after PB treatment. The discriminant metabolites detected at baseline were lactose, and ibuprofen and acetaminophen (two pharmacological drugs commonly used for mastitis pain), while, after PB intake, creatine and the gut microbial co-metabolites hippurate and TMAO were detected. In addition, a voluntary desertion of the pharmacological drugs ibuprofen and acetaminophen was observed after probiotic administration. The application of NMR-based metabolomics enabled the identification of the overall effects of probiotic consumption among women suffering from mastitis and highlighted the potential of this approach in evaluating the outcomes of probiotics consumption. To our knowledge, this is the first time that this approach has been applied in women with mastitis during lactation.

  15. Biomarkers in bladder cancer: A metabolomic approach using in vitro and ex vivo model systems.

    PubMed

    Rodrigues, Daniela; Jerónimo, Carmen; Henrique, Rui; Belo, Luís; de Lourdes Bastos, Maria; de Pinho, Paula Guedes; Carvalho, Márcia

    2016-07-15

    Metabolomics has recently proved to be useful in the area of biomarker discovery for cancers in which early diagnostic and prognostic biomarkers are urgently needed, as is the case of bladder cancer (BC). This article presents a comprehensive review of the literature on the metabolomic studies on BC, highlighting metabolic pathways perturbed in this disease and the altered metabolites as potential biomarkers for BC detection. Current disease model systems used in the study of BC metabolome include in vitro-cultured cancer cells, ex vivo neoplastic bladder tissues and biological fluids, mainly urine but also blood serum/plasma, from BC patients. The major advantages and drawbacks of each model system are discussed. Based on available data, it seems that BC metabolic signature is mainly characterized by alterations in metabolites related to energy metabolic pathways, particularly glycolysis, amino acid and fatty acid metabolism, known to be crucial for cell proliferation, as well as glutathione metabolism, known to be determinant in maintaining cellular redox balance. In addition, purine and pyrimidine metabolism as well as carnitine species were found to be altered in BC. Finally, it is emphasized that, despite the progress made in respect to novel biomarkers for BC diagnosis, there are still some challenges and limitations that should be addressed in future metabolomic studies to ensure their translatability to clinical practice. PMID:26804544

  16. Untargeted LC-MS Metabolomics of Bronchoalveolar Lavage Fluid Differentiates Acute Respiratory Distress Syndrome from Health

    PubMed Central

    Evans, Charles R.; Karnovsky, Alla; Kovach, Melissa A.; Standiford, Theodore J.; Burant, Charles F.; Stringer, Kathleen A.

    2014-01-01

    Acute respiratory distress syndrome (ARDS) remains a significant hazard to human health and is clinically challenging because there are no prognostic biomarkers and no effective pharmacotherapy. The lung compartment metabolome may detail the status of the local environment that could be useful in ARDS biomarker discovery and the identification of drug target opportunities. However, neither the utility of bronchoalveolar lavage fluid (BALF) as a biofluid for metabolomics nor the optimal analytical platform for metabolite identification are established. To address this, we undertook a study to compare metabolites in BALF samples from patients with ARDS and healthy controls using a newly developed liquid chromatography (LC)-mass spectroscopy (MS) platform for untargeted metabolomics. Following initial testing of three different high performance liquid chromatography (HPLC) columns, we determined that reversed phase (RP)-LC and hydrophilic interaction chromatography (HILIC), were the most informative chromatographic methods because they yielded the most and highest quality data. Following confirmation of metabolite identification, statistical analysis resulted in 37 differentiating metabolites in the BALF of ARDS compared with health across both analytical platforms. Pathway analysis revealed networks associated with amino acid metabolism, glycolysis and gluconeogenesis, fatty acid biosynthesis, phospholipids and purine metabolism in the ARDS BALF. The complementary analytical platforms of RPLC and HILIC-LC generated informative, insightful metabolomics data of the ARDS lung environment. PMID:24289193

  17. Variation at range margins across multiple spatial scales: environmental temperature, population genetics and metabolomic phenotype

    PubMed Central

    Kunin, William E.; Vergeer, Philippine; Kenta, Tanaka; Davey, Matthew P.; Burke, Terry; Ian Woodward, F.; Quick, Paul; Mannarelli, Maria-Elena; Watson-Haigh, Nathan S.; Butlin, Roger

    2009-01-01

    Range margins are spatially complex, with environmental, genetic and phenotypic variations occurring across a range of spatial scales. We examine variation in temperature, genes and metabolomic profiles within and between populations of the subalpine perennial plant Arabidopsis lyrata ssp. petraea from across its northwest European range. Our surveys cover a gradient of fragmentation from largely continuous populations in Iceland, through more fragmented Scandinavian populations, to increasingly widely scattered populations at the range margin in Scotland, Wales and Ireland. Temperature regimes vary substantially within some populations, but within-population variation represents a larger fraction of genetic and especially metabolomic variances. Both physical distance and temperature differences between sites are found to be associated with genetic profiles, but not metabolomic profiles, and no relationship was found between genetic and metabolomic population structures in any region. Genetic similarity between plants within populations is the highest in the fragmented populations at the range margin, but differentiation across space is the highest there as well, suggesting that regional patterns of genetic diversity may be scale dependent. PMID:19324821

  18. Plastic responses in the metabolome and functional traits of maize plants to temperature variations.

    PubMed

    Sun, C X; Gao, X X; Li, M Q; Fu, J Q; Zhang, Y L

    2016-03-01

    Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and metabolite levels in the leaves of three maize inbred lines grown in different temperature conditions were examined with a nuclear magnetic resonance metabolomic technique. The relationship of functional traits to metabolome profiles and the metabolic mechanism underlying temperature variations were then explored. A comparative analysis showed that during heat and cold stress, maize plants shared common plastic responses in biomass accumulation, carbon, nitrogen, sugars, some amino acids and compatible solutes. We also found that the plastic response of maize plants to heat stress was different from that under cold stress, mainly involving biomass allocation, shikimate and its aromatic amino acid derivatives, and other non-polar metabolites. The plastic responsiveness of functional traits of maize lines to temperature variations was low, while the metabolic responsiveness in plasticity was high, indicating that functional and metabolic plasticity may play different roles in maize plant adaptation to temperature variations. A linear regression analysis revealed that the maize lines could adapt to growth temperature variations through the interrelation of plastic responses in the metabolomes and functional traits, such as biomass allocation and the status of carbon and nitrogen. We provide valuable insight into the plastic response strategy of maize plants to temperature variations that will permit the optimisation of crop cultivation in an increasingly variable environment.

  19. Efficacy of Fluidized Bed Bioartificial Liver in Treating Fulminant Hepatic Failure in Pigs: A Metabolomics Study

    PubMed Central

    Zhou, Pengcheng; Shao, Li; Zhao, Lifu; Lv, Guoliang; Pan, Xiaoping; Zhang, Anye; Li, Jianzhou; Zhou, Ning; Chen, Deying; Li, Lanjuan

    2016-01-01

    Bioartificial livers may act as a promising therapy for fulminant hepatic failure (FHF) with better accessibility and less injury compared to orthotopic liver transplantation. This study aims to evaluate the efficacy and safety of a fluidized bed bioartificial liver (FBBAL) and to explore its therapeutic mechanisms based on metabolomics. FHF was induced by D-galactosamine. Eighteen hours later, pigs were treated with an FBBAL containing encapsulated primary porcine hepatocytes (B group), with a sham FBBAL (containing cell-free capsules, S group) or with only intensive care (C group) for 6 h. Serum samples were assayed using ultra-performance liquid chromatography-mass spectrometry. The difference in survival time (51.6 ± 7.9 h vs. 49.3 ± 6.6 h) and serum metabolome was negligible between the S and C groups, whereas FBBAL treatment significantly prolonged survival time (70.4 ± 11.5h, P < 0.01) and perturbed the serum metabolome, resulting in a marked decrease in phosphatidylcholines, lysophosphatidylcholines, sphingomyelinase, and fatty acids and an increase in conjugated bile acids. The FBBAL exhibits some liver functions and may exert its therapeutic effect by altering the serum metabolome of FHF pigs. Moreover, alginate–chitosan capsules have less influence on serum metabolites. Nevertheless, the alterations were not universally beneficial, revealing that much should be done to improve the FBBAL. PMID:27194381

  20. Metabolomic Analysis of Mouse Embryonic Fibroblast Cells in Response to Autophagy Induced by Acute Starvation

    PubMed Central

    Shen, Sensen; Weng, Rui; Li, Linnan; Xu, Xinyuan; Bai, Yu; Liu, Huwei

    2016-01-01

    Autophagy-related protein 7 (Atg7) is essential in the formation of the autophagophore and is indispensable for autophagy induction. Autophagy will exist in lower level or even be blocked in cells without Atg7. Even though the possible signaling pathways of Atg7 have been proposed, the metabolomic responses under acute starvation in cells with and without Atg7 have not been elucidated. This study therefore was designed and aimed to reveal the metabolomics of Atg7-dependent autophagy through metabolomic analysis of Atg7−/− mouse embryonic fibroblast cells (MEFs) and wild-type MEFs along with the starvation time. 30 significantly altered metabolites were identified in response to nutrient stress, which were mainly associated with amino acid, energy, carbohydrate, and lipid metabolism. For the wild-type MEFs, the induction of autophagy protected cell survival with some up-regulated lipids during the first two hours’ starvation, while the subsequent apoptosis resulted in the decrease of cell viability after four hours’ starvation. For the Atg7−/− MEFs, apoptosis perhaps led to the deactivation of tricarboxylic acid (TCA) cycle due to the lack of autophagy, which resulted in the immediate drop of cellular viability under starvation. These results contributed to the metabolomic study and provided new insights into the mechanism associated with Atg7-dependent autophagy. PMID:27703171

  1. Open-Access Metabolomics Databases for Natural Product Research: Present Capabilities and Future Potential

    PubMed Central

    Johnson, Sean R.; Lange, Bernd Markus

    2015-01-01

    Various databases have been developed to aid in assigning structures to spectral peaks observed in metabolomics experiments. In this review article, we discuss the utility of currently available open-access spectral and chemical databases for natural products discovery. We also provide recommendations on how the research community can contribute to further improvements. PMID:25789275

  2. Metabolomic analysis of Ocotea odorifera cell cultures: a model protocol for acquiring metabolite data.

    PubMed

    Maraschin, Marcelo; Dias, Paulo Fernando; Pedrotti, Enio Luiz; Nunes, Hiliana; Morais, Hiliana Nunes Ferreira; Viana, Ana Maria; Wood, Karl Vernon

    2009-01-01

    Metabolomics constitutes a quantitative and qualitative survey of the whole metabolites of an organism as well as a tissue, reflecting the genome and proteome of a sample as analyzed. Advanced analytical spectroscopic and chromatographic techniques are used along with uni- or multivariate statistical data analysis, rapidly identifying up- or down-regulated metabolites in complex matrices. In this chapter, protocols for the analysis of target compounds (protocol I) and metabolomics (protocol II) of Ocotea odorifera cell cultures are described. In the first case, the target compound safrole, an aromatic ether used as a flavoring agent and also in the manufacture of insecticides, is analyzed in the organosolvent fraction of stable prototrophic cell lines of O. odorifera by gas chromatography-mass spectrometry. For metabolomics studies the protocol is designed to detect and quantify metabolites in the aqueous extract of O. odorifera cell lines by using high-resolution 1D- and 2D-nuclear magnetic resonance spectroscopy, followed by chemometric analysis of the 1H NMR spectra dataset. Protocol I has been successfully used, for example, in screening studies of cell lines able of producing safrole. Protocol II is suitable to detect the chemical features of a number of metabolite compounds in aqueous extracts of O. odorifera cell lines cultured under certain conditions, leading to new insights into metabolomics of that species.

  3. Navigating the Human Metabolome for Biomarker Identification and Design of Pharmaceutical Molecules

    PubMed Central

    Kouskoumvekaki, Irene; Panagiotou, Gianni

    2011-01-01

    Metabolomics is a rapidly evolving discipline that involves the systematic study of endogenous small molecules that characterize the metabolic pathways of biological systems. The study of metabolism at a global level has the potential to contribute significantly to biomedical research, clinical medical practice, as well as drug discovery. In this paper, we present the most up-to-date metabolite and metabolic pathway resources, and we summarize the statistical, and machine-learning tools used for the analysis of data from clinical metabolomics. Through specific applications on cancer, diabetes, neurological and other diseases, we demonstrate how these tools can facilitate diagnosis and identification of potential biomarkers for use within disease diagnosis. Additionally, we discuss the increasing importance of the integration of metabolomics data in drug discovery. On a case-study based on the Human Metabolome Database (HMDB) and the Chinese Natural Product Database (CNPD), we demonstrate the close relatedness of the two data sets of compounds, and we further illustrate how structural similarity with human metabolites could assist in the design of novel pharmaceuticals and the elucidation of the molecular mechanisms of medicinal plants. PMID:20936122

  4. Effects of genetics and environment on the metabolome of commercial maize hybrids: a multisite study.

    PubMed

    Asiago, Vincent M; Hazebroek, Jan; Harp, Teresa; Zhong, Cathy

    2012-11-21

    This study was designed to elucidate the biological variation in expression of many metabolites due to environment, genotype, or both, and to investigate the potential utility of metabolomics to supplement compositional analysis for substantial equivalence assessments of genetically modified (GM) crops. A total of 654 grain and 695 forage samples from 50 genetically diverse non-GM DuPont Pioneer maize hybrids grown at six locations in the U.S. and Canada were analyzed by coupled gas chromatography time-of-flight-mass spectrometry (GC/TOF-MS). A total of 156 and 185 metabolites were measured in grain and forage samples, respectively. Univariate and multivariate statistical analyses were employed extensively to compare and correlate the metabolite profiles. We show that the environment had far more impact on the forage metabolome compared to the grain metabolome, and the environment affected up to 50% of the metabolites compared to less than 2% by the genetic background. The findings from this study demonstrate that the combination of GC/TOF-MS metabolomics and comprehensive multivariate statistical analysis is a powerful approach to identify the sources of natural variation contributed by the environment and genotype. PMID:23113862

  5. Metabolomic differences in early and late lactation first-parity gilts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Investigating the metabolome provides the evaluation of all cellular processes occuring while accounting for environmental influence and may provide additional information for selection criteria to fully evolve. Blood samples and body condition measurements were acquired from 68, first-parity gilts ...

  6. Push-through direct injection NMR: an optimized automation method applied to metabolomics

    EPA Science Inventory

    There is a pressing need to increase the throughput of NMR analysis in fields such as metabolomics and drug discovery. Direct injection (DI) NMR automation is recognized to have the potential to meet this need due to its suitability for integration with the 96-well plate format. ...

  7. Metabolomics of human brain aging and age-related neurodegenerative diseases.

    PubMed

    Jové, Mariona; Portero-Otín, Manuel; Naudí, Alba; Ferrer, Isidre; Pamplona, Reinald

    2014-07-01

    Neurons in the mature human central nervous system (CNS) perform a wide range of motor, sensory, regulatory, behavioral, and cognitive functions. Such diverse functional output requires a great diversity of CNS neuronal and non-neuronal populations. Metabolomics encompasses the study of the complete set of metabolites/low-molecular-weight intermediates (metabolome), which are context-dependent and vary according to the physiology, developmental state, or pathologic state of the cell, tissue, organ, or organism. Therefore, the use of metabolomics can help to unravel the diversity-and to disclose the specificity-of metabolic traits and their alterations in the brain and in fluids such as cerebrospinal fluid and plasma, thus helping to uncover potential biomarkers of aging and neurodegenerative diseases. Here, we review the current applications of metabolomics in studies of CNS aging and certain age-related neurodegenerative diseases such as Alzheimer disease, Parkinson disease, and amyotrophic lateral sclerosis. Neurometabolomics will increase knowledge of the physiologic and pathologic functions of neural cells and will place the concept of selective neuronal vulnerability in a metabolic context.

  8. Environmental metabolomics reveal geographic variation in aerobic metabolism and metabolic substrates in Mongolian gerbils (Meriones unguiculatus).

    PubMed

    Shi, Yao-Long; Chi, Qing-Sheng; Liu, Wei; Fu, He-Ping; Wang, De-Hua

    2015-06-01

    Mongolian gerbils (Meriones unguiculatus) have a large-scale distribution in northern China. Geographic physiological variations which related to energy and water metabolism are critical to animals' local adaptation and distribution. However, the underlying biochemical mechanism of such variation and its role in adaptation remains largely unknown. We used GC-MS metabolomics approach to investigate the biochemical adaptation of Mongolian gerbils from xeric (desert), transition (desert steppe) and mesic (typical steppe) environments. Gerbils in desert population had lower resting metabolic rate (RMR) and total evaporative water loss (TEWL) than mesic population. Serum metabolomics revealed that concentrations of five tricarboxylic acid cycle intermediates (citrate, cis-aconitate, α-ketoglutarate, fumarate and malate) were lower in desert population than mesic population. Gastrocnemius metabolomics and citrate synthase activity analysis showed a lower concentration of citrate and lower citrate synthase activity in desert population. These findings suggest that desert dwelling gerbils decrease RMR and TEWL via down-regulation of aerobic respiration. Gastrocnemius metabolomics also revealed that there were higher concentrations of glucose and glycolytic intermediates, but lower concentrations of lipids, amino acids and urea in desert population than mesic population. This geographic variation in metabolic substrates may enhance metabolic water production per oxygen molecule for desert population while constraining aerobic respiration to reduce RMR and TEWL. PMID:25817427

  9. Metabolomic technologies for improving the quality of food: Practice and promise

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is now well documented that the diet has a significant impact on human health and well-being. However, the complete set of small molecule metabolites present in foods that make up the human diet and the role of food production systems in altering this food metabolome are still largely unknown. Me...

  10. Open-access metabolomics databases for natural product research: present capabilities and future potential.

    PubMed

    Johnson, Sean R; Lange, Bernd Markus

    2015-01-01

    Various databases have been developed to aid in assigning structures to spectral peaks observed in metabolomics experiments. In this review article, we discuss the utility of currently available open-access spectral and chemical databases for natural products discovery. We also provide recommendations on how the research community can contribute to further improvements.

  11. An R package for the integrated analysis of metabolomics and spectral data.

    PubMed

    Costa, Christopher; Maraschin, Marcelo; Rocha, Miguel

    2016-06-01

    Recently, there has been a growing interest in the field of metabolomics, materialized by a remarkable growth in experimental techniques, available data and related biological applications. Indeed, techniques as nuclear magnetic resonance, gas or liquid chromatography, mass spectrometry, infrared and UV-visible spectroscopies have provided extensive datasets that can help in tasks as biological and biomedical discovery, biotechnology and drug development. However, as it happens with other omics data, the analysis of metabolomics datasets provides multiple challenges, both in terms of methodologies and in the development of appropriate computational tools. Indeed, from the available software tools, none addresses the multiplicity of existing techniques and data analysis tasks. In this work, we make available a novel R package, named specmine, which provides a set of methods for metabolomics data analysis, including data loading in different formats, pre-processing, metabolite identification, univariate and multivariate data analysis, machine learning, and feature selection. Importantly, the implemented methods provide adequate support for the analysis of data from diverse experimental techniques, integrating a large set of functions from several R packages in a powerful, yet simple to use environment. The package, already available in CRAN, is accompanied by a web site where users can deposit datasets, scripts and analysis reports to be shared with the community, promoting the efficient sharing of metabolomics data analysis pipelines.

  12. Meta-analysis of global metabolomics and proteomics data to link alterations with phenotype

    DOE PAGES

    Patti, Gary J.; Tautenhahn, Ralf; Fonslow, Bryan R.; Cho, Yonghoon; Deutschbauer, Adam; Arkin, Adam; Northen, Trent; Siuzdak, Gary

    2011-01-01

    Global metabolomics has emerged as a powerful tool to interrogate cellular biochemistry at the systems level by tracking alterations in the levels of small molecules. One approach to define cellular dynamics with respect to this dysregulation of small molecules has been to consider metabolic flux as a function of time. While flux measurements have proven effective for model organisms, acquiring multiple time points at appropriate temporal intervals for many sample types (e.g., clinical specimens) is challenging. As an alternative, meta-analysis provides another strategy for delineating metabolic cause and effect perturbations. That is, the combination of untargeted metabolomic data from multiplemore » pairwise comparisons enables the association of specific changes in small molecules with unique phenotypic alterations. We recently developed metabolomic software called metaXCMS to automate these types of higher order comparisons. Here we discuss the potential of metaXCMS for analyzing proteomic datasets and highlight the biological value of combining meta-results from both metabolomic and proteomic analyses. The combined meta-analysis has the potential to facilitate efforts in functional genomics and the identification of metabolic disruptions related to disease pathogenesis.« less

  13. Fecal metabolome of the Hadza hunter-gatherers: a host-microbiome integrative view

    PubMed Central

    Turroni, Silvia; Fiori, Jessica; Rampelli, Simone; Schnorr, Stephanie L.; Consolandi, Clarissa; Barone, Monica; Biagi, Elena; Fanelli, Flaminia; Mezzullo, Marco; Crittenden, Alyssa N.; Henry, Amanda G.; Brigidi, Patrizia; Candela, Marco

    2016-01-01

    The recent characterization of the gut microbiome of traditional rural and foraging societies allowed us to appreciate the essential co-adaptive role of the microbiome in complementing our physiology, opening up significant questions on how the microbiota changes that have occurred in industrialized urban populations may have altered the microbiota-host co-metabolic network, contributing to the growing list of Western diseases. Here, we applied a targeted metabolomics approach to profile the fecal metabolome of the Hadza of Tanzania, one of the world’s few remaining foraging populations, and compared them to the profiles of urban living Italians, as representative of people in the post-industrialized West. Data analysis shows that during the rainy season, when the diet is primarily plant-based, Hadza are characterized by a distinctive enrichment in hexoses, glycerophospholipids, sphingolipids, and acylcarnitines, while deplete in the most common natural amino acids and derivatives. Complementary to the documented unique metagenomic features of their gut microbiome, our findings on the Hadza metabolome lend support to the notion of an alternate microbiome configuration befitting of a nomadic forager lifestyle, which helps maintain metabolic homeostasis through an overall scarcity of inflammatory factors, which are instead highly represented in the Italian metabolome. PMID:27624970

  14. Integration of datasets from different analytical techniques to assess the impact of nutrition on human metabolome

    PubMed Central

    Vernocchi, Pamela; Vannini, Lucia; Gottardi, Davide; Del Chierico, Federica; Serrazanetti, Diana I.; Ndagijimana, Maurice; Guerzoni, Maria E.

    2012-01-01

    Bacteria colonizing the human intestinal tract exhibit a high phylogenetic diversity that reflects their immense metabolic potentials. The catalytic activity of gut microbes has an important impact on gastrointestinal (GI) functions and host health. The microbial conversion of carbohydrates and other food components leads to the formation of a large number of compounds that affect the host metabolome and have beneficial or adverse effects on human health. Metabolomics is a metabolic-biology system approach focused on the metabolic responses understanding of living systems to physio-pathological stimuli by using multivariate statistical data on human body fluids obtained by different instrumental techniques. A metabolomic approach based on an analytical platform could be able to separate, detect, characterize and quantify a wide range of metabolites and its metabolic pathways. This approach has been recently applied to study the metabolic changes triggered in the gut microbiota by specific diet components and diet variations, specific diseases, probiotic and synbiotic food intake. This review describes the metabolomic data obtained by analyzing human fluids by using different techniques and particularly Gas Chromatography Mass Spectrometry Solid-phase Micro Extraction (GC-MS/SPME), Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy and Fourier Transform Infrared (FTIR) Spectroscopy. This instrumental approach has a good potential in the identification and detection of specific food intake and diseases biomarkers. PMID:23248777

  15. A Direct Cell Quenching Method for Cell-Culture Based Metabolomics

    EPA Science Inventory

    A crucial step in metabolomic analysis of cellular extracts is the cell quenching process. The conventional method first uses trypsin to detach cells from their growth surface. This inevitably changes the profile of cellular metabolites since the detachment of cells from the extr...

  16. Assessment of genetically modified soybean in relation to natural variation in the soybean seed metabolome.

    PubMed

    Clarke, Joseph D; Alexander, Danny C; Ward, Dennis P; Ryals, John A; Mitchell, Matthew W; Wulff, Jacob E; Guo, Lining

    2013-01-01

    Genetically modified (GM) crops currently constitute a significant and growing part of agriculture.An important aspect of GM crop adoption is to demonstrate safety; identifying differences in end points with respect to conventional crops is a part of the safety assessment process [corrected]. Untargeted metabolomics has the ability to profile diverse classes of metabolites and thus could be an adjunct for identification of differences between the GM crop and its conventional counterpart [corrected].To account for environmental effects and introgression of GM traits into diverse genetic backgrounds, we propose that the assessment for GM crop metabolic composition should be understood within the context of the natural variation for the crop. Using a non-targeted metabolomics platform, we profiled 169 metabolites and established their dynamic ranges from the seeds of 49 conventional soybean lines representing the current commercial genetic diversity. We further demonstrated that the metabolome of a GM line had no significant deviation from natural variation within the soybean metabolome, with the exception of changes in the targeted engineered pathway.

  17. Radiation Metabolomics: Identification of Minimally Invasive Urine Biomarkers for Gamma-Radiation Exposure in Mice

    PubMed Central

    Tyburski, John B.; Patterson, Andrew D.; Krausz, Kristopher W.; Slavík, Josef; Fornace, Albert J.; Gonzalez, Frank J.; Idle, Jeffrey R.

    2008-01-01

    Gamma-radiation exposure has both short- and long-term adverse health effects. The threat of modern terrorism places human populations at risk for radiological exposures, yet current medical countermeasures to radiation exposure are limited. Here we describe metabolomics for γ-radiation biodosimetry in a mouse model. Mice were γ-irradiated at doses of 0, 3 and 8 Gy (2.57 Gy/min), and urine samples collected over the first 24 h after exposure were analyzed by ultra-performance liquid chromatography–time-of-flight mass spectrometry (UPLC–TOFMS). Multivariate data were analyzed by orthogonal partial least squares (OPLS). Both 3- and 8-Gy exposures yielded distinct urine metabolomic phenotypes. The top 22 ions for 3 and 8 Gy were analyzed further, including tandem mass spectrometric comparison with authentic standards, revealing that N-hexanoylglycine and β-thymidine are urinary biomarkers of exposure to 3 and 8 Gy, 3-hydroxy-2-methylbenzoic acid 3-O-sulfate is elevated in urine of mice exposed to 3 but not 8 Gy, and taurine is elevated after 8 but not 3 Gy. Gene Expression Dynamics Inspector (GEDI) self-organizing maps showed clear dose–response relationships for subsets of the urine metabolome. This approach is useful for identifying mice exposed to γ radiation and for developing metabolomic strategies for noninvasive radiation biodosimetry in humans. PMID:18582157

  18. Do not just do it, do it right: urinary metabolomics--establishing clinically relevant baselines.

    PubMed

    Trivedi, Drupad K; Iles, Ray K

    2014-11-01

    Metabolomics is currently being adopted as a tool to understand numerous clinical pathologies. It is essential to choose the best combination of techniques in order to optimize the information gained from the biological sample examined. For example, separation by reverse-phase liquid chromatography may be suitable for biological fluids in which lipids, proteins and small organic compounds coexist in a relatively nonpolar environment, such as serum. However, urine is a highly polar environment and metabolites are often specifically altered to render them polar suitable for normal phase/hydrophilic interaction liquid chromatography. Similarly, detectors such as high-resolution mass spectrometry (MS) may negate the need for a pre-separation but specific detection and quantification of less abundant analytes in targeted metabolomics may require concentration of the ions by methods such an ion trap MS. In addition, the inherent variability of metabolomic profiles need to be established in appropriately large sample sets of normal controls. This review aims to explore various techniques that have been tried and tested over the past decade. Consideration is given to various key drawbacks and positive alternatives published by active research groups and an optimum combination that should be used for urinary metabolomics is suggested to generate a reliable dataset for baseline studies.

  19. Metabolomics as a Hypothesis-Generating Functional Genomics Tool for the Annotation of Arabidopsis thaliana Genes of “Unknown Function”

    PubMed Central

    Quanbeck, Stephanie M.; Brachova, Libuse; Campbell, Alexis A.; Guan, Xin; Perera, Ann; He, Kun; Rhee, Seung Y.; Bais, Preeti; Dickerson, Julie A.; Dixon, Philip; Wohlgemuth, Gert; Fiehn, Oliver; Barkan, Lenore; Lange, Iris; Lange, B. Markus; Lee, Insuk; Cortes, Diego; Salazar, Carolina; Shuman, Joel; Shulaev, Vladimir; Huhman, David V.; Sumner, Lloyd W.; Roth, Mary R.; Welti, Ruth; Ilarslan, Hilal; Wurtele, Eve S.; Nikolau, Basil J.

    2012-01-01

    Metabolomics is the methodology that identifies and measures global pools of small molecules (of less than about 1,000 Da) of a biological sample, which are collectively called the metabolome. Metabolomics can therefore reveal the metabolic outcome of a genetic or environmental perturbation of a metabolic regulatory network, and thus provide insights into the structure and regulation of that network. Because of the chemical complexity of the metabolome and limitations associated with individual analytical platforms for determining the metabolome, it is currently difficult to capture the complete metabolome of an organism or tissue, which is in contrast to genomics and transcriptomics. This paper describes the analysis of Arabidopsis metabolomics data sets acquired by a consortium that includes five analytical laboratories, bioinformaticists, and biostatisticians, which aims to develop and validate metabolomics as a hypothesis-generating functional genomics tool. The consortium is determining the metabolomes of Arabidopsis T-DNA mutant stocks, grown in standardized controlled environment optimized to minimize environmental impacts on the metabolomes. Metabolomics data were generated with seven analytical platforms, and the combined data is being provided to the research community to formulate initial hypotheses about genes of unknown function (GUFs). A public database (www.PlantMetabolomics.org) has been developed to provide the scientific community with access to the data along with tools to allow for its interactive analysis. Exemplary datasets are discussed to validate the approach, which illustrate how initial hypotheses can be generated from the consortium-produced metabolomics data, integrated with prior knowledge to provide a testable hypothesis concerning the functionality of GUFs. PMID:22645570

  20. Bridging the gap between comprehensive extraction protocols in plant metabolomics studies and method validation.

    PubMed

    Bijttebier, Sebastiaan; Van der Auwera, Anastasia; Foubert, Kenn; Voorspoels, Stefan; Pieters, Luc; Apers, Sandra

    2016-09-01

    It is vital to pay much attention to the design of extraction methods developed for plant metabolomics, as any non-extracted or converted metabolites will greatly affect the overall quality of the metabolomics study. Method validation is however often omitted in plant metabolome studies, as the well-established methodologies for classical targeted analyses such as recovery optimization cannot be strictly applied. The aim of the present study is to thoroughly evaluate state-of-the-art comprehensive extraction protocols for plant metabolomics with liquid chromatography-photodiode array-accurate mass mass spectrometry (LC-PDA-amMS) by bridging the gap with method validation. Validation of an extraction protocol in untargeted plant metabolomics should ideally be accomplished by validating the protocol for all possible outcomes, i.e. for all secondary metabolites potentially present in the plant. In an effort to approach this ideal validation scenario, two plant matrices were selected based on their wide versatility of phytochemicals: meadowsweet (Filipendula ulmaria) for its polyphenols content, and spicy paprika powder (from the genus Capsicum) for its apolar phytochemicals content (carotenoids, phytosterols, capsaicinoids). These matrices were extracted with comprehensive extraction protocols adapted from literature and analysed with a generic LC-PDA-amMS characterization platform that was previously validated for broad range phytochemical analysis. The performance of the comprehensive sample preparation protocols was assessed based on extraction efficiency, repeatability and intermediate precision and on ionization suppression/enhancement evaluation. The manuscript elaborates on the finding that none of the extraction methods allowed to exhaustively extract the metabolites. Furthermore, it is shown that depending on the extraction conditions enzymatic degradation mechanisms can occur. Investigation of the fractions obtained with the different extraction methods