Science.gov

Sample records for metal borides stability

  1. Microstructure and thermal stability of transition metal nitrides and borides on GaN

    SciTech Connect

    Jasinski, J.; Kaminska, E.; Piotrowska, A.; Barcz, A.; Zielinski, M.

    2000-06-28

    Microstructure and thermal stability of ZrN/ZrB2 bilayer deposited on GaN have been studied using transmission electron microscopy methods (TEM) and secondary ion mass spectrometry (SIMS). It has been demonstrated that annealing of the contact structure at 1100 C in N2 atmosphere does not lead to any observable metal/ semiconductor interaction. In contrast, a failure of the integrity of ZrN/ZrB2 metallization at 800 C, when the heat treatment is performed in O2 ambient has been observed.

  2. Discovery of elusive structures of multifunctional transition-metal borides.

    PubMed

    Liang, Yongcheng; Wu, Zhaobing; Yuan, Xun; Zhang, Wenqing; Zhang, Peihong

    2016-01-14

    A definitive determination of crystal structures is an important prerequisite for designing and exploiting new functional materials. Even though tungsten and molybdenum borides (TMBx) are the prototype for transition-metal light-element compounds with multiple functionalities, their elusive crystal structures have puzzled scientists for decades. Here, we discover that the long-assumed TMB2 phases with the simple hP3 structure (hP3-TMB2) are in fact a family of complex TMB3 polytypes with a nanoscale ordering along the axial direction. Compared with the energetically unfavorable and dynamically unstable hP3-TMB2 phase, the energetically more favorable and dynamically stable TMB3 polytypes explain the experimental structural parameters, mechanical properties, and X-ray diffraction (XRD) patterns better. We demonstrate that such a structural and compositional modification from the hP3-TMB2 phases to the TMB3 polytypes originates from the relief of the strong antibonding interaction between d electrons by removing one third of metal atoms systematically. These results resolve the longstanding structural mystery of this class of metal borides and uncover a hidden family of polytypic structures. Moreover, these polytypic structures provide an additional hardening mechanism by forming nanoscale interlocks that may strongly hinder the interlayer sliding movements, which promises to open a new avenue towards designing novel superhard nanocomposite materials by exploiting the coexistence of various polytypes.

  3. Structural and mechanical properties of transition metal borides Nb2MB2 (M=Tc, Ru, and Os) under pressure

    NASA Astrophysics Data System (ADS)

    Li, Xiaofeng; Yan, Haiyan; Wei, Qun

    2016-10-01

    First-principle total energy calculations are employed to provide a fundamental understanding of the structural, mechanical, and electronic properties of transition metal borides Nb2MB2 (M=Tc, Ru, and Os) within the tetragonal superstructure P4/mnc structure. The mechanically and dynamically stabilities of three borides have been demonstrated by the elastic constants and phonons calculations under pressure. Among these three compounds, Nb2TcB2 exhibits the biggest bulk and Young's modulus, smallest Poission's ratio, and highest harness. Density of states of them revealed that the strong B-B, Nb-B and M-B covalent bonds are major driving forces for their high bulk and shear moduli as well as small Poisson's ratio.

  4. Metal boride catalysts for indirect liquefaction. Quarterly technical progress report, December 1, 1983-February 29, 1984

    SciTech Connect

    Bartholomew, C.H.

    1984-04-12

    During the sixth quarter four boron-promoted cobalt catalysts were prepared by a new boriding process using diborane gas as the boriding agent. These catalysts were characterized by chemical analysis, BET, H/sub 2/ chemisorption, and x-ray diffraction. Temperature-programmed desorption spectra of H/sub 2/ were obtained for a sodium-promoted cobalt boride and a sodium-promoted Co/SiO/sub 2/. Four cobalt catalysts (unsupported, boron-promoted, sodium-promoted, and doubly-promoted) were tested for CO hydrogenation activity and selectivity at 1 atm and 3 to 4 temperatures in the range of 190 to 240/sup 0/C. About 10% of the surface of cobalt boride consists of reduced metallic cobalt. The addition of sodium to cobalt increases its binding energy with H/sub 2/ and its activation energy for H/sub 2/ adsorption. Boron does not affect the activity of cobalt; sodium decreases it by a factor of 10. Cobalt boride produces lighter hydrocarbon products relative to cobalt; sodium-promoted cobalt produces heavier products, more alcohols, and more CO/sub 2/. 29 references, 10 figures, 4 tables.

  5. Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Catledge, Shane A.

    2016-02-01

    Strengthening of cemented tungsten carbide by boriding is used to improve the wear resistance and lifetime of carbide tools; however, many conventional boriding techniques render the bulk carbide too brittle for extreme conditions, such as hard rock drilling. This research explored the variation in metal-boride phase formation during the microwave plasma enhanced chemical vapor deposition process at surface temperatures from 700 to 1100 °C. We showed several well-adhered metal-boride surface layers consisting of WCoB, CoB and/or W2CoB2 with average hardness from 23 to 27 GPa and average elastic modulus of 600-730 GPa. The metal-boride interlayer was shown to be an effective diffusion barrier against elemental cobalt; migration of elemental cobalt to the surface of the interlayer was significantly reduced. A combination of glancing angle X-ray diffraction, electron dispersive spectroscopy, nanoindentation and scratch testing was used to evaluate the surface composition and material properties. An evaluation of the material properties shows that plasma enhanced chemical vapor deposited borides formed at substrate temperatures of 800 °C, 850 °C, 900 °C and 1000 °C strengthen the material by increasing the hardness and elastic modulus of cemented tungsten carbide. Additionally, these boride surface layers may offer potential for adhesion of ultra-hard carbon coatings.

  6. Selection of peptides binding to metallic borides by screening M13 phage display libraries

    PubMed Central

    2014-01-01

    Background Metal borides are a class of inorganic solids that is much less known and investigated than for example metal oxides or intermetallics. At the same time it is a highly versatile and interesting class of compounds in terms of physical and chemical properties, like semiconductivity, ferromagnetism, or catalytic activity. This makes these substances attractive for the generation of new materials. Very little is known about the interaction between organic materials and borides. To generate nanostructured and composite materials which consist of metal borides and organic modifiers it is necessary to develop new synthetic strategies. Phage peptide display libraries are commonly used to select peptides that bind specifically to metals, metal oxides, and semiconductors. Further, these binding peptides can serve as templates to control the nucleation and growth of inorganic nanoparticles. Additionally, the combination of two different binding motifs into a single bifunctional phage could be useful for the generation of new composite materials. Results In this study, we have identified a unique set of sequences that bind to amorphous and crystalline nickel boride (Ni3B) nanoparticles, from a random peptide library using the phage display technique. Using this technique, strong binders were identified that are selective for nickel boride. Sequence analysis of the peptides revealed that the sequences exhibit similar, yet subtle different patterns of amino acid usage. Although a predominant binding motif was not observed, certain charged amino acids emerged as essential in specific binding to both substrates. The 7-mer peptide sequence LGFREKE, isolated on amorphous Ni3B emerged as the best binder for both substrates. Fluorescence microscopy and atomic force microscopy confirmed the specific binding affinity of LGFREKE expressing phage to amorphous and crystalline Ni3B nanoparticles. Conclusions This study is, to our knowledge, the first to identify peptides that

  7. Infiltration processing of boron carbide-, boron-, and boride-reactive metal cermets

    DOEpatents

    Halverson, Danny C.; Landingham, Richard L.

    1988-01-01

    A chemical pretreatment method is used to produce boron carbide-, boron-, and boride-reactive metal composites by an infiltration process. The boron carbide or other starting constituents, in powder form, are immersed in various alcohols, or other chemical agents, to change the surface chemistry of the starting constituents. The chemically treated starting constituents are consolidated into a porous ceramic precursor which is then infiltrated by molten aluminum or other metal by heating to wetting conditions. Chemical treatment of the starting constituents allows infiltration to full density. The infiltrated precursor is further heat treated to produce a tailorable microstructure. The process at low cost produces composites with improved characteristics, including increased toughness, strength.

  8. Transition metal carbides, nitrides and borides, and their oxygen containing analogs useful as water gas shift catalysts

    DOEpatents

    Thompson, Levi T.; Patt, Jeremy; Moon, Dong Ju; Phillips, Cory

    2003-09-23

    Mono- and bimetallic transition metal carbides, nitrides and borides, and their oxygen containing analogs (e.g. oxycarbides) for use as water gas shift catalysts are described. In a preferred embodiment, the catalysts have the general formula of M1.sub.A M2.sub.B Z.sub.C O.sub.D, wherein M1 is selected from the group consisting of Mo, W, and combinations thereof; M2 is selected from the group consisting of Fe, Ni, Cu, Co, and combinations thereof; Z is selected from the group consisting of carbon, nitrogen, boron, and combinations thereof; A is an integer; B is 0 or an integer greater than 0; C is an integer; O is oxygen; and D is 0 or an integer greater than 0. The catalysts exhibit good reactivity, stability, and sulfur tolerance, as compared to conventional water shift gas catalysts. These catalysts hold promise for use in conjunction with proton exchange membrane fuel cell powered systems.

  9. Electronic, structural and magnetic studies of niobium borides of group 8 transition metals, Nb2MB2 (M=Fe, Ru, Os) from first principles calculations

    NASA Astrophysics Data System (ADS)

    Touzani, Rachid St.; Fokwa, Boniface P. T.

    2014-03-01

    The Nb2FeB2 phase (U3Si2-type, space group P4/mbm, no. 127) is known for almost 50 years, but until now its magnetic properties have not been investigated. While the synthesis of Nb2OsB2 (space group P4/mnc, no. 128, a twofold superstructure of U3Si2-type) with distorted Nb-layers and Os2-dumbbells was recently achieved, "Nb2RuB2" is still not synthesized and its crystal structure is yet to be revealed. Our first principles density functional theory (DFT) calculations have confirmed not only the experimental structures of Nb2FeB2 and Nb2OsB2, but also predict "Nb2RuB2" to crystalize with the Nb2OsB2 structure type. According to chemical bonding analysis, the homoatomic B-B interactions are optimized and very strong, but relatively strong heteroatomic M-B, B-Nb and M-Nb bonds (M=Fe, Ru, Os) are also found. These interactions, which together build a three-dimensional network, are mainly responsible for the structural stability of these ternary borides. The density-of-states at the Fermi level predicts metallic behavior, as expected, from metal-rich borides. Analysis of possible magnetic structures concluded preferred antiferromagnetic ordering for Nb2FeB2, originating from ferromagnetic interactions within iron chains and antiferromagnetic exchange interactions between them.

  10. High-temperature thermochemistry of transition metal borides, silicides and related compounds. Final report

    SciTech Connect

    Klemppa, Ole J.

    2000-10-01

    Earlier this year in collaboration with Dr. Susan V. Meschel we prepared a major review paper which gives a comprehensive summary of what our laboratory has accomplished with support from DOE. This paper is No.43 in the List of Publications provided. It was presented to TMS at its National Meeting in Nashville, TN last March. A copy of the manuscript of this paper was recently mailed to DOE. It has been submitted for publication in Journal of Alloys and Compounds. This review paper summarizes our observed trends in the enthalpies of formation of TR-X and RE-X compounds (where X is a IIIB or IVB element) in their dependence of the atomic number of the transition metal (TR) and the lanthanide metal (RE). In this paper our measured enthalpies of formation for each alloy family are compared for the 3d, 4d and 5d transition metal elements. We also compare our experimental results with predicted values based on Miedema's semi-empirical model. Data are presented for the carbides, silicides, germanides and stannides in Group IVB, and for the borides and aluminides in Group IIIB. During the past year (1999-2000) we have extended our work to compounds of the 3d, 4d and 5d elements with gallium (see papers No.40, No.41, and No.45 in the List of Publications). Fig. 1 (taken from No.45) presents a systematic picture of our experimental values for the most exothermic gallide compounds formed with the transition elements. This figure is characteristic of the other systematic pictures which we have found for the two other IIIB elements which we have studied and for the four IVB elements. These figures are all presented in Ref. No.43. This paper also illustrates how the enthalpy of formation of compounds of the IIIB and IVB elements with the lanthanide elements (with the exception of Pm, Eu and Yb) depend on the atomic number of RE. Finally our results for the RE-X compounds are compared with the predictions of Gschneidner (K.A. Gschneidner, Jr., J. Less Common Metals 17, 1

  11. Interlayer utilization (including metal borides) for subsequent deposition of NSD films via microwave plasma CVD on 316 and 440C stainless steels

    NASA Astrophysics Data System (ADS)

    Ballinger, Jared

    . Surface boriding was implemented using the novel method of microwave plasma CVD with a mixture of hydrogen and diborane gases. On 440C bearings, dual phase boride layers of Fe2B and FeB were formed which supported adhered nanostructured diamond films. Continuity of the films was not seamless with limited regions remaining uncoated potentially corresponding to delamination of the film as evidenced by the presence of tubular structures presumably composed of sp2 bonded carbon. Surface boriding of 316 stainless steel discs was conducted at various powers and pressures to achieve temperatures ranging from 550-800 °C. The substrate boriding temperature was found to substantially influence the resultant interlayer by altering the metal boride(s) present. The lowest temperatures produced an interlayer where CrB was the single detected phase, higher temperatures yielded the presence of only Fe2B, and a combination of the two phases resulted from an intermediate boriding temperature. Compared with the more common, commercialized boriding methods, this a profound result given the problems posed by the FeB phase in addition to other advantages offered by CVD processes and microwave generated plasmas in general. Indentation testing of the boride layers revealed excellent adhesion strength for all borided interlayers, and above all, no evidence of cracking was observed for a sole Fe2B phase. As with boriding of 440C bearings, subsequent diamond deposition was achieved on these interlayers with substantially improved adhesion strength relative to diamond coated TiN interlayers. Both XRD and Raman spectroscopy confirmed a nanostructured diamond film with interfacial chromium carbides responsible for enhanced adhesion strength. Interlayers consisting solely of Fe2B have displayed an ability to support fully continuous nanostructured diamond films, yet additional study is required for consistent reproduction. This is in good agreement with initial work on pack borided high alloy steels

  12. Pre-irradiation spatial distribution and stability of boride particles in rapidly solidified boron-doped stainless steels

    SciTech Connect

    Kanani, N.; Arnberg, L.; Harling, O.K.

    1981-01-01

    The time temperature behavior of boride particles has been studied in rapidly solidified ultra low carbon and nitrogen modified 316 stainless steel with 0.088% boron and 0.45% zirconium. The results show that the as-splat-cooled specimens exhibit precipitates at the grain boundaries and triple junctions. For temperatures up to about 750/sup 0/C no significant microstructural changes occur for short heat treatment times. In the temperature range of 750 to 950/sup 0/C, however, particles typically 100 to 500 A in diameter containing Zr and B are formed within the grains. Higher temperatures enhance the formation of such particles and give rise to particle networks. The results show that a fine and uniform distribution of the boride particles almost exclusively within the grains can be achieved if proper annealing conditions are chosen. This type of distribution is an important requirement for the homogeneous production of helium during neutron irradiation in fast reactors.

  13. Colloidal nickel boride catalyst for hydrogenation of olefins

    SciTech Connect

    Nakao, Y.; Fujishige, S.

    1981-04-01

    Colloidal nickel boride was prepared from nickel(II) chloride by reduction with sodium borohydride in the presence of polyvinylpyrrolidone in ethanol. Hydrogenation of various olefins was examined over the colloidal catalyst at 30/sup 0/C and atmospheric pressure. The colloidal nickel boride was much more effective than the precipitated nickel boride prepared in the absence of polyvinylpyrrolidone as a hydrogenation catalyst, especially for isopropenyl compounds. Additional amines and sodium acetate were slightly inhibitive to the colloidal catalyst, while, being strongly promotive to the precipitated catalyst. The colloidal nickel boride was superior to the charcoal-supported metals of the platinum group in catalytic activity for ..cap alpha..-methylstyrene.

  14. Stability and crystal chemistry of the ternary borides M2(Ni21-xMx)B6 (M tbnd Ti, Zr, Hf)

    NASA Astrophysics Data System (ADS)

    Artini, C.; Provino, A.; Valenza, F.; Pani, M.; Cacciamani, G.

    2016-01-01

    A crystallochemical study was undertaken to investigate the structural stability and the compositional extent of the ternary borides M2(Ni21-xMx)B6 (M tbnd Ti, Zr, Hf). This phase often occurs during the production of MB2 joints by means of Ni-B brazing alloys. Samples with the nominal compositions M2Ni21B6 and M3Ni20B6 were synthesized by arc melting and characterized by optical and electron microscopy, and X-ray diffraction. Crystal structure refinements were performed by the Rietveld method. The compositional boundaries of the ternary phases were experimentally determined and found strictly related to the M/Ni size ratio. The stability of this structure is mainly determined by the capability of the structure to expand under the effect of the Ni substitution by the M atom. The CALPHAD modeling of the three M-Ni-B ternary systems in the Ni-rich corner of the phase diagram, performed on the basis of the obtained structural data, shows a good agreement with experimental results.

  15. Metallic Borides, La2Re3B7 and La3Re2B5, Featuring Extensive Boron-Boron Bonding.

    PubMed

    Bugaris, Daniel E; Malliakas, Christos D; Chung, Duck Young; Kanatzidis, Mercouri G

    2016-02-15

    La2Re3B7 and La3Re2B5 have been synthesized in single-crystalline form from a molten La/Ni eutectic at 1000 °C in the first example of the flux crystal growth of ternary rare-earth rhenium borides. Both compounds crystallize in their own orthorhombic structure types, with La2Re3B7 (space group Pcca) having lattice parameters a = 7.657(2) Å, b = 6.755(1) Å, and c = 11.617(2) Å, and La3Re2B5 (space group Pmma) having lattice parameters a = 10.809(2) Å, b = 5.287(1) Å, and c = 5.747(1) Å. The compounds possess three-dimensional framework structures that are built up from rhenium boride polyhedra and boron-boron bonding. La3Re2B5 features fairly common B2 dumbbells, whereas La2Re3B7 has unique one-dimensional subunits composed of alternating triangular B3 and trans-B4 zigzag chain fragments. Also observed in La3Re2B5 is an unusual coordination of B by an octahedron of La atoms. Electronic band structure calculations predict that La2Re3B7 is a semimetal, which is observed in the electrical resistivity data as measured on single crystals, with behavior obeying the Bloch-Grüneisen model and a room-temperature resistivity ρ300 K of ∼375 μΩ cm. The electronic band structure calculations also suggest that La3Re2B5 is a regular metal. PMID:26812202

  16. The complex metal-rich boride Ti{sub 1+x}Rh{sub 2-x+y}Ir{sub 3-y}B{sub 3} (x=0.68, y=1.06) with a new structure type containing B{sub 4} zigzag fragments: Synthesis, crystal chemistry and theoretical calculations

    SciTech Connect

    Goerens, Christian; Fokwa, Boniface P.T.

    2012-08-15

    : Black-Right-Pointing-Pointer Synthesis of a new metal-rich complex boride. Black-Right-Pointing-Pointer New structure type containing isolated boron and trans zigzag B{sub 4} units. Black-Right-Pointing-Pointer Crystallographic parameters and bond length well reproduced by theory. Black-Right-Pointing-Pointer Strong boron-boron and metal-boron interactions responsible for structural stability. Black-Right-Pointing-Pointer Three-dimensional metallic network responsible for metallic behavior.

  17. Gradient boride layers formed by diffusion carburizing and laser boriding

    NASA Astrophysics Data System (ADS)

    Kulka, M.; Makuch, N.; Dziarski, P.; Mikołajczak, D.; Przestacki, D.

    2015-04-01

    Laser boriding, instead of diffusion boriding, was proposed to formation of gradient borocarburized layers. The microstructure and properties of these layers were compared to those-obtained after typical diffusion borocarburizing. First method of treatment consists in diffusion carburizing and laser boriding only. In microstructure three zones are present: laser borided zone, hardened carburized zone and carburized layer without heat treatment. However, the violent decrease in the microhardness was observed below the laser borided zone. Additionally, these layers were characterized by a changeable value of mass wear intensity factor thus by a changeable abrasive wear resistance. Although at the beginning of friction the very low values of mass wear intensity factor Imw were obtained, these values increased during the next stages of friction. It can be caused by the fluctuations in the microhardness of the hardened carburized zone (HAZ). The use of through hardening after carburizing and laser boriding eliminated these fluctuations. Two zones characterized the microstructure of this layer: laser borided zone and hardened carburized zone. Mass wear intensity factor obtained a constant value for this layer and was comparable to that-obtained in case of diffusion borocarburizing and through hardening. Therefore, the diffusion boriding could be replaced by the laser boriding, when the high abrasive wear resistance is required. However, the possibilities of application of laser boriding instead of diffusion process were limited. In case of elements, which needed high fatigue strength, the substitution of diffusion boriding by laser boriding was not advisable. The surface cracks formed during laser re-melting were the reason for relatively quickly first fatigue crack. The preheating of the laser treated surface before laser beam action would prevent the surface cracks and cause the improved fatigue strength. Although the cohesion of laser borided carburized layer was

  18. Development and application of high strength ternary boride base cermets

    SciTech Connect

    Takagi, Ken-ichi . E-mail: u4381@toyokohan.co.jp

    2006-09-15

    Reaction boronizing sintering is a novel strategy to form a ternary boride coexisting with a metal matrix in a cermet during liquid phase sintering. This new sintering technique has successfully developed world first ternary boride base cermets with excellent mechanical properties such as Mo{sub 2}FeB{sub 2}, Mo{sub 2}NiB{sub 2} and WCoB base ones. In these cermets Mo{sub 2}FeB{sub 2} and Mo{sub 2}NiB{sub 2} base ones consist of a tetragonal M {sub 3}B{sub 2} (M: metal)-type complex boride as a hard phase and a transition metal base matrix. The cermets have already been applied to wear resistant applications such as injection molding machine parts, can making tools, and hot copper extruding dies, etc. This paper focuses on the characteristics, effects of the additional elements on the mechanical properties and structure, and practical applications of the ternary boride base cermets. - Graphical abstract: TRS and hardness of Ni-5B-51Mo-17.5Cr and Ni-5B-51Mo-12.5Cr-5V-xMn mass% cermets as functions of Mn content (Fig. 17)

  19. Morphology and structure of borides in as-cast titanium and gamma-titanium aluminide-based alloys

    NASA Astrophysics Data System (ADS)

    Kitkamthorn, Usanee

    In this study, the morphology and structure of the borides in boron-modified Ti- and gamma-TiAl-based alloys have been investigated using SEM, TEM, and HRTEM. A variety of different boride morphologies was observed including plates, needles, and ribbons. For the plate and needle borides, the major boride phase is B27 TiB. The needle borides have their major axis parallel to [010], and are bounded by (100) and {101} type-facets. The plate borides develop the same types of facets as the needles and have habit planes parallel to the (100). There are high densities of intrinsic stacking faults on (100) in these borides and these correspond to thin embedded layers of the Bf structure. The plate borides do not exhibit well-defined ORs with respect to the surrounding phases, suggesting that they develop in the liquid melt and were then trapped by the growing solid. Needle borides are observed mostly at boundaries between lamellar colonies: these needles tend to occur in groups lying nearly parallel to one another and, in some cases, to adopt well-defined ORs with respect to the surrounding phases. Cored borides with metallic phases such as beta, alpha, o and alpha 2+gamma in the center are frequently observed, especially in the Ti-based alloy. These core phases usually adopt well-defined ORs with respect to the surrounding boride which enable low-energy coherent interfaces to form between the phases. The ribbon borides are comprised of thin boride flakes interspersed with thin metallic layers. The major boride phase in these flakes is Bf TiB. The habit plane of the flakes is (010) and there are high densities of faults on this plane corresponding to intergrowths of the Ti3B 4 and TiB2 phases, together with thin layers or occluded pockets of metallic B2 phase. Occasional faults are observed on {110} corresponding to embedded slabs of B27 TiB. There is a well-defined OR between the boride flakes and the B2 phase within the ribbons, but not with the surrounding matrix. The

  20. THE STABILITY AND REVERSIBILITY OF METALLIC BOROHYDRIDES

    SciTech Connect

    Au, M

    2007-07-27

    In effort to develop reversible metallic borohydrides with high hydrogen storage capacity and low dehydriding temperature, several new materials have been synthesized by modifying LiBH{sub 4} with various metal halides and hydrides. The investigation shows that the halide modification effectively reduced the dehydriding temperature through ion exchange interaction. The effective halides are TiCl{sub 3}, TiF{sub 3}, ZnF{sub 2} and AlF{sub 3}. The material LiBH{sub 4}+0.1TiF{sub 3} desorbs 3.5wt% and 8.5wt% hydrogen at 150 C and 450 C respectively. It re-absorbed 6wt% hydrogen at 500 C and 70 bar after dehydrogenation. The XRD of the rehydrided samples confirmed the formation of LiBH{sub 4}. It indicates that the materials are reversible at the conditions given. However, a number of other halides: MgF{sub 2}, MgCl{sub 2}, CaCl{sub 2}, SrCl{sub 2} and FeCl{sub 3}, did not reduce dehydriding temperature of LiBH{sub 4} significantly. TGA-RGA analysis indicated that some halide modified lithium borohydrides such as LiBH{sub 4}+0.1ZnF{sub 2} evolved diborane during dehydrogenation, but some did not such as LiBH{sub 4}+0.1TiCl{sub 3}. The formation of diborane caused unrecoverable capacity loss resulting in irreversibility. It is suggested that the lithium borohydrides modified by the halides containing the metals that can not form metal borides with boron are likely to evolve diborane during dehydriding. It was discovered that halide modification reduces sensitivity of LiBH{sub 4}. The materials such as LiBH{sub 4}+0.1TiCl{sub 3} and LiBH{sub 4}+0.5TiCl{sub 3} can be handled in open air without visible reaction.

  1. Plasma boriding of a cobalt-chromium alloy as an interlayer for nanostructured diamond growth

    NASA Astrophysics Data System (ADS)

    Johnston, Jamin M.; Jubinsky, Matthew; Catledge, Shane A.

    2015-02-01

    Chemical vapor deposited (CVD) diamond coatings can potentially improve the wear resistance of cobalt-chromium medical implant surfaces, but the high cobalt content in these alloys acts as a catalyst to form graphitic carbon. Boriding by high temperature liquid baths and powder packing has been shown to improve CVD diamond compatibility with cobalt alloys. We use the microwave plasma-enhanced (PE) CVD process to deposit interlayers composed primarily of the borides of cobalt and chromium. The use of diborane (B2H6) in the plasma feedgas allows for the formation of a robust boride interlayer for suppressing graphitic carbon during subsequent CVD of nano-structured diamond (NSD). This metal-boride interlayer is shown to be an effective diffusion barrier against elemental cobalt for improving nucleation and adhesion of NSD coatings on a CoCrMo alloy. Migration of elemental cobalt to the surface of the interlayer is significantly reduced and undetectable on the surface of the subsequently-grown NSD coating. The effects of PECVD boriding are compared for a range of substrate temperatures and deposition times and are evaluated using glancing-angle X-ray diffraction (XRD), cross-sectional scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and micro-Raman spectroscopy. Boriding of CoCrMo results in adhered nanostructured diamond coatings with low surface roughness.

  2. Metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A; Medforth, Craig J

    2013-10-29

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  3. Boride-based nano-laminates with MAX-phase-like behaviour

    SciTech Connect

    Telle, Rainer . E-mail: telle@ghi.rwth-aachen.de; Momozawa, Ai; Music, Denis; Schneider, Jochen M.

    2006-09-15

    MAX-phases being usually composed of transition metals, group A elements and carbon/nitrogen are considered interesting materials for many applications because of their tremendous bulk modulus, 'reversible' plasticity, and machinability. This is mainly due to their unique kind of bonding comprising covalent, ionic as well as metallic bonds providing 'easy' planes of rupture and deformability due to the layered crystal structures. In transition metal boride systems, similar types of bonding are available. In particular the W{sub 2}B{sub 5}-structure type and its stacking variations allow the synthesis of strongly layered crystal structures exhibiting unique delamination phenomena. The paper presents ab initio calculations showing the similarities of bonding between the ternary carbides and the corresponding ternary or quaternary borides. Formation of boride-based nano-laminates from auxiliary liquid phases, from the melt as well as during sintering and precipitation from supersaturated solid solutions will be discussed by means of SEM and TEM studies. The role of impurities weakening the interlayer bonding will be addressed in particular. The pronounced cleavage parallel to the basal plane gives rise for crack deflection and pull-out mechanisms if the laminates are dispersed in brittle matrices such as boron carbide, silicon carbide or other transition metal borides. - Graphical abstract: Some transition metal borides crystallise in a layered structure of alternating stacks of metal and boron atoms giving rise for strongly anisotropic properties. Their preferred cleavage parallel and the deformability perpendicular to the basal plan are similar to the peculiar mechanical behaviour recently described for MAX-phases. Ab initio calculations of the crystal structure prove the weak bonds between the layers for a variety of borides which can be used to reinforce ceramic materials on a nano-scale level.

  4. Ultrahigh stability of atomically thin metallic glasses

    SciTech Connect

    Cao, C. R.; Huang, K. Q.; Zhao, N. J.; Sun, Y. T.; Bai, H. Y.; Gu, L. E-mail: dzheng@iphy.ac.cn Zheng, D. N. E-mail: dzheng@iphy.ac.cn Wang, W. H. E-mail: dzheng@iphy.ac.cn

    2014-07-07

    We report the fabrication and study of thermal stability of atomically thin ZrCu-based metallic glass films. The ultrathin films exhibit striking dynamic properties, ultrahigh thermal stability, and unique crystallization behavior with discrete crystalline nanoparticles sizes. The mechanisms for the remarkable high stability and crystallization behaviors are attributed to the dewetting process of the ultrathin film. We demonstrated a promising avenue for understanding some fundamental issues such as glassy structure, crystallization, deformation, and glass formation through atomic resolution imaging of the two dimensional like metallic glasses.

  5. In{sub 3}Ir{sub 3}B, In{sub 3}Rh{sub 3}B and In{sub 5}Ir{sub 9}B{sub 4}, the first indium platinum metal borides

    SciTech Connect

    Kluenter, Wilhelm; Jung, Walter . E-mail: walter.jung@uni-koeln.de

    2006-09-15

    The first indium platinum metal borides have been synthesized and structurally characterized by single crystal X-ray diffraction data. In{sub 3}Ir{sub 3}B and In{sub 3}Rh{sub 3}B are isotypic. They crystallize with the hexagonal space group P6-bar 2m and Z=1. The lattice constants are a=685.78(1)pm, c=287.30(1)pm for In{sub 3}Ir{sub 3}B and a=678.47(3)pm, c=288.61(6)pm for In{sub 3}Rh{sub 3}B. The structure which is derived from the Fe{sub 2}P type is characterized by columns of boron centered triangular platinum metal prisms inserted in a three-dimensional indium matrix. The indium atoms are on split positions. In{sub 5}Ir{sub 9}B{sub 4} (hexagonal, space group P6-bar 2m, a=559.0(2)pm, c=1032.6(3)pm, Z=1) crystallizes with a structure derived from the CeCo{sub 3}B{sub 2} type. The structure can be interpreted as a layer as well as a channel structure. In part the indium atoms are arranged at the vertices of a honeycomb net (Schlaefli symbol 6{sup 3}) separating slabs consisting of double layers of triangular Ir{sub 6}B prisms, and in part they form a linear chain in a hexagonal channel formed by iridium prisms and indium atoms of the honeycomb lattice.

  6. Metals and Alloys Material Stabilization Process Plan

    SciTech Connect

    RISENMAY, H.R.; BURK, R.A.

    2000-05-18

    This Plan outlines the process for brushing metal and alloys in accordance with the path forward discussed in the Integrated Project Management Plan for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617, and requirements set forth in the Project Management Plan for Materials Stabilization, HNF-3605. This plan provides the basis for selection of the location to process, the processes involved, equipment to be used, and the characterization of the contents of the can. The scope of the process is from retrieval of metals and alloys from storage to transfer back to storage in a repackaged configuration.

  7. New examples of ternary rare-earth metal boride carbides containing finite boron carbon chains: The crystal and electronic structure of RE15B6C20 (RE=Pr, Nd)

    NASA Astrophysics Data System (ADS)

    Babizhetskyy, Volodymyr; Mattausch, Hansjürgen; Simon, Arndt; Hiebl, Kurt; Ben Yahia, Mouna; Gautier, Régis; Halet, Jean-François

    2008-08-01

    The ternary rare-earth metal boride carbides RE15B6C20 (RE=Pr, Nd) were synthesized by co-melting the elements. They exist above 1270 K. Their crystal structures were determined from single-crystal X-ray diffraction data. Both crystallize in the space group P1¯, Z=1, a=8.3431(8) Å, b=9.2492(9) Å, c=8.3581(8) Å, α=84.72(1)°, β=89.68(1)°, γ =84.23(1)° (R1=0.041 (wR2=0.10) for 3291 reflections with Io>2σ(Io)) for Pr15B6C20, and a=8.284(1) Å, b=9.228(1) Å, c=8.309(1) Å, α=84.74(1)°, β=89.68(1)°, γ=84.17(2)° (R1=0.033 (wR2=0.049) for 2970 reflections with Io>2σ(Io)) for Nd15B6C20. Their structure consists of a three-dimensional framework of rare-earth metal atoms resulting from the stacking of slightly corrugated and distorted square nets, leading to cavities filled with unprecedented B2C4 finite chains, disordered C3 entities and isolated carbon atoms, respectively. Structural and theoretical analyses suggest the ionic formulation (RE3+)15([B2C4]6-)3([C3]4-)2(C4-)2·11ē. Accordingly, density functional theory calculations indicate that the compounds are metallic. Both structural arguments as well as energy calculations on different boron vs. carbon distributions in the B2C4 chains support the presence of a CBCCBC unit. Pr15B6C18 exhibits antiferromagnetic order at TN=7.9 K, followed by a meta-magnetic transition above a critical external field B>0.03 T. On the other hand, Nd15B6C18 is a ferromagnet below TC≈40 K.

  8. Kinetics of electrochemical boriding of low carbon steel

    NASA Astrophysics Data System (ADS)

    Kartal, G.; Eryilmaz, O. L.; Krumdick, G.; Erdemir, A.; Timur, S.

    2011-05-01

    In this study, the growth kinetics of the boride layers forming on low carbon steel substrates was investigated during electrochemical boriding which was performed at a constant current density of 200 mA/cm 2 in a borax based electrolyte at temperatures ranging from 1123 K to 1273 K for periods of 5-120 min. After boriding, the presence of both FeB and Fe 2B phases were confirmed by the X-ray diffraction method. Cross-sectional microscopy revealed a very dense and thick morphology for both boride phases. Micro hardness testing of the borided steel samples showed a significant increase in the hardness of the borided surfaces (i.e., up to (1700 ± 200) HV), while the hardness of un-borided steel samples was approximately (200 ± 20) HV. Systematic studies over a wide range of boriding time and temperature confirmed that the rate of the boride layer formation is strongly dependent on boriding duration and has a parabolic character. The activation energy of boride layer growth for electrochemical boriding was determined as (172.75 ± 8.6) kJ/mol.

  9. Stabilization of heavy metals in sludge ceramsite.

    PubMed

    Xu, G R; Zou, J L; Li, G B

    2010-05-01

    This paper attempts to investigate the stabilization behaviours of heavy metals in ceramsite made from wastewater treatment sludge (WWTS) and drinking-water treatment sludge (DWTS). Leaching tests were conducted to find out the effects of sintering temperature, (Fe(2)O(3) + CaO + MgO)/(SiO(2) + Al(2)O(3)) (defined as F/SA ratios), pH, and oxidative condition. Results show that sintering exhibits good binding capacity for Cd, Cr, Cu, and Pb in ceramsite and leaching contents of heavy metals will not change above 1000 degrees C. The main crystalline phases in ceramsite sintered at 1000 degrees C are kyanite, quartz, Na-Ca feldspars, sillimanite, and enstatite. The main compounds of heavy metals are crocoite, chrome oxide, cadmium silicate, and copper oxide. Leaching contents of Cd, Cu, and Pb increase as the F/SA ratios increase. Heavy metals in ceramsite with variation of F/SA ratios are also in same steady forms, which prove that stronger chemical bonds are formed between these heavy metals and the components. Leaching contents of heavy metals decrease as pH increases and increase as H(2)O(2) concentration increases. The results indicate that when subjected to rigorous leaching conditions, the crystalline structures still exhibit good chemical binding capacity for heavy metals. In conclusion, it is environmentally safe to use ceramsite in civil and construction fields. PMID:20219229

  10. Beta cell device using icosahedral boride compounds

    DOEpatents

    Aselage, Terrence L.; Emin, David

    2002-01-01

    A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15boride compound self-heals, resisting degradation from radiation damage.

  11. Stability of bulk metallic glass structure

    SciTech Connect

    Jain, H.; Williams, D.B.

    2003-06-18

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub (80-x)}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  12. A Crossover from High Stiffness to High Hardness: The Case of Osmium and Its Borides

    NASA Astrophysics Data System (ADS)

    Bian, Yongming; Liu, Xiaomei; Li, Anhu; Liang, Yongcheng

    2016-09-01

    Transition-metal light-element compounds are currently raising great expectations for hard and superhard materials. Using the widely attracting osmium (Os) and its borides (OsB, Os2B3 and OsB2) as prototypes, we demonstrate by first-principles calculations that heavy transition metals, which possess high stiffness but low hardness, can be converted into highly hard materials by incorporating of light elements to form compounds. Such a crossover is a manifestation that the underlying sources of high stiffness and high hardness are fundamentally different. The stiffness is related to elastic deformation that is closely associated with valence electron density, whereas the hardness depends strongly on plastic deformation that is determined by bonding nature. Therefore, the incorporation of light atoms into transition metal should be a valid pathway of designing hard and superhard materials. This strategy is in principle also applicable to other transition-metal borides, carbides, and nitrides.

  13. The fracture toughness of borides formed on boronized cold work tool steels

    SciTech Connect

    Sen, Ugur; Sen, Saduman

    2003-06-15

    In this study, the fracture toughness of boride layers of two borided cold work tool steels have been investigated. Boriding was carried out in a salt bath consisting of borax, boric acid, ferro-silicon and aluminum. Boriding was performed at 850 and 950 deg. C for 2 to 7 h. The presence of boride phases were determined by X-ray diffraction (XRD) analysis. Hardness and fracture toughness of borides were measured via Vickers indenter. Increasing of boriding time and temperature leads to reduction of fracture toughness of borides. Metallographic examination showed that boride layer formed on cold work tool steels was compact and smooth.

  14. Reactive Boride Brazing on Low-Alloy Automotive Grade Steel

    NASA Astrophysics Data System (ADS)

    Palanisamy, B.; Upadhyaya, A.

    2011-11-01

    Brazing is a widely used process to improve the performance of steels used in automotive applications. The substrate material is often exposed to harsh conditions in these applications and may affect the service life of the component. Reactive boride brazing aims to improve the mechanical properties of the substrate material by forming a ceramic-metal composite coating in a single-step process in situ. In this study, sintered Ancor 4300 low-alloy steel is used as the substrate with chromium-rich braze and chromium-lean braze materials. The mechanical properties of the brazed samples were studied in detail using microindentation hardness measurements and the transverse rupture test. The results indicate that the brazed superlayer has a 10 times higher hardness. There was a significant improvement in the transverse rupture strength of the steel brazed with the chromium-rich boride as compared to the pure substrate material. In an effort to reduce processing time, green compacts of the substrate were also directly brazed and yielded favorable results.

  15. Structure of superhard tungsten tetraboride: A missing link between MB2 and MB12 higher borides

    PubMed Central

    Lech, Andrew T.; Turner, Christopher L.; Mohammadi, Reza; Tolbert, Sarah H.; Kaner, Richard B.

    2015-01-01

    Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten—often referred to as WB4 and sometimes as W1–xB3—is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961—a fact that severely limits our understanding of its structure–property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray–only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedra—slightly distorted boron cuboctahedra—appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals. PMID:25733870

  16. Structure of superhard tungsten tetraboride: a missing link between MB2 and MB12 higher borides.

    PubMed

    Lech, Andrew T; Turner, Christopher L; Mohammadi, Reza; Tolbert, Sarah H; Kaner, Richard B

    2015-03-17

    Superhard metals are of interest as possible replacements with enhanced properties over the metal carbides commonly used in cutting, drilling, and wear-resistant tooling. Of the superhard metals, the highest boride of tungsten--often referred to as WB4 and sometimes as W(1-x)B3--is one of the most promising candidates. The structure of this boride, however, has never been fully resolved, despite the fact that it was discovered in 1961--a fact that severely limits our understanding of its structure-property relationships and has generated increasing controversy in the literature. Here, we present a new crystallographic model of this compound based on refinement against time-of-flight neutron diffraction data. Contrary to previous X-ray-only structural refinements, there is strong evidence for the presence of interstitial arrangements of boron atoms and polyhedral bonding. The formation of these polyhedral--slightly distorted boron cuboctahedra--appears to be dependent upon the defective nature of the tungsten-deficient metal sublattice. This previously unidentified structure type has an intermediary relationship between MB2 and MB12 type boride polymorphs. Manipulation of the fractionally occupied metal and boron sites may provide insight for the rational design of new superhard metals.

  17. Fracture Microindentation on boride layers on AISI 1020 steel

    NASA Astrophysics Data System (ADS)

    Prince, M.; Thanu, A. Justin; Arjun, S. L.; Velmurugan, U.; Gopalakrishnan, P.

    2016-02-01

    In this paper, an attempt has been made to enhance the fracture toughness (Kc) of boride layer using multi-component (Ni, Cr and B) laser bonding. The fracture toughness of continuously pack borided, interrupted pack borided and multi-component (Ni, Cr and B) laser borided steel specimens was measured using Vickers microindentation fracture toughness test as per ASTM E384 standard. The fracture toughness of continuously pack borided layer was - 3.3 MPa.m1/2. The fracture toughness of interrupted boride layer was in the range of - 4.9 MPa.m1/2. The fracture toughness of multi-component (Ni, Cr and B) laser borided layer was in the range of 13.8 - 18.3 MPa.m1/2. A significant improvement in fracture toughness of laser treated specimens was observed from the experimental results. This may be due to better distribution of boron, nickel, chromium and other alloying elements due to laser treatment and relatively more uniform boride layer as compared with continuously pack borided layer and interrupted pack borided layer.

  18. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Kaufman, L.; Clougherty, E. V.; Nesor, H.

    1971-01-01

    Fracture energies of WC-6Co, Boride 5 (ZrB2+SiC), Boride 8(ZrB2+SiC+C) and Boride 8-M2(ZrB2+SiC+C) were measured by slow bend and impact tests of notched charpy bars. Cobalt bonded tungsten carbide exhibited impact energies of 0.76 ft-lb or 73.9 in-lb/square inch. Boride 5 and the Boride 8 exhibit impact energies one third and one quarter of that observed for WC-6Co comparing favorably with measurements for SiC and Si3N4. Slow bend-notched bar-fracture energies for WC-6Co were near 2.6 in-lb/square inch or 1/20 the impact energies. Slow bend energies for Boride 8-M2, Boride 8 and Boride 5 were 58%, 42% and 25% of the value observed for WC-6Co. Fractograph showed differences for WC-6Co where slow bend testing resulted in smooth transgranular cleavage while samples broken by impact exhibited intergranular failures. By contrast the boride fractures showed no distinction based on testing method. Fabrication studies were conducted to effect alteration of the boride composites by alloying and introduction of graphite cloth.

  19. Electrochemical Evaluation of Corrosion on Borided and Non-borided Steels Immersed in 1 M HCl Solution

    NASA Astrophysics Data System (ADS)

    Mejía-Caballero, I.; Martínez-Trinidad, J.; Palomar-Pardavé, M.; Romero-Romo, M.; Herrera-Hernández, H.; Herrera-Soria, O.; Campos Silva, I.

    2014-08-01

    In this study the corrosion resistances of AISI 1018 and AISI 304 borided and non-borided steels were estimated using polarization resistance and electrochemical impedance spectroscopy (EIS) techniques. Boriding of the steel samples was conducted using the powder-pack method at 1223 K with 6 h of exposure. Structural examinations of the surfaces of the borided steels showed the presence of a Fe2B layer with isolated FeB teeth on the AISI 1018 steel, whereas a compact layer of FeB/Fe2B was formed on the AISI 304 steel. Polarization resistance and EIS of the borided and non-borided steels surfaces were performed in a corrosive solution of 1 M HCl. The EIS data were analyzed during 43 days of exposure to the acid solution. Impedance curves obtained during this period for the borided and non-borided steels were modeled using equivalent electrical circuits. The results of both electrochemical techniques indicated that boride layers formed at the steel surfaces effectively protect the samples from the corrosive effects of HCl. The main corrosion processes observed on the boride layers were pitting and crevice corrosion.

  20. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) with Th{sub 7}Fe{sub 3}-type structure

    SciTech Connect

    Misse, Patrick R.N.; Mbarki, Mohammed; Fokwa, Boniface P.T.

    2012-08-15

    Powder samples and single crystals of the new complex boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th{sub 7}Fe{sub 3} structure type (space group P6{sub 3}mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region. - Graphical abstract: The new complex boride series Cr{sub x}(Rh{sub 1-y}Ru{sub y}){sub 7-x}B{sub 3} (x=0.88-1; y=0-1) has been synthesized by arc melting the elements under purified argon atmosphere. Beside the 3d/4d site preference within the whole solid solution, an unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region. Highlights: Black-Right-Pointing-Pointer Synthesis of a new boride series fulfilling Vegard Acute-Accent s rule. Black-Right-Pointing-Pointer 3d/4d site preference. Black-Right-Pointing-Pointer Unexpected Ru/Rh site preference. Black-Right-Pointing-Pointer Rh-rich region is Pauli paramagnetic. Black-Right-Pointing-Pointer Ru-rich region is Pauli and temperature-dependent paramagnetic.

  1. Ternary boride product and process

    NASA Technical Reports Server (NTRS)

    Clougherty, Edward V. (Inventor)

    1976-01-01

    A hard, tough, strong ceramic body is formed by hot pressing a mixture of a powdered metal and a powdered metal diboride. The metal employed is zirconium, titanium or hafnium and the diboride is the diboride of a different member of the same group of zirconium, titanium or hafnium to form a ternary composition. During hot pressing at temperatures above about 2,000.degree.F., a substantial proportion of acicular ternary monoboride is formed.

  2. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB

    NASA Astrophysics Data System (ADS)

    Kota, Sankalp; Zapata-Solvas, Eugenio; Ly, Alexander; Lu, Jun; Elkassabany, Omar; Huon, Amanda; Lee, William E.; Hultman, Lars; May, Steve J.; Barsoum, Michel W.

    2016-05-01

    The ‘MAlB’ phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36–0.49 μΩm) and – like a metal – drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm‑1K‑1 at 26 °C). In the 25–1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10‑6 K‑1. Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures.

  3. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB

    PubMed Central

    Kota, Sankalp; Zapata-Solvas, Eugenio; Ly, Alexander; Lu, Jun; Elkassabany, Omar; Huon, Amanda; Lee, William E.; Hultman, Lars; May, Steve J.; Barsoum, Michel W.

    2016-01-01

    The ‘MAlB’ phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36–0.49 μΩm) and – like a metal – drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm−1K−1 at 26 °C). In the 25–1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10−6 K−1. Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures. PMID:27220751

  4. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB.

    PubMed

    Kota, Sankalp; Zapata-Solvas, Eugenio; Ly, Alexander; Lu, Jun; Elkassabany, Omar; Huon, Amanda; Lee, William E; Hultman, Lars; May, Steve J; Barsoum, Michel W

    2016-01-01

    The 'MAlB' phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36-0.49 μΩm) and - like a metal - drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm(-1)K(-1) at 26 °C). In the 25-1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10(-6 )K(-1). Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures. PMID:27220751

  5. Synthesis and Characterization of an Alumina Forming Nanolaminated Boride: MoAlB.

    PubMed

    Kota, Sankalp; Zapata-Solvas, Eugenio; Ly, Alexander; Lu, Jun; Elkassabany, Omar; Huon, Amanda; Lee, William E; Hultman, Lars; May, Steve J; Barsoum, Michel W

    2016-05-25

    The 'MAlB' phases are nanolaminated, ternary transition metal borides that consist of a transition metal boride sublattice interleaved by monolayers or bilayers of pure aluminum. However, their synthesis and properties remain largely unexplored. Herein, we synthesized dense, predominantly single-phase samples of one such compound, MoAlB, using a reactive hot pressing method. High-resolution scanning transmission electron microscopy confirmed the presence of two Al layers in between a Mo-B sublattice. Unique among the transition metal borides, MoAlB forms a dense, mostly amorphous, alumina scale when heated in air. Like other alumina formers, the oxidation kinetics follow a cubic time-dependence. At room temperature, its resistivity is low (0.36-0.49 μΩm) and - like a metal - drops linearly with decreasing temperatures. It is also a good thermal conductor (35 Wm(-1)K(-1) at 26 °C). In the 25-1300 °C temperature range, its thermal expansion coefficient is 9.5 × 10(-6 )K(-1). Preliminary results suggest the compound is stable to at least 1400 °C in inert atmospheres. Moderately low Vickers hardness values of 10.6 ± 0.3 GPa, compared to other transition metal borides, and ultimate compressive strengths up to 1940 ± 103 MPa were measured at room temperature. These results are encouraging and warrant further study of this compound for potential use at high temperatures.

  6. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    SciTech Connect

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-10-15

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB{sub 2}, ZrB{sub 2}, NbB{sub 2}, CeB{sub 6}, PrB{sub 6}, SmB{sub 6}, EuB{sub 6}, LaB{sub 6}), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN{sub 2}, VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN{sub 3} with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to {approx}850 Degree-Sign C, once the autoclave was heated to 100 Degree-Sign C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: Black-Right-Pointing-Pointer An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. Black-Right-Pointing-Pointer The reaction mechanism is demonstrated by the case of SiC nanowires. Black-Right-Pointing-Pointer The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  7. Potential and limitations of microanalysis SEM techniques to characterize borides in brazed Ni-based superalloys

    SciTech Connect

    Ruiz-Vargas, J.; Siredey-Schwaller, N.; Noyrez, P.; Mathieu, S.; Bocher, P.; and others

    2014-08-15

    Brazed Ni-based superalloys containing complex phases of different Boron contents remain difficult to characterize at the micrometer scale. Indeed Boron is a light element difficult to measure precisely. The state-of-the-art microanalysis systems have been tested on a single crystal MC2 based metal brazed with BNi-2 alloy to identify boride precipitates. Effort has been made to evaluate the accuracy in Boron quantitation. Energy-dispersive and wavelength-dispersive X-ray spectroscopy attached to a Scanning Electron Microscope have first been used to determine the elemental composition of Boron-free phases, and then applied to various types of borides. Results have been compared to the ones obtained using a dedicated electron probe microanalysis, considered here as the reference technique. The most accurate method to quantify Boron using EDS is definitely by composition difference. A precision of 5 at.% could be achieved with optimized data acquisition and post-processing schemes. Attempts that aimed at directly quantifying Boron with various standards using EDS or coupled EDS/WDS gave less accurate results. Ultimately, Electron Backscatter Diffraction combined with localized EDS analysis has proved invaluable in conclusively identifying micrometer sized boride precipitates; thus further improving the characterization of brazed Ni-based superalloys. - Highlights: • We attempt to accurately identify Boron-rich phases in Ni-based superalloys. • EDS, WDS, EBSD systems are tested for accurate identification of these borides. • Results are compared with those obtained by electron probe microanalysis. • Boron was measured with EDS by composition difference with a precision of 5 at. %. • Additional EBSD in phase identification mode conclusively identifies the borides.

  8. Heat capacity and thermal expansion of icosahedral lutetium boride LuB66

    SciTech Connect

    Novikov, V V; Avdashchenko, D V; Matovnikov, A V; Mitroshenkov, N V; Bud’ko, S L

    2014-01-07

    The experimental values of heat capacity and thermal expansion for lutetium boride LuB66 in the temperature range of 2-300 K were analysed in the Debye-Einstein approximation. It was found that the vibration of the boron sub-lattice can be considered within the Debye model with high characteristic temperatures; low-frequency vibration of weakly connected metal atoms is described by the Einstein model.

  9. Stabilization of Electrocatalytic Metal Nanoparticles at Metal-Metal Oxide-Graphene Triple Junction Points

    SciTech Connect

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chong M.; Viswanathan, Vilayanur V.; Park, Seh K.; Aksay, Ilhan A.; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-02

    Carbon-supported metal catalysts are widely used in heterogeneous catalysis and electrocatalysis. In this paper, we report a novel method to deposit metal catalysts and metal oxide nanoparticles on two-dimensional graphene sheets to improve the catalytic performance and stability of the catalyst materials. The new synthesis method allows indium tin oxide (ITO) nanocrystals to be directly grown on functionalized graphene sheets forming the ITO-graphene hybrids. Pt nanoparticles are then deposited to form a special triple-junction structure (Pt-ITO-graphene). Both experimental study and periodic density functional theory calculations show that the supported Pt nanoparticles are stable at Pt-ITO-graphene triple junction points. The new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. The reasons for the high stability and activity of Pt-ITO-graphene are analyzed.

  10. Mechanism of boriding from pastes in a glow discharge

    SciTech Connect

    Isakov, S.A.; Al'tshuler, S.A.

    1987-09-01

    The authors investigate the boridation of steel 45 from the standpoint of the glow-discharge dissociation of a borax paste and the plasma arc spraying of the resulting boron into the steel. The effects of process parameters on the impregnation of boron into the steel and its phase behavior in the boridation process are discussed.

  11. Stability and surface dynamics of metal nanowires

    NASA Astrophysics Data System (ADS)

    Zhang, Chang-Hua

    In this thesis, we have systematically investigated the stability, surface dynamics, electronic transport, and growth of metal nanowires using a semiclassical free energy functional based on the mean-field interacting electron model, which is simple and general enough. In this model, the ionic degrees of freedom of the wire are modeled as an incompressible fluid, and the conducting electrons are treated as a Fermi gas confined within the wire with Dirichlet boundary conditions. In equilibrium, we prove that the electron-electron interaction is a second-order effect to the total grand canonical free energy, while the shell-correction to the noninteracting grand canonical free energy is a first-order effect. To leading order, the electron-electron interactions just renormalize the Weyl parameters, such as the average energy density, surface tension and mean curvature energy, but not the mesoscopic shell effect. This finding for open mesoscopic systems is a generalization of the well-known Strutinsky theorem for finite-Fermion systems. It is for this reason that self-consistent jellium calculations obtain essentially identical equilibrium mesoscopic effects as calculations based on the free-electron model. However, for systems out of equilibrium, the electron-electron interaction plays important roles. First of all, the Strutinsky theorem breaks down in the non-equilibrium case. Secondly, the gauge invariance condition is violated if the electron-electron interaction is not adequately included. We first derive a thermodynamic phase diagram for jellium nanowires, which predicts that cylindrical wires with certain "magic" conductance values are stable with respect to small perturbations up to remarkably high temperatures and high applied voltage. We have shown that Jahn-Teller-distorted wires can be stable. The derived sequence of stable cylindrical and elliptical geometries explains the experimentally observed shell and supershell structures for alkali metals. Highly

  12. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.

    PubMed

    Parmar, Avanish S; Xu, Fei; Pike, Douglas H; Belure, Sandeep V; Hasan, Nida F; Drzewiecki, Kathryn E; Shreiber, David I; Nanda, Vikas

    2015-08-18

    We explore the design of metal binding sites to modulate triple-helix stability of collagen and collagen-mimetic peptides. Globular proteins commonly utilize metals to connect tertiary structural elements that are well separated in sequence, constraining structure and enhancing stability. It is more challenging to engineer structural metals into fibrous protein scaffolds, which lack the extensive tertiary contacts seen in globular proteins. In the collagen triple helix, the structural adjacency of the carboxy-termini of the three chains makes this region an attractive target for introducing metal binding sites. We engineered His3 sites based on structural modeling constraints into a series of designed homotrimeric and heterotrimeric peptides, assessing the capacity of metal binding to improve stability and in the case of heterotrimers, affect specificity of assembly. Notable enhancements in stability for both homo- and heteromeric systems were observed upon addition of zinc(II) and several other metal ions only when all three histidine ligands were present. Metal binding affinities were consistent with the expected Irving-Williams series for imidazole. Unlike other metals tested, copper(II) also bound to peptides lacking histidine ligands. Acetylation of the peptide N-termini prevented copper binding, indicating proline backbone amide metal-coordination at this site. Copper similarly stabilized animal extracted Type I collagen in a metal-specific fashion, highlighting the potential importance of metal homeostasis within the extracellular matrix.

  13. Stabilizing Crystal Oscillators With Melting Metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1984-01-01

    Heat of fusion provides extended period of constant temperature and frequency. Crystal surrounded by metal in spherical container. As outside temperature rises to melting point of metal, metal starts to liquefy; but temperature stays at melting point until no solid metal remains. Potential terrestrial applications include low-power environmental telemetering transmitters and instrumentation transmitters for industrial processes.

  14. Studies of refractory carbides, nitrides, and borides as the thermionic emitters for electron microscopy.

    PubMed

    Yada, K; Masaoka, H; Shoji, Y; Tanji, T

    1989-07-01

    Thermionic emission properties of several kinds of refractory carbides, nitrides, and borides of the transition metals in the form of powder were investigated with a newly developed measuring device and evaluated by the figure of merit defined as the ratio of the effective work function to the working temperature at which the vapor pressure becomes 1 x 10(-5) Torr. There are several materials whose thermionic emission properties are better than those of tungsten or compatible to those of tungsten among the carbides and borides, such as TaC, HfC, ZrC, LaB6, and CeB6, as judged by the figure of merit. New preparation methods for carburization, nitriding, and boriding of the wires of matrix metals and alloys were successfully developed for using these materials as the cathode of the electron microscope. Other necessary techniques such as spot welding and electrolytic etching were also developed. From the brightness characteristics, it was found that some of carbides, carbide solid solutions, and borides such as HfC, ZrC (Ta0.8-0.7Hf0.2-0.3)C, TaB2, and HfB2 are very good emitters comparable to LaB6. It is emphasized that the work functions of the carbide-solid solutions (Ta0.8Hf0.2)C and (Ta0.7Hf0.3)C, which have low rates of evaporation at high temperature, show no remarkable rise as compared with that of HfC, so that their figures of merit are better than that of HfC. Feasibility of providing good cathodes with HfC and (Ta0.8Hf0.2)C tips was demonstrated by taking high-resolution electron micrographs.

  15. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.

    PubMed

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V; Park, Sehkyu; Aksay, Ilhan A; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-01

    Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity.

  16. Stabilization of electrocatalytic metal nanoparticles at metal-metal oxide-graphene triple junction points.

    PubMed

    Kou, Rong; Shao, Yuyan; Mei, Donghai; Nie, Zimin; Wang, Donghai; Wang, Chongmin; Viswanathan, Vilayanur V; Park, Sehkyu; Aksay, Ilhan A; Lin, Yuehe; Wang, Yong; Liu, Jun

    2011-03-01

    Carbon-supported precious metal catalysts are widely used in heterogeneous catalysis and electrocatalysis, and enhancement of catalyst dispersion and stability by controlling the interfacial structure is highly desired. Here we report a new method to deposit metal oxides and metal nanoparticles on graphene and form stable metal-metal oxide-graphene triple junctions for electrocatalysis applications. We first synthesize indium tin oxide (ITO) nanocrystals directly on functionalized graphene sheets, forming an ITO-graphene hybrid. Platinum nanoparticles are then deposited, forming a unique triple-junction structure (Pt-ITO-graphene). Our experimental work and periodic density functional theory (DFT) calculations show that the supported Pt nanoparticles are more stable at the Pt-ITO-graphene triple junctions. Furthermore, DFT calculations suggest that the defects and functional groups on graphene also play an important role in stabilizing the catalysts. These new catalyst materials were tested for oxygen reduction for potential applications in polymer electrolyte membrane fuel cells, and they exhibited greatly enhanced stability and activity. PMID:21302925

  17. Boriding of high carbon high chromium cold work tool steel

    NASA Astrophysics Data System (ADS)

    Muhammad, W.

    2014-06-01

    High-carbon high-chromium cold work tool steels are widely used for blanking and cold forming of punches and dies. It is always advantageous to obtain an increased wear resistant surface to improve life and performance of these steels. In this connection boriding of a high-carbon high-chromium cold work die steel, D3, was conducted in a mixture of 30% B4C, 70% borax at 950 °C for two, four and six hours. Case depth of the borided layer obtained was between 40 to 80 μm. After boriding, the surface hardness achieved was between 1430 to 1544 HV depending upon the process time. X-ray diffraction studies confirmed the formation of a duplex compound layer consisting of FeB and Fe2B. It is generally considered that FeB is undesirable because of its inherent brittleness. Post boriding treatment (homogenization) transformed the compound layer into single-phase layer of Fe2B, while surface hardness decreased to 1345-1430 HV. Pin-on-disc wer test showed that wear resistance of the borided samples was superior as compared to non-borided material and increased with boriding time.

  18. Synthesis and properties of nanoscale titanium boride

    NASA Astrophysics Data System (ADS)

    Efimova, K. A.; Galevskiy, G. V.; Rudneva, V. V.

    2015-09-01

    This work reports the scientific and technological grounds for plasma synthesis of titanium diboride, including thermodynamic and kinetic conditions of boride formation when titanium and titanium dioxide are interacting with products resulting from boron gasification in the nitrogen - hydrogen plasma flow, and two variations of its behavior using the powder mixtures: titanium - boron and titanium dioxide - boron. To study these technology variations, the mathematical models were derived, describing the relation between element contents in the synthesized products of titanium and free boron and basic parameters. The probable mechanism proposed for forming titanium diboride according to a "vapour - melt - crystal" pattern was examined, covering condensation of titanium vapour in the form of aerosol, boriding of nanoscale melt droplets by boron hydrides and crystallization of titanium - boron melt. The comprehensive physical - chemical certification of titanium diboride was carried out, including the study of its crystal structure, phase and chemical composition, dispersion, morphology and particle oxidation. Technological application prospects for use of titanium diboride nanoscale powder as constituent element in the wettable coating for carbon cathodes having excellent physical and mechanical performance and protective properties.

  19. Method of making an icosahedral boride structure

    DOEpatents

    Hersee, Stephen D.; Wang, Ronghua; Zubia, David; Aselage, Terrance L.; Emin, David

    2005-01-11

    A method for fabricating thin films of an icosahedral boride on a silicon carbide (SiC) substrate is provided. Preferably the icosahedral boride layer is comprised of either boron phosphide (B.sub.12 P.sub.2) or boron arsenide (B.sub.12 As.sub.2). The provided method achieves improved film crystallinity and lowered impurity concentrations. In one aspect, an epitaxially grown layer of B.sub.12 P.sub.2 with a base layer or substrate of SiC is provided. In another aspect, an epitaxially grown layer of B.sub.12 As.sub.2 with a base layer or substrate of SiC is provided. In yet another aspect, thin films of B.sub.12 P.sub.2 or B.sub.12 As.sub.2 are formed on SiC using CVD or other vapor deposition means. If CVD techniques are employed, preferably the deposition temperature is above 1050.degree. C., more preferably in the range of 1100.degree. C. to 1400.degree. C., and still more preferably approximately 1150.degree. C.

  20. Plasma metallurgical production of nanocrystalline borides and carbides

    NASA Astrophysics Data System (ADS)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    he experience in production and study of properties of nanocrystalline borides and chromium carbides, titanium, silicon was summarized. The design and features of the vertical three-jet once-through reactor with power 150 kW, used in the plasma metallurgical production, was described. The technological, thermotechnical and resource characteristics of the reactor were identified. The parameters of borides and carbides synthesis, their main characteristics in the nanodispersed state and equipment-technological scheme of production were provided. Evaluation of engineering-and-economical performance of the laboratory and industrial levels of borides and carbides production and the state corresponding to the segment of the world market was carried out.

  1. Synthesis, crystal structure investigation and magnetism of the complex metal-rich boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) with Th7Fe3-type structure

    NASA Astrophysics Data System (ADS)

    Misse, Patrick R. N.; Mbarki, Mohammed; Fokwa, Boniface P. T.

    2012-08-01

    Powder samples and single crystals of the new complex boride series Crx(Rh1-yRuy)7-xB3 (x=0.88-1; y=0-1) have been synthesized by arc-melting the elements under purified argon atmosphere on a water-cooled copper crucible. The products, which have metallic luster, were structurally characterized by single-crystal and powder X-ray diffraction as well as EDX measurements. Within the whole solid solution range the hexagonal Th7Fe3 structure type (space group P63mc, no. 186, Z=2) was identified. Single-crystal structure refinement results indicate the presence of chromium at two sites (6c and 2b) of the available three metal Wyckoff sites, with a pronounced preference for the 6c site. An unexpected Rh/Ru site preference was found in the Ru-rich region only, leading to two different magnetic behaviors in the solid solution: The Rh-rich region shows a temperature-independent (Pauli) paramagnetism whereas an additional temperature-dependent paramagnetic component is found in the Ru-rich region.

  2. Synthesis of metallic nanoshells on porphyrin-stabilized emulsions

    DOEpatents

    Wang, Haorong; Song, Yujiang; Shelnutt, John A.; Medforth, Craig J.

    2011-12-13

    Metal nanostructures formed by photocatalytic interfacial synthesis using a porphyrin-stabilized emulsion template and the method for making the nanostructures. Catalyst-seeded emulsion droplets are employed as templates for hollow-nanoshell growth. The hollow metal nanospheres may be formed with or without inclusions of other materials.

  3. Pack-boriding of Fe-Mn binary alloys: Characterization and kinetics of the boride layers

    SciTech Connect

    Bektes, M.; Calik, A.; Ucar, N.; Keddam, M.

    2010-02-15

    In this work, the boronizing of Fe-Mn binary alloys at 0.42, 0.76 and 0.94 wt.% Mn was carried out in a solid medium using the powder pack method. In this method, commercial Ekabor-II boron source and activator (ferro-silicon) were thoroughly mixed to form the boriding medium. The samples were boronized in an electrical resistance furnace for exposure times of 2, 4, 6 and 8 h at 1173 K under atmospheric pressure and a series of boronized samples in the temperature range 1073-1373 K for 3 h. After the furnace process, boronized samples were removed from the furnace and cooled in air. Afterwards, the boride layers generated by the pack-boronizing process were characterized by optical microscopy, scanning electron microscopy, XRD analysis, Vickers microhardness and tensile testing. The generated boride layers, showing a saw-tooth morphology, had a surface microhardness in the range 1400-1270 HV0.1. It was shown that the values of yield stresses and ultimate tensile stresses were increased as the Mn content increases in the boronized Fe-Mn binary alloys. In contrast, the values of elongations determined from the stress-strain curves were decreased. Furthermore, it was found that the calculated mean value of the activation energy of boron diffusion was close to 119 J/mol.

  4. Metal-silicane: Stability and properties

    SciTech Connect

    Yang, Huan-Cheng; Wang, Jing; Liu, Ying

    2014-08-28

    The decoration of silicane using 16 different metal adatoms and the adsorption of small molecules are studied using first-principles calculations. Of the 16 metal adatoms, Li, Na, K, Ca, In, and Sc show a larger binding energy with silicane than their corresponding cohesive energy in the bulk, which suggests they can form 2D layers on the surface of silicane. The band analysis indicates that decoration with metal atoms can effectively tailor the electronic properties of silicane. The adsorption for hydrogen and carbon monoxide on Li-silicane system demonstrates that each Li atom can adsorb a maximum of five H{sub 2} or four CO molecules with the average adsorption energy of 0.18 and 0.23 eV/atom, respectively. The calculated results suggest that metal-silicane systems can provide more information for applications as hydrogen-storage or environment-protection materials.

  5. Stability of metallic thin film with free electron model

    SciTech Connect

    Wu, Biao; Zhang, Zhenyu

    2008-01-01

    The stability of metallic thin lms is studied with free electron model, which is popularly known as model of \\particle in a box". A detailed theoretical framework is presented, along with discussion on typical metals, such as Pb, Al, Ag, Na, and Be. This simple model is found to be able to describe well the oscillation pattern of stability for continuous metallic lms. In particular, it yields even-odd oscillations in the stability of Pb(111) lm, consistent with both experimental observation and ab initio results. However, the free electron model is too crude to predict at what thickness the lm is stable. The lm stability is further examined with a model of \\particle in a corrugated box", where a lattice potential is added along the vertical direction of the lm. The e ect of lattice potential is found not substantial.

  6. NMR studies of borates and borides

    NASA Astrophysics Data System (ADS)

    Bray, P. J.

    1986-04-01

    Nuclear magnetic resonance (NMR) has been employed for some 25 years to study the structure of boron-containing compounds.1-3 The earliest works employed the 11B nuclear isotope in a study of glasses containing boron oxide. Many additional NMR studies3-10 of boron-containing glasses have utilized both the 11B and 10B isotopes. Crystalline materials were also studied2,3 at an early date, with particular attention given to borides and boron carbide. After a discussion of the features of NMR spectroscopy particularly pertinent for the study of boron-containing compounds, highlights of the early work and more recent studies will be summarized to indicate the usefulness of 10B and 11B NMR for structural studies.

  7. Certain physical properties of cobalt and nickel borides

    NASA Technical Reports Server (NTRS)

    Kostetskiy, I. I.; Lvov, S. N.

    1981-01-01

    The temperature dependence of the electrical resistivity, the thermal conductivity, and the thermal emf of cobalt and nickel borides were studied. In the case of the nickel borides the magnetic susceptibility and the Hall coefficient were determined at room temperature. The results are discussed with allowance for the current carrier concentration, the effect of various mechanisms of current-carrier scattering and the location of the Fermi level in relation to the 3d band.

  8. Stability of a pendant droplet in gas metal arc welding

    SciTech Connect

    Murray, P.E.

    1998-07-01

    The authors develop a model of metal transfer in gas metal arc welding and compute the critical mass of a pendant droplet in order to ascertain the size and frequency of droplets detaching from the consumable metal electrode. These results are used to predict the mode of metal transfer for a range of voltage and current encompassing free flight transfer, and the transition between globular and spray transfer. This model includes an efficient method to compute the stability of a pendant droplet and the location of the liquid bridge connecting the primary droplet and the residual liquid remaining after detachment of the primary droplet.

  9. Stabilizing the surface of lithium metal

    SciTech Connect

    Vaughey, J. T.; Liu, Gao; Zhang, Ji-Guang

    2014-05-01

    Lithium metal is an ideal anode for the next generation of high capacity rechargeable batteries, including Li-air, Li-S, and other Li-based batteries using intercalation compounds. To enable the broad applications for lithium anodes, more fundamental studies need to be conducted to simultaneously address the two barriers discussed above. One of the key breakthroughs in this field may come from the development of new electrolytes (and additives) which can form a stable SEI layer with enough mechanical strength and flexibility. The ideal electrolyte may consist of only two components; one component inhibits dendrite growth, while another component forms a stable SEI layer to improve Coulombic efficiency. In this review, the status of three approaches at manipulating and controlling the lithium metal – electrolyte interface were discussed. While previous studies concentrated on coatings with minimal surface connectivity, the approaches discussed, namely a coating that forms and dissipates into the electrolyte based on charge density, a coating bonded to the termination layer of lithium, and a conformal carbonate coating formed at the interface, all highlight new research directions. Although there are still many obstacles to be overcome, we are optimistic that Li metal can be used as an anode in rechargeable batteries in the foreseeable future. This will enable wide

  10. Free surface stability of liquid metal plasma facing components

    NASA Astrophysics Data System (ADS)

    Fiflis, P.; Christenson, M.; Szott, M.; Kalathiparambil, K.; Ruzic, D. N.

    2016-10-01

    An outstanding concern raised over the implementation of liquid metal plasma facing components in fusion reactors is the potential for ejection of liquid metal into the fusion plasma. The influences of Rayleigh-Taylor-like and Kelvin-Helmholtz-like instabilities were experimentally observed and quantified on the thermoelectric-driven liquid-metal plasma-facing structures (TELS) chamber at the University of Illinois at Urbana-Champaign. To probe the stability boundary, plasma currents and velocities were first characterized with a flush probe array. Subsequent observations of lithium ejection under exposure in the TELS chamber exhibited a departure from previous theory based on linear perturbation analysis. The stability boundary is mapped experimentally over the range of plasma impulses of which TELS is capable to deliver, and a new theory based on a modified set of the shallow water equations is presented which accurately predicts the stability of the lithium surface under plasma exposure.

  11. Theoretical study of phase stability and elastic properties of T 0.75Y0.75B14 (T  =  Sc, Ti, V, Y, Zr, Nb, Si)

    NASA Astrophysics Data System (ADS)

    Hunold, Oliver; Music, Denis; Schneider, Jochen M.

    2016-03-01

    In this study the phase stability, elastic properties, and plastic behaviour of icosahedral transition metal borides T 0.75Y0.75B14 (T  =  Sc, Ti, V, Y, Zr, Nb, Si) have been investigated using density functional theory. Phase stability critically depends on the charge transferred by T and Y to the B icosahedra. For the metal sublattice occupancy investigated here, the minimum energy of formation is identified at an effective B icosahedra charge of  -1.8  ±  0.1. This charge corridor encompasses the highest phase stability among all the reported icosahedral transition metal boride systems so far. This data provides guidance for future experimental efforts: from a wear-resistance point of view, Sc0.75Y0.75B14, Ti0.75Y0.75B14, and Zr0.75Y0.75B14 exhibit a rather unique and attractive combination of large Young’s modulus values ranging from 488 to 514 GPa with the highest phase stability for icosahedral transition metals borides reported so far.

  12. Quantum stability and magic lengths of metal atom wires

    NASA Astrophysics Data System (ADS)

    Cui, Ping; Choi, Jin-Ho; Lan, Haiping; Cho, Jun-Hyung; Niu, Qian; Yang, Jinlong; Zhang, Zhenyu

    2016-06-01

    Metal atom wires represent an important class of nanomaterials in the development of future electronic devices and other functional applications. Using first-principles calculations within density functional theory, we carry out a systematic study of the quantum stability of freestanding atom wires consisting of prototypical metal elements with s -, s p -, and s d -valence electrons. We explore how the quantum mechanically confined motion and local bonding of the valence electrons in these different wire systems can dictate their overall structural stability and find that the formation energy of essentially all the wires oscillates with respect to their length measured by the number n of atoms contained in the wires, establishing the existence of highly preferred (or magic) lengths. Furthermore, different wire classes exhibit distinctively different oscillatory characteristics and quantum stabilities. Alkali metal wires possessing an unpaired s valence electron per atom exhibit simple damped even-odd oscillations. In contrast, Al and Ga wires containing three s2p1 valence electrons per atom generally display much larger and undamped even-odd energy oscillations due to stronger local bonding of the p orbitals. Among the noble metals, the s -dominant Ag wires behave similarly to the linear alkali metal wires, while Au and Pt wires distinctly prefer to be structurally zigzagged due to strong relativistic effects. These findings are discussed in connection with existing experiments and should also be instrumental in future experimental realization of different metal atom wires in freestanding or supported environments with desirable functionalities.

  13. Governing metal-organic frameworks towards high stability.

    PubMed

    Li, Na; Xu, Jian; Feng, Rui; Hu, Tong-Liang; Bu, Xian-He

    2016-06-30

    Metal-organic frameworks (MOFs) constructed with metal ions/clusters and organic ligands have emerged as an important family of porous materials for various applications. However, the stability of this class of materials is crucial for their practical applications, which might be improved by varying their chemical composition and/or structurally tuning them. To fabricate MOFs with high stability, several strategies for enhancing the stability of MOFs have been developed, in which the strength of metal-ligand bonds is especially considered: the use of highly charged cations and higher pKa ligands, and varying the chemical functionality of linkers. On the other hand, the regulation of their structural architectures is also investigated: interpenetrated frameworks, multi-walled frameworks, and self-strengthening of the frameworks. In addition, the surface modification can also improve the stability of the materials. In this review, we introduce and summarize these strategies from the viewpoint of structural tuning and component choosing, providing useful instructions for the further design and synthesis of MOFs with high-level stability.

  14. Stabilizing nanostructures in metals using grain and twin boundary architectures

    NASA Astrophysics Data System (ADS)

    Lu, K.

    2016-05-01

    Forming alloys with impurity elements is a routine method for modifying the properties of metals. An alternative approach involves the incorporation of interfaces into the crystalline lattice to enhance the metal's properties without changing its chemical composition. The introduction of high-density interfaces in nanostructured materials results in greatly improved strength and hardness; however, interfaces at the nanoscale show low stability. In this Review, I discuss recent developments in the stabilization of nanostructured metals by modifying the architectures of their interfaces. The amount, structure and distribution of several types of interfaces, such as high- and low-angle grain boundaries and twin boundaries, are discussed. I survey several examples of materials with nanotwinned and nanolaminated structures, as well as with gradient nanostructures, describing the techniques used to produce such samples and tracing their exceptional performances back to the nanoscale architectures of their interfaces.

  15. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy.

  16. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability

    PubMed Central

    Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-01-01

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd3+ within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd3+. This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  17. Metal Chelating Crosslinkers Form Nanogels with High Chelation Stability.

    PubMed

    Lux, Jacques; Chan, Minnie; Elst, Luce Vander; Schopf, Eric; Mahmoud, Enas; Laurent, Sophie; Almutairi, Adah

    2013-12-14

    We present a series of hydrogel nanoparticles (nanogels) incorporating either acyclic or cyclic metal chelates as crosslinkers. These crosslinkers are used to formulate polyacrylamide-based nanogels (diameter 50 to 85 nm) yielding contrast agents with enhanced relaxivities (up to 6-fold greater than Dotarem®), because this nanogel structure slows the chelator's tumbling frequency and allows fast water exchange. Importantly, these nanogels also stabilize Gd(3+) within the chelator thermodynamically and kinetically against metal displacement through transmetallation, which should reduce toxicity associated with release of free Gd(3+). This chelation stability suggests that the chelate crosslinker strategy may prove useful for other applications of metal-chelating nanoparticles in medicine, including other imaging modalities and radiotherapy. PMID:24505553

  18. Electrical stability of metal/low dielectric constant material systems

    NASA Astrophysics Data System (ADS)

    Mallikarjunan, Anupama

    In order to boost the performance of future generation silicon integrated circuits, new materials with lower dielectric constant (kappa) are under evaluation to replace traditional SiO2 as on-chip inter-layer dielectrics (ILDs). The goal of this thesis has been to investigate the intrinsic electrical stability and metal penetration resistance of a variety of low kappa materials: fluorinated silica glass (FSG), polyparaxylylene-N (parylene-N), polyarylether (PAE) and hybrid organosiloxane polymer (HOSP). Emphasis was placed on fundamental understanding of the factors controlling the electrical properties of different metal/low kappa dielectric systems. Traditionally, metal ion penetration is studied using Bias Temperature Stressing (BTS) with Capacitance-Voltage (C-V) measurement. In this work, an alternative technique, Triangular Voltage Sweep (TVS), was also adopted to provide insight into metal penetration behavior. Surprisingly, aluminum ion penetration into oxygen containing polymers such as PAE and HOSP was detected, and was in contrast to the stability of the Al/SiO2 system. Platinum was demonstrated as a viable control for metal drift studies in such polymers, as no platinum ion penetration was detected. Among the blanket dielectrics, the number of copper ions detected was lowest in HOSP, demonstrating its promise for ILD applications. Experimentation with a variety of metals led to the result that ion penetration behavior in HOSP showed the trend Pt < Cu < Ta < Al. This trend indicated that metal penetration increases with metal ionization and oxidation tendency. Plasma modification of HOSP by converting its surface to a thin intrinsic dielectric barrier resembling SiO2 dramatically reduced aluminum ion penetration in HOSP. Surface modification is therefore a powerful strategy to realize the future requirement of ultra-thin barriers. The impact of on-chip integration on electrical stability was also studied. Copper ions were detected along fast diffusion

  19. Corrosion behavior of boride layers evaluated by the EIS technique

    NASA Astrophysics Data System (ADS)

    Campos, I.; Palomar-Pardavé, M.; Amador, A.; VillaVelázquez, C.; Hadad, J.

    2007-09-01

    The corrosion behavior of boride layers at the AISI 304 steel surface is evaluated in the present study. Electrochemical impedance spectroscopy (EIS) technique was used for the evaluation of the polarization resistance at the steel surface, with the aid of AUTOLAB potentiostat. Samples were treated with boron paste thickness of 4 and 5 mm, in the range of temperatures 1123 ≤ T ≤ 1273 K and exposed time of 4 and 6 h. The electrochemical technique employed 10 mV AC with a frequency scan range from 8 kHz to 3 mHz in deaerated 0.1 M NaCl solution. Nyquist diagrams show that the highest values of corrosion resistance are present in the samples borided at the temperature of 1273 K, with treatment time of 4 h and 4 mm of boron paste thickness. The values of corrosion resistance on borided steels are compared with the porosity exhibited in the layers.

  20. The characterization of boride layer on the St37 iron

    NASA Astrophysics Data System (ADS)

    Sutrisno, Soegijono, Bambang

    2012-06-01

    The property such as microhardness of boride layer formed on St37 iron was investigated. Boronizing was carried out in a solid medium consisting of nano size powders of 50% B4C as a donor, 45% SiC as a diluent, and 5% KBF4 as an activator treated at the temperature of 1000°C for 8 hours. The phases that were formed on the substrate was found as Fe2B and FeB layer that had smooth and flate shape morphology. The hardness of boride layer on St37 was over 2000 HV, while the hardness of untreated St37 iron was about 123,82 HV. Depending on process time and temperature, the depth of boride layer ranges from 20 to 60 μm, leading to a diffusion controlled process.

  1. Scaffolds of magnetically active 3d metals in the valence electron controlled borides Ti{sub 9−x}M{sub 2+x}Ru{sub 18}B{sub 8} (M=Cr–Ni; x=0.5–1): Structutral, electronic and magnetic properties

    SciTech Connect

    Goerens, Christian; Brgoch, Jakoah; Miller, Gordon J.; Fokwa, Boniface P.T.

    2013-08-15

    Polycrystalline samples of the boride series Ti{sub 9−x}M{sub 2+x}Ru{sub 18}B{sub 8} (M=Cr, Co, Mn, Ni) including single crystals of Ti{sub 8}Co{sub 3}Ru{sub 18}B{sub 8} have been prepared by arc-melting the elements. The phases were characterized by powder X-ray diffraction (Rietveld refinement), single-crystal X-ray diffraction (for M=Co), and energy-dispersive X-ray (EDX) analysis. They are substitutional variants of the Zn{sub 11}Rh{sub 18}B{sub 8} structure type, space group P4/mbm (No. 127) and contain a “scaffold” structural unit (M-ladders interacting with M/Ti-chains) as well as isolated M/Ti-chains. According to DFT calculations, the Ru–X (X=B, Ti, Ti/M) bonding interactions are nearly constant throughout the series and responsible for the structural stability of these phases, whereas the M–M and Ru–M interactions vary significantly with varying valence electron count. Furthermore, density of states (DOS) analyses predict the phases with M=Mn and Ni to develop a total magnetic moment but not the M=Co phase. Susceptibility measurements confirm the Co phase to be paramagnetic and the Mn Phase orders ferrimagnetically below 120 K and thus develops a magnetic moment, as predicted. - Graphical abstract: The crystal structures of the new phases (M=Cr, Mn, Co, Ni) are confirmed by Rietveld refinement of powder diffraction data and single crystal X-ray diffraction (for M=Co) to contain beside the M-ladder also M/Ti-chains. Similar to the series Ti{sub 9}M{sub 2}Ru{sub 18}B{sub 8}, the crystal structure of the new phases are mainly stabilized by the heteroatomic Ru–B and Ru–Ti bonds that remain nearly constant throughout the series, whereas the M-containing bonds vary significantly with varying valence electron count. An experimental finding confirmed and even extended by COHP bonding analyses. In addition, the DOS analyses of the M-elements reveal the development of magnetic moments for the M=Mn, Ni cases but not for M=Co. Indeed, Ti{sub 8}Co

  2. Utilization of Metal Oxides and Chalcogenides Stabilized in Organic Solvents

    NASA Astrophysics Data System (ADS)

    Lampert, Lester; Flaig, Robby; Camacho, Jorge; Hamilton, James

    2011-03-01

    Metal oxides and metal chalcogenides are important materials for a variety of applications including photocatalysis for decomposition of water, conductive and optical coatings, catalysts, photovoltaics, pryoelectrics, self-cleaning surfaces, pigments, and high efficiency Li-insertion materials in batteries among many other applications. Fundamental discoveries of surprising solubility of insoluble materials such as single and multi-walled carbon nanotubes and graphene has lead us to discover that certain metal oxides and metal chalcogenides such as TiO2 are soluble in certain solvents. Due to the industrial importance of TiO2, discovering stable pure solvent systems demonstrates a possibility to avoid surface modification of TiO2 nanoparticles by use materials such as of (3-methacryloxypropyl)-trimethoxysilane and various other methods of artificial stabilization. We have created thin films of TiO2, transparent ultraviolet (UV) --absorptive polymers, and Li-ion battery anodes with graphene-TiO2 hybrid materials.

  3. Increasing the Stability of Metal-Organic Frameworks

    DOE PAGES

    Bosch, Mathieu; Zhang, Muwei; Zhou, Hong-Cai

    2014-01-01

    Metal-organic frameworks (MOFs) are a new category of advanced porous materials undergoing study by many researchers for their vast variety of both novel structures and potentially useful properties arising from them. Their high porosities, tunable structures, and convenient process of introducing both customizable functional groups and unsaturated metal centers have afforded excellent gas sorption and separation ability, catalytic activity, luminescent properties, and more. However, the robustness and reactivity of a given framework are largely dependent on its metal-ligand interactions, where the metal-containing clusters are often vulnerable to ligand substitution by water or other nucleophiles, meaning that the frameworks may collapsemore » upon exposure even to moist air. Other frameworks may collapse upon thermal or vacuum treatment or simply over time. This instability limits the practical uses of many MOFs. In order to further enhance the stability of the framework, many different approaches, such as the utilization of high-valence metal ions or nitrogen-donor ligands, were recently investigated. This review details the efforts of both our research group and others to synthesize MOFs possessing drastically increased chemical and thermal stability, in addition to exemplary performance for catalysis, gas sorption, and separation.« less

  4. Long Term Stability of Laser Joined Plastic Metal Parts

    NASA Astrophysics Data System (ADS)

    Roesner, A.; Olowinsky, A.; Gillner, A.

    To join plastic to metal a laser based two-step laser process is described. The first process step is the laser micro structuring of the metal surface to create microstructures with undercut grooves. The subsequent transmission joining process allows a selective heating of arbitrary component geometries and the local control of the joining temperature. Both parts are brought into direct contact prior to welding. The plastic part is melted and expands into the microstructures through the external clamping pressure. The joining results due to micro cramping after setting. The long term stability of the joining is described.

  5. Subminiature eddy current transducers for studying boride coatings

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. F.; Ishkov, A. V.; Malikov, V. N.; Sagalakov, A. M.

    2016-07-01

    Strengthening of parts and units of machines, increased reliability and longer service life is an important task of modern mechanical engineering. The main objects of study in the work were selected steel 65G and 50HGA, wear-resistant boride coatings ternary system Fe-B-Fe n B which were investigated by scanning electron microscopy and eddy-current nondestructive methods.

  6. Chemical, thermal and mechanical stabilities of metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Howarth, Ashlee J.; Liu, Yangyang; Li, Peng; Li, Zhanyong; Wang, Timothy C.; Hupp, Joseph T.; Farha, Omar K.

    2016-03-01

    The construction of thousands of well-defined, porous, metal-organic framework (MOF) structures, spanning a broad range of topologies and an even broader range of pore sizes and chemical functionalities, has fuelled the exploration of many applications. Accompanying this applied focus has been a recognition of the need to engender MOFs with mechanical, thermal and/or chemical stability. Chemical stability in acidic, basic and neutral aqueous solutions is important. Advances over recent years have made it possible to design MOFs that possess different combinations of mechanical, thermal and chemical stability. Here, we review these advances and the associated design principles and synthesis strategies. We focus on how these advances may render MOFs effective as heterogeneous catalysts, both in chemically harsh condensed phases and in thermally challenging conditions relevant to gas-phase reactions. Finally, we briefly discuss future directions of study for the production of highly stable MOFs.

  7. Metal Cations in G-Quadruplex Folding and Stability

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-09-01

    This review is focused on the structural and physico-chemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-Quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  8. Metal Cations in G-Quadruplex Folding and Stability

    PubMed Central

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm.

  9. Metal Cations in G-Quadruplex Folding and Stability

    PubMed Central

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  10. Metal Cations in G-Quadruplex Folding and Stability.

    PubMed

    Bhattacharyya, Debmalya; Mirihana Arachchilage, Gayan; Basu, Soumitra

    2016-01-01

    This review is focused on the structural and physicochemical aspects of metal cation coordination to G-Quadruplexes (GQ) and their effects on GQ stability and conformation. G-quadruplex structures are non-canonical secondary structures formed by both DNA and RNA. G-quadruplexes regulate a wide range of important biochemical processes. Besides the sequence requirements, the coordination of monovalent cations in the GQ is essential for its formation and determines the stability and polymorphism of GQ structures. The nature, location, and dynamics of the cation coordination and their impact on the overall GQ stability are dependent on several factors such as the ionic radii, hydration energy, and the bonding strength to the O6 of guanines. The intracellular monovalent cation concentration and the localized ion concentrations determine the formation of GQs and can potentially dictate their regulatory roles. A wide range of biochemical and biophysical studies on an array of GQ enabling sequences have generated at a minimum the knowledge base that allows us to often predict the stability of GQs in the presence of the physiologically relevant metal ions, however, prediction of conformation of such GQs is still out of the realm. PMID:27668212

  11. Stability of Bulk Metallic Glass Structure. Final Report

    SciTech Connect

    Jain, H.; Williams, D. B.

    2003-06-01

    The fundamental origins of the stability of the (Pd-Ni){sub 80}P{sub 20} bulk metallic glasses (BMGs), a prototype for a whole class of BMG formers, were explored. While much of the properties of their BMGs have been characterized, their glass-stability have not been explained in terms of the atomic and electronic structure. The local structure around all three constituent atoms was obtained, in a complementary way, using extended X-ray absorption fine structure (EXAFS), to probe the nearest neighbor environment of the metals, and extended energy loss fine structure (EXELFS), to investigate the environment around P. The occupied electronic structure was investigated using X-ray photoelectron spectroscopy (XPS). The (Pd-Ni){sub 80}P{sub 20} BMGs receive their stability from cumulative, and interrelated, effects of both atomic and electronic origin. The stability of the (Pd-Ni){sub 80}P{sub 20} BMGs can be explained in terms of the stability of Pd{sub 60}Ni{sub 20}P{sub 20} and Pd{sub 30}Ni{sub 50}P{sub 20}, glasses at the end of BMG formation. The atomic structure in these alloys is very similar to those of the binary phosphide crystals near x=0 and x=80, which are trigonal prisms of Pd or Ni atoms surrounding P atoms. Such structures are known to exist in dense, randomly-packed systems. The structure of the best glass former in this series, Pd{sub 40}Ni{sub 40}P{sub 20} is further described by a weighted average of those of Pd{sub 30}Ni{sub 50}P{sub 20} and Pd{sub 60}Ni{sub 20}P{sub 20}. Bonding states present only in the ternary alloys were found and point to a further stabilization of the system through a negative heat of mixing between Pd and Ni atoms. The Nagel and Tauc criterion, correlating a decrease in the density of states at the Fermi level with an increase in the glass stability, was consistent with greater stability of the Pd{sub x}Ni{sub 80-x}P{sub 20} glasses with respect to the binary alloys of P. A valence electron concentration of 1.8 e/a, which

  12. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys.

    PubMed

    Hu, X B; Zhu, Y L; Sheng, N C; Ma, X L

    2014-01-01

    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations. PMID:25482386

  13. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys.

    PubMed

    Hu, X B; Zhu, Y L; Sheng, N C; Ma, X L

    2014-12-08

    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations.

  14. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys

    NASA Astrophysics Data System (ADS)

    Hu, X. B.; Zhu, Y. L.; Sheng, N. C.; Ma, X. L.

    2014-12-01

    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations.

  15. The Wyckoff positional order and polyhedral intergrowth in the M3B2- and M5B3-type boride precipitated in the Ni-based superalloys

    PubMed Central

    Hu, X. B.; Zhu, Y. L.; Sheng, N. C.; Ma, X. L.

    2014-01-01

    Ni-based single superalloys play a crucial role in the hottest parts of jet engines. However, due to the complex geometry and macro-segregation during the solidification process, the cast defect such as stray grains is inevitable. Therefore, the transient liquid phase (TLP) bonding which can join several small single crystalline castings together is gradually believed to be an effective method for improving the yields of production of the complex components. The melting point depressant element B is always added into the interlayer filler material. Consequently, borides including the M3B2 and M5B3 phase usually precipitate during the TLP bonding process. So a comprehensive knowledge of the fine structural characteristics of the borides is very critical for an accurate evaluation of the TLP bonding process. In this work, by means of the aberration-corrected transmission electron microscopy, we show, at an atomic scale, the Wyckoff positional order phenomenon of the metal atoms in the unit cell of M3B2- and M5B3-type boride. Meanwhile, the defect along the (001) plane of the above two types of boride are determined to be the polyhedral intergrowth with complex configurations. PMID:25482386

  16. Electromagnetically Sustained Liquid Metal Flow for Feedback Stabilization Studies

    NASA Astrophysics Data System (ADS)

    Mirhoseini, Seyyed Mohammad; Volpe, Francesco

    2015-11-01

    Liquid metal walls in fusion reactors, whether nearly static or rapidly flowing, will be subject to instabilities that will make them locally bulge, thus entering in contact with the plasma, or deplete, hence exposing the underlying solid substrate. To prevent this, research has begun at Columbia University to create liquid metal flows and demonstrate their stabilization by electromagnetic forces, adjusted in feedback with thickness measurements. Here we present initial results regarding the sustainment of a flow of Galinstan (a gallium, indium, tin alloy) by a special pump consisting of a ferromagnetic rotor, with permanent magnets mounted on it. The magnetic field is partly ``frozen'' in the liquid metal surrounding the rotor. Therefore, as the field rotates, the liquid metal rotates as well, although with a slip factor. This solution was preferred to conventional pumps, which would enter in electrical contact with the metal flow. The pump, 3D-printed at Columbia, allows to adjust the flow-velocity from few mm/s to several cm/s.

  17. The Role of Carbon in Catalytically Stabilized Transition Metal Sulfides

    SciTech Connect

    Kelty,S.; Berhault, G.; Chianelli, R.

    2007-01-01

    Since WWII considerable progress has been made in understanding the basis for the activity and the selectivity of molybdenum and tungsten based hydrotreating catalysts. Recently, the focus of investigation has turned to the structure of the catalytically stabilized active catalyst. The surface of the catalytically stabilized MoS2 has been shown to be carbided with the formula MoSxCy under hydrotreating conditions. In this paper we review the basis for this finding and present new data extending the concept to the promoted TMS (transition metal sulfides) systems CoMoC and NiMoC. Freshly sulfided CoMoS and NiMoS catalyst have a strong tendency to form the carbided surface phases from any available carbon source.

  18. Star-like copolymer stabilized noble-metal nanoparticle powders.

    PubMed

    Cao, Peng-Fei; Yan, Yun-Hui; Mangadlao, Joey Dacula; Rong, Li-Han; Advincula, Rigoberto

    2016-04-14

    The amphiphilic star-like copolymer polyethylenimine-block-poly(ε-caprolactone) (PEI-b-PCL) was utilized to transfer the pre-synthesized citrate-capped noble metal nanoparticles (NMNPs) from an aqueous layer to an organic layer without any additional reagents. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to study the assembly of the polymers coated on the surface of the citrate-capped NMNPs. After removing the organic solvent, the polymer-coated NMNPs in powder form (PCP-NMNPs) were obtained. The excellent solubility of the PEI-b-PCL allows the PCP-NMNPs to be easily dispersed in most of the organic solvents without any significant aggregation. Moreover, the good thermal stability and long-term stability make PCP-NMNPs an excellent NMNP-containing hybrid system for different specific applications, such as surface coating, catalysis and thermoplastic processing of nanocomposite materials.

  19. Implantation and Stability of Metallic Fiducials Within Pulmonary Lesions

    SciTech Connect

    Kupelian, Patrick A. Forbes, Alan; Willoughby, Twyla R. M.S.; Wallace, Karen; Manon, Rafael R.; Meeks, Sanford L.; Herrera, Luis; Johnston, Alan; Herran, Juan J.

    2007-11-01

    Purpose: To report and describe implantation techniques and stability of metallic fiducials in lung lesions to be treated with external beam radiotherapy. Methods and Materials: Patients undergoing radiation therapy for small early-stage lung cancer underwent implantation with small metallic markers. Implantation was either transcutaneous under computed tomographic (CT) or fluoroscopic guidance or transbronchial with the superDimension/Bronchus system (radiofrequency signal-based bronchoscopy guidance related to CT images). Results: Implantation was performed transcutaneously in 15 patients and transbronchially in 8 patients. Pneumothorax occurred with eight of the 15 transcutaneous implants, six of which required chest tube placement. None of the patients who underwent transbronchial implantation developed pneumothorax. Successfully inserted markers were all usable during gated image-guided radiotherapy. Marker stability was determined by observing the variation in gross target volume (GTV) centroid relative to the marker on repeated CT scans. Average three-dimensional variation in the GTV center relative to the marker was 2.6 {+-} 1.3 (SD) mm, and the largest variation along any anatomic axis for any patient was <5 mm. Average GTV volume decrease during the observation period was 34% {+-} 23%. Gross tumor volumes do not appear to shrink uniformly about the center of the tumor, but rather the tumor shapes deform substantially throughout treatment. Conclusions: Transbronchial marker placement is less invasive than transcutaneous placement, which is associated with high pneumothorax rates. Although marker geometry can be affected by tumor shrinkage, implanted markers are stable within tumors throughout the treatment duration regardless of implantation method.

  20. Nanosize cobalt boride particles: Control of the size and properties

    NASA Astrophysics Data System (ADS)

    Petit, C.; Pileni, M. P.

    1997-02-01

    Cobalt boride is obtained by the reduction of cobalt (2-ethyl hexyl) sulfosuccinate, Co(AOT) 2, by sodium borohydride either in reverse micelles or in a diphasic system. In Co(AOT) 2/Na(AOT)/H 2O reverse micellar solution, the size and polydispersity of the Co 2B particles is controlled by the size of the water droplets, which increases from 4 to 7.5 nm by increasing the water content. In a diphasic system of Co(AOT) 2/isooctane and sodium borohydride in aqueous solution, large and polydisperse particles of cobalt boride are formed (˜ 10 nm), and their magnetization properties are presented. The smallest particles are in a superparamagnetic regime at room temperature, whereas the largest particles show ferromagnetic behavior.

  1. Structural and Magnetic Properties of Ni Rich Amorphous Boride Nanoparticles

    SciTech Connect

    Singh, Vidyadhar; Banerjee, Progna; Srinivas, V.; Babu, N. H.

    2011-06-30

    The Ni rich amorphous boride nanoparticles can be prepared very easily by the solid-solid reaction of the NiCl{sub 2} and NaBH{sub 4} powders at room temperature. XRD, DTA-TG, FESEM, TEM, and selected-area electron diffraction characterize the resultant nanoparticles. The results show that the resultant is mainly composed of the amorphous Ni-B alloy nanoparticles with an average diameter of 15-25 nm.

  2. Stability of metal-rich very massive stars

    NASA Astrophysics Data System (ADS)

    Goodman, J.; White, Christopher J.

    2016-02-01

    We revisit the stability of very massive non-rotating main-sequence stars at solar metallicity, with the goal of understanding whether radial pulsations set a physical upper limit to stellar mass. Models of up to 938 solar masses are constructed with the MESA code, and their linear stability in the fundamental mode, assumed to be the most dangerous, is analysed with a fully non-adiabatic method. Models above 100 M⊙ have extended tenuous atmospheres (`shelves') that affect the stability of the fundamental. Even when positive, this growth rate is small, in agreement with previous results. We argue that small growth rates lead to saturation at small amplitudes that are not dangerous to the star. A mechanism for saturation is demonstrated involving non-linear parametric coupling to short-wavelength g-modes and the damping of the latter by radiative diffusion. The shelves are subject to much more rapidly growing strange modes. This also agrees with previous results but is extended here to higher masses. The strange modes probably saturate via shocks rather than mode coupling but have very small amplitudes in the core, where almost all of the stellar mass resides. Although our stellar models are hydrostatic, the structure of their outer parts suggests that optically thick winds, driven by some combination of radiation pressure, transonic convection, and strange modes, are more likely than pulsation in the fundamental mode to limit the main-sequence lifetime.

  3. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.

    PubMed

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

    2014-04-29

    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory.

  4. Metal ion coordination, conditional stability constants, and solution behavior of chelating surfactant metal complexes.

    PubMed

    Svanedal, Ida; Boija, Susanne; Almesåker, Ann; Persson, Gerd; Andersson, Fredrik; Hedenström, Erik; Bylund, Dan; Norgren, Magnus; Edlund, Håkan

    2014-04-29

    Coordination complexes of some divalent metal ions with the DTPA (diethylenetriaminepentaacetic acid)-based chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) have been examined in terms of chelation and solution behavior. The headgroup of 4-C12-DTPA contains eight donor atoms that can participate in the coordination of a metal ion. Conditional stability constants for five transition metal complexes with 4-C12-DTPA were determined by competition measurements between 4-C12-DTPA and DTPA, using electrospray ionization mass spectrometry (ESI-MS). Small differences in the relative strength between the coordination complexes of DTPA and 4-C12-DTPA indicated that the hydrocarbon tail only affected the chelating ability of the headgroup to a limited extent. The coordination of Cu(2+) ions was investigated in particular, using UV-visible spectroscopy. By constructing Job's plots, it was found that 4-C12-DTPA could coordinate up to two Cu(2+) ions. Surface tension measurements and NMR diffusometry showed that the coordination of metal ions affected the solution behavior of 4-C12-DTPA, but there were no specific trends between the studied divalent metal complexes. Generally, the effects of the metal ion coordination could be linked to the neutralization of the headgroup charge of 4-C12-DTPA, and the resulting reduced electrostatic repulsions between adjacent surfactants in micelles and monolayers. The pH vs concentration plots, on the other hand, showed a distinct difference between 4-C12-DTPA complexes of the alkaline earth metals and the transition metals. This was explained by the difference in coordination between the two groups of metal ions, as predicted by the hard and soft acid and base (HSAB) theory. PMID:24702119

  5. Star-like copolymer stabilized noble-metal nanoparticle powders

    NASA Astrophysics Data System (ADS)

    Cao, Peng-Fei; Yan, Yun-Hui; Mangadlao, Joey Dacula; Rong, Li-Han; Advincula, Rigoberto

    2016-03-01

    The amphiphilic star-like copolymer polyethylenimine-block-poly(ε-caprolactone) (PEI-b-PCL) was utilized to transfer the pre-synthesized citrate-capped noble metal nanoparticles (NMNPs) from an aqueous layer to an organic layer without any additional reagents. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to study the assembly of the polymers coated on the surface of the citrate-capped NMNPs. After removing the organic solvent, the polymer-coated NMNPs in powder form (PCP-NMNPs) were obtained. The excellent solubility of the PEI-b-PCL allows the PCP-NMNPs to be easily dispersed in most of the organic solvents without any significant aggregation. Moreover, the good thermal stability and long-term stability make PCP-NMNPs an excellent NMNP-containing hybrid system for different specific applications, such as surface coating, catalysis and thermoplastic processing of nanocomposite materials.The amphiphilic star-like copolymer polyethylenimine-block-poly(ε-caprolactone) (PEI-b-PCL) was utilized to transfer the pre-synthesized citrate-capped noble metal nanoparticles (NMNPs) from an aqueous layer to an organic layer without any additional reagents. Dynamic light scattering (DLS) and transmission electron microscopy (TEM) were utilized to study the assembly of the polymers coated on the surface of the citrate-capped NMNPs. After removing the organic solvent, the polymer-coated NMNPs in powder form (PCP-NMNPs) were obtained. The excellent solubility of the PEI-b-PCL allows the PCP-NMNPs to be easily dispersed in most of the organic solvents without any significant aggregation. Moreover, the good thermal stability and long-term stability make PCP-NMNPs an excellent NMNP-containing hybrid system for different specific applications, such as surface coating, catalysis and thermoplastic processing of nanocomposite materials. Electronic supplementary information (ESI) available: Synthesis scheme and the 1H NMR spectrum of PEI

  6. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets

    NASA Astrophysics Data System (ADS)

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-10-01

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the

  7. PASSIVATION LAYER STABILITY OF A METALLIC ALLOY WASTE FORM

    SciTech Connect

    Williamson, M.; Mickalonis, J.; Fisher, D.; Sindelar, R.

    2010-08-16

    Alloy waste form development under the Waste Forms Campaign of the DOE-NE Fuel Cycle Research & Development program includes the process development and characterization of an alloy system to incorporate metal species from the waste streams generated during nuclear fuel recycling. This report describes the tests and results from the FY10 activities to further investigate an Fe-based waste form that uses 300-series stainless steel as the base alloy in an induction furnace melt process to incorporate the waste species from a closed nuclear fuel recycle separations scheme. This report is focused on the initial activities to investigate the formation of oxyhydroxide layer(s) that would be expected to develop on the Fe-based waste form as it corrodes under aqueous repository conditions. Corrosion tests were used to evaluate the stability of the layer(s) that can act as a passivation layer against further corrosion and would affect waste form durability in a disposal environment.

  8. Stabilization of ultrafine metal nanocatalysts on thin carbon sheets.

    PubMed

    Liu, Xiaofang; Cui, Xinrui; Liu, Yiding; Yin, Yadong

    2015-11-21

    A novel strategy was proposed to anchor ultrafine metal nanoparticles (NPs) on thin carbon sheets for highly stable and efficient heterogeneous catalysts. In this facile approach, a dense monolayer of ultrafine AuNPs was sandwiched between a silica core and a resin shell, followed by carbonization of the shell at a high temperature and then selective removal of the silica core. The shrinkage of the shells during carbonization facilitates partial embedment of the AuNPs on the carbon shell surface and provides superior stability against particle sintering during high temperature/mechanical post-treatments and catalytic reactions. It was also found that diffusion of reactants to the surface of AuNPs could be maximized by reducing the thickness of the hollow shells or simply by cracking the shells into thin carbon sheets, both significantly benefiting the catalytic efficiency. The advantages of this ultra-stable architecture together with the densely dispersed catalytic sites were demonstrated by their high stability and superior catalytic activity in reducing hydrophilic 4-nitrophenol and hydrophobic nitrobenzene.

  9. Stability of complex coacervate core micelles containing metal coordination polymer.

    PubMed

    Yan, Yun; de Keizer, Arie; Cohen Stuart, Martien A; Drechsler, Markus; Besseling, Nicolaas A M

    2008-09-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and bisligand molecules. The influence of added salt, polymer concentration, and charge composition was investigated by using light scattering and cryo-TEM techniques. The scattering intensity decreases strongly with increasing salt concentration until a critical salt concentration beyond which no micelles exist. The critical micelle concentration increases almost exponentially with the salt concentration. From the scattering results it follows that the aggregation number decreases with the square root of the salt concentration, but the hydrodynamic radius remains constant or increases slightly. It was concluded that the density of the core decreases with increasing ionic strength. This is in agreement with theoretical predictions and is also confirmed by cryo-TEM measurements. A complete composition diagram was constructed based on the composition boundaries obtained from light scattering titrations.

  10. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    PubMed Central

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  11. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating.

    PubMed

    Sun, B A; Chen, S H; Lu, Y M; Zhu, Z G; Zhao, Y L; Yang, Y; Chan, K C; Liu, C T

    2016-01-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability. PMID:27271435

  12. Origin of Shear Stability and Compressive Ductility Enhancement of Metallic Glasses by Metal Coating

    NASA Astrophysics Data System (ADS)

    Sun, B. A.; Chen, S. H.; Lu, Y. M.; Zhu, Z. G.; Zhao, Y. L.; Yang, Y.; Chan, K. C.; Liu, C. T.

    2016-06-01

    Metallic glasses (MGs) are notorious for the poor macroscopic ductility and to overcome the weakness various intrinsic and extrinsic strategies have been proposed in past decades. Among them, the metal coating is regarded as a flexible and facile approach, yet the physical origin is poorly understood due to the complex nature of shear banding process. Here, we studied the origin of ductile enhancement in the Cu-coating both experimentally and theoretically. By examining serrated shear events and their stability of MGs, we revealed that the thin coating layer plays a key role in stopping the final catastrophic failure of MGs by slowing down shear band dynamics and thus retarding its attainment to a critical instable state. The mechanical analysis on interplay between the coating layer and shear banding process showed the enhanced shear stability mainly comes from the lateral tension of coating layer induced by the surface shear step and the bonding between the coating layer and MGs rather than the layer thickness is found to play a key role in contributing to the shear stability.

  13. Combustion synthesis of boride and other composites

    DOEpatents

    Halverson, D.C.; Lum, B.Y.; Munir, Z.A.

    1988-07-28

    A self-sustaining combustion synthesis process for producing hard, tough, lightweight B/sub 4/C/TiB/sub 2/ composites is described. It is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B/sub 4/C and TiB/sub 2/ reactants. For lightweight products the composition must be relatively rich in the B/sub 4/C component. B/sub 4/C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component. 9 figs., 4 tabs.

  14. Combustion synthesis of boride and other composites

    DOEpatents

    Halverson, Danny C.; Lum, Beverly Y.; Munir, Zuhair A.

    1989-01-01

    A self-sustaining combustion synthesis process for producing hard, tough, lightweight B.sub.4 C/TiB.sub.2 composites is based on the thermodynamic dependence of adiabatic temperature and product composition on the stoichiometry of the B.sub.4 C and TiB.sub.2 reactants. For lightweight products the composition must be relatively rich in the B.sub.4 C component. B.sub.4 C-rich composites are obtained by varying the initial temperature of the reactants. The product is hard, porous material whose toughness can be enhanced by filling the pores with aluminum or other metal phases using a liquid metal infiltration process. The process can be extended to the formation of other composites having a low exothermic component.

  15. New ternary tantalum borides containing boron dumbbells: Experimental and theoretical studies of Ta2OsB2 and TaRuB

    NASA Astrophysics Data System (ADS)

    Mbarki, Mohammed; Touzani, Rachid St.; Rehorn, Christian W. G.; Gladisch, Fabian C.; Fokwa, Boniface P. T.

    2016-10-01

    The new ternary transition metal-rich borides Ta2OsB2 and TaRuB have been successfully synthesized by arc-melting the elements in a water-cooled crucible under an argon atmosphere. The crystal structures of both compounds were solved by single-crystal X-ray diffraction and their metal compositions were confirmed by EDX analysis. It was found that Ta2OsB2 and TaRuB crystallize in the tetragonal Nb2OsB2 (space group P4/mnc, no. 128) and the orthorhombic NbRuB (space group Pmma, no. 51) structure types with lattice parameters a=5.878(2) Å, c=6.857(2) Å and a=10.806(2) Å, b=3.196(1) Å, c=6.312(2) Å, respectively. Furthermore, crystallographic, electronic and bonding characteristics have been studied by density functional theory (DFT). Electronic structure relaxation has confirmed the crystallographic parameters while COHP bonding analysis indicates that B2-dummbells are the strongest bonds in both compounds. Moreover, the formation of osmium dumbbells in Ta2OsB2 through a Peierls distortion along the c-axis, is found to be the origin of superstructure formation. Magnetic susceptibility measurements reveal that the two phases are Pauli paramagnets, thus confirming the theoretical DOS prediction of metallic character. Also hints of superconductivity are found in the two phases, however lack of single phase samples has prevented confirmation. Furthermore, the thermodynamic stability of the two modifications of AMB (A=Nb, Ta; M =Ru, Os) are studied using DFT, as new possible phases containing either B4- or B2-units are predicted, the former being the most thermodynamically stable modification.

  16. Retention of trace metals by solidified/stabilized wastes: assessment of long-term metal release.

    PubMed

    Badreddine, R; Humez, A N; Mingelgrin, U; Benchara, A; Meducin, F; Prost, R

    2004-03-01

    Toxic elements found in wastes may have a negative impact on the environment, especially through the contamination of groundwater and plants. To reduce their mobility and availability, French regulations mandate the solidification and stabilization of toxic wastes. Many methods to stabilize and solidify wastes exist, among them the Ecofix process which employs low cost materials and consists of mixing wastes with lime, aluminum hydroxide, and silica. To evaluate the long-term behavior of solidified/stabilized (S/S) samples, their alteration under saturated conditions was studied in a water extractor, a Soxhlet-like device, used to follow the weathering of rocks. Kinetic measurements have shown that the release of Fe, Pb, Cd, Cr, and Cu was very slow, indicating a strong retention of these elements by the S/S materials prepared by the Ecofix process. To elucidate the mechanisms of retention of the trace metals, the mineral phases that existed in the S/S samples throughout and at the end of the extraction runs were studied by X-ray diffraction and by infrared and nuclear magnetic resonance spectroscopies. Scanning electron microscopic (SEM) examinations and electron microprobe analyses of the S/S samples were also performed at different stages of weathering. These observations revealed that assorted calcium silicate hydrates (C-S-H) were the predominant phases in the S/S preparations and that gradual alterations occurred in the structure of the investigated materials. The overall Ca/Si ratio of the C-S-H phases decreased as the enhanced alteration progressed. Although trace metals in oxide, hydroxide, and carbonate forms were found in the S/S materials, the bulk of the trace metals was incorporated in the matrix of the C-S-H phases.

  17. Preparation of Pickering emulsions stabilized by metal organic frameworks using oscillatory woven metal micro-screen.

    PubMed

    Sabouni, R; Gomaa, H G

    2015-06-14

    Uniform Pickering emulsions stabilized by metal organic frameworks (MOFs) MIL-101 and ZIF-8 nanoparticles (NPs) were successfully prepared using an oscillatory woven metal microscreen (WMMS) emulsification system in the presence and the absence of surfactants. The effects of operating and system parameters including the frequency and amplitude of oscillation, the type of nano-particle and/or surfactant on the droplet size and coefficient of variance of the prepared emulsions are investigated. The results showed that both the hydrodynamics of the system and the hydrophobic/hydrophilic nature of the NP influenced the interfacial properties of the oil-water interface during droplet formation and after detachment, which in turn affected the final droplet size and distribution. Comparison between the measured and predicted droplet size using a simple torque balance (TB) model is discussed.

  18. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  19. Complete titanium substitution by boron in a tetragonal prism: exploring the complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) by experiment and theory.

    PubMed

    Fokwa, Boniface P T; Hermus, Martin

    2011-04-18

    Polycrystalline samples and single crystals of four members of the new complex boride series Ti(3-x)Ru(5-y)Ir(y)B(2+x) (0 ≤ x ≤ 1 and 1 < y < 3) were synthesized by arc-melting the elements in a water-cooled copper crucible under an argon atmosphere. The new silvery phases were structurally characterized by powder and single-crystal X-ray diffraction as well as energy- and wavelength-dispersive X-ray spectroscopy analyses. They crystallize with the tetragonal Ti(3)Co(5)B(2) structure type in space group P4/mbm (No. 127). Tetragonal prisms of Ru/Ir atoms are filled with titanium in the boron-poorest phase (Ti(3)Ru(2.9)Ir(2.1)B(2)). Gradual substitution of titanium by boron then results in the successive filling of this site by a Ti/B mixture en route to the complete boron occupation, leading to the boron-richest phase (Ti(2)Ru(2.8)Ir(2.2)B(3)). Furthermore, both ruthenium and iridium share two sites in these structures, but a clear Ru/Ir site preference is found. First-principles density functional theory calculations (Vienna ab initio simulation package) on appropriate structural models (using a supercell approach) have provided more evidence on the stability of the boron-richest and -poorest phases, and the calculated lattice parameters corroborate very well with the experimentally found ones. Linear muffin-tin orbital atomic sphere approximation calculations further supported these findings through crystal orbital Hamilton population bonding analyses, which also show that the Ru/Ir-B and Ru/Ir-Ti heteroatomic interactions are mainly responsible for the structural stability of these compounds. Furthermore, some stable and unstable phases of this complex series could be predicted using the rigid-band model. According to the density of states analyses, all phases should be metallic conductors, as was expected from these metal-rich borides. PMID:21428308

  20. Electrical stability study of metal/dielectric systems

    NASA Astrophysics Data System (ADS)

    Ou, Ya

    The primary focus of this research work is to study the fundamental electrical properties of the metal/dielectric system subjected to thermal and electrical stresses. Metal ions tend to drift into the dielectric under a sufficiently strong electric field at elevated temperatures. The existence of metal ions can modify the dielectric properties of the surrounding insulator. In this thesis, the metal ion penetration process, including the mechanisms of the generation of metal ions and the kinetics of the diffusion/drift process of ions into the dielectric are presented. A diffusion/drift model has been adopted to provide insight into the movement of metal ions in the dielectric matrix. The effect of trapped metal ions on the electrical properties of the dielectric is also explored. Bias temperature stressing method combined with capacitance-voltage measurement is utilized to study the metal ion penetration process. Metals with higher oxidation tendency drift more readily into porous dielectrics, such as porous methyl silsesquioxane and porous SiCOH. Interfacial oxides, especially sub-oxides are not thermodynamically robust and therefore may break down under electric field and consequently release free metal ions to drift into the underneath dielectric materials. However, the formation of a robust and continuous thin layer of metal oxide such as stoichiometric aluminum oxide at the Al/dense SiO2 interface has shown its ability to dramatically reduce the penetration of metal ions. The effects of trapped metal ions on the electrical property of the dielectric are investigated by using a current-voltage ramping method. High temperature conduction mechanisms of Ta/porous SiCOH/Si structure have been found to transit from the Schottky emission regime to the Poole-Frenkel emission regime as more metal ions drift into the dielectrics. Metal ions in the dielectric act as electron traps that consequently enhance the transport of electrons through the dielectric under external

  1. Solubility Behavior and Phase Stability of Transition Metal Oxides in Alkaline Hydrothermal Environments

    SciTech Connect

    S.E. Ziemniak

    2000-05-18

    The solubility behavior of transition metal oxides in high temperature water is interpreted by recognizing three types of chemical reaction equilibria: metal oxide hydration/dehydration, metal oxide dissolution and metal ion hydroxocomplex formation. The equilibria are quantified using thermodynamic concepts and the thermochemical properties of the metal oxides/ions representative of the most common constituents of construction metal alloys, i.e., element shaving atomic numbers between Z = 22 (Ti) and Z = 30 (Zn), are summarized on the basis of metal oxide solubility studies conducted in the laboratory. Particular attention is devoted to the uncharged metal ion hydrocomplex, M{sup Z}(OH){sub Z}(aq), since its thermochemical properties define minimum solubilities of the metal oxide at a given temperature. Experimentally-extracted values of standard partial molal entropy (S{sup 0}) for the transition metal ion neutral hydroxocomplex are shown to be influenced by ligand field stabilization energies and complex symmetry.

  2. Stabilized metal nanoparticles from organometallic precursors for low temperature fuel cells.

    PubMed

    Ramirez-Meneses, E; Dominguez-Crespo, M A; Torres-Huerta, A M

    2013-01-01

    In this work, a review of articles and patents related to the utilization of colloidal metal nanoparticles produced by the decomposition of organometallic precursors as supported electrocatalysts in different electrochemical reactions including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) is discussed. In the case of stabilized metal nanoparticles, the kind of functional group contained in the stabilizer as well as the metal/stabilizer ratio, to evaluate the effect of particle size on the electrochemical performance, were also debated. Potential applications and perspectives of these electrocatalysts in proton exchange membrane fuel cells (PEMFC) are contended with reference to the role played by the coordination compounds and costs.

  3. Joining of zirconium boride based refractory ceramics to Ti6Al4V

    NASA Astrophysics Data System (ADS)

    Muolo, Maria Luigia; Ferrera, Elena; Morbelli, Luisa; Zanotti, Claudio; Passerone, Alberto

    2003-09-01

    The exploitation of the peculiar characteristics of ceramic refractory materials in extreme conditions (as for Thermal Protection Systems - TPS) often depends to a great extent on the ability to join different ceramics one to the other and to special metallic alloys. Joints may be achieved in a number of ways, but principally are made by either solid phase or liquid phase transformations (brazing). Brazed joints are difficult to realise in the presence of ceramic materials, due to the fact that they are not wet, in general, by liquid metals. This paper presents experimental results on the wettability characteristics of zirconium boride based materials (with Si3N4, Ni etc.) by an AgZr alloy, the microstructures and thermal tests of brazed joints with the special alloy Ti6Al4V. The wetting data will be examined in terms of interfacial characteristics and in terms of the kinetics of spreading. Thermal tests and models will be devoted to evaluate and measure the thermal insulation capacity of the ceramic layers in order to determine the optimal thickness as a function of the foreseen outer surface temperature.

  4. Stabilizing metal components in electrodes of electrochemical cells

    DOEpatents

    Spengler, Charles J.; Ruka, Roswell J.

    1989-01-01

    Disclosed is a method of reducing the removal or transfer into a gas phase of a current carrying metal in an apparatus, such as an electrochemical cell 2 having a porous fuel electrode 6 containing metal particles 11, where the metal is subject to removal or transfer into a gaseous phase, the method characterized in that (1) a metal organic compound that decomposes to form an electronically conducting oxide coating when heated is applied to the metal and porous electrode, and (2) the compound on the metal is then heated to a temperature sufficient to decompose the compound into an oxide coating 13 by increasing the temperature at a rate that is longer than 1 hour between room temperature and 600.degree. C., resulting in at least one continuous layer 13, 14 of the oxide coating on the metal.

  5. Microstructure and properties of laser-borided composite layers formed on commercially pure titanium

    NASA Astrophysics Data System (ADS)

    Kulka, M.; Makuch, N.; Dziarski, P.; Piasecki, A.; Miklaszewski, A.

    2014-03-01

    Laser-boriding was proposed in order to produce composite boride layers on commercially pure titanium. Three zones were observed in the microstructure: laser-borided re-melted zone (TiB, TiB2 and Tiα'-phase), heat affected zone (Tiα'-phase) and the substrate without heat treatment (Tiα-phase). The stick-like titanium borides occurred in the re-melted zone. In some areas, the tubular nature of titanium borides was visible. Among the sticks of titanium borides the needles of Tiα'-phase appeared. The high overlapping of multiple laser tracks (86%) caused the formation of uniform laser-alloyed layer in respect of the thickness. The microcracks and pores were not detected in the laser-borided composite layer. The high hardness of the re-melted zone (1250-1650 HV) was obtained. The hardness gradually decreased up to 250-300 HV in heat affected zone and up to about 200 HV in the substrate. In case of higher laser beam power used (1.95 kW), the re-melted zone was thicker and more homogeneous in respect of the microstructure and hardness. The craters obtained at the surface after the Rockwell C indentation test evidently revealed ideal cohesion of the laser-borided layer (HF1 standard). The significant increase in wear resistance of laser-borided composite layers was observed in comparison with commercially pure titanium. The lower mass wear intensity factors were obtained for laser-alloyed layers. The measurements of relative mass loss were also used in order to evaluate wear behavior of the investigated materials. The tests of laser-borided layers showed the catastrophic wear of the counter-specimens. The separated particles of counter-sample caused the accelerated wear of the laser-alloyed specimen. The longer duration of the tests, carried out without the change in a counter-specimen, caused the adhesion of counter-sample particles on the laser-borided specimen. The increased contact surface was the reason for the higher temperature and created the favourable

  6. Deposition and characterization of aluminum magnesium boride thin film coatings

    NASA Astrophysics Data System (ADS)

    Tian, Yun

    Boron-rich borides are a special group of materials possessing complex structures typically comprised of B12 icosahedra. All of the boron-rich borides sharing this common structural unit exhibit a variety of exceptional physical and electrical properties. In this work, a new ternary boride compound AlMgB14, which has been extensively studied in bulk form due to its novel mechanical properties, was fabricated into thin film coatings by pulsed laser deposition (PLD) technology. The effect of processing conditions (laser operating modes, vacuum level, substrate temperature, and postannealing, etc.) on the composition, microstructure evolution, chemical bonding, and surface morphology of AlMgB14 thin film coatings has been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared (FTIR) spectrometry; the mechanical, electrical, and optical properties of AlMgB14 thin films have been characterized by nanoindentation, four-point probe, van der Pauw Hall measurement, activation energy measurement, and UV-VIS-NIR spectrophotometer. Experimental results show that AlMgB14 films deposited in the temperature range of 300 K - 873 K are amorphous. Depositions under a low vacuum level (5 x 10-5 Torr) can introduce a significant amount of C and O impurities into AlMgB14 films and lead to a complex oxide glass structure. Orthorhombic AlMgB14 phase cannot be obtained by subsequent high temperature annealing. By contrast, the orthorhombic AlMgB 14 crystal structure can be attained via high temperature-annealing of AlMgB14 films deposited under a high vacuum level (< 3 x 10-6 Torr), accompanied by strong texture formation. Low vacuum level-as deposited AlMgB14 films have low hardness (10 GPa), but high vacuum level-as deposited AlMgB14 films exhibit an extremely high hardness (45 GPa - 51 GPa), and the higher deposition temperature results in still higher hardness

  7. An alternative method of gas boriding applied to the formation of borocarburized layer

    SciTech Connect

    Kulka, M. Makuch, N.; Pertek, A.; Piasecki, A.

    2012-10-15

    The borocarburized layers were produced by tandem diffusion processes: carburizing followed by boriding. An alternative method of gas boriding was proposed. Two-stage gas boronizing in N{sub 2}-H{sub 2}-BCl{sub 3} atmosphere was applied to the formation of iron borides on a carburized substrate. This process consisted in two stages, which were alternately repeated: saturation by boron and diffusion annealing. The microstructure and microhardness of produced layer were compared to those-obtained in case of continuous gas boriding in H{sub 2}-BCl{sub 3} atmosphere, earlier used. The first objective of two-stage boronizing, consisting in acceleration of boron diffusion, has been efficiently implemented. Despite the lower temperature and shorter duration of boronizing, about 1.5 times larger iron borides' zone has been formed on carburized steel. Second objective, the absolute elimination of brittle FeB phase, has failed. However, the amount of FeB phase has been considerably limited. Longer diffusion annealing should provide the boride layer with single-phase microstructure, without FeB phase. - Highlights: Black-Right-Pointing-Pointer Alternative method of gas boriding in H{sub 2}-N{sub 2}-BCl{sub 3} atmosphere was proposed. Black-Right-Pointing-Pointer The process consisted in two stages: saturation by boron and diffusion annealing. Black-Right-Pointing-Pointer These stages of short duration were alternately repeated. Black-Right-Pointing-Pointer The acceleration of boron diffusion was efficiently implemented. Black-Right-Pointing-Pointer The amount of FeB phase in the boride zone was limited.

  8. A general phase transfer protocol for synthesizing alkylamine-stabilized nanoparticles of noble metals.

    PubMed

    Yang, J; Lee, Jim Yang; Too, Heng-Phon

    2007-04-01

    The ethanol-mediated phase transfer protocol was extended herein to prepare alkylamine-stabilized nanoparticles of several noble metals by transferring them from aqueous environment into toluene. This method relies on the use of ethanol as a mediator to provide and maintain adequate contact between dodecylamine and metal nanoparticles during the transfer process and involves first mixing the metal hydrosols and an ethanol solution of dodecylamine and then extracting the dodecylamine-stabilized metal nanoparticles into toluene. Alkylamine-stabilized Ag, Pd, Rh, Ir and Os nanoparticles with 7.09, 3.45, 6.89, 2.42 and 4.52 nm in diameter, respectively, could be prepared this way. The self-assembly of dodecylamine-stabilized Ag and Rh nanoparticles was also detected by transmission electron microscopy (TEM).

  9. Laser guided and stabilized gas metal arc welding processes (LGS-GMA)

    NASA Astrophysics Data System (ADS)

    Hermsdorf, Jörg; Barroi, Alexander; Kaierle, Stefan; Overmeyer, Ludger

    2013-05-01

    The demands of the industry are cheap and fast production of highly sophisticated parts without compromises in product quality. To realize this requirement, we have developed a laser guided and stabilized gas metal arc process (LGS-GMA welding). The new welding process is based on a gas metal arc process using low power laser radiation for stabilization. The laser stabilization of gas metal arcs welding is applied to joint welding and cladding. With only 400 W laser power and a focal spot of 1.6 mm the laser radiation is mainly interacting with the arc plasma in order to guide and stabilize it. In joint welding up to 100% increase in welding speed is possible, at equal penetration depth. The guidance effect also enables the process to weld in challenging situations like different sheet thicknesses. Used for cladding, the enhanced process stability allows low penetration depth with dilutions of only 3%. Coatings with up to 63 HRC were achieved.

  10. Stabilization of heavy metals on spent fluid catalytic cracking catalyst using marine clay.

    PubMed

    Sun, D D; Tay, J H; Qian, C E; Lai, D

    2001-01-01

    Spent fluid catalytic cracking catalyst is a hazardous solid waste generated by petroleum refineries containing vanadium and nickel. The marine clay was used as a matrix to stabilize vanadium and nickel and produce bricks which were then fired at various temperatures. TCLP leaching tests indicated that stabilizing brick had low metal leaching, with a maximum of 6.4 mg/l for vanadium and 19.8 microg/l for nickel. Compressive strength of stabilizing brick was found to range between 20 N/mm2 and 47 N/mm2. It is believed that stabilization and encapsulation mechanisms are responsible for the stabilization of vanadium and nickel. Encapsulation is a process whereby the marine clay matrix forms a physical barrier around the heavy metals which are thus prevented from leaching out into the environment. Incorporation involves the formation of bonds between the marine clay matrix and the heavy metals which thus become incorporated in the clay microstructure.

  11. STABILITY IN BCC TRANSITION METALS: MADELUNG AND BAND-ENERGY EFFECTS DUE TO ALLOYING

    SciTech Connect

    Landa, A; Soderlind, P; Ruban, A; Peil, O; Vitos, L

    2009-08-28

    The phase stability of the bcc Group VB (V, Nb, and Ta) transition metals is explored by first-principles electronic-structure calculations. Alloying with a small amount of a neighboring metal can either stabilize or destabilize the bcc phase. This counterintuitive behavior is explained by competing mechanisms that dominate depending on particular dopand. We show that band-structure effects dictate stability when a particular Group VB metal is alloyed with its nearest neighbors within the same d-transition series. In this case, the neighbor with less (to the left) and more (to the right) d electrons, destabilize and stabilize bcc, respectively. When alloying with neighbors of different d-transition series, electrostatic Madelung energy dominates over the band energy and always stabilizes the bcc phase.

  12. Electroactive compositions with poly(arylene oxide) and stabilized lithium metal particles

    DOEpatents

    Zhang, Zhengcheng; Yuan, Shengwen; Amine, Khalil

    2015-05-12

    An electroactive composition includes an anodic material; a poly(arylene oxide); and stabilized lithium metal particles; where the stabilized lithium metal particles have a size less than about 200 .mu.m in diameter, are coated with a lithium salt, are present in an amount of about 0.1 wt % to about 5 wt %, and are dispersed throughout the composition. Lithium secondary batteries including the electroactive composition along with methods of making the electroactive composition are also discussed.

  13. Heavy metal leaching from hydroxide, sulphide and silicate stabilized/solidified wastes

    SciTech Connect

    Cheeseman, C.R.; Butcher, E.J.; Sollars, C.J.; Perry, R. . Centre for Environmental Control and Waste Management)

    1993-01-01

    A synthetic, mixed-metal solution has been stabilized by treatment with sodium hydroxide, sodium sulphide, and sodium silicate, respectively. The three stabilized filter cakes have subsequently been solidified using additions of ordinary Portland cement and pulverized fuel ash (PFA) which are typically used in UK solidification operations. Both the stabilized filter cakes and the solidified wastes have been subjected to an equilibrium extraction test, a modified TCLP test, and a series of single-extraction, batch leach tests using an increasingly acidic leachant. Metal release was found to be primarily dependent on the pH of the leachate. Under mildly acidic conditions, the percentages leached from the stabilized and the stabilized/solidified wastes were comparable for most metals. A high-volume fraction of these solidified wastes is occupied by the stabilized filter cake. When they are broken up and tested in single-extraction leach tests, the primary effect of the cementitious additives is to increase the pH of the leachate so that most heavy metals remain insoluble. When tested under acidic leachate conditions, copper, lead, and mercury were found to be particularly well retained within sodium sulphide stabilized wastes. Under similar tests conditions, cadmium was leached at very low levels from the sodium silicate stabilized waste.

  14. A general mechanism for stabilizing the small sizes of precious metal nanoparticles on oxide supports

    SciTech Connect

    Li, Wei-Zhen; Kovarik, Libor; Mei, Donghai; Engelhard, Mark H.; Gao, Feng; Liu, Jun; Wang, Yong; Peden, Charles HF

    2014-09-02

    We recently discovered that MgAl2O4 spinel {111} nano-facets optimally stabilize the small sizes of platinum nanoparticles even after severe high temperature aging treatments. Here we report the thermal stabilities of other precious metals with various physical and chemical properties on the MgAl2O4 spinel {111} facets, providing important new insights into the stabilization mechanisms. Besides Pt, Rh and Ir can also be successfully stabilized as small (1-3 nm) nanoparticles and even as single atomic species after extremely severe (800 °C, 1 week) oxidative aging. However, other metals either aggregate (Ru, Pd, Ag, and Au) or sublimate (Os) even during initial catalyst synthesis. On the basis of ab initio theoretical calculations and experimental observations, we rationalize that the exceptional stabilization originates from lattice matching, and the correspondingly strong attractive interactions at interfaces between the spinel {111} surface oxygens and epitaxial metals\\metal oxides. On this basis, design principles for catalyst support oxide materials that are capable in stabilizing precious metals are proposed.

  15. Alkali Metal Carbenoids: A Case of Higher Stability of the Heavier Congeners.

    PubMed

    Molitor, Sebastian; Gessner, Viktoria H

    2016-06-27

    As a result of the increased polarity of the metal-carbon bond when going down the group of the periodic table, the heavier alkali metal organyl compounds are generally more reactive and less stable than their lithium congeners. We now report a reverse trend for alkali metal carbenoids. Simple substitution of lithium by the heavier metals (Na, K) results in a significant stabilization of these usually highly reactive compounds. This allows their isolation and handling at room temperature and the first structure elucidation of sodium and potassium carbenoids. The control of stability was used to control reactivity and selectivity. Hence, the Na and K carbenoids act as selective carbene-transfer reagents, whereas the more labile lithium systems give rise to product mixtures. Additional fine tuning of the M-C interaction by means of crown ether addition further allows for control of the stability and reactivity. PMID:27100278

  16. Determination of stability constants of aminoglycoside antibiotics with their metal complexes

    NASA Astrophysics Data System (ADS)

    Tiwow, Vanny M. A.

    2014-03-01

    One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.

  17. Changes of toxic metals during biological stabilization and their potential ecological risk assessment.

    PubMed

    Wang, Hou-cheng; Zeng, Zheng-zhong; Zhang, He-fei; Nan, Zhong-ren

    2015-01-01

    With various disadvantages of pollution control technologies for toxic metal-contaminated soil, we mixed contaminated soil with sludge for in situ composting to stabilize toxic metals, so plants are enriched to take up the toxic metals. When simulating the above, we added toxic metal solution into sewage sludge, and then composed it with steel slag to determine inhibition of the availability of toxic metals. When toxic metals were added into sludge, the potential ecological index and geoaccumulation index of Cd became high while Zn was low. Steel slag had an inhibited availability of Cd, and when the adjunction of steel slag was 7%, the availability of Cd was lowest. Steel slag promoted the availability of Zn, and when the adjunction of steel slag was 27%, the availability of Zn was highest. Results showed that during composting, with increasing steel slag, Cd stabilizing time was reached sooner but Zn stabilizing time was slower, and the availability of all metals became lower. In the end, composting inhibited the potential ecological index of Cd, but it promoted the potential ecological index of Zn. Steel slag promoted the stability of Cd and Zn as Fe/Mn oxide-bound and residual species. Therefore, composting sludge and steel slag could be used as an effective inhibitor of Zn and Cd pollution.

  18. Changes of toxic metals during biological stabilization and their potential ecological risk assessment.

    PubMed

    Wang, Hou-cheng; Zeng, Zheng-zhong; Zhang, He-fei; Nan, Zhong-ren

    2015-01-01

    With various disadvantages of pollution control technologies for toxic metal-contaminated soil, we mixed contaminated soil with sludge for in situ composting to stabilize toxic metals, so plants are enriched to take up the toxic metals. When simulating the above, we added toxic metal solution into sewage sludge, and then composed it with steel slag to determine inhibition of the availability of toxic metals. When toxic metals were added into sludge, the potential ecological index and geoaccumulation index of Cd became high while Zn was low. Steel slag had an inhibited availability of Cd, and when the adjunction of steel slag was 7%, the availability of Cd was lowest. Steel slag promoted the availability of Zn, and when the adjunction of steel slag was 27%, the availability of Zn was highest. Results showed that during composting, with increasing steel slag, Cd stabilizing time was reached sooner but Zn stabilizing time was slower, and the availability of all metals became lower. In the end, composting inhibited the potential ecological index of Cd, but it promoted the potential ecological index of Zn. Steel slag promoted the stability of Cd and Zn as Fe/Mn oxide-bound and residual species. Therefore, composting sludge and steel slag could be used as an effective inhibitor of Zn and Cd pollution. PMID:26540531

  19. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge

  20. Pt-B System Revisited: Pt2B, a New Structure Type of Binary Borides. Ternary WAl12-Type Derivative Borides.

    PubMed

    Sologub, Oksana; Salamakha, Leonid; Rogl, Peter; Stöger, Berthold; Bauer, Ernst; Bernardi, Johannes; Giester, Gerald; Waas, Monika; Svagera, Robert

    2015-11-16

    On the basis of a detailed study applying X-ray single-crystal and powder diffraction, differential scanning calorimetry, and scanning electron microscopy analysis, it was possible to resolve existing uncertainties in the Pt-rich section (≥65 atom % Pt) of the binary Pt-B phase diagram above 600 °C. The formation of a unique structure has been observed for Pt2B [X-ray single-crystal data: space group C2/m, a = 1.62717(11) nm, b = 0.32788(2) nm, c = 0.44200(3) nm, β = 104.401(4)°, RF2 = 0.030]. Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structural modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 [space group P63/mmc, a = 0.279377(2) nm, c = 1.04895(1) nm, RF = 0.075, RI = 0.090]. The structure of the new "[Formula: see text]T-Pt3B" is still unknown. The formation of previously reported Pt∼4B has not been confirmed from binary samples. Exploration of the Pt-rich section of the Pt-Cu-B system at 600 °C revealed a new ternary compound, Pt12CuB6-y [X-ray single-crystal data: space group Im3̅, a = 0.75790(2) nm, y = 3, RF2 = 0.0129], which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminum-boride was synthesized and studied. The solubility of copper in binary platinum borides has been found to attain ∼7 atom % Cu for Pt2B but to be insignificant for "[Formula: see text]T-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron-filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a double layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-T[Formula: see text]I fragment). Assuming boron vacancies ordering (space group R3), the Pt12CuB6-y structure exhibits serpentine-like columns of edge

  1. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels.

    PubMed

    Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying

    2016-01-01

    To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm(-3) was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258

  2. High-internal-phase emulsions stabilized by metal-organic frameworks and derivation of ultralight metal-organic aerogels

    PubMed Central

    Zhang, Bingxing; Zhang, Jianling; Liu, Chengcheng; Peng, Li; Sang, Xinxin; Han, Buxing; Ma, Xue; Luo, Tian; Tan, Xiuniang; Yang, Guanying

    2016-01-01

    To design high-internal-phase emulsion (HIPE) systems is of great interest from the viewpoints of both fundamental researches and practical applications. Here we demonstrate for the first time the utilization of metal-organic framework (MOF) for HIPE formation. By stirring the mixture of water, oil and MOF at room temperature, the HIPE stabilized by the assembly of MOF nanocrystals at oil-water interface could be formed. The MOF-stabilized HIPE provides a novel route to produce highly porous metal-organic aerogel (MOA) monolith. After removing the liquids from the MOF-stabilized HIPE, the ultralight MOA with density as low as 0.01 g·cm−3 was obtained. The HIPE approach for MOA formation has unique advantages and is versatile in producing different kinds of ultralight MOAs with tunable porosities and structures. PMID:26892258

  3. Bonding glass to metal with plastic for stability over temperature

    NASA Astrophysics Data System (ADS)

    Willis, Chris L.; Petrie, Stephen P.

    2001-11-01

    To enable the invention of higher power IRCM lasers, 3D LIDAR systems, Designator/Rangefinders and other Instruments subjected to a broad range of operating conditions, there is a need to develop improved technology to hold small mirrors, lenses, beamsplitters and other optical elements with repeatable and high dimensional stability over wide environmental temperature ranges, an do so with great economy. The intent of this effort was to begin identifying significant factors for bonding small mirrors for high stability. A screening experiment was performed in which half-inch diameter flat mirrors were face bonded to similar mirror mounts, then bolted to a reference test fixture and subjected to an environmental temperature range of -40 to +70 degrees C. Mount material, optic material, adhesive material, bond joint design, and bond thickness were varied. The resulting tilt errors in the mirror assemblies were measured. Steps were taken to isolate the bond joint stability as opposed to stability in the mounted mirror subassemblies. The effort required to minimize experimental noise was much greater than anticipated. This first experimental effort failed to identify main factors with statistical significance, however; some results are interesting. Perhaps also of interest is the progress made at characterizing the experimental setup and process, and lessons learned in control of noise factors in this kind of experiment.

  4. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi

    1983-01-01

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB.sub.2, or CrB.sub.2. A transition metal to be coated is immersed in the melt at a temperature of no more than 700.degree. C. and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface.

  5. Method of boronizing transition metal surfaces

    DOEpatents

    Koyama, Koichiro; Shimotake, Hiroshi.

    1983-08-16

    A method is presented for preparing a boride layer on a transition metal substrate for use in corrosive environments or as a harden surface in machine applications. This method is particularly useful in treating current collectors for use within a high temperature and corrosive electrochemical cell environment. A melt of a alkali metal boride tetrafluoride salt including such as KF to lower its melting point is prepared including a dissolved boron containing material, for instance NiB, MnB[sub 2], or CrB[sub 2]. A transition metal to be coated is immersed in the melt at a temperature of no more than 700 C and a surface boride layer of that transition metal is formed within a period of about 24 hours on the substrate surface. 4 figs.

  6. Stabilized Alkali-Metal Ultraviolet-Band-Pass Filters

    NASA Technical Reports Server (NTRS)

    Mardesich, Nick; Fraschetti, George A.; Mccann, Timothy; Mayall, Sherwood D.; Dunn, Donald E.; Trauger, John T.

    1995-01-01

    Layers of bismuth 5 to 10 angstrom thick incorporated into alkali-metal ultraviolet-band-pass optical filters by use of advanced fabrication techniques. In new filters layer of bismuth helps to reduce surface migration of sodium. Sodium layer made more stable and decreased tendency to form pinholes by migration.

  7. Yttrium and rare earth stabilized fast reactor metal fuel

    SciTech Connect

    Guon, J.; Grantham, L.F.; Specht, E.R.

    1992-05-12

    This patent describes an improved metal alloy reactor fuel consisting essentially of uranium, plutonium, and at least one element from the group consisting of yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.

  8. Metal-oxide-metal point contact junction detectors. [detection mechanism and mechanical stability

    NASA Technical Reports Server (NTRS)

    Baird, J.; Havemann, R. H.; Fults, R. D.

    1973-01-01

    The detection mechanism(s) and design of a mechanically stable metal-oxide-metal point contact junction detector are considered. A prototype for a mechanically stable device has been constructed and tested. A technique has been developed which accurately predicts microwave video detector and heterodyne mixer SIM (semiconductor-insulator-metal) diode performance from low dc frequency volt-ampere curves. The difference in contact potential between the two metals and geometrically induced rectification constitute the detection mechanisms.

  9. Inherited (In)stabilities in Transition Metal Superlattices

    NASA Astrophysics Data System (ADS)

    Rudin, Sven

    2011-03-01

    Many transition metals exhibit a solid phase with a body-centered cubic (bcc) crystal structure. For some elements, e.g., tungsten (W), bcc is the only solid phase; for others, e.g., titanium (Ti), the bcc phase only appears at high temperatures. Titanium's high-temperature bcc phase exhibits soft phonon modes. These reflect the atomic movements upon transformation into the low-temperature phases. One such mode shows atomic displacements that also appear in the top few layers of tungsten's surface reconstruction. Superlattices constructed from alternating nanometer-thick layers of W and Ti would allow the two displacement patterns to interact. The work presented here uses density functional theory calculations to predict how the structure and mechanical response of such superlattices depends on the choice of transition metal elements and the layer thicknesses.

  10. Stability of ferromagnetism against doping in half-metallic alloys

    NASA Astrophysics Data System (ADS)

    Galanakis, I.; Şaşıoǧlu, E.

    2011-06-01

    We use a rigid band model to simulate doping in half-metallic NiMnSb and CoMnSb semi-Heusler alloys. Using first-principles calculations we calculate the intrasublattice exchange constants and the Curie temperature for these alloys as a function of the shift of the Fermi level and compare them also with the case of half-metallic CrAs and CrSe zinc-blende alloys. We show for all four compounds that the interactions between Cr-Cr(Mn-Mn) nearest neighbors are sufficient to explain the behavior of the Curie temperature. The interplay between the ferromagnetic RKKY-like and the antiferromagnetic superexchange interactions depends strongly on the details of the density of states around the minority-spin gap and thus it is found to be alloy-dependent.

  11. The Growth Behavior of Titanium Boride Layers in α and β Phase Fields of Titanium

    NASA Astrophysics Data System (ADS)

    Lv, Xiaojun; Hu, Lingyun; Shuang, Yajing; Liu, Jianhua; Lai, Yanqing; Jiang, Liangxing; Li, Jie

    2016-07-01

    In this study, the commercially pure titanium was successfully electrochemical borided in a borax-based electrolyte. The process was carried out at a constant cathodic current density of 300 mA cm-2 and at temperatures of 1123 K and 1223 K (850 °C and 950 °C) for 0.5, 1, 2, 3, and 5 hours. The growth behavior of titanium boride layers in the α phase field of titanium was compared with that in the β phase field. After boriding, the presence of both the TiB2 top layer and TiB whisker sub-layer was confirmed by the X-ray diffraction (XRD) and scanning electron microscope. The relationship between the thickness of boride layers and boriding time was found to have a parabolic character in both α and β phase fields of titanium. The TiB whiskers showed ultra-fast growth rate in the β phase field. Its growth rate constant was found to be as high as 3.2002 × 10-13 m2 s-1. Besides, the chemical resistance of the TiB2 layer on the surface of titanium substrate was characterized by immersion tests in molten aluminum.

  12. Charged and metallic molecular monolayers through surface-induced aromatic stabilization

    NASA Astrophysics Data System (ADS)

    Heimel, G.; Duhm, S.; Salzmann, I.; Gerlach, A.; Strozecka, A.; Niederhausen, J.; Bürker, C.; Hosokai, T.; Fernandez-Torrente, I.; Schulze, G.; Winkler, S.; Wilke, A.; Schlesinger, R.; Frisch, J.; Bröker, B.; Vollmer, A.; Detlefs, B.; Pflaum, J.; Kera, S.; Franke, K. J.; Ueno, N.; Pascual, J. I.; Schreiber, F.; Koch, N.

    2013-03-01

    Large π-conjugated molecules, when in contact with a metal surface, usually retain a finite electronic gap and, in this sense, stay semiconducting. In some cases, however, the metallic character of the underlying substrate is seen to extend onto the first molecular layer. Here, we develop a chemical rationale for this intriguing phenomenon. In many reported instances, we find that the conjugation length of the organic semiconductors increases significantly through the bonding of specific substituents to the metal surface and through the concomitant rehybridization of the entire backbone structure. The molecules at the interface are thus converted into different chemical species with a strongly reduced electronic gap. This mechanism of surface-induced aromatic stabilization helps molecules to overcome competing phenomena that tend to keep the metal Fermi level between their frontier orbitals. Our findings aid in the design of stable precursors for metallic molecular monolayers, and thus enable new routes for the chemical engineering of metal surfaces.

  13. Improving hardness and toughness of boride composites based on aluminum magnesium boride

    NASA Astrophysics Data System (ADS)

    Peters, Justin Steven

    The search for new super-hard materials has usually focused on strongly bonded, highly symmetric crystal structures similar to diamond. The two hardest single-phase materials, diamond and cubic boron nitride (cBN), are metastable, and both must be produced at high temperatures and pressures, which makes their production costly. In 2000, a superhard composite based on a low-symmetry, boron-rich compound was reported. Since then, many advances have been made in the study of this AlMgB14--TiB2 composite. The composite has been shown to exhibit hardness greater than either of its constituent phases, relying on its sub-micron microstructure to provide hardening and strengthening mechanisms. With possible hardness around 40 GPa, an AlMgB 14--60 vol% TiB2 approaches the hardness of cBN, yet is amenable to processing under ambient pressure conditions. There are interesting aspects of both the AlMgB14 and TiB 2 phases. AlMgB14 is comprised of a framework of boron, mostly in icosahedral arrangements. It is part of a family of 12 known compounds with the same boron lattice, with the metal atoms replaced by Li, Na, Y or a number of Lanthanides. Another peculiar trait of this family of compounds is that every one contains a certain amount of intrinsic vacancies on one or both of the metal sites. These vacancies are significant, ranging from 3 to 43% of sites depending on the composition. TiB2 is a popular specialty ceramic material due to its high hardness, moderate toughness, good corrosion resistance, and high thermal and electrical conductivity. The major drawback is the difficulty of densification of pure TiB2 ceramics. A combination of sintering aids, pressure, and temperatures of 1800°C are often required to achieve near full density articles. The AlMgB14--TiB2 composites can achieve 99% density from hotpressing at 1400°C. This is mostly due to the preparation of powders by a high-energy milling technique known as mechanical alloying. The resulting fine powders have

  14. Pressure-volume calculation in bcc metals using Born stability criteria

    NASA Astrophysics Data System (ADS)

    Kuchhal, Piyush; Dass, Narsingh

    1999-10-01

    A simple analytical two-body potential f (r) = 3/4 A r 3/4n + B exp(3/4 prm ) is considered for P-V calculations in bcc metals using Born stability criteria. It is shown that the stability of bcc metals can be expressed uniquely as a function of a parameter q (discussed in the text). The P-V calculations are done in ten bcc metals. The calculations are compared with the experimental data of shock-wave measurements and also with other potential available. It is found out that the present potential is better than the other two-body potentials in case of bcc metals. Further, the calculations done for TOEC and the first pressure derivative of SOEC are found in good agreement with the reported results.

  15. First-principles calculation of the structural stability of 6d transition metals

    SciTech Connect

    Oestlin, A.; Vitos, L.

    2011-09-15

    The phase stability of the 6d transition metals (elements 103-111) is investigated using first-principles electronic-structure calculations. Comparison with the lighter transition metals reveals that the structural sequence trend is broken at the end of the 6d series. To account for this anomalous behavior, the effect of relativity on the lattice stability is scrutinized, taking different approximations into consideration. It is found that the mass-velocity and Darwin terms give important contributions to the electronic structure, leading to changes in the interstitial charge density and, thus, in the structural energy difference.

  16. Correlation between the ionic potential and thermal stability of metal borohydrides: First-principles investigations

    NASA Astrophysics Data System (ADS)

    Błoński, Piotr; Łodziana, Zbigniew

    2014-08-01

    Metal borohydrides are intensively studied because of their potential applications as versatile hydrogen storage. The relation between the formation enthalpy and the Pauling electronegativity established for these materials [Phys. Rev. B 74, 045126 (2006), 10.1103/PhysRevB.74.045126] led to the idea of developing mixed-cation compounds that may provide a route for tuning the thermodynamic stability of metal borohydrides. We report a systematic ab initio investigation of the single-metallic and bimetallic borohydrides, and via an examination of the Born effective charges we provide insight into the physical mechanism determining their stabilities. We show that the decreasing stability of metal borohydrides follows the increasing polarizing ability of the cationic bonding component, expressed as the square root of the cation's dynamical charge divided by its radius in coordinated anion polyhedra around the cation. The charge-to-size ratio thus provides a simple yet physically sound measure of the stabilities of metal borohydrides that can be obtained in relatively simple calculations.

  17. The work function engineering and thermal stability of novel metal gate electrodes for advanced CMOS devices

    NASA Astrophysics Data System (ADS)

    Zhao, Penghui

    The continuous scaling of Complementary Metal Oxide Semiconductor (CMOS) integrated circuits requires the replacement of the conventional poly-silicon gate electrode and silicon dioxide gate dielectric with metal gate electrodes and high-agate dielectrics, respectively. The most critical requirements for alternative metal gates are proper work function and good thermal stability. This dissertation has focused on the effective work function and thermal stability of molybdenum-based metal gates (Mo, MoN, and MoSiN) and fully silicided (FUSI) NiSi metal gates. Capacitance-Voltage (C-V) and Current-Voltage (I-V) measurements of MOS capacitors were performed to investigate the electrical properties of molybdenum-based metal gates. Four-point probe resistivity measurements, Rutherford Backscattering Spectroscopy (RBS), X-ray Photoelectron Spectroscopy (XPS), High Resolution Transmission Electron Microscopy (HR-TEM), Electron Nanodiffraction analysis, X-ray Diffraction (XRD) and backside Secondary Ion Mass Spectroscopy (SIMS) methods were performed as well, to characterize the thermal stability of metal gate electrodes. The effective work function and thermal stability of molybdenum-based metal gates (Mo, MoN and MoSiN) on both SiO2 and Hf-based high-kappadielectrics have been evaluated systematically. The effects of silicon and nitrogen concentrations on the work function and thermal stability are discussed. The effective work function of molybdenum nitrides on both SiO2 and Hf-based high-kappadielectrics can be tuned to ˜4.4-4.5 eV, however, the thermal budgets should be less than 900°C 10 sec due to nitrogen loss and the phase transformation behavior of molybdenum nitrides. Silicon incorporation in the Mo-N system can improve the film thermal stability and diffusion barrier properties at the interface of metal gates/dielectrics due to the presence of Si-N bonds. By optimizing the film composition, the work function of MoSiN gates on SiO2 can be tuned for fully

  18. Stability of noble metal catalysts for the hydrogen-oxygen reaction.

    NASA Technical Reports Server (NTRS)

    Armstrong, W. E.; Jennings, T. J.; Voge, H. H.

    1972-01-01

    Stability of various supported noble metal catalysts for initiation of the hydrogen-oxygen reaction was tested by means of steam-hydrogen treatment at 1000-1200 C followed by a simple activity test. Many catalysts were stable to 1100 C, but all lost some activity at 1200 C. The most active with very good stability was an iridium/alumina catalyst of high iridium content.

  19. Nano-Disperse Borides and Carbides: Plasma Technology Production, Specific Properties, Economic Evaluation

    NASA Astrophysics Data System (ADS)

    Galevskii, G. V.; Rudneva, V. V.; Galevskii, S. G.; Tomas, K. I.; Zubkov, M. S.

    2016-04-01

    The experience of production and study on properties of nano-disperse chromium and titanium borides and carbides, and silicon carbide has been generalized. The structure and special service aspects of utilized plasma-metallurgical complex equipped with a three-jet direct-flow reactor with a capacity of 150 kW have been outlined. Processing, heat engineering and service life characteristics of the reactor are specified. The synthesis parameters of borides and carbides, as well as their basic characteristics in nano-disperse condition and their production flow diagram are outlined. Engineering and economic performance of synthesizing borides in laboratory and industrial conditions is assessed, and the respective segment of the international market as well. The work is performed at State Siberian Industrial University as a project part of the State Order of Ministry of Science and Education of the Russian Federation No. 11.1531/2014/K.

  20. ALLOYING-DRIVEN PHASE STABILITY IN GROUP-VB TRANSITION METALS UNDER COMPRESSION

    SciTech Connect

    Landa, A; Soderlind, P

    2011-04-11

    The change in phase stability of Group-VB (V, Nb, and Ta) transition metals due to pressure and alloying is explored by means of first-principles electronic-structure calculations. It is shown that under compression stabilization or destabilization of the ground-state body-centered cubic (bcc) phase of the metal is mainly dictated by the band-structure energy that correlates well with the position of the Kohn anomaly in the transverse acoustic phonon mode. The predicted position of the Kohn anomaly in V, Nb, and Ta is found to be in a good agreement with data from the inelastic x-ray or neutron scattering measurements. In the case of alloying the change in phase stability is defined by the interplay between the band-structure and Madelung energies. We show that band-structure effects determine phase stability when a particular Group-VB metal is alloyed with its nearest neighbors within the same d-transition series: the neighbor with less and more d electrons destabilize and stabilize the bcc phase, respectively. When V is alloyed with neighbors of a higher (4d- or 5d-) transition series, both electrostatic Madelung and band-structure energies stabilize the body-centered-cubic phase. The opposite effect (destabilization) happens when Nb or Ta is alloyed with neighbors of the 3d-transition series.

  1. Yttrium and rare earth stabilized fast reactor metal fuel

    DOEpatents

    Guon, Jerold; Grantham, LeRoy F.; Specht, Eugene R.

    1992-01-01

    To increase the operating temperature of a reactor, the melting point and mechanical properties of the fuel must be increased. For an actinide-rich fuel, yttrium, lanthanum and/or rare earth elements can be added, as stabilizers, to uranium and plutonium and/or a mixture of other actinides to raise the melting point of the fuel and improve its mechanical properties. Since only about 1% of the actinide fuel may be yttrium, lanthanum, or a rare earth element, the neutron penalty is low, the reactor core size can be reduced, the fuel can be burned efficiently, reprocessing requirements are reduced, and the nuclear waste disposal volumes reduced. A further advantage occurs when yttrium, lanthanum, and/or other rare earth elements are exposed to radiation in a reactor, they produce only short half life radioisotopes, which reduce nuclear waste disposal problems through much shorter assured-isolation requirements.

  2. Dimensional, microstructural and compositional stability of metal fuels

    SciTech Connect

    Solomon, A.A.; Dayananda, M.A.

    1993-03-15

    The projects undertaken were to address two areas of concern for metal-fueled fast reactors: metallurgical compatibility of fuel and its fission products with the stainless steel cladding, and effects of porosity development in the fuel on fuel/cladding interactions and on sodium penetration in fuel. The following studies are reported on extensively in appendices: hot isostatic pressing of U-10Zr by coupled boundary diffusion/power law creep cavitation, liquid Na intrusion into porous U-10Zr fuel alloy by differential capillarity, interdiffusion between U-Zr fuel and selected Fe-Ni-Cr alloys, interdiffusion between U-Zr fuel vs selected cladding steels, and interdiffusion of Ce in Fe-base alloys with Ni or Cr.

  3. Charge Transfer Stabilization of Late Transition Metal Oxide Nanoparticles on a Layered Niobate Support.

    PubMed

    Strayer, Megan E; Senftle, Thomas P; Winterstein, Jonathan P; Vargas-Barbosa, Nella M; Sharma, Renu; Rioux, Robert M; Janik, Michael J; Mallouk, Thomas E

    2015-12-30

    Interfacial interactions between late transition metal/metal oxide nanoparticles and oxide supports impact catalytic activity and stability. Here, we report the use of isothermal titration calorimetry (ITC), electron microscopy and density functional theory (DFT) to explore periodic trends in the heats of nanoparticle-support interactions for late transition metal and metal oxide nanoparticles on layered niobate and silicate supports. Data for Co(OH)2, hydroxyiridate-capped IrOx·nH2O, Ni(OH)2, CuO, and Ag2O nanoparticles were added to previously reported data for Rh(OH)3 grown on nanosheets of TBA0.24H0.76Ca2Nb3O10 and a layered silicate. ITC measurements showed stronger bonding energies in the order Ag < Cu ≈ Ni ≈ Co < Rh < Ir on the niobate support, as expected from trends in M-O bond energies. Nanoparticles with exothermic heats of interaction were stabilized against sintering. In contrast, ITC measurements showed endothermic interactions of Cu, Ni, and Rh oxide/hydroxide nanoparticles with the silicate and poor resistance to sintering. These trends in interfacial energies were corroborated by DFT calculations using single-atom and four-atom cluster models of metal/metal oxide nanoparticles. Density of states and charge density difference calculations reveal that strongly bonded metals (Rh, Ir) transfer d-electron density from the adsorbed cluster to niobium atoms in the support; this mixing is absent in weakly binding metals, such as Ag and Au, and in all metals on the layered silicate support. The large differences between the behavior of nanoparticles on niobate and silicate supports highlight the importance of d-orbital interactions between the nanoparticle and support in controlling the nanoparticles' stability. PMID:26651875

  4. Toward interfacing organic semiconductors with ferromagnetic transition metal substrates: enhanced stability via carboxylate anchoring.

    PubMed

    Han, R; Blobner, F; Bauer, J; Duncan, D A; Barth, J V; Feulner, P; Allegretti, F

    2016-07-28

    We demonstrate that chemically well-defined aromatic self-assembled monolayers (SAMs) bonded via a carboxylate head group to surfaces of ferromagnetic (FM = Co, Ni, Fe) transition metals can be prepared at ambient temperature in ultra-high vacuum and are thermally stable up to 350-400 K (depending on the metal). The much superior stability over thiolate-bonded SAMs, which readily decompose above 200 K, and the excellent electronic communication guaranteed by the carboxylate bonding render benzoate/FM-metal interfaces promising candidates for application in spintronics. PMID:27417687

  5. STABILITY EVALUATION OF METAL CASK ATTACHED TO A TRANSFER PALLET DURING LONG-PERIOD SEISMIC MOTIONS

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Shohei; Shirai, Koji; Kanazawa, Kenji

    Rocking behavior of unfixed body is affected by center of mass, material coefficient of restitution and so on. 2/5 scale metal cask model considering these parameter was used for seismic test to evaluate stability of grounding metal cask attached to a transfer pallet under the influence of long-period earthquake motion. The newest knowledge from seismic test indicates seismic motion with high velocity over 100 kine not always cause the raise of response velocity of metal cask because of energy consumption by cask sliding and impact deformation of concrete. And new estimation method (called "Window energy spectrum method") of earthquake response spectrum gives suitable evaluation of response energy.

  6. Surface hardening of steel by boriding in a cold rf plasma

    NASA Technical Reports Server (NTRS)

    Finberg, I.; Avni, R.; Grill, A.; Spalvins, T.; Buckley, D. H.

    1985-01-01

    Scanning electron spectroscopy, X-ray diffractometry, Auger electron spectroscopy, and microhardness measurements, are used to study the surfaces of 4340-steel samples that have been borided in a cold RF plasma which had been initiated in a gas mixture of 2.7 percent diborane in Ar. As a result of the dislocation of the diborane in the plasma, boron is deposited on the surface of the steel substrate and two crystalline phases, tetragonal Fe2B and orthorhombic FeB, are formed. The formation of boride phases then increases the surface microhardness from 2650 MPa to a maximum value of 7740 MPa.

  7. Investigation of long term stability in metal hydrides

    NASA Technical Reports Server (NTRS)

    Marmaro, Roger W.; Lynch, Franklin E.; Chandra, Dhanesh; Lambert, Steve; Sharma, Archana

    1991-01-01

    It is apparent from the literature and the results of this study that cyclic degradation of AB(5) type metal hydrides varies widely according to the details of how the specimens are cycled. The Rapid Cycle Apparatus (RCA) used produced less degradation in 5000 to 10000 cycles than earlier work with a Slow Cycle Apparatus (SCA) produced in 1500 cycles. Evidence is presented that the 453 K (356 F) Thermal Aging (TA) time spent in the saturated condition causes hydride degradation. But increasing the cooling (saturation) period in the RCA did not greatly increase the rate of degradation. It appears that TA type degradation is secondary at low temperatures to another degradation mechanism. If rapid cycles are less damaging than slow cycles when the saturation time is equal, the rate of hydriding/dehydriding may be an important factor. The peak temperatures in the RCA were about 30 C lower than the SCA. The difference in peak cycle temperatures (125 C in the SCA, 95 C in RCA) cannot explain the differences in degradation. TA type degradation is similar to cyclic degradation in that nickel peaks and line broadening are observed in X ray diffraction patterns after either form of degradation.

  8. Stabilization of Rocky Flats combustible residues contaminated with plutonium metal and organic solvents

    SciTech Connect

    Bowen, S.M.; Cisneros, M.R.; Jacobson, L.L.; Schroeder, N.C.; Ames, R.L.

    1998-09-30

    This report describes tests on a proposed flowsheet designed to stabilize combustible residues that were generated at the Rocky Flats Environmental Technology Site (RFETS) during the machining of plutonium metal. Combustible residues are essentially laboratory trash contaminated with halogenated organic solvents and plutonium metal. The proposed flowsheet, designed by RFETS, follows a glovebox procedure that includes (1) the sorting and shredding of materials, (2) a low temperature thermal desorption of solvents from the combustible materials, (3) an oxidation of plutonium metal with steam, and (4) packaging of the stabilized residues. The role of Los Alamos National Laboratory (LANL) in this study was to determine parameters for the low temperature thermal desorption and steam oxidation steps. Thermal desorption of carbon tetrachloride (CCl{sub 4}) was examined using a heated air stream on a Rocky Flats combustible residue surrogate contaminated with CCl{sub 4}. Three types of plutonium metal were oxidized with steam in a LANL glovebox to determine the effectiveness of this procedure for residue stabilization. The results from these LANL experiments are used to recommend parameters for the proposed RFETS stabilization flowsheet.

  9. DEMONSTRATION BULLETIN: MOLECULAR BONDING SYSTEM FOR HEAVY METALS STABILIZATION - SOLUCORP INDUSTRIES LTD.

    EPA Science Inventory

    This document presents an evaluation of the Molecular Bonding System (MBS) and its ability to chemically stabilize three metals-contaminated wstes/soils during a SITe demo. The MBS process treated approximately 500 tons each of soil/Fill, Slag, and Miscellaneous Smelter Waste wit...

  10. [Effect and mechanism of heavy metal stabilization treatment of sediment in Jinshan Lake].

    PubMed

    Zhou, Xue-fei; Zhang, Ya-lei; Zhang, Ming; Zhu, Hong-guang; Li, Jian-hua; Zhao, Jian-fu

    2008-06-01

    The heavy metal stabilization treatment (by mixture of CaO, CaO2, CaO and CaO2) of sediment in Jinshan Lake were investigated through soil column experiment, including the transport and transformation of heavy metal in sediment after stabilization, and the mechanism of heavy metal stabilization treatment technology. In the simulated acid rain experiment under a pH of 2.9, Zn in the sediment stabilized by CaO, CaO+ CaO2, CaO2, respectively, transferred to the third layer with the first layer's migrating quantities of 96, 97 and 93 mg/kg, while in another experiment under a pH of 5.0, Zn transferred to the third layer with the first layer's migrating quantities of 87, 90 and 89 mg/kg, respectively. In the blank experiments under pH 2.9 and 5.0, Zn transferred to the sixth and fifth layer with the first layer migrating quantities of 128 and 112 mg/kg, respectively. The above results were concluded to be: 1) both migrating velocity and first layer's migrating quantity of Zn decreased in stabilized sediment; 2) the three tested ways could reduce it migrating capability in soil; 3) pH of leached solution could affect the migrating capability of Zn and high Ph would lead to the decrease of Zn in soil. For Ni and Cd, the similar conclusion could also be gained. The results of metal transporting mechanism experiments with CaO, CaO + CaO2, CaO2 showed that: 1) pH of the sediment increased from 6.76 to 8.33, 8.15 and 8.21; 2) TOC content decreased with a range of 5%, 10.9% and 13.1%; 3) fixedness part contents of Zn, Ni and Cd increased 10.6%, 1.7% and 4.5%, respectively, which is the important reason leading to the decrease of metal transporting capability. The transformation proportion of heavy metal from labilization to stabilization showed that the stabilization capability of heavy metal followed the sequence: Zn > Cd > Ni.

  11. Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals

    SciTech Connect

    Zheng, Shijian; Carpenter, John S.; McCabe, Rodney J.; Beyerlein, Irene J.; Mara, Nathan A.

    2014-02-27

    Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. In this paper, we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability of one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. As a result, we demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials.

  12. Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals

    PubMed Central

    Zheng, Shijian; Carpenter, John S.; McCabe, Rodney J.; Beyerlein, Irene J.; Mara, Nathan A.

    2014-01-01

    Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. Here we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability of one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. Taken together, these results demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials. PMID:24573355

  13. Engineering interface structures and thermal stabilities via SPD processing in bulk nanostructured metals.

    PubMed

    Zheng, Shijian; Carpenter, John S; McCabe, Rodney J; Beyerlein, Irene J; Mara, Nathan A

    2014-01-01

    Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. Here we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability of one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. Taken together, these results demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials. PMID:24573355

  14. Engineering Interface Structures and Thermal Stabilities via SPD Processing in Bulk Nanostructured Metals

    DOE PAGES

    Zheng, Shijian; Carpenter, John S.; McCabe, Rodney J.; Beyerlein, Irene J.; Mara, Nathan A.

    2014-02-27

    Nanostructured metals achieve extraordinary strength but suffer from low thermal stability, both a consequence of a high fraction of interfaces. Overcoming this tradeoff relies on making the interfaces themselves thermally stable. In this paper, we show that the atomic structures of bi-metal interfaces in macroscale nanomaterials suitable for engineering structures can be significantly altered via changing the severe plastic deformation (SPD) processing pathway. Two types of interfaces are formed, both exhibiting a regular atomic structure and providing for excellent thermal stability, up to more than half the melting temperature of one of the constituents. Most importantly, the thermal stability ofmore » one is found to be significantly better than the other, indicating the exciting potential to control and optimize macroscale robustness via atomic-scale bimetal interface tuning. As a result, we demonstrate an innovative way to engineer pristine bimetal interfaces for a new class of simultaneously strong and thermally stable materials.« less

  15. Hydrothermal synthesis of platinum-group-metal nanoparticles by using HEPES as a reductant and stabilizer.

    PubMed

    So, Man-Ho; Ho, Chi-Ming; Chen, Rong; Che, Chi-Ming

    2010-06-01

    Platinum-group-metal (Ru, Os, Rh, Ir, Pd and Pt) nanoparticles are synthesized in an aqueous buffer solution of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) (200 mM, pH 7.4) under hydrothermal conditions (180 degrees C). Monodispersed (monodispersity: 11-15%) metal nanoparticles were obtained with an average particle size of less than 5 nm (Ru: 1.8+/-0.2, Os: 1.6+/-0.2, Rh: 4.5+/-0.5, Ir: 2.0+/-0.3, Pd: 3.8+/-0.4, Pt: 1.9+/-0.2 nm). The size, monodispersity, and stability of the as-obtained metal nanoparticles were affected by the HEPES concentration, pH of the HEPES buffer solution, and reaction temperature. HEPES with two tertiary amines (piperazine groups) and terminal hydroxyl groups can act as a reductant and stabilizer. The HEPES molecules can bind to the surface of metal nanoparticles to prevent metal nanoparticles from aggregation. These platinum-group-metal nanoparticles could be deposited onto the surface of graphite, which catalyzed the aerobic oxidation of alcohols to aldehydes. PMID:20512785

  16. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils.

    PubMed

    Zhang, Mingkui; Pu, Jincheng

    2011-01-01

    Four minerals, agricultural limestone (AL), rock phosphate (RP), palygorskite (PG), and calcium magnesium phosphate (CMP), were evaluated by means of chemical fractions of heavy metals in soils and concentrations of heavy metals in leachates from columns to determine their ability to stabilize heavy metals in polluted urban soils. Two urban soils (calcareous soil and acidic soil) polluted with cadmium, copper, zinc and lead were selected and amended in the laboratory with the mineral materials) for 12 months. Results indicated that application of the mineral materials reduced exchangeable metals in the sequence of Pb, Cd > Cu > Zn. The reduction of exchangeable fraction of heavy metals in the soils amended with different mineral materials followed the sequence of CMP, PG > AL > RP. Reductions of heavy metals leached were based on comparison with cumulative totals of heavy metals eluted through 12 pore volumes from an untreated soil. The reductions of the metals eluted from the calcareous soil amended with the RP, AL, PG and CMP were 1.98%, 38.89%, 64.81% and 75.93% for Cd, 8.51%, 40.42%, 60.64% and 55.32% for Cu, 1.76%, 52.94%, 70.00% and 74.12% for Pb, and 28.42%, 52.74%, 64.38% and 49.66% for Zn. Those from the acidic soil amended with the CMP, PG, AL, and RP were 25.65%, 68.06%, 78.01% and 79.06% for Cd, 26.56%, 49.64%, 43.40% and 34.68% for Cu, 44.44%, 33.32%, 61.11% and 69.44% for Pb, and 18.46%, 43.77%, 41.98% and 40.68% for Zn. The CMP and PG treatments were superior to the AL and RP for stabilizing heavy metals in the polluted urban soils.

  17. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Dorj, Odkhuu; Miao, M. S.; Kioussis, N.; Tari, S.; Aqariden, F.; Chang, Y.; Grein, C.

    2015-03-01

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Understanding the atomic and electronic structures of the metal/semiconductor interfaces is essential for the further improvements of performance. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between Cd-terminated CdTe (111) surface and the selected metals. We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed the importance of intermixing between semiconductor and metal layers and the formation of Te-metal alloys at the interface. The obtained SBH does not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect to the SBH, which is attributed to the metal induced states in the gap. The position of such states is insensitive to the metal work functions, as revealed by the analysis of the electronic structures.

  18. Niobium boride layers deposition on the surface AISI D2 steel by a duplex treatment

    SciTech Connect

    Kon, O.; Pazarlioglu, S.

    2015-03-30

    In this paper, we investigated the possibility of deposition of niobium boride layers on the surface of AISI D2 steel by a duplex treatment. At the first step of duplex treatment, boronizing was performed on AISI D2 steel samples at 1000{sup o}C for 2h and then pre-boronized samples niobized at 850°C, 900°C and 950°C using thermo-reactive deposition method for 1–4 h. The presence of the niobium boride layers such as NbB, NbB{sub 2} and Nb{sub 3}B{sub 4} and also iron boride phases such as FeB, Fe{sub 2}B were examined by X-ray diffraction analysis. Scanning electron microscope (SEM) and micro-hardness measurements were realized. Experimental studies showed that the depth of the coating layers increased with increasing temperature and times and also ranged from 0.42 µm to 2.43 µm, depending on treatment time and temperature. The hardness of the niobium boride layer was 2620±180 HV{sub 0.005}.

  19. Superabrasive boride and a method of preparing the same by mechanical alloying and hot pressing

    DOEpatents

    Cook, Bruce A.; Harringa, Joel L.; Russell, Alan M.

    2002-08-13

    A ceramic material which is an orthorhombic boride of the general formula: AlMgB.sub.14 :X, with X being a doping agent. The ceramic is a superabrasive, and in most instances provides a hardness of 40 GPa or greater.

  20. Effects of metal oxide nanoparticles on the stability of dispersions of weakly charged colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-05-01

    The stability behavior of dispersions of weakly charged silica colloids was studied in the presence of highly charged metal oxide nanoparticles. Experiments were performed using 5 nm zirconia as well as 10 nm alumina nanoparticles (both positively charged), which were added to 0.1 vol % suspensions of 1.0 μm silica microparticles at the silica IEP. Both types of nanoparticles provided effective stabilization of the silica; i.e., the silica suspensions were stabilized for longer than the observation period (greater than 12 h). Stability was observed at zirconia concentrations as low as 10(-4) vol % and at an alumina concentration of 10(-2) vol %. The nanoparticles adsorbed onto the microparticle surfaces (confirmed via SEM imaging), which increased the zeta-potential of the silica. Force profile measurements performed with colloidal probe atomic force microscopy showed that the adsorption was effectively irreversible.

  1. Effects of metal oxide nanoparticles on the stability of dispersions of weakly charged colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-05-01

    The stability behavior of dispersions of weakly charged silica colloids was studied in the presence of highly charged metal oxide nanoparticles. Experiments were performed using 5 nm zirconia as well as 10 nm alumina nanoparticles (both positively charged), which were added to 0.1 vol % suspensions of 1.0 μm silica microparticles at the silica IEP. Both types of nanoparticles provided effective stabilization of the silica; i.e., the silica suspensions were stabilized for longer than the observation period (greater than 12 h). Stability was observed at zirconia concentrations as low as 10(-4) vol % and at an alumina concentration of 10(-2) vol %. The nanoparticles adsorbed onto the microparticle surfaces (confirmed via SEM imaging), which increased the zeta-potential of the silica. Force profile measurements performed with colloidal probe atomic force microscopy showed that the adsorption was effectively irreversible. PMID:25860256

  2. Investigating extent of dissolved organic carbon stabilization by metal based coagulant in a wetland environment

    NASA Astrophysics Data System (ADS)

    Henneberry, Y.; Mourad, D.; Kraus, T.; Bachand, P.; Fujii, R.; Horwath, W.

    2008-12-01

    This study is part of a larger project designed to investigate the feasibility of using metal-based coagulants to remove dissolved organic carbon (DOC) from island drainage water in the San Joaquin Delta and subsequently retaining the metal-DOC precipitate (floc) in wetlands constructed at the foot of levees to promote levee stability. Dissolved organic carbon is a constituent of concern as some forms of DOC can be converted to carcinogenic compounds during drinking water treatment. The focus of this work is to assess floc stability over time and to determine whether floc can be permanently sequestered as part of wetland sediment. Drainage water collected seasonally from Twitchell Island was coagulated with ferric sulfate and polyaluminum chloride at optimal and 50%-optimal dosage levels. Floc was incubated in the laboratory under anaerobic conditions for six weeks under various conditions including different DOC concentrations, microbial inoculants, and addition of nutrients. Preliminary results indicate the floc is a stable system; little to no DOC was released from the floc into the water column under incubations with native microbial inoculate. In addition, floc incubated with previously coagulated water appeared to remove additional DOC from the water column. Future work will involve field and laboratory studies using 13C labeled plant material to examine the effects of fresh plant matter and the effects of peat soil DOC on floc stability, in order to elucidate mechanisms behind carbon stabilization by metal-based floc.

  3. A new strategy to stabilize oxytocin in aqueous solutions: I. The effects of divalent metal ions and citrate buffer.

    PubMed

    Avanti, Christina; Amorij, Jean-Pierre; Setyaningsih, Dewi; Hawe, Andrea; Jiskoot, Wim; Visser, Jan; Kedrov, Alexej; Driessen, Arnold J M; Hinrichs, Wouter L J; Frijlink, Henderik W

    2011-06-01

    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na(+) and K(+)) and divalent metal ions (Ca(2+), Mg(2+), and Zn(2+)) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl(2), MgCl(2), or ZnCl(2) and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca(2+), Mg(2+), or Zn(2+), while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions.

  4. [Effects of stabilization treatment on migration and transformation of heavy metals in mineral waste residues].

    PubMed

    Zhao, Shu-Hua; Chen, Zhi-Liang; Zhang, Tai-Ping; Pan, Wei-Bin; Peng, Xiao-Chun; Che, Rong; Ou, Ying-Juan; Lei, Guo-Jian; Zhou, Ding

    2014-04-01

    Different forms of heavy metals in soil will produce different environmental effects, and will directly influence the toxicity, migration and bioavailability of heavy metals. This study used lime, fly ash, dried sludge, peanut shells as stabilizers in the treatment of heavy metals in mineral waste residues. Morphological analyses of heavy metal, leaching experiments, potted plant experiments were carried out to analyze the migration and transformation of heavy metals. The results showed that after adding stabilizers, the pH of the acidic mineral waste residues increased to more than neutral, and the organic matter content increased significantly. The main existing forms of As, Pb, and Zn in the mineral waste residues were the residual. The contents of exchangeable and organic matter-bound As decreased by 65.6% and 87.7% respectively after adding fly ash, dried sludge and peanut shells. Adding lime, fly ash and peanut shells promoted the transformation of As from the Fe-Mn oxide-bound to the carbonate-bound, and adding lime and fly ash promoted the transformation of Pb and Zn from the exchangeable, Fe-Mn oxide-bound, organic matter-bound to the residual. After the early stage of the stabilization treatment, the contents of As, Pb and Zn in the leachate had varying degrees of decline, and adding peanut shells could reduce the contents of As, Pb and Zn in the leachate further. Among them, the content of As decreased most significantly after treatment with fly ash, dried sludge and peanut shells, with a decline of 57.4%. After treatment with lime, fly ash and peanut shells, the content of Zn decreased most significantly, by 24.9%. The addition of stabilizers was advantageous to the germination and growth of plants. The combination of fly ash, dried sludge and peanut shell produced the best effect, and the Vetiveria zizanioides germination rate reached 76% in the treated wasted mineral residues.

  5. Processing development of 4 tantalum carbide-hafnium carbide and related carbides and borides for extreme environments

    NASA Astrophysics Data System (ADS)

    Gaballa, Osama Gaballa Bahig

    temperature, and hot-pressing pressure. Also, WC additions to Ta4HfC5 were found to improve densification and increase microhardness. The ability to process these materials at relatively low temperature would save energy and reduce cost. Boron-based hard materials are used in numerous applications such as industrial machining, armor plating, and wear-resistant coatings. It was often thought that in addition to strong bonding, super-hard materials must also possess simple crystallographic unit cells with high symmetry and a minimum number of crystal defects (e.g., diamond and cubic boron nitride (cBN)). However, one ternary boride, AlMgB14, deviates from this paradigm; AlMgB 14 has a large, orthorhombic unit cell (oI64) with multiple icosahedral boron units. TiB2 has been shown to be an effective reinforcing phase in AlMgB 14, raising hardness, wear resistance, and corrosion resistance. Thus, it was thought that adding other, similar phases (i.e., ZrB2 and HfB2) to AlMgB14 could lead to useful improvements in properties vis-à-vis pure AlMgB14. Group IV metal diborides (XB2, where X = Ti, Zr, or Hf) are hard, ultra-high temperature ceramics. These compounds have a primitive hexagonal crystal structure (hP3) with planes of graphite-like boride rings above and below planes of metal atoms. Unlike graphite, there is strong bonding between the planes, resulting in high hardness. For this study two-phase composites of 60 vol. % metal diborides with 40 vol. % AlMgB14 were produced and characterized.

  6. [Recent advance in solidification/stabilization technology for the remediation of heavy metals-contaminated soil].

    PubMed

    Hao, Han-zhou; Chen, Tong-bin; Jin, Meng-gui; Lei, Mei; Liu, Cheng-wu; Zu, Wen-pu; Huang, Li-mi

    2011-03-01

    Remediation of heavy metals-contaminated soil is still a difficulty and a hotspot of international research projects. At present, the technologies commonly adopted for the remediation of contaminated sites mainly include excavation, solidification/stabilization (S/S), soil washing, soil vapor extraction (SVE), thermal treatment, and bioremediation. Based on the S/S technical guidelines of Unite State Environmental Protection Agency (EPA) and United Kingdom Environment Agency (EA) and the domestic and foreign patents, this paper introduced the concepts of S/S and its development status at home and abroad, and discussed its future development directions. Solidification refers to a process that binds contaminated media with a reagent, changing the media's physical properties via increasing its compressive strength, decreasing its permeability, and encapsulating the contaminants to form a solid material. Stabilization refers to the process that involves a chemical reaction which reduces the leachability of a waste, chemically immobilizes the waste and reduces its solubility, making the waste become less harmful or less mobile. S/S technology includes cement solidification, lime pozzolanic solidification, plastic materials stabilization, vitrification, and regent-based stabilization. Stabilization (or immobilization) treatment processes convert contaminants to less mobile forms through chemical or thermal interactions. In stabilization technology, the aim of adding agents is to change the soil physical and chemical properties through pH control technology, redox potential technology, precipitation techniques, adsorption technology, and ion-exchange technology that change the existing forms of heavy metals in soil, and thus, reduce the heavy metals bioavailability and mobility. This review also discussed the S/S evaluation methods, highlighted the need to enhance S/S technology in the molecular bonding, soil polymers, and formulation of China's S/S technical guidelines.

  7. Stabilization of cationic and anionic metal species in contaminated soils using sludge-derived biochar.

    PubMed

    Fang, Shen'en; Tsang, Daniel C W; Zhou, Fengsha; Zhang, Weihua; Qiu, Rongliang

    2016-04-01

    Currently, sludge pyrolysis has been considered as a promising technology to solve disposal problem of municipal sewage sludge, recover sludge heating value, sequester carbon and replenish nutrients in farmland soils. The resultant sludge-derived biochar (SDBC) is potentially an excellent stabilizing agent for metal species. This study applied the SDBC into four soils that had been contaminated in field with cationic Pb(II) and Cd(II)/Ni(II), and anionic Cr(VI) and As(III), respectively. The performance of metal stabilization under various operational and environmental conditions was evaluated with acid batch extraction and column leaching tests. Results indicated the SDBC could effectively stabilize these metals, which was favored by elevated temperature and longer aging. Periodic temperature decrease from 45 to 4 °C resulted in the release of immobilized Cr(VI) and As(III) but not Pb(II). However, a longer aging time offset such metal remobilization. This was possibly because more Pb was strongly bound and even formed stable precipitates, as shown by XRD and sequential extraction results. With increasing time, Cr(VI) was sorbed and partly reduced to Cr(III), while immobilized As(III) was co-oxidized to As(V) as indicated by XPS spectra. Column tests revealed that adding SDBC as a separate layer was unfavorable because the concentrated Cd(II) and Ni(II) in localized positions increased the peak levels of metal release under continuous acid leaching. In contrast, uniformly mixed SDBC could effectively delay the metal breakthrough and reduce their released amounts. Yet, a long-term monitoring may be required for evaluating the potential leaching risks and bioavailability/toxicity of these immobilized and transformed species in the SDBC-amended soils. PMID:26866964

  8. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    DOE PAGES

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Suchmore » cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  9. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-01

    The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  10. First principles studies of the stability and Shottky barriers of metal/CdTe(111) interfaces

    NASA Astrophysics Data System (ADS)

    Liu, Zhen; Miao, Masoehng; Kioussis, Nicholas; Aqariden, Fikri; Chang, Y.; Grein, Christoph

    CdZnTe and CdTe based semiconductor X-Ray and Gamma-Ray detectors have been intensively studied recently due to their promising potentials for achieving high-resolution, high signal-to-noise ratios and low leakage current, all are desirable features in applications ranging from medical diagnostics to homeland security. Using density functional calculations, we systematically studied the stability, the atomic and electronic structures of the interfaces between CdTe (111) surfaces (Cd- and Te-terminated) and the selected metals (Cu, Al Ni, Pd and Pt). We also calculated the Schottky barrier height (SBH) by aligning the electrostatic potentials in semiconductor and metal regions. Our calculations revealed significant differences between the Cd- and Te- terminated interfaces. While metals tend to deposit directly on reconstructed Te-terminated surfaces, they form a Te-metal alloy layer at the Cd-Terminated metal/CdTe interface. For both Te- and Cd- terminated interfaces, the Schottky barrier heights do not depend much on the choice of metals despite the large variation of the work functions. On the other hand, the interface structure is found to have large effect on the SBH, which is attributed to the metal induced states in the gap.

  11. A New Class of Engineering Materials: Particle-Stabilized Metallic Emulsions and Monotectic Alloys

    NASA Astrophysics Data System (ADS)

    Budai, István; Kaptay, George

    2009-07-01

    Al-matrix particulate composites are melted and mixed with immiscible metals to form their small droplets in liquid aluminum. It is shown that, in the Al-Si/SiC/Bi system, the Bi droplets are stabilized by the SiC particles in the liquid Al matrix. Upon solidification, homogeneous distribution of solidified Bi droplets is obtained in the Al matrix at the bottom part of the ingot. Thus, a new class of engineering materials (particle-stabilized monotectic alloys) is obtained.

  12. Surge discharge capability and thermal stability of a metal oxide surge arrester

    SciTech Connect

    Kan, M.; Kojima, S.; Nishiwaki, S.; Sato, T.; Yanabu, S.

    1983-02-01

    The surge discharge capability and the thermal stability of a metal oxide surge arrester were examined experimentally. It was found that the breakdown energy is nearly the same against the switching surge and the temporary overvoltage of various peak values and time durations. Heat dissipation capability of an 84kV porcelain-type model arrester was examined and found to be less than that of a small model unit, while this relation of the value had been considered opposite in a previously published paper. From these experimental data, the limit at high operation stress was found to be determined by the thermal stability rather than by the discharge capability

  13. Final Report for "Stabilization of resistive wall modes using moving metal walls"

    SciTech Connect

    Forest, Cary B.

    2014-02-05

    The UW experiment used a linear pinch experiment to study the stabilization of MHD by moving metal walls. The methodology of the experiment had three steps. (1) Identify and understand the no-wall MHD instability limits and character, (2) identify and understand the thin-wall MHD instabilities (re- sistive wall mode), and then (3) add the spinning wall and understand its impact on stability properties. During the duration of the grant we accomplished all 3 of these goals, discovered new physics, and completed the experiment as proposed.

  14. Surface energetics of alkaline-earth metal oxides: Trends in stability and adsorption of small molecules

    NASA Astrophysics Data System (ADS)

    Bajdich, Michal; Nørskov, Jens K.; Vojvodic, Aleksandra

    2015-04-01

    We present a systematic theoretical investigation of the surface properties, stability, and reactivity of rocksalt type alkaline-earth metal oxides including MgO, CaO, SrO, and BaO. The accuracy of commonly used exchange-correlation density functionals (LDA, PBE, RPBE, PBEsol, BEEF-vdW, and hybrid HSE) and random-phase approximation (RPA) is evaluated and compared to existing experimental values. Calculated surface energies of the four most stable surface facets under vacuum conditions, the (100) surface, the metal and oxygen terminated octopolar (111), and the (110) surfaces, exhibit a monotonic increase in stability from MgO to BaO. On the MgO(100) surface, adsorption of CO, NO, and CH4 is characterized by physisorption while H2O chemisorbs, which is in agreement with experimental findings. We further use the on-top metal adsorption of CO and NO molecules to map out the surface energetics of each alkaline-earth metal oxide surface. The considered functionals all qualitatively predict similar adsorption energy trends. The ordering between the adsorption energies on different surface facets can be attributed to differences in the local geometrical surface structure and the electronic structure of the metal constituent of the alkaline-earth metal oxide. The striking observation that CO adsorption strength is weaker than NO adsorption on the (100) terraces as the period of the alkaline-earth metal in the oxide increases is analyzed in detail in terms of charge redistribution within the σ and π channels of adsorbates. Finally, we also present oxygen adsorption and oxygen vacancy formation energies in these oxide systems.

  15. A theoretical study of the structure and stability of borohydride on 3d transition metals

    NASA Astrophysics Data System (ADS)

    Arevalo, Ryan Lacdao; Escaño, Mary Clare Sison; Gyenge, Elod; Kasai, Hideaki

    2012-12-01

    The adsorption of borohydride on 3d transition metals (Cr, Mn, Fe, Co, Ni and Cu) was studied using first principles calculations within spin-polarized density functional theory. Magnetic effect on the stability of borohydride is noted. Molecular adsorption is favorable on Co, Ni and Cu, which is characterized by the strong s-dzz hybridization of the adsorbate-substrate states. Dissociated adsorption structure yielding one or two H adatom fragments on the surface is observed for Cr, Mn and Fe.

  16. Utilization of fly ash for stabilization/solidification of heavy metal contaminated soils

    SciTech Connect

    Dermatas, D.; Meng, X.

    1995-12-01

    Pozzolanic-based stabilization/solidification (S/S) is an effective, yet economic technological alternative to immobilize heavy metals in contaminated soils and sludges. Fly ash waste materials were used along with quicklime (CaO) to immobilize lead, trivalent and hexavalent chromium present in contaminated clayey sand soils. The degree of heavy metal immobilization was evaluated using the Toxicity Characteristic Leaching Procedure (TCLP) as well as controlled extraction experiments. These leaching test results along with X-ray diffraction (XRD), scanning electron microscope and energy dispersive x-ray (SEM-EDX) analyses were also implemented to elucidate the mechanisms responsible for immobilization of the heavy metals under study. Finally, the reusability of the stabilized waste forms in construction applications was also investigated by performing unconfined compressive strength and swell tests. Results suggest that the controlling mechanism for both lead and hexavalent chromium immobilization is surface adsorption, whereas for trivalent chromium it is hydroxide precipitation. Addition of fly ash to the contaminated soils effectively reduced heavy metal leachability well below the non-hazardous regulatory limits. However, quicklime addition was necessary in order to attain satisfactory immobilization levels. Overall, fly ash addition increases the immobilization pH region for all heavy metals tested, and significantly improves the stress-strain properties of the treated solids, thus allowing their reuse as readily available construction materials. The only potential problem associated with this quicklime/fly ash treatment is the excessive formation of the pozzolanic product ettringite in the presence of sulfates. Ettringite, when brought in contact with water, may cause significant swelling and subsequent deterioration of the stabilized matrix. Addition of minimum amounts of barium hydroxide was shown to effectively eliminate ettringite formation.

  17. Solidification/stabilization of heavy metal contaminated mine tailings using polymeric materials

    NASA Astrophysics Data System (ADS)

    Min, K.; Kim, T.; Lee, H.

    2009-12-01

    Polymeric materials in addition to Portland cement and hydrated limes were used to solidify and stabilize heavy metal contaminated tailings from five abandoned metal mines in Korea. Mine tailings were mixed separately with Portland cement and hydrated lime at a concentration of 20-30 wt% and 6-9 wt%, respectively and Ethylene Vinyl Acetate (EVA) powder was added to each specimen at a ratio of 2.5 and 5.0 wt% to binders. Polymer-added and polymer-free solidified/stabilized (s/s) forms were evaluated for their appropriateness in accordance with the suggested test methods. Regardless of addition of polymeric materials, all s/s forms satisfy the uniaxial comprehensive strength (USC) requirements (0.35MPa) for land reclamation and show remarkably reduced leaching concentrations of heavy metals such as As, Cd, Cu, Pb and Zn less than the toxicity criteria of Korean standard leaching test (KSLT). The addition of polymeric materials increased the USC of s/s forms to improve a long-term stability of s/s mine tailings.

  18. Ionomer-Liquid Electrolyte Hybrid Ionic Conductor for High Cycling Stability of Lithium Metal Electrodes

    PubMed Central

    Song, Jongchan; Lee, Hongkyung; Choo, Min-Ju; Park, Jung-Ki; Kim, Hee-Tak

    2015-01-01

    The inhomogeneous Li electrodeposition of lithium metal electrode has been a major impediment to the realization of rechargeable lithium metal batteries. Although single ion conducting ionomers can induce more homogeneous Li electrodeposition by preventing Li+ depletion at Li surface, currently available materials do not allow room-temperature operation due to their low room temperature conductivities. In the paper, we report that a highly conductive ionomer/liquid electrolyte hybrid layer tightly laminated on Li metal electrode can realize stable Li electrodeposition at high current densities up to 10 mA cm−2 and permit room-temperature operation of corresponding Li metal batteries with low polarizations. The hybrid layer is fabricated by laminating few micron-thick Nafion layer on Li metal electrode followed by soaking 1 M LiPF6 EC/DEC (1/1) electrolyte. The Li/Li symmetric cell with the hybrid layer stably operates at a high current density of 10 mA cm−2 for more than 2000 h, which corresponds to more than five-fold enhancement compared with bare Li metal electrode. Also, the prototype Li/LiCoO2 battery with the hybrid layer offers cycling stability more than 350 cycles. These results demonstrate that the hybrid strategy successfully combines the advantages of bi-ionic liquid electrolyte (fast Li+ transport) and single ionic ionomer (prevention of Li+ depletion). PMID:26411701

  19. Feasibility of biochar manufactured from organic wastes on the stabilization of heavy metals in a metal smelter contaminated soil.

    PubMed

    Abdelhafez, Ahmed A; Li, Jianhua; Abbas, Mohamed H H

    2014-12-01

    The main objectives of the current study were to evaluate the potential effects of biochar derived from sugar cane bagasse (SC-BC) and orange peel (OP-BC) on improving the physicochemical properties of a metal smelter contaminated soil, and determining its potentiality for stabilizing Pb and As in soil. To achieve these goals, biochar was produced in a small-scale biochar producing plant, and an incubation experiment was conducted using a silt loam metal-contaminated soil treated with different application rates of biochar (0-10% w/w). The obtained results showed that, the addition of SC-BC and OP-BC increased significantly the soil aggregate stability, water-holding capacity, cation exchange capacity, organic matter and N-status in soil. SC-BC considerably decreased the solubility of Pb to values lower than the toxic regulatory level of the toxicity characteristics leaching procedure extraction (5 mg L(-1)). The rise in soil pH caused by biochar application, and the increase of soil organic matter transformed the labile Pb into less available fractions i.e. "Fe-Mn oxides" and "organic" bound fractions. On the other hand, As was desorbed from Fe-Mn oxides, which resulted in greater mobility of As in the treated soil. We concluded that SC-BC and OP-BC could be used successfully for remediating soils highly contaminated with Pb. However, considerable attention should be paid when using it in soil contaminated with As. PMID:24972072

  20. Stability of metal organic frameworks and interaction of small gas molecules in these materials

    NASA Astrophysics Data System (ADS)

    Tan, Kui

    The work in this dissertation combines spectroscopy ( in-situ infrared absorption and Raman), powder X-ray diffraction and DFT calculations to study the stability of metal organic frameworks materials (MOFs) in the presence of water vapor and other corrosive gases (e.g., SO 2, NO2 NO), and the interaction and competitive co-adsorption of several gases within MOFs by considering two types of prototypical MOFs: 1) a MOF with saturated metal centers based on paddlewheel secondary building units: M(bdc)(ted)0.5 [M=Cu, Zn, Ni, Co, bdc = 1,4-benzenedicarboxylate, ted = triethylenediamine], and 2) a MOF with unsaturated metal centers: M2(dobdc) [M=Mg2+, Zn2+, Ni2+, Co2+ and dobdc = 2,5-dihydroxybenzenedicarboxylate]. We find that the stability of MOFs to water vapor critically depends on their structure and the specific metal cation in the building units. For M(bdc)(ted)0.5, the metal-bdc bond is the most vulnerable for Cu(bdc)(ted)0.5, while the metal-ted bond is first attacked for the Zn and Co analogs. In contrast, Ni(bdc)(ted)0.5 remains stable under the same conditions. For M2(dobdc), or MOF-74, the weak link is the dobdc-metal bond. The water molecule is dissociatively adsorbed at the metal-oxygen group with OH adsorption directly on the metal center and H adsorption on the bridging O of the phenolate group in the dobdc linker. Other technologically important molecules besides water, such as NO, NO2, SO2, tend to poison M2(dobdc) through dissociative or molecular adsorption onto the open metal sites. A high uptake SO2 capacity was measured in M(bdc)(ted)0.5, attributed to multipoint interactions between the guest SO2 molecule and the MOF host. In the case of competitive co-adsorption between CO2 and other small molecules, we find that binding energy alone is not a good indicator of molecular site occupation within the MOF (i.e., it cannot successfully predict and evaluate the displacement of CO2 by other molecules). Instead, we show that the kinetic barrier for the

  1. Stability diagrams for fourfold coordination of polyvalent metal ions in molten mixtures of halide salts

    SciTech Connect

    Akdeniz, Z. Istanbul Univ. . Dept. of Physics); Tosi, M.P. . Dipt. di Fisica Teorica Argonne National Lab., IL )

    1988-11-01

    The stability of local fourfold coordination for divalent and trivalent metal ions in liquid mixtures of polyvalent metal halides and alkali halides is classified by means of structural coordinates obtained from properties of the elements. In parallel with earlier classifications of compound crystal structures and molecular shapes, the elemental properties are taken from first-principles calculations of valence electron orbitals in atoms, in the form of (i) the nodal radii of Andreoni, Baldereschi and Guizzetti or (ii) the pseudopotential radii or Zunger and Cohen. As a third alternative a classification based on Pettifor's phenomenological chemical scale of the elements is also considered. The alternative structural classification schemes that are developed from these elemental properties are generally successfully in distinguishing molten mixtures in which the available experimental evidence indicates long-lived fourfold coordination of polyvalent metal ions. In addition, Pettifor's chemical scale scheme is useful in sorting out finer details of local coordination in the liquid state. 3 figs., 71 refs.

  2. A Combined Experimental and Computational Study on the Stability of Nanofluids Containing Metal Organic Frameworks.

    PubMed

    Annapureddy, Harsha V R; Nune, Satish K; Motkuri, Radha Kishan; McGrail, B Peter; Dang, Liem X

    2015-07-23

    Computational studies on nanofluids composed of metal organic frameworks were performed using molecular modeling techniques. Grand Canonical Monte Carlo simulations were used to study the adsorption behavior of 1,1,1,3,3-pentafluoropropane (R-245fa) in a MIL-101 metal organic frameworks at various temperatures. To understand the stability of the nanofluid composed of MIL-101 particles, we performed molecular dynamics simulations to compute potentials of mean force between hypothetical MIL-101 fragments terminated with two different kinds of modulators in R-245fa and water. Our computed potentials of mean force results indicate that the metal organic frameworks particles tend to disperse better in water than in R-245fa. The reasons for this difference in dispersion were analyzed and are discussed in the paper. Our results agree with experimental results indicating that the potential models employed and modeling approaches provide good descriptions of molecular interactions and the reliabilities. PMID:25569021

  3. A Combined Experimental and Computational Study on the Stability of Nanofluids Containing Metal Organic Frameworks.

    PubMed

    Annapureddy, Harsha V R; Nune, Satish K; Motkuri, Radha Kishan; McGrail, B Peter; Dang, Liem X

    2015-07-23

    Computational studies on nanofluids composed of metal organic frameworks were performed using molecular modeling techniques. Grand Canonical Monte Carlo simulations were used to study the adsorption behavior of 1,1,1,3,3-pentafluoropropane (R-245fa) in a MIL-101 metal organic frameworks at various temperatures. To understand the stability of the nanofluid composed of MIL-101 particles, we performed molecular dynamics simulations to compute potentials of mean force between hypothetical MIL-101 fragments terminated with two different kinds of modulators in R-245fa and water. Our computed potentials of mean force results indicate that the metal organic frameworks particles tend to disperse better in water than in R-245fa. The reasons for this difference in dispersion were analyzed and are discussed in the paper. Our results agree with experimental results indicating that the potential models employed and modeling approaches provide good descriptions of molecular interactions and the reliabilities.

  4. Stabilized Lithium-Metal Surface in a Polysulfide-Rich Environment of Lithium-Sulfur Batteries.

    PubMed

    Zu, Chenxi; Manthiram, Arumugam

    2014-08-01

    Lithium-metal anode degradation is one of the major challenges of lithium-sulfur (Li-S) batteries, hindering their practical utility as next-generation rechargeable battery chemistry. The polysulfide migration and shuttling associated with Li-S batteries can induce heterogeneities of the lithium-metal surface because it causes passivation by bulk insulating Li2S particles/electrolyte decomposition products on a lithium-metal surface. This promotes lithium dendrite formation and leads to poor lithium cycling efficiency with complicated lithium surface chemistry. Here, we show copper acetate as a surface stabilizer for lithium metal in a polysulfide-rich environment of Li-S batteries. The lithium surface is protected from parasitic reactions with the organic electrolyte and the migrating polysulfides by an in situ chemical formation of a passivation film consisting of mainly Li2S/Li2S2/CuS/Cu2S and electrolyte decomposition products. This passivation film also suppresses lithium dendrite formation by controlling the lithium deposition sites, leading to a stabilized lithium surface characterized by a dendrite-free morphology and improved surface chemistry. PMID:26277939

  5. Electrokinetic stabilization as a reclamation tool for waste materials polluted by both salts and heavy metals.

    PubMed

    Traina, G; Ferro, S; De Battisti, A

    2009-05-01

    A method for detoxifying industrial wastes is presented, aiming at a safer management and reuse. Focusing, in particular, on bottom ashes from a municipal solid waste incinerator, the proposed "ElectroKinetic Stabilization" (EKS) technique requires a relatively short treatment time and improves the remediation of ashes by combining a fast extraction of chlorides by electromigration, together with a stabilization of metals through their reaction with phosphate anions, which migrate through the ash under the influence of the electric field. Heavy metals react with the phosphate anions, leading to the precipitation of metal hydroxy-apatite or chloro-apatite (for Pb and Ba), or to their trapping in a calcium-apatite mineral, that formed during the process. Along with precipitation, metal immobilization is allowed by the decrease of ash pH to 9-11 by means of H(+) produced at the anode from the electrolysis of water. The migration of salts through the wet ashes is very fast and the treatment time could be decreased to 24h. After EKS, Ba, Pb and F(-) leaching was reduced by 97%, 92% and 92%, respectively, below the allowed limits. In contrast, the final leaching of Cu and chlorides was reduced by 90% and 80%, respectively, still above the allowed limits. PMID:19201011

  6. Stabilization of heavy metals in lightweight aggregate made from sewage sludge and river sediment.

    PubMed

    Xu, Guoren; Liu, Mingwei; Li, Guibai

    2013-09-15

    The primary goal of this research is to investigate the stabilization of heavy metals in lightweight aggregate (LWA) made from sewage sludge and river sediment. The effects of the sintering temperature, the (Fe₂O₃+CaO+MgO)/(SiO₂+Al₂O₃) ratio (K ratio), SiO₂/Al₂O₃ and Fe₂O₃/CaO/MgO (at fixed K ratio), pH, and oxidative conditions on the stabilization of heavy metals were studied. Sintering at temperatures above 1100 °C effectively binds Cd, Cr, Cu and Pb in the LWA, because the stable forms of the heavy metals are strongly bound to the aluminosilicate or silicate frameworks. Minimum leachabilities of Cd, Cr, Cu and Pb were obtained at K ratios between 0.175 and 0.2. When the LWA was subjected to rigorous leaching conditions, the heavy metals remained in the solid even when the LWA bulk structure was broken. LWA made with sewage sludge and river sediment can therefore be used as an environmentally safe material for civil engineering and other construction applications. PMID:23747465

  7. Organometallic Probe for the Electronics of Base-Stabilized Group 11 Metal Cations.

    PubMed

    Braunschweig, Holger; Ewing, William C; Kramer, Thomas; Mattock, James D; Vargas, Alfredo; Werner, Christine

    2015-08-24

    A number of trimetalloborides have been synthesized through the reactions of base-stabilized coinage metal chlorides with a dimanganaborylene lithium salt in the hope of using this organometallic platform to compare and evaluate the electronics of these popular coinage metal fragments. The adducts of Cu(I), Ag(I), and Au(I) ions, stabilized by tricyclohexylphosphine (PCy3), N-1,3-bis(4-methylphenyl)imidazol-2-ylidene (ITol), or 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethylpyrrolidin-2-ylidene (CAAC), with [{Cp(CO)2Mn}2B](-) were studied spectroscopically, structurally, and computationally. The geometries of the adducts fall into two classes, one symmetric and one asymmetric, each relying on the combined characteristics of both the metal and ligand. The energetic factors proposed as the causes of the structural differences were investigated by ETS-NOCV (extended transition state-natural orbitals for chemical valence) analysis, which showed the final geometry to be controlled by the competition between the tendency of the coinage metal to adopt a higher or lower coordination number and the willingness of the cationic fragment to participate in back-bonding interactions. PMID:26178571

  8. Stabilization of heavy metals in MSWI fly ash using silica fume

    SciTech Connect

    Li, Xinying; Chen, Quanyuan; Zhou, Yasu; Tyrer, Mark; Yu, Yang

    2014-12-15

    Highlights: • The stabilization of heavy metals in MSWI fly ash was investigated. • The addition of silica fume effectively reduced the leaching of Pb and Cd. • The relation of solid phase transformation and leaching behavior of heavy metals was discussed. - Abstract: The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR ({sup 27}Al and {sup 29}Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.

  9. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-07-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  10. Improving the Adhesion Resistance of the Boride Coatings to AISI 316L Steel Substrate by Diffusion Annealing

    NASA Astrophysics Data System (ADS)

    Campos-Silva, I.; Bernabé-Molina, S.; Bravo-Bárcenas, D.; Martínez-Trinidad, J.; Rodríguez-Castro, G.; Meneses-Amador, A.

    2016-09-01

    In this study, new results about the practical adhesion resistance of boride coating/substrate system formed at the surface of AISI 316 L steel and improved by means of a diffusion annealing process are presented. First, the boriding of AISI 316 L steel was performed by the powder-pack method at 1173 K with different exposure times (4-8 h). The diffusion annealing process was conducted on the borided steels at 1273 K with 2 h of exposure using a diluent atmosphere of boron powder mixture. The mechanical behavior of the boride coating/substrate system developed by both treatments was established using Vickers and Berkovich tests along the depth of the boride coatings, respectively. Finally, for the entire set of experimental conditions, the scratch tests were performed with a continuously increasing normal force, in which the practical adhesion resistance of the boride coating/substrate system was represented by the critical load. The failure mechanisms developed over the surface of the scratch tracks were analyzed; the FeB-Fe2B/substrate system exhibited an adhesive mode, while the Fe2B/substrate system obtained by the diffusion annealing process showed predominantly a cohesive failure mode.

  11. Enhancement stabilization of heavy metals (Zn, Pb, Cr and Cu) during vermifiltration of liquid-state sludge.

    PubMed

    Yang, Jian; Zhao, Chunhui; Xing, Meiyan; Lin, Yanan

    2013-10-01

    This paper illustrated the potential effect of earthworms on heavy metal stabilization after vermifiltration of liquid-state sludge. Significant enhancement of organics degradation in sludge caused an increase of heavy metal concentrations in VF effluent sludge. However, the analysis of heavy metal chemical speciation indicated earthworms made unstable fractions of heavy metals transformed into stable fractions. Further investigation using principal component analysis revealed that transformations of heavy metal fractions were mainly due to the changes in sludge physico-chemical properties of pH, soluble chemical oxygen demand and available phosphorus. The bioassay of earthworms indicated that only zinc was accumulated by earthworms because the unstable fraction was its main chemical speciation. Furthermore, risk analysis demonstrated that earthworm activities weakened heavy metal risk due to the formation of stable fractions although their total concentrations increased. These results indicated that earthworms in vermifilter had a positive role in stabilizing heavy metals in sewage sludge.

  12. Protective metal matrix coating with nanocomponents

    NASA Astrophysics Data System (ADS)

    Galevsky, G. V.; Rudneva, V. V.; Cherepanov, A. N.; Galevsky, S. G.; Efimova, K. A.

    2016-09-01

    Experience of nanocrystalline chromium, titanium, silicon carbides and borides components application as nickel, zinc, chromium based electrodeposited composite coating is generalized. Electrodepositing conditions are determined. Structure and physicochemical properties of coatings, namely micro-hardness, adhesion to steel base, inherent stresses, heat resistance, corrosion currents, en-during quality, and their change during isothermal annealing are studied. As is shown, nanocomponents act as metal matrix modifier. Technological and economic feasibility study to evaluate expediency of replacing high priced nano-diamonds with nanocrystalline borides and carbides is undertaken.

  13. A two-front leach model for cement-stabilized heavy metal waste.

    PubMed

    Islam, Mohammad Z; Catalan, Lionel J J; Yanful, Ernest K

    2004-03-01

    Quantitative scanning electron microscope (SEM) studies of cement-stabilized waste specimens exposed to a leaching solution at constant pH in the range 4-7 have shown that the acid neutralization capacity (ANC) of the waste matrix is consumed at two consecutive leaching fronts. The first front is associated with the dissolution of portlandite (Ca(OH)2) and the partial reaction of calcium silicate hydrate (CSH) gel. The second front marks the dissolution of Ca-Al hydroxy sulfate minerals. The advancement of the first front is limited by the diffusion of OH- ions from the first front toward the leaching solution. The advancement of the second front, however, is controlled by the diffusion of H+ ions from the leaching solution toward the second front. Leaching of copper, zinc, and lead only occurs between the second front and the specimen surface. The leaching behavior of metals is modeled by considering that metals are leached from the waste matrix as a result of the advancement of the second front. The proposed model takes into account the leachable metal fraction in the waste matrix and the effect of metal remineralization on metal mobility. PMID:15046355

  14. Fractionation of heavy metals in sludge from anaerobic wastewater stabilization ponds in southern Spain

    SciTech Connect

    Alonso, E.

    2006-07-01

    The analysis of heavy metals is a very important task to assess the potential environmental and health risk associated with the sludge coming from wastewater treatment plants (WWTPs). However, it is necessary to apply sequential extraction techniques to obtain suitable information about their bioavailability or toxicity. In this paper, a sequential extraction scheme according to the Standard, Measurements and Testing Programme of the European Commission was applied to sludge samples collected from ten anaerobic wastewater stabilization ponds (WSPs) located in southern Spain. Al, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Ti and Zn were determined in the sludge extracts by inductively coupled plasma atomic emission spectrometry. In relation to current international legislation for the use of sludge for agricultural purposes, none of the metal concentrations exceeded maximum permitted levels. Overall, heavy metals were mainly associated with the two less-available fractions (34% oxidizable metal and 55% residual metal). Only Mn and Zn showed the highest share of the available (exchangeable and reducible) fractions (25-48%)

  15. Research on the stability of heavy metals (Cu, Zn) in excess sludge with the pretreatment of thermal hydrolysis.

    PubMed

    Wu, Huimin; Li, Meng; Zhang, Lei; Sheng, Chao

    2016-01-01

    Thermal hydrolysis (TH) has been used to improve anaerobic digestion performance as well as the stability of heavy metals in sludge. Because the toxicity of heavy metals is closely related to both the concentration and the chemical speciation, more exhaustive studies on speciation distribution are urgently needed. This research aimed to investigate the effects of TH treatment (especially the time and temperature) on the concentration and stability of heavy metals in sludge, and to define the optimal TH conditions. The TH experiment indicated that the content of the stable form of Cu and Zn reached 83% and 47.4%, respectively, with TH at 210°C and 30 min. Compared with the raw sludge, the proportion of Cu and Zn increased by 11.88% and 7.3%, respectively. Results indicated that the heavy metals were combined with sludge in a more stable form with the pretreatment of TH, which improved the stability of heavy metals. PMID:26901733

  16. Fundamental mechanisms of phosphate stabilization of divalent metals in MSW combustion scrubber residues

    SciTech Connect

    Eighmy, T.T.

    1997-12-01

    Chemical stabilization of waste materials offers the potential to reduce the leachability of heavy metals in the waste. The principal objective during stabilization is to form new mineral phases with reduced solubilities and increased geochemical stability in a leaching environment. One stabilization agent of recent interest, particularly for Pb{sup 2+}, is PO{sub 4}{sup 3{minus}}. A patented soluble phosphate treatment process, marketed by Wheelabrator Environmental Systems as the WES-PHix process, is used in 23 MSW combustion or ash processing facilities in the United States. It is also used at 7 wire recycling facilities. The process is licensed to Kurita Water Industries Ltd. of Japan where it is marketed as the ASHNITE process. It is used in over 80 MSW combustion or ash processing facilities in Japan. Phosphate combines with over 30 elements to form about 300 naturally-occurring minerals. Metal phosphates are ubiquitous secondary minerals in the oxidized zones of lead ore deposits and as assemblages around ore bodies. They also occur in soils, sediments, and phosphatic beds. As such, they are stable with respect to pH, Eh, and mineral diagenesis. Isomorphic substitutions are very common for both divalent cations (e.g. Pb{sup 2+}, for Ca{sup 2+}) and oxyanions (e.g. AsO{sub 4}{sup 3{minus}} for PO{sub 4}{sup 3{minus}}) in these minerals. This study was designed to determine the mechanisms and reaction products of chemical stabilization of dry scrubber residues treated with soluble orthophosphate. The data gleaned from various spectroscopic analyses, leaching procedures, and geochemical modeling show that precipitation/solid solution formation rather than sorption is the immobilization mechanism and that apatite minerals and solid solutions are the principal solubility-controlling reaction products. As in nature, these minerals are geochemically stable and very insoluble.

  17. Construction and working mechanism of sulfur dioxide sensor utilizing stabilized zirconia and metal sulfate

    SciTech Connect

    Yan, Y.; Miura, N.; Yamazoe, N.

    1996-02-01

    An exploratory study was carried out to elucidate the fabrication principles of a potentiometric SO{sub 2} sensor utilizing stabilized zirconia (solid electrolyte) and a metal sulfate (auxiliary phase). Among the MgO-, CaO-, Y{sub 2}O{sub 3}-stabilized zirconia (abbreviated as MSZ, CSZ, or YSZ) tested, only MSZ samples which contained 15 mole percent (m/o) MgO and were partially stabilized gave a stable SO{sub 2} sensor by being attached with Li{sub 2}SO{sub 4}, whereas almost fully stabilized MSZ (15 m/o MgO), partially stabilized MSZ (9 m/o MgO), CSZ (11 m/o CaO), or YSZ (8 m/o Y{sub 2}O{sub 3}) gave a stable device only when attached with a mixed auxiliary phase of Li{sub 2}SO{sub 4}-MgO. These facts indicated an active role by MgO, either segregated from the stabilized zirconia or added intentionally, for the devices. it is estimated that, together with Li{sub 2}O and ZrO{sub 2}, MgO is an essential component of the interfacial compound which acts as an ionic bridge between stabilized zirconia (O{sup 2{minus}} conductor) and auxiliary phase (Li{sup +} conductor). The electromotive force (EMF) response of each device to SO{sub 2} followed Nernst`s equation well for a two-electron reaction per SO{sub 2} molecule, while the EMF dependence on oxygen concentration deviated slightly from the Nernstian behavior for the four-electron reduction of O{sub 2}. Such behavior is discussed based on the sensing mechanism proposed.

  18. On the transferability of electron density in binary vanadium borides VB, V3B4 and VB2.

    PubMed

    Terlan, Bürgehan; Akselrud, Lev; Baranov, Alexey I; Borrmann, Horst; Grin, Yuri

    2015-12-01

    Binary vanadium borides are suitable model systems for a systematic analysis of the transferability concept in intermetallic compounds due to chemical intergrowth in their crystal structures. In order to underline this structural relationship, topological properties of the electron density in VB, V3B4 and VB2 reconstructed from high-resolution single-crystal X-ray diffraction data as well as derived from quantum chemical calculations, are analysed in terms of Bader's Quantum Theory of Atoms in Molecules [Bader (1990). Atoms in Molecules: A Quantum Theory, 1st ed. Oxford: Clarendon Press]. The compounds VB, V3B4 and VB2 are characterized by a charge transfer from the metal to boron together with two predominant atomic interactions, the shared covalent B-B interactions and the polar covalent B-M interactions. The resembling features of the crystal structures are well reflected by the respective B-B interatomic distances as well as by ρ(r) values at the B-B bond critical points. The latter decrease with an increase in the corresponding interatomic distances. The B-B bonds show transferable electron density properties at bond critical points depending on the respective bond distances. PMID:26634735

  19. Adsorption of micelle-forming surfactants from aqueous solutions on disperse titanium boride

    SciTech Connect

    Grodskii, A.S.; Komleva, E.A.; Frolov, Yu.G.

    1988-08-10

    Adsorption studies showed that nonionogenic and cationic surfactants are adsorbed on the surface of disperse titanium boride. Anionic surfactants are virtually not adsorbed due to the negative charge of the particles. It was found that in the region of low concentrations of surfactants in the solution, adsorption of Sintanols takes place in lyophobic regions and the surface of the particles becomes hydrophilic. The Sintamid molecules are adsorbed on the entire interface, including both hydrophobic and hydrophilic sections, with subsequent formation of bimolecular layers by adsorption on hydrophobic sections. Catamine-AB is adsorbed on hydrophilic sections of the surface also with the formation of bimolecular layers. Developed polymolecular layers up to 10-15 nm thick are formed on titanium boride particles from micellar solutions of nonionigenic and cationic surfactants.

  20. Friction and wear of radiofrequency-sputtered borides, silicides, and carbides

    NASA Technical Reports Server (NTRS)

    Brainard, W. A.; Wheeler, D. R.

    1978-01-01

    The friction and wear properties of several refractory compound coatings were examined. These compounds were applied to 440 C bearing steel surfaces by radiofrequency (RF) sputtering. The refractory compounds were the titanium and molybdenum borides, the titanium and molybdenum silicides, and the titanium, molybdenum, and boron carbides. Friction testing was done with a pin-on-disk wear apparatus at loads from 0.1 to 5.0 newtons. Generally, the best wear properties were obtained when the coatings were bias sputtered onto 440 C disks that had been preoxidized. Adherence was improved because of the better bonding of the coatings to the iron oxide formed during preoxidation. As a class the carbides provided wear protection to the highest loads. Titanium boride coatings provided low friction and good wear properties to moderate loads.

  1. Stability of alkali-metal hydrides: effects of n-type doping

    NASA Astrophysics Data System (ADS)

    Olea Amezcua, Monica Araceli; de La Peña Seaman, Omar; Rivas Silva, Juan Francisco; Heid, Rolf; Bohnen, Klaus-Peter

    Metal hydrides could be considered ideal solid-state hydrogen storage systems, they have light weight and high hydrogen volumetric densities, but the hydrogen desorption process requires excessively high temperatures due to their high stability. Efforts have been performed to improve their dehydrogenation properties, based on the introduction of defects, impurities and doping. We present a systematic study of the n-type (electronic) doping effects on the stability of two alkali-metal hydrides: Na1-xMgxH and Li1-xBexH. These systems have been studied within the framework of density functional perturbation theory, using a mixed-basis pseudopotential method and the self-consistent version of the virtual crystal approximation to model the doping. The full-phonon dispersions are analyzed for several doping content, paying special attention to the crystal stability. It is found a doping content threshold for each system, where they are close to dynamical instabilities, which are related to charge redistribution in interstitial zones. Applying the quasiharmonic approximation, the vibrational free energy, the linear thermal expansion and heat capacities are obtained for both hydrides systems and are analyzed as a function of the doping content. This work is partially supported by the VIEP-BUAP 2016 and CONACYT-México (No.221807) projects.

  2. Effects of the Electronic Doping In the Stability of the Metal Hydride NaH

    NASA Astrophysics Data System (ADS)

    Olea-Amezcua, Monica-Araceli; Rivas-Silva, Juan-Francisco; de La Peña-Seaman, Omar; Heid, Rolf; Bohnen, Klaus-Peter

    2015-03-01

    Despite metal hydrides light weight and high hydrogen volumetric densities, the Hydrogen desorption process requires excessively high temperatures due to their high stability. Attempts for improvement the hydrogenation properties have been focus on the introduction of defects, impurities and doping on the metal hydride. We present a systematic study of the electronic doping effects on the stability of a model system, NaH doped with magnesium, forming the alloying system Na1-xMgxH. We use the density functional theory (DFT) and the self-consistent version of the virtual crystal approximation (VCA) to model the doping of NaH with Mg. The evolution of the ground state structural and electronic properties is analyzed as a function of Mg-content. The full-phonon dispersion, calculated by the linear response theory (LRT) and density functional perturbation theory (DFPT), is analyzed for several Mg-concentrations, paying special attention to the crystal stability and the correlations with the electronic structure. Applying the quasiharmonic approximation (QHA), the free energy from zero-point motion is obtained, and its influence on the properties under study is analyzed. This work is partially supported by the VIEP-BUAP (OMPS-EXC14-I) and CONACYT-Mexico (No. 221807) projects.

  3. Characterization of the dimensional stability of advanced metallic materials using an optical test bench structure

    NASA Technical Reports Server (NTRS)

    Hsieh, Cheng; O'Donnell, Timothy P.

    1991-01-01

    The dimensional stability of low-density high specific-strength metal-matrix composites (including 30 vol pct SiC(p)/SXA 24-T6 Al, 25 vol pct SiC(p)/6061-T6 Al, 40 vol pct graphite P100 fiber/6061 Al, 50 vol pct graphite P100 fiber/6061 Al, and 40 vol pct P100 graphite fiber/AZ91D Mg composites) and an Al-Li-Mg metal alloy was evaluated using a specially designed five-strut optical test bench structure. The structure had 30 thermocouple locations, one retroreflector, one linear interferometer multilayer insulation, and various strip heaters. It was placed in a 10 exp -7 torr capability vacuum chamber with a laser head positioned at a window port, and a laser interferometer system for collecting dimensional change data. It was found that composite materials have greater 40-C temporal dimensional stability than the AL-Li-Mg alloy. Aluminum-based composites demonstrated better 40-C temporal stability than Mg-based composites.

  4. Low-cost industrially available molybdenum boride and carbide as "platinum-like" catalysts for the hydrogen evolution reaction in biphasic liquid systems.

    PubMed

    Scanlon, Micheál D; Bian, Xiaojun; Vrubel, Heron; Amstutz, Véronique; Schenk, Kurt; Hu, Xile; Liu, BaoHong; Girault, Hubert H

    2013-02-28

    Rarely reported low-cost molybdenum boride and carbide microparticles, both of which are available in abundant quantities due to their widespread use in industry, adsorb at aqueous acid-1,2-dichloroethane interfaces and efficiently catalyse the hydrogen evolution reaction in the presence of the organic electron donor - decamethylferrocene. Kinetic studies monitoring biphasic reactions by UV/vis spectroscopy, and further evidence provided by gas chromatography, highlight (a) their superior rates of catalysis relative to other industrially significant transition metal carbides and silicides, as well as a main group refractory compound, and (b) their highly comparable rates of catalysis to Pt microparticles of similar dimensions. Insight into the catalytic processes occurring for each adsorbed microparticle was obtained by voltammetry at the liquid-liquid interface.

  5. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability.

  6. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hongkyung; Lee, Dong Jin; Kim, Yun-Jung; Park, Jung-Ki; Kim, Hee-Tak

    2015-06-01

    Metallic lithium is the most promising negative electrode for high-energy rechargeable batteries due to its extremely high specific capacity and its extremely low redox potential. However, the low cycle efficiency and lithium dendrite formation during the charge/discharge processes consistently hinder its practical application. In this report, we present a stabilized Li electrode on which a Li+ ion conductive inorganic/organic composite protective layer (CPL) is coated. With the introduction of the CPL, the Li dendrite growth and electrolyte decomposition are effectively suppressed; consequently, stable Li plating/stripping at high current densities up to 10 mA cm-2 is possible. Nanoindentation tests demonstrate that the shear modulus of the CPL at narrow indentations is 1.8 times higher than that of the Li metal, which provides a theoretical understanding for its efficacy. Moreover, the LiCoO2/Li cell incorporating CPL exhibits excellent cycling stability up to 400 cycles at 1 mA cm-2 (1 C-rate), which demonstrates practical applicability in Li ion batteries through replacing the graphite anode with a CPL-coated Li metal anode.

  7. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity.

    PubMed

    Matsubu, John C; Yang, Vanessa N; Christopher, Phillip

    2015-03-01

    CO2 reduction by H2 on heterogeneous catalysts is an important class of reactions that has been studied for decades. However, atomic scale details of structure-function relationships are still poorly understood. Particularly, it has been suggested that metal particle size plays a unique role in controlling the stability of CO2 hydrogenation catalysts and the distribution of active sites, which dictates reactivity and selectivity. These studies often have not considered the possible role of isolated metal active sites in the observed dependences. Here, we utilize probe molecule diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) with known site-specific extinction coefficients to quantify the fraction of Rh sites residing as atomically dispersed isolated sites (Rhiso), as well as Rh sites on the surface of Rh nanoparticles (RhNP) for a series of TiO2 supported Rh catalysts. Strong correlations were observed between the catalytic reverse water gas shift turn over frequency (TOF) and the fraction of Rhiso sites and between catalytic methanation TOF and the fraction of RhNP sites. Furthermore, it was observed that reaction condition-induced disintegration of Rh nanoparticles, forming Rhiso active sites, controls the changing reactivity with time on stream. This work demonstrates that isolated atoms and nanoparticles of the same metal on the same support can exhibit uniquely different catalytic selectivity in competing parallel reaction pathways and that disintegration of nanoparticles under reaction conditions can play a significant role in controlling stability. PMID:25671686

  8. Direct Hydrogenation Magnesium Boride to Magnesium Borohydride: Demonstration of >11 Weight Percent Reversible Hydrogen Storage

    SciTech Connect

    Severa, Godwin; Ronnebro, Ewa; Jensen, Craig M.

    2010-11-16

    We here for the first time demonstrate direct hydrogenation of magnesium boride, MgB2, to magnesium borohydride, Mg(BH4)2 at 900 bar H2-pressures and 400°C. Upon 14.8wt% hydrogen release, the end-decomposition product of Mg(BH4)2 is MgB2, thus, this is a unique reversible path here obtaining >11wt% H2 which implies promise for a fully reversible hydrogen storage material.

  9. Distinct surface hydration behaviors of boron-rich boride thin film coatings

    NASA Astrophysics Data System (ADS)

    Lu, Xinhong; Liu, Wei; Ouyang, Jun; Tian, Yun

    2014-08-01

    In this work, the surface boron chemical states and surface hydration behaviors of the as-deposited and annealed boron-rich boride thin film coatings, including AlMgB14, TiB2 and AlMgB14-TiB2, were systematically studied by use of X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy. The XPS results indicate that boron at annealed AlMgB14 film surface can be oxidized; surprisingly, such oxidation does not lead to the formation of boric acid in ambient air. Instead, boric acid can be produced at the surface of annealed TiB2 film and AlMgB14-TiB2 film. It is shown, via the water contact angle measurements, that these boride films exhibit distinct surface wettability characteristics, which are believed to result in the observed surface hydration processes. Furthermore, we found anatase TiO2 formation plays a major role in the surface wetting behaviors for these boride films.

  10. MINE WASTE TECHNOLOGY PROGRAM; PHOSPHATE STABILIZATION OF HEAVY METALS CONTAMINATED MINE WASTE YARD SOILS, JOPLIN, MISSOURI NPL SITE

    EPA Science Inventory

    This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...

  11. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Yang, M.; Liu, X. J.; Ruan, H. H.; Wu, Y.; Wang, H.; Lu, Z. P.

    2016-06-01

    Metallic glasses are metastable and their thermal stability is critical for practical applications, particularly at elevated temperatures. The conventional bulk metallic glasses (BMGs), though exhibiting high glass-forming ability (GFA), crystallize quickly when being heated to a temperature higher than their glass transition temperature. This problem may potentially be alleviated due to the recent developments of high-entropy (or multi-principle-element) bulk metallic glasses (HE-BMGs). In this work, we demonstrate that typical HE-BMGs, i.e., ZrTiHfCuNiBe and ZrTiCuNiBe, have higher kinetic stability, as compared with the benchmark glass Vitreoy1 (Zr41.2Ti13.8Cu12.5Ni10Be22.5) with a similar chemical composition. The measured activation energy for glass transition and crystallization of the HE-BMGs is nearly twice that of Vitreloy 1. Moreover, the sluggish crystallization region ΔTpl-pf, defined as the temperature span between the last exothermic crystallization peak temperature Tpl and the first crystallization exothermic peak temperature Tpf, of all the HE-BMGs is much wider than that of Vitreloy 1. In addition, high-resolution transmission electron microscopy characterization of the crystallized products at different temperatures and the continuous heating transformation diagram which is proposed to estimate the lifetime at any temperature below the melting point further confirm high thermal stability of the HE-BMGs. Surprisingly, all the HE-BMGs show a small fragility value, which contradicts with their low GFA, suggesting that the underlying diffusion mechanism in the liquid and the solid of HE-BMGs is different.

  12. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    PubMed

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs. PMID:26726416

  13. Theoretical and numerical stability analysis of the liquid metal pinch using the shallow water approximation

    NASA Astrophysics Data System (ADS)

    Zienicke, E.; Li, Ben-Wen; Thess, A.; Kräzschmar, A.; Terhoeven, P.

    2008-09-01

    The pinch instability for a cylindrical jet of liquid metal passed through by an axial electrical current is investigated. Besides the pinch effect originating from surface tension, the Lorentz force, created by the axial current density and the corresponding azimuthal magnetic field, causes an electromagnetic pinch effect. This effect has drawn attention in electrical engineering, because it can be used in the construction of liquid metal current limiters with self-healing properties. In this paper a simple model is derived using the shallow water approximation: the equations describing the full system are reduced to two one-dimensional evolution equations for the axial velocity and the radius of the jet. A stability analysis for this reduced system is carried out yielding critical current density and the growth rate for the instability. To investigate the nonlinear behaviour of the pinch instability for finite perturbations simulations, the shallow water model are performed.

  14. Improved Photo-Induced Stability in Amorphous Metal-Oxide Based TFTs for Transparent Displays.

    PubMed

    Koo, Sang-Mo; Ha, Tae-Jun

    2015-10-01

    In this paper, we investigate the origin of photo-induced instability in amorphous metal-oxide based thin-film transistors (oxide-TFTs) by exploring threshold voltage (Vth) shift in transfer characteristics. The combination of photo irradiation and prolonged gate bias stress enhanced the shift in Vth in amorphous hafnium-indium-zinc-oxide (a-HfIZO) TFTs. Such results stem from the extended trapped charges at the localized defect states related to oxygen vacancy which play a role in a screening effect on the electric field induced by gate voltage. We also demonstrate the chemically clean interface in oxide-TFTs by employing oxygen annealing which reduces the density of trap states, thereby resulting in improved photo-induced stability. We believe that this work stimulates the research society of transparent electronics by providing a promising approach to suppress photo-induced instability in metal-oxide TFTs.

  15. Dynamics and thermal stability of surface-confined metal-organic chains

    NASA Astrophysics Data System (ADS)

    Ecija, D.; Marschall, M.; Reichert, J.; Kasperski, A.; Nieckarz, D.; Szabelski, P.; Auwärter, W.; Barth, J. V.

    2016-01-01

    Understanding the dynamics and thermal stability of metallosupramolecular chains on surfaces is of relevance for the development of molecular connectors in nanoelectronics or other fields. Here we present a combined study using temperature-controlled STM and Monte Carlo simulations to explore the behavior of metal-organic porphyrin chains on Cu(111) based on two-fold pyridyl-Cu-pyridyl coordination motifs. We monitor their behavior in the 180-360 K range, revealing three thermal regimes: i) flexibility up to 240 K, ii) diffusion of chain fragments and partial dissociation into a fluid phase for T > 240 K, and iii) full dissolution with temperatures exceeding ~ 320 K. The experimentally estimated reaction enthalpy of the metal-organic bonding is ~ 0.6 eV. Monte Carlo simulations reproduce qualitatively our STM observations and reveal the preference for linear and extended supramolecular chains with reduced substrate temperatures.

  16. Effect of remineralization on heavy-metal leaching from cement-stabilized/solidified waste.

    PubMed

    Islam, Mohammad Z; Catalan, Lionel J J; Yanful, Ernest K

    2004-03-01

    Crushed samples of stabilized/solidified (s/s) waste were leached at constant leachate pH in the pH range 4-7 with nitric acid solutions to evaluate the influence of remineralization on metal release. The s/s waste consisted of synthetic heavy-metal sludge containing 0.1 mol L(-1) copper nitrate, 0.1 mol L(-1) zinc nitrate, and 0.1 mol L(-1) lead nitrate mixed with ordinary Portland cement. Unleached and leached particles were characterized by scanning electron microscopy and energy-dispersive X-ray spectrometry. Two consecutive leaching fronts advancing from the surface of the particles toward the center were identified: the first front was associated with the dissolution of portlandite and partial reaction of the calcium silicate hydrate gel, while the second front was associated with the dissolution of calcium-aluminum hydroxy sulfates such as ettringite and monosulfate. At pH 4 and 5, a remineralization zone rich in heavy metals formed immediately behind the second leaching front. The shell extending from the remineralization zone to the surface of the particles was depleted in calcium, sulfate, and heavy metals. As a result of remineralization, heavy-metal releases to the leachate were reduced by factors ranging between 3.2 and 6.2 at pH 4 and between 74 and 193 at pH 5. At pH 6 and 7, remineralization of Pb and Zn occurred further behind the second leaching front and closer to the surface of the particles. The amount of heavy-metal release depended on both the leachate pH and the remineralization factor. PMID:15046360

  17. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications.

    PubMed

    Sivakumar, Bose; Singh, Raghuvir; Pathak, Lokesh Chandra

    2015-03-01

    The boriding of commercially pure titanium was performed at 850°C, 910°C, and 1050°C for varied soaking periods (1, 3 and 5h) to enhance the surface properties desirable for bioimplant applications. The coating developed was characterized for the evolution of phases, microstructure and morphology, microhardness, and consequent corrosion behavior in the Ringer's solution. Formation of the TiB2 layer at the outermost surface followed by the TiB whiskers across the borided CpTi is unveiled. Total thickness of the composite layer on the substrates borided at 850, 910, and 1050°C for 5h was found to be 19.1, 26.4, and 18.2μm respectively which includes <3μm thick TiB2 layer. The presence of TiB2 phase was attributed to the high hardness ~2968Hv15gf of the composite coating. The anodic polarization studies in the simulated body fluid unveiled a reduction in the pitting corrosion resistance after boriding the CpTi specimens. However, this value is >0.55VSCE (electrochemical potential in in-vivo physiological environment) and hence remains within the safe region. Both the untreated and borided CpTi specimens show two passive zones associated with different passivation current densities. Among the CpTi borided at various times and temperatures, a 3h treated shows better corrosion resistance. The corrosion of borided CpTi occurred through the dissolution of TiB2. PMID:25579920

  18. Corrosion behavior of titanium boride composite coating fabricated on commercially pure titanium in Ringer's solution for bioimplant applications.

    PubMed

    Sivakumar, Bose; Singh, Raghuvir; Pathak, Lokesh Chandra

    2015-03-01

    The boriding of commercially pure titanium was performed at 850°C, 910°C, and 1050°C for varied soaking periods (1, 3 and 5h) to enhance the surface properties desirable for bioimplant applications. The coating developed was characterized for the evolution of phases, microstructure and morphology, microhardness, and consequent corrosion behavior in the Ringer's solution. Formation of the TiB2 layer at the outermost surface followed by the TiB whiskers across the borided CpTi is unveiled. Total thickness of the composite layer on the substrates borided at 850, 910, and 1050°C for 5h was found to be 19.1, 26.4, and 18.2μm respectively which includes <3μm thick TiB2 layer. The presence of TiB2 phase was attributed to the high hardness ~2968Hv15gf of the composite coating. The anodic polarization studies in the simulated body fluid unveiled a reduction in the pitting corrosion resistance after boriding the CpTi specimens. However, this value is >0.55VSCE (electrochemical potential in in-vivo physiological environment) and hence remains within the safe region. Both the untreated and borided CpTi specimens show two passive zones associated with different passivation current densities. Among the CpTi borided at various times and temperatures, a 3h treated shows better corrosion resistance. The corrosion of borided CpTi occurred through the dissolution of TiB2.

  19. Fluorous metal-organic frameworks with enhanced stability and high H2/CO2 storage capacities.

    PubMed

    Zhang, Da-Shuai; Chang, Ze; Li, Yi-Fan; Jiang, Zhong-Yi; Xuan, Zhi-Hong; Zhang, Ying-Hui; Li, Jian-Rong; Chen, Qiang; Hu, Tong-Liang; Bu, Xian-He

    2013-11-22

    A new class of metal-organic frameworks (MOFs) has been synthesized by ligand-functionalization strategy. Systematic studies of their adsorption properties were performed at low and high pressure. Importantly, when fluorine was introduced into the framework via the functionalization, both the framework stabilities and adsorption capacities towards H2/CO2 were enhanced significantly. This consequence can be well interpreted by theoretical studies of these MOFs structures. In addition, one of these MOFs TKL-107 was used to fabricate mixed matrix membranes, which exhibit great potential for the application of CO2 separation.

  20. Fluorous Metal-Organic Frameworks with Enhanced Stability and High H2/CO2 Storage Capacities

    PubMed Central

    Zhang, Da-Shuai; Chang, Ze; Li, Yi-Fan; Jiang, Zhong-Yi; Xuan, Zhi-Hong; Zhang, Ying-Hui; Li, Jian-Rong; Chen, Qiang; Hu, Tong-Liang; Bu, Xian-He

    2013-01-01

    A new class of metal-organic frameworks (MOFs) has been synthesized by ligand-functionalization strategy. Systematic studies of their adsorption properties were performed at low and high pressure. Importantly, when fluorine was introduced into the framework via the functionalization, both the framework stabilities and adsorption capacities towards H2/CO2 were enhanced significantly. This consequence can be well interpreted by theoretical studies of these MOFs structures. In addition, one of these MOFs TKL-107 was used to fabricate mixed matrix membranes, which exhibit great potential for the application of CO2 separation. PMID:24264725

  1. Stabilized chitosan/Fe(0)-nanoparticle beads to remove heavy metals from polluted sediments.

    PubMed

    Liu, T; Sun, Y; Wang, Z L

    2016-01-01

    Sediment contamination by heavy metals has become a widespread problem that can affect the normal behaviors of rivers and lakes. After chitosan/Fe(0)-nanoparticles (CS-NZVI) beads were cross-linked with glutaraldehyde (GLA), their mechanical strength, stability and separation efficiency from the sediment were obviously improved. Moreover, the average aperture size of GLA-CS-NZVI beads was 20.6 μm and NZVI particles were nearly spherical in shape with a mean diameter of 40.2 nm. In addition, the pH showed an insignificant effect on the removal rates from the sediment. Due to the dissolution of metals species into aqueous solutions as an introduction of the salt, the removal rates of all heavy metals from the sediment were increased with an increase of the salinity. The competitive adsorption of heavy metals between the sediment particles and GLA-CS-NZVI beads became stronger as the sediment particles became smaller, leading to decreased removal rates. Therefore, the removal efficiency could be enhanced by optimizing experimental conditions and choosing appropriate materials for the target contaminants.

  2. Degradation mechanisms and stability forecasting and adhesion contacts of metal films with binary dielectric substrates

    SciTech Connect

    Stolyarova, S.; Nemirovsky, Y.; Simanovskis, A.

    1996-12-31

    In this paper the authors present their conception of degradation and stability on the adhesion contacts of metal films with binary nonmetallic crystals. There are numerous works devoted to the atomic scale determination of adhesion forces and development of adhesion interaction laws. But in the real life the kinetic processes, taking place on the adhesion contact, can lead to such dramatic changes in adhesion strength values that the initial adhesion characteristics do not worth much for practice. Sometimes, adhesion contact with a metal which supposed to be highly adhesive failes in a short period of aging time. What the authors have learned from their studies of the contact processes is that in many cases the aging could not be separately addressed to the individual properties of film metal or to those of the substrate material. It depends mainly on the relationships between the parameters of interacting pair. The question is: what parameters should be taken into account to explain degradation phenomena and to predict them? The purpose of the present work is to show how the relative chemical activity of film metal and substrate cation affects the contact degradation in a vacuum and in different environmental conditions.

  3. Color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for non metal clasp denture

    PubMed Central

    Jang, Dae-Eun; Lee, Ji-Young; Jang, Hyun-Seon; Lee, Jang-Jae

    2015-01-01

    PURPOSE The aim of this study was to compare the color stability, water sorption and cytotoxicity of thermoplastic acrylic resin for the non-metal clasp dentures to those of thermoplastic polyamide and conventional heat-polymerized denture base resins. MATERIALS AND METHODS Three types of denture base resin, which are conventional heat-polymerized acrylic resin (Paladent 20), thermoplastic polyamide resin (Bio Tone), thermoplastic acrylic resin (Acrytone) were used as materials for this study. One hundred five specimens were fabricated. For the color stability test, specimens were immersed in the coffee and green tee for 1 and 8 weeks. Color change was measured by spectrometer. Water sorption was tested after 1 and 8 weeks immersion in the water. For the test of cytotoxicity, cell viability assay was measured and cell attachment was analyzed by FE-SEM. RESULTS All types of denture base resin showed color changes after 1 and 8 weeks immersion. However, there was no significant difference between denture base resins. All specimens showed significant color changes in the coffee than green tee. In water sorption test, thermoplastic acrylic resin showed lower values than conventional heat-polymerized acrylic resin and thermoplastic polyamide resin. Three types of denture base showed low cytotoxicity in cell viability assay. Thermoplastic acrylic resin showed the similar cell attachment but more stable attachment than conventional heat-polymerized acrylic resin. CONCLUSION Thermoplastic acrylic resin for the non-metal clasp denture showed acceptable color stability, water sorption and cytotoxicity. To verify the long stability in the mouth, additional in vitro studies are needed. PMID:26330974

  4. Stabilization and solidification of metal-laden wastes by compaction and magnesium phosphate-based binder.

    PubMed

    Rao, A J; Pagilla, K R; Wagh, A S

    2000-09-01

    Bench-scale and full-scale investigations of waste stabilization and volume reduction were conducted using spiked soil and ash wastes containing heavy metals such as Cd, Cr, Pb, Ni, and Hg. The waste streams were stabilized and solidified using chemically bonded phosphate ceramic (CBPC) binder, and then compacted by either uniaxial or harmonic press for volume reduction. The physical properties of the final waste forms were determined by measuring volume reduction, density, porosity, and compressive strength. The leachability of heavy metals in the final waste forms was determined by a toxicity characteristic leaching procedure (TCLP) test and a 90-day immersion test (ANS 16.1). The structural composition and nature of waste forms were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. CBPC binder and compaction can achieve 80-wt% waste loading and 39-47% reduction in waste volume. Compressive strength of final waste forms ranged from 1500 to 2000 psi. TCLP testing of waste forms showed that all heavy metals except Hg passed the TCLP limits using the phosphate-based binder. When Na2S was added to the binder, the waste forms also passed TCLP limits for Hg. Long-term leachability resistance of the final waste forms was achieved for all metals in both soil and ash wastes, and the leachability index was approximately 14. XRD patterns of waste forms indicated vermiculite in the ash waste was chemically incorporated into the CBPC matrix. SEM showed that waste forms are layered when compacted by uniaxial press and are homogeneous when compacted by harmonic press. PMID:11055158

  5. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances.

    PubMed

    Adeleye, Adeyemi S; Keller, Arturo A

    2014-02-01

    Long term (90 day) stability, aggregation kinetics in the presence and absence of natural organic materials (NOM), and metal leaching of five commercial single wall carbon nanotubes (SWCNTs) in waters (e.g. freshwater, seawater, stormwater, wastewater, and groundwater) were studied, as well as the effect of temperature on SWCNT stability and metal leaching. Zeta (ζ) potential of SWCNT decreased in magnitude with increase in temperature. In wastewater, SWCNT sedimented from the water column to below detectable levels after 30 days when kept at 40 °C, but at 20 °C 19% suspension was still observed after the same exposure time. Addition of 0.1 mg-C L(-1) EPS shifted the critical coagulation concentration (CCC) of SRNOM-stabilized SWCNT from 15 mM to 54 mM NaCl via additional electrostatic and possibly steric stabilization. Attachment efficiencies (α) of SWCNT in waters ranged from ∼0.001 in DI with 10 mg L(-1) SRNOM to 1 in seawater. However, sedimentation of SWCNT in seawater (and other high ionic strength conditions) was not as fast as expected due to improved buoyancy and/or drag. Purified forms of SWCNTs exhibited better dispersibility and stability in most waters, but as expected, the total metal leached out was higher in the raw variants. Metal leaching from CNT in these studies was controlled by metal and water chemistries, CNT pretreatment, leachable metal fraction, exposure time, and presence of NOM.

  6. Use of alum water treatment sludge to stabilize C and immobilize P and metals in composts.

    PubMed

    Haynes, R J; Zhou, Y-F

    2015-09-01

    Alum water treatment sludge is composed of amorphous hydroxyl-Al, which has variable charge surfaces with a large Brunauer-Emmett-Teller (BET) surface area (103 m(-2) g(-1)) capable of specific adsorption of organic matter molecules, phosphate, and heavy metals. The effects of adding dried, ground, alum water treatment sludge (10% w/w) to the feedstock for composting municipal green waste alone, green waste plus poultry manure, or green waste plus biosolids were determined. Addition of water treatment sludge reduced water soluble C, microbial biomass C, CO2 evolution, extractable P, and extractable heavy metals during composting. The decrease in CO2 evolution (i.e., C sequestration) was greatest for poultry manure and least for biosolid composts. The effects of addition of water treatment sludge to mature green waste-based poultry manure and biosolid composts were also determined in a 24-week incubation experiment. The composts were either incubated alone or after addition to a soil. Extractable P and heavy metal concentrations were decreased by additions of water treatment sludge in all treatments, and CO2 evolution was also reduced from the poultry manure compost over the first 16-18 weeks. However, for biosolid compost, addition of water treatment sludge increased microbial biomass C and CO2 evolution rate over the entire 24-week incubation period. This was attributed to the greatly reduced extractable heavy metal concentrations (As, Cr, Cu, Pb, and Zn) present following addition of water treatment sludge, and thus increased microbial activity. It was concluded that addition of water treatment sludge reduces concentrations of extractable P and heavy metals in composts and that its effect on organic matter stabilization is much greater during the composting process than for mature compost because levels of easily decomposable organic matter are initially much higher in the feedstock than those in matured composts.

  7. Use of alum water treatment sludge to stabilize C and immobilize P and metals in composts.

    PubMed

    Haynes, R J; Zhou, Y-F

    2015-09-01

    Alum water treatment sludge is composed of amorphous hydroxyl-Al, which has variable charge surfaces with a large Brunauer-Emmett-Teller (BET) surface area (103 m(-2) g(-1)) capable of specific adsorption of organic matter molecules, phosphate, and heavy metals. The effects of adding dried, ground, alum water treatment sludge (10% w/w) to the feedstock for composting municipal green waste alone, green waste plus poultry manure, or green waste plus biosolids were determined. Addition of water treatment sludge reduced water soluble C, microbial biomass C, CO2 evolution, extractable P, and extractable heavy metals during composting. The decrease in CO2 evolution (i.e., C sequestration) was greatest for poultry manure and least for biosolid composts. The effects of addition of water treatment sludge to mature green waste-based poultry manure and biosolid composts were also determined in a 24-week incubation experiment. The composts were either incubated alone or after addition to a soil. Extractable P and heavy metal concentrations were decreased by additions of water treatment sludge in all treatments, and CO2 evolution was also reduced from the poultry manure compost over the first 16-18 weeks. However, for biosolid compost, addition of water treatment sludge increased microbial biomass C and CO2 evolution rate over the entire 24-week incubation period. This was attributed to the greatly reduced extractable heavy metal concentrations (As, Cr, Cu, Pb, and Zn) present following addition of water treatment sludge, and thus increased microbial activity. It was concluded that addition of water treatment sludge reduces concentrations of extractable P and heavy metals in composts and that its effect on organic matter stabilization is much greater during the composting process than for mature compost because levels of easily decomposable organic matter are initially much higher in the feedstock than those in matured composts. PMID:25948380

  8. Structural adhesives for bonding optics to metals: a study of optomechanical stability

    NASA Astrophysics Data System (ADS)

    Daly, John G.; Daly, Damien J.

    2001-11-01

    With so many new adhesives available, characteristics affecting performance are not always well-defined. The user often selects an adhesive based on a single property and later finds his application compromised. This is an effort to study relevant properties of several different structural-type adhesives. The bonding geometry will utilize three types of glass bonded to metal mounts. The mounting geometry will include five different design approaches. These designs will investigate: face bonding, counter-bored mounts, edge bonding, and a flexure mount. The three metals selected are not only common to the industry but often used for matching the Coefficient of Expansion to the optical glass. Each optical flat will have its reflective surface used as a reference for angular stability. The adhesives selected will compare more traditional epoxies with one-part UV light cured products. The obvious advantage of the UV- cured adhesives is the instant cure on-demand. Several adhesives have been selected for differing properties including: viscosity, cure temperature, CTE, modulus of elasticity, out-gassing, and shrinkage upon cure. Discussion will compare each adhesive, its properties, and ease of use. Angular stability will be monitored as a function of: pre vs. post cure, accelerated life testing, thermal exposure, and vibration/shock exposure. Some discussion will be included on the wavefront distortion and stress birefringence.

  9. Structural phase stability in group IV metals under static high pressure

    SciTech Connect

    Velisavljevic, Nenad; Chesnut, Garry N; Dattelbaum, Dana M; Vohra, Yogesh K; Stemshorn, Andrew

    2009-01-01

    In group IV metals (Ti, Zr, and Hf) room temperature compression leads to a martensitic transformation from a ductile {alpha} to a brittle {omega} phase. {alpha} {yields} {omega} phase boundary decreases to lower pressure at high temperature and can limit the use of group IV metals in industrial applications. There is a large discrepancy in the transition pressure reported in literature, with some of the variation attributed to experimental conditions (i.e. hydrostatic vs. non-hydrostatic). Shear deformation in non-hydrostatic experiments drives {alpha} {yields} {omega} transition and decreases transition pressure. Impurities can also aid or suppress {alpha} {yields} {omega} transition. By performing x-ray diffraction experiments on samples in a diamond anvil cell we show that interstitial impurities, such as C, N, and O can obstruct {alpha} {yields} {omega} transition and stabilize {alpha} phase to higher pressure. We also show that reduction in grain size can also influence {alpha} {yields} {omega} phase boundary and help stabilize {alpha} phase to higher pressure under non-hydrostatic conditions.

  10. Distinct reaction pathway promoted by non-divalent-metal cations in a tertiary stabilized hammerhead ribozyme

    PubMed Central

    Roychowdhury-Saha, Manami; Burke, Donald H.

    2007-01-01

    Divalent ion sensitivity of hammerhead ribozymes is significantly reduced when the RNA structure includes appropriate tertiary stabilization. Therefore, we investigated the activity of the tertiary stabilized “RzB” hammerhead ribozyme in several nondivalent ions. Ribozyme RzB is active in spermidine and Na+ alone, although the cleavage rates are reduced by more than 1,000-fold relative to the rates observed in Mg2+ and in transition metal ions. The trivalent cobalt hexammine (CoHex) ion is often used as an exchange-inert analog of hydrated magnesium ion. Trans-cleavage rates exceeded 8 min−1 in 20 mM CoHex, which promoted cleavage through outersphere interactions. The stimulation of catalysis afforded by the tertiary structural interactions within RzB does not require Mg2+, unlike other extended hammerhead ribozymes. Site-specific interaction with at least one Mg2+ ion is suggested by CoHex competition experiments. In the presence of a constant, low concentration of Mg2+, low concentrations of CoHex decreased the rate by two to three orders of magnitude relative to the rate in Mg2+ alone. Cleavage rates increased as CoHex concentrations were raised further, but the final fraction cleaved was lower than what was observed in CoHex or Mg2+ alone. These observations suggest that Mg2+ and CoHex compete for binding and that they cause misfolded structures when they are together. The results of this study support the existence of an alternate catalytic mechanism used by nondivalent ions (especially CoHex) that is distinct from the one promoted by divalent metal ions, and they imply that divalent metals influence catalysis through a specific nonstructural role. PMID:17456566

  11. Stabilization/solidification of battery debris & lead impacted material at Schuylkill Metals, Plant City, Florida

    SciTech Connect

    Anguiano, T.; Floyd, D.

    1997-12-31

    The Schuylkill Metals facility in Plant City Florida (SMPCI) operated as a battery recycling facility for approximately 13 years. During its operation, the facility disposed of battery components in surrounding wetland areas. In March of 1991 the U.S. EPA and SMPCI entered into a Consent Decree for the remediation of the SMPCI site using stabilization/solidification and on-site disposal. In November of 1994, ENTACT began remediation at the facility and to date has successfully stabilized/solidified over 228,000 tons of lead impacted battery components and lead impacted material. The ENTACT process reduces the size of the material to be treated to ensure that complete mixing of the phosphate/cement additive is achieved thereby promoting the chemical reactions of stabilization and solidification. ENTACT has met the following performance criteria for treated material at the SMPCI site: (1) Hydraulic Conductivity less than 1x10{sup -6} cm/s, (2) Unconfined Compressive Strength greater than 50 psi, (3) Lead, Cadmium, Arsenic, Chromium TCLP Leachability below hazardous levels.

  12. Sulfa drugs: thermodynamic proton-ligand and metal-ligand stability constants.

    PubMed

    Agrawal, Y K; Giridhar, R; Menon, S K

    1987-12-01

    The thermodynamic proton-ligand stability constants of sulfa drugs have been determined in different mole fractions of dioxane (0.083-0.174) at 25 and 35 +/- 0.1 degrees C. Empirical corrections to pH meter readings in mixed aqueous media have been applied. The pKa varies linearly with the mole fraction of dioxane. Numerical equations expressing this linear relationship have been obtained using the method of least squares, and relevant correlation coefficients have been calculated. The thermodynamic parameters delta G degrees, delta H degrees, and delta S degrees are calculated. The effect of solvent and the change in free energy from mixed aqueous media, delta, is discussed. The thermodynamic metal-ligand stability constants of Cu(II), Pd(II), and Ce(IV) with sulfa drugs in 50% aqueous dioxane at 35 +/- 0.1 degrees C have been determined. The effect of basicity of the ligand and the order of the stability constant is discussed.

  13. Stabilized liquid membrane device (SLMD) for the passive, integrative sampling of labile metals in water

    USGS Publications Warehouse

    Brumbaugh, W.G.; Petty, J.D.; Huckins, J.N.; Manahan, S.E.

    2002-01-01

    A stabilized liquid membrane device (SLMD) is described for potential use as an in situ, passive, integrative sampler for cadmium (Cd), cobalt (Co), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in natural waters. The SLMD (patent pending) consists of a 2.5-cm-wide by 15-cm-long strip of low-density polyethylene (LDPE) layflat tubing containing 1 mL of an equal mixture (v/v) of oleic acid (cis-9-octadecenoic acid) and EMO-8Q (7-[4-ethyl-1-methyloctyl]-8-quinolinol). The reagent mixture continuously diffuses to the exterior surface of the LDPE membrane, and provides for sequestration of several divalent metals for up to several weeks. Depending on sampler configuration, concentration factors of several thousand can be realized for these metal ions after just a few days. In addition to in situ deployment, the SLMD may be useful for laboratory determination of labile metal species in grab samples. Methods for minimizing the effects of water flow on the sampling rate are currently under investigation.

  14. Investigations of the structural stability of metal hydride composites by in-situ neutron imaging

    NASA Astrophysics Data System (ADS)

    Herbrig, Kai; Pohlmann, Carsten; Gondek, Łukasz; Figiel, Henryk; Kardjilov, Nikolay; Hilger, André; Manke, Ingo; Banhart, John; Kieback, Bernd; Röntzsch, Lars

    2015-10-01

    Metal hydride composites (MHC) with expanded natural graphite (ENG) exhibiting enhanced thermal conductivity and reduced porosity compared to metal hydride powders can enable a reversible, compact and safe way for hydrogen storage. In this study, neutron imaging during cyclic hydrogenation was utilized to investigate the structural stability and the spatial-temporal hydrogen concentration of application-oriented MHC with 40 mm in diameter compared to a loose metal hydride powder. In particular, swelling and shrinking effects of a radially confined MHC which could freely expand upwards were studied. It was found that the loose powder bed was easily torn apart during dehydrogenation, which leads to increased thermal resistance within the hydride bed. In contrast, the thermal resistance between MHC and container wall was minimized since the initial gap closes during initial hydrogenation and does not reopen thereafter. Further cyclic hydrogenation caused MHC volume changes, i.e. an almost reversible swelling/shrinking (so-called "MHC breathing"). Moreover, neutron imaging allowed for the observation of reaction fronts within the MHC and the powder bed that are governed by the heat transfer.

  15. Controlled Formation of Metal@Al₂O₃ Yolk-Shell Nanostructures with Improved Thermal Stability.

    PubMed

    Zhang, Wei; Lin, Xi-Jie; Sun, Yong-Gang; Bin, De-Shan; Cao, An-Min; Wan, Li-Jun

    2015-12-16

    Yolk-shell structured nanomaterials have shown interesting potential in different areas due to their unique structural configurations. A successful construction of such a hybrid structure relies not only on the preparation of the core materials, but also on the capability to manipulate the outside wall. Typically, for Al2O3, it has been a tough issue in preparing it into a uniform nanoshell, making the use of Al2O3-based yolk-shell structures a challenging but long-awaited task. Here, in benefit of our success in the controlled formation of Al2O3 nanoshell, we demonstrated that yolk-shell structures with metal confined inside a hollow Al2O3 nanosphere could be successfully achieved. Different metals including Au, Pt, Pd have been demonstrated, forming a typical core@void@shell structure. We showed that the key parameters of the yolk-shell structure such as the shell thickness and the cavity size could be readily tuned. Due to the protection of a surrounding Al2O3 shell, the thermal stability of the interior metal nanoparticles could be substantially improved, resulting in promising performance for the catalytic CO oxidation as revealed by our preliminary test on Au@Al2O3.

  16. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil.

    PubMed

    Schütze, Eileen; Ahmed, Engy; Voit, Annekatrin; Klose, Michael; Greyer, Matthias; Svatoš, Aleš; Merten, Dirk; Roth, Martin; Holmström, Sara J M; Kothe, Erika

    2015-12-01

    Heavy metal-contaminated soil derived from a former uranium mining site in Ronneburg, Germany, was used for sterile mesocosms inoculated with the extremely metal-resistant Streptomyces mirabilis P16B-1 or the sensitive control strain Streptomyces lividans TK24. The production and fate of bacterial hydroxamate siderophores in soil was analyzed, and the presence of ferrioxamines E, B, D, and G was shown. While total ferrioxamine concentrations decreased in water-treated controls after 30 days of incubation, the sustained production by the bacteria was seen. For the individual molecules, alteration between neutral and cationic forms and linearization of hydroxamates was observed for the first time. Mesocosms inoculated with biomass of either strain showed changes of siderophore contents compared with the non-treated control indicating for auto-alteration and consumption, respectively, depending on the vital bacteria present. Heat stability and structural consistency of siderophores obtained from sterile culture filtrate were shown. In addition, low recovery (32 %) from soil was shown, indicating adsorption to soil particles or soil organic matter. Fate and behavior of hydroxamate siderophores in metal-contaminated soils may affect soil properties as well as conditions for its inhabiting (micro)organisms.

  17. Siderophore production by streptomycetes-stability and alteration of ferrihydroxamates in heavy metal-contaminated soil.

    PubMed

    Schütze, Eileen; Ahmed, Engy; Voit, Annekatrin; Klose, Michael; Greyer, Matthias; Svatoš, Aleš; Merten, Dirk; Roth, Martin; Holmström, Sara J M; Kothe, Erika

    2015-12-01

    Heavy metal-contaminated soil derived from a former uranium mining site in Ronneburg, Germany, was used for sterile mesocosms inoculated with the extremely metal-resistant Streptomyces mirabilis P16B-1 or the sensitive control strain Streptomyces lividans TK24. The production and fate of bacterial hydroxamate siderophores in soil was analyzed, and the presence of ferrioxamines E, B, D, and G was shown. While total ferrioxamine concentrations decreased in water-treated controls after 30 days of incubation, the sustained production by the bacteria was seen. For the individual molecules, alteration between neutral and cationic forms and linearization of hydroxamates was observed for the first time. Mesocosms inoculated with biomass of either strain showed changes of siderophore contents compared with the non-treated control indicating for auto-alteration and consumption, respectively, depending on the vital bacteria present. Heat stability and structural consistency of siderophores obtained from sterile culture filtrate were shown. In addition, low recovery (32 %) from soil was shown, indicating adsorption to soil particles or soil organic matter. Fate and behavior of hydroxamate siderophores in metal-contaminated soils may affect soil properties as well as conditions for its inhabiting (micro)organisms. PMID:25414032

  18. Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions

    NASA Astrophysics Data System (ADS)

    Kim, Yi-Yeoun; Walsh, Dominic

    2010-02-01

    Nanoparticles of CuS, CuxS, Ag2S and CdS were successfully prepared using a novel general and green synthetic process to give dextran biopolymer stabilised metal sulfifde nanosuspensions. Following preparation, dextranase enzyme was used to remove the bulk of the bound dextran to give pure stable metal sulfide nanocrystals for application in for example aspects of medicine, photonics and solar cells. Particles of good homogeneity were obtained and the CuS nanoparticle size was controlled to 9-27 nm by adjusting the reaction conditions. Cu2S nanoparticles were 14 nm, Ag2S nanoparticles were 20-50 nm and CdS nanoparticles were 9 nm is size. The complexing mechanism of nanoparticle sulfides to dextrans was further studied using carboxylmethyl dextran as a complexing agent and crosslinked Sephadex (dextran) `beads as substrate. Particles were characterized by TEM, XRD, TGA, FT-IR and zeta-potential measurement, and their UV-vis spectroscopic absorption properties were determined. Stabilization of the sulfide nanoparticles with soluble hydroxylated biopolymers such as dextran is previously unreported and is here interpreted in terms of viscosity, pH of the system and weak polar S-H or S(metal)OH2+ interactions with dextran depending on the material. Notably, the complexing mechanism appears to differ significantly from that taking place in known dextran-metal oxide systems. The process shown here has good potential for scale-up as a biosynthetic route for a range of functional sulfide nanoparticles.Nanoparticles of CuS, CuxS, Ag2S and CdS were successfully prepared using a novel general and green synthetic process to give dextran biopolymer stabilised metal sulfifde nanosuspensions. Following preparation, dextranase enzyme was used to remove the bulk of the bound dextran to give pure stable metal sulfide nanocrystals for application in for example aspects of medicine, photonics and solar cells. Particles of good homogeneity were obtained and the CuS nanoparticle size

  19. Fluidized-bed-combustion ash for the solidification and stabilization of a metal-hydroxide sludge.

    PubMed

    Knoll, K L; Behr-Andres, C

    1998-01-01

    Fluidized-bed-combustion (FBC) ash is a by-product from a developing technology for coal-fired power plants that will economically reduce air emissions to meet requirements of the Clean Air Act. FBC ash has physical and chemical properties similar to Portland cement, but only has moderate success as a pozzolan in concrete applications due to low compressive strengths. However, FBC ash has proven effective for use as a binder for the solidification and stabilization (S/S) of metal-bearing sludges. Physical and chemical characterization procedures were used to analyze FBC ash and a metal-bearing sludge obtained from a hazardous waste treatment facility to develop 12 different S/S mix designs. The mix designs consist of four binder designs to evaluate sludge-to-binder ratios of approximately 0, 0.5, and 1. Portland cement is used as a control binder to compare unconfined compressive strengths and Toxicity Characteristic Leaching Procedure (TCLP) analyses from different ratios of the FBC ash streams: fly ash, char, and spent bed material (SBM). Compressive strengths ranging from 84 lbs per square inch (psi) to 298 psi were obtained from various mix designs containing different sludge-to-ash ratios cured for 28 days. All the mix designs passed the TCLP. Recoveries from leaching for each metal were less than 5% for most mix designs. Results of unconfined compressive strengths, TCLP, and percent recovery calculations indicate that the mix design containing approximately a 1:1 ratio of fly ash to char-and-sludge is the best mix design for the S/S of the metal-bearing sludge.

  20. Metal sulfide nanoparticles synthesized via enzyme treatment of biopolymer stabilized nanosuspensions.

    PubMed

    Kim, Yi-Yeoun; Walsh, Dominic

    2010-02-01

    Nanoparticles of CuS, Cu(x)S, Ag(2)S and CdS were successfully prepared using a novel general and green synthetic process to give dextran biopolymer stabilised metal sulfifde nanosuspensions. Following preparation, dextranase enzyme was used to remove the bulk of the bound dextran to give pure stable metal sulfide nanocrystals for application in for example aspects of medicine, photonics and solar cells. Particles of good homogeneity were obtained and the CuS nanoparticle size was controlled to 9-27 nm by adjusting the reaction conditions. Cu(2)S nanoparticles were 14 nm, Ag(2)S nanoparticles were 20-50 nm and CdS nanoparticles were 9 nm is size. The complexing mechanism of nanoparticle sulfides to dextrans was further studied using carboxylmethyl dextran as a complexing agent and crosslinked Sephadex (dextran) ;beads as substrate. Particles were characterized by TEM, XRD, TGA, FT-IR and zeta-potential measurement, and their UV-vis spectroscopic absorption properties were determined. Stabilization of the sulfide nanoparticles with soluble hydroxylated biopolymers such as dextran is previously unreported and is here interpreted in terms of viscosity, pH of the system and weak polar S-H or S(metal)OH(2)(+) interactions with dextran depending on the material. Notably, the complexing mechanism appears to differ significantly from that taking place in known dextran-metal oxide systems. The process shown here has good potential for scale-up as a biosynthetic route for a range of functional sulfide nanoparticles.

  1. Stabilization of heavy metals in MSWI fly ash using silica fume.

    PubMed

    Li, Xinying; Chen, Quanyuan; Zhou, Yasu; Tyrer, Mark; Yu, Yang

    2014-12-01

    The objective of this work was to investigate the feasibility and effectiveness of silica fume on stabilizing heavy metals in municipal solid waste incineration (MSWI) fly ash. In addition to compressive strength measurements, hydrated pastes were characterized by X-ray diffraction (XRD), thermal-analyses (DTA/TG), and MAS NMR ((27)Al and (29)Si) techniques. It was found that silica fume additions could effectively reduce the leaching of toxic heavy metals. At the addition of 20% silica fume, leaching concentrations for Cu, Pb and Zn of the hydrated paste cured for 7 days decreased from 0.32 mg/L to 0.05 mg/L, 40.99 mg/L to 4.40 mg/L, and 6.96 mg/L to 0.21 mg/L compared with the MSWI fly ash. After curing for 135 days, Cd and Pb in the leachates were not detected, while Cu and Zn concentrations decreased to 0.02 mg/L and 0.03 mg/L. The speciation of Pb and Cd by the modified version of the European Community Bureau of Reference (BCR) extractions showed that these metals converted into more stable state in hydrated pastes of MSWI fly ash in the presence of silica fume. Although exchangeable and weak-acid soluble fractions of Cu and Zn increased with hydration time, silica fume addition of 10% can satisfy the requirement of detoxification for heavy metals investigated in terms of the identification standard of hazardous waste of China.

  2. PREFACE: The 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008)

    NASA Astrophysics Data System (ADS)

    Tanaka, Takaho

    2009-07-01

    This volume of Journal of Physics: Conference Series contains invited and contributed peer-reviewed papers that were presented at the 16th International Symposium on Boron, Borides and Related Materials (ISBB 2008), which was held on 7-12 September 2008, at Kunibiki Messe, Matsue, Japan. This triennial symposium has a half-century long history starting from the 1st meeting in 1959 at Asbury Park, New Jersey. We were very pleased to organize ISBB 2008, which gathered chemists, physicists, materials scientists as well as diamond and high-pressure researchers. This meeting had a strong background in the boron-related Japanese research history, which includes the discovery of superconductivity in MgB2 and development of Nd-Fe-B hard magnets and of YB66 soft X-ray monochromator. The scope of ISBB 2008 spans both basic and applied interdisciplinary research that is centered on boron, borides and related materials, and the collection of articles defines the state of the art in research on these materials. The topics are centered on: 1. Preparation of new materials (single crystals, thin films, nanostructures, ceramics, etc) under normal or extreme conditions. 2. Crystal structure and chemical bonding (new crystal structures, nonstoichiometry, defects, clusters, quantum-chemical calculations). 3. Physical and chemical properties (band structure, phonon spectra, superconductivity; optical, electrical, magnetic, emissive, mechanical properties; phase diagrams, thermodynamics, catalytic activity, etc) in a wide range of temperatures and pressures. 4. Applications and prospects (thermoelectric converters, composites, ceramics, coatings, etc) There were a few discoveries of new materials, such as nanomaterials, and developments in applications. Many contributions were related to 4f heavy Fermion systems of rare-earth borides. Exotic mechanisms of magnetism and Kondo effects have been discussed, which may indicate another direction of development of boride. Two special sessions

  3. Stabilization of dissolved trace metals at hydrothermal vent sites: Impact on their marine biogeochemical cycles

    NASA Astrophysics Data System (ADS)

    Sander, Sylvia G.; Powell, Zach D.; Koschinsky, Andrea; Kuzmanovski, Stefan; Kleint, Charlotte

    2014-05-01

    Hydrothermal vents have long been neglected as a significant source of several bioactive trace metals as it was assumed that elements such as Fe, Mn, and Cu etc., precipitate in extensor forming poly-metallic sulfide and oxy-hydroxy sediments in the relative vicinity of the emanation site. However, recently this paradigm has been reviewed since the stabilization of dissolved Fe and Cu from hydrothermal vents was observed [1, 2] and increased concentrations of trace metals can be traced from their hydrothermal source thousands of kilometres through the ocean basins [3]. Furthermore several independent modelling attempts have shown that not only a stabilization of dissolved hydrothermal Fe and Cu is possible [4] but also that hydrothermalism must be a significant source of Fe to be able to balance the Fe-biogeochemical cycle [5]. Here we present new data that gives further evidence of the presence of copper stabilising organic and inorganic compounds in samples characterized by hydrothermal input. We can show that there are systematic differences in copper-complexing ligands at different vent sites such as 5°S on the Mid Atlantic Ridge, Brother Volcano on the Kermadec Arc, and some shallow hydrothermal CO2 seeps in the Bay of Plenty, New Zealand and the Mediterranean Sea. Quantitative and qualitative voltammetric data convincingly indicates that inorganic sulphur and organic thiols form the majority of the strong copper-complexing ligand pool in many of these hydrothermal samples. On average, the high temperature vents had a significantly higher copper binding capacity than the diffuse vents due to higher inorganic sulphur species concentrations. References: [1] Sander, S. G., et al. 2007. Organic complexation of copper in deep-sea hydrothermal vent systems. Environmental Chemistry 4: 81-89 [2] Bennett, S. A., et al. 2008. The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters 270: 157-167. [3] Wu J

  4. Boride Zone Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures

    NASA Astrophysics Data System (ADS)

    Steuer, S.; Singer, R. F.

    2013-05-01

    Two nickel-base superalloys are joined via transient liquid phase (TLP) bonding with boron as the MPD. Boride formation is observed in the parent materials at some distance from the solid/liquid interface. The boron concentration profile over the joint is measured with glow discharge optical emission spectroscopy (GDOES). Boron concentration peaks are observed corresponding to the boride formation. Boron distribution is discussed on the basis of theoretical predictions in the literature. It is concluded that diffusion of another element is necessary to explain the results with the second element influencing the solubility of boron.

  5. Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties.

    PubMed

    Komsa, Hannu-Pekka; Krasheninnikov, Arkady V

    2012-12-01

    Using density-functional theory calculations, we study the stability and electronic properties of single layers of mixed transition metal dichalcogenides (TMDs), such as MoS2xSe2(1-x), which can be referred to as two-dimensional (2D) random alloys. We demonstrate that mixed MoS2/MoSe2/MoTe2 compounds are thermodynamically stable at room temperature, so that such materials can be manufactured using chemical-vapor deposition technique or exfoliated from the bulk mixed materials. By applying the effective band structure approach, we further study the electronic structure of the mixed 2D compounds and show that general features of the band structures are similar to those of their binary constituents. The direct gap in these materials can continuously be tuned, pointing toward possible applications of 2D TMD alloys in photonics. PMID:26291001

  6. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.

    PubMed

    Keller, Arturo A; Wang, Hongtao; Zhou, Dongxu; Lenihan, Hunter S; Cherr, Gary; Cardinale, Bradley J; Miller, Robert; Ji, Zhaoxia

    2010-03-15

    There is a pressing need for information on the mobility of nanoparticles in the complex aqueous matrices found in realistic environmental conditions. We dispersed three different metal oxide nanoparticles (TiO(2), ZnO and CeO(2)) in samples taken from eight different aqueous media associated with seawater, lagoon, river, and groundwater, and measured their electrophoretic mobility, state of aggregation, and rate of sedimentation. The electrophoretic mobility of the particles in a given aqueous media was dominated by the presence of natural organic matter (NOM) and ionic strength, and independent of pH. NOM adsorbed onto these nanoparticles significantly reduces their aggregation, stabilizing them under many conditions. The transition from reaction to diffusion limited aggregation occurs at an electrophoretic mobility from around -2 to -0.8 microm s(-1) V(-1) cm. These results are key for designing and interpreting nanoparticle ecotoxicity studies in various environmental conditions. PMID:20151631

  7. Scalable process for application of stabilized lithium metal powder in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Ai, Guo; Wang, Zhihui; Zhao, Hui; Mao, Wenfeng; Fu, Yanbao; Yi, Ran; Gao, Yue; Battaglia, Vincent; Wang, Donghai; Lopatin, Sergey; Liu, Gao

    2016-03-01

    A simple solution processing method is developed to achieve a uniform and scalable stabilized lithium metal powder (SLMP) coating on a Li-ion negative electrode. A solvent and binder system for the SLMP coating is developed, including the selection of solvent, polymer binder, and optimization of polymer concentration. The optimized binder solution is a 1% concentration of polymer binder in xylene; a mixture of poly(styrene-co-butadiene) rubber (SBR) and polystyrene (PS) is chosen as the polymer binder. Results show that long-sustained, uniformly dispersed SLMP suspension can be achieved with the optimized binder solution. The uniform SLMP coating can be achieved using a simple "doctor blade" coating method, and the resulting SLMP coating can be firmly glued on the anode surface. By using SLMP to prelithiate the negative electrode, improvements in electrochemical performances are demonstrated in both graphite/NMC and SiO/NMC full cells.

  8. On dynamic and elastic stability of group IIIB metal carbides: Ab-initio calculations

    NASA Astrophysics Data System (ADS)

    Sahoo, B. D.; Mukherjee, D.; Joshi, K. D.; Gupta, Satish C.

    2012-06-01

    The elastic and dynamic stabilities of IIIB metal carbides in NaCl (B1 phase) type fcc structure have been investigated at zero pressure by first-principles calculations using the plane-wave pseudopotential method. The analysis of elastic moduli and phonon dispersion relations in ScC and YC suggest that the B1 phase is stable both elastically as well as dynamically at zero pressure. In contrast, for LaC, we find that the shear elastic modulus C' (=(C11-C12)/2) is negative at zero pressure and also the phonon frequencies in various directions of the Brillouin zone are imaginary, indicative of elastic as well as dynamic instability of B1 phase at zero pressure in this compound.

  9. The α-Subunit Regulates Stability of the Metal Ion at the Ligand-associated Metal Ion-binding Site in β3 Integrins*

    PubMed Central

    Rui, Xianliang; Mehrbod, Mehrdad; Van Agthoven, Johannes F.; Anand, Saurabh; Xiong, Jian-Ping; Mofrad, Mohammad R. K.; Arnaout, M. Amin

    2014-01-01

    The aspartate in the prototypical integrin-binding motif Arg-Gly-Asp binds the integrin βA domain of the β-subunit through a divalent cation at the metal ion-dependent adhesion site (MIDAS). An auxiliary metal ion at a ligand-associated metal ion-binding site (LIMBS) stabilizes the metal ion at MIDAS. LIMBS contacts distinct residues in the α-subunits of the two β3 integrins αIIbβ3 and αVβ3, but a potential role of this interaction on stability of the metal ion at LIMBS in β3 integrins has not been explored. Equilibrium molecular dynamics simulations of fully hydrated β3 integrin ectodomains revealed strikingly different conformations of LIMBS in unliganded αIIbβ3 versus αVβ3, the result of stronger interactions of LIMBS with αV, which reduce stability of the LIMBS metal ion in αVβ3. Replacing the αIIb-LIMBS interface residue Phe191 in αIIb (equivalent to Trp179 in αV) with Trp strengthened this interface and destabilized the metal ion at LIMBS in αIIbβ3; a Trp179 to Phe mutation in αV produced the opposite but weaker effect. Consistently, an F191/W substitution in cellular αIIbβ3 and a W179/F substitution in αVβ3 reduced and increased, respectively, the apparent affinity of Mn2+ to the integrin. These findings offer an explanation for the variable occupancy of the metal ion at LIMBS in αVβ3 structures in the absence of ligand and provide new insights into the mechanisms of integrin regulation. PMID:24975416

  10. [Effect of sodium carbonate assisted hydrothermal process on heavy metals stabilization in medical waste incinerator fly ash].

    PubMed

    Jin, Jian; Li, Xiao-dong; Chi, Yong; Yan, Jian-hua

    2010-04-01

    A sodium carbonate assisted hydrothermal process was induced to stabilize the fly ash from medical waste incinerator. The results showed that sodium carbonate assisted hydrothermal process reduced the heavy metals leachability of fly ash, and the heavy metal waste water from the process would not be a secondary pollution. The leachability of heavy metals studied in this paper were Cd 1.97 mg/L, Cr 1.56 mg/L, Cu 2.56 mg/L, Mn 17.30 mg/L, Ni 1.65 mg/L, Pb 1.56 mg/L and Zn 189.00 mg/L, and after hydrothermal process with the optimal experimental condition (Na2CO3/fly ash dosage = 5/20, reaction time = 8 h, L/S ratio = 10/1) the leachability reduced to < 0.02 mg/L for Cd, Cr, Cu, Mn, Ni, Pb, and 0.05 mg/L for Zn, according to GB 5085.3-2007. Meanwhile, the concentrations of heavy metals in effluent after hydrothermal process were less than 0.8 mg/L. The heavy metals leachability and concentration in effluent reduced with prolonged reaction time. Prolonged aging can affect the leachability of metals as solids become more crystalline, and heavy metals transferred inside of crystalline. The mechanism of heavy metal stabilization can be concluded to the co precipitation and adsorption effect of aluminosilicates formation, crystallization and aging process.

  11. Investigation of the fracture mechanics of boride composites

    NASA Technical Reports Server (NTRS)

    Clougherty, E. V.; Pober, R. L.; Kaufman, L.

    1972-01-01

    Significant results were obtained in fabrication studies of the role of metallic additives of Zr, Ti, Ni, Fe and Cr on the densification of ZrB2. All elemental additions lower the processing temperatures required to effect full densification of ZrB2. Each addition effects enhanced densification by a clearly distinguishable and different mechanism and the resulting fabricated materials are different. A significant improvement in strength and fracture toughness was obtained for the ZrB2/Ti composition. Mechanical characterization studies for the ZrB2/SiC/C composites and the new ZrB2/Metal materials produced data relevant to the effect of impacting load on measured impact energies, a specimen configuration for which controlled fracture could occur in a suitably hard testing apparatus, and fracture strength data. Controlled fracture--indicative of measurable fracture toughness--was obtained for the ZrB2-SiC-C composite, and a ZrB2/Ti composite fabricated from ZrB2 with an addition of 30 weight per cent Ti. The increased strength and toughness of the ZrB2/Ti composite is consistent with the presence of a significantly large amount of a fine grained acicular phase formed by reaction of Ti with ZrB2 during processing.

  12. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction.

    PubMed

    Wen, Jia; Yi, Yuanjie; Zeng, Guangming

    2016-08-01

    Sediment can be applied on land as a soil conditioner. However, toxic substances such as heavy metals within the sediment often lead to soil contamination if no proper management is conducted prior to land application. In order to reduce the bioavailable portion of heavy metals such as Pb, Cu, Zn and Cd, zeolite as a kind of stabilizer was investigated on the effect of metal stabilization in sediment. Zeolite was firstly modified and screened to get the best condition for removal of heavy metals. Results showed that the granulated zeolite with NaCl conditioning had the highest CEC and metal sorption. Using BCR sequential extraction, the selected modified zeolite effectively stabilized Pb, Cu, Zn and Cd in sediment to different extents. It was most suitable for Cd stabilization by reducing its acid exchangeable fraction while increasing the contents of the reducible and residual fractions. Modified zeolite also immobilized Cu, Zn and Pb in sediment by enhancing one stable fraction while decreasing the acid exchangeable fraction.

  13. Effect of metal binding on the structural stability of pigeon liver malic enzyme.

    PubMed

    Chang, Hui-Chuan; Chou, Wei-Yuan; Chang, Gu-Gang

    2002-02-15

    The cytosolic malic enzyme from the pigeon liver is sensitive to chemical denaturant urea. When monitored by protein intrinsic fluorescence or circular dichroism spectral changes, an unfolding of the enzyme in urea at 25 degrees C and pH 7.4 revealed a biphasic phenomenon with an intermediate state detected at 4-5 m urea. The enzyme activity was activated by urea up to 1 m but was completely lost before the intermediate state was detected. This suggests that the active site region of the enzyme was more sensitive to chemical denaturant than other structural scaffolds. In the presence of 4 mm Mn(2+), the urea denaturation pattern of malic enzyme changed to monophasic. Mn(2+) helped the enzyme to resist phase I urea denaturation. The [urea](0.5) for the enzyme inactivation shifted from 2.2 to 3.8 m. Molecular weight determined by the analytical ultracentrifuge indicated that the tetrameric enzyme was dissociated to dimers in the early stage of phase I denaturation. In the intermediate state at 4-5 m urea, the enzyme showed polymerization. However, the polymer forms were dissociated to unfolded monomers at a urea concentration greater than 6 m. Mn(2+) retarded the polymerization of the malic enzyme. Three mutants of the enzyme with a defective metal ligand (E234Q, D235N, E234Q/D235N) were cloned and purified to homogeneity. These mutant malic enzymes showed a biphasic urea denaturation pattern in the absence or presence of Mn(2+). These results indicate that the Mn(2+) has dual roles in the malic enzyme. The metal ion not only plays a catalytic role in stabilization of the reaction intermediate, enol-pyruvate, but also stabilizes the overall tetrameric protein architecture. PMID:11739398

  14. [Comparison of fixation effects of heavy metals between cement rotary kiln co-processing and cement solidification/stabilization].

    PubMed

    Zhang, Jun-li; Liu, Jian-guo; Li, Cheng; Jin, Yi-ying; Nie, Yong-feng

    2008-04-01

    Both cement rotary kiln co-processing hazardous wastes and cement solidification/stabilization could dispose heavy metals by fixation. Different fixation mechanisms lead to different fixation effects. The same amount of heavy metal compounds containing As, Cd, Cr, Cu, Pb, Zn were treated by the two kinds of fixation technologies. GB leaching test, TCLP tests and sequential extraction procedures were employed to compare the fixation effects of two fixation technologies. The leached concentration and chemical species distribution of heavy metals in two grounded mortar samples were analyzed and the fixation effects of two kinds of technologies to different heavy metals were compared. The results show the fixation effect of cement rotary kiln co-processing technology is better than cement solidification/stabilization technology to As, Pb, Zn. Calcinations in cement rotary kiln and then hydration help As, Pb, Zn contained in hazardous wastes transform to more steady chemical species and effectively dispose these heavy metals compounds. Cr3+ is liable to be converted to much more toxic and more mobile Cr6+ state in cement rotary kiln. And so Cr wastes are more fit for treatment by cement solidification/stabilization technology. The work could provide a basis when choosing disposal technologies for different heavy metals and be helpful to improve the application and development of cement rotary kiln co-processing hazardous wastes.

  15. Highly stabilized gadolinium chelates functionalized on metal nanoparticles as magnetic resonance imaging contrast agent

    NASA Astrophysics Data System (ADS)

    Siddiqui, Talha S.

    Magnetic resonance imaging (MRI) is a non-invasive method for imaging and diagnosing tissue damage, organ function and the vascular system. Magnevist(TM) a complex of diethylenetriaminepentaacetic acid (DTPA) and Gd3+ is a clinically approved contrast agent for MRI. A derivative of DTPA was formed by the addition of two cysteine groups (DTPA-L-Cys) through amide linkage. The Gd complex of this ligand bonds with the silver surfaces through the cysteine thiols. GdDTPA-L-Cys was bound to ˜10nm diameter Ag nanoparticles for use as a multifunctional MRI contrast agent. The ligand and complex were characterized by 1H and 13C NMR, ESI-MS and IR spectroscopy. The silver construct was characterized by TEM, TGA and UV-Vis absorption spectra. The per metal complex r1 relaxivity of GdDTPA-L-Cys{Ag} greater than that of Magnavist(TM) with the same molarity for both compounds. The synthesis of a DTPA derivative is described that allows it to bind to silver or gold nanoparticles through a single thiol linkage (DTPASH). The resulting Gd complex, GdDTPASH, was bound to Ag nanoparticles to create a single monolayer on the surface. The construct was further stabilized in buffered solution with the addition of a thiolated PEG chain. The highly stabilized nanoparticle construct delivers a high payload of Gd compelex and is an effective T1 brightening agent. The production of this type of construct opens the way for engineered multimodal MRI contrast agents.

  16. Stabilizing Protein Motifs with a Genetically Encoded Metal-Ion Chelator.

    PubMed

    Luo, Xiaozhou; Wang, Tsung-Shing Andrew; Zhang, Yong; Wang, Feng; Schultz, Peter G

    2016-09-22

    The N-peptide of HIV gp41 forms a trimeric coiled-coil intermediate during host cell-viral fusion. Stable mimics of this coiled coil could potentially serve as HIV vaccine candidates or inhibitors of viral entry. Therefore, a variety of approaches have been investigated to maintain the N-peptide in its trimeric helical conformation. Here, we utilize a genetic method to incorporate the metal chelating noncanonical amino acid (2,2'-bipyridin-5-yl)alanine (BpyAla) into IZN17, an established trimeric coiled-coil gp41 model. We demonstrate that BpyAla-IZN17 acquires Fe(II) during expression in Escherichia coli, resulting in the formation of a highly stable IZN17 helical trimer with a Tm > 95°C. Removal of Fe(II) results in a 27°C decrease in thermal stability. Replacement of Fe(II) with Zn(II) also affords a Tm > 90°C. Thus, the genetic introduction of BpyAla into polypeptide provides a straightforward method for stabilizing coiled-coil structural motifs in recombinantly engineered proteins. PMID:27662253

  17. Hydrogen segregation and its roles in structural stability and metallization: silane under pressure

    PubMed Central

    Cui, Wenwen; Shi, Jingming; Liu, Hanyu; Yao, Yansun; Wang, Hui; Iitaka, Toshiaki; Ma, Yanming

    2015-01-01

    We present results from first-principles calculations on silane (SiH4) under pressure. We find that a three dimensional P-3 structure becomes the most stable phase above 241 GPa. A prominent structural feature, which separates the P-3 structure from previously observed/predicted SiH4 structures, is that a fraction of hydrogen leaves the Si-H bonding environment and forms segregated H2 units. The H2 units are sparsely populated in the system and intercalated with a polymeric Si-H framework. Calculations of enthalpy of formation suggest that the P-3 structure is against the decomposition into Si-H binaries and/or the elemental crystals. Structural stability of the P-3 structure is attributed to the electron-deficient multicenter Si-H-Si interactions when neighboring silicon atoms are linked together through a common hydrogen atom. Within the multicenter bonds, electrons are delocalized and this leads to a metallic state, possibly also a superconducting state, for SiH4. An interesting outcome of the present study is that the enthalpy sum of SiH4 (P-3 structure) and Si (fcc structure) appears to be lower than the enthalpy of disilane (Si2H6) between 200 and 300 GPa (for all previously predicted crystalline forms of Si2H6), which calls for a revisit of the stability of Si2H6 under high pressure. PMID:26266340

  18. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers.

    PubMed

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang Michael; Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiO(x) and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiO(x)/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  19. Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers

    NASA Astrophysics Data System (ADS)

    You, Jingbi; Meng, Lei; Song, Tze-Bin; Guo, Tzung-Fang; Yang, Yang (Michael); Chang, Wei-Hsuan; Hong, Ziruo; Chen, Huajun; Zhou, Huanping; Chen, Qi; Liu, Yongsheng; De Marco, Nicholas; Yang, Yang

    2016-01-01

    Lead halide perovskite solar cells have recently attracted tremendous attention because of their excellent photovoltaic efficiencies. However, the poor stability of both the perovskite material and the charge transport layers has so far prevented the fabrication of devices that can withstand sustained operation under normal conditions. Here, we report a solution-processed lead halide perovskite solar cell that has p-type NiOx and n-type ZnO nanoparticles as hole and electron transport layers, respectively, and shows improved stability against water and oxygen degradation when compared with devices with organic charge transport layers. Our cells have a p-i-n structure (glass/indium tin oxide/NiOx/perovskite/ZnO/Al), in which the ZnO layer isolates the perovskite and Al layers, thus preventing degradation. After 60 days storage in air at room temperature, our all-metal-oxide devices retain about 90% of their original efficiency, unlike control devices made with organic transport layers, which undergo a complete degradation after just 5 days. The initial power conversion efficiency of our devices is 14.6 ± 1.5%, with an uncertified maximum value of 16.1%.

  20. Stability constants determination of successive metal complexes by hyphenated CE-ICPMS.

    PubMed

    Petit, Jeremy; Aupiais, Jean; Topin, Sylvain; Geertsen, Valérie; Beaucaire, Catherine; Stambouli, Moncef

    2010-01-01

    The study of radionuclides speciation requires accurate evaluation of stability constants, which can be achieved by CE-ICPMS. We have previously described a method for 1:1 metal complexes stability constants determination. In this paper, we present its extension to the case of successive complexations and its application to uranyl-oxalate and lanthanum-oxalate systems. Several significant steps are discussed: analytical conditions choice, mathematical treatment by non-linear regression, ligand concentration and ionic strength corrections. The following values were obtained: at infinite dilution, log(beta(1) degrees (UO(2)Oxa))=6.93+/-0.05, log(beta(2) degrees (UO(2)(Oxa)(2) (2-)))=11.92+/-0.43 and log(beta(3) degrees (UO(2)(Oxa)(3) (4-)))=15.11+/-0.12; log(beta(1) degrees (LaOxa(+)))=5.90+/-0.07, log(beta(2) degrees (La(Oxa)(2) (-)))=9.18+/-0.19 and log(beta(3) degrees (La(Oxa)(3) (3-)))=9.81+/-0.33. These values are in good agreement with the literature data, even though we suggest the existence of a new lanthanum-oxalate complex: La(Oxa)(3) (3-). This study confirms the suitability of CE-ICPMS for complexation studies. PMID:20084632

  1. Hydrogen segregation and its roles in structural stability and metallization: silane under pressure.

    PubMed

    Cui, Wenwen; Shi, Jingming; Liu, Hanyu; Yao, Yansun; Wang, Hui; Iitaka, Toshiaki; Ma, Yanming

    2015-01-01

    We present results from first-principles calculations on silane (SiH4) under pressure. We find that a three dimensional P-3 structure becomes the most stable phase above 241 GPa. A prominent structural feature, which separates the P-3 structure from previously observed/predicted SiH4 structures, is that a fraction of hydrogen leaves the Si-H bonding environment and forms segregated H2 units. The H2 units are sparsely populated in the system and intercalated with a polymeric Si-H framework. Calculations of enthalpy of formation suggest that the P-3 structure is against the decomposition into Si-H binaries and/or the elemental crystals. Structural stability of the P-3 structure is attributed to the electron-deficient multicenter Si-H-Si interactions when neighboring silicon atoms are linked together through a common hydrogen atom. Within the multicenter bonds, electrons are delocalized and this leads to a metallic state, possibly also a superconducting state, for SiH4. An interesting outcome of the present study is that the enthalpy sum of SiH4 (P-3 structure) and Si (fcc structure) appears to be lower than the enthalpy of disilane (Si2H6) between 200 and 300 GPa (for all previously predicted crystalline forms of Si2H6), which calls for a revisit of the stability of Si2H6 under high pressure.

  2. Radiological Stability after Revision of Infected Total Knee Arthroplasty Using Modular Metal Augments

    PubMed Central

    Lee, Kyung-Jae; Cho, Chul-Hyun; Son, Eun-Seok; Jung, Jae-Won

    2016-01-01

    Purpose To evaluate the radiological stability according to the number of modular augments after revision of infected total knee arthroplasty (TKA). Materials and Methods Between February 2006 and September 2013, 37 patients (39 knees) followed ≥2 years after revision of infected TKA using modular metal augments for bone defects were reviewed retrospectively. We divided the patients into 3 groups according to the number of augments into group A (≤2 augments, 14 knees), group B (3–4 augments, 18 knees), and group C (5≥ augments, 7 knees) and evaluated the width of radiolucent zones around the implant at the last follow-up. Results There were 3 Anderson Orthopedic Research Institute type I, 33 type II, and 3 type III bone defects. The mean number of radiolucent zones of group A was 3 and the sum of width averaged 4.4 mm. In group B, the values were 4.8 and 6.2 mm, respectively. In group C, the values were 8.1 and 12.9 mm, respectively. The differences between the three groups were statistically significant. Conclusions In revision TKA with modular metal augmentation caused by infected TKA, increased modularity can result in radiological instability. PMID:26955613

  3. Zinc-blende half-metallic ferromagnets are rarely stabilized by coherent epitaxy

    NASA Astrophysics Data System (ADS)

    Zhao, Yu-Jun; Zunger, Alex

    2005-04-01

    The need for spin-injectors having the same zinc-blende-type crystal structure as conventional semiconductor substrates has created significant interests in theoretical predictions of possible metastable “half-metallic” zinc-blende ferromagnets, which are normally more stable in other structure-types, e.g., NiAs. Such predictions were based in the past on differences Δbulk in the total energies of the respective bulk crystal forms (zinc blende and NiAs). We show here that the appropriate criterion is comparing difference Δepi(as) in epitaxial total energies. This reveals that even if Δbulk is small, still for MnAs, CrSb, CrAs, CrTe, Δepi(as)>0 for all substrate lattice constant as , so the zinc-blende phase is not stabilized. For CrS we find Δepi(as)<0 , but the system is antiferromagnetic, thus not half-metallic. Finally, zinc-blende CrSe is predicted to be epitaxially stable for as>6.2Å and is half metallic.

  4. Rare earth boride electron emitter materials fabrication and evaluation

    NASA Astrophysics Data System (ADS)

    Swanson, L. W.; Davis, P. R.; Gesley, M. A.

    1982-03-01

    Techniques were developed for routine preparation of single crystal rods of LaB6, CeB6 and PrB6 by arc float zone refining. Single crystal, oriented samples were prepared from these rods and mounted as cathodes for testing. Several mounting systems were used, and flat, pointed cone and truncated cone thermionic cathodes were studied. Pointed field emitters of LaB6(100) were also investigated. Variation of thermionic emitted current density and thermal stability of materials were studied as functions of rare earth element, bulk stoichiometry and crystal orientation. Life tests were performed on several different LaB6(100) cathodes. One such cathode operated for over 3000 hours at approximately 10 A/sq cm emitted current density with no serious physical degradation. Surface properties of the materials were investigated by various surface analysis techniques.

  5. Crystal structures and compressibility of novel iron borides Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} synthesized at high pressure and high temperature

    SciTech Connect

    Bykova, E.; Gou, H.; Bykov, M.; Hanfland, M.; Dubrovinsky, L.; Dubrovinskaia, N.

    2015-10-15

    We present here a detailed description of the crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} with various iron content (x=1.01(1), 1.04(1), 1.32(1)), synthesized at high pressures and high temperatures. As revealed by high-pressure single-crystal X-ray diffraction, the structure of Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds, which make it as stiff as diamond in one crystallographic direction. The volume compressibility of Fe{sub 2}B{sub 7} (the bulk modulus K{sub 0}= 259(1.8) GPa, K{sub 0}′= 4 (fixed)) is even lower than that of FeB{sub 4} and comparable with that of MnB{sub 4}, known for high bulk moduli among 3d metal borides. Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B, in which Fe atoms occupy an interstitial position. Fe{sub x}B{sub 50} does not show considerable anisotropy in the elastic behavior. - Graphical abstract: Crystal structures of novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50} (x=1.01(1), 1.04(1), 1.32(1)). - Highlights: • Novel iron borides, Fe{sub 2}B{sub 7} and Fe{sub x}B{sub 50}, were synthesized under HPHT conditions. • Fe{sub 2}B{sub 7} has a unique orthorhombic structure (space group Pbam). • Fe{sub 2}B{sub 7} possesses short incompressible B–B bonds that results in high bulk modulus. • Fe{sub x}B{sub 50} adopts the structure of the tetragonal δ-B composed of B{sub 12} icosahedra. • In Fe{sub x}B{sub 50} intraicosahedral bonds are stiffer than intericosahedral ones.

  6. The role of surface and applied stresses in the stability of fcc(111) oriented metal surfaces

    NASA Astrophysics Data System (ADS)

    Trimble, Todd Marlin

    Surface stress f and surface free energy gamma are thought to play a significant role in the restructuring of solid surfaces on both atomic and mesoscopic length scales. We investigate the link between surface stress and surface free energy and various aspects of atomistic models by deriving general expressions for simple central-force pair potentials and an embedded-atom method (EVA) potential. The relationships between these surface thermodynamic quantities and other macroscopic bulk quantities, such as equilibrium bulk modulus B, cohesive energy Ec, lattice parameter a0 and shear modulus G, are made explicit within the framework of these models. It is shown that pair potential models are inherently unable to accurately describe real metal surfaces because of the neglect of many-body effects. The EAM potentials account for these contributions and yield good qualitative agreement with first principles calculations of f and gamma on clean, metal low-index surfaces. We also show that the EAM potentials are flexible enough to provide a good quantitative agreement as well. We discuss two contributions to f and gamma in terms of B and G, and find a correlation between the relative magnitudes of f and gamma and the ratio B/G. The significant effects of relaxation have been determined from molecular dynamics computer simulations of both the pair potential and EAM models. We then present the results of a theoretical study on the stability of fcc(111) metal surfaces to certain commensurate-incommensurate reconstructive phase transformations. Specifically, we have performed computer simulation studies on the 22 x √3 surface reconstruction of Au(111). This reconstruction involves a uniaxial contraction of the top monolayer corresponding to a surface strain of about 4.3% and has been observed to be the stable structure for the clean surface at low temperatures. The driving force for the reconstruction has been identified as f-gamma, while the opposing force is due to the

  7. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction.

    PubMed

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  8. Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction

    PubMed Central

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-01-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum–nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum–nickel catalyst, and this composite catalyst composed of crystalline platinum–nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon. PMID:27503412

  9. Amorphous nickel boride membrane on a platinum-nickel alloy surface for enhanced oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    He, Daping; Zhang, Libo; He, Dongsheng; Zhou, Gang; Lin, Yue; Deng, Zhaoxiang; Hong, Xun; Wu, Yuen; Chen, Chen; Li, Yadong

    2016-08-01

    The low activity of the oxygen reduction reaction in polymer electrolyte membrane fuel cells is a major barrier for electrocatalysis, and hence needs to be optimized. Tuning the surface electronic structure of platinum-based bimetallic alloys, a promising oxygen reduction reaction catalyst, plays a key role in controlling its interaction with reactants, and thus affects the efficiency. Here we report that a dealloying process can be utilized to experimentally fabricate the interface between dealloyed platinum-nickel alloy and amorphous nickel boride membrane. The coating membrane works as an electron acceptor to tune the surface electronic structure of the platinum-nickel catalyst, and this composite catalyst composed of crystalline platinum-nickel covered by amorphous nickel boride achieves a 27-times enhancement in mass activity relative to commercial platinum/carbon at 0.9 V for the oxygen reduction reaction performance. Moreover, this interactional effect between a crystalline surface and amorphous membrane can be readily generalized to facilitate the 3-times higher catalytic activity of commercial platinum/carbon.

  10. Bulk metallic glasses and their composites: Composition optimization, thermal stability, and microstructural tunability

    NASA Astrophysics Data System (ADS)

    Khalifa, Hesham Ezzat

    A design protocol utilizing common elements for bulk metallic glass formation has been employed to develop novel, low cost Fe-, and Ti- based bulk metallic glasses. A critical obstacle that was successfully overcome in this work is the omission of beryllium in these alloys. Beryllium is of vital importance in many bulk metallic glass forming systems, but it is expensive and poses considerable health risks. Bulk metallic glasses in these novel Fe-, and Ti-based systems exhibit extremely high mechanical strength and excellent thermal stability. Devitrification and cooling rate experiments were used to identify crystalline phase formation and assess activation energy for crystallization, as well as to explore and develop ductile BMG composites. To better control microstructure in these BMG composites, a novel processing technique, called semi-solid forging was developed, wherein the alloy melt is heated to above the melt temperature of the glass, but below the melt temperature of the ductile crystalline phase. Such an approach permits the maintenance of a glassy, or nanocrystalline matrix phase, while simultaneously coarsening and homogenizing the ductile, secondary phase. This processing approach leads to enhanced ductility in the alloys, which, to this point, has not been observed using conventional casting methods. The combination of novel, low-cost, alloy compositions with semi-solid forging has been successfully utilized to develop new high strength structural materials with enhanced ductility and toughness. Microstrutural and mechanical properties of these novel, toughened, BMG composites are presented. A comprehensive analysis of the relationship between deformation mechanisms and microstructure reveals that enhanced ductility is predicated on matching fundamental mechanical and microstructural length scales in a Ti-Ni-Si-Mo BMG composite. Under optimized microstructural conditions, a maximum compressive strength exceeding 2400 MPa with ˜ 30% total strain to

  11. Investigation of composition and chemical state of elements in iron boride by the method of X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Alyoshin, V. G.; Kharlamov, A. I.; Prokopenko, V. M.

    1981-06-01

    The composition and chemical state of iron and boron in the surface layer of iron boride under different kinds of pretreatment of samples have been investigated by the method of X-ray photo-electron spectroscopy. It has been found that in the initial sample there is oxygen chemically combined with iron and boron atoms. Upon heating (450°C) in hydrogen, in argon, and in vacuo there occurs removal of oxygen only from iron atoms (no pure iron was found to be formed). Boron oxidizes and there probably appears a new surface combination of boron with oxygen in which the bonding energy of 1 s electrons is higher than that in B 2O 3. Treatment of the iron boride surface with argon ions and with protons ensures uniform removal of oxygen from iron and boron atoms. It has been found that thermal treatment of iron boride leads to depletion of iron atoms from the sample surface layer, and pickling with argon ions and with protons leads to strong enrichment. Iron boride samples subjected to Ar + and H + bombardment tend to undergo significant oxidation when subsequently exposed to air at room temperature.

  12. On the advantages of loop-based unit-cell's metallization regarding the angular stability of artificial magnetic conductors

    NASA Astrophysics Data System (ADS)

    de Cos, M. E.; Las-Heras, F.

    2014-09-01

    The angular stability of artificial magnetic conductors (AMCs) with hexagonal-shaped and square-shaped, patch-based and loop-based unit-cell's metallization is studied for comparison. The influence of the gap distance between the unit-cells' metallization on the overall AMC angular stability, while maintaining the resonance frequency and meeting the specified bandwidth requirements for a given dielectric substrate, is shown for the first-time. This observed phenomenon is explained by means of a simplified equivalent circuit devised for the unit-cells under study. Experimental characterization regarding AMC's operation bandwidth and angular stability is carried out in an anechoic chamber for an AMC with hexagonal-shaped loop-based unit-cells, since from simulation results it outperforms the other AMCs under study.

  13. On the advantages of loop-based unit-cell's metallization regarding the angular stability of artificial magnetic conductors

    NASA Astrophysics Data System (ADS)

    de Cos, M. E.; Las-Heras, F.

    2015-02-01

    The angular stability of artificial magnetic conductors (AMCs) with hexagonal-shaped and square-shaped, patch-based and loop-based unit-cell's metallization is studied for comparison. The influence of the gap distance between the unit-cells' metallization on the overall AMC angular stability, while maintaining the resonance frequency and meeting the specified bandwidth requirements for a given dielectric substrate, is shown for the first-time. This observed phenomenon is explained by means of a simplified equivalent circuit devised for the unit-cells under study. Experimental characterization regarding AMC's operation bandwidth and angular stability is carried out in an anechoic chamber for an AMC with hexagonal-shaped loop-based unit-cells, since from simulation results it outperforms the other AMCs under study.

  14. Formation, stability, and solubility of metal oxide nanoparticles: Surface entropy, enthalpy, and free energy of ferrihydrite

    NASA Astrophysics Data System (ADS)

    Hiemstra, Tjisse

    2015-06-01

    -line Fh, log Kso ∼ -39.5 ± 0.1. The smallest Fh particles in a suspension react according to the Ostwald-Freundlich equation (RTΔlnKso = 2/3 γA), but the suspension as a whole apparently reacts according to the Ostwald equation (RTΔlnKso = γA). This difference can be explained by the observed linear relation between the minimum (dmin) and mean (dmean) particle size (dmin = 2/3 dmean) in Fh suspensions. With best estimates for the surface entropy of goethite, hematite, and lepidocrocite, predictions show that Fh becomes thermodynamically unstable above a diameter of ∼8.0 nm at 298 K, allowing formation of nano-goethite and nano-hematite, as experienced experimentally at Ostwald ripening. More generally, one observes that metal (hydr) oxides with the highest chemical stability also have the highest mean surface Gibbs free energy, which can be considered as the scientific explanation of the empirical rule of Ostwald-Lussac. In addition, it is shown that the surface Gibbs free energies of metal (hydr) oxides increase with the mean metal coordination number of oxygen in the lattices following the order: oxides > oxyhydroxides > hydroxides.

  15. Glass Stability and Kinetic Analysis of Iron-Metalloid Bulk Metallic Glass

    NASA Astrophysics Data System (ADS)

    Santhaweesuk, Charuayporn

    Multicomponent Fe-based bulk metallic glasses (BMGs) with a combination of excellent properties such as good soft magnetic properties, high strength, high hardness, and high corrosion resistance have attracted increasing attention both from a basic science research standpoint and due to their industrial application potential. However, many of the elemental additions which lead to the easiest glass formation are expensive. The identification of alloys composed of abundant and inexpensive elements that still retain excellent properties would promote applications for engineering and industry. In short, the development of the Fe-based BMG without any glass-forming metal elements and with high glass forming ability is desired. This study shows that the thermal stability of the Fe-based alloys can be improved beyond a simple rule of mixtures prediction by utilizing a well-balance multi-metalloid approach. The kinetics aspect of glass-forming ability is studied experimentally for Fe-B-Si-P alloys. The systematic variation in alloy composition gives access to differences in phase selection and the final dimensions of glass formation. Two alloys, representing the best glass-forming composition and the poorest glass-forming composition, were studied in terms of their stability to crystallization, solidification microstructure evolution and thermal history. The utility of the wedge-casting technique is developed to examine bulk glass-forming alloys by combining multiple temperature profiles of the quenching melt with a measurement-based kinetic analysis of the phase selection competition and critical cooling rate conditions. Based upon direct thermal measurement, microstructural analysis and kinetic modeling, it was found that both representative alloys show a board spectrum of solidification microstructures which include a critical cooling rate range. The kinetic competition in the formation of certain phases can enhance or detract from the final dimension of bulk glass

  16. Stabilization of metal nanoparticle films on glass surfaces using ultrathin silica coating.

    PubMed

    Chaikin, Yulia; Kedem, Ofer; Raz, Jennifer; Vaskevich, Alexander; Rubinstein, Israel

    2013-11-01

    Metal nanoparticle (NP) films, prepared by adsorption of NPs from a colloidal solution onto a preconditioned solid substrate, usually form well-dispersed random NP monolayers on the surface. For certain metals (e.g., Au, Ag, Cu), the NP films display a characteristic localized surface plasmon resonance (LSPR) extinction band, conveniently measured using transmission or reflection ultraviolet-visible light (UV-vis) spectroscopy. The surface plasmon band wavelength, intensity, and shape are affected by (among other parameters) the NP spatial distribution on the surface and the effective refractive index (RI) of the surrounding medium. A major concern in the formation of such NP assemblies on surfaces is a commonly observed instability, i.e., a strong tendency of the NPs to undergo aggregation upon removal from the solution and drying, expressed as a drastic change in the LSPR band. Since various imaging modes and applications require dried NP films, preservation of the film initial (wet) morphology and optical properties upon drying are highly desirable. The latter is achieved in the present work by introducing a convenient and generally applicable method for preventing NP aggregation upon drying while preserving the original film morphology and optical response. Stabilization of Au and Ag NP monolayers toward drying is accomplished by coating the immobilized NPs with an ultrathin (3.0-3.5 nm) silica layer, deposited using a sol-gel reaction performed on an intermediate self-assembled aminosilane layer. The thin silica coating prevents NP aggregation and maintains the initial NP film morphology and LSPR response during several cycles of drying and immersion in water. It is shown that the silica-coated NP films retain their properties as effective LSPR transducers.

  17. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading

    PubMed Central

    Lin, Dong; Saei, Mojib; Suslov, Sergey; Jin, Shengyu; Cheng, Gary J.

    2015-01-01

    CNTs reinforced metal composites has great potential due to their superior properties, such as light weight, high strength, low thermal expansion and high thermal conductivity. The current strengthening mechanisms of CNT/metal composite mainly rely on CNTs’ interaction with dislocations and CNT’s intrinsic high strength. Here we demonstrated that laser shock loading the CNT/metal composite results in high density nanotwins, stacking fault, dislocation around the CNT/metal interface. The composites exhibit enhanced strength with excellent stability. The results are interpreted by both molecular dynamics simulation and experiments. It is found the shock wave interaction with CNTs induces a stress field, much higher than the applied shock pressure, surrounding the CNT/metal interface. As a result, nanotwins were nucleated under a shock pressure much lower than the critical values to generate twins in metals. This hybrid unique nanostructure not only enhances the strength, but also stabilize the strength, as the nanotwin boundaries around the CNTs help pin the dislocation movement. PMID:26493533

  18. Solubility of trace elements and heavy metals from stabilized sewage sludge by fly ash.

    PubMed

    Hongling, Zhang; Lina, Sun; Tieheng, Sun

    2009-11-01

    Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyard, offers a potential viable utilization of the industrial by-product, as well as solves the shortage of soil resource in mine area. In this study, trace element and heavy metal soil solution concentrations arising from fly ash, sewage sludge, mine tailing, and artificial soil mixtures were investigated in a laboratory incubation. It was found that total Cd, Pb, and Zn contents in artificial soils were significantly lower than the control standards for pollutants in sludges from agricultural use (GB 4284-84). Soil solution Cd and Pb concentrations were obviously reduced by mixing sewage sludge with alkaline fly ash. Initial soil solution Cd, Pb, and Zn concentrations in artificial soils were 1.773-14.672, 4.05-24.95, and 133-608 microg L(-1), respectively, and after 35-days incubation, soil solution Cd, Pb, and Zn concentrations gradually decreased and were approaching control levels by the end of the experiment, and finial soil solution were decreased to 0.037-0.365, 2.12-7.34, and 29-509 microg L(-1), respectively.

  19. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    SciTech Connect

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-30

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying material requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  20. Numerical Modeling of the Stability of Face-Centered Cubic Metals with High Vacancy Concentration

    SciTech Connect

    Brian P. Somerday; M. I. Baskes

    1998-12-01

    The objective of this research is to assess the possibility of forming an atomically porous structure in a low-density metal, e.g., Al with vacancies up to 0.20/lattice site; and to examine the effects of hydrogen and vacancy concentration on the stability of an atomically porous structure that has been experimentally produced in nickel. The approach involves numerical modeling using the Embedded-Atom Method (EAM). High vacancy concentrations cause the Al lattice to disorder at 300K. In contrast, Ni retains the face-centered-cubic structure at 300K for vacancy concentrations up to 0.15 Vac/lattice site. Unexpectedly, the lattice with 0.15 Vac/lattice site is more stable than the lattice with 0.10 or 0.20 Vac/lattice site. The Ni systems with 0.10 and 0.15 Vac/lattice site exhibit domains consisting of uniform lattice rotations. The Ni lattice with 0.15 Vac/lattice site is more stable with an initial distribution of random vacancies compared to ordered vacancies. The equilibrium lattice structures of Ni a d Al containing vacancies and H are less ordered to structures with vacancies only at 300K.

  1. Functionalization of Metal-Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide Capture Conditions.

    PubMed

    Andirova, Dinara; Lei, Yu; Zhao, Xiaodan; Choi, Sunho

    2015-10-26

    Metal-organic frameworks (MOFs) have been highlighted recently as promising materials for CO2 capture. However, in practical CO2 capture processes, such as capture from flue gas or ambient air, the adsorption properties of MOFs tend to be harmed by the presence of moisture possibly because of the hydrophilic nature of the coordinatively unsaturated sites (CUSs) within their framework. In this work, the CUSs of the MOF framework are functionalized with amine-containing molecules to prevent structural degradation in a humid environment. Specifically, the framework of the magnesium dioxybenzenedicarboxylate (Mg/DOBDC) MOF was functionalized with ethylenediamine (ED) molecules to make the overall structure less hydrophilic. Structural analysis after exposure to high-temperature steam showed that the ED-functionalized Mg/DOBDC (ED-Mg/DOBDC) is more stable under humid conditions, than Mg/DOBDC, which underwent drastic structural changes. ED-Mg/DOBDC recovered its CO2 adsorption capacity and initial adsorption rate quite well as opposed to the original Mg/DOBDC, which revealed a significant reduction in its capture capacity and kinetics. These results suggest that the amine-functionalization of the CUSs is an effective way to enhance the structural stability of MOFs as well as their capture of humid CO2 . PMID:26367016

  2. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Astrophysics Data System (ADS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying material requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  3. Functionalization of Metal-Organic Frameworks for Enhanced Stability under Humid Carbon Dioxide Capture Conditions.

    PubMed

    Andirova, Dinara; Lei, Yu; Zhao, Xiaodan; Choi, Sunho

    2015-10-26

    Metal-organic frameworks (MOFs) have been highlighted recently as promising materials for CO2 capture. However, in practical CO2 capture processes, such as capture from flue gas or ambient air, the adsorption properties of MOFs tend to be harmed by the presence of moisture possibly because of the hydrophilic nature of the coordinatively unsaturated sites (CUSs) within their framework. In this work, the CUSs of the MOF framework are functionalized with amine-containing molecules to prevent structural degradation in a humid environment. Specifically, the framework of the magnesium dioxybenzenedicarboxylate (Mg/DOBDC) MOF was functionalized with ethylenediamine (ED) molecules to make the overall structure less hydrophilic. Structural analysis after exposure to high-temperature steam showed that the ED-functionalized Mg/DOBDC (ED-Mg/DOBDC) is more stable under humid conditions, than Mg/DOBDC, which underwent drastic structural changes. ED-Mg/DOBDC recovered its CO2 adsorption capacity and initial adsorption rate quite well as opposed to the original Mg/DOBDC, which revealed a significant reduction in its capture capacity and kinetics. These results suggest that the amine-functionalization of the CUSs is an effective way to enhance the structural stability of MOFs as well as their capture of humid CO2 .

  4. A Combined Experimental and Computational Study on the Stability of Nanofluids Containing Metal Organic Frameworks

    SciTech Connect

    Annapureddy, Harsha Vardhan Reddy; Nune, Satish K.; Motkuri, Radha K.; McGrail, B. Peter; Dang, Liem X.

    2015-01-08

    Computational studies on nanofluids composed of metal organic frameworks (MOFs) were performed using molecular modeling techniques. Grand Canonical Monte Carlo (GCMC) simulations were used to study adsorption behavior of 1,1,1,3,3-pentafluoropropane (R-245fa) in a MIL-101 MOF at various temperatures. To understand the stability of the nanofluid composed of MIL-101 particles, we performed molecular dynamics simulations to compute potentials of mean force between hypothetical MIL-101 fragments terminated with two different kinds of modulators in R-245fa and water. Our computed potentials of mean force results indicate that the MOF particles tend to disperse better in water than in R-245fa. The reasons for this observation were analyzed and discussed. Our results agree with experimental results indicating that the employed potential models and modeling approaches provide good description of molecular interactions and the reliabilities. Work performed by LXD was supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences. Work performed by HVRA, SKN, RKM, and PBM was supported by the Office of Energy Efficiency and Renewable Energy, Geothermal Technologies Program. Pacific Northwest National Laboratory is a multiprogram national laboratory operated for DOE by Battelle.

  5. Criterion for stability of Goldstone modes and Fermi liquid behavior in a metal with broken symmetry

    PubMed Central

    Watanabe, Haruki; Vishwanath, Ashvin

    2014-01-01

    There are few general physical principles that protect the low-energy excitations of a quantum phase. Of these, Goldstone’s theorem and Landau–Fermi liquid theory are the most relevant to solids. We investigate the stability of the resulting gapless excitations—Nambu–Goldstone bosons (NGBs) and Landau quasiparticles—when coupled to one another, which is of direct relevance to metals with a broken continuous symmetry. Typically, the coupling between NGBs and Landau quasiparticles vanishes at low energies, leaving the gapless modes unaffected. If, however, the low-energy coupling is nonvanishing, non-Fermi liquid behavior and overdamped bosons are expected. Here we prove a general criterion that specifies when the coupling is nonvanishing. It is satisfied by the case of a nematic Fermi fluid, consistent with earlier microscopic calculations. In addition, the criterion identifies a new kind of symmetry breaking—of magnetic translations—where nonvanishing couplings should arise, opening a previously unidentified route to realizing non-Fermi liquid phases. PMID:25349386

  6. Metal organic frameworks/macroporous carbon composites with enhanced stability properties and good electrocatalytic ability for ascorbic acid and hemoglobin.

    PubMed

    Zhang, Yufan; Nsabimana, Anaclet; Zhu, Liande; Bo, Xiangjie; Han, Ce; Li, Mian; Guo, Liping

    2014-11-01

    The thermal, water and electrochemical stability of Cu-based metal organic frameworks (Cu-MOFs) confined in macroporous carbon (MPC) hybrids has been investigated. Thermogravimetric analyses, X-Ray diffraction, scanning electron microscopy, and cyclic voltammetry were employed to confirm the stability of pure Cu-MOFs, MPC, and Cu-MOFs-MPC. As compared to pure Cu-MOFs, the porous composite materials of MPC and Cu-MOFs interact and seem to form new materials having homogenous structure and chemistry, which show structural stability in aqueous media and electrochemical stability in phosphate buffer solution (PBS pH 7.4). The detection of ascorbic acid and hemoglobin is performed as an electrochemical probe, indicating Cu-MOFs-MPC holds great promise for the design of electrochemical sensors.

  7. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.

    PubMed

    Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau

    2015-09-10

    The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein. PMID:26305718

  8. Direct Measurement of the Nanomechanical Stability of a Redox Protein Active Site and Its Dependence upon Metal Binding.

    PubMed

    Giannotti, Marina I; Cabeza de Vaca, Israel; Artés, Juan M; Sanz, Fausto; Guallar, Victor; Gorostiza, Pau

    2015-09-10

    The structural basis of the low reorganization energy of cupredoxins has long been debated. These proteins reconcile a conformationally heterogeneous and exposed metal-chelating site with the highly rigid copper center required for efficient electron transfer. Here we combine single-molecule mechanical unfolding experiments with statistical analysis and computer simulations to show that the metal-binding region of apo-azurin is mechanically flexible and that high mechanical stability is imparted by copper binding. The unfolding pathway of the metal site depends on the pulling residue and suggests that partial unfolding of the metal-binding site could be facilitated by the physical interaction with certain regions of the redox protein.

  9. Effects of Metal Ions on Stability and Activity of Hyperthermophilic Pyrolysin and Further Stabilization of This Enzyme by Modification of a Ca2+-Binding Site

    PubMed Central

    Zeng, Jing; Gao, Xiaowei; Dai, Zheng; Tang, Bing

    2014-01-01

    Pyrolysin is an extracellular subtilase produced by the marine hyperthermophilic archaeon Pyrococcus furiosus. This enzyme functions at high temperatures in seawater, but little is known about the effects of metal ions on the properties of pyrolysin. Here, we report that the supplementation of Na+, Ca2+, or Mg2+ salts at concentrations similar to those in seawater destabilizes recombinant pyrolysin but leads to an increase in enzyme activity. The destabilizing effect of metal ions on pyrolysin appears to be related to the disturbance of surface electrostatic interactions of the enzyme. In addition, mutational analysis of two predicted high-affinity Ca2+-binding sites (Ca1 and Ca2) revealed that the binding of Ca2+ is important for the stabilization of this enzyme. Interestingly, Asn substitutions at residues Asp818 and Asp820 of the Ca2 site, which is located in the C-terminal extension of pyrolysin, resulted in improvements in both enzyme thermostability and activity without affecting Ca2+-binding affinity. These effects were most likely due to the elimination of unfavorable electrostatic repulsion at the Ca2 site. Together, these results suggest that metal ions play important roles in modulating the stability and activity of pyrolysin. PMID:24561589

  10. The stability and the metal ions binding properties of mutant A85M of CopC.

    PubMed

    Song, Zhen; Dong, Jinlong; Yuan, Wen; Zhang, Caifeng; Ren, Yuehong; Yang, Binsheng

    2016-08-01

    In this work, the mutant A85M of CopC was obtained. The stability of mutant A85M of CopC and the binding properties of metal ions were clarified through various spectroscopic techniques. The binding capacity of A85M to metal ions was measured by fluorescence spectroscopy and UV differential absorbance. The results suggested that Cu(2+) can bind with A85M in 1:1 form, and the constant of A85M was nearly the same as that of CopC. Ag(+) can occupy the Cu(+) binding site located at C-terminal, and the binding constant was (2.64±0.48)×10(6)L/mol. Hg(2+) not only can occupy the Cu(+) binding site located at C-terminal, but also can occupy the Cu(2+) binding site located at N-terminal. The stability of A85M was measured by chemical unfolding experiment. The intermediate was observed in the unfolding pathway of A85M-Cu(2+) induced by urea. In addition, the interaction of SDS with A85M also can result in the formation of the intermediate. The effect of metal ions on the stability of intermediate suggested that the C terminal region of intermediate was unfolded and the N terminal region suffered few effects. Compared with CopC, the stability of A85M was decreased. The main reason was the lower stability of N terminal region. The results of molecular dynamic simulation suggested that when the alanine at 85 site was mutated to methionine, the hydrophobic almost unchanged, but the distance between the phenylalanine at 25 site and tryptophan at 83 site increased because of the spatial effect. And it made the stacking interaction of aromatic rings decreased, which was the main reason for the decreasing stability of N terminal region for A85M.

  11. The stability and the metal ions binding properties of mutant A85M of CopC.

    PubMed

    Song, Zhen; Dong, Jinlong; Yuan, Wen; Zhang, Caifeng; Ren, Yuehong; Yang, Binsheng

    2016-08-01

    In this work, the mutant A85M of CopC was obtained. The stability of mutant A85M of CopC and the binding properties of metal ions were clarified through various spectroscopic techniques. The binding capacity of A85M to metal ions was measured by fluorescence spectroscopy and UV differential absorbance. The results suggested that Cu(2+) can bind with A85M in 1:1 form, and the constant of A85M was nearly the same as that of CopC. Ag(+) can occupy the Cu(+) binding site located at C-terminal, and the binding constant was (2.64±0.48)×10(6)L/mol. Hg(2+) not only can occupy the Cu(+) binding site located at C-terminal, but also can occupy the Cu(2+) binding site located at N-terminal. The stability of A85M was measured by chemical unfolding experiment. The intermediate was observed in the unfolding pathway of A85M-Cu(2+) induced by urea. In addition, the interaction of SDS with A85M also can result in the formation of the intermediate. The effect of metal ions on the stability of intermediate suggested that the C terminal region of intermediate was unfolded and the N terminal region suffered few effects. Compared with CopC, the stability of A85M was decreased. The main reason was the lower stability of N terminal region. The results of molecular dynamic simulation suggested that when the alanine at 85 site was mutated to methionine, the hydrophobic almost unchanged, but the distance between the phenylalanine at 25 site and tryptophan at 83 site increased because of the spatial effect. And it made the stacking interaction of aromatic rings decreased, which was the main reason for the decreasing stability of N terminal region for A85M. PMID:27309682

  12. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    SciTech Connect

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  13. Structures and stability of metal-doped Ge{sub n}M (n = 9, 10) clusters

    SciTech Connect

    Qin, Wei Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Lu, Wen-Cai; Wang, C. Z.; Ho, K. M.

    2015-06-15

    The lowest-energy structures of neutral and cationic Ge{sub n}M (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge{sub 9} and Ge{sub 10} clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge{sub n} clusters. However, the neutral and cationic FeGe{sub 9,10},MnGe{sub 9,10} and Ge{sub 10}Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Ge{sub n} clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge{sub 9,10}Fe and Ge{sub 9}Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  14. Valence fluctuations of europium in the boride Eu4Pd(29+x)B8.

    PubMed

    Gumeniuk, Roman; Schnelle, Walter; Ahmida, Mahmoud A; Abd-Elmeguid, Mohsen M; Kvashnina, Kristina O; Tsirlin, Alexander A; Leithe-Jasper, Andreas; Geibel, Christoph

    2016-03-23

    We synthesized a high-quality sample of the boride Eu4Pd(29+x)B8 (x  =  0.76) and studied its structural and physical properties. Its tetragonal structure was solved by direct methods and confirmed to belong to the Eu4Pd29B8 type. All studied physical properties indicate a valence fluctuating Eu state, with a valence decreasing continuously from about 2.9 at 5 K to 2.7 at 300 K. Maxima in the T dependence of the susceptibility and thermopower at around 135 K and 120 K, respectively, indicate a valence fluctuation energy scale on the order of 300 K. Analysis of the magnetic susceptibility evidences some inconsistencies when using the ionic interconfigurational fluctuation (ICF) model, thus suggesting a stronger relevance of hybridization between 4f and valence electrons compared to standard valence-fluctuating Eu systems.

  15. Valence fluctuations of europium in the boride Eu4Pd29+x B8

    NASA Astrophysics Data System (ADS)

    Gumeniuk, Roman; Schnelle, Walter; Ahmida, Mahmoud A.; Abd-Elmeguid, Mohsen M.; Kvashnina, Kristina O.; Tsirlin, Alexander A.; Leithe-Jasper, Andreas; Geibel, Christoph

    2016-03-01

    We synthesized a high-quality sample of the boride Eu4Pd29+x B8 (x  =  0.76) and studied its structural and physical properties. Its tetragonal structure was solved by direct methods and confirmed to belong to the Eu4Pd29B8 type. All studied physical properties indicate a valence fluctuating Eu state, with a valence decreasing continuously from about 2.9 at 5 K to 2.7 at 300 K. Maxima in the T dependence of the susceptibility and thermopower at around 135 K and 120 K, respectively, indicate a valence fluctuation energy scale on the order of 300 K. Analysis of the magnetic susceptibility evidences some inconsistencies when using the ionic interconfigurational fluctuation (ICF) model, thus suggesting a stronger relevance of hybridization between 4f and valence electrons compared to standard valence-fluctuating Eu systems.

  16. Identification of delamination failure of boride layer on common Cr-based steels

    NASA Astrophysics Data System (ADS)

    Taktak, Sukru; Tasgetiren, Suleyman

    2006-10-01

    Adhesion is an important aspect in the reliability of coated components. With low-adhesion of interfaces, different crack paths may develop depending on the local stress field at the interface and the fracture toughness of the coating, substrate, and interface. In the current study, an attempt has been made to identify the delamination failure of coated Cr-based steels by boronizing. For this reason, two commonly used steels (AISI H13, AISI 304) are considered. The steels contain 5.3 and 18.3 wt.% Cr, respectively. Boriding treatment is carried out in a slurry salt bath consisting of borax, boric acid, and ferrosilicon at a temperature range of 800 950 °C for 3, 5, and 7 h. The general properties of the boron coating are obtained by mechanical and metallographic characterization tests. For identification of coating layer failure, some fracture toughness tests and the Daimler-Benz Rockwell-C adhesion test are used.

  17. Valence fluctuations of europium in the boride Eu4Pd(29+x)B8.

    PubMed

    Gumeniuk, Roman; Schnelle, Walter; Ahmida, Mahmoud A; Abd-Elmeguid, Mohsen M; Kvashnina, Kristina O; Tsirlin, Alexander A; Leithe-Jasper, Andreas; Geibel, Christoph

    2016-03-23

    We synthesized a high-quality sample of the boride Eu4Pd(29+x)B8 (x  =  0.76) and studied its structural and physical properties. Its tetragonal structure was solved by direct methods and confirmed to belong to the Eu4Pd29B8 type. All studied physical properties indicate a valence fluctuating Eu state, with a valence decreasing continuously from about 2.9 at 5 K to 2.7 at 300 K. Maxima in the T dependence of the susceptibility and thermopower at around 135 K and 120 K, respectively, indicate a valence fluctuation energy scale on the order of 300 K. Analysis of the magnetic susceptibility evidences some inconsistencies when using the ionic interconfigurational fluctuation (ICF) model, thus suggesting a stronger relevance of hybridization between 4f and valence electrons compared to standard valence-fluctuating Eu systems. PMID:26895077

  18. Physics Among Lightweights: Boride Superconductors (Superconductivity in MgB2)

    SciTech Connect

    Canfield, Paul C.

    2001-06-13

    Recently there has been a great deal of excitement about the intermetallic superconductor MgB2. MgB2 has a superconducting transition temperature Tc {approx} 40 K, can be synthesized as single phase powders and wire segments, has a remarkably low normal state resistivity, and manifests a promising critical current density in the superconducting state. In this colloquium I will review recent discoveries associated with intermetallic borides and try to show how MgB2 fits into the basic gestalt of intermetallic compounds. In addition I will try to explain why anybody should care about this and why some physicists find the topic of novel states in intermetallic compounds to be an extremely interesting research topic.

  19. [Carbonization of heavy metal Cu implanted sewage sludge and stability of heavy metal in the resulting char].

    PubMed

    Dou, Xiao-Min; Chen, De-Zhen; Dai, Xiao-Hu

    2014-11-01

    In this research, a new method for sewage sludge (SS) disposal was introduced, by which heavy metals were implanted into sewage sludge before pyrolysis. Cu was adopted as the representative of heavy metals to test this process and was implanted in the form of CuCl2. Effects of Cu implanting concentration and reaction temperature on the residual ratio and immobilization of heavy metals in pyrolysis char were studied. Meanwhile, two leaching methods were employed with the purpose to determine the maximum capacity of heavy metal immobilization in the char. The primary research results showed that when the Cu implanting concentration was 0.5% (mass fraction), more than 90% of Cu remained in the char after carbonization, and the leachability of heavy metals in the char was related to pyrolysis temperature. Cu leaching from the char increased with increasing pyrolysis temperature. There was also a limitation for Cu implanting concentration in the sewage sludge, which was determined by the destination of the pyrolyzed char. If it went to sanitary landfill, the limitation would be 0.5%. The primary results showed that sewage sludge could be kneaded with other wastes containing heavy metals before pyrolysis to achieve co-processing. PMID:25639117

  20. Natural Circulation and Linear Stability Analysis for Liquid-Metal Reactors with the Effect of Fluid Axial Conduction

    SciTech Connect

    Piyush Sabharwall; Qiao Wu; James J. Sienicki

    2012-06-01

    The effect of fluid axial thermal conduction on one-dimensional liquid metal natural circulation and its linear stability was performed through nondimensional analysis, steady-state assessment, and linear perturbation evaluation. The Nyquist criterion and a root-search method were employed to find the linear stability boundary of both forward and backward circulations. The study provided a relatively complete analysis method for one-dimensional natural circulation problems with the consideration of fluid axial heat conduction. The results suggest that fluid axial heat conduction in a natural circulation loop should be considered only when the modified Peclet number is {approx}1 or less, which is significantly smaller than the practical value of a lead liquid metal-cooled reactor.

  1. Effect of filler metal composition on the strength of yttria stabilized zirconia joints brazed with Pd-Ag-CuOx

    SciTech Connect

    Darsell, Jens T.; Weil, K. Scott

    2008-09-08

    The Ag-CuOx system is of interest to be used to be used as an air braze filler metal for joining high temperature electrochemical devices. Previous work has shown that the melting temperatures can be increased by adding palladium to Ag-CuOx and it is expected that this may aid high temperature stability. This work compares the room temperature bend strength of joints made between yttria-stabilized zirconia (YSZ) air brazed using Ag-CuOx without palladium and with 5 and 15mol% palladium additions. It has been found that in general palladium decreases joint strength, especially in low copper oxide compositions filler metals. At high copper oxide contents, brittle fracture through both copper oxide rich phases and the YSZ limits joint strength.

  2. Refractory Boride Formation and Microstructure Evolution during Solidification of Titanium-Boron and Titanium Aluminum-Boron Alloys

    NASA Astrophysics Data System (ADS)

    Hyman, Mark Edward

    1990-01-01

    gamma-TiAl alloys targeted for use as a structural material in advanced aerospace applications lack adequate creep strength at high temperatures. Incorporation of hard refractory second phase particles (e.g. TiB _2) exhibiting large aspect ratios (i.e. needles) can increase creep strength by constraining the plastic flow of the matrix during high temperature service. Matrix microstructure evolution and refractory boride formation in binary Ti-B and Ti-(25-52) at% Al and <= ~ 6 at% B alloys during conventional solidification is examined. The effects of rapid solidification processing (RSP) on microstructure evolution and boride morphology in ternary alloys is examined in electromagnetically levitated droplets processed via gas and splat quenching. A liquidus projection near the Ti-Al edge binary is deduced from a combination of computer modelling efforts and experimental evidence. The primary fields of crystallization sequentially traversed with increasing Al content starting from the Ti-B edge binary are: TiB to Ti_3B_4 to TiB_2 and beta to alpha to gamma for B-rich (i.e. ~5 at% B) and dilute alloys, respectively. A monovariant line of the type, L to M + TiB_2 (where M = beta, alpha , and gamma) was found to run slightly below the ~1 at% B isoconcentration line near the equiatomic TiAl composition. Matrix microstructure evolution and boride formation in these ternary alloys can be explained using the proposed liquidus projection for the Ti-Al-B system. TiB_2 forms in Ti-Al-B alloys (i.e. >= 35 at% Al) with various morphologies--blocky, plate/needle and flakes--and are extensively characterized by TEM and SEM. Their growth mechanisms leading to their various morphologies is discussed. Aside from the boride phases formed, the solidification microstructures of the Ti-Al -B alloys of interest showed essentially the same constituent phases as those of binary Ti-Al alloys of similar composition. Characterization of supercooled ternary droplets dilute in B (i.e. <=1 at% B

  3. Relative edge energy in the stability of transition metal nanoclusters of different motifs

    NASA Astrophysics Data System (ADS)

    Zhao, X. J.; Xue, X. L.; Guo, Z. X.; Li, S. F.

    2016-06-01

    When a structure is reduced to a nanometer scale, the proportion of the lowly-coordinated edge atoms increases significantly, which can play a crucial role in determining both their geometric and electronic properties, as demonstrated by the recently established generalized Wulff construction principle [S. F. Li, et al., Phys. Rev. Lett., 2013, 111, 115501]. Consequently, it is of great interest to clarify quantitatively the role of the edge atoms that dominate the motifs of these nanostructures. In principle, establishing an effective method valid for determining the absolute value of the surface energy and particularly the edge energy for a given nanostructure is expected to resolve such a problem. However, hitherto, it is difficult to obtain the absolute edge energy of transition metal clusters, particularly when their sizes approach the nanometer regime. In this paper, taking Ru nanoclusters as a prototypical example, our first-principles calculations introduce the concept of relative edge energy (REE), reflecting the net edge atom effect over the surface (facet) atom effect, which is fairly powerful to quasi-quantitatively estimate the critical size at which the crossover occurs between different configurations of a given motif, such as from an icosahedron to an fcc nanocrystal. By contrast, the bulk effect should be re-considered to rationalize the power of the REE in predicting the relative stability of larger nanostructures between different motifs, such as fcc-like and hcp-like nanocrystals.When a structure is reduced to a nanometer scale, the proportion of the lowly-coordinated edge atoms increases significantly, which can play a crucial role in determining both their geometric and electronic properties, as demonstrated by the recently established generalized Wulff construction principle [S. F. Li, et al., Phys. Rev. Lett., 2013, 111, 115501]. Consequently, it is of great interest to clarify quantitatively the role of the edge atoms that dominate the

  4. Evaluating the Long-Term Stability of Metals Precipitated In-Situ

    EPA Science Inventory

    Because metals (including metals and metalloids) cannot be destroyed, unlike organic contaminants, in-situ approaches for their removal from groundwater necessarily involves fixation/immobilization in the solid aquifer matrix. Consequently, the success of precipitation based in...

  5. Thermal metamorphism of mantle chromites and the stability of noble-metal nanoparticles

    NASA Astrophysics Data System (ADS)

    González-Jiménez, José M.; Reich, Martin; Camprubí, Antoni; Gervilla, Fernando; Griffin, William L.; Colás, Vanessa; O'Reilly, Suzanne Y.; Proenza, Joaquín A.; Pearson, Norman J.; Centeno-García, Elena

    2015-08-01

    The Loma Baya complex in south-western Mexico is a volume of chromitite-bearing oceanic mantle that records a complex metamorphic history, defined by a first stage of hydrous metamorphism overprinted by a short-lived thermal event associated with an Eocene granite intrusion. During the hydrous metamorphism, the primary magmatic chromite-olivine assemblage was replaced by a secondary, porous intergrowth of Fe2+-rich chromite and chlorite. The heat supplied by an Eocene-age granite intrusion reversed the hydration reaction, producing chromite rims with perfectly developed crystal faces. This third-generation chromite is in equilibrium with highly magnesian (neoformed) olivine and defines a chemical trend analogous to the original magmatic one. The preservation of both reactions in the Loma Baya chromitite provides compelling evidence that the hydration of chromite can be reversed by either prograde metamorphism or any heating event, confirming previous thermodynamic predictions. Understanding these complex features is of particular interest due to the fact that changes in temperature and variable degrees of fluid/rock interaction during metamorphism and intrusion have also significantly affected the chromite-hosted IPGE carrier phases. Here, we propose that the metamorphic fluids involved in the hydrous metamorphism have caused the desulphurization of laurite RuS2, releasing minute particles of Ru-Os-Ir alloys <50 nm in diameter. The following short-lived thermal event that promoted dehydration in the chromitite had the opposite effect on nanoparticle stability, producing a significant coarsening of metal nanoparticles to dimensions larger than a micron. Based on such observations, we argue that IPGE nanoparticles can be exsolved and grown (or coarsen) from sulphide matrices during prograde metamorphism or heating and not exclusively upon cooling under magmatic conditions as it has been previously suggested. These results provide new insights on the relevant role of

  6. High Temperature Stability of Dissimilar Metal Joints in Fission Surface Power Systems

    NASA Technical Reports Server (NTRS)

    Locci, Ivan E.; Nesbitt, James A.; Ritzert, Frank J.; Bowman, Cheryl L.

    2007-01-01

    Future generations of power systems for spacecraft and lunar surface systems will likely require a strong dependence on nuclear power. The design of a space nuclear power plant involves integrating together major subsystems with varying materia1 requirements. Refractory alloys are repeatedly considered for major structural components in space power reactor designs because refractory alloys retain their strength at higher temperatures than other classes of metals. The relatively higher mass and lower ductility of the refractory alloys make them less attractive for lower temperature subsystems in the power plant such as the power conversion system. The power conversion system would consist more likely of intermediate temperature Ni-based superalloys. One of many unanswered questions about the use of refractory alloys in a space power plant is how to transition from the use of the structural refractory alloy to more traditional structural alloys. Because deleterious phases can form when complex alloys are joined and operated at elevated temperatures, dissimilar material diffusion analyses of refractory alloys and superalloys are needed to inform designers about options of joint temperature and operational lifetime. Combinations of four superalloys and six refractory alloys were bonded and annealed at 1150 K and 1300 K to examine diffusional interactions in this study. Joints formed through hot pressing and hot isostatic pressing were compared. Results on newer alloys compared favorably to historical data. Diffusional stability is promising for some combinations of Mo-Re alloys and superalloys at 1150 K, but it appears that lower joint temperatures would be required for other refractory alloy couples.

  7. Atomic-Scale Structural Evolution and Stability of Supercooled Liquid of a Zr-Based Bulk Metallic Glass

    SciTech Connect

    Wang, Q.; Liu, C. T.; Yang, Y.; Dong, Y. D.; Lu, J.

    2011-05-27

    In this Letter, direct experimental evidence is provided for understanding the thermal stability with respect to crystallization in the Zr{sub 41.2}Ti{sub 13.8}Cu{sub 12.5}Ni{sub 10}Be{sub 22.5} glass-forming liquid. Through high-resolution transmission electron microscopy, the atomic-structure evolution in the glass-forming liquid during the isothermal annealing process is clearly revealed. In contrast with the existing theoretical models, our results reveal that, prior to nanocrystallization, there exists a metastable state prone to forming icosahedralike atomic clusters, which impede the subsequent crystallization and hence stabilize the supercooled liquid. The outcome of the current research underpins the topological origin for the excellent thermal stability displayed by the Zr-based bulk metallic glass.

  8. Stabilization of Metal-Loaded Ion-Exchange Resin with a Porous Silica Supporter Through Thermal Treatment

    SciTech Connect

    Kim, I-T. Park, H-S.; Yoo, J-H.; Kim, J-H.

    2003-02-25

    A new ion exchanger with porous silica as a supporting material and diphosphonic acid as a functional chelating group has been developed at ANL for the effective removal of transition metals and actinide ions from very acidic radioactive liquid wastes. The applicability of this resin for the treatment of low- and/or intermediate-level aqueous waste from nuclear power plants (NPP) has not been reported in scientific literature, but is under study now in Korea. The major radioisotopes in NPP radioactive liquid waste are Cs and Co in neutral pH ranges. This study on the thermal stabilization of metal-loaded waste resin has been carried out in parallel with the sorption experiment. Thermal treatment of metal (Co, Cs or U) loaded resin was accomplished to see the possibility of enhancing the safety and stability of the final product during transportation and disposal. In this paper, characteristics of the metal-loaded resins before and after heat treatment at three different thermal conditions were investigated and compared with each other to see the effectiveness of the thermal treatment method.

  9. Determination of conditional stability constants for some divalent transition metal ion-EDTA complexes by electrospray ionization mass spectrometry.

    PubMed

    Boija, Susanne; Almesåker, Ann; Hedenström, Erik; Bylund, Dan; Edlund, Håkan; Norgren, Magnus

    2014-07-01

    Conditional stability constants of coordination complexes comprising divalent transition metals, Cu(2+), Ni(2+), Zn(2+), Co(2+), and ethylenediaminetetraacetic acid (EDTA) were determined utilizing electrospray ionization mass spectrometry. The deviation of signal response of a reference complex was monitored at addition of a second metal ion. The conditional stability constant for the competing metal was then determined through solution equilibria equations. The method showed to be applicable to a system where Co(2+) and Zn(2+) competed for EDTA at pH 5. When Cu(2+) and Ni(2+) competed for EDTA, the equilibrium changed over time. This change was shown to be affected in rate and size by the type of organic solvent added. In this work, 30% of either methanol or acetonitrile was used. It was found that if calibration curves are prepared for both metal complexes in solution and the measurements are repeated with sufficient time space, any change in equilibrium of sample solutions will be discovered. PMID:25044839

  10. Solidification/stabilization of toxic metals in calcium aluminate cement matrices.

    PubMed

    Navarro-Blasco, I; Duran, A; Sirera, R; Fernández, J M; Alvarez, J I

    2013-09-15

    The ability of calcium aluminate cement (CAC) to encapsulate toxic metals (Pb, Zn and Cu) was assessed under two curing conditions. Changes in the consistency and in the setting time were found upon the addition of the nitrates of the target metals. Both Pb and Cu caused a delay in CAC hydration, while Zn accelerated the stiffening of the mortar. Compressive strengths of the metal-doped mortars, when initially cured at 60 °C/100% RH, were comparable with that of the free-metal mortar. Three different pore size distribution patterns were identified and related to the compounds identified by XRD and SEM. Sorbent capacities of CAC for the toxic metals were excellent: a total uptake was achieved for up to 3 wt.% loading of the three metals. In this way, CAC mortars were perfectly able to encapsulate the toxic metals, allowing the use of CAC for waste management as proved by the leaching tests.

  11. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  12. Microstructural Characterization and Wear Behavior of Nano-Boride Dispersed Coating on AISI 304 Stainless Steel by Hybrid High Velocity Oxy-Fuel Spraying Laser Surface Melting

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2015-07-01

    The current study concerns the detailed microstructural characterization and investigation of wear behavior of nano-boride dispersed coating developed on AISI 304 stainless steel by high velocity oxy-fuel spray deposition of nickel-based alloy and subsequent laser melting. There is a significant refinement and homogenization of microstructure with improvement in microhardness due to laser surface melting (1200 VHN as compared to 945 VHN of as-sprayed and 250 VHN of as-received substrate). The high temperature phase stability of the as-coated and laser melted surface has been studied by differential scanning calorimeter followed by detailed phase analysis at room and elevated temperature. There is a significant improvement in wear resistance of laser melted surface as compared to as-sprayed and the as-received one due to increased hardness and reduced coefficient of friction. The mechanism of wear has been investigated in details. Corrosion resistance of the coating in a 3.56 wt pct NaCl solution is significantly improved (4.43 E-2 mm/year as compared to 5 E-1 mm/year of as-sprayed and 1.66 mm/year of as-received substrate) due to laser surface melting as compared to as-sprayed surface.

  13. Synthesis and characterization of nitrogen-phosphorus-based fire retardants modified by boride/propanetriol flyeidyl ether complex

    NASA Astrophysics Data System (ADS)

    Kang, Haijiao; Ma, Linrong; Zhang, Shifeng; Li, Jianzhang

    2015-07-01

    A Boride/propanetriol glyeidyl ether (B/PTGE) complex was employed to intensify the fire resistance capabilities of nitrogen-phosphorus (NP) fire retardants by reacting with phosphoric acid and urea to yield nitrogen-phosphorus-boron-PTGE fire retardants. The effects of NPB-PTGE fire retardants on wooden properties were characterized by limit oxygen index (LOI), cone calorimetry, X-ray Diffraction (XRD) and scanning electron microscopy (SEM). The results depict that the fire resistance of the B/PTGE complex modified by NP-based fire retardants was improved significantly. The PTGE was at 10% boride at 2%, and the treated wood has the LOI of 52%, which is 11.46% higher compared with woods treated with NP fire retardant.

  14. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.

    PubMed

    Sparrevik, Magnus; Eek, Espen; Grini, Randi Skirstad

    2009-07-01

    Over time, Norwegian fjords and harbour areas have received contaminants from industrial activities and urban run-off, and measures to remediate contaminated marine sediments are therefore needed. Stabilization/solidification (S/S) technology, in which the contaminated marine sediments are mixed with cement and other binding agents, has been shown to be a promising remediation technology. This paper summarizes a study of the environmental effect of stabilization, highlighting the importance of sulphide binding governing the leaching of heavy metals from the S/S of contaminated marine sediments. The study is a part of a research project focusing on developing effective methods for S/S of contaminated seabed sediments for use in new construction areas. Four cementitious binders were tested on sediments from six different locations: Bergen, Gilhus, Grenland, Hammerfest, Sandvika and Trondheim. The sediments differed with respect to properties such as concentration of contaminants, water content, organic content and grain size distribution. Portland cement, Portland cement with fly ash, industry cement, and sulphate resistant cement, were tested as binders. The leaching from the S/S sediments after 28 days of curing was measured by using a standard leaching batch test (EN 12457-2: 2003), with seawater as leaching agent. The eluate was analysed for pH and redox, as well as content of heavy metals and organic contaminants. Available volatile sulphide (AVS) and simultaneously extractable metals (SEM) were also measured in the sediments. This paper focuses on the leaching of lead (Pb) and copper (Cu). A reduced leaching of Pb after stabilization was observed for the mixtures, whereas the leaching of Cu from Hammerfest sediments increased substantially after stabilization for all cementitious additions. Experiments show that Hammerfest samples had lower values of AVS than the other sediments. This was confirmed by the SEM/AVS analysis, highlighting the importance of

  15. The importance of sulphide binding for leaching of heavy metals from contaminated Norwegian marine sediments treated by stabilization/solidification.

    PubMed

    Sparrevik, Magnus; Eek, Espen; Grini, Randi Skirstad

    2009-07-01

    Over time, Norwegian fjords and harbour areas have received contaminants from industrial activities and urban run-off, and measures to remediate contaminated marine sediments are therefore needed. Stabilization/solidification (S/S) technology, in which the contaminated marine sediments are mixed with cement and other binding agents, has been shown to be a promising remediation technology. This paper summarizes a study of the environmental effect of stabilization, highlighting the importance of sulphide binding governing the leaching of heavy metals from the S/S of contaminated marine sediments. The study is a part of a research project focusing on developing effective methods for S/S of contaminated seabed sediments for use in new construction areas. Four cementitious binders were tested on sediments from six different locations: Bergen, Gilhus, Grenland, Hammerfest, Sandvika and Trondheim. The sediments differed with respect to properties such as concentration of contaminants, water content, organic content and grain size distribution. Portland cement, Portland cement with fly ash, industry cement, and sulphate resistant cement, were tested as binders. The leaching from the S/S sediments after 28 days of curing was measured by using a standard leaching batch test (EN 12457-2: 2003), with seawater as leaching agent. The eluate was analysed for pH and redox, as well as content of heavy metals and organic contaminants. Available volatile sulphide (AVS) and simultaneously extractable metals (SEM) were also measured in the sediments. This paper focuses on the leaching of lead (Pb) and copper (Cu). A reduced leaching of Pb after stabilization was observed for the mixtures, whereas the leaching of Cu from Hammerfest sediments increased substantially after stabilization for all cementitious additions. Experiments show that Hammerfest samples had lower values of AVS than the other sediments. This was confirmed by the SEM/AVS analysis, highlighting the importance of

  16. Stabilization mechanism of γ-Mg₁₇Al₁₂ and β-Mg₂Al₃ complex metallic alloys.

    PubMed

    Vrtnik, S; Jazbec, S; Jagodič, M; Korelec, A; Hosnar, L; Jagličić, Z; Jeglič, P; Feuerbacher, M; Mizutani, U; Dolinšek, J

    2013-10-23

    Large-unit-cell complex metallic alloys (CMAs) frequently achieve stability by lowering the kinetic energy of the electron system through formation of a pseudogap in the electronic density of states (DOS) across the Fermi energy εF. By employing experimental techniques that are sensitive to the electronic DOS in the vicinity of εF, we have studied the stabilization mechanism of two binary CMA phases from the Al-Mg system: the γ-Mg17Al12 phase with 58 atoms in the unit cell and the β-Mg2Al3 phase with 1178 atoms in the unit cell. Since the investigated alloys are free from transition metal elements, orbital hybridization effects must be small and we were able to test whether the alloys obey the Hume-Rothery stabilization mechanism, where a pseudogap in the DOS is produced by the Fermi surface-Brillouin zone interactions. The results have shown that the DOS of the γ-Mg17Al12 phase exhibits a pronounced pseudogap centered almost exactly at εF, which is compatible with the theoretical prediction that this phase is stabilized by the Hume-Rothery mechanism. The disordered cubic β-Mg2Al3 phase is most likely entropically stabilized at high temperatures, whereas at lower temperatures stability is achieved by undergoing a structural phase transition to more ordered rhombohedral β' phase at 214 ° C, where all atomic sites become fully occupied. No pseudogap in the vicinity of εF was detected for the β' phase on the energy scale of a few 100 meV as determined by the 'thermal observation window' of the Fermi-Dirac function, so that the Hume-Rothery stabilization mechanism is not confirmed for this compound. However, the existence of a much broader shallow pseudogap due to several critical reciprocal lattice vectors [Formula: see text] that simultaneously satisfy the Hume-Rothery interference condition remains the most plausible stabilization mechanism of this phase. At Tc = 0.85 K, the β' phase undergoes a superconducting transition, which slightly increases the

  17. Metal complexes stability constant determination by hyphenation of capillary electrophoresis with inductively coupled plasma mass spectrometry: the case of 1:1 metal-to-ligand stoichiometry.

    PubMed

    Petit, Jeremy; Geertsen, Valérie; Beaucaire, Catherine; Stambouli, Moncef

    2009-05-01

    Nuclear energy development has raised new issues like radionuclides biogeochemistry. The modelling of their biochemical properties involves the accurate determination of thermodynamical data, like stability constants. This can be achieved by using hyphenated capillary electrophoresis (CE)-ICPMS and the method was applied successfully on 1:1 lanthanum-oxalate and uranyl-oxalate complexes. Several significant steps are discussed: choice of analytical conditions, electrophoretic mobility calculation, mathematical treatment of experimental data by using linear regressions, ligand concentration and ionic strength corrections. The following values were obtained with a good precision for lanthanum-oxalate and uranyl-oxalate complexes: log(K degrees (LaOxa(+)))=6.10+/-0.10 and log(K degrees (UO(2)Oxa))=6.40+/-0.30, respectively, at infinite dilution. These values are consistent with the literature data, showing CE-ICPMS potential for metal complexes stability constants determination. PMID:19303078

  18. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  19. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  20. Effects of Dopant Metal Variation and Material Synthesis Method on the Material Properties of Mixed Metal Ferrites in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production

    DOE PAGES

    Leonard, Jeffrey; Reyes, Nichole; Allen, Kyle M.; Randhir, Kelvin; Li, Like; AuYeung, Nick; Grunewald, Jeremy; Rhodes, Nathan; Bobek, Michael; Klausner, James F.

    2015-01-01

    Mixed metal ferrites have shown much promise in two-step solar-thermochemical fuel production. Previous work has typically focused on evaluating a particular metal ferrite produced by a particular synthesis process, which makes comparisons between studies performed by independent researchers difficult. A comparative study was undertaken to explore the effects different synthesis methods have on the performance of a particular material during redox cycling using thermogravimetry. This study revealed that materials made via wet chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry methods were minimal andmore » these demonstrated much better performance than those synthesized via the solid state method. Subsequently, various metal ferrite samples (NiFe 2 O 4 , MgFe 2 O 4 , CoFe 2 O 4 , and MnFe 2 O 4 ) in yttria stabilized zirconia (8YSZ) were synthesized via coprecipitation and tested to determine the most promising metal ferrite combination. It was determined that 10 wt.% CoFe 2 O 4 in 8YSZ produced the highest and most consistent yields of O 2 and CO. By testing the effects of synthesis methods and dopants in a consistent fashion, those aspects of ferrite preparation which are most significant can be revealed. More importantly, these insights can guide future efforts in developing the next generation of thermochemical fuel production materials.« less

  1. Trace Metals in Groundwater & Vadose Zone Calcite: In Situ Containment & Stabilization of 90Strontium & Other Divalent Metals & Radionuclides at Arid West DOE Sites

    SciTech Connect

    Smith, Robert W.; Fujita, Yoshiko; Ferris, F. Grant; Cosgrove, Donna M.; Colwell, Rick S.

    2004-06-01

    Radionuclide and metal contaminants such as 90Sr are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., 90Sr) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).

  2. Trace Metals in Groundwater & Vadose Zone Calcite: In Situ Containment & Stabilization of Stronthium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    SciTech Connect

    Smith, Robert W.

    2005-06-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center [INTEC] at the Idaho National Laboratory [INL]). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate (primarily calcite) in groundwater and vadose zone systems. Our facilitated approach relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by (a) increasing pH and alkalinity and (b) liberating cations from the aquifer matrix by cation exchange reactions. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which is produced in situ by native urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long term. We are currently conducting field based activities at both the INL Vadose Zone Research Park (VZRP), an uncontaminated surrogate site for the strontium-90 contaminated vadose zone at INTEC and at the strontium-90 contaminated aquifer of 100-N area of the Hanford site.

  3. Trace Metals in Groundwater & the Vadose Zone Calcite: In Situ Containment & Stabilization of Strontium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    SciTech Connect

    Smith, Robert W.

    2004-12-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for re-capture in a more stable solid phase (co-precipitation rather than adsorption).

  4. Solubility of ion and trace metals from stabilized sewage sludge by fly ash and alkaline mine tailing.

    PubMed

    Zhang, Hongling; Sun, Lina; Sun, Tieheng

    2008-01-01

    Stabilized sewage sludge (SS) by fly ash (FA) and alkaline mine tailing as artificial soil, to be applied on the ecological rehabilitation at mining junkyards, offers a potentially viable utilization of the industrial by-product, as well as solves the shortage of soil resource in the mine area. An incubation experiment with different ratios of SS and FA was conducted to evaluate the solubility of ions and trace elements from stabilized sewage sludge. Results showed that fly ash offset a decrease in pH value of sewage sludge. The pH of (C) treatment (FA:SS = 1:1) was stable and tended to neutrality. The SO4(2-) and Cl- concentrations of the solution in the mixture were significantly decreased in the stabilized sewage sludge by alkaline fly ash and mine tailing, compared to the single SS treatment. Stabilized sewage sludge by FA weakened the nitrification of total nitrogen from SS when the proportion of FA in the mixture was more than 50%. The Cr, Ni, and Cu concentrations in the solution were gradually decreased and achieved a stable level after 22 days, for all treatments over the duration of the incubation. Moreover stabilized sewage sludge by fly ash and/or mine tailing notably decreased the trace metal solubility. The final Cr, Cu, and Ni concentrations in the solution for all mixtures of treatments were lower than 2.5, 15, and 50 microg/L, respectively. PMID:18763566

  5. Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites

    SciTech Connect

    Turick, C. E.; Knox, A. S.; Dixon, K. L.; Roseberry, R. J.; Kritzas, Y. G

    2005-09-26

    A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outside the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified

  6. SOLIDIFICATION/STABILIZATION FOR REMEDIATON OF WOOD PRESERVING SITES: TREATMENT FOR DIOXINS, PCP, CREOSOTE, AND METALS

    EPA Science Inventory

    This article discusses the use of solidification/stabilization (S/S) to treat soils contaminated with organic and inorganic chemicals at wood preserving sites. Solidification is defined for this article as making a material into a free standing solid. Stabilization is defined as ...

  7. Trace Metals in Groundwater & Vadose Zone Calcite: In Situ Containment & Stabilization of Stronthium-90 & Other Divalent Metals & Radionuclides at Arid West DOE

    SciTech Connect

    Smith, Robert W

    2003-06-01

    Radionuclide and metal contaminants such as strontium-90 are present beneath U.S. Department of Energy (DOE) lands in both the groundwater (e.g., 100-N area at Hanford, WA) and vadose zone (e.g., Idaho Nuclear Technology and Engineering Center at the Idaho National Engineering and Environmental Laboratory). In situ containment and stabilization of these contaminants is a cost-effective treatment strategy. However, implementing in situ containment and stabilization approaches requires definition of the mechanisms that control contaminant sequestration. We are investigating the in situ immobilization of radionuclides or contaminant metals (e.g., strontium-90) by their facilitated co-precipitation with calcium carbonate in groundwater and vadose zone systems. Our facilitated approach, shown schematically in Figure 1, relies upon the hydrolysis of introduced urea to cause the acceleration of calcium carbonate precipitation (and trace metal co-precipitation) by increasing pH and alkalinity. Subsurface urea hydrolysis is catalyzed by the urease enzyme, which may be either introduced with the urea or produced in situ by ubiquitous subsurface urea hydrolyzing microorganisms. Because the precipitation process tends to be irreversible and many western aquifers are saturated with respect to calcite, the co-precipitated metals and radionuclides will be effectively removed from the aqueous phase over the long-term. Another advantage of the ureolysis approach is that the ammonium ions produced by the reaction can exchange with radionuclides sorbed to subsurface minerals, thereby enhancing the availability of the radionuclides for recapture in a more stable solid phase (co-precipitation rather than adsorption). Our specific research objectives include: * Elucidation of the mechanisms and rates for the release of sorbed trace metals and their subsequent sequestration by co-precipitation in calcite induced by urea hydrolysis. * Evaluation at the field scale of the influence of

  8. Modulating adsorption and stability properties in pillared metal-organic frameworks: a model system for understanding ligand effects.

    PubMed

    Burtch, Nicholas C; Walton, Krista S

    2015-11-17

    Metal-organic frameworks (MOFs) are nanoporous materials with highly tunable properties that make them ideal for a wide array of adsorption applications. Through careful choice of metal and ligand precursors, one can target the specific functionality and pore characteristics desired for the application of interest. However, among the wide array of MOFs reported in the literature, there are varying trends in the effects that ligand identity has on the adsorption, chemical stability, and intrinsic framework dynamics of the material. This is largely due to ligand effects being strongly coupled with structural properties arising from the differing topologies among frameworks. Given the important role such properties play in dictating adsorbent performance, understanding these effects will be critical for the design of next generation functional materials. Pillared MOFs are ideal platforms for understanding how ligand properties can affect the adsorption, stability, and framework dynamics in MOFs. In this Account, we highlight our recent work demonstrating how experiment and simulation can be used to understand the important role ligand identity plays in governing the properties of isostructural MOFs containing interconnected layers pillared by bridging ligands. Changing the identity of the linear, ditopic ligand in either the 2-D layer or the pillaring third dimension allows targeted modulation of the chemical functionality, porosity, and interpenetration of the framework. We will discuss how these characteristics can have important consequences on the adsorption, chemical stability, and dynamic properties of pillared MOFs. The structures discussed in this Account comprise the greatest diversity of isostructural MOFs whose stability properties have been studied, allowing valuable insight into how ligand properties dictate the chemical stability of isostructural frameworks. We also discuss how functional groups can affect adsorbate energetics at their most favorable

  9. Relative stability of normal vs. inverse spinel for 3d transition metal oxides as lithium intercalation cathodes.

    PubMed

    Bhattacharya, Jishnu; Wolverton, C

    2013-05-01

    Spinel oxides represent an important class of cathode materials for Li-ion batteries. Two major variants of the spinel crystal structure are normal and inverse. The relative stability of normal and inverse ordering at different stages of lithiation has important consequences in lithium diffusivity, voltage, capacity retention and battery life. In this paper, we investigate the relative structural stability of normal and inverse structures of the 3d transition metal oxide spinels with first-principles DFT calculations. We have considered ternary spinel oxides LixM2O4 with M = Ti, V, Cr, Mn, Fe, Co and Ni in both lithiated (x = 1) and delithiated (x = 0) conditions. We find that for all lithiated spinels, the normal structure is preferred regardless of the metal. We observe that the normal structure for all these oxides has a lower size mismatch between octahedral cations compared to the inverse structure. With delithiation, many of the oxides undergo a change in stability with vanadium in particular, showing a tendency to occupy tetrahedral sites. We find that in the delithiated oxide, only vanadium ions can access a +5 oxidation state which prefers tetrahedral coordination. We have also calculated the average voltage of lithiation for these spinels. The calculated voltages agree well with the previously measured and calculated values, wherever available. For the yet to be characterized spinels, our calculation provides voltage values which can motivate further experimental attention. Lastly, we observe that all the normal spinel oxides of the 3d transition metal series have a driving force for a transformation to the non-spinel structure upon delithiation.

  10. Enhanced Organic Solar Cell Stability through the Effective Blocking of Oxygen Diffusion using a Self-Passivating Metal Electrode.

    PubMed

    Lee, Hansol; Jo, Sae Byeok; Lee, Hyo Chan; Kim, Min; Sin, Dong Hun; Ko, Hyomin; Cho, Kilwon

    2016-03-01

    A new and simple strategy for enhancing the stability of organic solar cells (OSCs) was developed by using self-passivating metal top electrodes. Systematic investigations on O2 permeability of Al top electrodes revealed that the main pathways for oxidation-induced degradation could be greatly suppressed by simply controlling the nanoscale morphology of the Al electrode. The population of nanoscale pinholes among Al grains, which critically decided the diffusion of O2 molecules toward the Al-organic interfaces that are vulnerable to oxidation, was successfully regulated by rapidly depositing Al or promoting lateral growth among the Al grains, accompanied by increasing the deposition thickness. Our observations suggested that the stability of OSCs with conventional architectures might be greatly enhanced simply by controlling the fabrication conditions of the Al top electrode, without the aid of additional secondary treatments.

  11. Stability of In-Ga-Zn-O metal-semiconductor field-effect-transistors under bias, illumination, and temperature stress

    NASA Astrophysics Data System (ADS)

    Dang, Giang T.; Kawaharamura, Toshiyuki; Furuta, Mamoru; Saxena, Saurabh; Allen, Martin W.

    2015-10-01

    The stability of metal-semiconductor field-effect-transistors (MESFETs) with silver oxide Schottky gates on In-Ga-Zn-O (IGZO) channels, grown by mist chemical-vapor-deposition, was examined under different combinations of positive and negative bias, illumination, and temperature stress. These devices were remarkably stable, even under the most severe condition of negative-bias-illumination-temperature-stress (NBITS), where the threshold voltage shift after 10 h NBITS was only +0.12 V and was mainly attributed to a decrease in the carrier density of the channel. The stability of these IGZO MESFETs is associated with the use of a conducting Schottky gate that significantly reduces charge trapping at the gate-channel interface.

  12. The influence of implant articular thickness and glenohumeral conformity on stability of an all-metal glenoid component.

    PubMed

    Bicknell, Ryan T; Liew, Allan S L; Danter, Matthew R; Patterson, Stuart D; King, Graham J W; Chess, David G; Johnson, James A

    2007-01-01

    The objective of this study was to determine the effect of implant thickness and glenohumeral conformity on fixation of an all-metal glenoid component. A stainless steel glenoid component was designed and implanted in 10 cadaveric scapulae. A testing apparatus capable of producing a loading vector at various angles, magnitudes, and directions was used. The independent variables included 6 directions and 3 angles of joint load, 3 implant thicknesses, and 4 glenohumeral conformities. Implant micromotion relative to bone was measured by use of 4 displacement transducers at the superior, inferior, anterior, and posterior sites. The components displayed a consistent response to loading of ipsilateral compression and contralateral distraction. Stability decreased as the load application angle increased (P < .05). A decrease in the implant thickness and glenohumeral conformity resulted in increased implant stability (P < .05). Decreasing implant thickness and glenohumeral conformity reduce the eccentric component of loading and may improve the durability of glenoid implants.

  13. First-principles study on stability of transition metal solutes in aluminum by analyzing the underlying forces

    SciTech Connect

    Liu, Wei; Xu, Yichun; Li, Xiangyan; Wu, Xuebang Liu, C. S.; Liang, Yunfeng; Wang, Zhiguang

    2015-05-07

    Although there have been some investigations on behaviors of solutes in metals under strain, the underlying mechanism of how strain changes the stability of a solute is still unknown. To gain such knowledge, first-principles calculations are performed on substitution energy of transition metal solutes in fcc Al host under rhombohedral strain (RS). Our results show that under RS, substitution energy decreases linearly with the increase of outermost d radius r{sub d} of the solute due to Pauli repulsion. The screened Coulomb interaction increases or decreases the substitution energy of a solute on condition that its Pauling electronegativity scale ϕ{sub P} is less or greater than that of Al under RS. This paper verifies a linear relation of substitution energy change versus r{sub d} and ϕ{sub P} under RS, which might be instructive for composition design of long life alloys serving in high stress condition.

  14. Stability and debris in high-brightness liquid-metal-jet-anode microfocus x-ray sources

    SciTech Connect

    Otendal, M.; Tuohimaa, T.; Hertz, H. M.

    2007-01-15

    We investigate the x-ray spot stability and the debris emission in liquid-metal-jet anode electron-impact x-ray sources operating in the 10-100 W microfocus regime. The x-ray spot size is 15-23 {mu}m in diameter and the electron-beam power density is up to {approx}210 kW/mm{sup 2}, an order of magnitude higher than for conventional microfocus sources. In the power range of the investigation the source is stable in terms of spot size and position. The debris emission rate increases exponentially with the applied electron-beam power but may be reduced by combining larger and faster target jets with smaller e-beam foci and by mitigation schemes. It is concluded that the investigated factors will not limit the performance and function of liquid-metal-jet-anode electron-impact microfocus sources when operating in this high-brightness regime.

  15. Radical bonding: structure and stability of bis(phenalenyl) complexes of divalent metals from across the periodic table.

    PubMed

    Craciun, Smaranda; Donald, Kelling J

    2009-07-01

    We examine the bonding possibilities of the bis(phenalenyl) MP(2) sandwich complexes of the divalent metals M = Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, at the B3LYP level of theory. The outcome is an extraordinarily diverse class of low symmetry bis(phenalenyl)metal complexes in which bonding preferences and binding enthalpies differ dramatically. The lowest energy group 2 metal MP(2) complexes include an intriguing eta(1),eta(3) BeP(2) structure, and bent eta(6),eta(6) systems for M = Ca, Sr, and Ba. The group 12 bis(phenalenyl) complexes are thermodynamically unstable eta(1),eta(1) slip-sandwich structures. To better understand changes in the structural preferences going from the (eta(6),eta(6)) group 2 to the (eta(1),eta(1)) group 12 complexes, we explored the bonding in the bis(phenalenyl) complexes of transition metals with stable +2 oxidations states between Ca and Zn in period 4. The computed binding enthalpies are large and negative for nearly all of the minimum energy bis(phenalenyl) complexes of the group 2 and the transition metals; they are tiny for MgP(2), and are quite positive for the group 12 systems. The structural preferences and stability of the complexes is a subtle negotiation of several influences: the (un)availability of (n - 1)d and np, orbitals for bonding, the cost of the rehybridization at carbon sites in the phenalenyl rings in preparation for bonding to the metals, and the (P---P) interaction between the phenalenyl radicals.

  16. Ground-state coordination of a catalytic metal to the scissile phosphate of a tertiary-stabilized Hammerhead ribozyme

    PubMed Central

    Ward, W. Luke; DeRose, Victoria J.

    2012-01-01

    Although the Hammerhead ribozyme (HHRz) has long been used as a model system in the field of ribozyme enzymology, several details of its mechanism are still not well understood. In particular, significant questions remain concerning the disposition and role of catalytic metals in the HHRz. Previous metal-rescue experiments using a “minimal” HHRz resulted in prediction of a catalytic metal that is bound in the A9/G10.1 site in the ground state of the reaction and that bridges to the scissile phosphate further along the reaction pathway. “Native” or extended HHRz constructs contain tertiary contacts that stabilize a more compact structure at moderate ionic strength. We performed Cd2+ rescue experiments on an extended HHRz from Schistosoma mansoni using stereo-pure scissile phosphorothioate-substituted substrates in order to determine whether a metal ion makes contact with the scissile phosphate in the ground state or further along the reaction coordinate. Inhibition in Ca2+/Mg2+ and rescue by thiophilic Cd2+ was specific for the Rp–S stereoisomer of the scissile phosphate. The affinity of the rescuing Cd2+, measured in two different ionic strength backgrounds, increased fourfold to 17-fold when the pro-Rp oxygen is replaced by sulfur. These data support a model in which the rescuing metal ion makes a ground-state interaction with the scissile phosphate in the native HHRz. The resulting model for Mg2+ activation in the HHRz places a metal ion in contact with the scissile phosphate, where it may provide ground-state electrostatic activation of the substrate. PMID:22124015

  17. Ground-state coordination of a catalytic metal to the scissile phosphate of a tertiary-stabilized Hammerhead ribozyme.

    PubMed

    Ward, W Luke; Derose, Victoria J

    2012-01-01

    Although the Hammerhead ribozyme (HHRz) has long been used as a model system in the field of ribozyme enzymology, several details of its mechanism are still not well understood. In particular, significant questions remain concerning the disposition and role of catalytic metals in the HHRz. Previous metal-rescue experiments using a "minimal" HHRz resulted in prediction of a catalytic metal that is bound in the A9/G10.1 site in the ground state of the reaction and that bridges to the scissile phosphate further along the reaction pathway. "Native" or extended HHRz constructs contain tertiary contacts that stabilize a more compact structure at moderate ionic strength. We performed Cd(2+) rescue experiments on an extended HHRz from Schistosoma mansoni using stereo-pure scissile phosphorothioate-substituted substrates in order to determine whether a metal ion makes contact with the scissile phosphate in the ground state or further along the reaction coordinate. Inhibition in Ca(2+)/Mg(2+) and rescue by thiophilic Cd(2+) was specific for the R(p)-S stereoisomer of the scissile phosphate. The affinity of the rescuing Cd(2+), measured in two different ionic strength backgrounds, increased fourfold to 17-fold when the pro-R(p) oxygen is replaced by sulfur. These data support a model in which the rescuing metal ion makes a ground-state interaction with the scissile phosphate in the native HHRz. The resulting model for Mg(2+) activation in the HHRz places a metal ion in contact with the scissile phosphate, where it may provide ground-state electrostatic activation of the substrate.

  18. Thermodynamic stability and band alignment at a metal-high- k dielectric interface

    NASA Astrophysics Data System (ADS)

    Demkov, Alexander A.

    2006-08-01

    We consider theoretically a heterojunction between (110)-oriented molybdenum and (111)-oriented tetragonal polymorph of hafnia. We calculate the Schottky barrier of 2.8eV using density functional theory, and find the near perfect “ p -type alignment” in good agreement with predictions of the metal-induced gap states (MIGS) model. However, we find the interface to be unstable with respect to the formation of an unusual interface specific defect which we call the extended Frenkel pair resulting in a large additional interface dipole. This behavior is qualitatively different from that predicted by the MIGS theory, endemic to transition metal oxide contacts with most large work function metals, and has important implications for the complementary metal-oxide-semiconductor technology.

  19. Glass-to-metal bonding process improves stability and performance of semiconductor devices

    NASA Technical Reports Server (NTRS)

    Trent, R. L.

    1970-01-01

    Anodic bonding of glass coverslips to photodiodes and photovoltaic devices eliminates the need for adhesive. The process requires relatively low temperatures /less than 560 degrees C/ and the metals and glass remain solid throughout the bonding process.

  20. Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization

    EPA Science Inventory

    Current breakthroughs in green nanotechnology are capable to transform many of the existing processes and products that enhance environmental quality, reduce pollution, and conserve natural and non-renewable resources. Noteworthy, successful use of metal nanoparticles and 10 nano...

  1. Changes in speciation and leaching behaviors of heavy metals in dredged sediment solidified/stabilized with various materials.

    PubMed

    Bao, Jianping; Wang, Liang; Xiao, Man

    2016-05-01

    Solidification/stabilization (S/S) of sediments is frequently used to treat contaminants in dredged sediments. In this study, sediment collected from the Pearl River Delta (China) was solidified/stabilized with three different kinds of functional materials: cement, lime and bentonite. Lime primarily acted via induced increases in pH, while cements stabilization occurred through their silicate-based systems and the main function of bentonite was adsorption. The speciation and leaching behaviors of specific heavy metals before and after S/S were analyzed and the results showed that the residual speciation of Cd, Cr, Ni, Pb and Zn increased in all treatments except for Cu, as the exchangeable speciation, carbonate-bound speciation and Fe-Mn-oxide-bound speciation of Cu (all of which could be stabilized) were less than 2 % of the total amount. Pb leaching only decreased when pH increased, while the mobility of Cr and Ni only decreased in response to the silicate-based systems. The leached portion of the Fe-Mn-oxide-bound speciation followed the order Zn > Cu > Ni/Cd > Pb > Cr. The leached portion of organic-matter-bound species was less than 4 % for Cd, Cr, Ni and Pb, but 35.1 % and 20.6 % for Cu and Zn, respectively.

  2. Prelithiation of silicon-carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP).

    PubMed

    Forney, Michael W; Ganter, Matthew J; Staub, Jason W; Ridgley, Richard D; Landi, Brian J

    2013-09-11

    Stabilized lithium metal powder (SLMP) has been applied during battery assembly to effectively prelithiate high capacity (1500-2500 mAh/g) silicon-carbon nanotube (Si-CNT) anodes, eliminating the 20-40% first cycle irreversible capacity loss. Pressure-activation of SLMP is shown to enhance prelithiation and enable capacity matching between Si-CNT anodes and lithium nickel cobalt aluminum oxide (NCA) cathodes in full batteries with minimal added mass. The prelithiation approach enables high energy density NCA/Si-CNT batteries achieving >1000 cycles at 20% depth-of-discharge.

  3. Metal-Organic Frameworks Stabilize Solution-Inaccessible Cobalt Catalysts for Highly Efficient Broad-Scope Organic Transformations.

    PubMed

    Zhang, Teng; Manna, Kuntal; Lin, Wenbin

    2016-03-01

    New and active earth-abundant metal catalysts are critically needed to replace precious metal-based catalysts for sustainable production of commodity and fine chemicals. We report here the design of highly robust, active, and reusable cobalt-bipyridine- and cobalt-phenanthroline-based metal-organic framework (MOF) catalysts for alkene hydrogenation and hydroboration, aldehyde/ketone hydroboration, and arene C-H borylation. In alkene hydrogenation, the MOF catalysts tolerated a variety of functional groups and displayed unprecedentedly high turnover numbers of ∼2.5 × 10(6) and turnover frequencies of ∼1.1 × 10(5) h(-1). Structural, computational, and spectroscopic studies show that site isolation of the highly reactive (bpy)Co(THF)2 species in the MOFs prevents intermolecular deactivation and stabilizes solution-inaccessible catalysts for broad-scope organic transformations. Computational, spectroscopic, and kinetic evidence further support a hitherto unknown (bpy(•-))Co(I)(THF)2 ground state that coordinates to alkene and dihydrogen and then undergoing σ-complex-assisted metathesis to form (bpy)Co(alkyl)(H). Reductive elimination of alkane followed by alkene binding completes the catalytic cycle. MOFs thus provide a novel platform for discovering new base-metal molecular catalysts and exhibit enormous potential in sustainable chemical catalysis.

  4. Tris(pyrazolyl)methanides of the alkaline earth metals: influence of the substitution pattern on stability and degradation.

    PubMed

    Müller, Christoph; Koch, Alexander; Görls, Helmar; Krieck, Sven; Westerhausen, Matthias

    2015-01-20

    Trispyrazolylmethanides commonly act as strong tridentate bases toward metal ions. This expected coordination behavior has been observed for tris(3,4,5-trimethylpyrazolyl)methane (1a), which yields the alkaline-earth-metal bis[tris(3,4,5-trimethylpyrazolyl)methanides] of magnesium (1b), calcium (1c), strontium (1d), and barium (1e) via deprotonation of 1a with dibutylmagnesium and [Ae{N(SiMe3)2}2] (Ae = Mg, Ca, Sr, and Ba, respectively). Barium complex 1e degrades during recrystallization that was attempted from aromatic hydrocarbons and ethers. In these scorpionate complexes, the metal ions are embedded in distorted octahedral coordination spheres. Contrarily, tris(3-thienylpyrazolyl)methane (2a) exhibits a strikingly different reactivity. Dibutylmagnesium is unable to deprotonate 2a, whereas [Ae{N(SiMe3)2}2] (Ae = Ca, Sr, and Ba) smoothly metalates 2a. However, the primary alkaline-earth-metal bis[tris(3-thienylpyrazolyl)methanides] of Ca (2c), Sr (2d), and Ba (2e) represent intermediates and degrade under the formation of the alkaline-earth-metal bis(3-thienylpyrazolates) of calcium (3c), strontium (3d), and barium (3e) and the elimination of tetrakis(3-thienylpyrazolyl)ethene (4). To isolate crystalline compounds, 3-thienylpyrazole has been metalated, and the corresponding derivatives [(HPz(Tp))4Mg(Pz(Tp))2] (3b), dinuclear [(tmeda)Ca(Pz(Tp))2]2 (3c), mononuclear [(pmdeta)Sr(Pz(Tp))2] (3d), and [(hmteta)Ba(Pz(Tp))2] (3e) have been structurally characterized. Regardless of the applied stoichiometry, magnesiation of thienylpyrazole 3a with dibutylmagnesium yields [(HPz(Tp))4Mg(Pz(Tp))2] (3b), which is stabilized in the solid state by intramolecular N-H···N···H-N hydrogen bridges. The degradation of [Ae{C(Pz(R))3}2] (R = Ph and Tp) has been studied by quantum chemical methods, the results of which propose an intermediate complex of the nature [{(Pz(R))2C}2Ca{Pz(R)}2]; thereafter, the singlet carbenes ([:C(Pz(R))2]) dimerize in the vicinity of the alkaline

  5. Method for separating contaminants from solution employing an organic-stabilized metal-hydroxy gel

    DOEpatents

    Alexander, Donald H.

    1996-01-01

    Metals and organics are extracted from solution by co-precipitating them with a gel comprising aluminum hydroxide and a complexing agent such as EDTA. After the gel is processed to remove the metals and organics, it can be recycled for further use by dissolving it in a high-pH solution, leaving no secondary waste stream. A number of alternative complexing agents perform better than EDTA.

  6. Evaluation of metal oxide and carbonate nanoparticle stability in soybean oil: Implications for controlled release of alkalinity during subsurface remediation

    NASA Astrophysics Data System (ADS)

    Ramsburg, C. A.; Leach, O. I.; Sebik, J.; Muller, K.

    2011-12-01

    Traditional methods for adjusting groundwater pH rely on injection of aqueous solutes and therefore, amendment distribution is reliant upon aqueous phase flow and transport. This reliance can limit mixing and sustention of amendments within the treatment zone. Oil-in-water emulsions offer an alternative for amendment delivery - one that has potential to enhance control of the distribution and release of buffering agents within the subsurface. Focus here is placed on using metal oxide and carbonate nanoparticles to release alkalinity from soybean oil, a common dispersed phase within emulsions designed to support remediation activities. Batch reactor systems were employed to examine the influence of dispersed phase composition on particle stability and solubility. The stability of uncoated MgO and CaCO3 particles in unmodified soybean oil was explored in a series of sedimentation studies conducted at solid loadings of 0.05, 0.1, and 0.2% mass. Three nominal sizes of MgO particles were examined (20, 50, and 100 nm) and one CaCO3 particle size (60 nm). Results from sedimentation studies conducted over four hours suggest that the viscosity of the soybean oil imparts a kinetic stability, for all sizes of the uncoated MgO and CaCO3 nanoparticles, which is sufficient time for particle encapsulation within oil-in-water emulsions. Based upon these results, the sedimentation of the 50 nm and 100 nm MgO, and 60 nm CaCO3 particles was assessed over longer durations (≥72 hr). Results from these stability tests suggest that the 50 nm and 100 nm MgO particles have greater kinetic stability than the 60 nm CaCO3. Batch studies were also used to assess the influence of n-butanol, a co-solvent hypothesized to aid in controlling the rate of alkalinity release, on phase behavior and metal (Mg2+ and Ca2+) solubility. Phase behavior studies suggest that n-butanol has a limited region of miscibility within the soybean oil-water system. Use of n-butanol and water within this region of

  7. Ternary borides Nb7Fe3B8 and Ta7Fe3B8 with Kagome-type iron framework.

    PubMed

    Zheng, Qiang; Gumeniuk, Roman; Borrmann, Horst; Schnelle, Walter; Tsirlin, Alexander A; Rosner, Helge; Burkhardt, Ulrich; Reissner, Michael; Grin, Yuri; Leithe-Jasper, Andreas

    2016-06-21

    Two new ternary borides TM7Fe3B8 (TM = Nb, Ta) were synthesized by high-temperature thermal treatment of samples obtained by arc-melting. This new type of structure with space group P6/mmm, comprises TM slabs containing isolated planar hexagonal [B6] rings and iron centered TM columns in a Kagome type of arrangement. Chemical bonding analysis in Nb7Fe3B8 by means of the electron localizability approach reveals two-center interactions forming the Kagome net of Fe and embedded B, while weaker multicenter bonding present between this net and Nb atoms. Magnetic susceptibility measurements reveal antiferromagnetic order below TN = 240 K for Nb7Fe3B8 and TN = 265 K for Ta7Fe3B8. Small remnant magnetization below 0.01μB per f.u. is observed in the antiferromagnetic state. The bulk nature of the magnetic transistions was confirmed by the hyperfine splitting of the Mössbauer spectra, the sizable anomalies in the specific heat capacity, and the kinks in the resistivity curves. The high-field paramagnetic susceptibilities fitted by the Curie-Weiss law show effective paramagnetic moments μeff≈ 3.1μB/Fe in both compounds. The temperature dependence of the electrical resistivity also reveals metallic character of both compounds. Density functional calculations corroborate the metallic behaviour of both compounds and demonstrate the formation of a sizable local magnetic moment on the Fe-sites. They indicate the presence of both antiferro- and ferrromagnetic interactions.

  8. Preliminary investigation of zirconium boride ceramals for gas-turbine blade applications

    NASA Technical Reports Server (NTRS)

    Hoffman, Charles A

    1953-01-01

    Zirconium boride ZrB2 ceramals were investigated for possible gas-turbine-blade application. Included in the study were thermal shock evaluations of disks, preliminary turbine-blade operation, and observations of oxidation resistance. Thermal shock disks of the following three compositions were studied: (a) 97.5 percent ZrB2 plus 2.5 percent B by weight; (b) 92.5 percent ZrB2 plus 7.5 percent B by weight; and (c) 100 percent ZrB2. Thermal shock disks were quenched from temperatures of 1800 degrees, 2000 degrees, 2200 degrees, and 2400 degrees F. The life of turbine blades containing 93 percent ZrB2 plus 7 percent B by weight was determined in gas-turbine tests. The blades were run at approximately 1600 degrees F and 15,000 to 26,000 rpm. The thermal shock resistance of the 97.5 percent ZrB2 plus 2.5 percent boron ceramals compares favorably with that of TiC plus Co and TiC plus Ni ceramals. Oxidation of the disks during the thermal shock evaluation was slight for the comparatively short time (8.3 hr) up through 2000 degrees F. Oxidation of a specimen was severe, however, after 100 hours at 2000 degrees F. The turbine blade performance evaluation of the 93 percent ZrB2 plus 7 percent B composition was preliminary in scope ; no conclusions can be drawn.

  9. Reduction of boride enhanced diffusion in MeV-implanted silicon

    NASA Astrophysics Data System (ADS)

    Shao, Lin; Thompson, Phillip E.; Bleiler, Roger J.; Baumann, Scott; Wang, Xuemei; Chen, Hui; Liu, Jiarui; Chu, Wei-Kan

    2002-11-01

    We demonstrated that implantation of MeV Si ions into a Si substrate can suppress boride-enhanced diffusion (BED) normally associated with a high B concentration layer. In this study, a molecular-beam-epitaxy grown Si layer with a B concentration of 1021/cm3 over a 10 nm region capped with 100 nm Si was used as a source of BED. A sequence of four B delta-doped layers with 100 nm Si spacers was grown prior to the source layer to monitor the diffusion. Half of the sample was implanted with 1 MeV Si ions at a dose of 1016/cm2, followed by annealing at 800, 900, and 1000 °C for different periods of time. For control samples without the MeV Si implant, BED was observed with enhancements of around 40 while the MeV Si-implanted sample showed a reduced, yet nonvanishing, BED with an enhancement of around 8 after annealing at 800 °C for 1 h. Both BED and suppressed BED with MeV implant show transient behavior with decay after annealing for long periods of time. The effect of high energy implant on B diffusion from surface deposited B layer was also discussed.

  10. Metal-Assisted Channel Stabilization: Disposition of a Single Histidine on the N-terminus of Alamethicin Yields Channels with Extraordinarily Long Lifetimes

    PubMed Central

    Noshiro, Daisuke; Asami, Koji; Futaki, Shiroh

    2010-01-01

    Abstract Alamethicin, a member of the peptaibol family of antibiotics, is a typical channel-forming peptide with a helical structure. The self-assembly of the peptide in the membranes yields voltage-dependent channels. In this study, three alamethicin analogs possessing a charged residue (His, Lys, or Glu) on their N-termini were designed with the expectation of stabilizing the transmembrane structure. A slight elongation of channel lifetime was observed for the Lys and Glu analogs. On the other hand, extensive stabilization of certain channel open states was observed for the His analog. This stabilization was predominantly observed in the presence of metal ions such as Zn2+, suggesting that metal coordination with His facilitates the formation of a supramolecular assembly in the membranes. Channel stability was greatly diminished by acetylation of the N-terminal amino group, indicating that the N-terminal amino group also plays an important role in metal coordination. PMID:20441743

  11. Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions.

    PubMed

    Kullgren, Birgitta; Jarvis, Erin E; An, Dahlia D; Abergel, Rebecca J

    2013-01-01

    Because of the continuing use of nuclear fuel sources and heightened threats of nuclear weapon use, the amount of produced and released radionuclides is increasing daily, as is the risk of larger human exposure to fission product actinides. A rodent model was used to follow the in vivo distribution of representative actinides, administered as free metal ions or complexed with chelating agents including diethylenetriamine pentaacetic acid (DTPA) and the hydroxypyridinonate ligands 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Different metabolic pathways for the different metal ions were evidenced, resulting in intricate ligand- and metal-dependent decorporation mechanisms. While the three studied chelators are known for their unrivaled actinide decorporation efficiency, the corresponding metal complexes may undergo in vivo decomposition and release metal ions in various biological pools. This study sets the basis to further explore the metabolism and in vivo coordination properties of internalized actinides for the future development of viable therapeutic chelating agents. PMID:22957518

  12. Actinide chelation: biodistribution and in vivo complex stability of the targeted metal ions.

    PubMed

    Kullgren, Birgitta; Jarvis, Erin E; An, Dahlia D; Abergel, Rebecca J

    2013-01-01

    Because of the continuing use of nuclear fuel sources and heightened threats of nuclear weapon use, the amount of produced and released radionuclides is increasing daily, as is the risk of larger human exposure to fission product actinides. A rodent model was used to follow the in vivo distribution of representative actinides, administered as free metal ions or complexed with chelating agents including diethylenetriamine pentaacetic acid (DTPA) and the hydroxypyridinonate ligands 3,4,3-LI(1,2-HOPO) and 5-LIO(Me-3,2-HOPO). Different metabolic pathways for the different metal ions were evidenced, resulting in intricate ligand- and metal-dependent decorporation mechanisms. While the three studied chelators are known for their unrivaled actinide decorporation efficiency, the corresponding metal complexes may undergo in vivo decomposition and release metal ions in various biological pools. This study sets the basis to further explore the metabolism and in vivo coordination properties of internalized actinides for the future development of viable therapeutic chelating agents.

  13. Remote Stabilization of Copper Paddlewheel Based Molecular Building Blocks in Metal-Organic Frameworks

    SciTech Connect

    Gao, Wen-Yang; Cai, Rong; Pham, Tony; Forrest, Katherine A.; Hogan, Adam; Nugent, Patrick; Williams, Kia; Wojtas, Lukasz; Luebke, Ryan; Weseliinski, Lukasz J.; Zaworotko, Michael J.; Space, Brian; Chen, Yu-Sheng; Eddaoudi, Mohamed; Shi, Xiaodong; Ma, Shengqian

    2015-08-21

    Copper paddlewheel based molecular building blocks (MBBs) are ubiquitous and have been widely employed for the construction of highly porous metal–organic frameworks (MOFs). However, most copper paddlewheel based MOFs fail to retain their structural integrity in the presence of water. This instability is directly correlated to the plausible displacement of coordinating carboxylates in the copper paddlewheel MBB, [Cu₂(O₂C-)₄], by the strongly coordinating water molecules. In this comprehensive study, we illustrate the chemical stability control in the rht-MOF platform via strengthening the coordinating bonds within the triangular inorganic MBB, [Cu₃O(N4–x(CH)xC-)₃] (x = 0, 1, or 2). Remotely, the chemical stabilization propagated into the paddlewheel MBB to afford isoreticular rht-MOFs with remarkably enhanced water/chemical stabilities compared to the prototypal rht-MOF-1.

  14. Bonding glass to metal with plastic for stability over temperature: II

    NASA Astrophysics Data System (ADS)

    Willis, Chris L.; Petrie, Stephen P.

    2002-09-01

    To enable the invention of new optical instruments subjected to a broad range of operating conditions, there is a need to develop improved technology to hold small mirrors and other optical elements with high dimensional stability and low cost. A previous paper described a screening experiment on small face bonded mirrors subjected to an environment of -41 to +70 degree(s)C with the intent of finding factors that influence the bond joint's contribution to angular stability. This paper describes part of the continuing experiment, specifically addressing BK-7 mirrors bonded to Aluminum mounts with a flexible adhesive. The resulting tilt errors in the mirror assemblies were measured, and showed a definite pattern with respect to bond thickness. Flexible bonds between these two CTE mismatched materials did not fail, and exhibited high stability over temperature at 0.002-inch bond thickness.

  15. Effect of Au Content on Thermal Stability and Mechanical Properties of Au-Cu-Ag-Si Bulk Metallic Glasses

    NASA Astrophysics Data System (ADS)

    Guo, H.; Zhang, W.; Chen, M. W.; Saotome, Y.; Fukuhara, M.; Inoue, A.

    2011-06-01

    The thermal stability, glass-forming ability (GFA), and mechanical and electrical properties of Au-based Au x Si17Cu75.5- x Ag7.5 ( x = 40 to 75.5 at. pct) metallic glasses were investigated. The glass transition temperature ( T g ) and crystallization temperature ( T x ) decreased with increasing Au content. The ultralow T g values below 373 K (100 °C) were obtained for alloys with x = 55 to 75.5. The alloys with x = 45 to 70 exhibited a high stabilization of supercooled liquid and a high GFA, and the supercooled liquid region and critical sample diameter for glass formation were in the range of 31 K to 50 K and 2 to 5 mm, respectively. The compressive fracture strength ( σ c,f ), Young's modulus ( E), and Vicker's hardness ( H v ) of the bulk metallic glasses (BMGs) decreased with increasing Au content. A linear correlation between Au concentration and the characteristic temperature, i.e., T g and T x , and mechanical properties, i.e., σ c,f , E, and H v , as well as electrical resistivity can be found in the BMGs, which will be helpful for the composition design of the desirable Au-based BMGs with tunable physical properties.

  16. Improvement of thermal stability of metal/oxide interface for electronic devices

    SciTech Connect

    Ichikawa, Yo; Hiramoto, Masayoshi; Matsukawa, Nozomu; Iijima, Kenji; Kitagawa, Masatoshi

    1998-12-31

    The nano-meter controlled iron/iron-oxide multilayer materials have been successfully obtained by the pulse reactive sputtering method with high deposition rate. These multilayer demonstrated a good thermal stability of its structure and magnetic properties up to 500 C when a small amount of Si was doped in the structure, whereas the non-doped multilayer degraded at above 300 C. The difference of the oxidation energy between Fe and Si increases the thermal stability of the interface between Fe and Fe-O layer.

  17. Critical state stability in type-II superconductors and superconducting--normal-metal composites

    SciTech Connect

    Mints, R.G.; Rakhmanov, A.L.

    1981-07-01

    This review is devoted to the problem of critical state stability in hard superconductors and superconducting normal composites. An introduction is given to the properties of hard and composite superconductors, and to the qualitative nature of the physical processes that occur in these materials in the critical state. The dynamics of the development of instabilities of various kinds are treated in detail. Stability criteria are obtained and discussed, and theory is compared with experiment. The interaction between flux jumps and plastic strain jerks and the training phenomenon in superconductors are also covered.

  18. AN EVALUATION OF FACTORS AFFECTING THE SOLIDIFICATION/STABILIZATION OF HEAVY METAL SLUDGE

    EPA Science Inventory

    Solidification/stabilization (SIS) of hazardous waste involves mixing the waste with a binder material to enhance the physical properties of the waste and to immobilize contaminants that may be detrimental to the environment. Many hazardous wastes contain materials that are know...

  19. Stability and transport of commercial metal oxide nanoparticles in aquatic systems

    EPA Science Inventory

    The use of nano-technology and the application of products containing nano-scale particles have been increasing. When nano-scale particles are released to the environment, their stability, transport properties and interaction with other pollutants and natural organic matter play ...

  20. Polarographic Determination of Composition and Thermodynamic Stability Constant of a Complex Metal Ion.

    ERIC Educational Resources Information Center

    Marin, Dolores; Mendicuti, Francisco

    1988-01-01

    Describes a laboratory experiment designed to encourage laboratory cooperation among individual undergraduate students or groups. Notes each student contributes results individually and the exchange of data is essential to obtain final results. Uses the polarographic method for determining complex metal ions. (MVL)

  1. Stabilizing lithium metal using ionic liquids for long-lived batteries.

    PubMed

    Basile, A; Bhatt, A I; O'Mullane, A P

    2016-01-01

    Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid-electrolyte interphase that allows safe charge-discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid-electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652

  2. First Principles Studies of Phase Stability and Reaction Dynamics in Complex Metal Hydrides

    SciTech Connect

    Chou, Mei-Yin

    2014-09-29

    Complex metal hydrides are believed to be one of the most promising materials for developing hydrogen storage systems that can operate under desirable conditions. At the same time, these are also a class of materials that exhibit intriguing properties. We have used state-of-the-art computational techniques to study the fundamental properties of these materials.

  3. Stabilizing lithium metal using ionic liquids for long-lived batteries

    PubMed Central

    Basile, A.; Bhatt, A. I.; O'Mullane, A. P.

    2016-01-01

    Suppressing dendrite formation at lithium metal anodes during cycling is critical for the implementation of future lithium metal-based battery technology. Here we report that it can be achieved via the facile process of immersing the electrodes in ionic liquid electrolytes for a period of time before battery assembly. This creates a durable and lithium ion-permeable solid–electrolyte interphase that allows safe charge–discharge cycling of commercially applicable Li|electrolyte|LiFePO4 batteries for 1,000 cycles with Coulombic efficiencies >99.5%. The tailored solid–electrolyte interphase is prepared using a variety of electrolytes based on the N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide room temperature ionic liquid containing lithium salts. The formation is both time- and lithium salt-dependant, showing dynamic morphology changes, which when optimized prevent dendrite formation and consumption of electrolyte during cycling. This work illustrates that a simple, effective and industrially applicable lithium metal pretreatment process results in a commercially viable cycle life for a lithium metal battery. PMID:27292652

  4. Single crystal studies on boron-rich {tau}-borides Ni{sub 23-x}M{sub x}B{sub 6} (M=Zn, Ga, In, Sn, Ir)-The surprising occurrence of B{sub 4}-tetraheda as a normal case?

    SciTech Connect

    Kotzott, Dominik; Ade, Martin; Hillebrecht, Harald

    2010-10-15

    Single crystals of the cubic {tau}-borides Ni{sub 23-x}M{sub x}B{sub 6} (M=Zn, Ga, In, Sn, Ir) were synthesised from the elements at temperatures between 1200 and 1500 {sup o}C. The structure refinements show that the existence of boron-rich phases is quite common. Starting from the idealised composition Ni{sub 20}M'{sub 3}B{sub 6} a part of the metal atoms on site 8c is substituted by B{sub 4} tetrahedra. For M'=Ga a complete exchange seems to be possible leading to the composition Ni{sub 20}GaB{sub 14}. For M'=Zn and Sn the formation of solid solutions is less extended. For M'=In no exchange is observed but an unusual pattern of Ni/In distribution is observed. With M=Ir mixed occupations occur for all sites and the boron content varies, too. All compositions were confirmed by EDX measurements. - Graphical abstract: Crystal structure of {tau}-Borides M{sub 23}B{sub 6}; M1: M{sub 8}-cubes, M2: M{sub 12}-cuboctahedra centred by M3, isolated M-atoms: M4; grey circles: boron, black circles: metal atoms.

  5. First example of a modular porphyrinoid assembly capable of stabilizing different metal ions in a single molecular scaffold.

    PubMed

    Murugavel, Muthuchamy; Reddy, R V Ramana; Dey, Dhananjay; Sankar, Jeyaraman

    2015-10-01

    We report the synthesis and characterization of porphyrin-corrole-porphyrin (Por-Cor-Por) hybrids directly linked at the meso-meso positions for the first time. The stability and solubility of the trimer are carefully balanced by adding electron-withdrawing substituents to the corrole ring and sterically bulky groups on the porphyrins. The new hybrids are capable of stabilizing more than one metal ion in a single molecular scaffold. The versatility of the triad has been demonstrated by successfully stabilizing homo- (Ni) and heterotrinuclear (Ni-Cu-Ni) coordination motifs. The solid-state structure of the NiPor-CuCor-PorNi hybrid was revealed by single-crystal X-ray diffraction studies. The Ni(II) porphyrins are significantly ruffled and tilted by 83° from the plane of corrole. The robustness of the synthesized hybrids was reflected in the electrochemical investigations and the redox behaviour of the hybrids show that the oxidation processes are mostly corrole-centred. In particular it is worth noting that the Por-Cor-Por hybrid can further be manipulated due to the presence of substituent-free meso-positions on both the terminals. PMID:26242294

  6. Crystal Field Splitting is Limiting the Stability and Strength of Ultra-incompressible Orthorhombic Transition Metal Tetraborides

    PubMed Central

    Zhang, R. F.; Wen, X. D.; Legut, D.; Fu, Z. H.; Veprek, S.; Zurek, E.; Mao, H. K.

    2016-01-01

    The lattice stability and mechanical strengths of the supposedly superhard transition metal tetraborides (TmB4, Tm = Cr, Mn and Fe) evoked recently much attention from the scientific community due to the potential applications of these materials, as well as because of general scientific interests. In the present study, we show that the surprising stabilization of these compounds from a high symmetry to a low symmetry structure is accomplished by an in-plane rotation of the boron network, which maximizes the in-plane hybridization by crystal field splitting between d orbitals of Tm and p orbitals of B. Studies of mechanical and electronic properties of TmB4 suggest that these tetraborides cannot be intrinsically superhard. The mechanical instability is facilitated by a unique in-plane or out-of-plane weakening of the three-dimensional covalent bond network of boron along different shear deformation paths. These results shed a novel view on the origin of the stability and strength of orthorhombic TmB4, highlighting the importance of combinational analysis of a variety of parameters related to plastic deformation of the crystalline materials when attempting to design new ultra-incompressible, and potentially strong and hard solids. PMID:26976479

  7. Salt-Responsive Polysulfabetaines from Acrylate and Acrylamide Precursors: Robust Stabilization of Metal Nanoparticles in Hyposalinity and Hypersalinity.

    PubMed

    Vasantha, Vivek Arjunan; Junhui, Chen; Ying, Tay Boon; Parthiban, Anbanandam

    2015-10-13

    Metal nanoparticles (MNps) tend to be influenced by environmental factors such as pH, ionic strength, and temperature, thereby leading to aggregation. Forming stable aqueous dispersions could be one way of addressing the environmental toxicity of MNps. In contrast to the electrolyte-induced aggregation of MNps, novel zwitterionic sulfabetaine polymers reported here act as stabilizers of MNps even under high salinity. Polysulfabetaines exhibited unique solubility and swelling tendencies in brine and deionized water, respectively. The polysulfabetaines derived from methacrylate (PSBMA) and methacrylamide (PSBMAm) also showed reversible salt-responsive and thermoresponsive behaviors as confirmed by cloud-point titration, transmittance, and dynamic light scattering studies. The brine soluble nature was explored for its ability to be used as a capping agents to form metal nanoparticles using formic acid as a reducing agent. Thus, silver and noble metal (gold and palladium) nanoparticles were synthesized. The nanoparticles formed were characterized by UV-vis, XRD, TEM, EDX, and DLS studies. The size of the nanoparticles remained more or less the same even after 2 months of storage in 2 M sodium chloride solution under ambient conditions and also at elevated temperatures as confirmed by light-scattering measurements. The tunable, stimuli-responsive polysulfabetaine-capped stable MNp formed under low (hyposalinity) and hypersalinity could find potential applications in a variety of areas. PMID:26394088

  8. Computational and experimental investigation for new transition metal selenides and sulfides: The importance of experimental verification for stability

    NASA Astrophysics Data System (ADS)

    Narayan, Awadhesh; Bhutani, Ankita; Rubeck, Samantha; Eckstein, James N.; Shoemaker, Daniel P.; Wagner, Lucas K.

    2016-07-01

    Expanding the library of known inorganic materials with functional electronic or magnetic behavior is a long-standing goal in condensed matter physics and materials science. Recently, the transition metal chalcogenides including selenium and sulfur have been of interest because of their correlated-electron properties, as seen in the iron-based superconductors and the transition metal dichalcogenides. However, the chalcogenide chemical space is less explored than that of oxides, and there is an open question of whether there may be new materials heretofore undiscovered. We perform a systematic combined theoretical and experimental search over ternary phase diagrams that are empty in the Inorganic Crystal Structure Database containing cations, transition metals, and one of selenium or sulfur. In these 27 ternary systems, we use a probabilistic model to reduce the likelihood of false negative predictions, which results in a list of 24 candidate materials. We then conduct a variety of synthesis experiments to check the candidate materials for stability. While the prediction method did obtain previously unknown compositions that are predicted stable within density functional theory, none of the candidate materials formed in our experiments. We come to the conclusion that these phase diagrams are "empty" in the case of bulk synthesis, but it remains a possibility that alternate synthesis routes may produce some of these phases.

  9. Stability of ferromagnetism in the half-metallic pnictides and similar compounds: a first-principles study

    NASA Astrophysics Data System (ADS)

    Sasioglu, E.; Galanakis, I.; Sandratskii, L. M.; Bruno, P.

    2005-06-01

    Based on first-principles electron structure calculations and employing the frozen-magnon approximation, we study the exchange interactions in a series of transition-metal binary alloys crystallizing in the zinc-blende structure and calculate the Curie temperature within both the mean-field approximation and random-phase approximation. We study two Cr compounds, CrAs and CrSe, and four Mn compounds, MnSi, MnGe, MnAs and MnC. MnC, MnSi and MnGe are isovalent to CrAs and MnAs is isoelectronic to CrSe. Ferromagnetism is particular stable for CrAs, MnSi and MnGe: all three compounds show Curie temperatures around 1000 K. On the other hand, CrSe and MnAs show a tendency to antiferromagnetism when compressing the lattice. In MnC the half-metallic gap is located in the majority-spin channel, in contrast to the other five compounds. The large half-metallic gaps, very high Curie temperatures, the stability of the ferromagnetism with respect to the variation of the lattice parameter and a coherent growth on semiconductors make MnSi and CrAs the most promising candidates for use in spintronics devices.

  10. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil.

  11. Integrating EDDS-enhanced washing with low-cost stabilization of metal-contaminated soil from an e-waste recycling site.

    PubMed

    Beiyuan, Jingzi; Tsang, Daniel C W; Ok, Yong Sik; Zhang, Weihua; Yang, Xin; Baek, Kitae; Li, Xiang-Dong

    2016-09-01

    While chelant-enhanced soil washing has been widely studied for metal extraction from contaminated soils, there are concerns about destabilization and leaching of residual metals after remediation. This study integrated 2-h soil washing enhanced by biodegradable ethylenediaminedisuccinic acid (EDDS) and 2-month stabilization using agricultural waste product (soybean stover biochar pyrolyzed at 300 and 700 °C), industrial by-product (coal fly ash (CFA)), and their mixture. After integration with 2-month stabilization, the leachability and mobility of residual metals (Cu, Zn, and Pb) in the field-contaminated soil were significantly reduced, especially for Cu, in comparison with 2-h EDDS washing alone. This suggested that the metals destabilized by EDDS-washing could be immobilized by subsequent stabilization with biochar and CFA. Moreover, when the remediation performance was evaluated for phytoavailability and bioaccessibility, prior EDDS washing helped to achieve a greater reduction in the bioavailable fraction of metals than sole stabilization treatment. This was probably because the weakly-bound metals were first removed by EDDS washing before stabilization. Both individual and combined applications of biochar and CFA showed comparable effectiveness regardless of the difference in material properties, possibly due to the high level of amendments (150 ton ha(-1)). Based on the mobility and bioaccessibility results, the estimated human health risk (primarily resulting from Pb) could be mitigated to an acceptable level in water consumption pathway or reduced by half in soil ingestion pathway. These results suggest that an integration of EDDS washing with soil stabilization can alleviate post-remediation impacts of residual metals in the treated soil. PMID:27337434

  12. Thermal stability of Dion-Jacobson mixed-metal-niobate double-layered perovskites

    SciTech Connect

    Hermann, Andrew T.; Wiley, John B.

    2009-05-06

    The thermal stability and decomposition pathways of six Dion-Jacobson-related double-layered perovskites, ALaNb{sub 2}O{sub 7} (A = H, Li, Na, Ag) and (ACl)LaNb{sub 2}O{sub 7} (A = Fe, Cu), are investigated. These compounds are made by low temperature (<400 deg. C) ion exchange reactions from RbLaNb{sub 2}O{sub 7}. All the compounds are low temperature phases with some of them exhibiting decomposition exotherms consistent with metastability. Decomposition temperatures and reactions pathways vary with the identity of A with most decompositions resulting in the formation of a niobate (containing A) and LaNbO{sub 4}. Results from differential scanning calorimetry and high temperature X-ray powder diffraction studies are presented and structural parameters pertinent to compound stability discussed.

  13. Antioxidant study of quercetin and their metal complex and determination of stability constant by spectrophotometry method.

    PubMed

    Ravichandran, R; Rajendran, M; Devapiriam, D

    2014-03-01

    Quercetin found chelate cadmium ions, scavenge free radicals produced by cadmium. Hence new complex, quercetin with cadmium was synthesised, and the synthesised complex structures were determined by UV-vis spectrophotometry, infrared spectroscopy, thermogravimetry and differential thermal analysis techniques (UV-vis, IR, TGA and DTA). The equilibrium stability constants of quercetin-cadmium complex were determined by Job's method. The determined stability constant value of quercetin-cadminum complex at pH 4.4 is 2.27×10(6) and at pH 7.4 is 7.80×10(6). It was found that the quercetin and cadmium ion form 1:1 complex in both pH 4.4 and pH 7.4. The structure of the compounds was elucidated on the basis of obtained results. Furthermore, the antioxidant activity of the free quercetin and quercetin-cadmium complexes were determined by DPPH and ABTS assays.

  14. On the stability of the electronic system in transition metal dichalcogenides.

    PubMed

    Faraggi, M N; Zubizarreta, X; Arnau, A; Silkin, V M

    2016-05-11

    Based on first-principles calculations, we prove that the origin of charge-density wave formation in metallic layered transition metal dichalcogenides (TMDC) is not due to an electronic effect, like the Fermi surface (FS) nesting, as it had been proposed. In particular, we consider NbSe2, NbS2, TaSe2, and TaS2 as representative examples of 2H-TMDC polytypes. Our main result consists that explicit inclusion of the matrix elements in first-principles calculations of the electron susceptibility [Formula: see text] removes, due to strong momentum dependence of the matrix elements, almost all the information about the FS topologies in the resulting [Formula: see text]. This finding strongly supports an interpretation in which the momentum dependence of the electron-phonon interaction is the only reason why the phenomenon of charge-density waves appears in this class of materials. PMID:27057801

  15. On the behavior and stability of a liquid metal in quasi-planar electric contacts

    NASA Astrophysics Data System (ADS)

    Samuilov, S. D.

    2016-06-01

    The contacts between conductors formed under relatively low pressures can be treated as quasi-planar. Melting of the material of such contacts upon the passage of electric current is used in some technological processes, but the behavior of liquid in these conditions has not been analyzed. In this study, such an estimate was obtained for specific conditions appearing under electric-pulse compacting (briquetting) of metal shavings. Analysis of derived relations shows that this estimate is valid for any quasi-2D contacts upon passage of a pulsed current of duration from microseconds to milliseconds. It is shown that the spacing between contact surfaces decreases, the liquid metal is extruded in the lateral directions, and the area of the contact and its conductivity increase. Sausage-type magnetohydrodynamic (MHD) instability and overheating instability do not evolve in these conditions because the instability wavelength is larger than the rated thickness of the molten layer; screw MHD instability can appear in slower processes.

  16. On the stability of the electronic system in transition metal dichalcogenides.

    PubMed

    Faraggi, M N; Zubizarreta, X; Arnau, A; Silkin, V M

    2016-05-11

    Based on first-principles calculations, we prove that the origin of charge-density wave formation in metallic layered transition metal dichalcogenides (TMDC) is not due to an electronic effect, like the Fermi surface (FS) nesting, as it had been proposed. In particular, we consider NbSe2, NbS2, TaSe2, and TaS2 as representative examples of 2H-TMDC polytypes. Our main result consists that explicit inclusion of the matrix elements in first-principles calculations of the electron susceptibility [Formula: see text] removes, due to strong momentum dependence of the matrix elements, almost all the information about the FS topologies in the resulting [Formula: see text]. This finding strongly supports an interpretation in which the momentum dependence of the electron-phonon interaction is the only reason why the phenomenon of charge-density waves appears in this class of materials.

  17. Preparation of silica stabilized biological templates for the production of metal and layered nanoparticles

    DOEpatents

    Culver, James N; Royston, Elizabeth; Brown, Adam; Harris, Michael

    2013-02-26

    The present invention relates to a system and method providing for increased silica growth on a bio-template, wherein the bio-template is pretreated with aniline to produce a uniform silica attractive surface and yielding a significant silica layers of at least 10 nm, and more preferably at least 20 nm in thickness, thereby providing for a high degree of stability to the bio-template.

  18. Humidity versus photo-stability of metal halide perovskite films in a polymer matrix.

    PubMed

    Manshor, Nurul Ain; Wali, Qamar; Wong, Ka Kan; Muzakir, Saifful Kamaluddin; Fakharuddin, Azhar; Schmidt-Mende, Lukas; Jose, Rajan

    2016-08-21

    Despite the high efficiency of over 21% reported for emerging thin film perovskite solar cells, one of the key issues prior to their commercial deployment is to attain their long term stability under ambient and outdoor conditions. The instability in perovskite is widely conceived to be humidity induced due to the water solubility of its initial precursors, which leads to decomposition of the perovskite crystal structure; however, we note that humidity alone is not the major degradation factor and it is rather the photon dose in combination with humidity exposure that triggers the instability. In our experiment, which is designed to decouple the effect of humidity and light on perovskite degradation, we investigate the shelf-lifetime of CH3NH3PbI3 films in the dark and under illumination under high humidity conditions (Rel. H. > 70%). We note minor degradation in perovskite films stored in a humid dark environment whereas upon exposure to light, the films undergo drastic degradation, primarily owing to the reactive TiO2/perovskite interface and also the surface defects of TiO2. To enhance its air-stability, we incorporate CH3NH3PbI3 perovskite in a polymer (poly-vinylpyrrolidone, PVP) matrix which retained its optical and structural characteristics in the dark for ∼2000 h and ∼800 h in room light soaking, significantly higher than a pristine perovskite film, which degraded completely in 600 h in the dark and in less than 100 h when exposed to light. We attribute the superior stability of PVP incorporated perovskite films to the improved structural stability of CH3NH3PbI3 and also to the improved TiO2/perovskite interface upon incorporating a polymer matrix. Charge injection from the polymer embedded perovskite films has also been confirmed by fabricating solar cells using them, thereby providing a promising future research pathway for stable and efficient perovskite solar cells. PMID:27432518

  19. High mobility and high stability glassy metal-oxynitride materials and devices

    PubMed Central

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun

    2016-01-01

    In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices. PMID:27044371

  20. High mobility and high stability glassy metal-oxynitride materials and devices

    NASA Astrophysics Data System (ADS)

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun

    2016-04-01

    In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.

  1. High mobility and high stability glassy metal-oxynitride materials and devices.

    PubMed

    Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun

    2016-01-01

    In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices. PMID:27044371

  2. Metal-Induced Stabilization and Activation of Plasmid Replication Initiator RepB

    PubMed Central

    Ruiz-Masó, José A.; Bordanaba-Ruiseco, Lorena; Sanz, Marta; Menéndez, Margarita; del Solar, Gloria

    2016-01-01

    Initiation of plasmid rolling circle replication (RCR) is catalyzed by a plasmid-encoded Rep protein that performs a Tyr- and metal-dependent site-specific cleavage of one DNA strand within the double-strand origin (dso) of replication. The crystal structure of RepB, the initiator protein of the streptococcal plasmid pMV158, constitutes the first example of a Rep protein structure from RCR plasmids. It forms a toroidal homohexameric ring where each RepB protomer consists of two domains: the C-terminal domain involved in oligomerization and the N-terminal domain containing the DNA-binding and endonuclease activities. Binding of Mn2+ to the active site is essential for the catalytic activity of RepB. In this work, we have studied the effects of metal binding on the structure and thermostability of full-length hexameric RepB and each of its separate domains by using different biophysical approaches. The analysis of the temperature-induced changes in RepB shows that the first thermal transition, which occurs at a range of temperatures physiologically relevant for the pMV158 pneumococcal host, represents an irreversible conformational change that affects the secondary and tertiary structure of the protein, which becomes prone to self-associate. This transition, which is also shown to result in loss of DNA binding capacity and catalytic activity of RepB, is confined to its N-terminal domain. Mn2+ protects the protein from undergoing this detrimental conformational change and the observed protection correlates well with the high-affinity binding of the cation to the active site, as substituting one of the metal-ligands at this site impairs both the protein affinity for Mn2+and the Mn2+-driven thermostabilization effect. The level of catalytic activity of the protein, especially in the case of full-length RepB, cannot be explained based only on the high-affinity binding of Mn2+ at the active site and suggests the existence of additional, lower-affinity metal binding site

  3. Fabrication of aluminum nitride and its stability in liquid alkali metals

    SciTech Connect

    Natesan, K.; Rink, D.L.

    1995-04-01

    The objective of this task are to (a) evaluate several fabrication procedures for development of aluminum nitride (AlN) coatings on the candidate first-wall structural material V-5wt.%Cr-5wt.%Ti, (b) evaluate the stability of coatings in contact with the structural alloy and liquid Li at temperatures of 200 to 400{degrees}C, (c) measure the electrical resistivity of the coated films after exposure to liquid Li, (d) evaluate the effects of coating defects on electrical resistivity, and (e) establish in-situ repair procedures to maintain adequate electrical insulating properties for the coatings.

  4. Metallic conductivity and air stability in copper chloride intercalated carbon fibers

    NASA Technical Reports Server (NTRS)

    Oshima, H.; Woollam, J. A.; Yavrouian, A.

    1982-01-01

    Carbon-copper chloride intercalation compounds have been obtained by using variously graphitized carbon fibers as host materials. The resultant conductors are air stable, thermally stable to 450 K, have electrical resistivities as low as 12.9 microohm cm at room temperature, and have metallic conductivity temperature dependencies. These intercalated fibers have tensile strengths of 160000 psi, and Young's moduli of 25 x 10 to the 6th psi. For aerospace use, 1/(resistivity x density) is a figure of merit. On this basis, a reduction in resistivity by a factor of two will make this conductor competitive with copper.

  5. Li-ion capacitors with carbon cathode and hard carbon/stabilized lithium metal powder anode electrodes

    NASA Astrophysics Data System (ADS)

    Cao, W. J.; Zheng, J. P.

    2012-09-01

    A lithium-ion capacitor was developed using a mixture of stabilized lithium metal powder and hard carbon as the anode electrode, while activated carbon was used as the cathode. A specific energy of approximately 82 Wh kg-1 was obtained based on the weight of electrode materials; however, when the electrolyte, separator, and current collectors were included, the specific energy of an assembled Li-ion capacitor was about 25 Wh kg-1. The capacitor was able to deliver over 60% of the maximum energy at a discharge C-rate of 44C. Through continuous galvanostatic charge/discharge cycling, the capacitance of the Li-ion capacitor degraded less than 3% over 600 cycles.

  6. Stability Analysis of an Inline Peptide-based Conjugate for Metal Delivery: Nickel(II)-claMP Tag Epidermal Growth Factor as a Model System

    PubMed Central

    Mills, Brittney J.; Laurence, Jennifer S.

    2014-01-01

    Metals are a key component of many diagnostic imaging and biotechnology applications, and the majority of cancer patients receive a platinum-based drug as part of their treatment. Significant effort has been devoted to developing tight binding synthetic chelators to enable effective targeted delivery of metal-based conjugates, with most successes involving lanthanides rather than transition metals for diagnostic imaging. Chemical conjugation modifies the protein’s properties and generates a heterogeneous mixture of products. Chelator attachment is typically done by converting the amino group on lysines to an amide, which can impact the stability and solubility of the targeting protein and these properties vary among the set of individual conjugate species. Site-specific attachment is sought to reduce complexity and control stability. Here, the metal abstraction peptide (MAP) technology was applied to create the claMP Tag, an inline platform for generating site-specific conjugates involving transition metals. The claMP Tag was genetically encoded into epidermal growth factor (EGF) and loaded with nickel(II) as a model system to demonstrate that the tag within the homogeneous inline conjugate presents sufficient solution stability to enable biotechnology applications. The structure and disulfide network of the protein and chemical stability of the claMP Tag and EGF components were characterized. PMID:25212829

  7. Method for removing silicide coatings in a medium of low-melting metals

    SciTech Connect

    Filipovskii, A.V.; Tarasenko, I.V.

    1994-11-01

    We propose a method for removing silicide coatings from the surfaces of workpieces made of refractory metals. The entire volume of the silicide layer is borated in a melt based on low-melting metals. The boride layer formed as a result is characterized by a large number of defects, low mechanical strength, and high etching susceptibility. Therefore, it can easily be removed by any existing method.

  8. Polyelectrolyte-stabilized metal oxide hydrosols as catalysts for the photooxidation of water by zinc porphyrins

    SciTech Connect

    Nahor, G.S.; Mosseri, S.; Neta, P.; Harriman, A.

    1988-07-28

    Colloids of ruthenium dioxide and iridium oxide have been prepared and characterized. These colloids, which are inherently negatively charged in neutral water, have been stabilized with a surface layer of polyelectrolyte. Electrostatic binding occurs between the stabilized colloids and water-soluble zinc porphyrins of the opposite electronic charge. Such electrostatic forces affect the rate constant for interfacial electron transfer between the colloids and radical cations derived from the zinc porphyrins. The products of these reactions depend upon the relative charges of the reactants. For oppositely charged reactants, the rate of interaction was very high but O/sub 2/ generation was not observed. In some cases where the porphyrin and colloid possess the same charge, the system can be used to oxidize water to O/sub 2/ under photochemical conditions. The yield of O/sub 2/ depends upon the solution pH and the nature of both reactants. With negatively charged reactions in alkaline solution, the authors have reported quantum efficiencies for O/sub 2/ generation in the range of 50-60%. With positively charged reactants, oxygen formation could be observed in acidic solution, although the quantum efficiencies were less than 10%.

  9. Use of Nanoconfinement to Control Metal-Halide Perovskite Crystallization and Stability

    NASA Astrophysics Data System (ADS)

    Lee, Sangchul; Feldman, Joshua; Lee, Stephanie

    We present a systematic study of the effect of nanoconfinement on the crystallization of methylammonium lead halide (MAPbI3) perovskite crystallization. MAPbI3 was spin coated onto anodized aluminum oxide (AAO) templates with uniaxially-aligned pores ranging from 20 - 200 nm in diameter and examined using 2-D X-ray diffraction and scanning electron microscopy. X-ray diffraction patterns revealed the presence of a transient precursor phase that converts to the MAPbI3 crystal structure upon thermal annealing. The orientation of the precursor phase and conversion rate to the MAPbI3 crystal structure were found to depend on the pore size of the AAO template. The stability of MAPbI3 in air also depends on the extent of nanoconfinement. When deposited on flat SiO2 surfaces, MAPbI3 degraded into PbI2 and MA after 21 days. When deposited in AAO templates exhibiting 20-nm pore sizes, however, MAPbI3 crystals were stable for longer than 16 days. These findings suggest that nanoconfinement of MAPbI3 crystals may be a promising strategy for improving the stability of perovskite-based solar cells.

  10. Stability of whole inactivated influenza virus vaccine during coating onto metal microneedles.

    PubMed

    Choi, Hyo-Jick; Bondy, Brian J; Yoo, Dae-Goon; Compans, Richard W; Kang, Sang-Moo; Prausnitz, Mark R

    2013-03-10

    Immunization using a microneedle patch coated with vaccine offers the promise of simplified vaccination logistics and increased vaccine immunogenicity. This study examined the stability of influenza vaccine during the microneedle coating process, with a focus on the role of coating formulation excipients. Thick, uniform coatings were obtained using coating formulations containing a viscosity enhancer and surfactant, but these formulations retained little functional vaccine hemagglutinin (HA) activity after coating. Vaccine coating in a trehalose-only formulation retained about 40-50% of vaccine activity, which is a significant improvement. The partial viral activity loss observed in the trehalose-only formulation was hypothesized to come from osmotic pressure-induced vaccine destabilization. We found that inclusion of a viscosity enhancer, carboxymethyl cellulose, overcame this effect and retained full vaccine activity on both washed and plasma-cleaned titanium surfaces. The addition of polymeric surfactant, Lutrol® micro 68, to the trehalose formulation generated phase transformations of the vaccine coating, such as crystallization and phase separation, which was correlated to additional vaccine activity loss, especially when coating on hydrophilic, plasma-cleaned titanium. Again, the addition of a viscosity enhancer suppressed the surfactant-induced phase transformations during drying, which was confirmed by in vivo assessment of antibody response and survival rate after immunization in mice. We conclude that trehalose and a viscosity enhancer are beneficial coating excipients, but the inclusion of surfactant is detrimental to vaccine stability.

  11. Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal-Organic Framework Engenders Thermal and Long-Term Stability.

    PubMed

    Li, Peng; Moon, Su-Young; Guelta, Mark A; Harvey, Steven P; Hupp, Joseph T; Farha, Omar K

    2016-07-01

    Immobilized enzymes typically have greater thermal and operational stability than their soluble form. Here we report that for the first time, a nerve agent detoxifying enzyme, organophosphorus acid anhydrolase (OPAA), has been successfully encapsulated into a water-stable zirconium metal-organic framework (MOF). This MOF features a hierarchical mesoporous channel structure and exhibits a 12 wt % loading capacity of OPAA. The thermal and long-term stabilities of OPAA are both significantly enhanced after immobilization. PMID:27341436

  12. Encapsulation of a Nerve Agent Detoxifying Enzyme by a Mesoporous Zirconium Metal-Organic Framework Engenders Thermal and Long-Term Stability.

    PubMed

    Li, Peng; Moon, Su-Young; Guelta, Mark A; Harvey, Steven P; Hupp, Joseph T; Farha, Omar K

    2016-07-01

    Immobilized enzymes typically have greater thermal and operational stability than their soluble form. Here we report that for the first time, a nerve agent detoxifying enzyme, organophosphorus acid anhydrolase (OPAA), has been successfully encapsulated into a water-stable zirconium metal-organic framework (MOF). This MOF features a hierarchical mesoporous channel structure and exhibits a 12 wt % loading capacity of OPAA. The thermal and long-term stabilities of OPAA are both significantly enhanced after immobilization.

  13. Surface effects and phase stability in metal oxides nanoparticles under visible irradiation

    SciTech Connect

    Ricci, Pier Carlo Carbonaro, C. M. Corpino, R. Chiriu, D. Stagi, L.

    2014-10-21

    The light induced phase transformation between stable phases of metal oxides nanoparticles is analyzed. The surrounding atmosphere as well as the defect density at the surface play a fundamental role. It has been found that in oxygen poor chamber atmosphere the phase transformation is favored, while the phase transition cannot be achieved if the defects at the surface are properly passivated. The phase transition is activated by intragap irradiation, able to activate the F- center at the surface connected to oxygen vacancies, and promoting the activation of the surface and the nucleation of neighboring crystallites. The phase transition was studied in Titanium oxide (TiO{sub 2}) and in Iron oxide (Fe{sub 2}O{sub 3}): Maghemite is subjected to a phase transformation to α−Fe{sub 2}O{sub 3} (hematite), Anatase nanoparticles converts to Rutile. The general mechanism of the phase transition and, more in general, the possibility to optically control the surface activity of metal oxides is discussed.

  14. SOLUBILITY OF IRON IN METALLIC HYDROGEN AND STABILITY OF DENSE CORES IN GIANT PLANETS

    SciTech Connect

    Wahl, Sean M.; Wilson, Hugh F.; Militzer, Burkhard

    2013-08-20

    The formation of the giant planets in our solar system, and likely a majority of giant exoplanets, is most commonly explained by the accretion of nebular hydrogen and helium onto a large core of terrestrial-like composition. The fate of this core has important consequences for the evolution of the interior structure of the planet. It has recently been shown that H{sub 2}O, MgO, and SiO{sub 2} dissolve in liquid metallic hydrogen at high temperature and pressure. In this study, we perform ab initio calculations to study the solubility of an innermost metallic core. We find dissolution of iron to be strongly favored above 2000 K over the entire pressure range (0.4-4 TPa) considered. We compare with and summarize the results for solubilities on other probable core constituents. The calculations imply that giant planet cores are in thermodynamic disequilibrium with surrounding layers, promoting erosion and redistribution of heavy elements. Differences in solubility behavior between iron and rock may influence evolution of interiors, particularly for Saturn-mass planets. Understanding the distribution of iron and other heavy elements in gas giants may be relevant in understanding mass-radius relationships, as well as deviations in transport properties from pure hydrogen-helium mixtures.

  15. Slater-Pauling behavior within quaternary intermetallic borides of the Ti 3Co 5B 2 structure-type

    NASA Astrophysics Data System (ADS)

    Burghaus, Jens; Dronskowski, Richard; Miller, Gordon J.

    2009-10-01

    First-principles, density-functional studies of several intermetallic borides of the general type M2M'Ru 5-nRh nB 2 ( n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3 d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions in this family of complex borides. COHP analyses of the M'- M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases.

  16. Adsorption of Carbon Dioxide on Unsaturated Metal Sites in M2 (dobpdc) Frameworks with Exceptional Structural Stability and Relation between Lewis Acidity and Adsorption Enthalpy.

    PubMed

    Yoo, Ga Young; Lee, Woo Ram; Jo, Hyuna; Park, Joonho; Song, Jeong Hwa; Lim, Kwang Soo; Moon, Dohyun; Jung, Hyun; Lim, Juhyung; Han, Sang Soo; Jung, Yousung; Hong, Chang Seop

    2016-05-23

    A series of metal-organic frameworks (MOFs) M2 (dobpdc) (M=Mn, Co, Ni, Zn; H4 dobpdc=4,4'-dihydroxy-1,1'-biphenyl-3,3'-dicarboxylic acid), with a highly dense arrangement of open metal sites along hexagonal channels were prepared by microwave-assisted or simple solvothermal reactions. The activated materials were structurally expanded when guest molecules including CO2 were introduced into the pores. The Lewis acidity of the open metal sites varied in the order MnZn, as confirmed by C=O stretching bands in the IR spectra, which are related to the CO2 adsorption enthalpy. DFT calculations revealed that the high CO2 binding affinity of transition-metal-based M2 (dobpdc) is primarily attributable to the favorable charge transfer from CO2 (oxygen lone pair acting as a Lewis base) to the open metal sites (Lewis acid), while electrostatic effects, the underlying factor responsible for the particular order of binding strength observed across different transition metals, also play a role. The framework stability against water coincides with the order of Lewis acidity. In this series of MOFs, the structural stability of Ni2 (dobpdc) is exceptional; it endured in water vapor, liquid water, and in refluxing water for one month, and the solid remained intact on exposure to solutions of pH 2-13. The DFT calculations also support the experimental finding that Ni2 (dobpdc) has higher chemical stability than the other frameworks.

  17. Adsorption of Carbon Dioxide on Unsaturated Metal Sites in M2 (dobpdc) Frameworks with Exceptional Structural Stability and Relation between Lewis Acidity and Adsorption Enthalpy.

    PubMed

    Yoo, Ga Young; Lee, Woo Ram; Jo, Hyuna; Park, Joonho; Song, Jeong Hwa; Lim, Kwang Soo; Moon, Dohyun; Jung, Hyun; Lim, Juhyung; Han, Sang Soo; Jung, Yousung; Hong, Chang Seop

    2016-05-23

    A series of metal-organic frameworks (MOFs) M2 (dobpdc) (M=Mn, Co, Ni, Zn; H4 dobpdc=4,4'-dihydroxy-1,1'-biphenyl-3,3'-dicarboxylic acid), with a highly dense arrangement of open metal sites along hexagonal channels were prepared by microwave-assisted or simple solvothermal reactions. The activated materials were structurally expanded when guest molecules including CO2 were introduced into the pores. The Lewis acidity of the open metal sites varied in the order MnZn, as confirmed by C=O stretching bands in the IR spectra, which are related to the CO2 adsorption enthalpy. DFT calculations revealed that the high CO2 binding affinity of transition-metal-based M2 (dobpdc) is primarily attributable to the favorable charge transfer from CO2 (oxygen lone pair acting as a Lewis base) to the open metal sites (Lewis acid), while electrostatic effects, the underlying factor responsible for the particular order of binding strength observed across different transition metals, also play a role. The framework stability against water coincides with the order of Lewis acidity. In this series of MOFs, the structural stability of Ni2 (dobpdc) is exceptional; it endured in water vapor, liquid water, and in refluxing water for one month, and the solid remained intact on exposure to solutions of pH 2-13. The DFT calculations also support the experimental finding that Ni2 (dobpdc) has higher chemical stability than the other frameworks. PMID:27105924

  18. Deterioration of yttria-stabilized zirconia by boron carbide alone or mixed with metallic or oxidized Fe, Cr, Zr mixtures

    NASA Astrophysics Data System (ADS)

    De Bremaecker, A.; Ayrault, L.; Clément, B.

    2014-08-01

    In the frame of severe accident conditions (PHEBUS FPT3 test), different experiments were carried out on the interactions of 20% yttria-stabilized zirconia (YSZ) and 20% ceria-stab zirconia with boron carbide or its oxidation products (B2O3): either tests under steam between 1230° and 1700 °C with B4C alone or B4C mixed with metals, either tests under Ar with boron oxide present in a mixture of iron and chromium oxides. In all cases an interaction was observed with formation of intergranular yttrium borate. At 1700 °C boron oxide is able to “pump out” the Y stabiliser from the YSZ grains but also some trace elements (Ca and Al) and to form a eutectic containing YBO3 and yttrium calcium oxy-borate (YCOB). At the same time a substantial swelling (“bloating”) of the zirconia happens, qualitatively similar to the foaming of irradiated fuel in contact with a Zr-melt. In all samples the lowering of the Y (or Ce)-content in the YSZ grains is so sharp that in the interaction layers zirconia is no longer stabilized. This is important when YSZ is envisaged as simulant of UO2 or as inert matrix for Am-transmutation.

  19. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air.

    PubMed

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g(-1). To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition-from solution at low temperature-of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles-from airplanes to quadcopters and weather balloons-for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  20. Potentiometric titration for determining the composition and stability of metal(II) alginates and pectinates in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Kaisheva, N. Sh.; Kaishev, A. Sh.

    2015-07-01

    The compositions and stabilities of Cu2+, Mn2+, Pb2+, Ca2+, Zn2+, Cd2+, Co2+, and Ni2+ alginates and pectinates are determined in aqueous solutions via titrimetry and potentiometry with calculations performed using Bjerrum's method, the curve intersection technique, and the equilibrium shift method. It is found that the interaction between Cu2+ and polyuronides is a stepwise process and, depending on the ligand concentration and the method of determination, Cu2+ alginate can be characterized by its ML, ML2, and ML3 compositions (where M is the metal ion and L is the structural unit of polyuronide) and stability constants logβ = 2.65, 5.00-5.70, and 7.18-7.80, respectively. The compositions of Cu2+ pectinates are ML and ML2 with logβ = 3.00 and 7.64-7.94, respectively. It is concluded that Pb2+, Ca2+, Mn2+, Zn2+, Cd2+, Co2+, and Ni2+ ions form only alginates and pectinates of ML2 composition with logβ values of 3.45 (Pb2+ alginate), 2.20 (Ca2+ alginate), 1.06 (Mn2+ alginate), 3.51 (Pb2+ pectinate), 2.35 (Ca2+ pectinate), and 1.24 (Mn2+ pectinate). The pectinates are shown to be more stable than the alginates, the most stable compounds being those formed by polyuronides and Cu2+. The least stable are those with Mn2+.

  1. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin.

    PubMed

    Moussa, Zeinab; Hmadeh, Mohamad; Abiad, Mohamad G; Dib, Omar H; Patra, Digambara

    2016-12-01

    Curcumin has been successfully encapsulated in cyclodextrin-metal organic frameworks (CD-MOFs) without altering their crystallinity. The interaction between curcumin and CD-MOFs is strong through hydrogen bond type interaction between the OH group of cyclodextrin of CD-MOFs and the phenolic hydroxyl group of the curcumin. Interestingly, dissolving the curcumin loaded CD-MOFs crystals in water results in formation of a unique complex between curcumin, γCD and potassium cations. In fact, the initial interaction between curcumin and CD-MOF is crucial for the formation of the latter. This new complex formed in alkaline media at pH 11.5 has maximum absorbance at 520nm and emittance at 600nm. Most importantly, the stability of curcumin in this complex was enhanced by at least 3 orders of magnitude compared to free curcumin and curcumin:γ-CD at pH 11.5. These results suggest a promising benign system of CD-MOFs, which can be used to store and stabilize curcumin for food applications.

  2. Flexible high power-per-weight perovskite solar cells with chromium oxide-metal contacts for improved stability in air

    NASA Astrophysics Data System (ADS)

    Kaltenbrunner, Martin; Adam, Getachew; Głowacki, Eric Daniel; Drack, Michael; Schwödiauer, Reinhard; Leonat, Lucia; Apaydin, Dogukan Hazar; Groiss, Heiko; Scharber, Markus Clark; White, Matthew Schuette; Sariciftci, Niyazi Serdar; Bauer, Siegfried

    2015-10-01

    Photovoltaic technology requires light-absorbing materials that are highly efficient, lightweight, low cost and stable during operation. Organolead halide perovskites constitute a highly promising class of materials, but suffer limited stability under ambient conditions without heavy and costly encapsulation. Here, we report ultrathin (3 μm), highly flexible perovskite solar cells with stabilized 12% efficiency and a power-per-weight as high as 23 W g-1. To facilitate air-stable operation, we introduce a chromium oxide-chromium interlayer that effectively protects the metal top contacts from reactions with the perovskite. The use of a transparent polymer electrode treated with dimethylsulphoxide as the bottom layer allows the deposition--from solution at low temperature--of pinhole-free perovskite films at high yield on arbitrary substrates, including thin plastic foils. These ultra-lightweight solar cells are successfully used to power aviation models. Potential future applications include unmanned aerial vehicles--from airplanes to quadcopters and weather balloons--for environmental and industrial monitoring, rescue and emergency response, and tactical security applications.

  3. Role of the crystal field stabilization energy in the formation of metal(II) formate mixed crystals

    NASA Astrophysics Data System (ADS)

    Balarew, Christo; Stoilova, Donka; Vassileva, Violeta

    A relationship between the distribution coefficient values and the factors determining the isomorphous substitution of some metal(II) formates (Mg, Mn, Fe, Co, Ni, Cu, Zn, Cd) has been found, given by D=[exp⁡{aṡf[ΔR/R]+bṡϕ(Δɛ)+cṡψ(Δs)}/{RT}, where Δ R/R is the relative difference in the ionic radii of the intersubstituting ions, Δɛ is the difference in the Me sbnd O bond energy, Δ s is the difference in the crystal field stabilization energy. The pre-exponential term represents the balance in bonding factors between the ions in the crystal and in the aqueous solution, in the case of ideally mixing in the solid state. The exponential term takes into account the enthalpy of mixing in the solid state. For the isostructural formate salts in which the substitution of a given cation by another one occurs in equivalent octahedral positions, the difference in the crystal field stabilization energy exerts the most important influence on the enthalpy of mixing.

  4. Structural and magnetic characterization of a tetranuclear copper(II) cubane stabilized by intramolecular metal cation-π interactions.

    PubMed

    Papadakis, Raffaello; Rivière, Eric; Giorgi, Michel; Jamet, Hélène; Rousselot-Pailley, Pierre; Réglier, Marius; Simaan, A Jalila; Tron, Thierry

    2013-05-20

    A novel tetranuclear copper(II) complex (1) was synthesized from the self-assembly of copper(II) perchlorate and the ligand N-benzyl-1-(2-pyridyl)methaneimine (L(1)). Single-crystal X-ray diffraction studies revealed that complex 1 consists of a Cu4(OH)4 cubane core, where the four copper(II) centers are linked by μ3-hydroxo bridges. Each copper(II) ion is in a distorted square-pyramidal geometry. X-ray analysis also evidenced an unusual metal cation-π interaction between the copper ions and phenyl substituents of the ligand. Calculations based on the density functional theory method were used to quantify the strength of this metal-π interaction, which appears as an important stabilizing parameter of the cubane core, possibly acting as a driving parameter in the self-aggregation process. In contrast, using the ligand N-phenethyl-1-(2-pyridyl)methaneimine (L(2)), which only differs from L(1) by one methylene group, the same synthetic procedure led to a binuclear bis(μ-hydroxo)copper(II) complex (2) displaying intermolecular π-π interactions or, by a slight variation of the experimental conditions, to a mononuclear complex (3). These complexes were studied by X-ray diffraction techniques. The magnetic properties of complexes 1 and 2 are reported and discussed.

  5. Sm@C2v(19138)-C76: A Non-IPR Cage Stabilized by a Divalent Metal Ion.

    PubMed

    Hao, Yajuan; Feng, Lai; Xu, Wei; Gu, Zhenggen; Hu, Ziqi; Shi, Zujin; Slanina, Zdeněk; Uhlík, Filip

    2015-05-01

    Although a non-IPR fullerene cage is common for endohedral cluster fullerenes, it is very rare for conventional endofullerenes M@C2n, probably because of the minimum geometry fit effect of the endohedral single metal ion. In this work, we report on a new non-IPR endofullerene Sm@C2v(19138)-C76, including its structural and electrochemical features. A combined study of single-crystal X-ray diffraction and DFT calculations not only elucidates the non-IPR cage structure of C2v(19138)-C76 but also suggests that the endohedral Sm(2+) ion prefers to reside along the C2 cage axis and close to the fused pentagon unit in the cage framework, indicative of a significant metal-cage interaction, which alone can stabilize the non-IPR cage. Furthermore, electrochemical studies reveal the fully reversible redox behaviors and small electrochemical gap of Sm@C2v(19138)-C76, which are comparable to those of IPR species Sm@D3h-C74. PMID:25782103

  6. Sm@C2v(19138)-C76: A Non-IPR Cage Stabilized by a Divalent Metal Ion.

    PubMed

    Hao, Yajuan; Feng, Lai; Xu, Wei; Gu, Zhenggen; Hu, Ziqi; Shi, Zujin; Slanina, Zdeněk; Uhlík, Filip

    2015-05-01

    Although a non-IPR fullerene cage is common for endohedral cluster fullerenes, it is very rare for conventional endofullerenes M@C2n, probably because of the minimum geometry fit effect of the endohedral single metal ion. In this work, we report on a new non-IPR endofullerene Sm@C2v(19138)-C76, including its structural and electrochemical features. A combined study of single-crystal X-ray diffraction and DFT calculations not only elucidates the non-IPR cage structure of C2v(19138)-C76 but also suggests that the endohedral Sm(2+) ion prefers to reside along the C2 cage axis and close to the fused pentagon unit in the cage framework, indicative of a significant metal-cage interaction, which alone can stabilize the non-IPR cage. Furthermore, electrochemical studies reveal the fully reversible redox behaviors and small electrochemical gap of Sm@C2v(19138)-C76, which are comparable to those of IPR species Sm@D3h-C74.

  7. Metals content of Glossoscolex paulistus extracellular hemoglobin: Its peroxidase activity and the importance of these ions in the protein stability.

    PubMed

    Caruso, Celia S; Biazin, Ezer; Carvalho, Francisco A O; Tabak, Marcel; Bachega, José F R

    2016-08-01

    In this work we investigate the presence of divalent cations bound to the Glossoscolex paulistus (HbGp) hemoglobin and their effect over the protein stability and the peroxidase (POD) activity. Atomic absorption studies show that the HbGp iron content is consistent with the presence of 144 ions per protein. Moreover, using iron as a reference, the content of calcium was estimated as 30±4 ions per protein, independently of the EDTA pre-treatment or not prior to the acidic treatment performed in the protein digestion. The zinc content was 14±2 ions in the absence of EDTA pre-treatment, and 3±1 ions per protein in the presence of EDTA pre-treatment, implying the presence of one zinc ion per protomer (1/12 of the whole molecule). Finally, the copper concentration is negligible. Different from the vertebrate hemoglobins, where the effectors are usually organic anions, the hexagonal bilayer hemoglobins have as effectors inorganic cations that increase the oxygen affinity and stabilize the structure. Previous studies have suggested that the presence of divalent cations, such as copper and zinc, is related to the different types of antioxidant enzymatic activities as the superoxide dismutase (SOD) activity shown by giant hemoglobin from Lumbricus terrestris (HbLt). Recently, studies on HbGp crystal structure have confirmed the presence of Zn(2+) and Ca(2+) binding sites. The Ca(2+) sites are similar as observed in the HbLt crystal structure. Otherwise, the Zn(2+) sites have no relation with those observed in Cu/Zn SODs. Our peroxidase assays with guaiacol confirm the POD activity and the effect of the zinc ions for HbGp. Our present results on HbGp metal content and their stability effects is the first step to understand the role of these cations in HbGp function in the future. PMID:27221949

  8. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-07-10

    This report presents completed sealed tube stability test results for the following eight refrigerant/lubricant mixtures: R-22/mineral oil; R-124/alkylbenzene; R-134a/pentaerythritol (PE) ester (mixed acid); R- 134a/PE (branched acid); R-134a/ PE (100 cSt viscosity); R- 142b/alkylbenzene; R-143a/ PE (branched acid); R-152a/alkylbenzene. Partial results are shown for an additional eight refrigerant-lubricant mixtures. Though work is in progress, no data are available at this point in time for the five remaining test mixtures. Reported are: visual observations on aged sealed tubes, gas chromatographic analyses on the vapor phase contents of the tubes, chloride ion contents of HCFC containing mixtures or fluoride ion contents of HFC mixtures, and total acid number values and infrared analysis results for mixtures containing ester lubricants.

  9. Experimental demonstration of the stabilizing effect of dielectric coatings on magnetically accelerated imploding metallic liners

    DOE PAGES

    Awe, Thomas James; Peterson, Kyle J.; Yu, Edmund P.; McBride, Ryan D.; Sinars, Daniel B.; Gomez, Matthew R.; Jennings, Christopher Ashley; Martin, Matthew R.; Rosenthal, Stephen E.; Sefkow, Adam B.; et al

    2016-02-10

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70 μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. Lastly, the inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130 μm over the 4.0 mm axial height captured by the radiograph.

  10. Stability and structure of metal clusters - Be(13) and Be(55)

    NASA Technical Reports Server (NTRS)

    Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.

    1986-01-01

    Face-centered cubic (fcc) and hexagonally close-packed (hcp) structures are compared for Be(13) and Be(55) clusters. Both Be(13) and Be(55) prefer the fcc structure over the bulk hcp structure, but the energy difference per atom decreases for Be(55) relative to Be(13). The binding energy per atom, 1.3 eV for Be(55) and 0.8-0.9 eV for Be(13), reflects the greater total number of bonds in the larger cluster rather than a difference in bonding. The energies per bond are much more similar, in the range of 0.30-0.34 eV for both clusters. The size of the p-basis set used influences both stability and ionization potentials strongly.

  11. Cationic metal-corrole complexes: design, synthesis, and properties of guanine-quadruplex stabilizers.

    PubMed

    Fu, Boqiao; Zhang, Dan; Weng, Xiaocheng; Zhang, Ming; Ma, Heng; Ma, Yuzhi; Zhou, Xiang

    2008-01-01

    A series of pyridinium and quaternary ammonium copper corroles has been designed and synthesized. All new compounds have been fully characterized by NMR spectroscopy, high-resolution mass spectrometry, UV/Vis spectrscopy, and elemental analysis. Biochemical studies have indicated that all of these corrole derivatives can stabilize G-quadruplex structures, with corrole 4 being the most effective according to the results of circular dichroism (CD) melting experiments, polymerase chain reaction (PCR) stop assays, and surface plasmon resonance (SPR) experiments. Moreover, both corroles 3 and 4 tend to induce the human telomeric sequence to form hybrid G-quadruplex structures, whereas corroles 8 and 9 are more inclined to induce the human telomeric sequence to form antiparallel G-quadruplex structures.

  12. Experimental Demonstration of the Stabilizing Effect of Dielectric Coatings on Magnetically Accelerated Imploding Metallic Liners.

    PubMed

    Awe, T J; Peterson, K J; Yu, E P; McBride, R D; Sinars, D B; Gomez, M R; Jennings, C A; Martin, M R; Rosenthal, S E; Schroen, D G; Sefkow, A B; Slutz, S A; Tomlinson, K; Vesey, R A

    2016-02-12

    Enhanced implosion stability has been experimentally demonstrated for magnetically accelerated liners that are coated with 70  μm of dielectric. The dielectric tamps liner-mass redistribution from electrothermal instabilities and also buffers coupling of the drive magnetic field to the magneto-Rayleigh-Taylor instability. A dielectric-coated and axially premagnetized beryllium liner was radiographed at a convergence ratio [CR=Rin,0/Rin(z,t)] of 20, which is the highest CR ever directly observed for a strengthless magnetically driven liner. The inner-wall radius Rin(z,t) displayed unprecedented uniformity, varying from 95 to 130  μm over the 4.0 mm axial height captured by the radiograph. PMID:26918996

  13. Thermodynamic stability and electron structure of polymeric sandwich complexes of porphyrins with different metals

    NASA Astrophysics Data System (ADS)

    Kuzubov, A. A.; Krasnov, P. O.; Ignatova, N. Yu.; Fedorov, A. S.; Tomilin, F. N.

    2012-10-01

    The thermodynamic stability of different conformers of the polymeric sandwich structures of metalloporphyrins (MeP) is studied by means of quantum chemistry. The possibility of forming stable layered BaP, SrP, ScP, YP, and ZrP structures with shielded and retarded conformation is demonstrated. Shielded conformers are preferable in the case of SrP, BaP, and ScP complexes, while retarded conformers are most advantageous for YP and ZrP complexes. Based on the results from calculating the electron structure of the investigated compounds, we find that SrP and BaP are semiconductors and ScP, YP, and ZrP are electrical conductors

  14. Dimensional, microstructural and compositional stability of metal fuels. Final performance report

    SciTech Connect

    Solomon, A.A.; Dayananda, M.A.

    1993-03-15

    The projects undertaken were to address two areas of concern for metal-fueled fast reactors: metallurgical compatibility of fuel and its fission products with the stainless steel cladding, and effects of porosity development in the fuel on fuel/cladding interactions and on sodium penetration in fuel. The following studies are reported on extensively in appendices: hot isostatic pressing of U-10Zr by coupled boundary diffusion/power law creep cavitation, liquid Na intrusion into porous U-10Zr fuel alloy by differential capillarity, interdiffusion between U-Zr fuel and selected Fe-Ni-Cr alloys, interdiffusion between U-Zr fuel vs selected cladding steels, and interdiffusion of Ce in Fe-base alloys with Ni or Cr.

  15. Life cycle benefits of using nanotechnology to stabilize platinum-group metal particles in automotive catalysts.

    PubMed

    Lloyd, Shannon M; Lave, Lester B; Matthews, H Scott

    2005-03-01

    Due to advances in nanotechnology, the approach to catalytic design is transitioning from trial-and-error to planned design and control. Expected advances should enable the design and construction of catalysts to increase reaction speed, yield, and catalyst durability while also reducing active species loading levels. Nanofabrication techniques enabling precise control over the shape, size, and position of nanoscale platinum-group metal (PGM) particles in automotive catalysts should result in reduced PGM loading levels. These reductions would decrease energy consumption, improve environmental quality, and contribute to sustainable resource usage. We estimate the amount of PGM required to meet U.S. vehicle emissions standards through 2030 based on current catalysttechnology. We then estimate the range of PGM that could be saved from potential nanotechnology advances. Finally, we employ economic input-output and process-based life cycle assessment models to estimate the direct and life cycle benefits from reducing PGM mining and refining.

  16. Surface decoration through electrostatic interaction leading to enhanced reactivity: Low temperature synthesis of nanostructured chromium borides (CrB and CrB{sub 2})

    SciTech Connect

    Menaka,; Kumar, Bharat; Kumar, Sandeep; Ganguli, A.K.

    2013-04-15

    The present study describes a novel low temperature route at ambient pressure for the synthesis of nanocrystalline chromium borides (CrB and CrB{sub 2}) without using any flux or additives. The favorable and intimate mixing of nanoparticles of chromium acetate (Cr source) and boron forms an active chromium–boron precursor which decomposes at much lower temperature (400 °C) to form CrB (which is ∼1000 °C less than the known ambient pressure synthesis). The chromium acetate nanoparticles (∼5 nm) decorate the larger boron particles (150–200 nm) due to electrostatic interactions resulting from opposing surface charges of boron (zeta potential:+48.101 mV) and chromium acetate (zeta potential:−4.021 mV) in ethanolic medium and is evident in the TEM micrographs. The above method leads to the formation of pure CrB film like structure at 400 °C and nanospheres (40–60 nm) at 600 °C. Also, chromium diboride (CrB{sub 2}) nanoparticles (25 nm) could be obtained at 1000 °C. - Graphical abstract: Variation of surface charge of reactants, precursor and the products, chromium borides (CrB and CrB{sub 2}). Highlights: ► Novel borothermal reduction process for synthesis of chromium boride. ► Significant lowering of reaction temperature to obtain nanocrystalline chromium boride. ► Enhanced reactivity due to appropriate surface interactions.

  17. Structural and Physical Properties Diversity of New CaCu5-Type Related Europium Platinum Borides

    PubMed Central

    2013-01-01

    Three novel europium platinum borides have been synthesized by arc melting of constituent elements and subsequent annealing. They were characterized by X-ray powder and single-crystal diffraction: EuPt4B, CeCo4B type, P6/mmm, a = 0.56167(2) nm, c = 0.74399(3) nm; Eu3Pt7B2, Ca3Al7Cu2 type as an ordered variant of PuNi3, R3̅m, a = 0.55477(2) nm, c = 2.2896(1) nm; and Eu5Pt18B6–x, a new unique structure type, Fmmm, a = 0.55813(3) nm, b = 0.95476(5) nm, c = 3.51578(2) nm. These compounds belong to the CaCu5 family of structures, revealing a stacking sequence of CaCu5-type slabs with different structural units: CaCu5 and CeCo3B2 type in EuPt4B; CeCo3B2 and Laves MgCu2 type in Eu3Pt7B2; and CaCu5-, CeCo3B2-, and site-exchange ThCr2Si2-type slabs in Eu5Pt18B6–x. The striking motif in the Eu5Pt18B6–x structure is the boron-centered Pt tetrahedron [BPt4], which build chains running along the a axis and plays a decisive role in the structure arrangement by linking the terminal fragments of repeating blocks of fused Eu polyhedra. Physical properties of two compounds, EuPt4B and Eu3Pt7B2, were studied. Both compounds were found to order magnetically at 36 and 57 K, respectively. For EuPt4B a mixed-valence state of the Eu atom was confirmed via magnetic and specific heat measurements. Moreover, the Sommerfeld value of the specific heat of Eu3Pt7B2 was found to be extraordinarily large, on the order of 0.2 J/mol K2. PMID:23540751

  18. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    DOE PAGES

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; Sun, Yang; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Kramer, M. J.; Napolitano, Ralph E.; Ho, Kai-Ming

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motifmore » with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.« less

  19. Chemical and thermal stability of refrigerant-lubricant mixture with metal

    SciTech Connect

    Huttenlocher, D.F. )

    1992-03-31

    This report presents completed sealed tube stability test results for the R-123/mineral oil mixture and preliminary results for seven of the eighteen contracted refrigerant-lubricant mixtures. The R-123 mixture was tested at 105, 150, and 175{degrees}C. The results obtained indicate that prolonged exposure to temperatures of about 150{degree}C and higher will lead to rapid chemical deterioration of the R-123/mineral oil system. Chlorotrifluoroethane (R-133a) and trifluoroethane (R-143a) have been identified as decomposition products of R-123. Testing at 150 and 175{degrees}C have been completed for the HCFC refrigerants R-22, R-124, and R-142b with either mineral oil or alkylbenzene lubricants. These mixtures were very stable at the indicated temperatures. Testing at a higher temperature level will be necessary to define their upper temperature limits. Similarily, partial test results are available for HFC refrigerants R-32, R-125, R-134a (two esters), and R-143a with pentaerythritol ester lubricants at the 150 and 175{degrees}C temperature levels. Again, all five mixtures were found to be extremely stable at the test temperatures and additional testing will be needed to establish their upper temperature limits.

  20. Epoxidized Soybean Oil: Evaluation of Oxidative Stabilization and Metal Quenching/Heat Transfer Performance

    NASA Astrophysics Data System (ADS)

    Simencio Otero, Rosa L.; Canale, Lauralice C. F.; Said Schicchi, Diego; Agaliotis, Eliana; Totten, George E.; Sánchez Sarmiento, Gustavo

    2013-07-01

    Vegetable and animal oils as a class of fluids have been used for hundreds of years, if not longer, as quenchants for hardening steel. However, when petroleum oils became available in the late 1800s and early 1900s, the use of these fluids as quenchants, in addition to their use in other industrial oil applications, quickly diminished. This was primarily, but not exclusively, due to their generally very poor thermal-oxidative instability and the difficulty for formulating fluid analogs with varying viscosity properties. Interest in the use of renewable fluids, such as vegetable oils, has increased dramatically in recent years as alternatives to the use of relatively non-biodegradable and toxic petroleum oils. However, the relatively poor thermal-oxidative stability has continued to be a significant reason for their general non-acceptance in the marketplace. Soybean oil (SO) is one of the most highly produced vegetable oils in Brazil. Currently, there are commercially produced epoxidized versions of SO which are available. The objective of this paper is to discuss the potential use of epoxidized SO and its heat transfer properties as a viable alternative to petroleum oils for hardening steel.

  1. Composition-dependent stability of the medium-range order responsible for metallic glass formation

    SciTech Connect

    Zhang, Feng; Ji, Min; Fang, Xiao-Wei; Sun, Yang; Wang, Cai-Zhuang; Mendelev, Mikhail I.; Kramer, M. J.; Napolitano, Ralph E.; Ho, Kai-Ming

    2014-09-18

    The competition between the characteristic medium-range order corresponding to amorphous alloys and that in ordered crystalline phases is central to phase selection and morphology evolution under various processing conditions. We examine the stability of a model glass system, Cu–Zr, by comparing the energetics of various medium-range structural motifs over a wide range of compositions using first-principles calculations. Furthermore, we focus specifically on motifs that represent possible building blocks for competing glassy and crystalline phases, and we employ a genetic algorithm to efficiently identify the energetically favored decorations of each motif for specific compositions. These results show that a Bergman-type motif with crystallization-resisting icosahedral symmetry is energetically most favorable in the composition range 0.63 < xCu < 0.68, and is the underlying motif for one of the three optimal glass-forming ranges observed experimentally for this binary system (Li et al., 2008). This work establishes an energy-based methodology to evaluate specific medium-range structural motifs which compete with stable crystalline nuclei in deeply undercooled liquids.

  2. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Pin, Liu; Qiang, Ma; Zheng, Fang; Jie, Ma; Yong-Sheng, Hu; Zhi-Bin, Zhou; Hong, Li; Xue-Jie, Huang; Li-Quan, Chen

    2016-07-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (‑3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7% after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries. Project supported by the National Nature Science Foundation of China (Grant Nos. 51222210, 51472268, 51421002, and 11234013) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).

  3. Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes

    NASA Astrophysics Data System (ADS)

    Pin, Liu; Qiang, Ma; Zheng, Fang; Jie, Ma; Yong-Sheng, Hu; Zhi-Bin, Zhou; Hong, Li; Xue-Jie, Huang; Li-Quan, Chen

    2016-07-01

    Lithium (Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity (3860 mAh/g), low density (0.534 g/cm3), and low negative electrochemical potential (-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2] (LiFSI) and Li[N(SO2CF3)2] (LiTFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7% after 100 cycles in Li|LiFePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 mA/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries. Project supported by the National Nature Science Foundation of China (Grant Nos. 51222210, 51472268, 51421002, and 11234013) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA09010300).

  4. Comparison of the fixation effects of heavy metals by cement rotary kiln co-processing and cement based solidification/stabilization.

    PubMed

    Zhang, Junli; Liu, Jianguo; Li, Cheng; Jin, Yiying; Nie, Yongfeng; Li, Jinhui

    2009-06-15

    Cement rotary kiln co-processing of hazardous wastes and cement based solidification/stabilization could both immobilize heavy metals. The different retention mechanisms of the two technologies lead to different fixation effects of heavy metals. The same amount of heavy metal compounds were treated by the two types of fixation technologies. Long-term leaching test (160 days), the maximum availability leaching test (NEN 7341) and a modified three-step sequential extraction procedure, proposed by the Commission of the European Communities Bureau of Reference (BCR) were employed to compare the fixation effects of the two fixation technologies. The leaching concentrations in NEN 7341 and long-term leaching tests were compared with identification standard for hazardous wastes (GB5085.3-1996) and drinking water standard (GB5749-2005). The results indicate that the leaching concentrations of the long-term leaching test and NEN 7341 test were lower than the regulatory limits and the leached ratios were small. Both cement based solidification/stabilization and cement rotary kiln co-processing could effectively fix heavy metals. Calcination in a cement rotary kiln and the following hydration that follows during cement application could fix As, Cd, Pb and Zn more effectively and decrease the release to the environment. Cement solidification/stabilization technology has better effect in immobilizing Cr and Ni. Cr wastes are more fitful to be treated by cement solidification/stabilization.

  5. Investigation of heavy metal (Cu, Pb, Cd, and Cr) stabilization in river sediment by nano-zero-valent iron/activated carbon composite.

    PubMed

    Chen, Wei-fang; Zhang, Jinghui; Zhang, Xiaomao; Wang, Weiya; Li, Yuxiang

    2016-01-01

    Nano-zero-valent iron/activated carbon (nZVI/AC) composite was evaluated for its effectiveness in the stabilization of Cu, Pb, Cd, and Cr in dredged river sediment. Synthetic precipitation leaching procedure (SPLP) and toxicity characteristic leaching procedure (TCLP) were adopted to compare the effects of nZVI/AC dosage, particle size, time duration, and temperature on heavy metal leachability. The results show that leachability dropped considerably with the addition of nZVI/AC and powdered particles in the size of 0.075-0.18 mm was more effective in stabilization than granular ones. Stabilization effect was stable in long-term and robust against changes in temperature. Tessier sequential extraction revealed that heavy metals were associated with solid particle, inorganic or organic matters in sediment. The addition of nZVI/AC was able to convert relatively weakly bound heavy metals into more strongly bound species and thus reduce the bioavailability and toxicity. Also, the standard potential of heavy metals may decide the mechanism of stabilization process. PMID:26370818

  6. Regional heavy metal pollution in crops by integrating physiological function variability with spatio-temporal stability using multi-temporal thermal remote sensing

    NASA Astrophysics Data System (ADS)

    Liu, Meiling; Liu, Xiangnan; Zhang, Biyao; Ding, Chao

    2016-09-01

    Heavy metal stress in crops is characterized by stability in space and time, which differs from other stressors that are typically more transient (e.g., drought, pests/diseases, and mismanagement). The objective of this study is to assess regional heavy metal stress in rice by integrating physiological function variability with spatio-temporal stability based on multi-temporal thermal infrared (TIR) remote sensing images. The field in which the experiment was conducted is located in Zhuzhou City, Hunan Province, China. HJ-1B images and in-situ measured data were collected from rice growing in heavy metal contaminated soils. A stress index (SI) was devised as an indicator for the degree of heavy metal stress of the rice in different growth stages, and a time-spectrum feature space (TSFS) model was used to determine rice heavy metal stress levels. The results indicate that (i) SI is a good indicator of rice damage caused by heavy metal stress. Minimum values of SI occur in rice subject to high pollution, followed by larger SI with medium pollution and maximum SI for low pollution, for the same growth stage. (ii) SI shows some variation for different growth stages of rice, and the minimum SI occurs at the flowering stage. (iii) The TSFS model is successful at identifying rice heavy metal stress, and stress levels in rice stabilized regardless of the model being applied in the two different years. This study suggests that regional heavy metal stress in crops can be accurately detected using TIR technology, if a sensitive indicator of crop physiological function impairment is used and an effective model is selected. A combination of spectrum and spatio-temporal information appears to be a very promising method for monitoring crops with various stressors.

  7. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.

  8. Epitaxial growth of YBCO films on metallic substrates buffered with yttria-stabilized zirconia

    NASA Astrophysics Data System (ADS)

    Ma, B.; Li, M.; Fisher, B. L.; Koritala, R. E.; Balachandran, U.

    2002-05-01

    Biaxially textured yttria-stabilized zirconia (YSZ) films were grown on polished Hastelloy C (HC) substrates by ion-beam-assisted deposition (IBAD) and electron-beam evaporation. A water-cooled sample stage was used to dissipate heat generated by the Kaufman ion source and to maintain the substrate temperature below 100 °C during deposition. X-ray pole figures were used for texture analysis. In-plane texture measured from the YSZ (111) φ-scan full-width-at-half-maximum (FWHM) was 13.2° and out-of-plane texture from the YSZ (002) ω-scan FWHM was 7.7°. In-plane texture improved with lowered substrate temperature during IBAD deposition. RMS surface roughness of 3.3 nm was measured by atomic force microscopy. A thin CeO2 buffer layer (≈10 nm) was deposited to improve the lattice match between the YSZ and YBCO films and to enhance the biaxial alignment of YBCO films. YBCO films were epitaxially grown on IBAD-YSZ buffered HC substrates with and without CeO2 buffer layers by pulsed laser deposition (PLD). In-plane texture FWHMs of 12° and 9° were observed for CeO2 (111) and YBCO (103), respectively. Tc=90 K, with sharp transition, and Jc values of ≈2×106 A/cm2 at 77 K in zero field were observed on 0.5-μm-thick, 5-mm-wide, and 1-cm-long samples.

  9. Hydrogen-doping stabilized metallic VO{sub 2} (R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime

    SciTech Connect

    Zhao, Yong; Pan, Xuan; Bernussi, Ayrton A.; Fan, Zhaoyang; Karaoglan-Bebek, Gulten; Holtz, Mark

    2014-06-16

    We demonstrate that catalyst-assisted hydrogen spillover doping of VO{sub 2} thin films significantly alters the metal-insulator transition characteristics and stabilizes the metallic rutile phase at room temperature. With hydrogen inserted into the VO{sub 2} lattice, high resolution X-ray diffraction reveals expansion of the V-V chain separation when compared to the VO{sub 2}(R) phase. The donated free electrons, possibly from O-H bond formation, stabilize the VO{sub 2}(R) to low temperatures. By controlling the amount of dopants to obtain mixed insulating and metallic phases, VO{sub 2} resistivity can be continuously tuned until a critical condition is achieved that suppresses Fabry-Perot resonances. Our results demonstrate that hydrogen spillover is an effective technique to tune the electrical and optical properties of VO{sub 2} thin films.

  10. Evaluation of Colloidal Stability and Ecotoxicity of Metal-based Nanoparticles in the Aquatic and Terrestrial Systems

    NASA Astrophysics Data System (ADS)

    Pokhrel, Lok Raj

    Intrinsic to the many nano-enabled products are atomic-size multifunctional engineered nanomaterials, which upon release contaminate the environments, raising considerable health and safety concerns. This Ph.D. dissertation is designed to investigate (i) whether metals or oxide nanoparticles are more toxic than ions, and if MetPLATE(TM) bioassay is applicable as a rapid nanotoxicity screening tool; (ii) how variable water chemistry (dissolved organic carbon (DOC), pH, and hardness) and organic compounds (cysteine, humic acid, and trolox) modulate colloidal stability, ion release, and aquatic toxicity of silver nanoparticles (AgNP); and (iii) the developmental responses of crop plants exposed to Ag- or ZnO- (zinc oxide) nanoparticles. Results suggest that the MetPLATE can be considered a high-throughput screening tool for rapid nanotoxicity evaluation. Detectable changes in the colloidal diameter, surface charge, and plasmonic resonance revealed modulating effects of variable water chemistry and organic ligands on the particle stability, dissolution, and toxicity of AgNPs against Escherichia coli or Daphnia magna. Silver dissolution increased as a function of DOC concentrations but decreased with increasing hardness, pH, cysteine, or trolox levels. Notably, the dissociated Ag+ was inadequate to explain AgNP toxicity, and that the combined effect of AgNPs and dissolved Ag+ under each ligand treatment was lower than of AgNO 3. Significant attenuation by trolox signifies an oxidative stress-mediated AgNP toxicity; its inability to attenuate AgNO3 toxicity, however, negates oxidative stress as Ag+ toxicity mechanism, and that cysteine could effectively quench free Ag+ to alleviate AgNO 3 toxicity in D. magna. Surprisingly, DOC-AgNPs complex that apparently formed at higher DOC levels might have led daphnids filter-feed on aggregates, potentially elevating internal dose, and thus higher mortality. Maize root anatomy showed differential alterations upon exposure to Ag

  11. Ab Initio Quantum Mechanical Study of the Structure and Stability of the Alkaline Earth Metal Oxides and Peroxides

    NASA Astrophysics Data System (ADS)

    Königstein, Markus; Catlow, C. Richard A.

    1998-10-01

    We report a detailed computationally study of the stability of the alkaline earth metal peroxidesMO2(M=Ba, Sr, Ca, Mg, Be) with respect to decomposition into the corresponding oxidesMOand molecular oxygen using Hartree-Fock and density functional theory (DFT) techniques. A comparison between calculated and experimental binding energies indicates that the DFT method is most suitable for a correct description of the peroxide bond. The DFT reaction energies for the peroxide decompositionMO2→MO+{1}/{2}O2show that only BaO2and SrO2are thermodynamically stable compounds, while CaO2(in the calcium carbide structure), MgO2, and BeO2(in the pyrite structure) are energetically unstable with reaction energies of -24.7, -26.8, and -128.7kJ/mol, respectively, and are therefore unlikely to exist as pure compounds. The published calcium carbide structure for CaO2is probably incorrect, at least for pure calcium peroxide, since apart from the thermodynamical instability the compound is more stable in the pyrite structure by 25.5 kJ/mol. Our analysis suggests that the water and/or hydrogen peroxide content of experimentally prepared MgO2samples is necessary for the stabilization of the structure, while BeO2is clearly unstable under ambient conditions. We studied also the effect of the zero point energies and the entropies on the decomposition free energies and, for this purpose, performed atomistic lattice simulations based on interatomic potentials, which we derived from ourab initiodata; the results indicate a negligible effect of the zero point energies, while the entropy terms favor the decomposition reaction by ca. 20 kJ/mol at 298.15 K.

  12. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    PubMed

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  13. Stability and Biodistribution of Thiol-Functionalized and (177)Lu-Labeled Metal Chelating Polymers Bound to Gold Nanoparticles.

    PubMed

    Yook, Simmyung; Lu, Yijie; Jeong, Jenny Jooyoung; Cai, Zhongli; Tong, Lemuel; Alwarda, Ramina; Pignol, Jean-Philippe; Winnik, Mitchell A; Reilly, Raymond M

    2016-04-11

    We are studying a novel radiation nanomedicine approach to treatment of breast cancer using 30 nm gold nanoparticles (AuNP) modified with polyethylene glycol (PEG) metal-chelating polymers (MCP) that incorporate 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelators for complexing the β-particle emitter, (177)Lu. Our objective was to compare the stability of AuNP conjugated to MCP via a single thiol [DOTA-PEG-ortho-pyridyl disulfide (OPSS)], a dithiol [DOTA-PEG-lipoic acid (LA)] or multithiol end-group [PEG-pGlu(DOTA)8-LA4] and determine the elimination and biodistribution of these (177)Lu-labeled MCP-AuNP in mice. Stability to aggregation in the presence of thiol-containing dithiothreitol (DTT), L-cysteine or glutathione was assessed and dissociation of (177)Lu-MCP from AuNP in human plasma measured. Elimination of radioactivity from the body of athymic mice and excretion into the urine and feces was measured up to 168 h post-intravenous (i.v.) injection of (177)Lu-MCP-AuNP and normal tissue uptake was determined. ICP-AES was used to quantify Au in the liver and spleen and these were compared to (177)Lu. Our results showed that PEG-pGlu(DOTA)8-LA4-AuNP were more stable to aggregation in vitro than DOTA-PEG-LA-AuNP and both forms of AuNP were more stable to thiol challenge than DOTA-PEG-OPSS-AuNP. PEG-pGlu((177)Lu-DOTA)8-LA4 was the most stable in plasma. Whole body elimination of (177)Lu was most rapid for mice injected with (177)Lu-DOTA-PEG-OPSS-AuNP. Urinary excretion accounted for >90% of eliminated (177)Lu. All (177)Lu-MCP-AuNP accumulated in the liver and spleen. Liver uptake was lowest for PEG-pGlu((177)Lu-DOTA)8-LA4-AuNP but these AuNP exhibited the greatest spleen uptake. There were differences in Au and (177)Lu in the liver for PEG-pGlu((177)Lu-DOTA)8-LA4-AuNP. These differences were not correlated with in vitro stability of the (177)Lu-MCP-AuNP. We conclude that conjugation of AuNP with PEG-pGlu((177)Lu-DOTA)8-LA4 via a multithiol

  14. Robust silver-mediated imidazolo-dC base pairs in metal DNA: dinuclear silver bridges with exceptional stability in double helices with parallel and antiparallel strand orientation.

    PubMed

    Jana, Sunit Kumar; Guo, Xiurong; Mei, Hui; Seela, Frank

    2015-12-18

    A new unprecedented metal-mediated base pair was designed that stabilizes reverse Watson-Crick DNA (parallel strand orientation, ps) as well as canonical Watson-Crick DNA (antiparallel strand orientation, aps). This base pair contains two imidazolo-dC units decorated with furan residues. Tm measurements and spectroscopic studies reveal that each silver-mediated furano-imidazolo-dC forms exceptionally stable duplexes with ps and aps chain orientation. This stability increase by a silver-mediated base pair is the highest reported so far for ps and aps DNA helices. PMID:26463426

  15. Thermal conductivity of layered borides: The effect of building defects on the thermal conductivity of TmAlB{sub 4} and the anisotropic thermal conductivity of AlB{sub 2}

    SciTech Connect

    Wang, X. J. E-mail: xwang58@illinois.edu; Mori, T. E-mail: xwang58@illinois.edu; Kuzmych-Ianchuk, I.; Michiue, Y.; Yubuta, K.; Shishido, T.; Grin, Y.; Okada, S.; Cahill, D. G.

    2014-04-01

    Rare earth metal borides have attracted great interest due to their unusual properties, such as superconductivity and f-electron magnetism. A recent discovery attributes the tunability of magnetism in rare earth aluminoborides to the effect of so-called “building defects.” In this paper, we report data for the effect of building defects on the thermal conductivities of α-TmAlB{sub 4} single crystals. Building defects reduce the thermal conductivity of α-TmAlB{sub 4} by ≈30%. At room temperature, the thermal conductivity of AlB{sub 2} is nearly a factor of 5 higher than that of α-TmAlB{sub 4}. AlB{sub 2} single crystals are thermally anisotropic with the c-axis thermal conductivity nearly twice the thermal conductivity of the a-b plane. Temperature dependence of the thermal conductivity near and above room temperature reveals that both electrons and phonons contribute substantially to thermal transport in AlB{sub 2} with electrons being the dominant heat carriers.

  16. Effects of Mo addition on thermal stability and magnetic properties of a ferromagnetic Fe75P10C10B5 metallic glass

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Jia, Xingjie; Li, Yanhui; Fang, Canfeng

    2014-05-01

    The effects of Mo content on the thermal stability, glass-forming ability (GFA), magnetic and mechanical properties of Fe75-xMoxP10C10B5 (x = 0-10) metallic glasses were investigated. The stabilization of supercooled liquid and GFA were significantly enhanced by addition of Mo. Although the saturation magnetization (Is) of the alloys reduced with increasing Mo content, the coercive force (Hc) decreased. The metallic glasses with x = 2.5-7.5 exhibit low glass transition temperature of 733-749 K, large supercooled liquid region of 61-96 K, and high GFA with critical fully glassy sample diameters of 1.5-3.0 mm. They also possess rather high Is of 0.81-1.11 T, low Hc of 2.07-4.87 A/m, high Vicker's hardness of 860-992, high compressive yield strength of over 3000 MPa with a distinct plastic strain.

  17. The growth, structure, and thermal stability of vapor deposited ultra-thin metal films: Rh on Ag(100), Au on Pd(110), and Pt on Pd(110)

    SciTech Connect

    Schmitz, P.

    1990-09-21

    The growth, structure, and thermal stability of ultra-thin metal films (Rh on Ag(100); Au on Pd(110) and Pt on Pd(110)) is investigated using surface sensitive techniques. The three systems studied present a variety of differing characteristics which can contribute to the growth mode, two-dimensional structure, and thermal stability of the films. The main factors contributing to the differing properties of the three systems presented here are: (1) the different substrate morphologies; (2) the differences in surface free energies between the overlayer and the substrate; (3) the degree of lattice mismatch for a particular system; and (4) the extent of miscibility of the two metals. 200 refs., 38 figs.

  18. 99Tc and Re incorporated into metal oxide polyoxometalates: oxidation state stability elucidated by electrochemistry and theory.

    PubMed

    McGregor, Donna; Burton-Pye, Benjamin P; Mbomekalle, Israel M; Aparicio, Pablo A; Romo, Susanna; López, Xavier; Poblet, Josep M; Francesconi, Lynn C

    2012-08-20

    The radioactive element technetium-99 ((99)Tc, half-life = 2.1 × 10(5) years, β(-) of 253 keV), is a major byproduct of (235)U fission in the nuclear fuel cycle. (99)Tc is also found in radioactive waste tanks and in the environment at National Lab sites and fuel reprocessing centers. Separation and storage of the long-lived (99)Tc in an appropriate and stable waste-form is an important issue that needs to be addressed. Considering metal oxide solid-state materials as potential storage matrixes for Tc, we are examining the redox speciation of Tc on the molecular level using polyoxometalates (POMs) as models. In this study we investigate the electrochemistry of Tc complexes of the monovacant Wells-Dawson isomers, α(1)-P(2)W(17)O(61)(10-) (α1) and α(2)-P(2)W(17)O(61)(10-) (α2) to identify features of metal oxide materials that can stabilize the immobile Tc(IV) oxidation state accessed from the synthesized Tc(V)O species and to interrogate other possible oxidation states available to Tc within these materials. The experimental results are consistent with density functional theory (DFT) calculations. Electrochemistry of K(7-n)H(n)[Tc(V)O(α(1)-P(2)W(17)O(61))] (Tc(V)O-α1), K(7-n)H(n)[Tc(V)O(α(2)-P(2)W(17)O(61))] (Tc(V)O-α2) and their rhenium analogues as a function of pH show that the Tc-containing derivatives are always more readily reduced than their Re analogues. Both Tc and Re are reduced more readily in the lacunary α1 site as compared to the α2 site. The DFT calculations elucidate that the highest oxidation state attainable for Re is VII while, under the same electrochemistry conditions, the highest oxidation state for Tc is VI. The M(V)→ M(IV) reduction processes for Tc(V)O-α1 are not pH dependent or only slightly pH dependent suggesting that protonation does not accompany reduction of this species unlike the M(V)O-α2 (M = (99)Tc, Re) and Re(V)O-α1 where M(V/IV) reduction process must occur hand in hand with protonation of the terminal M═O to

  19. Stretchable, Transparent Electrodes as Wearable Heaters Using Nanotrough Networks of Metallic Glasses with Superior Mechanical Properties and Thermal Stability.

    PubMed

    An, Byeong Wan; Gwak, Eun-Ji; Kim, Kukjoo; Kim, Young-Cheon; Jang, Jiuk; Kim, Ju-Young; Park, Jang-Ung

    2016-01-13

    Mechanical robustness, electrical and chemical reliabilities of devices against large deformations such as bending and stretching have become the key metrics for rapidly emerging wearable electronics. Metallic glasses (MGs) have high elastic limit, electrical conductivity, and corrosion resistance, which can be promising for applications in wearable electronics. However, their applications in wearable electronics or transparent electrodes have not been extensively explored so far. Here, we demonstrate stretchable and transparent electrodes using CuZr MGs in the form of nanotrough networks. MG nanotroughs are prepared by electrospinning and cosputtering process, and they can be transferred to various desired substrates, including stretchable elastomeric substrates. The resulting MG nanotrough network is first utilized as a stretchable transparent electrode, presenting outstanding optoelectronic (sheet resistance of 3.8 Ω/sq at transmittance of 90%) and mechanical robustness (resistance change less than 30% up to a tensile strain of 70%) as well as excellent chemical stability against hot and humid environments (negligible degradation in performance for 240 h in 85% relative humidity and 85 °C). A stretchable and transparent heater based on the MG nanotrough network is also demonstrated with a wide operating temperature range (up to 180 °C) and excellent stretchability (up to 70% in the strain). The excellent mechanical robustness of these stretchable transparent electrode and heater is ascribed to the structural configuration (i.e., a nanotrough network) and inherent high elastic limit of MGs, as supported by experimental results and numerical analysis. We demonstrate their real-time operations on human skin as a wearable, transparent thermotherapy patch controlled wirelessly using a smartphone as well as a transparent defroster for an automobile side-view mirror, suggesting a promising strategy toward next-generation wearable electronics or automobile

  20. Expanded sodalite-type metal-organic frameworks: increased stability and H(2) adsorption through ligand-directed catenation.

    PubMed

    Dinca, Mircea; Dailly, Anne; Tsay, Charlene; Long, Jeffrey R

    2008-01-01

    The torsion between the central benzene ring and the outer aromatic rings in 1,3,5-tri-p-(tetrazol-5-yl)phenylbenzene (H3TPB-3tz) and the absence of such strain in 2,4,6-tri-p-(tetrazol-5-yl)phenyl-s-triazine (H3TPT-3tz) are shown to allow the selective synthesis of noncatenated and catenated versions of expanded sodalite-type metal-organic frameworks. The reaction of H3TPB-3tz with CuCl2.2H2O affords the noncatenated compound Cu3[(Cu4Cl)3(TPB-3tz)8]2.11CuCl2.8H2O.120DMF (2), while the reaction of H3TPT-3tz with MnCl2.4H2O or CuCl2.2H2O generates the catenated compounds Mn3[(Mn4Cl)3(TPT-3tz)8]2.25H2O.15CH3OH.95DMF (3) and Cu3[(Cu4Cl)3(TPT-3tz)8]2.xsolvent (4). Significantly, catenation helps to stabilize the framework toward collapse upon desolvation, leading to an increase in the surface area from 1120 to 1580 m2/g and an increase in the hydrogen storage capacity from 2.8 to 3.7 excess wt % at 77 K for 2 and 3, respectively. The total hydrogen uptake in desolvated 3 reaches 4.5 wt % and 37 g/L at 80 bar and 77 K, demonstrating that control of catenation can be an important factor in the generation of hydrogen storage materials.

  1. Development of a method for fabricating metallic matrix composite shapes by a continuous mechanical process

    NASA Technical Reports Server (NTRS)

    Divecha, A. P.

    1974-01-01

    Attempts made to develop processes capable of producing metal composites in structural shapes and sizes suitable for space applications are described. The processes must be continuous and promise to lower fabrication costs. Special attention was given to the aluminum boride (Al/b) composite system. Results show that despite adequate temperature control, the consolidation characteristics did not improve as expected. Inadequate binder removal was identified as the cause responsible. An Al/c (aluminum-graphite) composite was also examined.

  2. Linearized model for the hydrodynamic stability investigation of molten fuel jets into the coolant of a Liquid Metal Fast Breeder Reactor (LMFBR)

    NASA Astrophysics Data System (ADS)

    Hartel, K.

    1986-02-01

    The hydrodynamic stability of liquid jets in a liquid continuum, both characterized by low viscosity was analyzed. A linearized mathematical model was developed. This model enables the length necessary for fragmentation of a vertical, symmetric jet of molten fuel by hydraulic forces in the coolant of a liquid metal fast breeder reactor to be evaluated. On the basis of this model the FRAG code for numerical calculation of the hydrodynamic fragmentation mechanism was developed.

  3. Effect of metal loading processes on the stability and thermal transformation of Co{sup 2+}- and Cu{sup 2+}-zeolite Y prepared from Egyptian kaolin

    SciTech Connect

    EL-Mekkawi, Doaa M. Selim, Mohamed M.

    2012-07-15

    This paper aims to assess the effect of the transition metals (TM) loading procedure on the incorporation of Co{sup 2+} and Cu{sup 2+} in zeolite Y, and their relevance to stability of the zeolite, particularly with respect to the thermal transformation to the spinel phases. In this work, zeolite Y prepared from Egyptian kaolin was used. XRF, XRD, TEM, UV/visible absorption measurements, and atomic absorption analyses in addition to the visual observations are recorded. XRF has been used to investigate the materials composition. TEM and XRD indicate the presence of nanoparticle spinel upon the calcination of the TM-zeolites at 1000 Degree-Sign C. In addition to spinel particles, XRD shows the formation of metal oxides, SiO{sub 2} and alumino-silicate phases. According to the transition metal and the cation loading process, different phases were detected. UV/visible absorption measurements and the visual observations are used to determine the experimental condition of the highest spinel content. It has been noticed that the experimental conditions of the metal sorption processes greatly affect the phase transformation. Stability and thermal transformation of zeolite depend on the initial concentration of the transition cation solutions and the number of loading cycles. - Highlights: Black-Right-Pointing-Pointer We study the effects of loading procedure in the incorporation of TM in zeolite Y. Black-Right-Pointing-Pointer Synthetic zeolite Y prepared from Egyptian kaolin has been used. Black-Right-Pointing-Pointer The type of TM affects the stability and thermal transformation of zeolite. Black-Right-Pointing-Pointer Loading processes affect the stability and thermal transformation of zeolite.

  4. Stability of Half-Metallic Ferromagnetism of Zinc-Blende Type CrAs and MnM (M=Si, Ge and Sn)

    NASA Astrophysics Data System (ADS)

    Sakuma, Akimasa

    2002-10-01

    By the first-principles calculations both for electronic structures and effective exchange constants, we investigate the stability of ferromagnetism of zinc-blende (ZB) type CrAs, and further examine a possibility of ferromagnetism of ZB type MnM (M=Si, Ge and Sn). ZB type CrAs, a half-metallic ferromagnet reported by Akinaga’s group [Jpn. J. Appl. Phys. 39 (2000) L1118], is found to have an effective exchange constant (J0=\\sumi\

  5. [Influence of metal ions on stability of 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside contained in Polygoni Multiflori Radix].

    PubMed

    Li, Rui-yu; Feng, Wu-wen; Li, Xiao-fei; Zhang, Ding-kun; Li, Chun-yu; Meng, Ya-kun; Bai, Zhao-fang; Song, Hai-bo; Du, Xiao-xi; Xia, Hou-lin; Wang, Jia-bo; Xiao, Xiao-he

    2016-01-01

    Decoction is one of the most commonly used dosage forms of traditional Chinese medicine. The stability of chemical constituents in decoction is closely related to the clinical efficacy and safety. There were few reports about the influence of metal ions in the stability of chemical constituents in traditional Chinese medicine. However, there is no evidence that metal ions in decoction water need to be controlled. In this study, 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside (THSG), one of the main constituents in Polygoni Multiflori Radix was studied. Ordinary tap water, deionized water, and water containing different metal ions were used to investigate and compare the influence on THSG. The results showed that after storage in a dark place at the room temperature for 10 days, the degradation of THSG was 7% in deionized water, while undetectable in tap water. The content of THSG could be decreased by different kinds of metal ions, and the effect was concentration-dependent. Moreover, Fe3+ and Fe2+ showed the greatest influence at the same concentration; and our study has shown that THSG decreased more than 98% in Fe and Fe2+ solutions at 500 ppm concentration. In the same time we found out p-hydroxybenzaldehyde (molecular weight: 122.036 7) and 2,3,5-trihydroxybenzaldehyde-2-O-glycoside (molecular weight: 316.079 4) were the main degradation products of THSG in tap water and water containing Cu2+, Ca2+, Zn2+, Mg2+ and Al3+. The product of THSG dimer with a water molecule was found in water containing Fe3+ and Fe2+. The above results showed that the metal ions in water could significantly influence the stability of THSG in water, indicating that the clinical efficacy and safety of decoction would be affected if the metal ions in water were not under control. It's suggested that deionized water should be used in the preparation of decoction containing Polygoni Multiflori Radix in the clinic to avoid degradation of THSG. Meanwhile, decoction prepared by tap water

  6. [Influence of metal ions on stability of 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside contained in Polygoni Multiflori Radix].

    PubMed

    Li, Rui-yu; Feng, Wu-wen; Li, Xiao-fei; Zhang, Ding-kun; Li, Chun-yu; Meng, Ya-kun; Bai, Zhao-fang; Song, Hai-bo; Du, Xiao-xi; Xia, Hou-lin; Wang, Jia-bo; Xiao, Xiao-he

    2016-01-01

    Decoction is one of the most commonly used dosage forms of traditional Chinese medicine. The stability of chemical constituents in decoction is closely related to the clinical efficacy and safety. There were few reports about the influence of metal ions in the stability of chemical constituents in traditional Chinese medicine. However, there is no evidence that metal ions in decoction water need to be controlled. In this study, 2,3,5,4'-tetrahydroxy stilbene-2-O-β-D-glucoside (THSG), one of the main constituents in Polygoni Multiflori Radix was studied. Ordinary tap water, deionized water, and water containing different metal ions were used to investigate and compare the influence on THSG. The results showed that after storage in a dark place at the room temperature for 10 days, the degradation of THSG was 7% in deionized water, while undetectable in tap water. The content of THSG could be decreased by different kinds of metal ions, and the effect was concentration-dependent. Moreover, Fe3+ and Fe2+ showed the greatest influence at the same concentration; and our study has shown that THSG decreased more than 98% in Fe and Fe2+ solutions at 500 ppm concentration. In the same time we found out p-hydroxybenzaldehyde (molecular weight: 122.036 7) and 2,3,5-trihydroxybenzaldehyde-2-O-glycoside (molecular weight: 316.079 4) were the main degradation products of THSG in tap water and water containing Cu2+, Ca2+, Zn2+, Mg2+ and Al3+. The product of THSG dimer with a water molecule was found in water containing Fe3+ and Fe2+. The above results showed that the metal ions in water could significantly influence the stability of THSG in water, indicating that the clinical efficacy and safety of decoction would be affected if the metal ions in water were not under control. It's suggested that deionized water should be used in the preparation of decoction containing Polygoni Multiflori Radix in the clinic to avoid degradation of THSG. Meanwhile, decoction prepared by tap water

  7. Manganese Upregulates Cellular Prion Protein and Contributes to Altered Stabilization and Proteolysis: Relevance to Role of Metals in Pathogenesis of Prion Disease

    PubMed Central

    Choi, Christopher J.; Anantharam, Vellareddy; Martin, Dustin P.; Nicholson, Eric M.; Richt, Jürgen A.; Kanthasamy, Arthi; Kanthasamy, Anumantha G.

    2010-01-01

    Prion diseases are fatal neurodegenerative diseases resulting from misfolding of normal cellular prion (PrPC) into an abnormal form of scrapie prion (PrPSc). The cellular mechanisms underlying the misfolding of PrPC are not well understood. Since cellular prion proteins harbor divalent metal-binding sites in the N-terminal region, we examined the effect of manganese on PrPC processing in in vitro models of prion disease. Exposure to manganese significantly increased PrPC levels both in cytosolic and in membrane-rich fractions in a time-dependent manner. Manganese-induced PrPC upregulation was independent of messenger RNA transcription or stability. Additionally, manganese treatment did not alter the PrPC degradation by either proteasomal or lysosomal pathways. Interestingly, pulse-chase analysis showed that the PrPC turnover rate was significantly altered with manganese treatment, indicating increased stability of PrPC with the metal exposure. Limited proteolysis studies with proteinase-K further supported that manganese increases the stability of PrPC. Incubation of mouse brain slice cultures with manganese also resulted in increased prion protein levels and higher intracellular manganese accumulation. Furthermore, exposure of manganese to an infectious prion cell model, mouse Rocky Mountain Laboratory–infected CAD5 cells, significantly increased prion protein levels. Collectively, our results demonstrate for the first time that divalent metal manganese can alter the stability of prion proteins and suggest that manganese-induced stabilization of prion protein may play a role in prion protein misfolding and prion disease pathogenesis. PMID:20176619

  8. Stabilization and reuse of heavy metal contaminated soils by means of quicklime sulfate salt treatment. Final report, September 1992--February 1995

    SciTech Connect

    Dermatas, D.

    1995-08-01

    Capillary and hydraulic flows of water in porous media contaminated by heavy metal species often result in severe aquifer contamination. In the present study a chemical admixture stabilization approach is proposed, where heavy metal stabilization/immobilization is achieved by means of quicklime-based treatment. Both in-situ treatment by injection and on-site stabilization by excavation, mixing, and compaction will be investigated. In addition, the potential to reuse the resulting stabilized material as readily available construction material will also be investigated. The heavy metals under study include: arsenic, chromium, lead, and mercury. The proposed technical approach consists of three separate phases. During phase A, both artificial and naturally occurring contaminated soil mixes were treated, and then tested for stress-strain properties, leachability, micromorphology, mineralogical composition, permeability, setting time, and durability. In such a way, the effectiveness of the proposed remediation technology was verified, the treatment approach was optimized, and the underlying mechanisms responsible for stabilization were established. During phase B, the proposed technology will be tested for two DOE-site subscale systems, involving naturally occurring contaminated soil, using the same testing methodology as the one outlined for phase A. Provided that the proposed technology is proven effective for the subscale systems, a field application will be demonstrated. Again process quality monitoring will be performed by testing undisturbed samples collected from the treated sites, in the same fashion as for the previous phases. Following completion of the proposed study, a set of comprehensive guidelines for field applications will be developed. 42 refs., 196 figs., 26 tabs.

  9. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels.

    PubMed

    Lai, Chenying; Chen, Jiewei; Knight, James C; Manthiram, Arumugam; Navrotsky, Alexandra

    2016-07-01

    The formation enthalpies from binary oxides of LiMn2 O4 , LiMn2-x Crx O4 (x=0.25, 0.5, 0.75 and 1), LiMn2-x Fex O4 (x=0.25 and 0.5), LiMn2-x Cox O4 (x=0.25, 0.5, and 0.75) and LiMn1.75 Ni0.25 O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2 O4 -LiMnMO4 solid solutions. These data confirm that transition-metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries.

  10. Thermodynamic Stability of Transition-Metal-Substituted LiMn2-x Mx O4 (M=Cr, Fe, Co, and Ni) Spinels.

    PubMed

    Lai, Chenying; Chen, Jiewei; Knight, James C; Manthiram, Arumugam; Navrotsky, Alexandra

    2016-07-01

    The formation enthalpies from binary oxides of LiMn2 O4 , LiMn2-x Crx O4 (x=0.25, 0.5, 0.75 and 1), LiMn2-x Fex O4 (x=0.25 and 0.5), LiMn2-x Cox O4 (x=0.25, 0.5, and 0.75) and LiMn1.75 Ni0.25 O4 at 25 °C were measured by high temperature oxide melt solution calorimetry and were found to be strongly exothermic. Increasing the Cr, Co, and Ni content leads to more thermodynamically stable spinels, but increasing the Fe content does not significantly affect the stability. The formation enthalpies from oxides of the fully substituted spinels, LiMnMO4 (M=Cr, Fe and Co), become more exothermic (implying increasing stability) with decreasing ionic radius of the metal and lattice parameters of the spinel. The trend in enthalpy versus metal content is roughly linear, suggesting a close-to-zero heat of mixing in LiMn2 O4 -LiMnMO4 solid solutions. These data confirm that transition-metal doping is beneficial for stabilizing these potential cathode materials for lithium-ion batteries. PMID:27017448

  11. Slip casting and extruding shapes of rhemium with metal oxide additives. Part 2: Development of grain stabilized rhenium parts for resistojets

    NASA Technical Reports Server (NTRS)

    Barr, Francis A.; Page, Russell J.

    1987-01-01

    The adaptation of the powdered particle process used for pure metal oxides to the coprocessing of rhenium oxides suitable to produce pure miniature resistojet hardware has been successful. Both slip casting and extrusion processes were used. The metal oxide ZrO2 was stabilized into the cubic phase with Y2O3, for use as a potentially grain stabilizing additive to rhenium. Straight meter long tubing in two sizes are reported. Tubing suitable for resistojet ohmic heater use of fully fired dimensions of nominally 3.8 mm o.d. x 2.2 mm i.d.. and 1.26 mm o.d. x .45 mm i.d. with 0, 0.5, 1.0 and 5.0% zirconia additives were produced for further study. Photomicrographs of these are discussed. The addition of the metal oxide zirconia to rhenium resulted in more dense and less porous parts. The additions of phase stabilized zirconia most likely act as a sintering aid. Tubes of varying diameter were slip cast which were representative of miniature pressure cases.

  12. Discharge performance of solid-state oxygen shuttle metal-air battery using Ca-stabilized ZrO2 electrolyte.

    PubMed

    Inoishi, Atsushi; Kim, Hack-Ho; Sakai, Takaaki; Ju, Young-Wan; Ida, Shintaro; Ishihara, Tatsumi

    2015-04-13

    The effects of metal choice on the electrochemical performance of oxygen-shuttle metal-air batteries with Ca-stabilized ZrO2 (CSZ) as the electrolyte and various metals as the anodes were studied at 1073 K. The equilibrium oxygen partial pressure (P O 2) in the anode chamber was governed by the metal used in the anode chamber. A lower-P O 2 environment in the anode decreased the polarization resistance of the anode. The oxidation of oxide ions to oxygen in the anode is drastically enhanced by the n-type conduction generated in the CSZ electrolyte when it is exposed to a reducing atmosphere. A high discharge potential and high capacity can be achieved in an oxygen-shuttle battery with a Li or Mg anode because of the fast anode reaction compared to that of cells with a Zn, Fe, or Sn anode. However, only the mildly reducing metals (Zn, Si, Fe, and Sn) can potentially be used in rechargeable metal-air batteries because the transport number of the CSZ electrolyte must be unity during charge and discharge. Oxygen shuttle rechargeable batteries with Fe, and Sn electrodes are demonstrated.

  13. Discharge performance of solid-state oxygen shuttle metal-air battery using Ca-stabilized ZrO2 electrolyte.

    PubMed

    Inoishi, Atsushi; Kim, Hack-Ho; Sakai, Takaaki; Ju, Young-Wan; Ida, Shintaro; Ishihara, Tatsumi

    2015-04-13

    The effects of metal choice on the electrochemical performance of oxygen-shuttle metal-air batteries with Ca-stabilized ZrO2 (CSZ) as the electrolyte and various metals as the anodes were studied at 1073 K. The equilibrium oxygen partial pressure (P O 2) in the anode chamber was governed by the metal used in the anode chamber. A lower-P O 2 environment in the anode decreased the polarization resistance of the anode. The oxidation of oxide ions to oxygen in the anode is drastically enhanced by the n-type conduction generated in the CSZ electrolyte when it is exposed to a reducing atmosphere. A high discharge potential and high capacity can be achieved in an oxygen-shuttle battery with a Li or Mg anode because of the fast anode reaction compared to that of cells with a Zn, Fe, or Sn anode. However, only the mildly reducing metals (Zn, Si, Fe, and Sn) can potentially be used in rechargeable metal-air batteries because the transport number of the CSZ electrolyte must be unity during charge and discharge. Oxygen shuttle rechargeable batteries with Fe, and Sn electrodes are demonstrated. PMID:25727525

  14. Slater-Pauling behavior within quaternary intermetallic borides of the Ti{sub 3}Co{sub 5}B{sub 2} structure-type

    SciTech Connect

    Burghaus, Jens; Dronskowski, Richard; Miller, Gordon J.

    2009-10-15

    First-principles, density-functional studies of several intermetallic borides of the general type M{sub 2}M'Ru{sub 5-n}Rh{sub n}B{sub 2} (n=0-5; M=Sc, Ti, Nb; M'=Fe, Co) show that the variation in saturation magnetic moment with valence-electron count follows a Slater-Pauling curve, with a maximum moment occurring typically at 66 valence electrons. The magnetic moments in these compounds occur primarily from the 3d electrons of the magnetically active M' sites, with some contribution from the Ru/Rh sites via magnetic polarization. Electronic DOS curves reveal that a rigid-band approach is a reasonable approximation for the estimation of saturation moments and the analysis of orbital interactions in this family of complex borides. COHP analyses of the M'-M' orbital interactions indicate optimized interactions in the minority spin states for Co-containing phases, but strong bonding interactions remaining in Fe-containing phases. - Graphical abstract: Theoretically determined (spin-polarized LMTO-GGA) local magnetic moments as a function of the chemical valence Z for various intermetallic borides.

  15. Surface Characterization and Mechanical Properties' Evaluation of Boride-Dispersed Nickel-Based Coatings Deposited on Copper Through Thermal Spray Routes

    NASA Astrophysics Data System (ADS)

    Sharma, Prashant; Majumdar, Jyotsna Dutta

    2012-09-01

    The present study concerns understanding the microstructures and wear resistance of nickel-based alloy (Ni 68.4, Cr 17, B 3.9, Si 4.9, and Fe 5.8) coatings on copper developed by flame spraying and high-velocity oxy-fuel (HVOF) coating techniques. The microstructure of flame spray deposition consists of predominantly equiaxed γ-Ni grains, refined Ni3B precipitates, and Ni2.9Cr0.7Fe0.36 phase. On the other hand, HVOF spray deposition reduces the porosity content significantly in the presence of very fine (with average precipitate size varying from μm to nm range) borides (chromium boride, Cr2B; and nickel boride, Ni3B) in γ-Ni matrix. The microhardness of the HVOF-sprayed and flame-sprayed surfaces were improved to 935 VHN and 251 VHN, respectively as compared with 82 VHN of the as-received substrate. Wear resistance property against WC indenter was also improved in deposited layers with a maximum improvement in HVOF spray deposition. The mechanism of wear was investigated.

  16. Enhanced Electroresponse of Alkaline Earth Metal-Doped Silica/Titania Spheres by Synergetic Effect of Dispersion Stability and Dielectric Property.

    PubMed

    Yoon, Chang-Min; Lee, Seungae; Cheong, Oug Jae; Jang, Jyongsik

    2015-09-01

    A series of alkaline earth metal-doped hollow SiO2/TiO2 spheres (EM-HST) are prepared as electrorheological (ER) materials via sonication-mediated etching method with various alkaline earth metal hydroxides as the etchant. The EM-HST spheres are assessed to determine how their hollow interior and metal-doping affects the ER activity. Both the dispersion stability and the dielectric properties of these materials are greatly enhanced by the proposed one-step etching method, which results in significant enhancement of ER activity. These improvements are attributed to increased particle mobility and interfacial polarization originating from the hollow nature of the EM-HST spheres and the effects of EM metal-doping. In particular, Ca-HST-based ER fluid exhibits ER performance which is 7.1-fold and 3.1-fold higher than those of nonhollow core/shell silica/titania (CS/ST) and undoped hollow silica/titania (HST)-based ER fluids, respectively. This study develops a versatile and simple approach to enhancing ER activity through synergetic effects arising from the combination of dispersion stability and the unique dielectric properties of hollow EM-HST spheres. In addition, the multigram scale production described in this experiment can be an excellent advantage for practical and commercial ER application.

  17. Leaching behavior and effectiveness of curing days (7& 28) of solidified/stabilized fly ash based geopolymer (multi-metal bearing sludge): experimental and modeling study.

    PubMed

    Chaudhary, Rubina; Khaleb, Divya; Badur, Smita

    2012-04-01

    This paper presents the study of the immobilization of heavy metals like Pb, Fe, Mn, Cu and Zn by fly ash based geopolymers. The purpose of this study was to investigate the effectiveness of fly ash based geopolymeric solidification/stabilization technology. For S/S of waste, geopolymer as a binding agent was mixed with waste at different ratios. For initial waste characterization, contaminants concentration and some physical waste characterization such as dry density, bulk density, specific gravity, porosity, moisture holding capacity, and moisture content were determined. Waste and geopolymer mixture were cured for 7 and 28 days to study the effect of curing days on the solidified/ stabilized product. Diffusion leaching test was performed on the geopolymers containing industrial sludge to determine the leaching mechanism of binders to entrap the waste constituents within their matrix. Movement of the elements was identified with the help of leachability index. S/S through geopolymer was found to be effective in immobilizing toxic metals present in the sludge. Zn was 100% and other metals like Pb, Fe, Mn and Cu were in the range 80-99% immobilized. The order of fixation of metals was Zn >Cu > Fe > Mn > Pb.

  18. Solidification/Stabilization of High Nitrate and Biodenitrified Heavy Metal Sludges with a Portland Cement/Flyash System

    SciTech Connect

    Canonico, J.S.

    1995-07-26

    Pond 207C at Rocky Flats Environmental Technology Site (RFETS) contains process wastewaters characterized by high levels of nitrates and other salts, heavy metal contamination, and low level alpha activity. The purpose of this research was to investigate the feasibility of treating a high-nitrate waste, contaminated with heavy metals, with a coupled dewateriug and S/S process, as well as to investigate the effects of biodenitrification pretreatment on the S/S process. Pond 207C residuals served as the target waste. A bench-scale treatability study was conducted to demonstrate an S/S process that would minimize final product volume without a significant decrease in contaminant stabilization or loss of desirable physical characteristics. The process formulation recommended as a result a previous S/S treatability study conducted on Pond 207C residuals was used as the baseline formulation for this research. Because the actual waste was unavailable due to difficulties associated with radioactive waste handling and storage, a surrogate waste, of known composition and representative of Pond 207C residuals, was used throughout this research. The contaminants of regulatory concern added to the surrogate were cadmium, chromium, nickel, and silver. Product volume reduction was achieved by dewatering the waste prior to S/S treatment. The surrogate was dewatered by evaporation at 60 to 80 C to total solids contents from 43% to 78% by weight, and treated with Portland cement and fly ash. Two cement to flyash ratios were tested, 2:1 and 1:2, by weight. Contaminant leachability testing was conducted with a 0.5 water to pozzolan (the cement/flyash mixture) ratio and both cement to flyash ratios. Each product was tested for unconfined compressive strength (UCS) and for contaminant leachability by the Toxicity Characteristics Leaching Procedure (TCLP). At the highest solids content achieved by dewatering, 78% solids by weight, the predicted final waste form volume f or Pond 207C

  19. Role of nucleotides in stabilization of the phospholamban/cardiac Ca²⁺ pump inhibitory complex examined with use of metal fluorides.

    PubMed

    Chen, Zhenhui

    2015-11-01

    Phospholamban (PLB) inhibits the activity of the cardiac calcium pump SERCA2a. We previously showed that PLB with engineered Cys residues only cross-linked with the Ca(2+) -free E2 intermediate of SERCA2a. Formation of E2•PLB prevents Ca(2+) binding at the high-affinity Ca(2+) binding sites, blocking the enzyme kinetic cycle. Here we further studied the synergistic action of PLB and ATP on E2 in terms of prevention of formation of the phosphorylated E2P-like states stabilized by metal fluorides. SERCA2a was co-expressed in insect cell microsomes with PLB mutants of normal or super-inhibitory strength, with cross-linkable mutations at either the cytosolic side (N30C) or the luminal side (V49C) of PLB. For normal-strength PLB mutants, in the absence of nucleotide, metal fluorides totally inhibited both SERCA2a enzyme activity and cross-linking of PLB to SERCA2a at both sites, suggesting that PLB dissociates from SERCA2a in the E2P-like states. However, under the same conditions, super-inhibitory PLB mutants prevented total enzyme inhibition by metal fluorides. Further, the cross-linking of super-inhibitory PLB to SERCA2a was only partially inhibited by metal fluorides, but was drastically restored upon sequential addition of ATP. These results revealed the equilibrium between E2•PLB, E2•ATP, or E2•ATP•PLB states and E2P-like states, suggesting that the synergistic binding of ATP and PLB to SERCA is very strong, sufficient to prevent formation of E2 phosphoenzymes, even when stabilized by metal fluorides.

  20. Application of accelerated carbonation with a combination of Na2CO3 and CO2 in cement-based solidification/stabilization of heavy metal-bearing sediment.

    PubMed

    Chen, Quanyuan; Ke, Yujuan; Zhang, Lina; Tyrer, Mark; Hills, Colin D; Xue, Gang

    2009-07-15

    The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO(2) as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1:1. The concentrations of mercury and other heavy metals in the leachates were below 0.10mg/L and 5mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na(2)CO(3) and CO(2) may practically apply to cement-based s/s of heavy metal-bearing sediment. PMID:19128876

  1. Thermal stability of hexagonal OsB2

    NASA Astrophysics Data System (ADS)

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A.; Andrew Payzant, E.

    2014-11-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 °C and cooling in vacuo down to -225 °C. During the heating, the sacrificial reaction 2OsB2+3O2→2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276-426 °C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  2. Thermal stability of hexagonal OsB2

    SciTech Connect

    Xie, Zhilin; Blair, Richard G.; Orlovskaya, Nina; Cullen, David A; Payzant, E Andrew

    2014-01-01

    The synthesis of novel hexagonal ReB2-type OsB2 ceramic powder was performed by high energy ball milling of elemental Os and B powders. Two different sources of B powder have been used for this mechanochemical synthesis. One B powder consisted of a mixture of amorphous and crystalline phases and a mixture of 10B and 11B isotopes with a fine particle size, while another B powder was a purely crystalline (rhombohedral) material consisting of enriched 11B isotope with coarse particle size. The same Os powder was used for the synthesis in both cases. It was established that, in the first case, the hexagonal OsB2 phase was the main product of synthesis with a small quantity of Os2B3 phase present after synthesis as an intermediate product. In the second case, where coarse crystalline 11B powder was used as a raw material, only Os2B3 boride was synthesized mechanochemically. The thermal stability of hexagonal OsB2 powder was studied by heating under argon up to 876 C and cooling in vacuo down to 225 C. During the heating, the sacrificial reaction 2OsB2+3O2 2Os+2B2O3 took place due to presence of O2/water vapor molecules in the heating chamber, resulting in the oxidation of B atoms and formation of B2O3 and precipitation of Os metal out of the OsB2 lattice. As a result of such phase changes during heating, the lattice parameters of hexagonal OsB2 changed significantly. The shrinkage of the a lattice parameter was recorded in 276 426 C temperature range upon heating, which was attributed to the removal of B atoms from the OsB2 lattice due to oxidation followed by the precipitation of Os atoms and formation of Os metal. While significant structural changes occurred upon heating due to presence of O2, the hexagonal OsB2 ceramic demonstrated good phase stability upon cooling in vacuo with linear shrinkage of the lattice parameters and no phase changes detected during cooling.

  3. ESTABLISHING SUSTAINABLE US HEV/PHEV MANUFACTURING BASE: STABILIZED LITHIUM METAL POWDER, ENABLING MATERIAL AND REVOLUTIONARY TECHNOLOGY FOR HIGH ENERGY LI-ION BATTERIES

    SciTech Connect

    Yakovleva, Marina

    2012-12-31

    FMC Lithium Division has successfully completed the project “Establishing Sustainable US PHEV/EV Manufacturing Base: Stabilized Lithium Metal Powder, Enabling Material and Revolutionary Technology for High Energy Li-ion Batteries”. The project included design, acquisition and process development for the production scale units to 1) produce stabilized lithium dispersions in oil medium, 2) to produce dry stabilized lithium metal powders, 3) to evaluate, design and acquire pilot-scale unit for alternative production technology to further decrease the cost, and 4) to demonstrate concepts for integrating SLMP technology into the Li- ion batteries to increase energy density. It is very difficult to satisfy safety, cost and performance requirements for the PHEV and EV applications. As the initial step in SLMP Technology introduction, industry can use commercially available LiMn2O4 or LiFePO4, for example, that are the only proven safer and cheaper lithium providing cathodes available on the market. Unfortunately, these cathodes alone are inferior to the energy density of the conventional LiCoO2 cathode and, even when paired with the advanced anode materials, such as silicon composite material, the resulting cell will still not meet the energy density requirements. We have demonstrated, however, if SLMP Technology is used to compensate for the irreversible capacity in the anode, the efficiency of the cathode utilization will be improved and the cost of the cell, based on the materials, will decrease.

  4. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Banham, Dustin; Ye, Siyu; Pei, Katie; Ozaki, Jun-ichi; Kishimoto, Takeaki; Imashiro, Yasuo

    2015-07-01

    A major hurdle to the widespread commercialization of proton exchange membrane fuel cells (PEMFCs) is the high loading of noble metal (Pt/Pt-alloy) catalyst at the cathode, which is necessary to facilitate the inherently sluggish oxygen reduction reaction (ORR). To eliminate the use of Pt/Pt-alloy catalysts at the cathode of PEMFCs and thus significantly reduce the cost, extensive research on non-precious metal catalysts (NPMCs) has been carried out over the past decade. Major advances in improving the ORR activity of NPMCs, particularly Fe- and Co-based NPMCs, have elevated these materials to a level at which they can start to be considered as potential alternatives to Pt/Pt-alloy catalysts. Unfortunately, the stability (performance loss following galvanostatic experiments) of these materials is currently unacceptably low and the durability (performance loss following voltage cycling) remains uncertain. The three primary mechanisms of instability are: (a) Leaching of the metal site, (b) Oxidative attack by H2O2, and (c) Protonation followed by possible anion adsorption of the active site. While (a) has largely been solved, further work is required to understand and prevent losses from (b) and/or (c). Thus, this review is focused on historical progress in (and possible future strategies for) improving the stability/durability of NPMCs.

  5. Impact of carboxymethyl cellulose coating on iron sulphide nanoparticles stability, transport, and mobilization potential of trace metals present in soils and sediment.

    PubMed

    Van Koetsem, Frederik; Van Havere, Lynn; Du Laing, Gijs

    2016-03-01

    The stability and transport behaviour of carboxymethyl cellulose (CMC) stabilized iron sulphide (FeS) engineered nanoparticles (ENPs) as well as their concurrent scavenging and mobilization of trace metal contaminants from field-contaminated soils and sediment was studied through a series of batch and column experiments. The synthesized CMC-FeS ENPs were shown to have a hydrodynamic diameter of 154.5 ± 5.8 nm and remained stable in suspension for a prolonged period of time (several weeks) when kept under anaerobic conditions. In the absence of CMC, much larger FeS particles were formed, which quickly aggregated and precipitated within minutes. Batch experiments indicated that the CMC-FeS ENPs have a high affinity for metal contaminants (e.g., Cd, Cr, Cu, Hg, Ni, Pb, and Zn), as high amounts of these trace metals could be retrieved in the aqueous phase after treatment of the soils with the nanoparticles (i.e., up to 29 times more compared to the water-leachable metal contents). Furthermore, batch retention of the nanoparticles by the solid soil phase was low (<37%), also suggesting a high stability and potential mobility. Nanoparticle treatment of the soils also affected the CaCl2-, TCLP-, and SPLP-leachability of trace metals, although no clear trend could be observed and metal leaching appeared to depend on the specific element under consideration, the type of extraction liquid, as well as on soil properties. Column breakthrough tests demonstrated that the CMC-FeS ENPs were highly mobile in the tested soil, even without the use of an external pressure (i.e., just via gravitational percolation). Maximal breakthrough of the nanoparticles was observed after approximately 10 or 16 pore volumes (PVs) for 83.3 or 500 mg L(-1) CMC-FeS ENPs, respectively, and only about 7% of the nanoparticles were retained by the soil after 22.7 PVs. Simultaneous elution of trace elements showed that up to 19, 8.7, or 11% of the respective Cd, Pb, or Zn content originally present

  6. Electrical characteristics and thermal stability of HfO{sub 2} metal-oxide-semiconductor capacitors fabricated on clean reconstructed GaSb surfaces

    SciTech Connect

    Miyata, Noriyuki Mori, Takahiro; Yasuda, Tetsuji; Ohtake, Akihiro; Ichikawa, Masakazu

    2014-06-09

    HfO{sub 2}/GaSb interfaces fabricated by high-vacuum HfO{sub 2} deposition on clean reconstructed GaSb surfaces were examined to explore a thermally stable GaSb metal-oxide-semiconductor structure with low interface-state density (D{sub it}). Interface Sb-O bonds were electrically and thermally unstable, and post-metallization annealing at temperatures higher than 200 °C was required to stabilize the HfO{sub 2}/GaSb interfaces. However, the annealing led to large D{sub it} in the upper-half band gap. We propose that the decomposition products that are associated with elemental Sb atoms act as interface states, since a clear correlation between the D{sub it} and the Sb coverage on the initial GaSb surfaces was observed.

  7. Effect of Nickel Concentration on Bias Reliability and Thermal Stability of Thin-Film Transistors Fabricated by Ni-Metal-Induced Crystallization

    NASA Astrophysics Data System (ADS)

    Lai, Ming-Hui; Sermon Wu, YewChung; Huang, Jung-Jie

    2012-01-01

    Ni-metal-induced crystallization (MIC) of amorphous Si (α-Si) has been employed to fabricate low-temperature polycrystalline silicon (poly-Si) thin-film transistors (TFTs). Although the high leakage current is a major issue in the performance of conventional MIC-TFTs since Ni contamination induces deep-level state traps, it can be greatly improved by using well-known technologies to reduce Ni contamination. However, for active-matrix organic light-emitting diode (AMOLED) display applications, the bias reliability and thermal stability are major concerns especially when devices are operated under a hot carrier condition and in a high-temperature environment. It will be interesting to determine how the bias reliability and thermal stability are affected by the reduction of Ni concentration. In the study, the effect of Ni concentration on bias reliability and thermal stability was investigated. We found that a device exhibited high immunity against hot-carrier stress and elevated temperatures. These findings demonstrated that reducing the Ni concentration in MIC films was also beneficial for bias reliability and thermal stability.

  8. Theoretical survey on M@C80 (M = Ca, Sr, and Ba): Behavior of different alkaline earth metal impacting the chemical stability and electronic properties

    NASA Astrophysics Data System (ADS)

    Cui, Jin-Bo; Guo, Yi-Jun; Li, Qiao-Zhi; Zhao, Pei; Zhao, Xiang

    2016-08-01

    Structures of mono-metallofullerenes M@C80 (M = Ca, Sr, and Ba) that separated in early experiment are determined owning the C2v(31920)-C80 cage. The change rule of properties for M@C80 (M = Ca, Sr, and Ba) influenced by different inner metal are discussed. As the trapped metal changes from calcium to barium, performance of thermodynamic stabilities for M@C2v(31920)-C80, M@C2v(31922)-C80, and M@D5h(31923)-C80 are significantly different. Orbital analysis suggests that the lowest unoccupied molecular orbitals (LUMOs) of Ca@C2v(31920)-C80 and Ca@D5h(31923)-C80 are mostly located on the trapped metal, whereas reduction reactions of Ca@C2v(31920)-C80 and Ca@D5h(31923)-C80 occur on the fullerene cage. Natural electron configuration analyses demonstrates that the decentralized electron back-donation of Ba@C2v(31920)-C80 would take responsible for the instability of itself. Electronic properties such as electron affinities and ionization potentials are significantly affected by encapsulated metal are also found. Computational UV-visible-NIR spectra for M@C2v(31920)-C80 (M = Ca, Sr, Ba) are in perfect accord with the spectra obtained experimentally.

  9. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils.

    PubMed

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A

    2015-09-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  10. Genome Structure of the Heavy Metal Hyperaccumulator Noccaea caerulescens and Its Stability on Metalliferous and Nonmetalliferous Soils1[OPEN

    PubMed Central

    Mandáková, Terezie; Singh, Vasantika; Krämer, Ute; Lysak, Martin A.

    2015-01-01

    Noccaea caerulescens (formerly known as Thlaspi caerulescens), an extremophile heavy metal hyperaccumulator model plant in the Brassicaceae family, is a morphologically and phenotypically diverse species exhibiting metal tolerance and leaf accumulation of zinc, cadmium, and nickel. Here, we provide a detailed genome structure of the approximately 267-Mb N. caerulescens genome, which has descended from seven chromosomes of the ancestral proto-Calepineae Karyotype (n = 7) through an unusually high number of pericentric inversions. Genome analysis in two other related species, Noccaea jankae and Raparia bulbosa, showed that all three species, and thus probably the entire Coluteocarpeae tribe, have descended from the proto-Calepineae Karyotype. All three analyzed species share the chromosome structure of six out of seven chromosomes and an unusually high metal accumulation in leaves, which remains moderate in N. jankae and R. bulbosa and is extreme in N. caerulescens. Among these species, N. caerulescens has the most derived karyotype, with species-specific inversions on chromosome NC6, which grouped onto its bottom arm functionally related genes of zinc and iron metal homeostasis comprising the major candidate genes NICOTIANAMINE SYNTHASE2 and ZINC-INDUCED FACILITATOR-LIKE1. Concurrently, copper and organellar metal homeostasis genes, which are functionally unrelated to the extreme traits characteristic of N. caerulescens, were grouped onto the top arm of NC6. Compared with Arabidopsis thaliana, more distal chromosomal positions in N. caerulescens were enriched among more highly expressed metal homeostasis genes but not among other groups of genes. Thus, chromosome rearrangements could have facilitated the evolution of enhanced metal homeostasis gene expression, a known hallmark of metal hyperaccumulation. PMID:26195571

  11. Influence of Schiff base and lanthanide metals on the synthesis, stability, and reactivity of monoamido lanthanide complexes bearing two Schiff bases.

    PubMed

    Han, Fubin; Teng, Qiaoqiao; Zhang, Yong; Wang, Yaorong; Shen, Qi

    2011-03-21

    The monoamido lanthanide complexes stabilized by Schiff base ligand L(2)LnN(TMS)(2) (L = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-8-C(9)H(6)N, Ln = Yb (1), Y (2), Eu (3), Nd (4), and La (5)) were synthesized in good yields by the reactions of Ln[N(TMS)(2)](3) with 1.8 equiv of HL in hexane at room temperature. It was found that the stability of 1-5 depends greatly on the size of the lanthanide metals with the increasing trend of Yb ≈ Y < Nd < La. The amine elimination of Ln[N(TMS)(2)](3) with the bulky bidentate Schiff base HL' (L' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Pr(i)(2)-C(6)H(3)) afforded the monoamido lanthanide complexes L'(2)LnN(TMS)(2) (Ln = Yb (9), Y (10), Nd (11), and La (12)). While the amine elimination with the less bulky Schiff base HL'' (L'' = 3,5-Bu(t)(2)-2-(O)-C(6)H(2)CH═N-2,6-Me(2)-C(6)H(3)) yielded the desired monoamido complexes with the small metals of Y and Yb, L''(2)LnN(TMS)(2) (Ln = Yb (13) and Y (14)), and the more stable tris-Schiff base complexes with the large metals of La and Nd, yielded L''(3)Ln as the only product. Complexes 1-14 were fully characterized including X-ray crystal structural analysis. Complexes 1-5, 10, and 14 can serve as the efficient catalysts for addition of amines to carbodiimides, and the catalytic activity is greatly affected by the lanthanide metals with the active sequence of Yb < Y < Eu ≈ Nd ≈ La.

  12. Photovoltage and stability of an n-type silicon semiconductor coated with metal or metal-free phthalocyanine thin films in aqueous redox solutions

    SciTech Connect

    Nakato, Y.; Shioji, M.; Tsubomura, H.

    1981-06-11

    An n-type silicon (n-Si) semiconductor coated with an evaporated thin film of metal phthalocyanine (MPc) or metal-free phthalocyanine (H/sub 2/Pc) worked as a fairly stable photoanode in aqueous redox solutions. The photovoltage observed for a photocell, (n-Si/CuPc/Fe/sup 3 +//Fe/sup 2 +/ aqueous solution (pH 4.2) /Pt), was 0.50 V, only slightly less than that for a p-n junction Si photocell (approx. 0.6 V). The action spectrum was similar to that of a bare n-Si electrode, except for a depression caused by photoabsorption by the CuPc film in the red region. The above wet photocell has current-voltage characteristics better than those for a solid photocell, (n-Si/CuPc/Pd).

  13. Thermostability of Proteins: Role of Metal Binding and pH on the Stability of the Dinuclear CuA Site of Thermus thermophilus

    PubMed Central

    Sujak, Agnieszka; Sanghamitra, Nusrat J. M.; Maneg, Oliver; Ludwig, Bernd; Mazumdar, Shyamalava

    2007-01-01

    The dinuclear copper center (TtCuA) forming the electron entry site in the subunit II of the cytochrome c oxidase in Thermus thermophilus shows high stability toward thermal as well as denaturant-induced unfolding of the protein at ambient pH. We have studied the effect of pH on the stability of the holo-protein as well as of the apo-protein by UV-visible absorption, far-UV, and visible circular dichroism spectroscopy. The results show that the holo-protein both in the native mixed-valence state as well as in the reduced state of the metal ions and the apo-protein of TtCuA were extremely stable toward unfolding by guanidine hydrochloride at ambient pH. The thermal unfolding studies at different values of pH suggested that decreasing pH had almost no effect on the thermal stability of the protein in the absence of the denaturant. However, the stability of the proteins in presence of the denaturant was considerably decreased on lowering the pH. Moreover, the stability of the holo-protein in the reduced state of the metal ion was found to be lower than that in the mixed-valence state at the same pH. The denaturant-induced unfolding of the protein at different values of pH was analyzed using a two-state unfolding model. The values of the free energy of unfolding were found to increase with pH. The holo-protein showed that the variation of the unfolding free energy was associated with a pKa of ∼5.5. This is consistent with the model that the protonation of a histidine residue may be responsible for the decrease in the stability of the holo-protein at low pH. The results were interpreted in the light of the reported crystal structure of the protein. PMID:17604317

  14. The effects of artificial ageing on the leaching behaviour of heavy metals in stabilized/solidified industrial sludge.

    PubMed

    Keskes, M; Choura, M; Rouis, J

    2009-12-01

    The use of a hydraulic binder for the treatment of mineral-based industrial wastes, containing heavy metals, by the chemical fixation and solidification (CFS) technique has raised serious questions regarding the prediction of the behaviour of these pollutants in the obtained solid matrix. It seems necessary, for this reason, to study the behaviour of these metals in response to leaching in order to evaluate their chemical speciation within the solidified sludge over the medium and long-terms. Within the framework of the current research, we applied the CFS technique to metallic hydroxide sludge, produced by the electrotyping surface treatment industry, by using Portland artificial cement (PAC). Compaction at the paste phase of this treated sludge resulted in up to 35% enhancement of the retention of pollutants, mainly trivalent chromium, in a cementing matrix, as compared with the classical technique that uses a simple vibration of sludge at the paste phase. The implemented process led to an improvement in the compactness of the sludge, and thus assured a better retention of heavy metals in response to the leaching of this treated sludge. The evaluation of the chemical properties of the materials obtained after an artificial ageing process using humidity variation cycles and thermal chocks also revealed a significant improvement in the retention capacity of heavy metals in the solidified sludge, which was mainly favoured by the development of carbonation. In fact, the release of the heavy metals from the above mentioned treated sludge was reduced by 58% for zinc and 51% for trivalent chromium after the artificial ageing process. PMID:20088205

  15. Cyclotron production of high specific activity 55Co and in vivo evaluation of the stability of 55Co metal-chelate-peptide complexes

    PubMed Central

    Mastren, Tara; Marquez, Bernadette V.; Sultan, Deborah E.; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E.

    2016-01-01

    This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96GBq/µmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabelled at 3.7MBq/µg and injected into HCT-116 tumor xenografted mice. PET imaging and biodistribution studies were performed at 24 and 48 hours post injection and compared with that of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers’ uptake in the liver by 6-fold at 24 with ~1% ID/g and at 48 hours with ~0.5% ID/g, and reducing uptake in the heart by 4-fold at 24 hours with ~0.7% ID/g and 7-fold at 48 hours with ~0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for Positron Emission Tomography (PET) imaging of cancer and other diseases. PMID:26505224

  16. Cyclotron Production of High-Specific Activity 55Co and In Vivo Evaluation of the Stability of 55Co Metal-Chelate-Peptide Complexes.

    PubMed

    Mastren, Tara; Marquez, Bernadette V; Sultan, Deborah E; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E

    2015-01-01

    This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/μmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/μg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers' uptake in the liver by sixfold at 24 hours with ~ 1% ID/g and at 48 hours with ~ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ~ 0.7% ID/g and sevenfold at 48 hours with ~ 0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.

  17. Stabilizing coordinated radicals via metal-ligand covalency: a structural, spectroscopic, and theoretical investigation of group 9 tris(dithiolene) complexes.

    PubMed

    Morsing, Thorbjørn J; MacMillan, Samantha N; Uebler, Jacob W H; Brock-Nannestad, Theis; Bendix, Jesper; Lancaster, Kyle M

    2015-04-01

    Proper assignment of redox loci in coordination complexes with redox-active ligands to either the metal or the ligand is essential for rationalization of their chemical reactivity. However, the high covalency endemic to complexes of late, third-row transition metals complicates such assignments. Herein, we systematically explore the redox behavior of a series of group 9 tris(dithiolene) complexes, [M(mnt)3]3– (M = Ir, Rh, Co; mnt = maleonitriledithiolate). The Ir species described comprise the first examples of homoleptic Ir dithiolene complexes. The enhanced metal–ligand covalency of the Ir–S interaction leads to remarkable reactivity of [Ir(mnt)3]3– and stabilization of mononuclear [Ir(mnt)3]2– complex ions as well as dimerized versions featuring weak, covalent, intermolecular S–S bonds. The dianionic Rh and Co analogues are, in contrast, highly unstable, resulting in the rapid formation of [Rh2(mnt)5]4– and [Co(mnt)2]22–, respectively. The synthesized complexes were studied by single-crystal X-ray diffraction, X-ray absorption spectroscopy, optical spectroscopy, magnetometry, density functional theory, and spectroscopy-oriented configuration interaction calculations. Spectroscopic and theoretical analyses suggest that the stability of [Ir(mnt)3]2– may be attributed to dilution of ligand radical character by a high degree of Ir 5d character in the singly occupied molecular orbital.

  18. Anomalous effect of vanadium boride seeding on thermoelectric properties of YB{sub 22}C{sub 2}N

    SciTech Connect

    Prytuliak, A.; Maruyama, S.; Mori, T.

    2013-05-15

    Highlights: ► We doped YB{sub 22}C{sub 2}N; the long awaited n-type counterpart to p-type boron carbide. ► VB{sub 2} seeding of YB{sub 22}C{sub 2}N showed striking results. ► Thermal treatment effects led to VB{sub 2} being intrinsically doped. ► Large increase of both Seebeck coefficient and electrical conductivity was obtained. - Abstract: Vanadium boride seeded YB{sub 22}C{sub 2}N were synthesized and the thermoelectric properties investigated. YB{sub 22}C{sub 2}N is representative of the series of rare earth borocarbonitrides which is the potential long awaited n-type counterpart to p-type boron carbide. VB{sub 2} seeded samples of YB{sub 22}C{sub 2}N were prepared using VB{sub 2} directly as an initial additive and V{sub 2}O{sub 3} which also results in formation of vanadium diboride in the final product. The resistivity and Seebeck coefficient of samples were measured in the temperature range of 323 K to 1073 K. A dramatic effect of thermal treatment on the Seebeck coefficient of VB{sub 2} seeded samples was observed, and it is indicated that there is possible partial intrinsic doping of vanadium into YB{sub 22}C{sub 2}N. VB{sub 2} is revealed to be a promising additive to improve the thermoelectric properties of YB{sub 22}C{sub 2}N. An enhancement of more than 220% of the maximum absolute value of the Seebeck coefficient was obtained while the resistivity was also reduced considerably.

  19. Microporous Metal-Organic Framework Stabilized by Balanced Multiple Host-Couteranion Hydrogen-Bonding Interactions for High-Density CO2 Capture at Ambient Conditions.

    PubMed

    Ye, Yingxiang; Xiong, Shunshun; Wu, Xiaonan; Zhang, Liuqin; Li, Ziyin; Wang, Lihua; Ma, Xiuling; Chen, Qian-Huo; Zhang, Zhangjing; Xiang, Shengchang

    2016-01-01

    Microporous metal organic frameworks (MOFs) show promising application in several fields, but they often suffer from the weak robustness and stability after the removal of guest molecules. Here, three isostructural cationic metal-organic frameworks {[(Cu4Cl)(cpt)4(H2O)4]·3X·4DMAc·CH3OH·5H2O} (FJU-14, X = NO3, ClO4, BF4; DMAc = N,N'-dimethylacetamide) containing two types of polyhedral nanocages, one octahedron, and another tetrahedron have been synthesized from bifunctional organic ligands 4-(4H-1,2,4-triazol-4-yl) benzoic acid (Hcpt) and various copper salts. The series of MOFs FJU-14 are demonstrated as the first examples of the isostructural MOFs whose robustness, thermal stability, and CO2 capacity can be greatly improved via rational modulation of counteranions in the tetrahedral cages. The activated FJU-14-BF4-a containing BF4(-) anion can take CO2 of 95.8 cm(3) cm(-3) at ambient conditions with an adsorption enthalpy only of 18.8 kJ mol(-1). The trapped CO2 density of 0.955 g cm(-3) is the highest value among the reported MOFs. Dynamic fixed bed breakthrough experiments indicate that the separation of CO2/N2 mixture gases through a column packed with FJU-14-BF4-a solid can be efficiently achieved. The improved robustness and thermal stability for FJU-14-BF4-a can be attributed to the balanced multiple hydrogen-bonding interactions (MHBIs) between the BF4(-) counteranion and the cationic skeleton, while the high-density and low-enthalpy CO2 capture on FJU-14-BF4-a can be assigned to the multiple-point interactions between the adsorbate molecules and the framework as well as with its counteranions, as proved by single-crystal structures of the guest-free and CO2-loaded FJU-14-BF4-a samples.

  20. Thermal stability and hcp-fcc allotropic transformation in supported Co metal catalysts probed near operando by ferromagnetic NMR.

    PubMed

    Andreev, Andrey S; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Gerashenko, Alexander

    2015-06-14

    Despite the fact that cobalt based catalysts are used at the industrial scale for Fischer-Tropsch synthesis, it is not yet clear which cobalt metallic phase is actually at work under operando conditions and what is its state of dispersion. As it turns out, the different phases of metallic cobalt, fcc and hcp, give rise to distinct ferromagnetic nuclear magnetic resonance. Furthermore, within one Co metal particle, the occurrence of several ferromagnetic domains of limited sizes can be evidenced by the specific resonance of Co in multi-domain particles. Consequently, by ferromagnetic NMR, one can follow quantitatively the sintering and phase transitions of dispersed Co metal particles in supported catalysts under near operando conditions. The minimal size probed by ferromagnetic Co NMR is not precisely known but is considered to be in the order of 10 nm for supported Co particles at room temperature and increases to about 35 nm at 850 K. Here, in Co metal Fischer-Tropsch synthesis catalysts supported on β-SiC, the resonances of the fcc multi-domain, fcc single-domain and hcp Co were clearly distinguished. A careful rationalization of their frequency and width dependence on temperature allowed a quantitative analysis of the spectra in the temperature range of interest, thus reflecting the state of the catalysts under near operando conditions that is without the uncertainty associated with prior quenching. The allotropic transition temperature was found to start at 600-650 K, which is about 50 K below the bulk transition temperature. The phase transition was fully reversible and a significant part of the hcp phase was found to be stable up to 850 K. This anomalous behavior that was observed without quenching might prove to be crucial to understand and model active species not only in catalysts but also in battery materials.