Science.gov

Sample records for metal clusters adequate

  1. Reactivity of Metal Clusters.

    PubMed

    Luo, Zhixun; Castleman, A W; Khanna, Shiv N

    2016-12-14

    We summarize here the research advances on the reactivity of metal clusters. After a simple introduction of apparatuses used for gas-phase cluster reactions, we focus on the reactivity of metal clusters with various polar and nonpolar molecules in the gas phase and illustrate how elementary reactions of metal clusters proceed one-step at a time under a combination of geometric and electronic reorganization. The topics discussed in this study include chemical adsorption, addition reaction, cleavage of chemical bonds, etching effect, spin effect, the harpoon mechanism, and the complementary active sites (CAS) mechanism, among others. Insights into the reactivity of metal clusters not only facilitate a better understanding of the fundamentals in condensed-phase chemistry but also provide a way to dissect the stability and reactivity of monolayer-protected clusters synthesized via wet chemistry.

  2. Alkali Metal Cluster Theory.

    NASA Astrophysics Data System (ADS)

    Chen, Jian

    Available from UMI in association with The British Library. Requires signed TDF. In this thesis, we apply the tight-binding Hubbard model to alkali metal clusters with Hartree-Fock self-consistent methods and perturbation methods for the numerical calculations. We have studied the relation between the equilibrium structures and the range of the hopping matrix elements in the Hubbard Hamiltonian. The results show that the structures are not sensitive to the interaction range but are determined by the number of valence electrons each atom has. Inertia tensors are used to analyse the symmetries of the clusters. The principal axes of the clusters are determined and they are the axes of rotational symmetries of clusters if the clusters have any. The eigenvalues of inertia tensors which are the indication of the deformation of clusters are compared between our model and the ellipsoidal jellium model. The agreement is good for large clusters. At a finite temperature, the thermal motion fluctuates the structures. We defined a fluctuation function with the distance matrix of a cluster. The fluctuation has been studied with the Monte-Carlo simulation method. Our studies show that the clusters remain in the solid state when temperature is low. The small values of fluctuation functions indicates the thermal vibration of atoms around their equilibrium positions. If the temperature is high, the atoms are delocalized. The cluster melts and enters the liquid region. The cluster melting is simulated by the Monte-Carlo simulation with the fluctuation function we defined. Energy levels of clusters are calculated from the Hubbard model. Ionization potentials and magic numbers are also obtained from these energy levels. The results confirm that the Hubbard model is a good approximation for a small cluster. The excitation energy is presented by the difference between the original level and excited level, and the electron-hole interactions. We also have studied cooling of clusters

  3. Photoionization of oxidized metal clusters

    SciTech Connect

    Dao, P.D.; Peterson, K.I.; Castleman, A.W. Jr.

    1984-01-01

    Oxidized metal clusters (Na/sub x/O and K/sub x/O for 2< or =x< or =4) were formed in a gas phase reaction between metal clusters and an oxidizing gas using a double expansion technique. Their appearance potentials were measured using a molecular beam-photoionization mass spectrometer system. These first photoionization data for oxidized clusters provide information on trends of ionization potentials as a function of the degree of aggregation. The ionization potentials do not differ greatly from the analogous metallic species, but in the case of the sodium tetramer the value does fall below that of the bare metal cluster. This finding is in accord with what has been observed as an influence of impurities on the work function of the bulk sodium. The results are also of interest concerning questions of octet rule violations and hypervalency.

  4. Internal gettering by metal alloy clusters

    DOEpatents

    Buonassisi, Anthony; Heuer, Matthias; Istratov, Andrei A.; Pickett, Matthew D.; Marcus, Mathew A.; Weber, Eicke R.

    2010-07-27

    The present invention relates to the internal gettering of impurities in semiconductors by metal alloy clusters. In particular, intermetallic clusters are formed within silicon, such clusters containing two or more transition metal species. Such clusters have melting temperatures below that of the host material and are shown to be particularly effective in gettering impurities within the silicon and collecting them into isolated, less harmful locations. Novel compositions for some of the metal alloy clusters are also described.

  5. Metallic bonding and cluster structure

    SciTech Connect

    Soler, Jose M.; Beltran, Marcela R.; Michaelian, Karo; Garzon, Ignacio L.; Ordejon, Pablo; Sanchez-Portal, Daniel

    2000-02-15

    Knowledge of the structure of clusters is essential to predict many of their physical and chemical properties. Using a many-body semiempirical Gupta potential (to perform global minimizations), and first-principles density functional calculations (to confirm the energy ordering of the local minima), we have recently found [Phys. Rev. Lett. 81, 1600 (1998)] that there are many intermediate-size disordered gold nanoclusters with energy near or below the lowest-energy ordered structure. This is especially surprising because we studied ''magic'' cluster sizes, for which very compact-ordered structures exist. Here, we show how the analysis of the local stress can be used to understand the physical origin of this amorphization. We find that the compact ordered structures, which are very stable for pair potentials, are destabilized by the tendency of metallic bonds to contract at the surface, because of the decreased coordination. The amorphization is also favored by the relatively low energy associated to bondlength and coordination disorder in metals. Although these are very general properties of metallic bonding, we find that they are especially important in the case of gold, and we predict some general trends in the tendency of metallic clusters towards amorphous structures. (c) 2000 The American Physical Society.

  6. Structure stability and spectroscopy of metal clusters

    SciTech Connect

    Not Available

    1993-01-01

    Theory based on self-consistent field-linear combinations of atomic orbitals-molecular orbital theory was applied to clusters. Four areas were covered: electronic structure, equilibrium geometries, and stability of charged clusters, interaction of metal clusters with H and halogen atoms, thermal stability of isolated clusters, and stability and optical properties of hetero-atomic clusters. (DLC)

  7. Production of metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Mcmanus, S. P.

    1982-01-01

    The feasibility of producing novel metals or metal clusters in a low gravity environment was studied. The production of coordinately unsaturated metal carbonyls by thermolysis or photolysis of stable metal carbonyls has the potential to generate novel catalysts by this technique. Laser irradiation of available metal carbonyls was investigated. It is found that laser induced decomposition of metal carbonyls is feasible for producing a variety of coordinately unsaturated species. Formation of clustered species does occur but is hampered by weak metal-metal bonds.

  8. Determination of Globular Cluster metallicities with BUSCA

    NASA Astrophysics Data System (ADS)

    Wittlich, M.; Cordes, O.; Reif, K.

    Globular Clusters (GCs) have always been a topic of great interest probing stellar and galactic evolution. This includes both determination of age and metallicity. The stars in GCs are known to be more or less coeval and therefore considered to be formed out of the same primordial cloud, implying same chemical composition. Deriving metallicities yields indicators for primordial enrichment of the GC forming cloud. Recent studies show abundance differences among GC giants (Kraft 1994). The spread in abundances tends to be correlated with oxygen and CN-band strengths, resulting in new differing formation and evolution scenarios for GC. Strömgren photometry is known to be an adequate method for metallicity determination (Strömgren 1966). In this poster, we present preliminary results of metallicity studies in the Strömgren uvby-Hβ colour system for a sample of bright GCs. The data were obtained with BUSCA (``Bonn University Simultaneous CAmera''), the new 4k×4k CCD 4-colour imaging instrument at the 2.2m telescope at Calar Alto Observatory. The observed GC were selected relying on a wide spread in mean GC metallicities to obtain hints on their formation process. Photometric reduction was conducted using the package DAOPHOT of the IRAF program. Standard stars for calibration were chosen according to Olsen & Perry (1987). A revised Strömgren metallicity calibration for red giants proposed by Hilker (2000) was applied to the data to detect CN variations. In connection with spectroscopy from literature we are able to argue whether the CN variations are triggered by primordial abundance variations or by evolutionary mixing processes.

  9. Reactive cluster model of metallic glasses

    SciTech Connect

    Jones, Travis E.; Miorelli, Jonathan; Eberhart, Mark E.

    2014-02-28

    Though discovered more than a half century ago metallic glasses remain a scientific enigma. Unlike crystalline metals, characterized by short, medium, and long-range order, in metallic glasses short and medium-range order persist, though long-range order is absent. This fact has prompted research to develop structural descriptions of metallic glasses. Among these are cluster-based models that attribute amorphous structure to the existence of clusters that are incommensurate with crystalline periodicity. Not addressed, however, are the chemical factors stabilizing these clusters and promoting their interconnections. We have found that glass formers are characterized by a rich cluster chemistry that above the glass transformation temperature promotes exchange as well as static and vibronic sharing of atoms between clusters. The vibronic mechanism induces correlated motions between neighboring clusters and we hypothesize that the distance over which these motions are correlated mediates metallic glass stability and influences critical cooling rates.

  10. Quantum chemical treatments of metal clusters.

    PubMed

    Weigend, Florian; Ahlrichs, Reinhart

    2010-03-28

    This work focuses on finding and rationalizing the building principles of clusters with approximately 300 atoms of different types of metals: main group elements (Al, Sn), alkaline earth metals (Mg), transition metals (Pd) and clusters consisting of two different elements (Ir and Pt). Two tools are inevitable for this purpose: (i) quantum chemical methods that are able to treat a given cluster with both sufficient accuracy and efficiency and (ii) algorithms that are able to systematically scan the (3n-6)-dimensional potential surface of an n-atomic cluster for promising isomers. Currently, the only quantum chemical method that can be applied to metal clusters is density functional theory (DFT). Other methods either do not account for the multi-reference character of metal clusters or are too expensive and thus can be applied only to clusters of very few atoms, which usually is not sufficient for studying the building principles. The accuracy of DFT is not known a priori, but extrapolations to bulk values from calculated series of data show satisfying agreement with experimental data. For scans of the potential surface, simulated annealing techniques or genetic algorithms were used for the smaller clusters (approx. 20-30 atoms), and for the larger clusters considerations were restricted to selected packings and shapes. For the mixed-metallic clusters, perturbation theory turned out to be efficient and successful for finding the most promising distributions of the two atom types at the different sites.

  11. Surface deposition and encapsulation of metallic clusters

    NASA Astrophysics Data System (ADS)

    Hund, Jared Franklin

    In this work metallic clusters are produced by both encapsulation in an aerogel matrix and deposition on a surface. Entrapment of metal clusters inside aerogels is accomplished though synthesis of a hydrogel precursor, washing it with an aqueous metal salt solution, and controlled reduction of the metal. Although the aerogel matrix stabilizes and prevents subsequent loss or aggregation of the clusters once they are produced, controlling the rate of reduction is key to the size and morphology of the clusters. In order to do this, both radiolytic and chemical reduction methods are used. The radiolytic technique for the formation of metal cluster aerogel composites utilizes gamma radiation to reduce the solution of Ag+ or [AuCl 4]- ions inside of the hydrogel precursor. After exposure to gamma rays, the previously colorless gels have the coloration typical of colloids of Au (pink) and Ag (yellow/brown) clusters. Typical gamma doses are between 2 to 3.5 kGy for hydrogels containing 10-4 to 10-3 mol·L-1 metal solutions. Subsequent characterization confirmed the presence of metal clusters with a fcc structure. The cluster diameters varied between 10 and 200nm, depending on the synthesis parameters. More conventional chemical reduction is also employed in this work to produce noble metal clusters in an aerogel matrix. Hydrogels were washed in a basic solution of Ag+ or [AuCl4]- ions, and formaldehyde was added to the solution. The reduction proceeded relatively slowly, allowing the formaldehyde to diffuse into the hydrogel before complete reduction took place. This procedure was also used to produce alloys of gold and silver clusters embedded in silica aerogels. Also included in this dissertation is the surface deposition of metallic clusters on a silicon surface. The apparatus built produces a cold beam of gas droplets that pick up evaporated metal clusters and deposit them on a surface. The gas clusters are produced by supersonic expansion of a gas (Ar, He, or N2

  12. Mechanical Instability of Oxidized Metal Clusters

    NASA Astrophysics Data System (ADS)

    Celino, Massimo; Cleri, Fabrizio; D'Agostino, Gregorio; Rosato, Vittorio

    1996-09-01

    A mechanism to explain the complete oxidation of small metal clusters is proposed, based on the occurrence of a mechanical instability driven by the expansion of the progressively oxidized cluster surface and the subsequent stress relaxation. Molecular dynamics simulations of spherical Pd clusters show that an expanded surface layer is capable of straining the inner core of the cluster up to the point of inducing cavitation. These findings allow the interpretation of recent experimental results in which oxidized Pd clusters exhibit a hollow spherical shape.

  13. A Simple MO Treatment of Metal Clusters.

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1980-01-01

    Illustrates how a qualitative description of the geometry and electronic characteristics of homogeneous metal clusters can be obtained using semiempirical MO (molecular orbital theory) methods. Computer applications of MO methods to inorganic systems are also described. (CS)

  14. The magic numbers of metal and metal alloy clusters

    SciTech Connect

    Yamada, Y.; Castleman, A.W. Jr. )

    1992-09-15

    Pure metal and metal alloy clusters including Cu{sub {ital n}}, Ag{sub {ital n}}, Cu{sub {ital n}}Ag{sub {ital m}}, Cu{sub {ital n}}Al{sub {ital m}}, Cu{sub {ital n}}In{sub {ital m}}, Ag{sub {ital n}}Al{sub {ital m}}, Ag{sub {ital n}}In{sub {ital m}}, and Cu{sub {ital n}}Pb{sub {ital m}} are produced by a gas aggregation source and investigated by time-of-flight mass spectrometry following ionization with a KrF excimer laser. In the case of pure metal clusters (Cu{sub {ital n}},Ag{sub {ital n}},In{sub {ital n}}), as well as alloy clusters composed of these metals, magic numbers are observed in their cluster ions which correspond to jellium shell closings (counting the total valence electrons from the component metals). These findings are in good agreement with their expected free-electron behavior. Interestingly, the abundance of pure Pb{sub {ital n}}{sup +} corresponds to species which are expected to be especially stable due to their geometric structure. A similar situation also arises for the Pb-rich alloy clusters. By contrast, the metal alloy clusters Cu{sub {ital n}}Pb{sub {ital m}}{sup +} show magic numbers at jellium shell closing in the series of Cu-rich clusters.

  15. Young star cluster evolution and metallicity .

    NASA Astrophysics Data System (ADS)

    Mapelli, M.; Bressan, A.

    Young star clusters (SCs) are the cradle of stars and the site of important dynamical processes. We present N-body simulations of young SCs including recipes for metal-dependent stellar evolution and mass loss by stellar winds. We show that metallicity affects significantly the collapse and post-core collapse phase, provided that the core collapse timescale is of the same order of magnitude as the lifetime of massive stars. In particular, the reversal of core collapse is faster for metal-rich SCs, where stellar winds are stronger. As a consequence, the half-mass radius of metal-poor SCs expands more than that of metal-rich SCs.

  16. Structural evolution and metallicity of lead clusters

    NASA Astrophysics Data System (ADS)

    Götz, Daniel A.; Shayeghi, Armin; Johnston, Roy L.; Schwerdtfeger, Peter; Schäfer, Rolf

    2016-05-01

    The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps are calculated using time-dependent density functional theory. They are compared to Kubo gaps, which are an indicator of the metallicity in finite particles. Both, experimental and theoretical data suggest that lead clusters are not metallic up to at least 36 atoms.The evolution of the metallic state in lead clusters and its structural implications are subject to ongoing discussions. Here we present molecular beam electric deflection studies of neutral PbN (N = 19-25, 31, 36, 54) clusters. Many of them exhibit dipole moments or anomalies of the polarizability indicating a non-metallic state. In order to resolve their structures, the configurational space is searched using the Pool Birmingham Cluster Genetic algorithm based on density functional theory. Spin-orbit effects on the geometries and dipole moments are taken into account by further relaxing them with two-component density functional theory. Geometries and dielectric properties from quantum chemical calculations are then used to simulate beam deflection profiles. Structures are assigned by the comparison of measured and simulated beam profiles. Energy gaps

  17. Supersonic Bare Metal Cluster Beams. Final Report

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1997-10-14

    A major portion of the project involved elucidating the relation between reactivity and the electronic structure of transition-metal (TM) clusters of 2--200 atoms, which required the construction and continuous development of two principal apparati; the Fourier Transform-Ion Cyclotron Resonance (FT-ICR) apparatus, and Ultraviolet Photoelectron Spectroscopy (UPS). Together, these machines have enabled the most detailed probing of the structure and chemical reactivity of TM clusters. Clusters of all the transition metals were included in these studies. Fundamental aspects in chemisorption, reactivity, and heterogeneous catalysis have also become better understood as a result of these experiments for important classes of systems such as H{sub 2}, CO, and CO{sub 2} adsorbed onto clusters of many of the metals listed above. In particular, a correlation was found between reactivity of H{sub 2} with Fe, Co, and Ni clusters and differences between the cluster IP and EA. As recounted in a previous technical report, the DOE`s role in the initial discovery of fullerenes at Rice was central, and from the start investigations were made into metal atoms trapped in the fullerenes cage. More recently, the authors have discovered that 2--4 atoms of La, Y, or Sc can be produced by laser vaporization of composite graphite/metal-oxide disks. This work was largely motivated by the prospects of using such endohedral TM metals for their catalytic activity without the well-known difficulties of effective support media and lack of control over particle size. Thus, while it will certainly be important to discover ways to efficiently scale up production (e.g., the solar generation method explored with DOE support), the efforts have concentrated more on characterization, purification, and manipulation of doped fullerenes. For the past two years, much of the group`s effort has involved the production, purification, and characterization of carbon nanotubes.

  18. (Electronic structure and reactivities of transition metal clusters)

    SciTech Connect

    Not Available

    1992-01-01

    The following are reported: theoretical calculations (configuration interaction, relativistic effective core potentials, polyatomics, CASSCF); proposed theoretical studies (clusters of Cu, Ag, Au, Ni, Pt, Pd, Rh, Ir, Os, Ru; transition metal cluster ions; transition metal carbide clusters; bimetallic mixed transition metal clusters); reactivity studies on transition metal clusters (reactivity with H{sub 2}, C{sub 2}H{sub 4}, hydrocarbons; NO and CO chemisorption on surfaces). Computer facilities and codes to be used, are described. 192 refs, 13 figs.

  19. Magnetic properties of free metal clusters

    NASA Astrophysics Data System (ADS)

    Jiang, Wei

    In this dissertation, results of Stern-Gerlach type magnetic deflection experiments on Chromium, Iron, and Aluminum clusters consisting of ˜20-200 atoms are reported. These metal clusters were produced using a laser vaporization technique in helium, and their beams were formed using supersonic expansion into vacuum. Measurements of their magnetic deflections were conducted at temperature ranging from 50K to 250K and at various magnetic field strengths. Both Chromium and Iron clusters are found to behave in accordance with a superparamagnetic model and to have enhanced magnetism compared to their bulks. For Chromium clusters with N≥34, each cluster has at least two isomers with distinguishable magnetic moments at low temperatures. For Iron clusters with Tvib=55 K, some deviations from the superparamagnetic model were observed. Aluminum clusters with odd numbers of atoms exhibit paramagnetic properties at low temperatures, which are believed to be related to superconductivity. At temperatures as low as 55K, the predicted large diamagnetism of Al56 due to superconductivity was not observed, within our system's resolution.

  20. Spectroscopic studies of nanoscale metal clusters

    NASA Astrophysics Data System (ADS)

    Gangopadhyay, P.

    2013-06-01

    The present article is intended to elucidate a range of novel spectroscopic studies of nanoscale metal clusters. Various bottom-up and top-down techniques have been utilized to synthesize the metal nanoclusters. Materials like metal nanoclusters of cobalt, silver or gold in various dielectric matrices facilitate to explore interesting phenomena through optical, photoluminescence and vibrational spectroscopy. Interaction of uv-visible light with free electrons of metal nanoclusters, for example, leads to fascinating colors of dielectric matrices through an optical effect known as surface-plasmon resonance. This effect of quantum-confinement of the electrons leads to large enhancements of local electric field in metal nanoclusters. Enhancements of Raman scattering from metal nanoclusters are attributed to the increase of local fields. Optical absorption and Raman scattering spectroscopy particularly have been highlighted here as powerful non-destructive experimental methods to study evolution of metal nanoclusters in different dielectric matrices. In relatively large metal nanoclusters, besides dipolar, quadrupolar surface-plasmon resonances have been observed.

  1. Electrophobic interaction induced impurity clustering in metals

    SciTech Connect

    Zhou, Hong-Bo; Wang, Jin-Long; Jiang, W.; Lu, Guang-Hong; Aguiar, J. A.; Liu, Feng

    2016-10-01

    We introduce the concept of electrophobic interaction, analogous to hydrophobic interaction, for describing the behavior of impurity atoms in a metal, a 'solvent of electrons'. We demonstrate that there exists a form of electrophobic interaction between impurities with closed electron shell structure, which governs their dissolution behavior in a metal. Using He, Be and Ar as examples, we predict by first-principles calculations that the electrophobic interaction drives He, Be or Ar to form a close-packed cluster with a clustering energy that follows a universal power-law scaling with the number of atoms (N) dissolved in a free electron gas, as well as W or Al lattice, as Ec is proportional to (N2/3-N). This new concept unifies the explanation for a series of experimental observations of close-packed inert-gas bubble formation in metals, and significantly advances our fundamental understanding and capacity to predict the solute behavior of impurities in metals, a useful contribution to be considered in future material design of metals for nuclear, metallurgical, and energy applications.

  2. The structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Pettersson, L. G. M.

    1986-01-01

    One metal atom surrounded by its 12 nearest neighbors is considered for both D(3d) (face-centered cubic-like) and D(3h) (hexagonal close-packed-like) geometries. For Al and Be, the neutral cluster and the positive and negative ions are considered for idealized (all bonds equal) and distorted geometries. The D(3d) geometry is found to be the lowest for Be13, while the D(3h) geometry is lower for Al13. This is the reverse of what is expected based upon the bulk metal structures, Be(hcp) and Al(fcc). Al13 is found to have only small distortions, while Be13 shows large distortions for both the D(3d) and D(3h) geometries. The ions have geometries which are similar to those found for the neutral systems. Both all-electron and effective core potential calculations were carried out on the X13 clusters; the agreement is very good.

  3. Magnetic impurities in small metal clusters

    NASA Astrophysics Data System (ADS)

    Pastor, G. M.

    2005-09-01

    [Dedicated to Bernhard Mühlschlegel on the occasion of his 80th birthday]Magnetic impurities in small metallic clusters are investigated in the framework of the Anderson model by using exact diagonalization and geometry optimization methods.The singlet-triplet spin gap E shows a remarkable dependence as a function of band-filling, cluster structure, and impurity position that can be interpreted in terms of the environment-specific conduction-electron spectrum. The low-energy spin excitations involve similar energies as isomerizations. Interesting correlations between cluster structure and magnetic behavior are revealed. Finite-temperature properties such as specific heat, effective impurity moment, and magnetic susceptibility are calculated exactly in the canonical ensemble. A finite-size equivalent of the Kondo effect is identified and its structural dependence is discussed.

  4. Spectroscopy at metal cluster surfaces. Annual report, Year 2

    SciTech Connect

    Duncan, M.A.

    1995-08-01

    The focus of our research program is the study of gas phase metal clusters to evaluate their potential to model fundamental interactions present on metal surfaces. To do this, we characterize the chemical bonding present between the component atoms in metal clusters as well as the bonding exhibited by ``physisorption`` on cluster surfaces. Electronic spectra, vibrational frequencies and bond neutral and ionized clusters with a variety of laser/mass spectrometry techniques. We are particularly interested in bimetallic cluster systems, and how their properties compare to those of corresponding pure metal clusters.

  5. Structure stability and spectroscopy of metal clusters. Progress report

    SciTech Connect

    Not Available

    1993-06-01

    Theory based on self-consistent field-linear combinations of atomic orbitals-molecular orbital theory was applied to clusters. Four areas were covered: electronic structure, equilibrium geometries, and stability of charged clusters, interaction of metal clusters with H and halogen atoms, thermal stability of isolated clusters, and stability and optical properties of hetero-atomic clusters. (DLC)

  6. Dynamics of transition-metal clusters

    NASA Astrophysics Data System (ADS)

    Sawada, S.; Sugano, S.

    1989-03-01

    The atomic structure and thermodynamic properties of transition-metal 6- and 7-atom clusters are investigated using the molecular dynamics method, where Gupta's potential taking into account many-body interaction is employed. The caloric and the structural fluctuations are studied. The “fluctuating state” is found for N=6 in the region of the temperature near and below the melting point, where clusters undergo structural transition from one isomer to others without making any topological change. The fluctuating state differs from the “coexistence state” found in Ar clusters [1] i.e. the former involves no liquid state. In the liquid state the motion of atom-permutation occurs besides the breathing motion. On the other hand, the fluctuating state is not found for N=7 but only the motion of atom-permutation in the liquid state. The coexistence state is found in both cases of 6- and 7-atom clusters. We also discuss a possibility of larger clusters displaying the fluctuating state.

  7. The chemistry and physics of transition metal clusters

    SciTech Connect

    Parks, E.K.; Jellinek, J.; Knickelbein, M.B.; Riley, S.J.

    1994-06-01

    In this program the authors study the fundamental properties of isolated clusters of transition metal atoms. Experimental studies of cluster chemistry include determination of cluster structure, reactivity, and the nature of cluster-adsorbate interactions. Studies of physical properties include measurements of cluster ionization potentials and photoabsorption cross sections. Theoretical studies focus on the structure and dynamics of clusters, including isomers, phases and phase changes, interactions with molecules, and fragmentation process.

  8. On the metallicity of open clusters. III. Homogenised sample

    NASA Astrophysics Data System (ADS)

    Netopil, M.; Paunzen, E.; Heiter, U.; Soubiran, C.

    2016-01-01

    Context. Open clusters are known as excellent tools for various topics in Galactic research. For example, they allow accurately tracing the chemical structure of the Galactic disc. However, the metallicity is known only for a rather low percentage of the open cluster population, and these values are based on a variety of methods and data. Therefore, a large and homogeneous sample is highly desirable. Aims: In the third part of our series we compile a large sample of homogenised open cluster metallicities using a wide variety of different sources. These data and a sample of Cepheids are used to investigate the radial metallicity gradient, age effects, and to test current models. Methods: We used photometric and spectroscopic data to derive cluster metallicities. The different sources were checked and tested for possible offsets and correlations. Results: In total, metallicities for 172 open cluster were derived. We used the spectroscopic data of 100 objects for a study of the radial metallicity distribution and the age-metallicity relation. We found a possible increase of metallicity with age, which, if confirmed, would provide observational evidence for radial migration. Although a statistical significance is given, more studies are certainly needed to exclude selection effects, for example. The comparison of open clusters and Cepheids with recent Galactic models agrees well in general. However, the models do not reproduce the flat gradient of the open clusters in the outer disc. Thus, the effect of radial migration is either underestimated in the models, or an additional mechanism is at work. Conclusions: Apart from the Cepheids, open clusters are the best tracers for metallicity over large Galactocentric distances in the Milky Way. For a sound statistical analysis, a sufficiently large and homogeneous sample of cluster metallicities is needed. Our compilation is currently by far the largest and provides the basis for several basic studies such as the statistical

  9. Molecular dynamical simulations of melting behaviors of metal clusters

    SciTech Connect

    Hamid, Ilyar; Fang, Meng; Duan, Haiming

    2015-04-15

    The melting behaviors of metal clusters are studied in a wide range by molecular dynamics simulations. The calculated results show that there are fluctuations in the heat capacity curves of some metal clusters due to the strong structural competition; For the 13-, 55- and 147-atom clusters, variations of the melting points with atomic number are almost the same; It is found that for different metal clusters the dynamical stabilities of the octahedral structures can be inferred in general by a criterion proposed earlier by F. Baletto et al. [J. Chem. Phys. 116 3856 (2002)] for the statically stable structures.

  10. Electronic Structure and Geometries of Small Compound Metal Clusters

    SciTech Connect

    1999-04-14

    During the tenure of the DOE grant DE-FG05-87EI145316 we have concentrated on equilibrium geometries, stability, and the electronic structure of transition metal-carbon clusters (met-cars), clusters designed to mimic the chemistry of atoms, and reactivity of homo-nuclear metal clusters and ions with various reactant molecules. It is difficult to describe all the research the authors have accomplished as they have published 38 papers. In this report, they outline briefly the salient features of their work on the following topics: (1) Designer Clusters: Building Blocks for a New Class of Solids; (2) Atomic Structure, Stability, and Electronic Properties of Metallo-Carbohedrenes; (3) Reactivity of Metal Clusters with H{sub 2} and NO; and (4) Anomalous Spectroscopy of Li{sub 4} Clusters.

  11. Gas phase metal cluster model systems for heterogeneous catalysis.

    PubMed

    Lang, Sandra M; Bernhardt, Thorsten M

    2012-07-14

    Since the advent of intense cluster sources, physical and chemical properties of isolated metal clusters are an active field of research. In particular, gas phase metal clusters represent ideal model systems to gain molecular level insight into the energetics and kinetics of metal-mediated catalytic reactions. Here we summarize experimental reactivity studies as well as investigations of thermal catalytic reaction cycles on small gas phase metal clusters, mostly in relation to the surprising catalytic activity of nanoscale gold particles. A particular emphasis is put on the importance of conceptual insights gained through the study of gas phase model systems. Based on these concepts future perspectives are formulated in terms of variation and optimization of catalytic materials e.g. by utilization of bimetals and metal oxides. Furthermore, the future potential of bio-inspired catalytic material systems are highlighted and technical developments are discussed.

  12. Star Clusters in M31. VII. Global Kinematics and Metallicity Subpopulations of the Globular Clusters

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Romanowsky, Aaron J.

    2016-06-01

    We carry out a joint spatial-kinematical-metallicity analysis of globular clusters (GCs) around the Andromeda Galaxy (M31), using a homogeneous, high-quality spectroscopic data set. In particular, we remove the contaminating young clusters that have plagued many previous analyses. We find that the clusters can be divided into three major metallicity groups based on their radial distributions: (1) an inner metal-rich group ([Fe/H] > -0.4); (2) a group with intermediate metallicity (with median [Fe/H] = -1) and (3) a metal-poor group, with [Fe/H] < -1.5. The metal-rich group has kinematics and spatial properties like those of the disk of M31, while the two more metal-poor groups show mild prograde rotation overall, with larger dispersions—in contrast to previous claims of stronger rotation. The metal-poor GCs are the least concentrated group; such clusters occur five times less frequently in the central bulge than do clusters of higher metallicity. Despite some well-known differences between the M31 and Milky Way GC systems, our revised analysis points to remarkable similarities in their chemodynamical properties, which could help elucidate the different formation stages of galaxies and their GCs. In particular, the M31 results motivate further exploration of a metal-rich GC formation mode in situ, within high-redshift, clumpy galactic disks.

  13. Structure of overheated metal clusters: MD simulation study

    SciTech Connect

    Vorontsov, Alexander

    2015-08-17

    The structure of overheated metal clusters appeared in condensation process was studied by computer simulation techniques. It was found that clusters with size larger than several tens of atoms have three layers: core part, intermediate dense packing layer and a gas- like shell with low density. The change of the size and structure of these layers with the variation of internal energy and the size of cluster is discussed.

  14. Infrared Multiple Photon Dissociation Spectroscopy Of Metal Cluster-Adducts

    NASA Astrophysics Data System (ADS)

    Cox, D. M.; Kaldor, A.; Zakin, M. R.

    1987-01-01

    Recent development of the laser vaporization technique combined with mass-selective detection has made possible new studies of the fundamental chemical and physical properties of unsupported transition metal clusters as a function of the number of constituent atoms. A variety of experimental techniques have been developed in our laboratory to measure ionization threshold energies, magnetic moments, and gas phase reactivity of clusters. However, studies have so far been unable to determine the cluster structure or the chemical state of chemisorbed species on gas phase clusters. The application of infrared multiple photon dissociation IRMPD to obtain the IR absorption properties of metal cluster-adsorbate species in a molecular beam is described here. Specifically using a high power, pulsed CO2 laser as the infrared source, the IRMPD spectrum for methanol chemisorbed on small iron clusters is measured as a function of the number of both iron atoms and methanols in the complex for different methanol isotopes. Both the feasibility and potential utility of IRMPD for characterizing metal cluster-adsorbate interactions are demonstrated. The method is generally applicable to any cluster or cluster-adsorbate system dependent only upon the availability of appropriate high power infrared sources.

  15. Miniemulsion synthesis of metal-oxo cluster containing copolymer nanobeads.

    PubMed

    Pablico, Michele H; Mertzman, Julie E; Japp, Emily A; Boncher, William L; Nishida, Maki; Van Keuren, Edward; Lofland, Samuel E; Dollahon, Norman; Rubinson, Judith F; Holman, K Travis; Stoll, Sarah L

    2011-10-18

    Hybrid nanobeads containing either a manganese-oxo or manganese-iron-oxo cluster have been prepared via the miniemulsion polymerization technique. Two new ligand substituted oxo clusters, Mn(12)O(12)(VBA)(16)(H(2)O)(4) and Mn(8)Fe(4)O(12)(VBA)(16)(H(2)O)(4) (where VBA = 4-vinylbenzoate), have been prepared and characterized. Polymerization of the functionalized metal-oxo clusters with styrene under miniemulsion conditions produced monodispersed polymer nanoparticles as small as ~60 nm in diameter. The metal-oxo polymer nanobeads were fully characterized in terms of synthetic parameters, composition, structure, and magnetic properties. © 2011 American Chemical Society

  16. Magnetic properties of supported metal atoms and clusters

    NASA Astrophysics Data System (ADS)

    Martins, Michael; Wurth, Wilfried

    2016-12-01

    Clusters are small systems ranging from a few atoms up to several thousand atoms. They are of high interest in basic research, but also for applications due to their specific electronic, magnetic or chemical properties depending on size and composition. For small clusters, quantum size effects play an important role and specific material properties might be tailored by choosing a special size or composition of the cluster. Here, we review the magnetic properties of adatoms and supported small mass-selected transition-metal clusters in the few-atom limit investigated by x-ray magnetic circular dichroism spectroscopy in the soft x-ray regime. The influence of cluster size, composition, the cluster-surface and intra-cluster interaction on the spin and orbital magnetic moments will be discussed.

  17. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  18. Properties and Chemisorptive Reactivity of Transition Metal Clusters

    DTIC Science & Technology

    1991-12-14

    structure of metal complexes that go beyond ligand field theory ideas, and of practical importance, in that it is crucial to understand how magnetic...aggregates or clusters of these metals with quntum mechanics, we will be able to develop a detailed understanding of metallic bonding. So far, we have...interactions between early and late TM’s in these so-called Engel-Brewer intermetallic compounds. The only theory that has attempted to explain the high

  19. Trinuclear Metal Clusters in Catalysis by Terpenoid Synthases

    PubMed Central

    Aaron, Julie A.; Christianson, David. W.

    2011-01-01

    Terpenoid synthases are ubiquitous enzymes that catalyze the formation of structurally and stereochemically diverse isoprenoid natural products. Many isoprenoid coupling enzymes and terpenoid cyclases from bacteria, fungi, protists, plants, and animals share the class I terpenoid synthase fold. Despite generally low amino acid sequence identity among these examples, class I terpenoid synthases contain conserved metal binding motifs that coordinate to a trinuclear metal cluster. This cluster not only serves to bind and orient the flexible isoprenoid substrate in the precatalytic Michaelis complex, but it also triggers the departure of the diphosphate leaving group to generate a carbocation that initiates catalysis. Additional conserved hydrogen bond donors assist the metal cluster in this function. Crystal structure analysis reveals that the constellation of three metal ions required for terpenoid synthase catalysis is generally identical among all class I terpenoid synthases of known structure. PMID:21562622

  20. Effect of Graphene with Nanopores on Metal Clusters

    SciTech Connect

    Zhou, Hu; Chen, Xianlang; Wang, Lei; Zhong, Xing; Zhuang, Guilin; Li, Xiaonian; Mei, Donghai; Wang, Jianguo

    2015-10-07

    Porous graphene, which is a novel type of defective graphene, shows excellent potential as a support material for metal clusters. In this work, the stability and electronic structures of metal clusters (Pd, Ir, Rh) supported on pristine graphene and graphene with different sizes of nanopore were investigated by first-principle density functional theory (DFT) calculations. Thereafter, CO adsorption and oxidation reaction on the Pd-graphene system were chosen to evaluate its catalytic performance. Graphene with nanopore can strongly stabilize the metal clusters and cause a substantial downshift of the d-band center of the metal clusters, thus decreasing CO adsorption. All binding energies, d-band centers, and adsorption energies show a linear change with the size of the nanopore: a bigger size of nanopore corresponds to a stronger metal clusters bond to the graphene, lower downshift of the d-band center, and weaker CO adsorption. By using a suitable size nanopore, supported Pd clusters on the graphene will have similar CO and O2 adsorption ability, thus leading to superior CO tolerance. The DFT calculated reaction energy barriers show that graphene with nanopore is a superior catalyst for CO oxidation reaction. These properties can play an important role in instructing graphene-supported metal catalyst preparation to prevent the diffusion or agglomeration of metal clusters and enhance catalytic performance. This work was supported by National Basic Research Program of China (973Program) (2013CB733501), the National Natural Science Foundation of China (NSFC-21176221, 21136001, 21101137, 21306169, and 91334013). D. Mei acknowledges the support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle. Computing time was granted by the grand challenge of computational

  1. Generation of metal-carbon and metal-nitrogen clusters with a laser induced plasma technique

    NASA Astrophysics Data System (ADS)

    Guo, B. C.; Wei, S.; Chen, Z.; Kerns, K. P.; Purnell, J.; Buzza, S.; Castleman, A. W., Jr.

    1992-10-01

    During the course of investigating dehydrogenation reactions induced by transition metals, we find that using a carrier gas containing hydrocarbons and ammonia instead of pure helium, in conjunction with a laser vaporization device, enables the facile production of metal-carbon and metal-nitrogen clusters in both the neutral and ionic forms. With only a change in the nature of the carrier gas, a variety of new classes of clusters can be produced.

  2. Metallic clusters on a model surface: Quantum versus geometric effects

    NASA Astrophysics Data System (ADS)

    Blundell, S. A.; Haldar, Soumyajyoti; Kanhere, D. G.

    2011-08-01

    We determine the structure and melting behavior of supported metallic clusters using an ab initio density-functional-based treatment of intracluster interactions and an approximate treatment of the surface as an idealized smooth plane yielding an effective Lennard-Jones interaction with the ions of the cluster. We apply this model to determine the structure of sodium clusters containing from 4 to 22 atoms, treating the cluster-surface interaction strength as a variable parameter. For a strong cluster-surface interaction, the clusters form two-dimensional (2D) monolayer structures; comparisons with calculations of structure and dissociation energy performed with a classical Gupta interatomic potential show clearly the role of quantum shell effects in the metallic binding in this case, and evidence is presented that these shell effects correspond to those for a confined 2D electron gas. The thermodynamics and melting behavior of a supported Na20 cluster is considered in detail using the model for several cluster-surface interaction strengths. We find quantitative differences in the melting temperatures and caloric curve from density-functional and Gupta treatments of the valence electrons. A clear dimensional effect on the melting behavior is also demonstrated, with 2D structures showing melting temperatures above those of the bulk or (at very strong cluster-surface interactions) no clear meltinglike transition.

  3. Probing Metal Cluster and Metal Oxide Cluster Interactions with Organo-Sulfur and Organo-Phosphorous Molecules using Mass Spectrometry and Anion PES

    DTIC Science & Technology

    2007-11-02

    DATES COVERED Final 01 Dec 02 – 30 Nov 03 4. TITLE AND SUBTITLE Probing metal cluster and metal oxide cluster interactions with organo -sulfur and... Organo -phosphorous molecules using mass spectrometry and anion PES 5. FUNDING NUMBERS DAAD19-03-1-0009 6. AUTHOR(S) Caroline...298-102 Probing metal cluster and metal oxide cluster interactions with organo -sulfur and organo

  4. Chemiluminescence in the Agglomeration of Metal Clusters

    PubMed

    König; Rabin; Schulze; Ertl

    1996-11-22

    The agglomeration of copper or silver atoms in a matrix of noble gas atoms to form small clusters may be accompanied by the emission of visible light. Spectral analysis reveals the intermediate formation of electronically excited atoms and dimers as the source of the chemiluminescence. A mechanism is proposed, according to which the gain in binding energy upon cluster formation may even lead to the ejection of excited fragments as a result of unstable intermediate configurations. A similar concept was introduced in the field of nuclear reactions by Niels Bohr 60 years ago.

  5. Metallic Clusters in Strong Femtosecond Laser Pulses

    NASA Astrophysics Data System (ADS)

    Suraud, Eric; Reinhard, P.-G.; Ullrich, Carsten A.

    1998-03-01

    We present a theoretical study of the electron response of a Na_9^+ cluster excited by strong femtosecond laser pulses.(C. A. Ullrich, P.-G. Reinhard, and E. Suraud, J. Phys. B 30), 5043 (1997) Our approach is based on time-dependent density functional theory within the adiabatic local density approximation, including a recently developed self-interaction correction scheme. We investigate numerically the full electronic dipolar response and multiphoton ionization of the cluster and discuss the ionization mechanism. A strong correlation between induced electronic dipole oscillations and electron emission is observed, leading to a pronounced resonant enhancement of ionization at the frequency of the Mie plasmon.

  6. Size to density coupling of supported metallic clusters.

    PubMed

    Gross, Elad; Asscher, Micha

    2009-01-28

    One of the difficulties in standard growth of metallic nano-clusters on oxide substrates as model catalysts is the strong coupling between clusters size and density. Employing multiple cycles, amorphous solid water-buffer layer assisted growth (ASW-BLAG) procedure, we demonstrate how the size to density coupling can be eliminated under certain conditions. In this study, gold clusters were deposited on a SiO2/Si(100) substrate in UHV, using ASW as a buffer layer assisting aggregation and growth. The clusters were imaged ex situ by tapping mode atomic force microscope (AFM) and high-resolution scanning electron microscope (HR-SEM). In situ Auger electron spectroscopy (AES) measurements have led to independent evaluation of the gold covered area. In order to increase the clusters density we have introduced a multiple BLAG procedure, in which, a BALG cycle is repeated up to 10 times. The cluster density can be increased this way by more than five fold without changing their size. Above a specific number of cycles, however, the cluster density reaches saturation and a gradual increase in clusters size is observed. Larger clusters correlate with lower saturation density following multiple BLAG cycles. This observation is explained in terms of long range cluster-cluster attraction between clusters already on the substrate and those approaching in the next BLAG cycle. This attraction is more pronounced as the clusters become larger. We have shown that at saturation density, inter-cluster distance can not be smaller than 20 nm for clusters 4 nm in diameter or larger. Employing two consecutive BLAG cycles, characterized by different parameters (metal dosage and buffer layer thickness) result in a bi-modal size distribution. Moreover, it is demonstrated that one can prepare this way co-adsorbed bi-metallic film of e.g. Au and Pd clusters, with specific density and size on the same substrate. The ASW-BLAG procedure is thus expected to introduce a new pathway for tailor made

  7. Applications of superatom theory in metal cluster chemistry

    NASA Astrophysics Data System (ADS)

    Tofanelli, Marcus A.

    One of the largest modern scientific debates is understanding the size dependent properties of a metal. While much effort has been performed on understanding metal particles from the top down to much less work has been accomplished from the bottom up. This has lead to a great deal of interest in metal clusters. Metal clusters containing 20 to 200 metal atoms are similar yet strikingly different to both to normal coordination chemistry and continuous bulk systems, therefore neither a classical understanding for bulk or molecular systems appears to be appropriate. Superatom theory has emerged as a useful concept for describing the properties of a metal cluster in this size range. In this model a new set of 'superatomic' orbitals arises from the valence electrons of all the metals in a cluster. From superatom theory the properties of a metal cluster, such as stability, ionization energy, reactivity, and magnetism, should depend on valence of the superatomic orbitals, similar to a normal atom. However superatom theory has largely been used to describe the high stabilities of metal clusters with completed electronic configurations. Thus many features of superatom theory have remained largely untested and the extent that the superatom model truly applies has remained in question for many years. Over the past decade increases in synthetic and analytical techniques have allowed for the isolation of a series of stable monodisperse gold thiolate monolayer protected clusters (MPCs) containing from 10 to 500 gold atoms. The wide range in sizes and high stability of gold thiolate clusters provides an instrumental system for understanding superatom theory and the transition from molecular-like cluster to bulk-like system. In the first part of this thesis the effects of the superatomic valence is investigated under superatomic assumptions. Au25(SR)18 (where SR= any thiolate) can be synthesized in 3 different oxidation states without any major distortions to the geometry of the

  8. METAL PRODUCTION IN GALAXY CLUSTERS: THE NON-GALACTIC COMPONENT

    SciTech Connect

    Bregman, Joel N.; Anderson, Michael E.; Dai Xinyu E-mail: michevan@umich.ed

    2010-06-10

    The metallicity in galaxy clusters is expected to originate from the stars in galaxies, with a population dominated by high-mass stars likely being the most important stellar component, especially in rich clusters. We examine the relationship between the metallicity and the prominence of galaxies as measured by the star-to-baryon ratio, M{sub *}/M{sub bary}. Counter to expectations, we rule out a metallicity that is proportional to M{sub *}/M{sub bary}, where the best fit has the gas-phase metallicity decreasing with M{sub *}/M{sub bary}, or the metallicity of the gas plus the stars being independent of M{sub *}/M{sub bary}. This implies that the population of stars responsible for the metals is largely proportional to the total baryonic mass of the cluster, not to the galaxy mass within the cluster. If generally applicable, most of the heavy elements in the universe were not produced within galaxies.

  9. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-08-01

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  10. Systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions

    DOEpatents

    Cooks, Robert Graham; Li, Anyin; Luo, Qingjie

    2017-01-24

    The invention generally relates to systems and methods for producing metal clusters; functionalized surfaces; and droplets including solvated metal ions. In certain aspects, the invention provides methods that involve providing a metal and a solvent. The methods additionally involve applying voltage to the solvated metal to thereby produce solvent droplets including ions of the metal containing compound, and directing the solvent droplets including the metal ions to a target. In certain embodiments, once at the target, the metal ions can react directly or catalyze reactions.

  11. Nonlinear plasmon response in highly excited metallic clusters

    SciTech Connect

    Calvayrac, F.; Reinhard, P.G.; Suraud, E.

    1995-12-15

    We present a dynamical study of the electron response of metallic clusters in the nonlinear regime, as excited, e.g., in ion-cluster interactions or with intense laser beams. We use a quantal time-dependent local-density approximation in axial symmetry to describe the electron dynamics. Ions are either treated in a jellium approximation or explicitly. We find different dynamical regimes depending on the symmetries of the ionic background.

  12. The effect of alkylating agents on model supported metal clusters

    SciTech Connect

    Erdem-Senatalar, A.; Blackmond, D.G.; Wender, I. . Dept. of Chemical and Petroleum Engineering); Oukaci, R. )

    1988-01-01

    Interactions between model supported metal clusters and alkylating agents were studied in an effort to understand a novel chemical trapping technique developed for identifying species adsorbed on catalyst surfaces. It was found that these interactions are more complex than had previously been suggested. Studies were completed using deuterium-labeled dimethyl sulfate (DMS), (CH{sub 3}){sub 2}SO{sub 4}, as a trapping agent to interact with the supported metal cluster ethylidyne tricobalt enneacarbonyl. Results showed that oxygenated products formed during the trapping reaction contained {minus}OCD{sub 3} groups from the DMS, indicating that the interaction was not a simple alkylation. 18 refs., 1 fig., 3 tabs.

  13. Abundances for globular cluster giants. I. Homogeneous metallicities for 24 clusters

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Gratton, R. G.

    1997-01-01

    We have obtained high resolution, high signal-to-noise ratio CCD echelle spectra of 10 bright red giants in 3 globular clusters (47 Tuc, NGC 6752 and NGC 6397) roughly spanning the whole range of metallicities of the galactic globular cluster system. The analysis of this newly acquired material reveals no significant evidence of star-to-star variation of the [Fe/H] ratio in these three clusters. Moreover, a large set of high quality literature data (equivalent widths from high dispersion CCD spectra) was re-analyzed in an homogeneous and self-consistent way to integrate our observations and derive new metal abundances for more than 160 bright red giants in 24 globular clusters (i.e. about 16% of the known population of galactic globulars). This set was then used to define a new metallicity scale for globular clusters which is the result of high quality, direct spectroscopic data, of new and updated model atmospheres from the grid of \\cite[Kurucz (1992)]{\\ref41}, and of a careful fine abundance analysis; this last, in turn, is based on a common set of both atomic and atmospheric parameters for all the stars examined. Given the very high degree of internal homogeneity, our new scale supersedes the offsets and discrepancies existing in previous attempts to obtain a metallicity scale. The internal uncertainty in [Fe/H] is very small: 0.06 dex (24 clusters) on average, and can be interpreted also as the mean precision of the c luster ranking. Compared to our system, metallicities on the widely used Zinn and West's scale are about 0.10 dex higher for [Fe/H]>-1, 0.23 dex lower for -1<[Fe/H]<-1.9 and 0.11 dex too high for [Fe/H]<-1.9. The non-linearity of the Zinn and West's scale is significant even at 3 sigma level. A quadratic transformation is given to correct older values to the new scale in the range of our calibrating clusters (-2.24 <= [Fe/H]ZW <= -0.51). A minor disagreement is found at low metallicities between the metallicity scale based on field and cluster

  14. Scattering of electrons on metal clusters and fullerenes

    NASA Astrophysics Data System (ADS)

    Gerchikov, Leonid G.; Solov'yov, Andrey V.; Connerade, Jean-Patrick; Greiner, Walter

    1997-09-01

    It is shown that the main contribution to the elastic cross section of fast electrons on metal clusters and fullerenes results from scattering on the frozen cluster potential, which is determined by the electron density distribution of the ground state of the target cluster. The specific shape of the electron distribution in fullerenes and metal clusters manifests itself in the diffraction behaviour of the elastic differential cross section. The analysis of the total elastic cross section dependence upon projectile velocity, the number of atoms in the cluster and its size is provided. The cross section of elastic scattering on a cluster surpasses the sum of the individual scattering cross sections on the equivalent number of isolated atoms. This occurs because of the coherent interaction of the projectile electron with electrons delocalized in the cluster volume. We have demonstrated that collective electron excitations sensitive to the many-electron correlations dominate inelastic scattering. The surface plasmon resonances can be observed in the differential cross section for inelastic scattering. We found a condition for the quadrupole and higher multipole plasmon excitations to contribute relatively little to the electron energy loss spectrum. The results obtained have been compared with experimental data for the electron - fullerene 0953-4075/30/18/013/img7 collision. Reasonable agreement between theoretical and experimental results is reported. We have also demonstrated that plasmon excitations provide the main contribution to the total inelastic cross section over a wide energy range. We have calculated the dependence of the total inelastic cross section on collision energy and compared the result obtained with the experimental data available, giving an interpretation for the plateau region in the cross section as caused by plasmon excitations rather than the cluster fragmentation process. We have shown that the single-particle jellium approximation fails to

  15. STEM characterization of metal clusters in/on oxides

    NASA Astrophysics Data System (ADS)

    Mehraeen, Shareghe

    Dispersed metal clusters in or on a support matrix are key phenomenons in many technological fields. Two widely used examples of them which are investigated in this thesis are supported-metal clusters in heterogeneous catalysis and transition metal clusters in diluted magnetic semiconductors (DMS) applied in spintronics. The catalytic activity and selectivity of catalysts often depend sensitively on structure parameters, such as particles size and shape. With the same analogy, the magnetic properties of DMS oxides are sensitively related to the crystal defects of the host material as a consequence of doping the transition metal. Therefore it is essential to develop and understand the correlation between nanostructure and function of these materials. STEM Z-contrast imaging is the best candidate for this type of study because of a high degree of resolution it provides and the unique ability it offers to detect and differentiate between the clusters and oxide matrix due to the large difference between their atomic numbers. Moreover the technique development in the STEM field fosters the conjugation of electron energy Loss Spectroscopy (EELS) and Z-contrast imaging and their widespread use for nearly atomic level chemical analysis at interface, second phases, and isolated defects. The advanced preparation method of supported clusters catalysts which is by carbonyl ligands offers a controlled cluster size and shape. MgO-supported Os clusters and SiO2-supported Ta clusters prepared by this method are adsorbed on oxide to convert into single-sized supported metal aggregates. The last step of preparation method is by removal of the ligands (decarbonylation) which is very important because it determines the final size distribution and shape of such clusters. Reaching carbonylated decaosmium clusters with the size of theoretically 0.295 nm and the tetrahedral-shape geometry are the aim of the preparation method. The size distribution measurements of sub-nanoclusters of

  16. Interaction of metallic clusters with biologically active curcumin molecules

    NASA Astrophysics Data System (ADS)

    Gupta, Sanjeev K.; He, Haiying; Liu, Chunhui; Dutta, Ranu; Pandey, Ravindra

    2015-09-01

    We have investigated the interaction of subnano metallic Gd and Au clusters with curcumin, an important biomolecule having pharmacological activity. Gd clusters show different site preference to curcumin and much stronger interaction strength, in support of the successful synthesis of highly stable curcumin-coated Gd nanoparticles as reported recently. It can be attributed to significant charge transfer from the Gd cluster to curcumin together with a relatively strong hybridization of the Gd df-orbitals with curcumin p-orbitals. These results suggest that Gd nanoparticles can effectively be used as delivery carriers for curcumin at the cellular level for therapy and medical imaging applications.

  17. Theoretical studies of the electronic structure of small metal clusters

    NASA Technical Reports Server (NTRS)

    Jordan, K. D.

    1982-01-01

    Theoretical studies of the electronic structure of metal clusters, in particular clusters of Group IIA and IIB atoms were conducted. Early in the project it became clear that electron correlation involving d orbitals plays a more important role in the binding of these clusters than had been previously anticipated. This necessitated that computer codes for calculating two electron integrals and for constructing the resulting CI Hamiltonions be replaced with newer, more efficient procedures. Program modification, interfacing and testing were performed. Results of both plans are reported.

  18. Reactivity of small transition-metal clusters with CO

    NASA Astrophysics Data System (ADS)

    Andersson, Mats T.; Gronbeck, H.; Holmgren, L.; Rosen, Arne

    1995-09-01

    The size-dependent reactivity of several transition-metal clusters: Con, Nbn, Rhn, and Wn with CO has been investigated in a cluster beam experiment. The reactions occur at single-collision-like conditions and the results are evaluated in terms of the reaction probability (S) in a collision. For all the four metals, clusters with more than 10 - 15 atoms show a high reaction probability, S >= 0.4, rather independent of size. For smaller Nbn and Wn, the reaction probability is lower, and for Nbn, large variations in the CO reactivity are observed in the n equals 8 - 13 range with a distinct minimum at Nb10. Using an LCAO approach within the local spin density approximation (LSDA) the adsorption of molecular CO on Nbn has also been investigated theoretically. The geometries of the bare clusters were optimized and two different sites for CO were investigated. The discussion is based on a detailed analysis of Nb4. The calculations show that compact structures with high coordination numbers are the most stable ones for the bare Nb clusters and hollow sites, also maximizing the coordination, are preferred for CO adsorption. The calculations indicate that a high CO-Nbn bond strength is obtained for clusters with a high density of states close to the Fermi level and for which the HOMO level has a symmetry that allows for an efficient back-donation of electrons to the 2(pi) *-orbital of CO. A particularly low chemisorption energy was calculated for the Nb10 cluster.

  19. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  20. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  1. Litigated Metal Clusters - Structures, Energy and Reactivity

    DTIC Science & Technology

    2016-04-01

    Self Assembly: Novel Ion Mobility Methods Show the Essential Role of Water Do, T. D.; Bowers, M. T. Anal . Chem. 2015, 87, 4243–4252. 3. A New...Buffer Gas Bleiholder, C.; Johnson, N. R.; Contreras, S.; Wyttenbach, T.; Bowers, M. T. Anal . Chem. 2015, 87, 7196–7203. 5. Amino Acid Metaclusters...Bowers, M. T. Anal . Chem. 2016, 88, 868–876. Changes in research objectives (if any): The research objectives were changed from investigation of metal

  2. The structure of deposited metal clusters generated by laser evaporation

    NASA Astrophysics Data System (ADS)

    Faust, P.; Brandstättner, M.; Ding, A.

    1991-09-01

    Metal clusters have been produced using a laser evaporation source. A Nd-YAG laser beam focused onto a solid silver rod was used to evaporate the material, which was then cooled to form clusters with the help of a pulsed high pressure He beam. TOF mass spectra of these clusters reveal a strong occurrence of small and medium sized clusters ( n<100). Clusters were also deposited onto grid supported thin layers of carbon-films which were investigated by transmission electron microscopy. Very high resolution pictures of these grids were used to analyze the size distribution and the structure of the deposited clusters. The diffraction pattern caused by crystalline structure of the clusters reveals 3-and 5-fold symmetries as well as fcc bulk structure. This can be explained in terms of icosahedron and cuboctahedron type clusters deposited on the surface of the carbon layer. There is strong evidence that part of these cluster geometries had already been formed before the depostion process. The non-linear dependence of the cluster size and the cluster density on the generating conditions is discussed. Therefore the samples were observed in HREM in the stable DEEKO 100 microscope of the Fritz-Haber-Institut operating at 100 KV with the spherical aberration c S =0.5 mm. The quality of the pictures was improved by using the conditions of minimum phase contrast hollow cone illumination. This procedure led to a minimum of phase contrast artefacts. Among the well-crystallized particles were a great amount of five- and three-fold symmetries, icosahedra and cuboctahedra respectively. The largest clusters with five- and three-fold symmetries have been found with diameters of 7 nm; the smallest particles displaying the same undistorted symmetries were of about 2 mm. Even smaller ones with strong distortions could be observed although their classification is difficult. The quality of the images was improved by applying Fourier filtering techniques.

  3. Hitomi observations of the Perseus Cluster / Constant metallicity in the outskirts of galaxy clusters

    NASA Astrophysics Data System (ADS)

    Werner, Norbert; Simionescu, Aurora; Urban, Ondrej; Allen, Steven

    2016-07-01

    X-ray observations with the Suzaku satellite reveal a remarkably homogeneous distribution of iron out to the virial radii of nearby galaxy clusters. Observations of the Virgo Cluster, that also allow us to measure the abundances of Si, S, and Mg out to the outskirts, show that the chemical composition of the intra-cluster medium is constant on large scales. These observations require that most of the metal enrichment and mixing of the intergalactic medium occurred before clusters formed, probably more than ten billion years ago, during the period of maximal star formation and black hole activity. We estimate the ratio between the number of SN Ia and the total number of supernovae enriching the intergalactic medium to be between 15-20%, generally consistent with the metal abundance patterns in our own Galaxy.

  4. Metallicity in the Galactic Center: The Arches Cluster

    NASA Astrophysics Data System (ADS)

    Najarro, Francisco; Figer, Donald F.; Hillier, D. John; Kudritzki, Rolf P.

    2004-04-01

    We present a quantitative spectral analysis of five very massive stars in the Arches cluster, located near the Galactic center, to determine stellar parameters, stellar wind properties, and, most importantly, metallicity content. The analysis uses a new technique, presented here for the first time, and uses line-blanketed non-LTE wind/atmosphere models fitted to high-resolution near-infrared spectra of late-type nitrogen-rich Wolf-Rayet stars and OfI+ stars in the cluster. It relies on the fact that massive stars reach a maximum nitrogen abundance that is related to initial metallicity when they are in the WNL phase. We determine the present-day nitrogen abundance of the WNL stars in the Arches cluster to be 1.6% (mass fraction) and constrain the stellar metallicity in the cluster to be solar. This result is invariant to assumptions about the mass-luminosity relationship, the mass-loss rates, and rotation speeds. In addition, from this analysis, we find the age of the Arches cluster to be 2-2.5 Myr, assuming coeval formation.

  5. Clustered field evaporation of metallic glasses in atom probe tomography.

    PubMed

    Zemp, J; Gerstl, S S A; Löffler, J F; Schönfeld, B

    2016-03-01

    Field evaporation of metallic glasses is a stochastic process combined with spatially and temporally correlated events, which are referred to as clustered evaporation (CE). This phenomenon is investigated by studying the distance between consecutive detector hits. CE is found to be a strongly localized phenomenon (up to 3nm in range) which also depends on the type of evaporating ions. While a similar effect in crystals is attributed to the evaporation of crystalline layers, CE of metallic glasses presumably has a different - as yet unknown - physical origin. The present work provides new perspectives on quantification methods for atom probe tomography of metallic glasses.

  6. Hydride encapsulation by molecular alkali-metal clusters.

    PubMed

    Haywood, Joanna; Wheatley, Andrew E H

    2008-07-14

    The sequential treatment of group 12 and 13 Lewis acids with alkali-metal organometallics is well established to yield so-called ''ate' complexes, whereby the Lewis-acid metal undergoes nucleophilic attack to give an anion, at least one group 1 metal acting to counter this charge. However, an alternative, less well recognised, reaction pathway involves the Lewis acid abstracting hydride from the organolithium reagent via a beta-elimination mechanism. It has recently been shown that in the presence of N,N'-bidentate ligands this chemistry can be harnessed to yield a new type of molecular main-group metal cluster in which the abstracted LiH is effectively trapped, with the hydride ion occupying an interstitial site in the cluster core. Discussion focuses on the development of this field, detailing advances in our understanding of the roles of Lewis acid, organolithium, and amine substrates in the syntheses of these compounds. Structure-types are discussed, as are efforts to manipulate cluster geometry and composition as well as hydride-coordination. Embryonic mechanistic studies are reported, as well as attempts to generate hydride-encapsulation clusters under catalytic control.

  7. Flexible macrocycles as versatile supports for catalytically active metal clusters

    DOE PAGES

    Ryan, Jason D.; Gagnon, Kevin J.; Teat, Simon J.; ...

    2016-02-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide

  8. Flexible macrocycles as versatile supports for catalytically active metal clusters

    SciTech Connect

    Ryan, Jason D.; Gagnon, Kevin J.; Teat, Simon J.; McIntosh, Ruaraidh D.

    2016-02-12

    Here we present three structurally diverse clusters stabilised by the same macrocyclic polyphenol; t-butylcalix[8]arene. This work demonstrates the range of conformations the flexible ligand is capable of adopting, highlighting its versatility in metal coordination. In addition, a Ti complex displays activity for the ring-opening polymerisation of lactide

  9. Structure of fluorescent metal clusters on a DNA template.

    NASA Astrophysics Data System (ADS)

    Vdovichev, A. A.; Sych, T. S.; Reveguk, Z. V.; Smirnova, A. A.; Maksimov, D. A.; Ramazanov, R. R.; Kononov, A. I.

    2016-08-01

    Luminescent metal clusters are a subject of growing interest in recent years due to their bright emission from visible to near infrared range. Detailed structure of the fluorescent complexes of Ag and other metal clusters with ligands still remains a challenging task. In this joint experimental and theoretical study we synthesized Ag-DNA complexes on a DNA oligonucleotide emitting in violet- green spectral range. The structure of DNA template was determined by means of various spectral measurements (CD, MS, XPS). Comparison of the experimental fluorescent excitation spectra and calculated absorption spectra for different QM/MM optimized structures allowed us to determine the detailed structure of the green cluster containing three silver atoms in the stem of the DNA hairpin structure stabilized by cytosine-Ag+-cytosine bonds.

  10. Atomic resolution electron microscopy of small metal clusters

    NASA Astrophysics Data System (ADS)

    Bovin, J.-O.; Malm, J.-O.

    1991-03-01

    Atomic resolution imaging of cluster structures has been performed with high resolution transmission electron microscopy (HRTEM). Metal particles of the sizes 1 nanometer to tens of nanometers have been surface profile imaged on different supports; like zeolites, cordierite and amorphous carbon. It is shown that organic ligands in Schmid-clusters coordinated to the metal surface are desorbed or destroyed by the electron beam. Dynamic events on the surfaces and in the bulk of small metal particles have been recorded for small crystals of Au, Pt, Rh and Pb and can be classified under three headings; The smaller the crystals are the faster rearrangements of the crystal structure; “clouds” of atoms existing outside some surfaces are involved in extensive structural rearrangements of the surface or crystal surface growth; localized atom hopping on surfaces during crystal growth and desorption also occurs.

  11. Characterization of oxide supported metal carbonyl clusters

    NASA Astrophysics Data System (ADS)

    Evans, John

    The chemisorption of [Ma 3(CO) 1 2] on silica (M = Ru and Os) and alumina (M = Os) has been studied by vibrational and X-ray absorption spectroscopies making close comparisons with model compounds. The results indicate that the first chemisorption species observed has the form [M 3H(CO) 10(O---O)]; the bridging hydride was observed directly for the silica systems as evidenced by the M-H-M bending vibration in the i.r. Also consistent with this structure are the EXAFS analysis of the Ru/SiOz material. This indicated an essentially equilateral ruthenium triangle and coordination to oxygen. The published low frequency Raman data on the Os/Al2Oa product was shown to match most closely with that of model compounds with a bidentate oxygen donor ligand (acac or O2CR). The tethered cluster [O s3H 2(CO) 9(PPh 2C 2H 4SIL)] was found to be a relatively short lived species on a silica surface. Under ambient conditions it reacts further and the i.r., EXAFS and 31P NMR data of this species suggest that the two osmium atoms not coordinated to the tethering phosphine become involved with a bidentate site from the surface.

  12. Cooperative Cluster Metalation and Ligand Migration in Zirconium Metal-Organic Frameworks.

    PubMed

    Yuan, Shuai; Chen, Ying-Pin; Qin, Junsheng; Lu, Weigang; Wang, Xuan; Zhang, Qiang; Bosch, Mathieu; Liu, Tian-Fu; Lian, Xizhen; Zhou, Hong-Cai

    2015-12-01

    Cooperative cluster metalation and ligand migration were performed on a Zr-MOF, leading to the isolation of unique bimetallic MOFs based on decanuclear Zr6M4 (M = Ni, Co) clusters. The M(2+) reacts with the μ3-OH and terminal H2O ligands on an 8-connected [Zr6O4(OH)8(H2O)4] cluster to form a bimetallic [Zr6M4O8(OH)8(H2O)8] cluster. Along with the metalation of Zr6 cluster, ligand migration is observed in which a Zr-carboxylate bond dissociates to form a M-carboxylate bond. Single-crystal to single-crystal transformation is realized so that snapshots for cooperative cluster metalation and ligand migration processes are captured by successive single-crystal X-ray structures. In(3+) was metalated into the same Zr-MOF which showed excellent catalytic activity in the acetaldehyde cyclotrimerization reaction. This work not only provides a powerful tool to functionalize Zr-MOFs with other metals, but also structurally elucidates the formation mechanism of the resulting heterometallic MOFs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Long-lived excited states in metal clusters.

    PubMed

    Koop, Alexander; Gantefoer, Gerd; Kim, Young Dok

    2017-08-16

    Bare metal clusters have properties that make them interesting for applications in photochemistry and photovoltaics. Long-lived excited states are a prerequisite for such applications, because in them the energy of the photon can be stored. Clusters have a low density of states and long-lived excited states should therefore occur frequently. However, in fact, such states are a rarity, as indicated by time-resolved photoelectron data of mass-selected cluster anions. And there is another puzzling observation: only clusters with narrow peaks in their photoelectron spectra exhibit long-lived excited states. Both findings can be explained if internal conversion, i.e. the conversion of electronic excitation energy into vibrational excitations, is the major relaxation mechanism in clusters. It becomes more likely, if a change of the electronic configuration results in a large geometry change, which is probably the case for most clusters. Only clusters with a weak coupling between geometric and electronic structure may have long-lived excited states and narrow peaks.

  14. Evolution of metallic screening in small metal clusters probed by PCI-Auger spectroscopy.

    PubMed

    Peters, Sven; Peredkov, Sergey; Balkaya, Baris; Ferretti, Nicoletta; Neeb, Matthias; Eberhardt, Wolfgang

    2010-09-07

    Excitation-energy dependent Auger spectra of small copper clusters supported by a thin silica layer have been measured as function of cluster size. The Auger kinetic energy of the clusters clearly changes with the excess energy of the emitted photoelectron while not for the bulk. The kinetic energy shift is attributed to post-collision interaction (PCI) and exhibits a reduced metallic screening ability of small Cu-clusters. The spectroscopic data reveal an evolution from a long-range Coulomb-like interaction to a short-range "screened" electrostatic interaction within the sub-nm range. The data show that core electron spectroscopy such as PCI-Auger measurements can be used as a general tool to follow the metallic character of supported clusters.

  15. Spectroscopy at metal cluster surfaces. Final report, September 15, 1993--September 14, 1996

    SciTech Connect

    Duncan, M.A.

    1998-06-01

    The focus of this research program is the study of gas phase metal clusters to evaluate their potential as models for the fundamental interactions present in catalysis. To do this, the authors characterize the chemical bonding present between the component atoms in metal clusters as well as the bonding exhibited by {open_quotes}physisorption{close_quotes} on metal atom or metal cluster surfaces. Electronic spectra, vibrational frequencies and bond dissociation energies are measured for both neutral and ionized clusters with a variety of laser/mass spectrometry techniques. The authors are particularly interested in bimetallic cluster systems, and how their properties compare to those of corresponding pure metal clusters.

  16. Development of Metal Cluster-Based Energetic Materials

    NASA Astrophysics Data System (ADS)

    Lightstone, James; Hooper, Joseph; Stoltz, Chad; Wilson, Becca; Mayo, Dennis; Eichhorn, Bryan; Bowen, Kit

    2011-06-01

    The energy available from the combustion of Al is 2 to 3 times that of conventional high explosives and as a result is often loaded into explosive and propellant formulations in micron and nano-particle form. However, even at the nano-scale the release of energy is slowed by the reaction kinetics of particle oxidation. In order to realize faster reaction rates, on the order of current CHNO explosives, the size of the particles of interest need to be reduced significantly into the molecular size-range (10's of atoms). Current research efforts at NSWC-IHD are utilizing gas-phase molecular beam studies, theoretical calculations, and condensed-phase production methods to identify novel metal cluster systems in which passivated metal clusters make up the subunit of a molecular metal-based energetic material. To date, small amounts of a metal-based compound with a subunit containing four Al atoms and four Cp* ligands has been produced and is currently being characterized using DSC and TGA. Additional Al based systems passivated with a variety of organic ligands are being systematically examined. Analytical and theoretical results obtained for Al4Cp*4 and the additional cluster systems under investigation along with their potential energetic applications will be presented.

  17. Electronic Structure and Properties of Metal Cluster Isomers

    NASA Astrophysics Data System (ADS)

    Jena, Puru

    1997-03-01

    One of the most interesting features of clusters is that they exhibit many isomeric forms. The geometries, binding energies, and electronic structure of isomers of alkali and transition metal clusters have been studied using first principles calculations based on molecular orbital theory. The existence of energetically degenerate isomers manifests in many novel features in photoelectron spectroscopy, reactivity, and magnetic properties. The theoretical results will be used not only to explain recent anomalous experimental data but also to predict phenomena that could be verified by future experiments.

  18. Understanding and Practical Use of Ligand and Metal Exchange Reactions in Thiolate-Protected Metal Clusters to Synthesize Controlled Metal Clusters.

    PubMed

    Niihori, Yoshiki; Hossain, Sakiat; Sharma, Sachil; Kumar, Bharat; Kurashige, Wataru; Negishi, Yuichi

    2017-05-01

    It is now possible to accurately synthesize thiolate (SR)-protected gold clusters (Aun (SR)m ) with various chemical compositions with atomic precision. The geometric structure, electronic structure, physical properties, and functions of these clusters are well known. In contrast, the ligand or metal atom exchange reactions between these clusters and other substances have not been studied extensively until recently, even though these phenomena were observed during early studies. Understanding the mechanisms of these reactions could allow desired functional metal clusters to be produced via exchange reactions. Therefore, we have studied the exchange reactions between Aun (SR)m and analogous clusters and other substances for the past four years. The results have enabled us to gain deep understanding of ligand exchange with respect to preferential exchange sites, acceleration means, effect on electronic structure, and intercluster exchange. We have also synthesized several new metal clusters using ligand and metal exchange reactions. In this account, we summarize our research on ligand and metal exchange reactions. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Globular Cluster Systems in Brightest Cluster Galaxies: Bimodal Metallicity Distributions and the Nature of the High-Luminosity Clusters

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Whitmore, Bradley C.; Karakla, Diane; Okoń, Waldemar; Baum, William A.; Hanes, David A.; Kavelaars, J. J.

    2006-01-01

    We present new (B, I) photometry for the globular cluster systems in eight brightest cluster galaxies (BCGs), obtained with the ACS/WFC camera on the Hubble Space Telescope. In the very rich cluster systems that reside within these giant galaxies, we find that all have strongly bimodal color distributions that are clearly resolved by the metallicity-sensitive (B-I) index. Furthermore, the mean colors and internal color range of the blue subpopulation are remarkably similar from one galaxy to the next, to well within the +/-0.02-0.03 mag uncertainties in the foreground reddenings and photometric zero points. By contrast, the mean color and internal color range for the red subpopulation differ from one galaxy to the next by twice as much as the blue population. All the BCGs show population gradients, with much higher relative numbers of red clusters within 5 kpc of their centers, consistent with their having formed at later times than the blue, metal-poor population. A striking new feature of the color distributions emerging from our data is that for the brightest clusters (MI<-10.5) the color distribution becomes broad and less obviously bimodal. This effect was first noticed by Ostrov et al. and Dirsch et al. for the Fornax giant NGC 1399; our data suggest that it may be a characteristic of many BCGs and perhaps other large galaxies. Our data indicate that the blue (metal-poor) clusters brighter than MI~=-10 become progressively redder with increasing luminosity, following a mass/metallicity scaling relation Z~M0.55. A basically similar relation has been found for M87 by Strader et al. (2005). We argue that these GCS characteristics are consistent with a hierarchical-merging galaxy formation picture in which the metal-poor clusters formed in protogalactic clouds or dense starburst complexes with gas masses in the range 107-1010 Msolar, but where the more massive clusters on average formed in bigger clouds with deeper potential wells where more preenrichment could

  20. Si clusters are more metallic than bulk Si

    NASA Astrophysics Data System (ADS)

    Jackson, Koblar; Jellinek, Julius

    2016-12-01

    Dipole polarizabilities were computed using density functional theory for silicon clusters over a broad range of sizes up to N = 147 atoms. The calculated total effective polarizabilities, which include contributions from permanent dipole moments of the clusters, are in very good agreement with recently measured values. We show that the permanent dipole contributions are most important for clusters in the intermediate size range and that the measured polarizabilities can be used to distinguish between energetically nearly degenerate cluster isomers at these sizes. We decompose the computed total polarizabilities α into the so-called dipole and charge transfer contributions, αp and αq, using a site-specific analysis. When the per-atom values of these quantities are plotted against N-1 /3, clear linear trends emerge that can be extrapolated to the large size limit (N-1 /3→0 ), resulting in a value for α/N of 30.5 bohrs3/atom that is significantly larger than the per-atom polarizability of semiconducting bulk Si, 25.04 bohrs3/atom. This indicates that Si clusters possess a higher degree of metallicity than bulk Si, a conclusion that is consistent with the strong electrostatic screening of the cluster interiors made evident by the analysis of the calculated atomic polarizabilities.

  1. The lifetime of electronic excitations in metal clusters

    NASA Astrophysics Data System (ADS)

    Quijada, M.; Díez Muiño, R.; Echenique, P. M.

    2005-05-01

    Density functional theory and the self-energy formalism are used to evaluate the lifetime of electronic excitations in metal clusters of nanometre size. The electronic structure of the cluster is obtained in the jellium model and spherical symmetry is assumed. Two effects that depend on the size of the clusters are discussed: the change in the number of final states to which the excitation can decay, and the modification in the screened interaction between electrons. For clusters with density parameter rs = 4 and diameter a few nanometres, a lifetime value of {\\approx }5 fs is reached for electronic excitations of {\\approx }1 eV. This value is of the same order of magnitude of that obtained in the bulk limit at the same level of approximation. For smaller clusters, a distinct non-monotonic behaviour of the lifetime as a function of the cluster size is found and the lifetime of excitations of {\\approx }1 eV can vary between 4 and 30 fs.

  2. Metallicity of Globular Cluster M13 from VI CCD Photometry

    NASA Astrophysics Data System (ADS)

    Shon, Young-Jong

    2000-12-01

    From the VI images of M13, obtained by using 2K CCD camera and the BOAO 1.8m telescope, we derive the (V-I)-V CMD of M13. From the shapes of red giant branch, the magnitude of horizontal branch, and the giant branch bump on the constructed CMD, we determined the metallicity of the globular cluster to be 1.74 ~<[Fe/H]~< -1.41. The good agreement between our determination of [Fe/H] and those determined by using other methods implies that the morphology of red giant and horizontal branches on (V-I)-V CMD's can be good indirect metallicity indicators of Galactic globular clusters.

  3. Scattering of ultrashort electromagnetic pulses on metal clusters

    SciTech Connect

    Astapenko, V. A. Sakhno, S. V.

    2016-12-15

    We have calculated and analyzed the probability of ultrashort electromagnetic pulse (USP) scattering on small metal clusters in the frequency range of plasmon resonances during the field action. The main attention is devoted to dependence of the probability of scattering on the pulse duration for various detunings of the USP carrier frequency from the plasmon resonance frequency. Peculiarities of the USP scattering from plasmon resonances with various figures of merit are revealed.

  4. NGC 1252: a high altitude, metal poor open cluster remnant

    NASA Astrophysics Data System (ADS)

    de la Fuente Marcos, R.; de la Fuente Marcos, C.; Moni Bidin, C.; Carraro, G.; Costa, E.

    2013-09-01

    If stars form in clusters but most stars belong to the field, understanding the details of the transition from the former to the latter is imperative to explain the observational properties of the field. Aging open clusters are one of the sources of field stars. The disruption rate of open clusters slows down with age but, as an object gets older, the distinction between the remaining cluster or open cluster remnant (OCR) and the surrounding field becomes less and less obvious. As a result, finding good OCR candidates or confirming the OCR nature of some of the best candidates still remain elusive. One of these objects is NGC 1252, a scattered group of about 20 stars in Horologium. Here we use new wide-field photometry in the UBVI passbands, proper motions from the Yale/San Juan SPM 4.0 catalogue and high-resolution spectroscopy concurrently with results from N-body simulations to decipher NGC 1252's enigmatic character. Spectroscopy shows that most of the brightest stars in the studied area are chemically, kinematically and spatially unrelated to each other. However, after analysing proper motions, we find one relevant kinematic group. This sparse object is relatively close (˜1 kpc), metal poor and is probably not only one of the oldest clusters (3 Gyr) within 1.5 kpc from the Sun but also one of the clusters located farthest from the disc, at an altitude of nearly -900 pc. That makes NGC 1252 the first open cluster that can be truly considered a high Galactic altitude OCR: an unusual object that may hint at a star formation event induced on a high Galactic altitude gas cloud. We also conclude that the variable TW Horologii and the blue straggler candidate HD 20286 are unlikely to be part of NGC 1252. NGC 1252 17 is identified as an unrelated, Population II cannonball star moving at about 400 km s-1.

  5. The old, metal-poor, anticentre open cluster Trumpler 5

    NASA Astrophysics Data System (ADS)

    Donati, P.; Cocozza, G.; Bragaglia, A.; Pancino, E.; Cantat-Gaudin, T.; Carrera, R.; Tosi, M.

    2015-01-01

    As part of a long-term programme, we analyse the evolutionary status and properties of the old and populous open cluster Trumpler 5 (Tr 5), located in the Galactic anticentre direction, almost on the Galactic plane. Tr 5 was observed with Wide Field Imager@MPG/ESO Telescope using the Bessel U, B, and V filters. The cluster parameters have been obtained using the synthetic colour-magnitude diagram (CMD) method, i.e. the direct comparison of the observational CMD with a library of synthetic CMDs generated with different stellar evolution sets (Padova, FRANEC, and FST). Age, reddening, and distance are derived through the synthetic CMD method using stellar evolutionary models with subsolar metallicity (Z = 0.004 or Z = 0.006). Additional spectroscopic observations with Ultraviolet VLT Echelle Spectrograph@Very Large Telescope of three red clump stars of the cluster were used to determine more robustly the chemical properties of the cluster. Our analysis shows that Tr 5 has subsolar metallicity, with [Fe/H] = -0.403 ± 0.006 dex (derived from spectroscopy), age between 2.9 and 4 Gyr (the lower age is found using stellar models without core overshooting), reddening E(B - V) in the range 0.60-0.66 mag complicated by a differential pattern (of the order of ˜±0.1 mag), and distance modulus (m - M)0 = 12.4 ± 0.1 mag.

  6. Electronic Principles Governing the Stability and Reactivity of Ligated Metal and Silicon Encapsulated Transition Metal Clusters

    NASA Astrophysics Data System (ADS)

    Abreu, Marissa Baddick

    A thorough understanding of the underlying electronic principles guiding the stability and reactivity of clusters has direct implications for the identification of stable clusters for incorporation into clusters-assembled materials with tunable properties. This work explores the electronic principles governing the stability and reactivity of two types of clusters: ligated metal clusters and silicon encapsulated transition metal clusters. In the first case, the reactivity of iodine-protected aluminum clusters, Al13Ix - (x=0-4) and Al14Iy- (y=0-5), with the protic species methanol was studied. The symmetrical ground states of Al13Ix- showed no reactivity with methanol but reactivity was achieved in a higher energy isomer of Al 13I2- with iodines on adjacent aluminum atoms -- complementary Lewis acid-base active sites were induced on the opposite side of the cluster capable of breaking the O-H bond in methanol. Al 14Iy- (y=2-5) react with methanol, but only at the ligated adatom site. Reaction of methanol with Al14 - and Al14I- showed that ligation of the adatom was necessary for the reaction to occur there -- revealing the concept of a ligand-activated adatom. In the second case, the study focused heavily on CrSi12, a silicon encapsulated transition metal cluster whose stability and the reason for that stability has been debated heavily in the literature. Calculations of the energetic properties of CrSi n (n=6-16) revealed both CrSi12 and CrSi14 to have enhanced stability relative to other clusters; however CrSi12 lacks all the traditional markers of a magic cluster. Molecular orbital analysis of each of these clusters showed the CNFEG model to be inadequate in describing their stability. Because the 3dz2 orbital of Cr is unfilled in CrSi12, this cluster has only 16 effective valence electrons, meaning that the 18-electron rule is not applicable. The moderate stability of CrSi 12 can be accounted for by the crystal-field splitting of the 3d orbitals, which pushes the

  7. The chemical evolution of globular clusters - II. Metals and fluorine

    NASA Astrophysics Data System (ADS)

    Sánchez-Blázquez, P.; Marcolini, A.; Gibson, B. K.; Karakas, A. I.; Pilkington, K.; Calura, F.

    2012-01-01

    In the first paper of this series, we proposed a new framework in which to model the chemical evolution of globular clusters. This model is predicated upon the assumption that clusters form within an interstellar medium enriched locally by the ejecta of a single Type Ia supernova and varying numbers of asymptotic giant branch stars, superimposed on an ambient medium pre-enriched by low-metallicity Type II supernovae. Paper I was concerned with the application of this model to the observed abundances of several reactive elements and so-called non-metals for three classical intermediate-metallicity clusters, with the hallmark of the work being the successful recovery of many of their well-known elemental and isotopic abundance anomalies. Here, we expand upon our initial analysis by (i) applying the model to a much broader range of metallicities (from the factor of 3 explored in Paper I, to now a factor of ˜50; i.e. essentially, the full range of Galactic globular cluster abundances; and (ii) incorporating a broader suite of chemical species, including a number of iron-peak isotopes, heavier α-elements and fluorine. While allowing for an appropriate fine-tuning of the model input parameters, most empirical globular cluster abundance trends are reproduced; our model would suggest the need for a higher production of calcium, silicon and copper in low-metallicity (or so-called 'prompt') Type Ia supernovae than predicted in current stellar models in order to reproduce the observed trends in NGC 6752, and a factor of 2 reduction in carbon production from asymptotic giant branch stars to explain the observed trends between carbon and nitrogen. Observations of heavy-element isotopes produced primarily by Type Ia supernovae, including those of titanium, iron and nickel, could support/refute unequivocally our proposed framework, although currently the feasibility of the proposed observations is well beyond current instrumental capabilities. Hydrodynamical simulations would

  8. Metal Adatoms and Clusters on Ultrathin Zirconia Films

    PubMed Central

    2016-01-01

    Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal–oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal–oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between −1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces. PMID:27213024

  9. The Old, Super-Metal-Rich Open Cluster, NGC 6791

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; Lum, Michael G. G.; Deliyannis, Constantine P.

    2015-08-01

    Stellar evolution and Galactic evolution have both been greatly advanced by the study of star clusters. In addition the elemental abundance results from clusters have revealed information about Galactic chemical evolution and nucleosynthesis. The cluster, NGC 6791, has a number of bizarre properties that make it especially interesting for comparative cluster studies. It is old (8.3 Gyr) yet metal-rich ([Fe/H] = +0.30). It has a heliocentric distance of 4 kpc and a galactic latitude of +11 degrees which makes it 1 kpc above the galactic plane. Its boxy orbit has a high eccentricity (~0.5) with a perigalactic distance of 3 kpc and an apogalactic distance of 10 kpc. The orbital period of ~130 Myr indicates that it has crossed the Galactic plane several times yet has remained as an intact cluster. We have determined abundances from high-resolution (R = 46,000) Keck/HIRES spectra of turn-off stars in this open cluster NGC 6791. We have a solid determination of [Fe/H] = +0.30 +/-0.02 from measurements of some 40 unblended, unsaturated lines of both Fe I and Fe II in eight turn-off stars. Our O abundances come from the O I triplet near 7774 Å and are corrected for small nLTE effects. We find consistent ratios of [O/Fe]n with a mean of -0.06 +/-0.02, indicating a single population of stars. Our results for the alpha elements [Mg/Fe], [Si/Fe], [Ca/Fe] and [Ti/Fe] are near solar and compare well with those of old, metal-rich field stars. The Fe-peak elements, Cr and Ni, have values of [Cr/Fe] = +0.05 +/-0.02 and [Ni/Fe] = +0.04 +/-0.01. Determinations of upper limits were found for Li by spectrum synthesis; this is consistent with the upper limits in this temperature range for turn-off/subgiant stars in the relatively old, super-metal-rich cluster NGC 6253. We speculate that no stars in NGC 6791 have retained the Li with which they formed.

  10. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience

    PubMed Central

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature. PMID:22312454

  11. Protein-protected luminescent noble metal quantum clusters: an emerging trend in atomic cluster nanoscience.

    PubMed

    Xavier, Paulrajpillai Lourdu; Chaudhari, Kamalesh; Baksi, Ananya; Pradeep, Thalappil

    2012-01-01

    Noble metal quantum clusters (NMQCs) are the missing link between isolated noble metal atoms and nanoparticles. NMQCs are sub-nanometer core sized clusters composed of a group of atoms, most often luminescent in the visible region, and possess intriguing photo-physical and chemical properties. A trend is observed in the use of ligands, ranging from phosphines to functional proteins, for the synthesis of NMQCs in the liquid phase. In this review, we briefly overview recent advancements in the synthesis of protein protected NMQCs with special emphasis on their structural and photo-physical properties. In view of the protein protection, coupled with direct synthesis and easy functionalization, this hybrid QC-protein system is expected to have numerous optical and bioimaging applications in the future, pointers in this direction are visible in the literature.

  12. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry E-mail: harris@physics.mcmaster.ca E-mail: whitmore@stsci.edu

    2009-09-15

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z {approx} M {sup 0.30{+-}}{sup 0.05}. No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  13. Vibrationally resolved anion photoelectron spectroscopy of metal clusters

    NASA Astrophysics Data System (ADS)

    Miller, Stephen R.

    Vibrationally resolved anion photoelectron spectroscopy of metal clusters Vibrationally resolved anion photoelectron spectroscopy (APES) and density functional theory (DFT) are applied to the study of structure and reactivity in small metal containing molecules. The studies described fall into two general categories: the study of bare metal clusters and the study of metal/organic ligand reactions. The current lack of spectroscopic data for small, bare gas-phase metal compounds makes the experimental study of such compounds important for understanding structure and bonding in open-shell metallic species. The heteronuclear diatomic anions MCu- (M = Cr, Mo) were prepared in a flowing afterglow ion-molecule reactor, and studied experimentally with APES. Anion and neutral vibrational frequencies and MCu electron affinities were obtained for both systems. The experiments were supplemented by DFT calculations. The combined use of experiment and theory allows for the assignment of both photoelectron spectra, including a reassignment of the CrCu ground state reported in the literature. Similarly, DFT was used to assign the anionic/neutral electronic states observed in the photoelectron spectra of Al3- and Al3O-. The study of partially ligated organometallic complexes offers a means of examining the interactions between metal atoms and individual ligand molecules. DFT was used to assign electronic states observed in the photoelectron spectra of NbC2H2-, NbC4H4 -NbC6H6- and VC6H 6-. Comparison of the NbnHn - (n = 2, 4, 6) spectra (obtained through the reaction of C2 H4 and Nb) with DFT results provides the first direct spectroscopic evidence of the conversion of ethylene to benzene by a gas phase metal atom. Experiments were used to probe the reactivity of Y with C2H 4 in an effort to examine the generality of the metal induced C 2H4 dehydrogenation/cyclization reactions. Some of the key products in the Y reactions were YC2H-, YC 2H2-, and YC6H5 -. However, the results

  14. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397.

  15. Shell structure of magnesium and other divalent metal clusters

    SciTech Connect

    Diederich, Th.; Doeppner, T.; Fennel, Th.; Tiggesbaeumker, J.; Meiwes-Broer, K.-H.

    2005-08-15

    Clusters of the divalent metals magnesium, cadmium, and zinc have been grown in ultracold helium nanodroplets and studied by high-resolution mass spectrometry, with a special emphasis on magnesium. The mass spectra of all materials show similar characteristic features independent of the chosen ionization technique - i.e., electron impact ionization as well as nanosecond and femtosecond multiphoton excitation. In the lower-size range the abundance distributions can be explained by an electronic shell structure. The associated electron delocalization - i.e., metallic bonding - is found to set in at about N=20 atoms. For Mg{sub N} we have resolved crossings of electronic levels at the highest-occupied molecular orbital which result in additional magic numbers compared to the alkali metals: e.g., Mg{sub 40} with 80 electrons. This specific electronic shell structure is also present in the intensity pattern of doubly charged Mg{sub N}. For larger clusters (N{>=}92) a coexistence of electronic shell effects and geometrical packing is observed and a clear signature of icosahedral structure is present beyond N{>=}147.

  16. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  17. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    SciTech Connect

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-15

    Comproportionation reactions of rare-earth metal trihalides (RX{sub 3}) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ((T{sub 3}R{sub 11})X{sub 15}-type, P6{sub 3}/m), tetramers ((T{sub 4}R{sub 16})X{sub 28}(R{sub 4}) (P-43m), (T{sub 4}R{sub 16})X{sub 20} (P4{sub 2}/nnm), (T{sub 4}R{sub 16})X{sub 24}(RX{sub 3}){sub 4} (I4{sub 1}/a) and (T{sub 4}R{sub 16})X{sub 23} (C2/m) types of structure) and pentamers ((Ru{sub 5}La{sub 14}){sub 2}Br{sub 39}, Cc) of (TR{sub r}){sub n} (n=2–5) clusters. These oligomers are further enveloped by inner (X{sup i}) as well as outer (X{sup a}) halido ligands, which possess diverse functionalities and interconnect like oligomers through i–i, i–a and/or a–i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of (TR{sub 6}) octahedra via common edges are more frequent than trimers and pentamers, in which the (TR{sub r}) clusters share common faces. - Graphical abstract: Rare earth-metal cluster complexes with endohedral transition metal atoms (TR{sub 6}) may connect via common edges or faces to form dimers, trimers, tetramers and pentamers of which the tetramers are the most prolific. Packing effects and electron counts play an important role. - Highlights: • Rare-earth metal cluster complexes encapsulate transition metal atoms. • Oligomers are built via connection of octahedral clusters via common edges or faces. • Dimers through pentamers with closed structures are known. • Tetramers including a tetrahedron of endohedral atoms are the most prolific.

  18. The Sound Parameter Effect in Metal-Rich Globular Clusters

    NASA Technical Reports Server (NTRS)

    Hall, D. K

    1998-01-01

    Recent Hubble Space Telescope observations have found that the horizontal branches (HBs) in the metal-rich globular clusters NGC 6388 and NGC 6441 slope upward with decreasing B - V. Such a slope is not predicted by canonical HB models and cannot be produced by either a greater cluster age or enhanced mass loss along the red giant branch (RGB). The peculiar HB morphology in these clusters may provide an important clue for understanding the second-parameter effect. We have carried out extensive evolutionary calculations and numerical simulations in order to explore three noncanonical scenarios for explaining the sloped HBs in NGC 6388 and NGC 6441: (1) a high cluster helium abundance scenario, in which the HB evolution is characterized by long blue loops; (2) a rotation scenario, in which internal rotation during the RGB phase increases the HB core mass; and (3) a helium-mixing scenario, in which deep mixing on the RGB enhances the envelope helium abundance. All of these scenarios predict sloped HBs with anomalously bright RR Lyrae variables. We compare this prediction with the properties of the two known RR Lyrae variables in NGC 6388. Additional observational tests of these scenarios are suggested.

  19. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    SciTech Connect

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; Lee, Sungsik; Lee, Sungwon; Seifert, Soenke; Winans, Randall E.

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during deposition and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.

  20. Inherent size effects on XANES of nanometer metal clusters: Size-selected platinum clusters on silica

    DOE PAGES

    Dai, Yang; Gorey, Timothy J.; Anderson, Scott L.; ...

    2016-12-12

    X-ray absorption near-edge structure (XANES) is commonly used to probe the oxidation state of metal-containing nanomaterials, however, as the particle size in the material drops below a few nanometers, it becomes important to consider inherent size effects on the electronic structure of the materials. In this paper, we analyze a series of size-selected Ptn/SiO2 samples, using X-ray photoelectron spectroscopy (XPS), low energy ion scattering, grazing-incidence small angle X-ray scattering, and XANES. The oxidation state and morphology are characterized both as-deposited in UHV, and after air/O2 exposure and annealing in H2. Here, the clusters are found to be stable during depositionmore » and upon air exposure, but sinter if heated above ~150 °C. XANES shows shifts in the Pt L3 edge, relative to bulk Pt, that increase with decreasing cluster size, and the cluster samples show high white line intensity. Reference to bulk standards would suggest that the clusters are oxidized, however, XPS shows that they are not. Instead, the XANES effects are attributable to development of a band gap and localization of empty state wavefunctions in small clusters.« less

  1. The electronic structure of free aluminum clusters: Metallicity and plasmons

    SciTech Connect

    Andersson, Tomas; Zhang Chaofan; Svensson, Svante; Maartensson, Nils; Bjoerneholm, Olle; Tchaplyguine, Maxim

    2012-05-28

    The electronic structure of free aluminum clusters with {approx}3-4 nm radius has been investigated using synchrotron radiation-based photoelectron and Auger electron spectroscopy. A beam of free clusters has been produced using a gas-aggregation source. The 2p core level and the valence band have been probed. Photoelectron energy-loss features corresponding to both bulk and surface plasmon excitation following photoionization of the 2p level have been observed, and the excitation energies have been derived. In contrast to some expectations, the loss features have been detected at energies very close to those of the macroscopic solid. The results are discussed from the point of view of metallic properties in nanoparticles with a finite number of constituent atoms.

  2. Mixed-metal chalcogenide tetrahedral clusters with an exo-polyhedral metal fragment.

    PubMed

    Yuvaraj, K; Roy, Dipak Kumar; Anju, V P; Mondal, Bijnaneswar; Varghese, Babu; Ghosh, Sundargopal

    2014-12-07

    The reaction of metal carbonyl compounds with group 6 and 8 metallaboranes led us to report the synthesis and structural characterization of several novel mixed-metal chalcogenide tetrahedral clusters. Thermolysis of arachno-[(Cp*RuCO)2B2H6], 1, and [Os3(CO)12] in the presence of 2-methylthiophene yielded [Cp*Ru(CO)2(μ-H){Os3(CO)9}S], 3, and [Cp*Ru(μ-H){Os3(CO)11}], 4. In a similar fashion, the reaction of [(Cp*Mo)2B5H9], 2, with [Ru3(CO)12] and 2-methylthiophene yielded [Cp*Ru(CO)2(μ-H){Ru3(CO)9}S], 5, and conjuncto-[(Cp*Mo)2B5H8(μ-H){Ru3(CO)9}S], 6. Both compounds 3 and 5 can be described as 50-cve (cluster valence electron) mixed-metal chalcogenide clusters, in which a sulfur atom replaces one of the vertices of the tetrahedral core. Compounds 3 and 5 possess a [M3S] tetrahedral core, in which the sulfur is attached to an exo-metal fragment, unique in the [M3S] metal chalcogenide tetrahedral arrangements. All the compounds have been characterized by mass spectrometry, IR, and (1)H, (11)B and (13)C NMR spectroscopy in solution, and the solid state structures were unequivocally established by crystallographic analysis of compounds 3, 5 and 6.

  3. Studies of silicon cluster--metal atom compound formation in a supersonic molecular beam

    SciTech Connect

    Beck, S.M.

    1987-10-01

    The first observation of a reaction between a metal atom and silicon in a supersonic jet to form metal atom silicon clusters is reported. Using the technique of laser vaporization supersonic expansion with metal carbonyl seeded carrier gas, clusters of the form MSi/sub n/ have been detected by ArF and KrF laser photoionization time-of-flight mass spectrometry. Three transition metals have been investigated, Cr, Mo, and W. The dominant product cluster peaks observed in the mass spectra obtained for all three metals corresponds to identical but remarkable cluster stoichiometries. The dominant peaks have formulas given by MSi/sub n/ where n = 15 and n = 16. The metal--semiconductor clusters are relatively more stable towards photofragmentation than the bare silicon cluster of the same size. The observation of these new species may be relevant to reactions which occur at the interface between a silicon wafer and deposited metals.

  4. Metal thiolate clusters in cobalt(II)-metallothionein.

    PubMed

    Vasák, M; Kägi, J H

    1981-11-01

    Rabbit liver metallothionein-1 in which all seven metal-binding sites are occupied by cobalt(II) exhibits spectral features typical of tetrathiolate coordination with approximate Td microsymmetry [Vasák, M. (1980) J. Am. Chem. Soc. 102, 3953-3955]. With a total of 20 cysteine residues per molecule, this mode of metal binding implies that some of the thiolate ligands are shared by neighboring Co(II) ions, resulting in clustered structures. In this study, evidence for the existence of thiolate-linked Co(II) clusters is presented and their mode of formation is explored by comparing the optical and magnetic properties of forms of Co(II)-metallothionein containing 1-7 equivalents of Co(II). Preparations with up to 4 Co(II) equivalents display electronic spectra in the d-d and charge-transfer regions that resemble those of isolated tetrahedral Co(II)-tetrathiolate complexes. Upon binding of more than four Co(II) ions, however, the spectrum changes progressively and approaches in the fully saturated Co(II)-metallothionein an absorption profile similar to that of crystallographically defined model (Co)II-tetrathiolate clusters [Dance, I. G. (1979) J. Am. Chem. Soc. 101, 6264-6273]. These effects are closely paralleled by changes in the ESR spectrum. Above 4 Co(II) equivalents per thionein, the ESR signal at gx approximately 5.9 measured at 4 K decreases progressively in intensity, until in the fully occupied protein the complex is nearly diamagnetic. These changes, which were confirmed by measurements of paramagnetic susceptibility, establish the existence of Co(II) thiolate clusters in Co(II)-metallothionein. The loss of paramagnetism reflects most likely antiferromagnetic coupling of neighboring Co(II) ions brought about by a superexchange mechanism via the thiolate bridging ligands.

  5. Metal thiolate clusters in cobalt(II)-metallothionein.

    PubMed Central

    Vasák, M; Kägi, J H

    1981-01-01

    Rabbit liver metallothionein-1 in which all seven metal-binding sites are occupied by cobalt(II) exhibits spectral features typical of tetrathiolate coordination with approximate Td microsymmetry [Vasák, M. (1980) J. Am. Chem. Soc. 102, 3953-3955]. With a total of 20 cysteine residues per molecule, this mode of metal binding implies that some of the thiolate ligands are shared by neighboring Co(II) ions, resulting in clustered structures. In this study, evidence for the existence of thiolate-linked Co(II) clusters is presented and their mode of formation is explored by comparing the optical and magnetic properties of forms of Co(II)-metallothionein containing 1-7 equivalents of Co(II). Preparations with up to 4 Co(II) equivalents display electronic spectra in the d-d and charge-transfer regions that resemble those of isolated tetrahedral Co(II)-tetrathiolate complexes. Upon binding of more than four Co(II) ions, however, the spectrum changes progressively and approaches in the fully saturated Co(II)-metallothionein an absorption profile similar to that of crystallographically defined model (Co)II-tetrathiolate clusters [Dance, I. G. (1979) J. Am. Chem. Soc. 101, 6264-6273]. These effects are closely paralleled by changes in the ESR spectrum. Above 4 Co(II) equivalents per thionein, the ESR signal at gx approximately 5.9 measured at 4 K decreases progressively in intensity, until in the fully occupied protein the complex is nearly diamagnetic. These changes, which were confirmed by measurements of paramagnetic susceptibility, establish the existence of Co(II) thiolate clusters in Co(II)-metallothionein. The loss of paramagnetism reflects most likely antiferromagnetic coupling of neighboring Co(II) ions brought about by a superexchange mechanism via the thiolate bridging ligands. PMID:6273885

  6. Superatoms and Metal-Semiconductor Motifs for Cluster Materials

    SciTech Connect

    Castleman, A. W.

    2013-10-11

    A molecular understanding of catalysis and catalytically active materials is of fundamental importance in designing new substances for applications in energy and fuels. We have performed reactivity studies and ultrafast ionization and coulomb explosion studies on a variety of catalytically-relevant materials, including transition metal oxides of Fe, Co, Ni, Cu, Ti, V, Nb, and Ta. We demonstrate that differences in charge state, geometry, and elemental composition of clusters of such materials determine chemical reactivity and ionization behavior, crucial steps in improving performance of catalysts.

  7. On the origin of metal homogeneities in globular clusters

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Lin, Douglas N. C.

    1990-01-01

    Various transport processes which may have affected the chemical homogeneity in protocluster clouds are examined. It is shown that the characteristic diffusion time scale associated with collisions between grains and gas atoms is considerably longer than that on which star formation is expected to occur. Collisions between large grains and gas atoms lead to mass segregation and metallicity gradients on a time scale comparable to the crossing time of the clusters in the Galaxy. One possible mechanism for inducing and maintaining chemical homogeneity is turbulent diffusion in the clouds. The mixing time scale required in this case is comparable to several internal dynamical time scales, longer than the evolutionary time scale of the most massive stars, and shorter than the Galactic orbital time scale of the clouds. Thus, metals in presently observed stars probably did not originate from upper main-sequence stars of a coeval generation.

  8. Zintl cluster chemistry in the alkali-metal-gallium systems

    SciTech Connect

    Henning, Robert

    1998-03-27

    Previous research into the alkali-metal-gallium systems has revealed a large variety of networked gallium deltahedra. The clusters are analogues to borane clusters and follow the same electronic requirements of 2n+2 skeletal electrons for closo-deltahedra. This work has focused on compounds that do not follow the typical electron counting rules. The first isolated gallium cluster was found in Cs8Ga11. The geometry of the Ga117- unit is not deltahedral but can be described as a penta-capped trigonal prism. The reduction of the charge from a closo-Ga1113- to Ga117- is believed to be the driving force of the distortion. The compound is paramagnetic because of an extra electron but incorporation of a halide atom into the structure captures the unpaired electron and forms a diamagnetic compound. A second isolated cluster has been found in Na10Ga10Ni where the tetra-capped trigonal prismatic gallium is centered by nickel. Stabilization of the cluster occurs through Ni-Ga bonding. A simple two-dimensional network occurs in the binary K2Ga3 Octahedra are connected through four waist atoms to form a layered structure with the potassium atoms sitting between the layers. Na30.5Ga60-xAgx is nonstoichiometric and needs only a small amount of silver to form (x ~ 2-6). The structure is composed of three different clusters which are interconnected to form a three-dimensional structure. The RbGa3-xAux system is also nonstoichiometric with a three-dimensional structure composed of Ga8 dodecahedra and four-bonded gallium atoms. Unlike Na30.5Ga60-xAgx, the RbGa3 binary is also stable. The binary is formally a Zintl phase but the ternary is not. Some chemistry in the alkali-metal-indium system also has been explored. A new potassium-indium binary

  9. Oligomeric rare-earth metal cluster complexes with endohedral transition metal atoms

    NASA Astrophysics Data System (ADS)

    Steinberg, Simon; Zimmermann, Sina; Brühmann, Matthias; Meyer, Eva; Rustige, Christian; Wolberg, Marike; Daub, Kathrin; Bell, Thomas; Meyer, Gerd

    2014-11-01

    Comproportionation reactions of rare-earth metal trihalides (RX3) with the respective rare-earth metals (R) and transition metals (T) led to the formation of 22 oligomeric R cluster halides encapsulating T, in 19 cases for the first time. The structures of these compounds were determined by single-crystal X-ray diffraction and are composed of trimers ({T3R11}X15-type, P63/m), tetramers ({T4R16}X28{R4} (P-43m), {T4R16}X20 (P42/nnm), {T4R16}X24(RX3)4 (I41/a) and {T4R16}X23 (C2/m) types of structure) and pentamers ({Ru5La14}2Br39, Cc) of {TRr}n (n=2-5) clusters. These oligomers are further enveloped by inner (Xi) as well as outer (Xa) halido ligands, which possess diverse functionalities and interconnect like oligomers through i-i, i-a and/or a-i bridges. The general features of the crystal structures for these new compounds are discussed and compared to literature entries as well as different structure types with oligomeric T centered R clusters. Dimers and tetramers originating from the aggregation of {TR6} octahedra via common edges are more frequent than trimers and pentamers, in which the {TRr} clusters share common faces.

  10. Tuning aromaticity in trigonal alkaline earth metal clusters and their alkali metal salts.

    PubMed

    Jiménez-Halla, J Oscar C; Matito, Eduard; Blancafort, Lluís; Robles, Juvencio; Solà, Miquel

    2009-12-01

    In this work, we analyze the geometry and electronic structure of the [X(n)M(3)](n-2) species (M = Be, Mg, and Ca; X = Li, Na, and K; n = 0, 1, and 2), with special emphasis on the electron delocalization properties and aromaticity of the cyclo-[M(3)](2-) unit. The cyclo-[M(3)](2-) ring is held together through a three-center two-electron bond of sigma-character. Interestingly, the interaction of these small clusters with alkali metals stabilizes the cyclo-[M(3)](2-) ring and leads to a change from sigma-aromaticity in the bound state of the cyclo-[M(3)](2-) to pi-aromaticity in the XM(3) (-) and X(2)M(3) metallic clusters. Our results also show that the aromaticity of the cyclo-[M(3)](2-) unit in the X(2)M(3) metallic clusters depends on the nature of X and M. Moreover, we explored the possibility for tuning the aromaticity by simply moving X perpendicularly to the center of the M(3) ring. The Na(2)Mg(3), Li(2)Mg(3), and X(2)Ca(3) clusters undergo drastic aromaticity alterations when changing the distance from X to the center of the M(3) ring, whereas X(2)Be(3) and K(2)Mg(3) keep its aromaticity relatively constant along this process. (c) 2009 Wiley Periodicals, Inc.

  11. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  12. Antiferromagnetic resonance in alkali-metal clusters in sodalite

    NASA Astrophysics Data System (ADS)

    Nakano, Takehito; Tsugeno, Hajime; Hanazawa, Atsufumi; Kashiwagi, Takanari; Nozue, Yasuo; Hagiwara, Masayuki

    2013-11-01

    We have performed electron spin resonance (ESR) studies of K43+ and (K3Rb)3+ nanoclusters incorporated in powder specimens of aluminosilicate sodalite at several microwave frequencies between 9 and 34 GHz. The K43+ and (K3Rb)3+ clusters are arrayed in a bcc structure and are known to show antiferromagnetic ordering below the Néel temperatures of TN ≃72 and ≃80 K, respectively, due to the exchange coupling between s electrons confined in the clusters. We have found sudden broadenings of ESR spectra in both samples below TN. The line shape of the spectra below TN is analyzed by powder pattern simulations of antiferromagnetic resonance (AFMR) spectra. The calculated line shapes well reproduce the experimental ones at all the frequencies by assuming a biaxial magnetic anisotropy. We have evaluated extremely small anisotropy fields of approximately 1 Oe indicating that these materials are ideal Heisenberg antiferromagnets. We have also found that the magnetic anisotropy changes from easy-plane type to uniaxial type by changing into a heavier alkali-metal cluster and that the g value shifts to a large value beyond two below TN for K43+ and (K3Rb)3+ nanoclusters. These novel features of K43+ and (K3Rb)3+ nanoclusters incorporated in sodalite are discussed.

  13. Sulphur in the metal poor globular cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Probing the History of Galaxy Clusters with Metallicity and Entropy Measurements

    NASA Astrophysics Data System (ADS)

    Elkholy, Tamer Yohanna

    Galaxy clusters are the largest gravitationally bound objects found today in our Universe. The gas they contain, the intra-cluster medium (ICM), is heated to temperatures in the approximate range of 1 to 10 keV, and thus emits X-ray radiation. Studying the ICM through the spatial and spectral analysis of its emission returns the richest information about both the overall cosmological context which governs the formation of clusters, as well as the physical processes occurring within. The aim of this thesis is to learn about the history of the physical processes that drive the evolution of galaxy clusters, through careful, spatially resolved measurements of their metallicity and entropy content. A sample of 45 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy and metallicity profiles. The entropy profiles are computed to larger radial extents than in previous Chandra analyses. The results of this analysis are made available to the scientific community in an electronic database. Comparing metallicity and entropy in the outskirts of clusters, we find no signature on the entropy profiles of the ensemble of supernovae that produced the observed metals. In the centers of clusters, we find that the metallicities of high-mass clusters are much less dispersed than those of low-mass clusters. A comparison of metallicity with the regularity of the X-ray emission morphology suggests that metallicities in low-mass clusters are more susceptible to increase from violent events such as mergers. We also find that the variation in the stellar-to-gas mass ratio as a function of cluster mass can explain the variation of central metallicity with cluster mass, only if we assume that there is a constant level of metallicity for clusters of all masses, above which the observed galaxies add more metals in proportion to their mass. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs mit.edu)

  15. A new nanomaterial synthesized from size-selected, ligand-free metal clusters

    NASA Astrophysics Data System (ADS)

    Li, X.; Wepasnick, K.; Tang, X.; Fairbrother, D. H.; Bowen, K. H.; Dollinger, A.; Strobel, C. H.; Huber, J.; Mangler, T.; Luo, Y.; Proch, S.; Gantefoer, G.

    2014-03-01

    Thins films are synthesized by deposition of size-selected Mon- cluster anions on an inert substrate. Scanning tunneling microscopy pictures indicate that the deposited material consists of individual particles with diameters corresponding to the size of the preformed clusters from the gas phase. Previous attempts to manufacture cluster materials from metals failed since these clusters coalesced at room temperature. Our data suggest the possibility to synthesize new nanomaterials from clusters of high fusing metals. This may prove to be the key to harness size-dependent and tuneable properties of clusters for creating novel classes of functional tailor-made materials.

  16. All-metal clusters that mimic the chemistry of halogens.

    PubMed

    Zhao, Tianshan; Li, Yawei; Wang, Qian; Jena, Puru

    2013-10-07

    Owing to their s(2)p(5) electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH(4), mimic the chemistry of halogens and readily form salts (e.g., Na(+)(AlH(4))(-)), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage-metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX(4) (X=Cu, Ag, Au), these metal atoms may exhibit halogen-like properties. By using density functional theory, we show that AlAu(4) not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu(4))(2)(-) (M=Na and K) and anionic (FAuF)Au(FAuF) range from 4.06 to 5.70 eV. Au-based superhalogen anions, such as AlAu(4)(-) and AuF(2)(-), have the additional advantage that they exhibit wider optical absorption ranges than their H-based analogues, AlH(4)(-) and HF(2)(-). Because of the catalytic properties and the biocompatibility of Au, Au-based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu(4), AlX(4) (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom.

  17. Study of globular cluster M53: new variables, distance, metallicity

    NASA Astrophysics Data System (ADS)

    Dékány, I.; Kovács, G.

    2009-11-01

    Aims: We study the variable star content of the globular cluster M53 to compute the physical parameters of the constituting stars and the distance of the cluster. Methods: Covering two adjacent seasons in 2007 and 2008, new photometric data are gathered for 3048 objects in the field of M53. By using the OIS (optimal image subtraction) method and subsequently TFA (trend filtering algorithm), we search for variables in the full sample by using discrete Fourier transformation and box-fitting least squares methods. We select variables based on the statistics related to these methods combined with visual inspection. Results: We identified 12 new variables (2 RR Lyrae stars, 7 short periodic stars - 3 of them are SX Phe stars - and 3 long-period variables). No eclipsing binaries were found in the present sample. Except for the 3 (hitherto unknown) Blazhko RR Lyrae (two RRab and an RRc) stars, no multiperiodic variables were found. We showed that after proper period shift, the PLC (period-luminosity-color) relation for the first overtone RR Lyrae sample tightly follows the one spanned by the fundamental stars. Furthermore, the slope is in agreement with that derived from other clusters. Based on the earlier Baade-Wesselink calibration of the PLC relations, the derived reddening-free distance modulus of M53 is 16.31±0.04 mag, corresponding to a distance modulus of 18.5 mag for the Large Magellanic Cloud. From the Fourier parameters of the RRab stars we obtained an average iron abundance of -1.58± 0.03 (error of the mean). This is ~0.5 dex higher than the overall abundance of the giants as given in the literature and derived in this paper from the three-color photometry of giants. We suspect that the source of this discrepancy (observable also in other, low-metallicity clusters) is the lack of a sufficient number of low-metallicity objects in the calibrating sample of the Fourier method. Table 1 is only available in electronic form at http://www.aanda.org Photometric data

  18. High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances

    NASA Technical Reports Server (NTRS)

    Minniti, Dante; Geisler, Doug; Peterson, Ruth C.; Claria, Juan J.

    1993-01-01

    High-resolution, high-SNR CCD spectra have been obtained for 16 giants in eight metal-poor Galactic globular clusters. Fe abundances accurate to 0.15 dex have been determined by a fully consistent set of model atmospheres and spectrum synthesis techniques. A metallicity scale is presented for metal-poor clusters that should prove useful for calibrating a wide variety of photometric and low-resolution spectroscopic metallicity indicators.

  19. High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances

    NASA Technical Reports Server (NTRS)

    Minniti, Dante; Geisler, Doug; Peterson, Ruth C.; Claria, Juan J.

    1993-01-01

    High-resolution, high-SNR CCD spectra have been obtained for 16 giants in eight metal-poor Galactic globular clusters. Fe abundances accurate to 0.15 dex have been determined by a fully consistent set of model atmospheres and spectrum synthesis techniques. A metallicity scale is presented for metal-poor clusters that should prove useful for calibrating a wide variety of photometric and low-resolution spectroscopic metallicity indicators.

  20. Observation of small metal clusters on graphite surface with scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Shen, Jian; Zhu, Changxin; Ma, Zili; Pang, Shijin; Xue, Zengquan

    The motivation for studying the dynamic behavior and morphology of small metal clusters on solid single crystal surface is the desire to understand the physical mechanisms evolving in the initial stages of thin-film growth. In the experiments we have used a scanning tunneling microscope to study the static morphology of small Pt and Ni clusters supported on clean graphite surfaces, as well as the dynamic behaviors of small Pt clusters in an ultrahigh vacuum chamber. The metal deposition was fulfilled by controllable evaporation from ultra-pure superfine metal wires at room temperature in UHV. The STM images of small Pt and Ni clusters on graphite substrates with atomic resolution, as well as a series of STM images reveal some transformation processes of small metal clusters on the solid crystal surfaces, which provide us a better understanding on the procedure of atomic diffusion of metal clusters. All the STM images have been performed at room temperature.

  1. Monitoring the dissolution process of metals in the gas phase: reactions of nanoscale Al and Ga metal atom clusters and their relationship to similar metalloid clusters.

    PubMed

    Burgert, Ralf; Schnöckel, Hansgeorg

    2008-05-14

    Formation and dissolution of metals are two of the oldest technical chemical processes. On the atomic scale, these processes are based on the formation and cleavage of metal-metal bonds. During the past 15 years we have studied intensively the intermediates during the formation process of metals, i.e. the formation of compounds containing many metal-metal bonds between naked metal atoms in the center and ligand-bearing metal atoms at the surface. We have called the clusters metalloid or, more generally, elementoid clusters. Via a retrosynthetic route, the many different Al and Ga metalloid clusters which have been structurally characterized allow us to understand also the dissolution process; i.e. the cleavage of metal-metal (M-M) bonds. However, this process can be detected much more directly by the reaction of single metal atom clusters in the gas phase under high vacuum conditions. A suitable tool to monitor the dissolution process of a metal cluster in the gas phase is FT-ICR (Fourier transform ion cyclotron resonance) mass spectrometry. Snapshots during these cleavage processes are possible because only every 1-10 s is there a contact between a cluster molecule and an oxidizing molecule (e.g. Cl2). This period is long, i.e. the formation of the primary product (a smaller metal atom cluster) is finished before the next collision happens. We have studied three different types of reaction:(1) Step-by-step fragmentation of a structurally known metalloid cluster allows us to understand the bonding principle of these clusters because in every step only the weakest bond is broken.(2) There are three oxidation reactions of an Al13(-) cluster molecule with Cl2, HCl and O2 central to this review. These three reactions represent three different reaction types, (a) an exothermic reaction (Cl2), (b) an endothermic reaction (HCl), and (c) a kinetically limited reaction based on spin conservation rules (O2).(3) Finally, we present the reaction of a metalloid cluster with Cl2

  2. Atomically precise arrays of fluorescent silver clusters: a modular approach for metal cluster photonics on DNA nanostructures.

    PubMed

    Copp, Stacy M; Schultz, Danielle E; Swasey, Steven; Gwinn, Elisabeth G

    2015-03-24

    The remarkable precision that DNA scaffolds provide for arraying nanoscale optical elements enables optical phenomena that arise from interactions of metal nanoparticles, dye molecules, and quantum dots placed at nanoscale separations. However, control of ensemble optical properties has been limited by the difficulty of achieving uniform particle sizes and shapes. Ligand-stabilized metal clusters offer a route to atomically precise arrays that combine desirable attributes of both metals and molecules. Exploiting the unique advantages of the cluster regime requires techniques to realize controlled nanoscale placement of select cluster structures. Here we show that atomically monodisperse arrays of fluorescent, DNA-stabilized silver clusters can be realized on a prototypical scaffold, a DNA nanotube, with attachment sites separated by <10 nm. Cluster attachment is mediated by designed DNA linkers that enable isolation of specific clusters prior to assembly on nanotubes and preserve cluster structure and spectral purity after assembly. The modularity of this approach generalizes to silver clusters of diverse sizes and DNA scaffolds of many types. Thus, these silver cluster nano-optical elements, which themselves have colors selected by their particular DNA templating oligomer, bring unique dimensions of control and flexibility to the rapidly expanding field of nano-optics.

  3. Permanent excimer superstructures by supramolecular networking of metal quantum clusters

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, Beatriz; Monguzzi, Angelo; Azpiroz, Jon Mikel; Prato, Mirko; Erratico, Silvia; Campione, Marcello; Lorenzi, Roberto; Pedrini, Jacopo; Santambrogio, Carlo; Torrente, Yvan; De Angelis, Filippo; Meinardi, Francesco; Brovelli, Sergio

    2016-08-01

    Excimers are evanescent quasi-particles that typically form during collisional intermolecular interactions and exist exclusively for their excited-state lifetime. We exploited the distinctive structure of metal quantum clusters to fabricate permanent excimer-like colloidal superstructures made of ground-state noninteracting gold cores, held together by a network of hydrogen bonds between their capping ligands. This previously unknown aggregation state of matter, studied through spectroscopic experiments and ab initio calculations, conveys the photophysics of excimers into stable nanoparticles, which overcome the intrinsic limitation of excimers in single-particle applications—that is, their nearly zero formation probability in ultra-diluted solutions. In vitro experiments demonstrate the suitability of the superstructures as nonresonant intracellular probes and further reveal their ability to scavenge reactive oxygen species, which enhances their potential as anticytotoxic agents for biomedical applications.

  4. Are the Effects of Structure Formation Seen in the Central Metallicity of Galaxy Clusters?

    NASA Astrophysics Data System (ADS)

    Elkholy, Tamer Y.; Bautz, Mark W.; Canizares, Claude R.

    2015-05-01

    A sample of 46 nearby clusters observed with Chandra is analyzed to produce radial density, temperature, entropy, and metallicity profiles, as well as other morphological measurements. The entropy profiles are computed to larger radii than in previous Chandra cluster sample analyses. We find that the iron mass fraction measured in the inner 0.15{{R}500} shows a larger dispersion across the sample of low-mass clusters than it does for the sample of high-mass clusters. We interpret this finding as the result of the mixing of more halos in large clusters than in small clusters, leading to an averaging of the metallicity in the large clusters, and thus less dispersion of metallicity. This interpretation lends support to the idea that the low-entropy, metal-rich gas of merging halos reaches the clusters’ centers, which explains observations of core-collapse supernova product metallicity peaks, and which is seen in hydrodynamical simulations. The gas in these merging halos would have to reach cluster centers without mixing in the outer regions. On the other hand, the metallicity dispersion does not change with mass in the outer regions of the clusters, suggesting that most of the outer metals originate from a source with a more uniform metallicity level, such as during pre-enrichment. We also measure a correlation between the metal content in low-mass clusters and the morphological disturbance of their intracluster medium, as measured by centroid shift. This suggests an alternative interpretation, whereby transitional metallicity boosts in the center of low-mass clusters account for the larger dispersion of their metallicities.

  5. Entrapment of Metal Clusters in MOF Channels by Extended Hooks Anchored at Open Metal Sites

    PubMed Central

    Zheng, Shou-Tian; Zhao, Xiang; Lau, Samuel; Fuhr, Addis; Feng, Pingyun; Bu, Xianhui

    2015-01-01

    Reported here is a new concept and its practical implementation that involves the novel utilization of open metal sites (OMS) for architectural pore design. Specifically, it is shown here that OMS can be used to run extended hooks (isonicotinate in this work) from the framework wall to channel centers to effect the capture of single metal ions or clusters, with the concurrent partition of the large channel space into multiple domains, alteration of host-guest charge relationship and associated guest-exchange properties, as well as the transfer of OMS from the wall to the channel centers. The concept of the extended hook, demonstrated here in the multi-component dual-metal and dual-ligand system, should be generally applicable to a range of framework types. PMID:23826752

  6. Search for a more adequate test to predict the long-term migration from the PVC gaskets of metal lids into oily foods in glass jars.

    PubMed

    Graubardt, Nadine; Biedermann, Maurus; Fiselier, Katell; Bolzoni, Luciana; Pedrelli, Turno; Cavalieri, Chiara; Simoneau, Cathérine; Grob, Koni

    2009-07-01

    As shown previously, the conventional testing procedure for simulating long-term migration from the gaskets of metal closures into oily foods does not adequately reflect reality. It appears to be impossible to accelerate migration to the extent that the situation at the end of the shelf life of a product can be anticipated in a few days or weeks. Therefore, we investigated whether long-term migration could be extrapolated from migration rates determined for new lids. Jars were kept in the normal upright position. Since heat treatment may have a strong temporary impact, migration during the initial heating for pasteurization or sterilization and storage at ambient temperature were determined using different lids. Commercial products were recalled from sales points throughout Europe to determine the real migration over extended periods of time and for jars with differing histories. This migration was compared with data from the short-term testing to investigate whether an empirical relationship could be derived. The results show that the short-term test enables the comparison of lids and plasticizers in the initial phase of migration, but that long-term extrapolation presupposes more complex kinetic modeling. The results also demonstrate that the legal relevance of "official" testing methods should be reconsidered to avoid conflict when food contact materials comply with migration limits in the test but not in actual application.

  7. Electron emission from nanometer-size metallic clusters: Electronic states and structural stability of supported Au clusters

    SciTech Connect

    Lin, M.E.; Ramachandra, A.; Andres, R.P.; Reifenberger, R.

    1992-12-31

    Techniques developed to measure the thermodynamic and electronic properties of a single metallic cluster with nanometer-size dimensions are described. Using these techniques, experiments that resolve the quantized energy spectrum of electrons in a nanometer-size cluster of metallic atoms at room temperature have been performed. Studies on the stability of the electron emission current from an individual nanometer-size cluster supported on a tungsten tip have been performed to learn more about the intrinsic stability of these nanometer-size objects. The data show abrupt jumps between different emission states that are revisited as time progresses. This phenomenon is attributed to a rearrangement of the duster structure and/or orientation on the substrate and provides new evidence of multiple `isomeric` structures for small clusters of metallic atoms.

  8. Growth of Metal Nano-Clusters on Metal and Oxide Surfaces:. a Rheed Study

    NASA Astrophysics Data System (ADS)

    Zei, M. S.

    The powerful RHEED technique has been demonstrated for the structural determination of the nano-crystals grown on metal and oxide substrate surfaces. Pt was electrochemically deposited onto a Ru(10bar {1}0) electrode, while Pb and cobalt were vapor deposited onto Ag(111) and oxide film/NiAl(100), respectively under UHV conditions. At any Pt coverage, 3D-clusters develop for which the Pt clusters grow in (311) orientation on the Ru(10bar {1}0) substrate surface, where the [01bar {1}] atomic rows of the (311) facet are parallel to the [1bar {2}10] atomic rows of the Ru(10bar {1}0) surface. Due to the strong bonding at Pb/Ag(111) interface, the Pb deposit grows in 2D-islands with a (√ {3} × √ {3})R30o phase (Θ < 1 ML). On the other hand, the β-crystallites of ≈ 1 nm in diameter with inclusion of smaller-sized particles (D < 1 nm) are observed on Θ-Al2O3 after Co deposition at room temperature. Annealing at 900 K Co clusters (≈ 3 nm) grow larger at expense of small particles on thin oxide film on NiAl(100) and become better ordered, where the [110] axis of the Co(001) facet is parallel to the [100] direction of the (001)-oxide surface. The in-plane lattice constant of Co clusters is ca. 4 larger than that of bulk Co, yielding less strain at the (001)-oxide surface. These results demonstrate that both orientation and phase of metal nano-clusters are governed by surface structure of the substrate.

  9. Homometallic rare-Earth metal phosphinidene clusters: synthesis and reactivity.

    PubMed

    Wang, Kai; Luo, Gen; Hong, Jianquan; Zhou, Xigeng; Weng, Linhong; Luo, Yi; Zhang, Lixin

    2014-01-20

    Two new trinuclear μ3 -bridged rare-earth metal phosphinidene complexes, [{L(Ln)(μ-Me)}3 (μ3 -Me)(μ3 -PPh)] (L=[PhC(NC6 H4 iPr2 -2,6)2 ](-) , Ln=Y (2 a), Lu (2 b)), were synthesized through methane elimination of the corresponding carbene precursors with phenylphosphine. Heating a toluene solution of 2 at 120 °C leads to an unprecedented ortho CH bond activation of the PhP ligand to form the bridged phosphinidene/phenyl complexes. Reactions of 2 with ketones, thione, or isothiocyanate show clear phospha-Wittig chemistry, giving the corresponding organic phosphinidenation products and oxide (sulfide) complexes. Reaction of 2 with CS2 leads to the formation of novel trinuclear rare-earth metal thione dianion clusters, for which a possible pathway was determined by DFT calculation. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Embedded cluster metal-polymeric micro interface and process for producing the same

    DOEpatents

    Menezes, Marlon E.; Birnbaum, Howard K.; Robertson, Ian M.

    2002-01-29

    A micro interface between a polymeric layer and a metal layer includes isolated clusters of metal partially embedded in the polymeric layer. The exposed portion of the clusters is smaller than embedded portions, so that a cross section, taken parallel to the interface, of an exposed portion of an individual cluster is smaller than a cross section, taken parallel to the interface, of an embedded portion of the individual cluster. At least half, but not all of the height of a preferred spherical cluster is embedded. The metal layer is completed by a continuous layer of metal bonded to the exposed portions of the discontinuous clusters. The micro interface is formed by heating a polymeric layer to a temperature, near its glass transition temperature, sufficient to allow penetration of the layer by metal clusters, after isolated clusters have been deposited on the layer at lower temperatures. The layer is recooled after embedding, and a continuous metal layer is deposited upon the polymeric layer to bond with the discontinuous metal clusters.

  11. Structure and mobility of metal clusters in MOFs: Au, Pd, and AuPd clusters in MOF-74.

    PubMed

    Vilhelmsen, Lasse B; Walton, Krista S; Sholl, David S

    2012-08-01

    Understanding the adsorption and mobility of metal-organic framework (MOF)-supported metal nanoclusters is critical to the development of these catalytic materials. We present the first theoretical investigation of Au-, Pd-, and AuPd-supported clusters in a MOF, namely MOF-74. We combine density functional theory (DFT) calculations with a genetic algorithm (GA) to reliably predict the structure of the adsorbed clusters. This approach allows comparison of hundreds of adsorbed configurations for each cluster. From the investigation of Au(8), Pd(8), and Au(4)Pd(4) we find that the organic part of the MOF is just as important for nanocluster adsorption as open Zn or Mg metal sites. Using the large number of clusters generated by the GA, we developed a systematic method for predicting the mobility of adsorbed clusters. Through the investigation of diffusion paths a relationship between the cluster's adsorption energy and diffusion barrier is established, confirming that Au clusters are highly mobile in the MOF-74 framework and Pd clusters are less mobile.

  12. Structural, electronic and magnetic properties of binary transition metal aluminum clusters: absence of electronic shell structure.

    PubMed

    Chauhan, Vikas; Singh, Akansha; Majumder, Chiranjib; Sen, Prasenjit

    2014-01-08

    Single Cr, Mn, Fe, Co and Ni doped Al clusters having up to 12 Al atoms are studied using density functional methods. The global minima of structure for all the clusters are identified, and their relative stability and electronic and magnetic properties are studied. FeAl4 and CoAl3 are found to have enhanced stability and aromatic behavior. In contrast to binary transition metal alkali and transition metal alkaline earth clusters, spherical shell models cannot describe the electronic structure of transition metal aluminum clusters.

  13. Simulation studies of electroless metal deposition using gold nano-clusters on polymeric surfaces

    NASA Astrophysics Data System (ADS)

    Lively, Mike; Bhattacharya, Aniket; Grabill, Chris; Kuebler, Stephen M.; Dutta, Aniruddha; Heinrich, Helge

    2010-03-01

    We report lattice Monte Carlo (MC) simulation studies of deposition of metallic silver on randomly distributed gold nano clusters on a polymeric surface. The gold nano-clusters act as seeds for further deposition of silver atoms. We assume ballistic growth for the growth of metallic silver on gold clusters but treat the lateral growth (which eventually form bridges among original clusters) with different rules and study the evolving morphologies of the deposited silver atoms as a function of the surface density and the size distribution of gold nano-clusters and compare simulation results with those obtained from TEM studies of the prepared samples.

  14. Hydrogen mimicking the properties of coinage metal atoms in Cu and Ag monohydride clusters.

    PubMed

    Vetter, Karsten; Proch, Sebastian; Ganteför, Gerd F; Behera, Swayamprabha; Jena, Puru

    2013-12-28

    A systematic study of the electronic structure and equilibrium geometries of Cun, Cun-1H, Agn, and Agn-1H; n = 2-5 clusters is carried out using photoelectron spectroscopy (PES) experiments and density functional theory based calculations. Our objective is to see if the substitution of a coinage metal atom by hydrogen would retain the electronic structure of the parent metal cluster since both systems are isoelectronic. For clusters with n ≥ 3, we find that the measured PES and vertical detachment energies (VDEs) (i.e. energies necessary to remove an electron from the anionic Mn(-) (M = Cu, Ag) clusters without changing their geometries) are close to those of Mn-1H(-) clusters, suggesting that substitution of a metal atom with hydrogen does not perturb the electronic structure of the parent cluster anion significantly. Calculated VDEs agree very well with experiment validating the theoretical methods used as well as the geometries of the neutral and anionic clusters.

  15. Formation of metallic magnetic clusters in a Kondo-lattice metal: evidence from an optical study.

    PubMed

    Kovaleva, N N; Kugel, K I; Bazhenov, A V; Fursova, T N; Löser, W; Xu, Y; Behr, G; Kusmartsev, F V

    2012-01-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb(2)PdSi(3). In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.

  16. Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    NASA Astrophysics Data System (ADS)

    Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.

    2012-11-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors.

  17. Formation of metallic magnetic clusters in a Kondo-lattice metal: Evidence from an optical study

    PubMed Central

    Kovaleva, N. N.; Kugel, K. I.; Bazhenov, A. V.; Fursova, T. N.; Löser, W.; Xu, Y.; Behr, G.; Kusmartsev, F. V.

    2012-01-01

    Magnetic materials are usually divided into two classes: those with localised magnetic moments, and those with itinerant charge carriers. We present a comprehensive experimental (spectroscopic ellipsomerty) and theoretical study to demonstrate that these two types of magnetism do not only coexist but complement each other in the Kondo-lattice metal, Tb2PdSi3. In this material the itinerant charge carriers interact with large localised magnetic moments of Tb(4f) states, forming complex magnetic lattices at low temperatures, which we associate with self-organisation of magnetic clusters. The formation of magnetic clusters results in low-energy optical spectral weight shifts, which correspond to opening of the pseudogap in the conduction band of the itinerant charge carriers and development of the low- and high-spin intersite electronic transitions. This phenomenon, driven by self-trapping of electrons by magnetic fluctuations, could be common in correlated metals, including besides Kondo-lattice metals, Fe-based and cuprate superconductors. PMID:23189239

  18. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  19. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  20. Surface modification of metal and metal coated nanoparticles to induce clustering

    NASA Astrophysics Data System (ADS)

    Gowda, M. H.; Glembocki, O. J.; Geng, S.; Prokes, S. M.; Garces, N.; Caldwell, J. D.

    2010-08-01

    Surface enhanced Raman scattering (SERS) is a powerful technique for the detection of submonolayer coverage of gold or silver surfaces. The magnitude of the effect and the spectral wavelength of the peak depend on the metal nanoparticles used and its geometry. In this paper we show that the use of chemicals that bind to gold or silver can lead to the clustering of nanoparticles. We used well defined Au nanoparticles in our experiments and add cysteamine to solutions containing the nanoparticles. The plasmonic response of the nanoparticles is measured by transmission Surface Plasmon Resonance (SPR) spectroscopy. We observed significant changes to the SPR spectra that are characteristics of close coupled nanoparticles. The time evolution of these changes indicates the formation of gold nanoparticles clusters. The SERS response of these clustered nanoparticles is observed to red shift from the designed peak wavelength in the green to the red. In addition, the placement of these clusters on dielectric surfaces shifts the SPR even more into the red. The experimental results are supported by calculations of the electromagnetic fields using finite difference methods.

  1. Laser Spectroscopy of Small Mass Selected Metal Clusters and Complexes

    NASA Astrophysics Data System (ADS)

    Robbins, David Lee

    1995-01-01

    been reported and furthermore no other metal dimer-ligand complex had been reported prior to these studies. The metal dimer work is relevant to surface adsorption and catalysis and represents the simplest adsorption experiment to date, that is adsorption of a ligand on the smallest metal cluster surface. The Mg^+ -N_2 study along with other recently investigated ion-molecule complexes are the first such complexes to be investigated.

  2. Origin of Selective Adsorption for Metal Nano-clusters on Graphene/Ru(0001)

    NASA Astrophysics Data System (ADS)

    Zhang, Lizhi; Sun, Jiatao; Huang, Li; Pan, Lida; Du, Shixuan; Gao, Hongjun

    2013-03-01

    These years, metal nano-clusters have attracted many interests because of their exciting properties and the potential applications in the catalysis industries, the information storage and so on. Recently, many groups composed the homogenous and size-controlled metal nano-clusters on graphene/Ru(0001) moiré template (G/Ru(0001)). However, the growth modes of these nano-clusters are not very clear. Here, we investigated the mechanism of selective adsorption of some transition metal (TM) atoms on G/Ru(0001) by DFT calculations, and proposed a criterion to estimate the growth mode of TM atoms on G/Ru(0001). We found that both the intensity of sp3 hybridization of carbon atoms in different regions of G/Ru(0001) and the electronic structure of the transition metal atoms influence the adsorption site and the selectivity of metal atoms on G/Ru(0001) at initio stage. According to the electronic structures of some other different G/metal systems, we also predicted that some other G/metal templates can be used to grow the metal nano-clusters. The growth mechanism agrees well with the experimental observations, and provides a way to select suitable metal atoms to form dispersed metal nano-clusters on the G/metal template.

  3. The SLUGGS survey: calcium triplet-based spectroscopic metallicities for over 900 globular clusters

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Foster, Caroline; Spitler, Lee R.; Arnold, Jacob A.; Romanowsky, Aaron J.; Strader, Jay; Pota, Vincenzo

    2012-10-01

    Although the colour distribution of globular clusters in massive galaxies is well known to be bimodal, the spectroscopic metallicity distribution has been measured in only a few galaxies. After redefining the calcium triplet index-metallicity relation, we use our relation to derive the metallicity of 903 globular clusters in 11 early-type galaxies. This is the largest sample of spectroscopic globular cluster metallicities yet assembled. We compare these metallicities with those derived from Lick indices finding good agreement. In six of the eight galaxies with sufficient numbers of high-quality spectra we find bimodality in the spectroscopic metallicity distribution. Our results imply that most massive early-type galaxies have bimodal metallicity as well as colour distributions. This bimodality suggests that most massive early-type galaxies experienced two periods of star formation.

  4. Metal clusters and nanoparticles in dielectric matrices: Formation and optical properties

    NASA Astrophysics Data System (ADS)

    Gladskikh, I. A.; Vartanyan, T. A.

    2016-12-01

    The optical properties of thin dielectric films with metal inclusions and their dependence on thermal and laser annealing are studied experimentally. Metal clusters (Ag, Au, and Cu) in dielectric materials (Al2O3 and SiO2) are obtained by simultaneous vacuum deposition of metal and dielectric on the surface of a corresponding dielectric substrate (sapphire and quartz). It is shown that, depending on the deposited dielectric material, on the weight ratio of deposited metal and dielectric, and on the subsequent thermal treatment, one can obtain different metal structures, from clusters with a small number of atoms to complex dendritic plasmonic structures.

  5. White Dwarfs in the Metal-Rich Open Cluster NGC 6253

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Campos, F.; Romero, A.; Kepler, S. O.

    2017-03-01

    We have obtained 53 images with the g filter and 19 images with the i filter, each with 600-second exposures of the super metal rich open cluster NGC 6253 with the Gemini-South telescope to create deep images of the cluster to observe the cluster white dwarfs for the first time. We will analyze the white dwarf luminosity function to measure the cluster's white dwarf age, search for any anomalous features (as has been seen in the similarly metal rich cluster NGC 6791), and constrain the initial-final mass relation at high metallicities. We present an update on these observations and our program to study the formation of white dwarfs in super high metallicity environments.

  6. Determination of the Structures of Silicon and Metal Doped Silicon Clusters

    NASA Astrophysics Data System (ADS)

    Lyon, Jonathan T.; Fielicke, Andre; Janssens, Ewald; Lievens, Peter

    2014-06-01

    Strongly bound clusters are often used as convenient models for bulk material. Silicon clusters are particularly interesting due to their importance in the electronics industry. We perform experimental IR multiple photon dissociation spectroscopy in the gas-phase, which makes use of a free electron laser, and compare the results with that predicted by density functional and MP2 theory calculations. Comparison of the vibrational spectra with that predicted by theoretical calculations for several structural isomers for each cluster size leads to accurate structural assignments. Here, we present our results for silicon clusters, and compare the structures with those of select transition metal doped SinM clusters. Of particular interest is the transition from exohedral to endoheral metal doped silicon clusters and how the transition size changes for different metal dopant atoms. Journal of Chemical Physics 2012, 136, 064301 e.g., ChemPhysChem 2014, 15, 328.

  7. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  8. A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies.

    PubMed

    Werner, Norbert; Urban, Ondrej; Simionescu, Aurora; Allen, Steven W

    2013-10-31

    Most of the metals (elements heavier than helium) produced by stars in the member galaxies of clusters currently reside within the hot, X-ray-emitting intra-cluster gas. Observations of X-ray line emission from this intergalactic medium have suggested a relatively small cluster-to-cluster scatter outside the cluster centres and enrichment with iron out to large radii, leading to the idea that the metal enrichment occurred early in the history of the Universe. Models with early enrichment predict a uniform metal distribution at large radii in clusters, whereas those with late-time enrichment are expected to introduce significant spatial variations of the metallicity. To discriminate clearly between these competing models, it is essential to test for potential inhomogeneities by measuring the abundances out to large radii along multiple directions in clusters, which has not hitherto been done. Here we report a remarkably uniform iron abundance, as a function of radius and azimuth, that is statistically consistent with a constant value of ZFe = 0.306 ± 0.012 in solar units out to the edge of the nearby Perseus cluster. This homogeneous distribution requires that most of the metal enrichment of the intergalactic medium occurred before the cluster formed, probably more than ten billion years ago, during the period of maximal star formation and black hole activity.

  9. Composite Hybrid Cluster Built from the Integration of Polyoxometalate and a Metal Halide Cluster: Synthetic Strategy, Structure, and Properties.

    PubMed

    Li, Xin-Xiong; Ma, Xiang; Zheng, Wen-Xu; Qi, Yan-Jie; Zheng, Shou-Tian; Yang, Guo-Yu

    2016-09-06

    A step-by-step synthetic strategy, setting up a bridge between the polyoxometalate (POM) and metal halide cluster (MHC) systems, is demonstrated to construct an unprecedented composite hybrid cluster built up from one high-nuclearity cationic MHC [Cu8I6](2+) and eight Anderson-type anionic POMs [HCrMo6O18(OH)6](2-) cross-linked by a tripodal alcohol derivative.

  10. Supported Dendrimer-Encapsulated Metal Clusters: Toward Heterogenizing Homogeneous Catalysts.

    PubMed

    Ye, Rong; Zhukhovitskiy, Aleksandr V; Deraedt, Christophe V; Toste, F Dean; Somorjai, Gabor A

    2017-08-15

    Recyclable catalysts, especially those that display selective reactivity, are vital for the development of sustainable chemical processes. Among available catalyst platforms, heterogeneous catalysts are particularly well-disposed toward separation from the reaction mixture via filtration methods, which renders them readily recyclable. Furthermore, heterogeneous catalysts offer numerous handles-some without homogeneous analogues-for performance and selectivity optimization. These handles include nanoparticle size, pore profile of porous supports, surface ligands and interface with oxide supports, and flow rate through a solid catalyst bed. Despite these available handles, however, conventional heterogeneous catalysts are themselves often structurally heterogeneous compared to homogeneous catalysts, which complicates efforts to optimize and expand the scope of their reactivity and selectivity. Ongoing efforts in our laboratories are aimed to address the above challenge by heterogenizing homogeneous catalysts, which can be defined as the modification of homogeneous catalysts to render them in a separable (solid) phase from the starting materials and products. Specifically, we grow the small nanoclusters in dendrimers, a class of uniform polymers with the connectivity of fractal trees and generally radial symmetry. Thanks to their dense multivalency, shape persistence, and structural uniformity, dendrimers have proven to be versatile scaffolds for the synthesis and stabilization of small nanoclusters. Then these dendrimer-encapsulated metal clusters (DEMCs) are adsorbed onto mesoporous silica. Through this method, we have achieved selective transformations that had been challenging to accomplish in a heterogeneous setting, e.g., π-bond activation and aldol reactions. Extensive investigation into the catalytic systems under reaction conditions allowed us to correlate the structural features (e.g., oxidation states) of the catalysts and their activity. Moreover, we have

  11. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    SciTech Connect

    Wang Lamei; Fan Yong; Wang Yan; Xiao Lina; Hu Yangyang; Peng Yu; Wang Tiegang; Gao Zhongmin; Zheng Dafang; Cui Xiaobing; Xu Jiqing

    2012-07-15

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW{sub 12}O{sub 40}]{sub 2}[Cu{sub 2}(Phen){sub 4}Cl](H{sub 2}4, 4 Prime -bpy){sub 4}{center_dot}H{sub 3}O{center_dot}5H{sub 2}O (1) and [HPW{sub 12}O{sub 40}][Cd{sub 2}(Phen){sub 4}Cl{sub 2}](4, 4 Prime -bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW{sub 12}O{sub 40}]{sup 5-}, metal halide clusters [Cu{sub 2}(Phen){sub 4}Cl]{sup +}and 4, 4 Prime -bpy ligands, while compound 2 is constructed from [PW{sub 12}O{sub 40}]{sup 3-}, metal halide cluster [Cd{sub 2}(Phen){sub 4}Cl{sub 2}]{sup 2+} and 4, 4 Prime -bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. - Graphical Abstract: Two new compounds have been synthesized and characterized. Structure analyses revealed that the two compounds are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Highlights: Black-Right-Pointing-Pointer First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Two different kinds of metal halide clusters. Black-Right-Pointing-Pointer Supramolecular structures based on polyoxometalates, metal halide clusters and organic ligands. Black-Right-Pointing-Pointer Hybridization of three different of building blocks.

  12. Tetrahedral Clusters of GaMo 4S 8-Type Compounds: A Metal Bonding Analysis

    NASA Astrophysics Data System (ADS)

    Le Beuze, A.; Loirat, H.; Zerrouki, M. C.; Lissillour, R.

    1995-11-01

    Extended Hückel tight binding calculations have been performed on ligated as well as on ligand-free Mo4 and Mo6 extended frames, in order to analyze the metal-metal bonding within the clusters and particularly the appreciable changes of the metal-metal bond lengths through the M4 tetrahedral units contained in GaM4X8 (M = Mo, Nb, V, Ta; X = S, Se, Te), Mo4S4Y4 (Y = Cl, Br, I). A comparison with the M6 octahedral units of the M Mo6X8 (M = Pb, Ag, La; X = S, Se) series is made. By means of DOS, COOP curves, and overlap populations, results clearly display the strong reorganization of the electronic structure of the bare metal clusters network while the ligand interactions occur, inducing a strong reduction of the strength of the metal-metal bonds. We outline the relationship between the metal-metal bond lengths and various parameters such as the valence electron count (VEC) per cluster and the nature of the ligands. Our results indicate that the two series M4 and M6 differ: M-M bond lengths are unaffected by the VEC in the regular M4 cluster, whereas some M-M bond lengths undergo a significant change when the VEC increases in the distorded M6 clusters. Likewise, it is worthy to note that metal d orbitals have a more significant effect in M4 cluster series. In contrast, the metal-ligand covalency induces similar elongations of metal-metal bonds in the two series.

  13. Carbon nanotube-metal cluster composites: a new road to chemical sensors?

    PubMed

    Zhao, Q; Buongiorno Nardelli, M; Lu, W; Bernholc, J

    2005-05-01

    Novel carbon nanotube-metal cluster structures are proposed as prototype systems for molecular recognition at the nanoscale. Ab initio calculations show that already the bare nanotube cluster system displays some specificity because the adsorption of ammonia on a carbon nanotube-Al cluster system is easily detected electrically, while diborane adsorption does not provide an electrical signature. Since there are well-established procedures for attaching molecular receptors to metal clusters, these results provide a "proof-of-principle" for the development of novel, high-specificity molecular sensors.

  14. Temporal stability of magic-number metal clusters: beyond the shell closing model.

    PubMed

    Desireddy, Anil; Kumar, Santosh; Guo, Jingshu; Bolan, Michael D; Griffith, Wendell P; Bigioni, Terry P

    2013-03-07

    The anomalous stability of magic-number metal clusters has been associated with closed geometric and electronic shells and the opening of HOMO-LUMO gaps. Despite this enhanced stability, magic-number clusters are known to decay and react in the condensed phase to form other products. Improving our understanding of their decay mechanisms and developing strategies to control or eliminate cluster instability is a priority, to develop a more complete theory of their stability, to avoid studying mixtures of clusters produced by the decay of purified materials, and to enable technology development. Silver clusters are sufficiently reactive to facilitate the study of the ambient temporal stability of magic-number metal clusters and to begin to understand their decay mechanisms. Here, the solution phase stability of a series of silver:glutathione (Ag:SG) clusters was studied as a function of size, pH and chemical environment. Cluster stability was found to be a non-monotonic function of size. Electrophoretic separations showed that the dominant mechanism involved the redistribution of mass toward smaller sizes, where the products were almost exclusively previously known cluster sizes. Optical absorption spectra showed that the smaller clusters evolved toward the two most stable cluster sizes. The net surface charge was found to play an important role in cluster stabilization although charge screening had no effect on stability, contrary to DLVO theory. The decay mechanism was found to involve the loss of Ag(+) ions and silver glutathionates. Clusters could be stabilized by the addition of Ag(+) ions and destabilized by either the addition of glutathione or the removal of Ag(+) ions. Clusters were also found to be most stable in near neutral pH, where they had a net negative surface charge. These results provide new mechanistic insights into the control of post-synthesis stability and chemical decay of magic-number metal clusters, which could be used to develop design

  15. Structure, dynamic and energetic of mixed transition metal clusters. A computational study of mixed clusters of silver and nickel

    NASA Astrophysics Data System (ADS)

    Hewage, J. W.; Rupika, W. L.; Amar, F. G.

    2012-11-01

    Classical molecular dynamics simulation (MD) with Sutton-Chen potential has been used to generate the minimum energy and to study the thermodynamic and dynamic properties of mixed transition metal cluster motifs of Ag n Ni(13- n) for n ≤ 13. Literature results of thirteen particle clusters of neat silver and nickel atoms were first reproduced before the successive replacement of the silver atom by nickel. Calculation was repeated for both silver-centred and nickel-centred clusters. It was found that the nickel-centred clusters were more stable than the silver-centred clusters. Heat capacities and hence the melting points of silver and nickel-centred clusters were determined by using the Histogram method. Species-centric order parameters developed by Hewage and Amar were used to understand the dynamic behaviour in the transition of silver-centred clusters to more stable nickel-centred clusters. This species-centric order parameter calculation further confirmed the stability of nickel-centred clusters over those of silver-centred species.

  16. LITHIUM ABUNDANCES OF THE SUPER-METAL-RICH OPEN CLUSTER NGC 6253

    SciTech Connect

    Cummings, Jeffrey D.; Deliyannis, Constantine P.; Maderak, Ryan M.; Anthony-Twarog, Barbara; Twarog, Bruce E-mail: con@astro.indiana.edu E-mail: bjat@ku.edu

    2012-11-01

    High-resolution CTIO 4 m/HYDRA spectroscopy of the super-metal-rich open cluster NGC 6253 ([Fe/H] = +0.43 {+-} 0.01) has been used to study the stellar lithium (Li) abundances near the cluster's turnoff. NGC 6253 greatly expands the range of [Fe/H] for clusters that have a Li abundance analysis. This is important for studying the complicated effects of, and potential correlations with, stellar Fe abundance on surface Li abundance. Comparisons to the younger and less-metal-rich Hyades and to the similarly aged but solar-metallicity M67 show that NGC 6253's Li abundances are qualitatively consistent with the prediction, from Standard Stellar Evolution Theory, that higher-metallicity stars have a greater Li depletion. Comparison with M67 provides evidence that the more-metal-rich NGC 6253 had a higher initial Li, which is consistent with expectations from models of Galactic Li production. NGC 6253 is also compared to the intermediate-aged NGC 3680, NGC 752, and IC 4651 open clusters. Comparison of the Li-gap positions in all six clusters shows that (1) the gap's position in T{sub eff} is independent of metallicity, but (2) higher-metallicity clusters have their gaps in higher-mass stars. In addition, the Li gap's position is shown not to evolve with age, which provides an important constraint for the non-standard depletion mechanisms that may create the Li gap.

  17. Self-Assembly of Silver Metal Clusters of Small Atomicity on Cyclic Peptide Nanotubes.

    PubMed

    Cuerva, Miguel; García-Fandiño, Rebeca; Vázquez-Vázquez, Carlos; López-Quintela, M Arturo; Montenegro, Javier; Granja, Juan R

    2015-11-24

    Subnanometric noble metal clusters, composed by only a few atoms, behave like molecular entities and display magnetic, luminescent and catalytic activities. However, noncovalent interactions of molecular metal clusters, lacking of any ligand or surfactant, have not been seen at work. Theoretically attractive and experimentally discernible, van der Waals forces and noncovalent interactions at the metal/organic interfaces will be crucial to understand and develop the next generation of hybrid nanomaterials. Here, we present experimental and theoretical evidence of noncovalent interactions between subnanometric metal (0) silver clusters and aromatic rings and their application in the preparation of 1D self-assembled hybrid architectures with ditopic peptide nanotubes. Atomic force microscopy, fluorescence experiments, circular dichroism and computational simulations verified the occurrence of these interactions in the clean and mild formation of a novel peptide nanotube and metal cluster hybrid material. The findings reported here confirmed the sensitivity of silver metal clusters of small atomicity toward noncovalent interactions, a concept that could find multiple applications in nanotechnology. We conclude that induced supramolecular forces are optimal candidates for the precise spatial positioning and properties modulation of molecular metal clusters. The reported results herein outline and generalize the possibilities that noncovalent interactions will have in this emerging field.

  18. Reactions of metal cluster anions with inorganic and organic molecules in the gas phase.

    PubMed

    Zhao, Yan-Xia; Liu, Qing-Yu; Zhang, Mei-Qi; He, Sheng-Gui

    2016-07-28

    The study of gas phase ion-molecule reactions by state-of-the-art mass spectrometric experiments in conjunction with quantum chemistry calculations offers an opportunity to clarify the elementary steps and mechanistic details of bond activation and conversion processes. In the past few decades, a considerable number of publications have been devoted to the ion-molecule reactions of metal clusters, the experimentally and theoretically tractable models for the active phase of condensed phase systems. The focus of this perspective concerns progress on activation and transformation of important inorganic and organic molecules by negatively charged metal clusters. The metal cluster anions cover bare metal clusters as well as ligated systems with oxygen, carbon, and nitrogen, among others. The following important issues have been summarized and discussed: (i) dependence of chemical reactivity and selectivity on cluster structures and sizes, metals and metal oxidation states, odd-even electron numbers, etc. and (ii) effects of doping, ligation, and pre-adsorption on the reactivity of metal clusters toward rather inert molecules.

  19. Sub-nanometre sized metal clusters: from synthetic challenges to the unique property discoveries.

    PubMed

    Lu, Yizhong; Chen, Wei

    2012-05-07

    Sub-nanometre sized metal clusters, with dimensions between metal atoms and nanoparticles, have attracted more and more attention due to their unique electronic structures and the subsequent unusual physical and chemical properties. However, the tiny size of the metal clusters brings the difficulty of their synthesis compared to the easier preparation of large nanoparticles. Up to now various synthetic techniques and routes have been successfully applied to the preparation of sub-nanometre clusters. Among the metals, gold clusters, especially the alkanethiolate monolayer protected clusters (MPCs), have been extensively investigated during the past decades. In recent years, silver and copper nanoclusters have also attracted enormous interest mainly due to their excellent photoluminescent properties. Meanwhile, more structural characteristics, particular optical, catalytic, electronic and magnetic properties and the related technical applications of the metal nanoclusters have been discovered in recent years. In this critical review, recent advances in sub-nanometre sized metal clusters (Au, Ag, Cu, etc.) including the synthetic techniques, structural characterizations, novel physical, chemical and optical properties and their potential applications are discussed in detail. We finally give a brief outlook on the future development of metal nanoclusters from the viewpoint of controlled synthesis and their potential applications.

  20. Social Franchising and a Nationwide Mass Media Campaign Increased the Prevalence of Adequate Complementary Feeding in Vietnam: A Cluster-Randomized Program Evaluation.

    PubMed

    Rawat, Rahul; Nguyen, Phuong Hong; Tran, Lan Mai; Hajeebhoy, Nemat; Nguyen, Huan Van; Baker, Jean; Frongillo, Edward A; Ruel, Marie T; Menon, Purnima

    2017-02-08

    Background: Rigorous evaluations of health system-based interventions in large-scale programs to improve complementary feeding (CF) practices are limited. Alive & Thrive applied principles of social franchising within the government health system in Vietnam to improve the quality of interpersonal counseling (IPC) for infant and young child feeding combined with a national mass media (MM) campaign and community mobilization (CM). Objective: We evaluated the impact of enhanced IPC + MM + CM (intensive) compared with standard IPC + less-intensive MM and CM (nonintensive) on CF practices and anthropometric indicators.Methods: A cluster-randomized, nonblinded evaluation design with cross-sectional surveys (n = ∼500 children aged 6-23.9 mo and ∼1000 children aged 24-59.9 mo/group) implemented at baseline (2010) and endline (2014) was used. Difference-in-difference estimates (DDEs) of impact were calculated for intent-to-treat (ITT) analyses and modified per-protocol analyses (MPAs; mothers who attended the social franchising at least once: 62%).Results: Groups were similar at baseline. In ITT analyses, there were no significant differences between groups in changes in CF practices over time. In the MPAs, greater improvements in the intensive than in the nonintensive group were seen for minimum dietary diversity [DDE: 6.4 percentage points (pps); P < 0.05] and minimum acceptable diet (8.0 pps; P < 0.05). Significant stunting declines occurred in both intensive (7.1 pps) and nonintensive (5.4 pps) groups among children aged 24-59.9 mo, with no differential decline.Conclusions: When combined with MM and CM, an at-scale social franchising approach to improve IPC, delivered through the existing health care system, significantly improved CF practices, but not child growth, among mothers who used counseling services at least once. A greater impact may be achieved with strategies designed to increase service utilization. This trial was registered at clinicaltrials.gov as NCT

  1. Bright Stars and Metallicity Spread in the Globular Cluster omega Centauri

    NASA Astrophysics Data System (ADS)

    Ortolani, Sergio; Covino, Stefano; Carraro, Giovanni

    The globular cluster omega Centauri (NGC~5139) is the most massive and brightest cluster in our Galaxy. It has also a moderately high mass to light ratio (3.6) and an anomalous flattening (0.83) for a globular cluster. This cluster is also very interesting because it is one of a few examples of globular clusters with a measurable spread in the metal abundance (see Da Costa & Willumsen 1981, Norris et al. 1996, and Suntzeff and Kraft 1996 and references therein) and then it offers a unique, big sample of nearby stars having all the same distance and reddening but showing different metallicity (and age ?) effects. A recent paper by Norris et al. (1997) shows also an interesting correlation between kinematics and metal abundance.

  2. VizieR Online Data Catalog: Metallicity estimates of M31 globular clusters (Galleti+, 2009)

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2010-04-01

    New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2<=[Fe/H]<=+0.5. Lick indices for M31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. (2000AJ....119.1645T) system, yielding new metallicity estimates for 245 globular clusters of M31. (3 data files).

  3. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1984-01-01

    Small transition metal clusters were studied at a high level of approximation, including all the valence electrons in the calculation and extensive electron correlation, in order to understand the electronic structure of these small metal clusters. By comparison of dimers, trimers, and possibly higher clusters, the information obtained was used to provide insights into the electronic structure of bulk transition metals. Small metal clusters are currently of considerable experimental interest and some information is becomming available both from matrix electron spin resonance studies and from gas phase spectroscopy. Collaboration between theorists and experimentalists is thus expected to be especially profitable at this time since there is some experimental information which can serve to guide the theoretical work.

  4. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    The results of ab-initio calculations are reported for (1) small transition metal clusters and (2) potential energy surfaces for chemical reactions important in hydrogen combustion and high temperature air chemistry.

  5. Improved metal cluster deposition on a genetically engineered tobacco mosaic virus template

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Yup; Royston, Elizabeth; Culver, James N.; Harris, Michael T.

    2005-07-01

    Improved depositions of various metal clusters onto a biomolecular template were achieved using a genetically engineered tobacco mosaic virus (TMV). Wild-type TMV was genetically altered to display multiple solid metal binding sites through the insertion of two cysteine residues within the amino-terminus of the virus coat protein. Gold, silver, and palladium clusters synthesized through in situ chemical reductions could be readily deposited onto the genetically modified template via the exposed cysteine-derived thiol groups. Metal cluster coatings on the cysteine-modified template were more densely deposited and stable than similar coatings on the unmodified wild-type template. Combined, these results confirm that the introduction of cysteine residues onto the outer surface of the TMV coat protein enhances the usefulness of this virus as a biotemplate for the deposition of metal clusters.

  6. Hard X-ray-induced optical luminescence via biomolecule-directed metal clusters.

    PubMed

    Osakada, Yasuko; Pratx, Guillem; Sun, Conroy; Sakamoto, Masanori; Ahmad, Moiz; Volotskova, Olga; Ong, Qunxiang; Teranishi, Toshiharu; Harada, Yoshie; Xing, Lei; Cui, Bianxiao

    2014-04-07

    Here, we demonstrate that biomolecule-directed metal clusters are applicable in the study of hard X-ray excited optical luminescence, promising a new direction in the development of novel X-ray-activated imaging probes.

  7. 25. Steenbock symposium -- Biosynthesis and function of metal clusters for enzymes: Proceedings

    SciTech Connect

    1997-12-31

    This symposium was held June 10--14, 1997 in Madison, Wisconsin. The purpose of this conference was to provide a multidisciplinary forum for exchange of state-of-the-art information on biochemistry of enzymes that have an affinity for metal clusters. Attention is focused on the following: metal clusters involved in energy conservation and remediation; tungsten, molybdenum, and cobalt-containing enzymes; Fe proteins, and Mo-binding proteins; nickel enzymes; and nitrogenase.

  8. 24 electron cluster formulas as the 'molecular' units of ideal metallic glasses

    NASA Astrophysics Data System (ADS)

    Luo, L. J.; Chen, H.; Wang, Y. M.; Qiang, J. B.; Wang, Q.; Dong, C.; Häussler, P.

    2014-08-01

    It is known that ideal metallic glasses fully complying with the Hume-Rothery stabilization mechanism can be expressed by a universal cluster formula of the form [cluster](glue atom)1 or 3. In the present work, it is shown, after a re-examination of the cluster-resonance model, that the number of electrons per unit cluster formula, e/u, is universally 24. The cluster formulas are then the atomic as well as the electronic structural units, mimicking the 'molecular' formulas for chemical substances. The origin of different electron number per atom ratios e/a is related to the total number of atoms Z in unit cluster formula, e/a = 24/Z. The 24 electron formulas are well confirmed in typical binary and ternary bulk metallic glasses.

  9. Chemical abundances in Virgo cluster spirals - what drives the environmental dependence of galaxy metallicity?

    NASA Astrophysics Data System (ADS)

    Ellison, Sara; Skillman, Evan; Chung, Aeree

    2009-08-01

    The Virgo cluster is not only our nearest massive cluster, but its dynamical infancy also renders it an ideal laboratory for studies of cluster formation and galaxy evolution. Given the intense interest in Virgo, it is astounding that only 9 out of over 100 spirals in its firmament have chemical abundance measurements. We propose to simultaneously address this gap in our fundamental knowledge of Virgo cluster spirals and investigate how the metallicity and abundance gradients of star forming galaxies are sensitive to environment. Our sample consists of 13 Virgo cluster spiral galaxies, preferentially gas-poor early types, which complement the existing metallicity measurements. We also sample a range of clustercentric distances (0.3 -- 3 Mpc from M87), local densities and include several galaxies which exhibit evidence for interactions with the intra-cluster medium.

  10. Sulfide ions as modulators of metal-thiolate cluster size in a plant metallothionein.

    PubMed

    Huber, Tamara; Freisinger, Eva

    2013-06-28

    Metallothioneins are small cysteine-rich proteins coordinating various transition metal ions preferably with the electron configuration d(10). They are ubiquitously present in all phyla, and next to phytochelatins they represent a successful molecular concept for high-capacity metal ion binding. Recent studies showed the incorporation of sulfide ions into the metal-thiolate cluster of metallothionein 2 from the plant Cicer arietinum (cicMT2) increasing the cadmium binding capacity and stability of the cluster. In the present work, the sulfide-induced structural changes accompanying the cluster formation and the sulfide-modulated increase in cluster size are analyzed in detail with a variety of analytical and spectroscopic techniques. Evaluation of the mechanism of sulfide containing Cd(II)-thiolate cluster formation in cicMT2 reveals a strong dependence on the sequence of metal and sulfide additions for successful sulfide incorporation. To probe the general ability of metallothioneins to form sulfide containing larger metal-thiolate clusters, analogous experiments were performed with a mammalian metallothionein. The observation that the cadmium binding ability of rabbit liver MT2A was only slightly increased led to the development of a hypothesis in which the long cysteine-free linker regions present in certain plant metallothioneins may contribute to the accommodation of the respective larger cluster assemblies.

  11. Effect of functionalization of boron nitride flakes by main group metal clusters on their optoelectronic properties

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2017-10-01

    The possibility of functionalizing boron nitride flakes (BNFs) with some selected main group metal clusters, viz. OLi4, NLi5, CLi6, BLI7 and Al12Be, has been analyzed with the aid of density functional theory (DFT) based computations. Thermochemical as well as energetic considerations suggest that all the metal clusters interact with the BNF moiety in a favorable fashion. As a result of functionalization, the static (first) hyperpolarizability (β ) values of the metal cluster supported BNF moieties increase quite significantly as compared to that in the case of pristine BNF. Time dependent DFT analysis reveals that the metal clusters can lower the transition energies associated with the dominant electronic transitions quite significantly thereby enabling the metal cluster supported BNF moieties to exhibit significant non-linear optical activity. Moreover, the studied systems demonstrate broad band absorption capability spanning the UV–visible as well as infra-red domains. Energy decomposition analysis reveals that the electrostatic interactions principally stabilize the metal cluster supported BNF moieties.

  12. Mixed protein-templated luminescent metal clusters (Au and Pt) for H2O2 sensing

    NASA Astrophysics Data System (ADS)

    Li, Min; Yang, Da-Peng; Wang, Xiansong; Lu, Jianxin; Cui, Daxiang

    2013-04-01

    A simple and cost-effective method to synthesize the luminescent noble metal clusters (Au and Pt) in chicken egg white aqueous solution at room temperature is reported. The red-emitting Au cluster is used as fluorescent probe for sensitive detection of H2O2.

  13. Infrared Probes of Metal Cluster Structure and Bonding

    DTIC Science & Technology

    2006-03-01

    corresponding niobium and tantalum analogues of these clusters. Preliminary attempts were conducted for the production of other ligand- coated ...interactions. Prospects are evaluated for macroscopic synthesis of cluster materials and synthesis experiments employing ligand- coating strategies have been...experiments that isolate ligand- coated nanoclusters in solution were conducted using a new laser ablation flowtube reactor. Graduate and undergraduate

  14. Metal Sulfide Cluster Complexes and their Biogeochemical Importance in the Environment

    NASA Astrophysics Data System (ADS)

    Luther, George W.; Rickard, David T.

    2005-10-01

    Aqueous clusters of FeS, ZnS and CuS constitute a major fraction of the dissolved metal load in anoxic oceanic, sedimentary, freshwater and deep ocean vent environments. Their ubiquity explains how metals are transported in anoxic environmental systems. Thermodynamic and kinetic considerations show that they have high stability in oxic aqueous environments, and are also a significant fraction of the total metal load in oxic river waters. Molecular modeling indicates that the clusters are very similar to the basic structural elements of the first condensed phase forming from aqueous solutions in the Fe-S, Zn-S and Cu-S systems. The structure of the first condensed phase is determined by the structure of the cluster in solution. This provides an alternative explanation of Ostwald's Rule, where the most soluble, metastable phases form before the stable phases. For example, in the case of FeS, we showed that the first condensed phase is nanoparticulate, metastable mackinawite with a particle size of 2 nm consisting of about 150 FeS subunits, representing the end of a continuum between aqueous FeS clusters and condensed material. These metal sulfide clusters and nanoparticles are significant in biogeochemistry. Metal sulfide clusters reduce sulfide and metal toxicity and help drive ecology. FeS cluster formation drives vent ecology and AgS cluster formation detoxifies Ag in Daphnia magna neonates. We also note a new reaction between FeS and DNA and discuss the potential role of FeS clusters in denaturing DNA.

  15. One-dimensional fast migration of vacancy clusters in metals

    SciTech Connect

    Matsukawa, Yoshitaka; Zinkle, Steven J

    2007-01-01

    The migration of point defects, e.g. crystal lattice vacancies and self-interstitial atoms (SIAs), typically occurs through three-dimensional (3-D) random walk. However, when vacancies and SIAs agglomerate with like defects forming clusters, the migration mode may change. Recently, atomic-scale computer simulations using molecular dynamics (MD) codes have reported that nanometer-sized two-dimensional (2-D) clusters of SIAs exhibit one-dimensional (1-D) fast migration1-7. The 1-D migration mode transports the entire cluster containing several tens of SIAs with a mobility comparable to single SIAs3. This anisotropic migration of SIA clusters can have a significant impact on the evolution of a material fs neutron-irradiation damage microstructure, which dominates the material fs lifetime in nuclear reactor environments8-9. This is also proposed to be a key physical mechanism for the self-organization of nanometer-sized sessile vacancy cluster arrays10-13. Given these findings for SIA clusters, a fundamental question is whether the 1-D migration mode is also possible for 2-D clusters of vacancies. Preceding MD results predicted that 1-D migration of vacancy clusters is possible in body-centered cubic (bcc) iron, but not in face-centered cubic (fcc) copper2. Previous experimental studies have reported 1-D migration of SIA clusters14, but there have been no observations of 1-D vacancy cluster migration. Here we present the first experimental transmission electron microscopy (TEM) dynamic observation demonstrating the 1-D migration of vacancy clusters in fcc gold. It was found that the mobility of the vacancy clusters via the 1-D migration is much higher than single vacancies via 3-D random walk and comparable to single SIAs via 3-D random walk. Hence, the mobility of the glissile clusters is not associated with the character of their constituent point defects. Dynamic conversion of a planar vacancy loop into a 3-D stacking fault tetrahedron geometry was also observed.

  16. Metal etching with reactive gas cluster ion beams using pickup cell

    SciTech Connect

    Toyoda, Noriaki; Yamada, Isao

    2012-11-06

    Mixed gas cluster ion beams were formed using pickup cell for metal etching. O{sub 2} neutral clusters pick up acetic acid and formed mixed cluster beam. By using O{sub 2}-GCIB with acetic acid, enhancement of Cu etching was observed. Because of dense energy deposition by GCIB, etching of Cu proceeds by CuO formation, enhancement of chemical reaction with acetic acid and desorption of etching products. Surface roughening was not observed on poly crystalline Cu because of the small dependence of etching rate on crystal orientation. Halogen free and low-temperature metal etching with GCIB using pickup cell is possible.

  17. Near-infrared photometry of globular clusters towards the Galactic bulge: observations and photometric metallicity indicators

    NASA Astrophysics Data System (ADS)

    Cohen, Roger E.; Moni Bidin, Christian; Mauro, Francesco; Bonatto, Charles; Geisler, Douglas

    2017-01-01

    We present wide-field JHKS photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the Two Micron All-Sky Survey photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude difference between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relatively metal-rich ([M/H] ≳ -1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2 ≲ [M/H] ≲ 0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.

  18. Particle clustering and dielectric enhancement in percolating metal-insulator composites

    NASA Astrophysics Data System (ADS)

    Doyle, William T.

    1995-11-01

    An effective cluster model has been developed [Phys. Rev. B 42, 9319 (1990)] that treats a disordered suspension of monodisperse metal spheres as a mixture of isolated spheres and close-packed spherical clusters of spheres using the Clausius-Mossotti or Maxwell equations. The effective cluster model is adapted to such suspensions with a random intermingled cluster topology using Bruggemann's symmetrical equation. Model susceptibilities for the two cluster topologies are contrasted with one another and compared with experiments. Guillien's permittivity measurements [Ann. Phys. (Paris) Ser. 11 16, 205 (1941)] and Turner's conductivity measurements [Chem. Eng. Sci. 31, 487 (1976)] exemplify nonpercolating island topology suspensions. The permittivity measurements of Grannan, Garland, and Tanner [Phys. Rev. Lett. 46, 375 (1981)] exemplify percolating random topology clusters. The models for both cluster topologies are in excellent agreement with experiment over the entire accessible range of volume loading.

  19. Formation of metal clusters in halloysite clay nanotubes

    DOE PAGES

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; ...

    2017-02-16

    We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3-5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10-12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9more » wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions.« less

  20. Formation of metal clusters in halloysite clay nanotubes

    PubMed Central

    Vinokurov, Vladimir A.; Stavitskaya, Anna V.; Chudakov, Yaroslav A.; Ivanov, Evgenii V.; Shrestha, Lok Kumar; Ariga, Katsuhiko; Darrat, Yusuf A.; Lvov, Yuri M.

    2017-01-01

    Abstract We developed ceramic core-shell materials based on abundant halloysite clay nanotubes with enhanced heavy metal ions loading through Schiff base binding. These clay tubes are formed by rolling alumosilicate sheets and have diameter of c.50 nm, a lumen of 15 nm and length ~1 μm. This allowed for synthesis of metal nanoparticles at the selected position: (1) on the outer surface seeding 3–5 nm metal particles on the tubes; (2) inside the tube’s central lumen resulting in 10–12 nm diameter metal cores shelled with ceramic wall; and (3) smaller metal nanoparticles intercalated in the tube’s wall allowing up to 9 wt% of Ru, and Ag loading. These composite materials have high surface area providing a good support for catalytic nanoparticles, and can also be used for sorption of metal ions from aqueous solutions. PMID:28458738

  1. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    NASA Astrophysics Data System (ADS)

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-01

    The lowest-energy structures of neutral and cationic GenM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  2. Mo-Cu metal cluster formation and binding in an orange protein isolated from Desulfovibrio gigas.

    PubMed

    Carepo, Marta S P; Pauleta, Sofia R; Wedd, Anthony G; Moura, José J G; Moura, Isabel

    2014-06-01

    The orange protein (ORP) isolated from the sulfate-reducing bacterium Desulfovibrio gigas (11.8 kDa) contains a mixed-metal sulfide cluster of the type [S2MoS2CuS2MoS2](3-) noncovalently bound to the polypeptide chain. The D. gigas ORP was heterologously produced in Escherichia coli in the apo form. Different strategies were used to reconstitute the metal cluster into apo-ORP and obtain insights into the metal cluster synthesis: (1) incorporation of a synthesized inorganic analogue of the native metal cluster and (2) the in situ synthesis of the metal cluster on the addition to apo-ORP of copper chloride and tetrathiomolybdate or tetrathiotungstate. This latter procedure was successful, and the visible spectrum of the Mo-Cu reconstituted ORP is identical to the one reported for the native protein with absorption maxima at 340 and 480 nm. The (1)H-(15)N heteronuclear single quantum coherence spectra of the reconstituted ORP obtained by strategy 2, in contrast to strategy 1, exhibited large changes, which required sequential assignment in order to identify, by chemical shift differences, the residues affected by the incorporation of the cluster, which is stabilized inside the protein by both electrostatic and hydrophobic interactions.

  3. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    DOE PAGES

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; ...

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Suchmore » cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.« less

  4. Development of metal cluster-based energetic materials at NSWC-IHD

    NASA Astrophysics Data System (ADS)

    Lightstone, James; Stoltz, Chad; Wilson, Rebecca M.; Horn, Jillian M.; Hooper, Joe; Mayo, Dennis; Eichhorn, Bryan; Bowen, Kit H.; White, Michael G.

    2012-03-01

    Current research efforts at NSWC-IHD are utilizing gas-phase molecular beam studies, theoretical calculations, and condensed-phase production methods to identify novel metal cluster systems in which passivated metal clusters make up the subunit of a molecular metal-based energetic material. The reactivity of NixAly+ clusters with nitromethane was investigated using a gas-phase molecular beam system. Results indicate that nitromethane is highly reactive toward the NixAly+ clusters and suggests it would not make a good passivating ligand for these cluster systems. To date, small amounts of a metal-based compound with a subunit containing four aluminum atoms and four Cp* ligands has been produced and was characterized using DSC and TGA. Results indicate this cluster material is more reactive than micron- and nano-sized aluminum. However lack of stability in air precludes it from being a viable replacement for current aluminum particles. Volumetric heat of combustion of Al50Cp*12 was determined using thermodynamic data obtained from first principles calculations. The Al50 cluster is found to have a heat of combustion near 60% that of pure aluminum.

  5. Chemical bonding and aromaticity in trinuclear transition-metal halide clusters.

    PubMed

    Weck, Philippe F; Sergeeva, Alina P; Kim, Eunja; Boldyrev, Alexander I; Czerwinski, Kenneth R

    2011-02-07

    Trinuclear transition-metal complexes such as Re(3)X(9) (X = Cl, Br, I), with their uniquely featured structure among metal halides, have posed intriguing questions related to multicenter electron delocalization for several decades. Here we report a comprehensive study of the technetium halide clusters [Tc(3)(μ-X)(3)X(6)](0/1-/2-) (X = F, Cl, Br, I), isomorphous with their rhenium congeners, predicted from density functional theory calculations. The chemical bonding and aromaticity in these clusters are analyzed using the recently developed adaptive natural density partitioning method, which indicates that only [Tc(3)X(9)](2-) clusters exhibit aromatic character, stemming from a d-orbital-based π bond delocalized over the three metal centers. We also show that standard methods founded on the nucleus-independent chemical shift concept incorrectly predict the neutral Tc(3)X(9) clusters to be aromatic.

  6. Theoretical research program to study transition metal trimers and embedded clusters

    NASA Technical Reports Server (NTRS)

    Walch, S. P.

    1985-01-01

    Small transition metal clusters at a high level of approximation i.e. including all the valence electrons in the calculation and also including extensive electron correlation were studied. Perhaps the most useful end result of these studies is the qualitative information about the electronic structure of these small metal clusters, including the nature of the bonding. The electronic structure studies of the small clusters are directly applicable to problems in catalysis. From comparison of dimers, trimers and possibly higher clusters, it is possible to extrapolate the information obtained to provide insights into the electronic structure of bulk transition metals and their interaction with other atoms and molecules at both surface and interior locations.

  7. Bonding study in all-metal clusters containing Al4 units.

    PubMed

    Mandado, Marcos; Krishtal, Alisa; Van Alsenoy, Christian; Bultinck, Patrick; Hermida-Ramón, J M

    2007-11-22

    The nature of the bonding of a series of gas-phase all-metal clusters containing the Al4 unit attached to an alkaline, alkaline earth, or transition metal is investigated at the DFT level using Mulliken, quantum theory of atoms in molecules (QTAIM), and Hirshfeld iterative (Hirshfeld-I) atomic partitionings. The characterization of ionic, covalent, and metallic bonds is done by means of charge polarization and multicenter electron delocalization. This Article uses for the first time Hirshfeld-I multicenter indices as well as Hirshfeld-I based atomic energy calculations. The QTAIM charges are in line with the electronegativity scale, whereas Hirshfeld-I calculations display deviations for transition metal clusters. The Mulliken charges fail to represent the charge polarization in alkaline metal clusters. The large ionic character of Li-Al and Na-Al bonds results in weak covalent bonds. On the contrary, scarcely ionic bonds (Be-Al, Cu-Al and Zn-Al) display stronger covalent bonds. These findings are in line with the topology of the electron density. The metallic character of these clusters is reflected in large 3-, 4- and 5-center electron delocalization, which is found for all the molecular fragments using the three atomic definitions. The previously reported magnetic inactivity (based on means of magnetic ring currents) of the pi system in the Al42- cluster contrasts with its large pi electron delocalization. However, it is shown that the different results not necessary contradict each other.

  8. The Photo-Electric Effect in Metallic Clusters

    NASA Astrophysics Data System (ADS)

    Krc, Eugene

    Small clusters of Silver atoms have been observed to yield about 100 times more photo-electrons than crystalline Silver (per unit area of surface) for photons with energy up to 1.5 ev above threshold. I have calculated the yield from Silver and Sodium clusters of up to 55 atoms using a Green's function formalism. A method of successive approximations takes into account the scattering of the electrons by the ion-cores as well as by the surface. The formalism is applied to an independent-electron model with a muffin -tin potential. Each electron feels the incident light wave and the polarization field of all the other electrons computed with the bulk dielectric function. Scattering of the photo-excited electron is included as a final step in the photo-emission process. The cross-sections calculated for Silver clusters are in good agreement with experiment; for Sodium clusters, however, the relevant experimental data are incomplete.

  9. Age and metallicity of star clusters in the Small Magellanic Cloud from integrated spectroscopy

    NASA Astrophysics Data System (ADS)

    Dias, B.; Coelho, P.; Barbuy, B.; Kerber, L.; Idiart, T.

    2010-09-01

    Context. Analysis of ages and metallicities of star clusters in the Magellanic Clouds provide information for studies on the chemical evolution of the Clouds and other dwarf irregular galaxies. Aims: The aim is to derive ages and metallicities from integrated spectra of 14 star clusters in the Small Magellanic Cloud, including a few intermediate/old age star clusters. Methods: Making use of a full-spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models, using two fitting codes available in the literature. Results: We derive the ages and metallicities of 9 intermediate/old age clusters, some of them previously unstudied, and 5 young clusters. Conclusions: We point out the interest of the newly identified as intermediate/old age clusters HW1, NGC 152, Lindsay 3, Lindsay 11, and Lindsay 113. We also confirm the old ages of NGC 361, NGC 419, Kron 3, and of the very well-known oldest SMC cluster, NGC 121. Appendix A is only available in electronic form at http://www.aanda.org

  10. Nucleoside modification with boron clusters and their metal complexes.

    PubMed

    Wojtczak, Blazej A; Olejniczak, Agnieszka B; Lesnikowski, Zbigniew J

    2009-09-01

    General methods for the synthesis of nucleosides modified with borane clusters and metallacarborane complexes are presented. These include: (1) the click chemistry approach based on Huisgen 1,3-dipolar cycloaddition and (2) tethering of the metallacarborane group to the aglycone of a nucleoside via a dioxane ring opening in oxonium metallacarborane derivatives. The proposed methodologies broaden the availability of nucleoside-borane cluster conjugates and open up new areas for their applications.

  11. Nonlinear Color--Metallicity Relations of Globular Clusters. VI. On Calcium II Triplet Based Metallicities of Globular Clusters in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Chung, Chul; Yoon, Suk-Jin; Lee, Sang-Yoon; Lee, Young-Wook

    2016-02-01

    The metallicity distribution function of globular clusters (GCs) in galaxies is a key to understanding galactic formation and evolution. The calcium II triplet (CaT) index has recently become a popular metal abundance indicator thanks to its sensitivity to GC metallicity. Here we revisit and assess the reliability of CaT as a metallicity indicator using our new stellar population synthesis simulations based on empirical high-resolution fluxes. The model shows that the CaT strength of old (>10 Gyr) GCs is proportional to [Fe/H] below -0.5. In the modest metal-rich regime, however, CaT does not increase anymore with [Fe/H] due to the little contribution from coolest red giant stars to the CaT absorption. The nonlinear nature of the color-CaT relation is confirmed by the observations of GCs in nearby early-type galaxies. This indicates that the CaT should be used carefully when deriving metallicities of metal-rich stellar populations. Our results offer an explanation for the observed sharp difference between the color and CaT distributions of GCs in the same galaxies. We take this as an analogy to the view that metallicity-color and metallicity-Lick index nonlinearity of GCs is primarily responsible for their observed “bimodal” distributions of colors and absorption indices.

  12. Dispersed metal cluster catalysts by design. Synthesis, characterization, structure, and performance

    SciTech Connect

    Arslan, Ilke; Dixon, David A.; Gates, Bruce C.; Katz, Alexander

    2015-09-30

    To understand the class of metal cluster catalysts better and to lay a foundation for the prediction of properties leading to improved catalysts, we have synthesized metal catalysts with well-defined structures and varied the cluster structures and compositions systematically—including the ligands bonded to the metals. These ligands include supports and bulky organics that are being tuned to control both the electron transfer to or from the metal and the accessibility of reactants to influence catalytic properties. We have developed novel syntheses to prepare these well-defined catalysts with atomic-scale control the environment by choice and placement of ligands and applied state-of-the art spectroscopic, microscopic, and computational methods to determine their structures, reactivities, and catalytic properties. The ligands range from nearly flat MgO surfaces to enveloping zeolites to bulky calixarenes to provide controlled coverages of the metal clusters, while also enforcing unprecedented degrees of coordinative unsaturation at the metal site—thereby facilitating bonding and catalysis events at exposed metal atoms. With this wide range of ligand properties and our arsenal of characterization tools, we worked to achieve a deep, fundamental understanding of how to synthesize robust supported and ligand-modified metal clusters with controlled catalytic properties, thereby bridging the gap between active site structure and function in unsupported and supported metal catalysts. We used methods of organometallic and inorganic chemistry combined with surface chemistry for the precise synthesis of metal clusters and nanoparticles, characterizing them at various stages of preparation and under various conditions (including catalytic reaction conditions) and determining their structures and reactivities and how their catalytic properties depend on their compositions and structures. Key characterization methods included IR, NMR, and EXAFS spectroscopies to identify

  13. Generation and characterization of alkali metal clusters in Y-FAU zeolites. An ESR and MAS NMR spectroscopic study

    NASA Astrophysics Data System (ADS)

    Hannus, István; Béres, Attila; Nagy, János B.; Halász, János; Kiricsi, Imre

    1997-06-01

    Charged and neutral metal clusters of various compositions and sizes can be prepared by controlling the alkali metal content by the decomposition of alkali azides and the composition of the host zeolite by ion-exchange. ESR signals show that electron transfer from alkali metal atoms to alkali metal cations does occur, but in a direction opposite to that predicted by the gas-phase thermochemistry. Alkali metal clusters proved to be very active basic catalytic centers.

  14. The inhomogeneous reionization of the local intergalactic medium by metal-poor globular clusters

    NASA Astrophysics Data System (ADS)

    Griffen, B. F.; Drinkwater, M. J.; Iliev, Ilian T.; Thomas, P. A.; Mellema, Garrelt

    2013-06-01

    We present detailed radiative transfer simulations of the reionization of the Milky Way by metal-poor globular clusters. We identify potential metal-poor globular cluster candidates within the Aquarius simulation using dark matter halo velocity dispersions. We calculate the local ionization fields via a photon-conserving, three dimensional non-equilibrium chemistry code. The key feature of the model is that globular cluster formation is suppressed if the local gas is ionized. We assume that at these early times, the ionization field is dominated by the flux from metal-poor globular clusters. Our spatial treatment of the ionization field leads to drastically different numbers and spatial distributions when compared to models where globular cluster formation is simply truncated at early redshifts (z ˜ 13). The spatial distributions are more extended and more globular clusters are produced. We find that additional sources of ionization are required at later epochs (z ˜ 10) to ionize the remaining gas and recover radial distributions statistically consistent with that of the Milky Way metal-poor globular clusters. We investigate a range of plausible ionization efficiencies to determine the effect photon-rich and photon-poor models have on present-day globular cluster properties. If globular clusters do indeed form within high-redshift dark matter haloes, they produce enough photons to ionize 98 and 90 per cent local (i.e. 23 h-3 Mpc3 centred on the host galaxy) volume and mass by redshift 10, respectively. In our photon-poorest model, this contribution drops to 60 and 50 per cent. Our model therefore implies that globular clusters are important contributors to the reionization process on local scales at high-redshift until more photon-rich sources dominate the photon budget at later times. The surviving clusters in all models have a narrow average age range (mean = 13.34 Gyr, σ = 0.04 Gyr) consistent with current age estimates of the Milky Way metal-poor globular

  15. Ligand-modified metal clusters for gas separation and purification

    DOEpatents

    Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron; Gates, Bruce C.; Katz, Alexander

    2017-02-21

    Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.

  16. Introduction: advances and opportunities in cluster research. [Neutral (metal) and ionic clusters

    SciTech Connect

    Castleman, A.W. Jr.

    1983-01-01

    Examples of neutral and ionic clusters include these in the upper and lower atmosphere, interstellar grain formation, combustion, radiation physics and chemistry, surface bombardment, fission product transport in reactors, corrosion, etc. This paper is a brief overview of some recent developments in cluster research. (DLC)

  17. Age and metallicity of star clusters in the Small Magellanic Cloud from integrated spectroscopy

    NASA Astrophysics Data System (ADS)

    Dias, Bruno; Coelho, Paula; Kerber, Leandro; Barbuy, Beatriz; Idiart, Thais

    2010-04-01

    Analysis of integrated spectra of star clusters in the Magellanic Clouds can bring important information for studies on the chemical evolution of the Clouds. The aim of the present work is to derive ages and metallicities from integrated spectra of 15 star clusters in the Small Magellanic Cloud (SMC), some of them not studied so far. Making use of a full spectrum fitting technique, we compared the integrated spectra of the sample clusters to three different sets of single stellar population models available in the literature. We derived ages and metallicities for the sample clusters employing the codes STARLIGHT and ULySS. Out of the 15 clusters in our sample, 9 are old/intermediate age clusters and 6 are young clusters. We point out the results for the newly identified as old/intermediate age clusters HW1, NGC 152, Lindsay 3 and 11. We also confirm old ages for NGC 361, NGC 419 and Kron 3, and the oldest well-known SMC cluster NGC 121.

  18. Nanoscale electrodeposition of low-dimensional metal phases and clusters.

    PubMed

    Staikov, Georgi

    2016-08-07

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated.

  19. Nanoscale electrodeposition of low-dimensional metal phases and clusters

    NASA Astrophysics Data System (ADS)

    Staikov, Georgi

    2016-07-01

    The present status of the problem of electrochemical formation of low-dimensional metal phases is reviewed. The progress in this field achieved in the last two decades is discussed on the basis of experimental results obtained in selected electrochemical systems with well defined single crystal substrates. The influence of crystallographic orientation and surface inhomogeneities of foreign substrates on the mechanism of formation and the atomic structure of two-dimensional (2D) metal phases in the underpotential deposition range is considered. The localized electrodeposition of metal nanoclusters on solid state surfaces applying the STM-tip as a nanoelectrode is demonstrated.

  20. Energetics of small clusters of group IB metals (Cu, Ag, and Au) adsorbed on graphene

    NASA Astrophysics Data System (ADS)

    Kaur, Gagandeep; Gupta, Shuchi; Dharamvir, Keya

    2013-06-01

    The 2D structure of graphene maximizes the interaction of adsorbate on the layer. Many experiments have been devised to form stable metallic clusters of different sizes. We study the structure and binding energies of group IB clusters Mn (M=Au, Ag, Cu n=1, 3) adsorbed on graphene using Gupta potential [1] (for M-M interaction) and Lennard-Jones potential [2] (for metal-carbon interaction). The total energy of the system has been obtained by placing each of Mn cluster a certain distance above the graphene sheet at various positions and in various orientations. The minimized energy configurations, for all Mn clusters, lie above the center of a hexagon and parallel to the graphene sheet. Binding energy per atom for Ag and Cu metal clusters are less than those of respective Au indicating the lower stability of Ag/Cu metal-graphene system. Using various energy barriers, we can calculate the energy required to move small cluster from one position of minimum energy to another on graphene.

  1. Formation and properties of metal clusters isolated in helium droplets.

    PubMed

    Tiggesbäumker, Josef; Stienkemeier, Frank

    2007-09-14

    The unique conditions forming atomic and molecular complexes and clusters using superfluid helium nanodroplets have opened up an innovative route for studying the physical and chemical properties of matter on the nanoscale. This review summarizes the specific characteristics of the formation of atomic clusters partly generated far from equilibrium in the helium environment. Special emphasis is on the optical response, electronic properties as well as dynamical processes which are mostly affected by the surrounding quantum matrix. Experiments include the optical induced response of isolated cluster systems in helium under quite different excitation conditions ranging from the linear regime up to the violent interaction with a strong laser field leading to Coulomb explosion and the generation of highly charged atomic fragments. The variety of results on the outstanding properties in the quantum size regime highlights the peculiar capabilities of helium nanodroplet isolation spectroscopy.

  2. First examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands

    NASA Astrophysics Data System (ADS)

    Wang, La-Mei; Fan, Yong; Wang, Yan; Xiao, Li-Na; Hu, Yang-Yang; Peng, Yu; Wang, Tie-Gang; Gao, Zhong-Min; Zheng, Da-Fang; Cui, Xiao-Bing; Xu, Ji-Qing

    2012-07-01

    Two new organic-inorganic compounds based on polyoxometalates, metal halide clusters and organic ligands: [BW12O40]2[Cu2(Phen)4Cl](H24, 4'-bpy)4·H3O·5H2O (1) and [HPW12O40][Cd2(Phen)4Cl2](4, 4'-bpy) (2) (Phen=1, 10-phenanthroline, bpy=bipyridine), have been prepared and characterized by IR, UV-vis, XPS, XRD and single crystal X-ray diffraction analyses. Crystal structure analyses reveal that compound 1 is constructed from [BW12O40]5-, metal halide clusters [Cu2(Phen)4Cl]+and 4, 4'-bpy ligands, while compound 2 is constructed from [PW12O40]3-, metal halide cluster [Cd2(Phen)4Cl2]2+ and 4, 4'-bpy ligands. Compound 1 and compound 2 are not common hybrids based on polyoxometalates and metal halide clusters, they also contain dissociated organic ligands, therefore, compound 1 and 2 are the first examples of hybrids based on polyoxometalates, metal halide clusters and organic ligands.

  3. Removing Cool Cores and Central Metallicity Peaks in Galaxy Clusters with Powerful Active Galactic Nucleus Outbursts

    NASA Astrophysics Data System (ADS)

    Guo, Fulai; Mathews, William G.

    2010-07-01

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy ~1061-1062 erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  4. REMOVING COOL CORES AND CENTRAL METALLICITY PEAKS IN GALAXY CLUSTERS WITH POWERFUL ACTIVE GALACTIC NUCLEUS OUTBURSTS

    SciTech Connect

    Guo Fulai; Mathews, William G.

    2010-07-10

    Recent X-ray observations of galaxy clusters suggest that cluster populations are bimodally distributed according to central gas entropy and are separated into two distinct classes: cool core (CC) and non-cool core (NCC) clusters. While it is widely accepted that active galactic nucleus (AGN) feedback plays a key role in offsetting radiative losses and maintaining many clusters in the CC state, the origin of NCC clusters is much less clear. At the same time, a handful of extremely powerful AGN outbursts have recently been detected in clusters, with a total energy {approx}10{sup 61}-10{sup 62} erg. Using two-dimensional hydrodynamic simulations, we show that if a large fraction of this energy is deposited near the centers of CC clusters, which is likely common due to dense cores, these AGN outbursts can completely remove CCs, transforming them to NCC clusters. Our model also has interesting implications for cluster abundance profiles, which usually show a central peak in CC systems. Our calculations indicate that during the CC to NCC transformation, AGN outbursts efficiently mix metals in cluster central regions and may even remove central abundance peaks if they are not broad enough. For CC clusters with broad central abundance peaks, AGN outbursts decrease peak abundances, but cannot effectively destroy the peaks. Our model may simultaneously explain the contradictory (possibly bimodal) results of abundance profiles in NCC clusters, some of which are nearly flat, while others have strong central peaks similar to those in CC clusters. A statistical analysis of the sizes of central abundance peaks and their redshift evolution may shed interesting insights on the origin of both types of NCC clusters and the evolution history of thermodynamics and AGN activity in clusters.

  5. Growth modes of thin films of ligand-free metal clusters

    SciTech Connect

    Dollinger, A.; Strobel, C. H.; Bleuel, H.; Marsteller, A.; Gantefoer, G.; Fairbrother, D. H.; Tang, Xin; Bowen, K. H.; Kim, Young Dok

    2015-05-21

    Size-selected Mo{sub n}{sup −}, W{sub n}{sup −}, and Fe{sub n}{sup −} cluster anions are deposited on a weakly interacting substrate (highly oriented pyrolytic graphite) and studied ex-situ using atomic force microscopy. Depending on size, three growth modes can be distinguished. Very small clusters consisting of less than 10–30 atoms behave similar to atoms and coalesce into 3-dimensional bulk-like islands. Medium sized clusters consisting of hundreds of atoms do not coalesce and follow a Stanski-Krastanov growth pattern. At low coverage, an almost perfect monolayer is formed. This is a new finding different from all previous studies on deposited metal clusters. For clusters with several thousands of atoms, the growth pattern again changes. At low coverage, the substrate is dotted with individual clusters, while at high coverage, the surface becomes extremely rough.

  6. Electrochemical Synthesis and Catalytic Properties of Encapsulated Metal Clusters within Zeolitic Imidazolate Frameworks.

    PubMed

    Wang, Pengyuan; Liu, Jia; Liu, Chuanfang; Zheng, Bin; Zou, Xiaoqin; Jia, Mingjun; Zhu, Guangshan

    2016-11-07

    It is very interesting and also a big challenge to encapsulate metal clusters within microporous solids to expand their application diversity. For this target, herein, we present an electrochemical synthesis strategy for the encapsulation of noble metals (Au, Pd, Pt) within ZIF-8 cavities. In this method, metal precursors of AuCl4(2-) , PtCl6(2-) , and PdCl4(2-) are introduced into ZIF-8 crystals during the concurrent crystallization of ZIF-8 at the anode. As a consequence, very small metal clusters with sizes around 1.2 nm are obtained within ZIF-8 crystals after hydrogen reduction; these clusters exhibit high thermal stability, as evident from the good maintenance of their original sizes after a high-temperature test. The catalytic properties of the encapsulated metal clusters within ZIF-8 are evaluated for CO oxidations. Because of the small pore window of ZIF-8 (0.34 nm) and the confinement effect of small pores, about 80 % of the metal clusters (fractions of 0.74, 0.77, and 0.75 for Au, Pt, and Pd in ZIF-8, respectively) retain their catalytic activity after exposure to the organosulfur poison thiophene (0.46 nm), which is in contrast to their counterparts (fractions of 0.22, 0.25, and 0.20 for Au, Pt, and Pd on the SiO2 support). The excellent performances of metal clusters encapsulated within ZIF-8 crystals give new opportunities for catalytic reactions.

  7. Structure and Dynamics in Metal-Containing Clusters

    DTIC Science & Technology

    2010-03-11

    increases but the basic nature of the vibration remains constant. A surprising development followed from this new spectroscopic study of titanium ...establishes that titanium -carbide nanocrystals are seeds present in the early phases of the formation of stardust. Titanium -carbide crystallites are actually...multi-metal sandwiches (M3-coronene2). In some species (e.g., iron with C6o or niobium with coronene), the metal inserts into the organic ring system

  8. Metal abundances in the cool cores of galaxy clusters

    NASA Astrophysics Data System (ADS)

    de Grandi, S.; Molendi, S.

    2009-12-01

    We use XMM-Newton data to carry out a detailed study of the Si, Fe and Ni abundances in the cool cores of a representative sample of 26 local clusters. We performed a careful evaluation of the systematic uncertainties related to the instruments, the plasma codes and the spectral modeling, finding that the major source of uncertainty is the plasma codes. Our Si, Fe, Ni, Si/Fe and Ni/Fe distributions feature only moderate spreads (from 20% to 30%) around their mean values strongly suggesting similar enrichment processes at work in all our cluster cores. Our sample-averaged Si/Fe ratio is comparable to those measured in samples of groups and high luminosity ellipticals, implying that the enrichment process in ellipticals, dominant galaxies in groups and BCGs in clusters is quite similar. Although our Si/Fe and Ni/Fe abundance ratios are fairly well constrained, the large uncertainties in the supernova yields prevent us from making a firm assessment of the relative contribution of type Ia and core-collapsed supernovae to the enrichment process. All that can be said with some certainty is that both contribute to the enrichment of cluster cores. Tables and Appendix are only available in electronic form at http://www.aanda.org

  9. Spherical Clusters of Simple Metals: Madelung Energies and Structure.

    DTIC Science & Technology

    1986-06-01

    crystalline structures remain lower than those of the optimal structures even at cluster sizes of more than 90 atoms. Also the calculations of the...differ from crystalline structures up to clus- ter sizes of hundreds of atoms. Acknowledgements - The author would like to thank N.W. Ashcroft, J.W

  10. Multi-orbital cluster perturbation theory for transition metal oxides.

    PubMed

    Manghi, F

    2014-01-08

    We present an extension of cluster perturbation theory to include many-body correlations associated with local e-e repulsion in real materials. We show that this approach can describe the physics of complex correlated materials where different atomic species and different orbitals coexist. The prototypical case of MnO is considered.

  11. Radial metal abundance profiles in the intra-cluster medium of cool-core galaxy clusters, groups, and ellipticals

    NASA Astrophysics Data System (ADS)

    Mernier, F.; de Plaa, J.; Kaastra, J. S.; Zhang, Y.-Y.; Akamatsu, H.; Gu, L.; Kosec, P.; Mao, J.; Pinto, C.; Reiprich, T. H.; Sanders, J. S.; Simionescu, A.; Werner, N.

    2017-07-01

    The hot intra-cluster medium (ICM) permeating galaxy clusters and groups is not pristine, as it has been continuously enriched by metals synthesised in Type Ia (SNIa) and core-collapse (SNcc) supernovae since the major epoch of star formation (z ≃ 2-3). The cluster/group enrichment history and mechanisms responsible for releasing and mixing the metals can be probed via the radial distribution of SNIa and SNcc products within the ICM. In this paper, we use deep XMM-Newton/EPIC observations from a sample of 44 nearby cool-core galaxy clusters, groups, and ellipticals (CHEERS) to constrain the average radial O, Mg, Si, S, Ar, Ca, Fe, and Ni abundance profiles. The radial distributions of all these elements, averaged over a large sample for the first time, represent the best constrained profiles available currently. Specific attention is devoted to a proper modelling of the EPIC spectral components, and to other systematic uncertainties that may affect our results. We find an overall decrease of the Fe abundance with radius out to 0.9 r500 and 0.6 r500 for clusters and groups, respectively, in good agreement with predictions from the most recent hydrodynamical simulations. The average radial profiles of all the other elements (X) are also centrally peaked and, when rescaled to their average central X/Fe ratios, follow well the Fe profile out to at least 0.5 r500. As predicted by recent simulations, we find that the relative contribution of SNIa (SNcc) to the total ICM enrichment is consistent with being uniform at all radii, both for clusters and groups using two sets of SNIa and SNcc yield models that reproduce the X/Fe abundance pattern in the core well. In addition to implying that the central metal peak is balanced between SNIa and SNcc, our results suggest that the enriching SNIa and SNcc products must share the same origin and that the delay between the bulk of the SNIa and SNcc explosions must be shorter than the timescale necessary to diffuse out the metals

  12. An aligned stream of low-metallicity clusters in the halo of the Milky Way.

    PubMed

    Yoon, Suk-Jin; Lee, Young-Wook

    2002-07-26

    One of the long-standing problems in modern astronomy is the curious division of Galactic globular clusters, the "Oosterhoff dichotomy," according to the properties of their RR Lyrae stars. Here, we find that most of the lowest metallicity ([Fe/H] < -2.0) clusters, which are essential to an understanding of this phenomenon, display a planar alignment in the outer halo. This alignment, combined with evidence from kinematics and stellar population, indicates a captured origin from a satellite galaxy. We show that, together with the horizontal-branch evolutionary effect, the factor producing the dichotomy could be a small time gap between the cluster-formation epochs in the Milky Way and the satellite. The results oppose the traditional view that the metal-poorest clusters represent the indigenous and oldest population of the Galaxy.

  13. FT-ICR Studies of the Structures and Reactivities of Metal-Carbon Clusters

    NASA Astrophysics Data System (ADS)

    Freiser, Ben S.

    1997-03-01

    A new class of transition metal-carbon clusters has become the focus of intense investigations with the discovery of M_8C_12 (M = Ti, V, Zr, Hf) by Castleman and coworkers. In addition, Duncan and coworkers have suggested that selected clusters of approximately 1:1 metal-to-carbon ratio are cubic in nature. In this talk we report on the ion-molecule reactions of several of these clusters with water, methanol, ammonia, acetonitrile, benzene and the methyl halides and try to relate the observed chemistry to proposed structures. The clusters are generated in a Smalley compact supersonic source and monitored under the low pressure conditions of an FT-ICR mass spectrometer.

  14. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    SciTech Connect

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Lee, Young-Wook; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yongbeom; Rey, Soo-Chang

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

  15. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites.

    PubMed

    Goel, Sarika; Wu, Zhijie; Zones, Stacey I; Iglesia, Enrique

    2012-10-24

    The synthesis protocols for encapsulation of metal clusters reported here expand the diversity in catalytic chemistries made possible by the ability of microporous solids to select reactants, transition states, and products on the basis of their molecular size. We report a synthesis strategy for the encapsulation of noble metals and their oxides within SOD (Sodalite, 0.28 nm × 0.28 nm), GIS (Gismondine, 0.45 nm × 0.31 nm), and ANA (Analcime, 0.42 nm × 0.16 nm) zeolites. Encapsulation was achieved via direct hydrothermal synthesis for SOD and GIS using metal precursors stabilized by ammonia or organic amine ligands, which prevent their decomposition or precipitation as colloidal hydroxides at the conditions of hydrothermal synthesis (<380 K) and favor interactions between metal precursors and incipient aluminosilicate nuclei during self-assembly of microporous frameworks. The synthesis of ANA requires higher crystallization temperatures (~415 K) and high pH (>12), thereby causing precipitation of even ligand-stabilized metal precursors as hydroxides. As a result, encapsulation was achieved by the recrystallization of metal clusters containing GIS into ANA, which retained these metal clusters within voids throughout the GIS-ANA transformation.

  16. CO adsorption on transition metal clusters: Trends from density functional theory

    NASA Astrophysics Data System (ADS)

    Zeinalipour-Yazdi, Constantinos D.; Cooksy, Andrew L.; Efstathiou, Angelos M.

    2008-05-01

    This work reports for the first time the trends for carbon monoxide (CO) chemisorption on transition metal clusters present in supported metal catalysts. In particular, the energetic, structural and infrared adsorption characteristics of linearly (atop) CO adsorbed on transition metal nano-clusters of less than 10 Å in size were explored. Spin-unrestricted density functional theory (DFT) calculations were employed to explore the trends of CO adsorption energy (AM-CO) and C-O vibrational frequency (νCO) for clusters composed of Ni, Cu, Ru, Rh, Pd, Ag, Ir, Pt and Au. The effects of the transition metal electronic structure onto the adsorption energy of CO and the vibrational stretching frequency of C-O, and how these chemical parameters can be correlated to the catalytic activity of transition supported metal catalysts that involve the adsorption, surface diffusion, and C-O bond dissociation elementary steps in heterogeneous catalytic surface reactions, are discussed. Our findings show that an increase of the electronic d-shell occupancy and the principal quantum number (n) in transition metals causes an increase in the vibrational stretching frequency of the C-O bond. This trend is inconsistent with the classical Blyholder model for the metal-carbonyl bond.

  17. Low-metallicity Young Clusters in the Outer Galaxy. II. Sh 2-208

    NASA Astrophysics Data System (ADS)

    Yasui, Chikako; Kobayashi, Naoto; Saito, Masao; Izumi, Natsuko

    2016-05-01

    We obtained deep near-infrared images of Sh 2-208, one of the lowest-metallicity H ii regions in the Galaxy, [O/H] = -0.8 dex. We detected a young cluster in the center of the H ii region with a limiting magnitude of K = 18.0 mag (10σ), which corresponds to a mass detection limit of ˜0.2 M⊙. This enables the comparison of star-forming properties under low metallicity with those of the solar neighborhood. We identified 89 cluster members. From the fitting of the K-band luminosity function (KLF), the age and distance of the cluster are estimated to be ˜0.5 Myr and ˜4 kpc, respectively. The estimated young age is consistent with the detection of strong CO emission in the cluster region and the estimated large extinction of cluster members (AV ˜ 4-25 mag). The observed KLF suggests that the underlying initial mass function (IMF) of the low-metallicity cluster is not significantly different from canonical IMFs in the solar neighborhood in terms of both high-mass slope and IMF peak (characteristic mass). Despite the very young age, the disk fraction of the cluster is estimated at only 27% ± 6%, which is significantly lower than those in the solar metallicity. Those results are similar to Sh 2-207, which is another star-forming region close to Sh 2-208 with a separation of 12 pc, suggesting that their star-forming activities in low-metallicity environments are essentially identical to those in the solar neighborhood, except for the disk dispersal timescale. From large-scale mid-infrared images, we suggest that sequential star formation is taking place in Sh 2-207, Sh 2-208, and the surrounding region, triggered by an expanding bubble with a ˜30 pc radius.

  18. Size and Charge Distributions of Stable Clusters Formed in Ion Sputtering of Metals

    NASA Astrophysics Data System (ADS)

    Matveev, V. I.; Kapustin, S. N.

    2016-10-01

    A theory of ion sputtering of metals in the form of neutral and charged clusters with their subsequent fragmentation into the stable state is developed. The theory is based on simple physical assumptions and is in good agreement with experiment. Results are presented in the form of formulas convenient for practical application. As an example, calculations of the total yield of stable neutral and charged clusters of silver, indium, and niobium are carried out.

  19. FT-ICR studies of the structures and reactivities of metal-carbon clusters

    SciTech Connect

    Byun, Y.G.; Yeh, C.S.; Afzaal, S.

    1995-12-31

    Castleman and co-workers were the first to report the growth of the unusual met-car clusters. A new class of transition metal-carbon clusters with the stoichiometry M{sub 8}C{sub 12} (M=Ti, V, Zr, Hf, Cr, Fe, Mo, and Nb), Nb{sub 4}C{sub 4} and M{sub 14}C{sub 13} (M=Ti, V) has become a focus of intense research area.

  20. BVRI CCD photometry of the metal-poor globular cluster M68 (NGC 4590)

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1990-06-01

    BVRI photometry of the low metallicity globular cluster M68 (NGC 4590) was obtained with a CCD camera and the 2.2-m ESO telescope. The resulting BV color-magnitude diagrams are compared with the observations of McClure et al. (1987). The observations are also compared with theoretical isochrones, yielding a cluster age of 13 Gyr with a likely external uncertainty of 2 or 3 Gyr. 25 refs.

  1. METAL DEFICIENCY IN CLUSTER STAR-FORMING GALAXIES AT Z = 2

    SciTech Connect

    Valentino, F.; Daddi, E.; Strazzullo, V.; Gobat, R.; Bournaud, F.; Juneau, S.; Zanella, A.; Renzini, A.; Arimoto, N.

    2015-03-10

    We investigate the environmental effect on the metal enrichment of star-forming galaxies (SFGs) in the farthest spectroscopically confirmed and X-ray-detected cluster, CL J1449+0856 at z = 1.99. We combined Hubble Space Telescope/WFC3 G141 slitless spectroscopic data, our thirteen-band photometry, and a recent Subaru/Multi-object InfraRed Camera and Spectrograph (MOIRCS) near-infrared spectroscopic follow-up to constrain the physical properties of SFGs in CL J1449+0856 and in a mass-matched field sample. After a conservative removal of active galactic nuclei, stacking individual MOIRCS spectra of 6 (31) sources in the cluster (field) in the mass range 10 ≤ log(M/M{sub ⊙}) ≤ 11, we find a ∼4σ lower [N ii]/Hα ratio in the cluster than in the field. Stacking a subsample of 16 field galaxies with Hβ and [O iii] in the observed range, we measure an [O iii]/Hβ ratio fully compatible with the cluster value. Converting these ratios into metallicities, we find that the cluster SFGs are up to 0.25 dex poorer in metals than their field counterparts, depending on the adopted calibration. The low metallicity in cluster sources is confirmed using alternative indicators. Furthermore, we observe a significantly higher Hα luminosity and equivalent width in the average cluster spectrum than in the field. This is likely due to the enhanced specific star formation rate; even if lower dust reddening and/or an uncertain environmental dependence on the continuum-to-nebular emission differential reddening may play a role. Our findings might be explained by the accretion of pristine gas around galaxies at z = 2 and from cluster-scale reservoirs, possibly connected with a phase of rapid halo mass assembly at z > 2 and of a high galaxy merging rate.

  2. Method of preparing size-selected metal clusters

    DOEpatents

    Elam, Jeffrey W.; Pellin, Michael J.; Stair, Peter C.

    2010-05-11

    The invention provides a method for depositing catalytic clusters on a surface, the method comprising confining the surface to a controlled atmosphere; contacting the surface with catalyst containing vapor for a first period of time; removing the vapor from the controlled atmosphere; and contacting the surface with a reducing agent for a second period of time so as to produce catalyst-containing nucleation sites.

  3. Formation of fe cluster superlattice in a metal-organic quantum-box network.

    PubMed

    Pivetta, Marina; Pacchioni, Giulia E; Schlickum, Uta; Barth, Johannes V; Brune, Harald

    2013-02-22

    We report on the self-assembly of Fe adatoms on a Cu(111) surface that is patterned by a metal-organic honeycomb network, formed by coordination of dicarbonitrile pentaphenyl molecules with Cu adatoms. Fe atoms landing on the metal surface are mobile and steered by the quantum confinement of the surface state electrons towards the center of the network hexagonal cavities. In cavities hosting more than one Fe, preferential interatomic distances are observed. The adatoms in each hexagon aggregate into a single cluster upon gentle annealing. These clusters are again centered in the cavities and their size is discerned by their distinct apparent heights.

  4. Controlled insulator-to-metal transformation in printable polymer composites with nanometal clusters

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Sankaran; Chia, Perq-Jon; Yeo, Yee-Chia; Chua, Lay-Lay; Ho, Peter K.-H.

    2007-02-01

    Although organic semiconductors have received the most attention, the development of compatible passive elements, such as interconnects and electrodes, is also central to plastic electronics. For this, ligand-protected metal-cluster films have been shown to anneal at low temperatures below 250∘C to highly conductive metal films, but they suffer from cracking and inadequate substrate adhesion. Here, we report printable metal-cluster-polymer nanocomposites that anneal to a controlled-percolation nanostructure without complete sintering of the metal clusters. This overcomes the previous challenges while still retaining the desired low transformation temperatures. Highly water- and alcohol-soluble gold clusters (75mgml-1) were synthesized and homogeneously dispersed into poly(3,4-ethylenedioxythiophene) to give a material with annealed d.c. conductivity tuneable between 10-4 and 105Scm-1. These composites can inject holes efficiently into all-printed polymer organic transistors. The insulator-metal transformation can also be electrically induced at 1MVcm-1, suggesting possible memory applications.

  5. The N-heterocyclic carbene chemistry of transition-metal carbonyl clusters.

    PubMed

    Cabeza, Javier A; García-Álvarez, Pablo

    2011-11-01

    In the last decade, chemists have dedicated many efforts to investigate the coordination chemistry of N-heterocyclic carbenes (NHCs). Although most of that research activity has been devoted to mononuclear complexes, transition-metal carbonyl clusters have not escaped from these investigations. This critical review, which is focussed on the reactivity of NHCs (or their precursors) with transition-metal carbonyl clusters (mostly are of ruthenium and osmium) and on the transformations underwent by the NHC-containing species initially formed in those reactions, shows that the polynuclear character of these metallic compounds or, more precisely, the close proximity of one or more metal atoms to that which is or can be attached to the NHC ligand, is responsible for reactivity patterns that have no parallel in the NHC chemistry of mononuclear complexes (74 references).

  6. Trinuclear Metal Chalcogenide Clusters as Precursors for Superatomic Solids and Cluster Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Shott, Jessica Lauren

    Inorganic molecular clusters Ni3(mu3-I) 2(mu2-dppm)3 (1), Ni3(mu 3-Te)2(mu2-dppm)3 (2), Ni3(mu3-Se)2(mu2-dppm) 3 (3), Ni3(mu3-S)2(mu 2-dppm)3 (4), Co4(mu3-S) 4(PPri3)4 (5), and Mo3(mu3-S)2(mu2-S)3(PMe 3)6 (6) have been used as building block precursors in the formation of binary superatomic solids with fullerenes (1-6•C 60). These solids are crystallized from solution and charge transfer from the electron-rich molecular cluster precursors to fullerene was confirmed using infrared (IR) spectroscopy. Structural data for these superatomic solids was obtained using single-crystal X-ray diffraction (XRD) experiments and suggests that their assembly is directed by noncovalent interactions. Close-contacts, reminiscent of halogen bonds, between cluster capping ligands and fulleride anions are observed in the solid state. Superconducting quantum interference device (SQUID) magnetometry and two-probe conductivity measurements indicate that compounds 1•C60 and 2•C 60 are paramagnetic and one hundred times more conductive than the constituent cluster precursors. Additionally, derivatives of molecular clusters 5 and 6 have been synthesized and investigated for use as superatomic secondary building units for 2D and 3D cluster organic frameworks. Characterization of these novel building blocks was accomplished using NMR spectroscopy as well as matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and XRD analysis.

  7. A study of rotating globular clusters. The case of the old, metal-poor globular cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Bianchini, P.; Koch, A.; Frank, M. J.; Martin, N. F.; van de Ven, G.; Puzia, T. H.; McDonald, I.; Johnson, C. I.; Zijlstra, A. A.

    2014-07-01

    Context. NGC 4372 is a poorly studied old, very metal-poor globular cluster (GC) located in the inner Milky Way halo. Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. We build a velocity dispersion profile and a systemic rotation curve using this kinematic data set. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a Markov chain Monte Carlo fitting algorithm. From this, we derive the cluster's half-light radius and ellipticity as rh = 3.44' ± 0.04' and ɛ = 0.08 ± 0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km s-1) for its metallicity. This puts it in line, however, with two other exceptional, very metal-poor GCs: M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC Mdyn = 2.0 ± 0.5 × 105M⊙ based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M⊙/L⊙, representative of an old, purely stellar population. Based on

  8. Energies, charges, and sizes of clusters under ion sputtering of a metal

    SciTech Connect

    Matveev, V. I. Kochkin, S. A.

    2010-04-15

    A theory of ion sputtering of a metal in the form of neutral and singly charged clusters with a number of atoms of N {>=} 5 has been developed. This theory is based on simple physical assumptions and agrees well with experiment. The results are presented in the form of expressions convenient for practical use. The energy spectra of clusters, charge distributions, ionization coefficients, and total yields of neutral and singly charged clusters at different target temperatures are calculated in terms of the proposed theory as an example.

  9. Obscured clusters. II. GLIMPSE-C02 - A new metal rich globular cluster in the Milky Way

    NASA Astrophysics Data System (ADS)

    Kurtev, R.; Ivanov, V. D.; Borissova, J.; Ortolani, S.

    2008-10-01

    Context: The estimated total number of Milky Way globulars is 160 ± 20. The question of whether there are any more undiscovered globular clusters in the Milky Way is particularly relevant with advances in near and mid-IR instrumentation. Aims: This investigation is a part of a long-term project to search the inner Milky Way for hidden star clusters and to study them in detail. GLIMPSE-C02 (G02) is one of these objects, situated near the Galactic plane (l = 14.129 deg, b = -0.644 deg). Methods: Our analysis is based on SOFI/NTT JHKS imaging and low resolution (R˜ 1400) spectroscopy of three bright cluster red giants in the K atmospheric window. We derived the metal abundance by analysis of these spectra and from the slope of the RGB. Results: The cluster is deeply embedded in dust and undergoes a mean reddening of AV ~ 24.8 ± 3 mag. The distance to the object is D = 4.6 ± 0.7 kpc. The metal abundance of G02 is [Fe/H]H96 = -0.33± 0.14 and [Fe/H]CG = -0.16 ± 0.12 using different scales. The best fit to the radial surface brightness profile with a single-mass King's model yields a core radius rc = 0.70 arcmin (0.9 pc), tidal radius rt = 15 arcmin (20 pc), and central concentration c = 1.33. Conclusions: We demonstrate that G02 is new Milky Way globular cluster, among the most metal rich globular clusters in the Galaxy. The object is physically located at the inner edge of the thin disk and the transition region with the bulge, and also falls in the zone of the “missing” globulars toward the central region of the Milky Way. Based on observations collected with the ESO New Technology Telescope, observing program 77.D-0089. Table with photometry is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/489/583

  10. Temporal stability of magic-number metal clusters: beyond the shell closing model

    NASA Astrophysics Data System (ADS)

    Desireddy, Anil; Kumar, Santosh; Guo, Jingshu; Bolan, Michael D.; Griffith, Wendell P.; Bigioni, Terry P.

    2013-02-01

    The anomalous stability of magic-number metal clusters has been associated with closed geometric and electronic shells and the opening of HOMO-LUMO gaps. Despite this enhanced stability, magic-number clusters are known to decay and react in the condensed phase to form other products. Improving our understanding of their decay mechanisms and developing strategies to control or eliminate cluster instability is a priority, to develop a more complete theory of their stability, to avoid studying mixtures of clusters produced by the decay of purified materials, and to enable technology development. Silver clusters are sufficiently reactive to facilitate the study of the ambient temporal stability of magic-number metal clusters and to begin to understand their decay mechanisms. Here, the solution phase stability of a series of silver:glutathione (Ag:SG) clusters was studied as a function of size, pH and chemical environment. Cluster stability was found to be a non-monotonic function of size. Electrophoretic separations showed that the dominant mechanism involved the redistribution of mass toward smaller sizes, where the products were almost exclusively previously known cluster sizes. Optical absorption spectra showed that the smaller clusters evolved toward the two most stable cluster sizes. The net surface charge was found to play an important role in cluster stabilization although charge screening had no effect on stability, contrary to DLVO theory. The decay mechanism was found to involve the loss of Ag+ ions and silver glutathionates. Clusters could be stabilized by the addition of Ag+ ions and destabilized by either the addition of glutathione or the removal of Ag+ ions. Clusters were also found to be most stable in near neutral pH, where they had a net negative surface charge. These results provide new mechanistic insights into the control of post-synthesis stability and chemical decay of magic-number metal clusters, which could be used to develop design principles

  11. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    SciTech Connect

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; Mamontov, Eugene; Bonnesen, Peter V.; Hong, Kunlun; Ramirez-Cuesta, Anibal J.; Yin, Panchao

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton of the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.

  12. S-P coupling induced unusual open-shell metal clusters.

    PubMed

    Cheng, Shi-Bo; Berkdemir, Cuneyt; Melko, Joshua J; Castleman, A W

    2014-04-02

    Metal clusters featuring closed supershells or aromatic character usually exhibit remarkably enhanced stability in their cluster series. However, not all stable clusters are subject to these fundamental constraints. Here, by employing photoelectron imaging spectroscopy and ab initio calculations, we present experimental and theoretical evidence on the existence of unexpectedly stable open-shell clusters, which are more stable than their closed-shell and aromatic counterparts. The stabilization of these open-shell Al-Mg clusters is proposed to originate from the S-P molecular orbital coupling, leading to highly stable species with increased HOMO-LUMO gaps, akin to s-p hybridization in an organic carbon atom that is beneficial to form stable species. Introduction of the coupling effect highlighted here not only shows the limitations of the conventional closed-shell model and aromaticity but also provides the possibility to design valuable building blocks.

  13. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    SciTech Connect

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; Mamontov, Eugene; Bonnesen, Peter V.; Hong, Kunlun; Ramirez-Cuesta, Anibal J.; Yin, Panchao

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton of the internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.

  14. DFT study of adsorption of CO2 on palladium cluster doped by transition metal

    NASA Astrophysics Data System (ADS)

    Saputro, A. G.; Agusta, M. K.; Wungu, T. D. K.; Suprijadi; Rusydi, F.; Dipojono, H. K.

    2016-08-01

    We report on a theoretical study of CO2 adsorption on Pd6-M (M: Ni, Cu, Pt, Rh) cluster using first-principles density functional theory (DFT) calculations. We find that CO2 molecule is adsorbed with a bidendate configuration on Pd7 and on most of Pd6M clusters. The bidendate adsorption configuration is formed due to the filling of the unoccupied n* orbital of CO2 molecule upon its interaction with d-orbitals of the cluster. We find that transition metal doping could modify the adsorption energy, adsorption site and adsorption configuration of CO2 molecule on Pd7 cluster. We also predict that the usage of Pd6M clusters as CO2 hydrogenation catalysts might facilitate the formations of HCOO/COOH.

  15. Effect of electron impact ionization in laser-metal-cluster interactions

    NASA Astrophysics Data System (ADS)

    Liang, Zhenfeng; Zhang, Bo; Liu, Hongjie; Li, Xibo; Luo, Jiangshan; Zhou, Weimin; Cao, Leifeng; Yi, Yougen; Gu, Yuqiu

    2017-05-01

    The effects of electron impact ionization (EII) in laser-metal-cluster interactions are investigated with two-dimensional particle-in-cell simulations. For large Cu clusters (R = 10 nm) heated by moderate laser pulses (peak intensities I M = 8.8 × 1015 W cm-2), the effects of EII depend on the atom/ion density of neutral cluster or cluster plasma. In high density neutral cluster (HDNC), EII is the dominant ionization mechanism and EII efficiency reaches 55%. However, in the case of low density cluster plasma (LDCP), EII plays a minor role that only increases the mean ion charges by 5%. Moreover, when EII is considered, the energy of ions with the same charges is reduced by 60% in the HDNC case but not in the LDCP case. This is due to the fact that ions in HDNC mainly gain energy through hydrodynamic expansion while ions in LDCP obtain energy through Coulomb explosion. More importantly, it is found that EII efficiency increases when the density of cluster plasma increases and is most pronounced in the neutral cluster. The density dependence of the EII efficiency provides a control mechanism for cluster ionization products with pump-probe technology.

  16. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1982-01-01

    Metal atom clusters are studied based on the application of ab initio quantum mechanical approaches. Because these large 'molecular' systems pose special practical computational problems in the application of the quantum mechanical methods, there is a special need to find simplifying techniques that do not compromise the reliability of the calculations. Research is therefore directed towards various aspects of the implementation of the effective core potential technique for the removal of the metal atom core electrons from the calculations.

  17. Phosphorus vacancy cluster model for phosphorus diffusion gettering of metals in Si

    SciTech Connect

    Chen, Renyu; Trzynadlowski, Bart; Dunham, Scott T.

    2014-02-07

    In this work, we develop models for the gettering of metals in silicon by high phosphorus concentration. We first performed ab initio calculations to determine favorable configurations of complexes involving phosphorus and transition metals (Fe, Cu, Cr, Ni, Ti, Mo, and W). Our ab initio calculations found that the P{sub 4}V cluster, a vacancy surrounded by 4 nearest-neighbor phosphorus atoms, which is the most favorable inactive P species in heavily doped Si, strongly binds metals such as Cu, Cr, Ni, and Fe. Based on the calculated binding energies, we build continuum models to describe the P deactivation and Fe gettering processes with model parameters calibrated against experimental data. In contrast to previous models assuming metal-P{sub 1}V or metal-P{sub 2}V as the gettered species, the binding of metals to P{sub 4}V satisfactorily explains the experimentally observed strong gettering behavior at high phosphorus concentrations.

  18. Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters

    NASA Astrophysics Data System (ADS)

    Niihori, Yoshiki; Matsuzaki, Miku; Uchida, Chihiro; Negishi, Yuichi

    2014-06-01

    Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective means of separating ligand combinations when working with metal clusters protected by two different types of thiolates. We report herein advanced use of this method. The studies involving Au24Pd(SR1)18-x(SR2)x and Au24Pd(SR1)18-x(SeR2)x (SR1, SR2 = thiolate, SeR2 = selenolate) revealed the following. (1) In general, an increase in the difference between the polarities of the functional groups incorporated in the two types of ligands improves the separation resolution. A suitable ligand combination for separation can be predicted from the retention times of Au24Pd(SR1)18 and Au24Pd(SR2)18, which cause the terminal peaks in a series of peaks. (2) The use of a step-gradient program during the mobile phase substitution results in improved resolution compared to that achievable with the linear gradients applied in prior work. (3) This technique is also useful for the evaluation of the chemical compositions of metal clusters protected by two different types of ligands with similar molecular weights. These findings will provide clear design guidelines for the functionalization of metal clusters via control of the ligand composition, and will also improve our understanding of the high-resolution isolation of metal clusters.Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective

  19. Nonlinear Color-Metallicity Relations of Globular Clusters. VII. Nonlinear Absorption-line Index versus Metallicity Relations and Bimodal Index Distributions of NGC 5128 Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kim, Sooyoung; Yoon, Suk-Jin

    2017-07-01

    Spectroscopy on the globular cluster (GC) system of NGC 5128 revealed bimodality in absorption-line index distributions of its old GCs. GC division is a widely observed and studied phenomenon whose interpretation has depicted host galaxy formation and evolution such that it harbors two distinct metallicity groups. Such a conventional view of GC bimodality has mainly been based on photometry. The recent GC photometric data, however, presented an alternative perspective in which the nonlinear metallicity-to-color transformation is responsible for color bimodality of GC systems. Here we apply the same line of analysis to the spectral indices and examine the absorption-line index versus metallicity relations for the NGC 5128 GC system. NGC 5128 GCs display nonlinearity in the metallicity-index planes, most prominently for the Balmer lines and by a non-negligible degree for the metallicity-sensitive magnesium line. We demonstrate that the observed spectroscopic division of NGC 5128 GCs can be caused by the nonlinear nature of the metallicity-to-index conversions and thus one does not need to resort to two separate GC subgroups. Our analysis incorporating this nonlinearity provides a new perspective on the structure of NGC 5128's GC system, and a further piece to the global picture of the formation of GC systems and their host galaxies.

  20. Quintuple super bonding between the superatoms of metallic clusters.

    PubMed

    Wang, Haiyan; Cheng, Longjiu

    2017-09-14

    The synthesis of a stable compound with Cr-Cr quintuple bonding (σ, 2π, 2δ) opened the door to a new field of chemistry (T. Nguyen, A. D. Sutton, M. Brynda, J. C. Fettinger, G. J. Long and P. P. Power, Science, 2005, 310, 844). Looking back to the mass experiments on sodium clusters (W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou and M. L. Cohen, Phys. Rev. Lett., 1984, 52, 2141), this work tells some new stories about the experimentally viewed magic numbers 26e and 30e. By unbiased global search, the 26e Li20Mg3 cluster has a perfect double-icosahedral motif with a large HOMO-LUMO energy gap (1.44 eV). We theoretically found that each icosahedron is an independent superatom and molecule-like electronic shell-closure is achieved via quintuple super bonding between two superatoms: [8e](1D2S)(5)-(1D2S)(5)[8e]. Similar quintuple bonding also exists in the 30e double-icosahedral Li18Mg3Al2 cluster: [8e](1D2S)(7)-(1D2S)(7)[8e]. The 26e/30e quintuple bonding was verified by the beautiful analogies in molecular orbital diagrams and chemical bonding patterns with V2/Re2 molecules. Such a quintuple super bonding makes a bridge between the jellium model and chemical bonding, which further expands the community of chemical bonds.

  1. The Effect of Metallicity on Surface Lithium Abundance in Hyades-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Gayetsky, Lisa; Cummings, J.; Deliyannis, C. P.; Steinhauer, A.; James, D.; Sarajedini, A.

    2007-12-01

    Two of the most important predictions from standard stellar evolution theory about the lithium depletion of solar-type F and G dwarfs are that it occurs primarily during the pre-main sequence and that it depends on metallicity. Abundant evidence from star clusters shows that Li depletion does indeed occur during the pre-main sequence, but then also continues during the main sequence, perhaps due to the effects of (non-standard) rotationally-induced or wave-induced mixing. However, little is known about whether Li depletion depends on metallicity. To test the predicted dependence of standard Li depletion on metallicity, a program has begun that compares the Li-Teff relation in Hyades-aged clusters of different metallicities. Here, we present high resolution results from WIYN/Hydra observations of IC 4756. We find, first, that our data qualitatively support the prediction that stars with higher metallicity have depleted more Li. Second, if a reasonable adjustment is made to the (unknown) initial cluster Li abundances that is consistent with knowledge of Galactic Li production from the field dwarf Li-Fe relation, then our data are also in good quantitative agreement with the metallicity-dependence of the Li depletion from standard theory. This work has been supported by the National Science Foundation under grants AST-0452975 and AST-0206202.

  2. Pulse laser-induced generation of cluster codes from metal nanoparticles for immunoassay applications

    NASA Astrophysics Data System (ADS)

    Chang, Chia-Yin; Chu, Han-Wei; Unnikrishnan, Binesh; Peng, Lung-Hsiang; Cang, Jinshun; Hsu, Pang-Hung; Huang, Chih-Ching

    2017-05-01

    In this work, we have developed an assay for the detection of proteins by functionalized nanomaterials coupled with laser-induced desorption/ionization mass spectrometry (LDI-MS) by monitoring the generation of metal cluster ions. We achieved selective detection of three proteins [thrombin, vascular endothelial growth factor-A165 (VEGF-A165), and platelet-derived growth factor-BB (PDGF-BB)] by modifying nanoparticles (NPs) of three different metals (Au, Ag, and Pt) with the corresponding aptamer or antibody in one assay. The Au, Ag, and Pt acted as metal bio-codes for the analysis of thrombin, VEGF-A165, and PDGF-BB, respectively, and a microporous cellulose acetate membrane (CAM) served as a medium for an in situ separation of target protein-bound and -unbound NPs. The functionalized metal nanoparticles bound to their specific proteins were subjected to LDI-MS on the CAM. The functional nanoparticles/CAM system can function as a signal transducer and amplifier by transforming the protein concentration into an intense metal cluster ion signal during LDI-MS analysis. This system can selectively detect proteins at picomolar concentrations. Most importantly, the system has great potential for the detection of multiple proteins without any pre-concentration, separation, or purification process because LDI-MS coupled with CAM effectively removes all signals except for those from the metal cluster ions.

  3. Metal, Semiconductor, and Carbon Cluster Studies Including the Discovery and Characterization of Carbon -60: Buckminsterfullerene.

    NASA Astrophysics Data System (ADS)

    Heath, James Richard

    Experiments using the laser vaporization technique for production of metal clusters have been performed. The reactions of neutral metal clusters with various gases have been studied using a fast flow reactor. Dramatic reactivity variations were observed which depended on cluster size, metal, and reactant. A laser vaporization disc source has been developed for the study of semiconductor clusters. Some preliminary studies on neutral germanium and silicon clusters were performed. Their ionization potentials have been bracketed and the clusters were found to fragment by a fissioning process and to have long lived (100 nanoseconds) excited electronic states. A detailed study has been undertaken into carbon clusters. Laser synthesis of astrophysically important polyyne molecules such as H-C-(C-C)_{ rm 2n}-N has been done. Chains containing up to 22 carbon atoms are formed in a vaporized carbon and reactant gas plasma. A photophysically stable and chemically inert cluster, C_{60}, has been discovered and hypothesized to have the structure of a truncated icosahedron. All even clusters in the 60 atom size range were found to be inert to highly reactive gases, while odd clusters readily reacted. The results are consistent with a whole series (30-90 atoms) of closed cage-like structures. Closure of even clusters only is possible via the inclusion of twelve pentagons into a hexagonal network. Odd clusters show neither the photophysical nor chemical stability of the even clusters. A mechanism for the formation of spherical soot particles has been developed. Stable organometallic complexes of the formula C_{rm 2n}M (20 < n < 40 and M = La, Ba, Sr, Ca) have been laser synthesized. The dominant complex observed was C_{60}M ^+. These species are photophysically stable, chemically inert, and no C_{rm 2n}M_2^ecies were detected. The ultraviolet and visible absorption spectrum of C_{60} has been measured. Because excited electronic states are not expected to live long in a molecule

  4. Advanced use of high-performance liquid chromatography for synthesis of controlled metal clusters.

    PubMed

    Niihori, Yoshiki; Matsuzaki, Miku; Uchida, Chihiro; Negishi, Yuichi

    2014-07-21

    Because the synthesis of metal clusters with multiple ligand types results in a distribution of ligands, high-resolution separation of each unique cluster from the mixture is required for precise control of the ligand composition. Reverse-phase high-performance liquid chromatography combined with appropriate transitioning of the mobile phase composition is an extremely effective means of separating ligand combinations when working with metal clusters protected by two different types of thiolates. We report herein advanced use of this method. The studies involving Au₂₄Pd(SR₁)₁₈-x(SR₂)x and Au₂₄Pd(SR₁)₁₈-x(SeR₂)x (SR₁, SR₂ = thiolate, SeR₂ = selenolate) revealed the following. (1) In general, an increase in the difference between the polarities of the functional groups incorporated in the two types of ligands improves the separation resolution. A suitable ligand combination for separation can be predicted from the retention times of Au₂₄Pd(SR₁)₁₈ and Au₂₄Pd(SR₂)₁₈, which cause the terminal peaks in a series of peaks. (2) The use of a step-gradient program during the mobile phase substitution results in improved resolution compared to that achievable with the linear gradients applied in prior work. (3) This technique is also useful for the evaluation of the chemical compositions of metal clusters protected by two different types of ligands with similar molecular weights. These findings will provide clear design guidelines for the functionalization of metal clusters via control of the ligand composition, and will also improve our understanding of the high-resolution isolation of metal clusters.

  5. Polyoxometalate Cluster-Incorporated Metal-Organic Framework Hierarchical Nanotubes.

    PubMed

    Xu, Xiaobin; Chen, Shuangming; Chen, Yifeng; Sun, Hongyu; Song, Li; He, Wei; Wang, Xun

    2016-06-01

    A simple method to prepare metal-organic framework (MOF) nanotubes is developed by employing polyoxometalates (POMs) as modulators. The local structure of the MOF nanotubes is investigated combining XANES and EXAFS studies. These nanotubes show both an excellent catalytic performance in the detoxification of sulfur compounds in O2 atmosphere and a remarkable cycling stability as the anode material for lithium-ion batteries. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Deciphering the Structural Evolution and Electronic Properties of Magnesium Clusters: An Aromatic Homonuclear Metal Mg17 Cluster.

    PubMed

    Xia, Xinxin; Kuang, Xiaoyu; Lu, Cheng; Jin, Yuanyuan; Xing, Xiaodong; Merino, Gabriel; Hermann, Andreas

    2016-10-13

    The structures and electronic properties of low-energy neutral and anionic Mgn (n = 3-20) clusters have been studied by utilizing a widely adopted CALYPSO structure searching method coupled with density functional theory calculations. A large number of low-energy isomers are optimized at the B3PW91 functional with the 6-311+G(d) basis set. The optimized geometries clearly indicate that a structural transition from hollow three-dimensional configurations to filled-cage-like structures occurs at n = 16 for both neutral and anionic clusters. Based on the anionic ground state structures, photoelectron spectra are simulated using time-dependent density functional theory (TD-DFT) and compared with experimental results. The good agreement validates that the current ground state structures, obtained from the symmetry-unconstrained searches, are true global minima. A detailed chemical bonding analysis distinctly indicates that the Mg17 cluster is the first neutral locally π-aromatic homonuclear all-metal cluster, which perfectly satisfies Hückel's well-known 4N + 2 rule.

  7. Asymmetric partitioning of metals among cluster anions and cations generated via laser ablation of mixed aluminum/Group 6 transition metal targets.

    PubMed

    Waller, Sarah E; Mann, Jennifer E; Jarrold, Caroline Chick

    2013-02-28

    While high-power laser ablation of metal alloys indiscriminately produces gas-phase atomic ions in proportion to the abundance of the various metals in the alloy, gas-phase ions produced by moderate-power laser ablation sources coupled with molecular beams are formed by more complicated mechanisms. A mass spectrometric study that directly compares the mass distributions of cluster anions and cations generated from laser ablation of pure aluminum, an aluminum/molybdenum mixed target, and an aluminum/tungsten mixed target is detailed. Mass spectra of anionic species generated from the mixed targets showed that both tungsten and molybdenum were in higher abundance in the negatively charged species than in the target material. Mass spectra of the cationic species showed primarily Al(+) and aluminum oxide and hydroxide cluster cations. No molybdenum- or tungsten-containing cluster cations were definitively assigned. The asymmetric distribution of aluminum and Group 6 transition metals in cation and anion cluster composition is attributed to the low ionization energy of atomic aluminum and aluminum suboxide clusters. In addition, the propensity of both molybdenum and tungsten to form metal oxide cluster anions under the same conditions that favor metallic aluminum cluster anions is attributed to differences in the optical properties of the surface oxide that is present in the metal powders used to prepare the ablation targets. Mechanisms of mixed metal oxide clusters are considered.

  8. Negative ion photoelectron spectroscopic studies of transition metal cluster

    NASA Astrophysics Data System (ADS)

    Marcy, Timothy Paul

    The studies reported in this thesis were performed using a negative ion photoelectron spectrometer consisting of a cold cathode DC discharge ion source, a flowing afterglow ion-molecule reactor, a magnetic sector mass analyzer, an argon ion laser for photodetachment and a hemispherical electron kinetic energy analyzer and microchannel plate detector for photoelectron spectrum generation. The 476.5 nm (2.601 eV), 488.0 nm (2.540 eV) and 514.5 nm (2.410 eV) negative ion photoelectron spectra of VMn are reported and compared to the previously studied spectra of isoelectronic Cr2.1 The photoelectron spectra are remarkably similar to those of Cr2 in electron affinity and vibrational frequencies. The 488.0 nm photoelectron spectra and electron affinities of Nb n- (n = 1 - 9) are reported with discussion of observed vibrational structure. There are transitions to several electronic states of Nb2 in the reported spectra with overlapping vibrational progressions. The spectra of Nb3, Nb4 and Nb6 show partially resolved vibrational structure in the transitions to the lowest observed electronic state of each cluster. There is a single distinct active vibrational mode in the transition to the ground state of Nb8. Spin-orbit energies of Nb- are also reported. The 488.0 nm negative ion photoelectron spectra of Nb3H(D) are reported and compared to those of Nb3. There is a single vibrational mode active in the spectra of Nb3H(D) which is very similar to the most distinct mode active in the spectrum of Nb3. The 488.0 nm photoelectron spectra of the NbxCyH(D) y- (x = 1, 2, 3, y = 2, 4, 6) dehydrogenated products of the reactions of ethylene with niobium cluster anions are reported. Temperature studies of some of these species give evidence for the presence of multiple isomers of each molecule in the ion beam. The spectra of NbC6H(D) 6 are identical to those obtained from the reactions of benzene with niobium clusters and indicate that benzene is being formed from ethylene in the flow

  9. Controllable Assembly, Structures, and Properties of Lanthanide-Transition Metal-Amino Acid Clusters

    NASA Astrophysics Data System (ADS)

    Xiang, Sheng-Chang; Hu, Sheng-Min; Sheng, Tian-Lu; Chen, Ling; Wu, Xin-Tao

    Amino acids are the basic building blocks in the chemistry of life. This chapter describes the controllable assembly, structures and properties of lathanide(III)-transition metal-amino acid clusters developed recently by our group. The effects on the assembly of several factors of influence, such as presence of a secondary ligand, lanthanides, crystallization conditions, the ratio of metal ions to amino acids, and transition metal ions have been expounded. The dynamic balance of metalloligands and the substitution of weak coordination bonds account for the occurrence of diverse structures in this series of compounds.

  10. Glass formation and cluster evolution in the rapidly solidified monatomic metallic liquid Ta under high pressure

    NASA Astrophysics Data System (ADS)

    Jiang, Dejun; Wen, Dadong; Tian, Zean; Liu, Rangsu

    2016-12-01

    Molecular dynamics (MD) simulations have been performed to examine the glass formation and cluster evolution during the rapid solidification of monatomic metallic liquid Ta under high pressure. The atomic structures in the systems are characterized by the radical distribution function (RDF), Honeycutt-Anderson (H-A) bond-type index method and cluster-type index method (CTIM). It is observed that the defective icosahedra play the critical role in the formation of Ta monatomic metallic glasses (MGs) rather than (12 0 12 0) perfect icosahedra, which have been identified as the basic local atomic units in many multi-component MGs. With the increase of pressure P, the fraction of icosahedral type clusters decreases remarkably in Ta MGs, while the fraction of bcc type clusters rises evidently. The evolution of vitrification degree (DSRO or DMRO) of the rapidly cooled metal Ta system further reveals that a higher pressure P is disadvantageous to the formation of Ta monatomic MGs. The weaker glass forming ability (GFA) of liquid metal Ta obtained under higher pressure P can be contributed to the decrease of DSRO or DMRO which is induced by increasing high pressure P to some extent.

  11. Carbonyl clusters of transition metals on oxide supports as heterogeneous catalysts for hydrocarbon synthesis

    SciTech Connect

    Kuznetsov, B.N.; Koval`chuk, V.I.

    1995-05-01

    The methods of preparation of heterogeneous catalysts by immobilization of carbonyl clusters of transition metals on oxide supports, as well as the study of the state of supported compounds and their catalytic properties in CO hydrogenation and olefin hydroformulation are briefly reviewed.

  12. Ring current and electron delocalisation in an all-metal cluster, Al 42-

    NASA Astrophysics Data System (ADS)

    Fowler, P. W.; Havenith, R. W. A.; Steiner, E.

    2002-06-01

    Localised-orbital analysis of the current density induced by a perpendicular magnetic field in square-planar Al 42- demonstrates the intrinsic non-localisability of the σ electrons of this metallic cluster and confirms their dominant role in its diamagnetic ring current. Though delocalised, the π electrons do not give rise to a significant ring current.

  13. Optical response and gas sequestration properties of metal cluster supported graphene nanoflakes.

    PubMed

    Chakraborty, Debdutta; Chattaraj, Pratim Kumar

    2016-07-28

    The possibility of obtaining metal cluster (M3O(+), M = Li, Na, K) supported pristine, B-doped and BN-doped graphene nanoflakes (GR, BGR and BNGR, respectively) has been investigated by carrying out density functional theory (DFT) based calculations. Thermochemical analysis reveals the good stability of M3O(+)@GR/BGR/BNGR moieties. The dynamic stability of M3O(+)@GR/BGR/BNGR moieties is confirmed through an atom-centered density matrix propagation simulation at 298 K up to 500 fs. Orbital and electrostatic interactions play pivotal roles in stabilizing the metal-cluster supported graphene nanoflakes. The metal clusters lower the Fermi levels of the host nanoflakes and enable them to exhibit reasonably good optical response properties such as polarizability and static first hyperpolarizability. In particular, Na3O(+)/K3O(+)@BGR complexes exhibit very large first hyperpolarizability values at the static field limit. All the M3O(+)@BGR/BNGR moieties demonstrate broadband optical absorption encompassing the ultraviolet, visible as well as infrared domains. The metal-cluster supported graphene nanoflakes, in general, can sequestrate polar molecules, viz. CO, NO and CH3OH, in a thermodynamically more favorable way than GR, BGR and BNGR. In the adsorbed state, the CO, NO and CH3OH molecules, in general, attain an 'active' state as compared to their free counterparts.

  14. Optical trapping of metal-dielectric nanoparticle clusters near photonic crystal microcavities.

    PubMed

    Mejia, Camilo A; Huang, Ningfeng; Povinelli, Michelle L

    2012-09-01

    We predict the formation of optically trapped, metal-dielectric nanoparticle clusters above photonic crystal microcavities. We determine the conditions on particle size and position for a gold particle to be trapped above the microcavity. We then show that strong field redistribution and enhancement near the trapped gold nanoparticle results in secondary trapping sites for a pair of dielectric nanoparticles.

  15. The extended stellar substructures of four metal-poor globular clusters in the galactic bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Sohn, Young-Jong

    2015-08-01

    We investigated stellar spatial density distribution around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642 and NGC 6723) in order to find extended stellar substructures. Wide-field deep J, H, and K imaging data were taken using the WFCAM near-infrared array on United Kingdom Infrared Telescope (UKIRT). The contamination of field stars around clusters was minimised by applying a statistical weighted filtering algorithm for the stars on the color-magnitude diagram. In two-dimensional isodensity contour map, we find that all four of the globular clusters shows tidal stripping stellar features in the form of tidal tails (NGC 6266 and NGC 6723) or small density lobes/chunk (NGC 6642 and NGC 6723). The stellar substructures extend toward the Galactic centre or anticancer, and the proper motion direction of the clusters. The radial density profiles of the clusters also depart from theoretical King and Wilson models and show overdensity feature with a break in a slope of profile at the outer region of clusters. The observed results indicate that four globular clusters in the Galactic bulge have experienced strong tidal force or bulge/disk shock effect of the Galaxy. These observational results provide us further constraints to understand the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  16. Radial Velocities, Metallicities, and Improved Fundamental Parameters of Outer Disk Open Clusters

    NASA Astrophysics Data System (ADS)

    Zasowski, Gail; Hamm, K.; Beaton, R.; Damke, G.; Carlberg, J. K.; Majewski, S. R.; Frinchaboy, P. M.

    2014-01-01

    Open stellar clusters have proven to be powerful tools for understanding the structure and stellar evolution of our Galaxy. Using photometry from 2MASS and the new Spitzer-IRAC GLIMPSE-360 surveys, Zasowski et al. (2013) identified and characterized more than a dozen new or poorly studied, heavily reddened open clusters in the outer Galactic disk. Here, we present follow-up spectroscopy for 11 of the clusters. Low resolution optical spectra were obtained with the DIS spectrograph on the Apache Point Observatory 3.5-meter telescope (R˜1200) for candidate members of seven clusters (GLM-CYGX 16, GLM-G360 18, GLM-G360 105, SAI 24, Berkeley 14, Berkeley 14a, and Czernik 20), and with the B&C spectrograph on the Las Campanas Observatory duPont telescope (R˜5400) for three clusters (GLM-G360 50, GLM-G360 75, and GLM-G360 79). High resolution (R˜22,500) infrared (H-band) spectra were also obtained for one cluster (GLM-G360 90) as part of an ancillary program for the SDSS-III/APOGEE survey. We use the mean chemical abundances and radial velocities (RVs) to identify likely cluster members and then revisit our previous isochrone fits. With reddening constrained by the Rayleigh-Jeans Color Excess method and mean metallicities by spectroscopy, the cluster distances and ages are estimated from improved isochrone fits to the stellar overdensity, weighted by confirmed RV and/or abundance members.

  17. STAR CLUSTERS IN M33: UPDATED UBVRI PHOTOMETRY, AGES, METALLICITIES, AND MASSES

    SciTech Connect

    Fan, Zhou; De Grijs, Richard E-mail: grijs@pku.edu.cn

    2014-04-01

    The photometric characterization of M33 star clusters is far from complete. In this paper, we present homogeneous UBVRI photometry of 708 star clusters and cluster candidates in M33 based on archival images from the Local Group Galaxies Survey, which covers 0.8 deg{sup 2} along the galaxy's major axis. Our photometry includes 387, 563, 616, 580, and 478 objects in the UBVRI bands, respectively, of which 276, 405, 430, 457, and 363 do not have previously published UBVRI photometry. Our photometry is consistent with previous measurements (where available) in all filters. We adopted Sloan Digital Sky Survey ugriz photometry for complementary purposes, as well as Two Micron All Sky Survey near-infrared JHK photometry where available. We fitted the spectral-energy distributions of 671 star clusters and candidates to derive their ages, metallicities, and masses based on the updated PARSEC simple stellar populations synthesis models. The results of our χ{sup 2} minimization routines show that only 205 of the 671 clusters (31%) are older than 2 Gyr, which represents a much smaller fraction of the cluster population than that in M31 (56%), suggesting that M33 is dominated by young star clusters (<1 Gyr). We investigate the mass distributions of the star clusters—both open and globular clusters—in M33, M31, the Milky Way, and the Large Magellanic Cloud. Their mean values are log (M {sub cl}/M {sub ☉}) = 4.25, 5.43, 2.72, and 4.18, respectively. The fraction of open to globular clusters is highest in the Milky Way and lowest in M31. Our comparisons of the cluster ages, masses, and metallicities show that our results are basically in agreement with previous studies (where objects in common are available); differences can be traced back to differences in the models adopted, the fitting methods used, and stochastic sampling effects.

  18. Light-Induced In Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis.

    PubMed

    Xiao, Fang-Xing; Zeng, Zhiping; Hsu, Shao-Hui; Hung, Sung-Fu; Chen, Hao Ming; Liu, Bin

    2015-12-30

    In situ transformation of glutathione-capped gold (Aux) clusters to gold (Au) nanocrystals under simulated solar light irradiation was achieved and utilized as a facile synthetic approach to rationally fabricate Aux/Au/TiO2 ternary and Au/TiO2 binary heterostructures. Synergistic interaction of Aux clusters and Au nanocrystals contributes to enhanced visible-light-driven photocatalysis.

  19. Hydration process of alkaline-earth metal atoms in water clusters

    NASA Astrophysics Data System (ADS)

    Okai, Nobuhiro; Ishikawa, Haruki; Fuke, Kiyokazu

    2005-10-01

    Ionization potentials (IPs) of water clusters containing alkaline-earth metal atoms are measured by a photoionization threshold method to examine the hydration process of the metal atoms in clusters. IPs of Mg(H 2O) n and Ca(H 2O) n are found to decrease with increasing n and become constant at 3.18 eV for n ⩾ 9 and n ⩾ 8, respectively. The observed constant IP agrees with an estimated photoelectric threshold (3.2 eV) of bulk ice. From the comparison with the results on the theoretical calculations as well as the IPs for alkali atom-water clusters, the anomalous size dependence of IPs is ascribed to the formation of an ion-pair state.

  20. BVRI CCD photometry of the metal-poor globular cluster NGC 4372

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1991-07-01

    BVRI CCD photometry is presented in two overlapping fields in the metal-poor globular cluster NGC 4372. The observations extend approximately 2 mag below the main-sequence turnoff to V about 21. By comparing the color-magnitude diagram (CMD) with those of clusters with similar metallicities, it is found that E(B-V) = 0.50 {plus minus} 0.03, and (m-M)v = 14.75 {plus minus} 0.06. Comparison with theoretical isochrones leads to a value E(B-V) = 0.53 {plus minus} 0.03. Comparison of the CMD with that of bright stars published by other authors yields a value for Delta V(TO-HB) = 3.3 {plus minus} 0.3. The weighted mean value of the age of the cluster, derived from the four colors, is 15 {plus minus} 4 Gyr (estimated external uncertainty). 17 refs.

  1. Metal Chalcogenide Clusters with Closed Electronic Shells and the Electronic Properties of Alkalis and Halogens.

    PubMed

    Chauhan, Vikas; Reber, Arthur C; Khanna, Shiv N

    2017-02-08

    Clusters with filled electronic shells and a large gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) are generally energetically and chemically stable. Enabling clusters to become electron donors with low ionization energies or electron acceptors with high electron affinities usually requires changing the valence electron count. Here we demonstrate that a metal cluster may be transformed from an electron donor to an acceptor by exchanging ligands while the neutral form of the clusters has closed electronic shells. Our studies on Co6Te8(PEt3)m(CO)n (m + n = 6) clusters show that Co6Te8(PEt3)6 has a closed electronic shell and a low ionization energy of 4.74 eV, and the successive replacement of PEt3 by CO ligands ends with Co6Te8(CO)6 exhibiting halogen-like behavior. Both the low ionization energy Co6Te8(PEt3)6 and high electron affinity Co6Te8(CO)6 have closed electronic shells marked by high HOMO-LUMO gaps of 1.24 and 1.39 eV, respectively. Further, the clusters with an even number of ligands favor a symmetrical placement of ligands around the metal core.

  2. Stable structures and electronic properties of 6-atom noble metal clusters using density functional theory

    NASA Astrophysics Data System (ADS)

    Phaisangittisakul, N.; Paiboon, K.; Bovornratanaraks, T.; Pinsook, U.

    2012-08-01

    The 6-atom clusters of group IB noble metals have been investigated theoretically using the density functional calculation with a plane-wave basis (CASTEP). We have calculated their optimized structures, relative cluster's energies, atomic and bonding populations, spectra of the vibrational frequencies, energy gaps between the highest occupied and the lowest unoccupied molecular orbitals, and average polarizabilities per atom. The stable structures we found are planar triangular, pentagonal pyramid, and capped trigonal bipyramid. For the Cu6 and Ag6 cluster, the planar structure energetically competes with the pyramid structure for the ground state. According to the population analyses, the s-d orbital hybridization is explicitly shown to be in association with the corner atoms of the planar structure. We found that the vibrational spectra of the clusters are structural dependent. The average polarizabilities for the planar structure of the Cu6 and Ag6 cluster are quite different from their other stable isomers. In contrast, the polarizabilities are about the same for all stable gold hexamers. Our calculations benefit a reliable geometry identification of the 6-atom noble metal clusters.

  3. Molecular-dynamics simulations of collisions between energetic clusters of atoms and metal substrates

    SciTech Connect

    Hsieh, H.; Averback, R.S. ); Sellers, H. ); Flynn, C.P. )

    1992-02-15

    The collisional dynamics between clusters of Cu, Ni, or Al atoms, with energies of 92 eV to 1.0 keV and sizes of 4 to 92 atoms, and substrates of these same metals were studied using molecular-dynamics computer simulations. A diverse behavior was observed, depending sensitively on the size and energy of the cluster, the elastic and chemical properties of the cluster-substrate combination, and the relative mass of the cluster and substrate atoms. For the 92-atom Cu clusters impacting a Cu substrate, the cluster can form a glob'' on the surface at low energy, while penetrating the substrate and heavily deforming it at high energies. When the cluster energy exceeds {approx}25 eV/atom, the substrate suffers radiation damage. The 92-atom Al clusters do not much deform Ni substrates, but rather tend to spread epitaxially over the surface, despite the 15% lattice mismatch. For 1-keV collisions, several Al atoms dissociate from the cluster, either reflecting into the vacuum or scattering over the surface. 326-eV Ni clusters embed themselves almost completely within Al substrates and form localized amorphous zones. The potentials for these simulations were derived from the embedded-atom method, although modified to treat the higher-energy events. IAb initioP linear-combination-of-atomic-orbitals--molecular-orbitals calculations were employed to test these potentials over a wide range of energies. A simple model for the expected macroscopic behavior of cluster-solid interactions is included as an appendix for a comparison with the atomistic description offered by the simulations.

  4. Processes of conversion of a hot metal particle into aerogel through clusters

    NASA Astrophysics Data System (ADS)

    Smirnov, B. M.

    2015-10-01

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  5. Processes of conversion of a hot metal particle into aerogel through clusters

    SciTech Connect

    Smirnov, B. M.

    2015-10-15

    Processes are considered for conversion into a fractal structure of a hot metal micron-size particle that is located in a buffer gas or a gas flow and is heated by an external electric or electromagnetic source or by a plasma. The parameter of this heating is the particle temperature, which is the same in the entire particle volume because of its small size and high conductivity. Three processes determine the particle heat balance: particle radiation, evaporation of metal atoms from the particle surface, and heat transport to the surrounding gas due to its thermal conductivity. The particle heat balance is analyzed based on these processes, which are analogous to those for bulk metals with the small particle size, and its high temperature taken into account. Outside the particle, where the gas temperature is lower than on its surface, the formed metal vapor in a buffer gas flow is converted into clusters. Clusters grow as a result of coagulation until they become liquid, and then clusters form fractal aggregates if they are removed form the gas flow. Subsequently, associations of fractal aggregates join into a fractal structure. The rate of this process increases in medium electric fields, and the formed fractal structure has features of aerogels and fractal fibers. As a result of a chain of the above processes, a porous metal film may be manufactured for use as a filter or catalyst for gas flows.

  6. Are metal mining effluent regulations adequate: identification of a novel bleached fish syndrome in association with iron-ore mining effluents in Labrador, Newfoundland.

    PubMed

    Payne, J F; French, B; Hamoutene, D; Yeats, P; Rahimtula, A; Scruton, D; Andrews, C

    2001-05-01

    Water quality guidelines for industrial effluents are in place in many countries but they have generally evolved within a limited ecotoxicological framework. Effluents from iron-ore mines have traditionally been viewed by regulatory bodies as posing little or no risk to the aquatic environment. However, it was recently reported that lake trout taken from a large iron-ore contaminated Lake in Labrador (Wabush Lake) had elevated levels of DNA oxidative damage and were markedly depleted in levels of vitamin A (Payne et al., 1998) in comparison with fish from a Lake (Shabogamo Lake) receiving lesser levels of effluents. Through further observations, it has now been established that the lake trout in Wabush Lake are commonly affected with a marked skin bleaching syndrome in comparison with fish in Shabogamo Lake and a nearby Lake (Ashuanipi) which does not receive effluents. To the authors' knowledge such a syndrome which is characterized by marked reduction in skin pigmentation and overall increase in skin whitening has not been reported before in any fish population in association with contamination. Preliminary information for liver histopathological and blood cell differences have also been obtained in fish in Wabush Lake in comparison with Ashuanipi Lake. It has also been observed through studies on phosphatidyl liposomes that iron-ore leachate contains redox-active material (iron but possibly other transition metals) that has considerable potential for causing oxidative damage to cellular constituents. Using the weight of evidence approach it is indicated that iron-ore effluents may pose more of a risk to the aquatic environment than traditionally considered by regulatory agencies.

  7. Theoretical research program to predict the properties of molecules and clusters containing transition metal atoms

    NASA Technical Reports Server (NTRS)

    Walch, S.

    1984-01-01

    The primary focus of this research has been the theoretical study of transition metal (TM) chemistry. A major goal of this work is to provide reliable information about the interaction of H atoms with iron metal. This information is needed to understand the effect of H atoms on the processes of embrittlement and crack propagation in iron. The method in the iron hydrogen studies is the cluster method in which the bulk metal is modelled by a finite number of iron atoms. There are several difficulties in the application of this approach to the hydrogen iron system. First the nature of TM-TM and TM-H bonding for even diatomic molecules was not well understood when these studies were started. Secondly relatively large iron clusters are needed to provide reasonable results.

  8. A Transition Metal Complex (Venus Flytrap Cluster) for Radioimmunodetection and Radioimmunotherapy

    NASA Astrophysics Data System (ADS)

    Paxton, Raymond J.; Beatty, Barbara G.; Hawthorne, M. Frederick; Varadarajan, Aravamuthan; Williams, Lawrence E.; Curtis, Frederick L.; Knobler, Carolyn B.; Beatty, J. David; Shiveley, John E.

    1991-04-01

    A novel transition metal complex, Venus flytrap cluster (VFC), is described for the preparation of radiolabeled antibodies. VFC contained 57Co, which was held tightly between the faces of two covalently bridged carborane ligands by cluster bonding of the metal with appropriate ligand orbitals. Anti-carcinoembryonic antigen monoclonal antibody T84.66 was conjugated to 57Co-VFC with full retention of immunological activity. Biodistribution studies in nude mice bearing carcinoembryonic antigen-producing tumors showed excellent tumor localization of 57Co-VFC-T84.66. The accumulation of radionuclide in normal liver was low and independent of dose, which may reflect the stability of the radionuclide complex. These results presage the use of VFC systems for binding transition metals that are clinically useful for radio-immunodiagnosis and radioimmunotherapy.

  9. Heterometallic rare earth/group II metal chalcogenolate clusters

    SciTech Connect

    Berardini, M.; Emge, T.; Brennan, J.G. )

    1994-07-27

    Heterometallic Group II/rare earth (RE) thiolates, selenolates, and tellurolates have a broad range of potential applications in the rapidly developing field of RE-doped semiconductor technology . Given the tendency of RE chalcogenolates to form polymetallic species with bridging chalcogenolate ligands, we reasoned that RE complexes of the heavier chalcogenolates could be stabilized by bridging the chalcogenide to a softer Group II metal to form heterometallic compounds. In this paper, we show that such stabilization is significant, and we describe the isolation and structural characterization of the first two examples of a broad class of heterometallic chalcogenolate complexes having the general formula MM[prime](EPh)[sub x](L)[sub y] [M = Zn, Cd, Hg; M[prime] = divalent (x = 4) or trivalent (x = 5) rare earth; E = S, Se, Te; L = THF, pyridine]. 9 refs., 1 fig.

  10. Intracluster electron transfer from a metal atom/cluster followed by anionic oligomerization of vinyl molecules

    NASA Astrophysics Data System (ADS)

    Ohshimo, K.; Tsunoyama, H.; Misaizu, F.; Ohno, K.

    Intracluster electron transfer and oligomerization reaction were investigated by mass spectrometry of clusters of alkali metal atom (M) with acrylonitrile (AN; CH2=CHCN). In the photoionization mass spectra of M(AN)n, magic numbers were clearly observed at n = 3k (k = 1-4 for M = Na and K, k = 1 for M = Li). The results of photodissociation of neutral K(AN)n indicate that the n = 3 cluster has an anomalous stability relative to other sizes of clusters. The C=C bond in vinyl molecules is also found to be necessary to form the magic numbers by measuring the photoionization mass spectrum of K atom with propionitrile. These results strongly support the intracluster anionic oligomerization reaction initiated by electron transfer from the alkali atom. The quantum chemical calculations have revealed that the evaporation induced by excess energy generated by intracluster oligomerization is important to form the magic numbers in the present clusters.

  11. On the Nature of Bonding in Parallel Spins in Monovalent Metal Clusters.

    PubMed

    Danovich, David; Shaik, Sason

    2016-05-27

    As we approach the Lewis model centennial, it may be timely to discuss novel bonding motifs. Accordingly, this review discusses no-pair ferromagnetic (NPFM) bonds that hold together monovalent metallic atoms using exclusively parallel spins. Thus, without any traditional electron-pair bonds, the bonding energy per atom in these clusters can reach 20 kcal mol(-1). This review describes the origins of NPFM bonding using a valence bond (VB) analysis, which shows that this bonding motif arises from bound triplet electron pairs that are delocalized over all the close neighbors of a given atom in the cluster. The VB model accounts for the tendency of NPFM clusters to assume polyhedral shapes with rather high symmetry and for the very steep rise of the bonding energy per atom. The advent of NPFM clusters offers new horizons in chemistry of highly magnetic species sensitive to magnetic and electric fields.

  12. Evolution of long-lived globular cluster stars. II. Sodium abundance variations on the asymptotic giant branch as a function of globular cluster age and metallicity

    NASA Astrophysics Data System (ADS)

    Charbonnel, Corinne; Chantereau, William

    2016-02-01

    Context. Long-lived stars in globular clusters exhibit chemical peculiarities with respect to their halo counterparts. In particular, sodium-enriched stars are identified as belonging to a second stellar population born from cluster material contaminated by the hydrogen-burning ashes of a first stellar population. Their presence and numbers in different locations of the colour-magnitude diagram provide important constraints on the self-enrichment scenarios. In particular, the ratio of Na-poor to Na-rich stars on the asymptotic giant branch (AGB) has recently been found to vary strongly from cluster to cluster (NGC 6752, 47 Tuc, and NGC 2808), while it is relatively constant on the red giant branch (RGB). Aims: We investigate the impact of both age and metallicity on the theoretical sodium spread along the AGB within the framework of the fast rotating massive star (FRMS) scenario for globular cluster self-enrichment. Methods: We computed evolution models of low-mass stars for four different metallicities ([Fe/H] = -2.2, -1.75, -1.15, -0.5) assuming the initial helium-sodium abundance correlation for second population stars derived from the FRMS models and using mass loss prescriptions on the RGB with two realistic values of the free parameter in the Reimers formula. Results: Based on this grid of models we derive the theoretical critical initial mass for a star born with a given helium, sodium, and metal content that determines whether that star will climb or not the AGB. This allows us to predict the maximum sodium content expected on the AGB for globular clusters as a function of both their metallicity and age. We find that (1) at a given metallicity, younger clusters are expected to host AGB stars exhibiting a larger sodium spread than older clusters and (2) at a given age, higher sodium dispersion along the AGB is predicted in the most metal-poor globular clusters than in the metal-rich ones. We also confirm the strong impact of the mass loss rate in the earlier

  13. Global metallicity of globular cluster stars from colour-magnitude diagrams

    NASA Astrophysics Data System (ADS)

    Caputo, F.; Cassisi, S.

    2002-07-01

    We have developed an homogeneous evolutionary scenario for H- and He-burning low-mass stars by computing updated stellar models for a wide metallicity and age range [0.0002<=Z<=0.004 and 9<=t(Gyr)<=15, respectively] suitable to study globular clusters. This theoretical scenario allows us to provide self-consistent predictions about the dependence of selected observational features of the colour-magnitude diagram, such as the brightness of the turn-off (TO), the zero-age horizontal branch (ZAHB) and the red giant branch bump (BUMP), on the cluster metallicity and age. Taking into account these predictions, we introduce a new observable based on the visual magnitude difference between the TO and the ZAHB [ΔMV(TO-ZAHB)], and the TO and the BUMP [ΔMV(TO-BUMP)], given by A=ΔMV(TO-BUMP)-0.566ΔMV(TO-ZAHB). We show that the parameter A does not depend at all on the cluster age, but that it does strongly depend on the cluster global metallicity. The calibration of the parameter A as a function of Z is then provided, as based on our evolutionary models. We tested the reliability of this result by also considering stellar models computed by other authors, employing different input physics. Eventually, we present clear evidence that the variation of ΔMV(TO-BUMP) with ΔMV(TO-ZAHB) does supply a powerful probe of the global metal abundance, at least when homogeneous theoretical frameworks are adopted. Specifically, we show that the extensive set of models by Vanden Berg et al. suggests a slightly different calibration of A versus Z calibration, which however provides global metallicities higher by only 0.08+/-0.06dex with respect to the results from our computations. We provide an estimate of the global metallicity of 36 globular clusters in the Milky Way, based on our A-Z calibration, and a large observational data base of Galactic globular clusters. By considering the empirical [Fe/H] scales by both Zinn & West and Carretta & Gratton, we are able to provide an estimate

  14. Advanced Electrochemistry of Individual Metal Clusters Electrodeposited Atom by Atom to Nanometer by Nanometer.

    PubMed

    Kim, Jiyeon; Dick, Jeffrey E; Bard, Allen J

    2016-11-15

    Metal clusters are very important as building blocks for nanoparticles (NPs) for electrocatalysis and electroanalysis in both fundamental and applied electrochemistry. Attention has been given to understanding of traditional nucleation and growth of metal clusters and to their catalytic activities for various electrochemical applications in energy harvesting as well as analytical sensing. Importantly, understanding the properties of these clusters, primarily the relationship between catalysis and morphology, is required to optimize catalytic function. This has been difficult due to the heterogeneities in the size, shape, and surface properties. Thus, methods that address these issues are necessary to begin understanding the reactivity of individual catalytic centers as opposed to ensemble measurements, where the effect of size and morphology on the catalysis is averaged out in the measurement. This Account introduces our advanced electrochemical approaches to focus on each isolated metal cluster, where we electrochemically fabricated clusters or NPs atom by atom to nanometer by nanometer and explored their electrochemistry for their kinetic and catalytic behavior. Such approaches expand the dimensions of analysis, to include the electrochemistry of (1) a discrete atomic cluster, (2) solely a single NP, or (3) individual NPs in the ensemble sample. Specifically, we studied the electrocatalysis of atomic metal clusters as a nascent electrocatalyst via direct electrodeposition on carbon ultramicroelectrode (C UME) in a femtomolar metal ion precursor. In addition, we developed tunneling ultramicroelectrodes (TUMEs) to study electron transfer (ET) kinetics of a redox probe at a single metal NP electrodeposited on this TUME. Owing to the small dimension of a NP as an active area of a TUME, extremely high mass transfer conditions yielded a remarkably high standard ET rate constant, k(0), of 36 cm/s for outer-sphere ET reaction. Most recently, we advanced nanoscale

  15. Geographic clustering of elevated blood heavy metal levels in pregnant women.

    PubMed

    King, Katherine E; Darrah, Thomas H; Money, Eric; Meentemeyer, Ross; Maguire, Rachel L; Nye, Monica D; Michener, Lloyd; Murtha, Amy P; Jirtle, Randy; Murphy, Susan K; Mendez, Michelle A; Robarge, Wayne; Vengosh, Avner; Hoyo, Cathrine

    2015-10-09

    Cadmium (Cd), lead (Pb), mercury (Hg), and arsenic (As) exposure is ubiquitous and has been associated with higher risk of growth restriction and cardiometabolic and neurodevelopmental disorders. However, cost-efficient strategies to identify at-risk populations and potential sources of exposure to inform mitigation efforts are limited. The objective of this study was to describe the spatial distribution and identify factors associated with Cd, Pb, Hg, and As concentrations in peripheral blood of pregnant women. Heavy metals were measured in whole peripheral blood of 310 pregnant women obtained at gestational age ~12 weeks. Prenatal residential addresses were geocoded and geospatial analysis (Getis-Ord Gi* statistics) was used to determine if elevated blood concentrations were geographically clustered. Logistic regression models were used to identify factors associated with elevated blood metal levels and cluster membership. Geospatial clusters for Cd and Pb were identified with high confidence (p-value for Gi* statistic <0.01). The Cd and Pb clusters comprised 10.5 and 9.2 % of Durham County residents, respectively. Medians and interquartile ranges of blood concentrations (μg/dL) for all participants were Cd 0.02 (0.01-0.04), Hg 0.03 (0.01-0.07), Pb 0.34 (0.16-0.83), and As 0.04 (0.04-0.05). In the Cd cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.06 (0.02-0.16), Hg 0.02 (0.00-0.05), Pb 0.54 (0.23-1.23), and As 0.05 (0.04-0.05). In the Pb cluster, medians and interquartile ranges of blood concentrations (μg/dL) were Cd 0.03 (0.02-0.15), Hg 0.01 (0.01-0.05), Pb 0.39 (0.24-0.74), and As 0.04 (0.04-0.05). Co-exposure with Pb and Cd was also clustered, the p-values for the Gi* statistic for Pb and Cd was <0.01. Cluster membership was associated with lower education levels and higher pre-pregnancy BMI. Our data support that elevated blood concentrations of Cd and Pb are spatially clustered in this urban environment compared to

  16. Electronic charging of non-metallic clusters: size-selected Mo(x)S(y) clusters supported on an ultrathin alumina film on NiAl(110).

    PubMed

    Zhou, Jing; Zhou, Jia; Camillone, Nicholas; White, Michael G

    2012-06-14

    Two photon photoemission was used to investigate the interfacial charge transfer for size-selected Mo(x)S(y) (x/y: 2/6, 4/6, 6/8, 7/10) clusters deposited on an ultrathin alumina film prepared on a NiAl(110) surface. The local work function of the surface increases with increasing cluster coverage, which is unexpected for charge transfer resulting from the formation of Mo-O bonds between the clusters and the alumina surface. By analogy with Au atoms and clusters on metal-supported ultrathin oxide films, we invoke electron tunneling from the NiAl substrate to explain the charge transfer to the Mo(x)S(y) clusters. Electron tunneling is favored by the large electron affinities of the Mo(x)S(y) clusters and the relatively low work function induced by the presence of the alumina film. The interfacial dipole moments derived from coverage-dependent measurements are cluster dependent and reflect differences in Mo(x)S(y) cluster structure and surface bonding. These results extend previous observations of electronic charging to non-metallic clusters, specifically, metal sulfides, and suggest a novel way to modify the electronic structure and reactivity of nanocatalysts for heterogeneous chemistry.

  17. Metal-Organic Frameworks (MOFs) of a Cubic Metal Cluster with Multicentered Mn(I)-Mn(I) Bonds.

    PubMed

    Hu, Huan-Cheng; Hu, Han-Shi; Zhao, Bin; Cui, Ping; Cheng, Peng; Li, Jun

    2015-09-28

    MOFs with both multicentered metal-metal bonds and low-oxidation-state (LOS) metal ions have been underexplored hitherto. Here we report the first cubic [Mn(I) 8 ] cluster-based MOF (1) with multicentered Mn(I)-Mn(I) bonds and +1 oxidation state of manganese (Mn(I) or Mn(I)), as is supported by single-crystal structure determination, XPS analyses, and quantum chemical studies. Compound 1 possesses the shortest Mn(I)-Mn(I) bond of 2.372 Å. Theoretical studies with density functional theory (DFT) reveal extensive electron delocalization over the [Mn(I) 8 ] cube. The 48 electrons in the [Mn(I) 8 ] cube fully occupy half of the 3d-based and the lowest 4s-based bonding orbitals, with six electrons lying at the nonbonding 3d-orbitals. This bonding feature renders so-called cubic aromaticity. Magnetic properties measurements show that 1 is an antiferromagnet. This work is expected to inspire further investigation of cubic metal-metal bonding, MOF materials with LOS metals, and metalloaromatic theory. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Spectroscopic age and metallicity for a sample of Globular Clusters from Stellar Population Models

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Calderón, P.

    2009-05-01

    We present spectroscopic age and metallicity predictions for a sample of 20 Globular Clusters in the massive E0 galaxy NGC 1407 (data from Cenarro et al. 2007, AJ, 134, 391) and for the Galacic Globular Clusters data from the Library of Integrated Spectra of Galactic Globular Clusters (GGC's) from Schiavon et al. (2005, ApJS, 160, 163) including the widely studied 47 Tuc cluster. Using index-index plots we compared model Single Stellar Populations (SSP's) spectra to the integrated spectra of both samples of Globular Clusters using high resolution line strength indices (Stock, in prep.) and the syntethic SSP's models from P. Coelho (2007, private comm.) as well as the CB07 solar models. For the GC's in NGC1407, the predictions from the syntethic models's with [α /Fe]=0.4 are in good agreement with the results from Cenarro et al. (2007, AJ, 134, 391), taking into account that the dispersion is partially due to the fact that the mean [α/Fe] ratio of the sample is ≈ 0.3 dex, resulting in younger ages and lower metallicities (Thomas et al. 2003, A&A, 401, 429). We observe a bimodal distribution of the Fe4383+ index which is in turn an indicator of metallicity, also seen in Cenarro et al. (2005). The CB07 models predict ages that are widely spread over the plot yielding ages greater than 14 Gyrs. The metallicity derived from these models are very low for almost all the objects (Z < 0.008). The distribution of the GGC's on the syntethic model grid shows a trend in the sense that metal poor clusters are younger than metal rich ones, but this effect might not be real (de Angeli et al. 2005, AJ, 130, 116). For 47 Tuc we estimate an age of ≈ 10 Gyr, and metallicity Z < 0.011 (<[Fe/H]= -0.5) which are both comparable with the values reported in the literature (Carretta et al. 2000; Liu & Chaboyer 2000, ApJ, 544, 818; Schiavon et al. 2002, ApJ, 580, 873; Gratton et al. 2003, A&A, 408, 529).

  19. The changes in small metal cluster size with adsorption Be13Xn, X = H, O, S, Cl and F

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1985-01-01

    The Be-Be and Be-adsorbate distances are optimized for small Be13Xn clusters,s assuming only two independent degrees of freedom. Results for chemisorption into the three-fold hollows are quite similar to those found for small metal clusters on supports. It is predicted that Cl and F will have the same effect on the metal-metal bond lengths, and so will O and S.

  20. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    SciTech Connect

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  1. Tidal Stripping Stellar Substructures Around Four Metal-Poor Globular Clusters in the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color-magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  2. Theory of metal/rare-gas clusters: aspects of open-shell atomic dopants

    NASA Astrophysics Data System (ADS)

    Boatz, J. A.; Hinde, R. J.; Sheehy, J. A.; Langhoff, P. W.

    2003-05-01

    Studies are reported of the structures and vibronic spectra of metal/rare-gas clusters and their ions employing new theoretical methods devised recently for these purposes. Particular attention is addressed to open-shell atomic dopants (B, Al,...), in which cases the theory must include anisotropic (M-Rg) and spin-orbit interactions in the ground states, the avoided crossings of nearly degenerate electronically excited potential energy surfaces, and significant fragmentation following the cluster ionization commonly employed in experimental detection schemes. Detailed computational applications of the theory are reported of AlArN clusters (N = 2 to 54), and comparisons made with the results of multi-photon excitation and ionization measurements. The significantly different structures of the neutral and ionic clusters predicted in these cases, in which Al is largely external to the Ar cluster and the Al^+ ion is inside the cluster, indicates that fragmentation plays a central role in the interpretation of the experiments. The cluster spectra are seen to be highly sensitive to the details of the atomic Ar arrangements around the Al chromophore, and, accordingly, the measurements provide useful spectroscopic probes of the nature and evolution of the Al trapping sites with increasing degree of solvation when the complex electronic and vibrational phenomena underlying the data are appropriately interpreted theoretically.

  3. ENVIRONMENTAL EFFECTS ON THE METAL ENRICHMENT OF LOW-MASS GALAXIES IN NEARBY CLUSTERS

    SciTech Connect

    Petropoulou, V.; Vilchez, J.; Iglesias-Paramo, J.

    2012-04-20

    In this paper, we study the chemical history of low-mass star-forming (SF) galaxies in the local universe clusters Coma, A1367, A779, and A634. The aim of this work is to search for the imprint of the environment on the chemical evolution of these galaxies. Galaxy chemical evolution is linked to the star formation history, as well as to the gas interchange with the environment, and low-mass galaxies are well known to be vulnerable systems to environmental processes affecting both these parameters. For our study we have used spectra from the SDSS-III DR8. We have examined the spectroscopic properties of SF galaxies of stellar masses 10{sup 8}-10{sup 10} M{sub Sun }, located from the core to the cluster's outskirts. The gas-phase O/H and N/O chemical abundances have been derived using the latest empirical calibrations. We have examined the mass-metallicity relation of cluster galaxies, finding well-defined sequences. The slope of these sequences, for galaxies in low-mass clusters and galaxies at large cluster-centric distances, follows the predictions of recent hydrodynamic models. A flattening of this slope has been observed for galaxies located in the core of the two more massive clusters of the sample, principally in Coma, suggesting that the imprint of the cluster environment on the chemical evolution of SF galaxies should be sensitive to both the galaxy mass and the host cluster mass. The H I gas content of Coma and A1367 galaxies indicates that low-mass SF galaxies, located at the core of these clusters, have been severely affected by ram-pressure stripping (RPS). The observed mass-dependent enhancement of the metal content of low-mass galaxies in dense environments seems plausible, according to hydrodynamic simulations. This enhanced metal enrichment could be produced by the combination of effects such as wind reaccretion, due to pressure confinement by the intracluster medium (ICM), and the truncation of gas infall, as a result of the RPS. Thus, the

  4. The Second-Parameter Effect in Metal-Rich Globular Clusters

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.

    1999-01-01

    Recent Hubble Space Telescope (HST) observations have shown that the metal-rich globular clusters (GCs) NGC 6388 and NGC 6441 exhibit a pronounced 2nd parameter effect. Ordinarily metal-rich GCs have only a red horizontal-branch (HB) clump. However, NGC 6388 and NGC 6441 also possess an unexpected population of blue HB stars, indicating that some 2nd parameter is operating in these clusters. Quite remarkably, the HBs in both clusters slope upward with decreasing B -V from the red clump to the top of the blue tail. We review the results of ongoing stellar evolution calculations which indicate (1) that NGC 6388 and NGC 6441 might provide a crucial diagnostic for understanding the origin of the 2nd parameter effect, (2) that differences in age or mass loss along the red-giant branch (RGB) - the two most prominent 2nd parameter candidates - cannot explain the HB morphology of these GCs, and (3) that noncanonical effects involving an enhanced helium abundance or rotation can produce upward sloping HBs. Finally we suggest a new metal-depletion scenario which might help to resolve a baffling conundrum concerning the surface gravities of the blue HB stars in these clusters.

  5. Excited state reactions of metals in clusters: pluridimensional harpoon and solvation effects.

    PubMed

    Briant, M; Gaveau, M A; Fournier, P R; Mestdagh, J M; Visticot, J P; Soep, B

    2001-01-01

    Excited state reactions of metals produce electronically excited products efficiently, as revealed by studies performed both in the gas phase and in free Van der Waals complexes. The reaction mechanism is assigned to an excited state charge transfer from the metal to the molecular reactant (i.e. a harpoon mechanism). The present work uses the well established cluster isolated chemical reaction (CICR) technique and addresses these processes when the metal ... molecule Van der Waals pair is deposited at the surface of a large argon cluster. Such work is aimed at investigating the effect of the cluster substrate on the preparation and dynamics of the reaction. We have revisited the pluridimensional character of the harpoon reaction in these systems. More specifically, we studied the reaction of excited calcium with HBr near the calcium resonance line at 422.7 nm, forming CaBr in the A and B states. As in previous Van der Waals experiments, we could explore the dynamics of the reaction by recording action spectra. These spectra exhibit noticeable differences from those observed for unsupported Ca...HBr complexes. In particular the bending movement of the Ca...HBr complex which gives access to the transition state of the reaction is partly hindered by the presence of the argon cluster.

  6. LOW-METALLICITY YOUNG CLUSTERS IN THE OUTER GALAXY. I. Sh 2-207

    SciTech Connect

    Yasui, Chikako; Kobayashi, Naoto; Izumi, Natsuko; Tokunaga, Alan T.; Saito, Masao

    2016-03-15

    To study star formation in low-metallicity environments ([M/H] ∼ −1 dex), we obtained deep near-infrared (NIR) images of Sh 2-207 (S207), which is an H ii region in the outer Galaxy with a spectroscopically determined metallicity of [O/H] ≃ −0.8 dex. We identified a young cluster in the western region of S207 with a limiting magnitude of K{sub S} = 19.0 mag (10σ) that corresponds to a mass detection limit of ≲0.1 M{sub ⊙} and enables the comparison of star-forming properties under low metallicity with those of the solar neighborhood. From the fitting of the K-band luminosity function (KLF), the age and distance of the S207 cluster are estimated at 2–3 Myr and ∼4 kpc, respectively. The estimated age is consistent with the suggestion of small extinctions of stars in the cluster (A{sub V} ∼ 3 mag) and the non-detection of molecular clouds. The reasonably good fit between the observed KLF and the model KLF suggests that the underlying initial mass function (IMF) of the cluster down to the detection limit is not significantly different from the typical IMFs in the solar metallicity. From the fraction of stars with NIR excesses, a low disk fraction (<10%) in the cluster with a relatively young age is suggested, as we had previously proposed.

  7. A Strong Donor-Acceptor System Based on a Metal Chalcogenide Cluster and Porphyrin.

    PubMed

    Xu, Jing; Xue, Li-Jun; Hou, Jin-Le; Yin, Zhong-Nan; Zhang, Xuan; Zhu, Qin-Yu; Dai, Jie

    2017-07-17

    Although great progress has been made for charge transfer (CT) compounds of various organic donor-acceptor systems, no CT compounds containing both inorganic chalcogenide cluster anions and organic porphyrin cations have been reported. Herein, a germanium chalcogenide cluster (Ge4S10(4-)) is chosen as an electron donor and a methylated tetrakis(4-pyridyl)porphyrin (5,10,15,20-tetrakis(N-methyl-4-pyridyl)porphyrin, TMPyP) is selected as an electron acceptor to create chalcogenide cluster-porphyrin CT compounds (TMPyP-Ge4S10)·5H2O (1) and (MnTMPyP-Ge4S10)·13H2O (2). Their crystal structures have been characterized by single-crystal X-ray diffraction. Compound 1 is an ionic CT salt assembled through interion interactions, and compound 2 is a neutral CT dyad formed by metal-ligand axial coordination of the chalcogenide cluster with manganese porphyrin. The strong charge transfer properties are revealed by electronic spectra, theoretical calculations, (1)H NMR, and ESR. The CT intensity of the chalcogenide cluster-porphyrin system can be modulated by metalation. The fluorescence and photocurrent response properties of 1 and 2 are related to the CT intensity.

  8. On the lithium dip in the metal poor open cluster NGC 2243

    SciTech Connect

    François, P.; Pasquini, L.; Palsa, R.; Biazzo, K.; Bonifacio, P.

    2014-05-02

    Lithium is a key element for studying the mixing mechanisms operating in stellar interiors. It can also be used to probe the chemical evolution of the Galaxy and the Big Bang nucleosynthesis. Measuring the abundance of Lithium in stars belonging to Open Clusters (hereafter OC) allows a detailed comparison with stellar evolutionary models. NGC 2243 is particularly interesting thanks to its relative low metallicity ([Fe/H]=−0.54 ± 0.10 dex). We performed a detailed analysis of high-resolution spectra obtained with the multi-object facility FLAMES at the VLT 8.2m telescope. Lithium abundance has been measured in 27 stars. We found a Li dip center of 1.06 M{sub ⊙}, which is significantly smaller than that observed in solar metallicity and metal-rich clusters. This finding confirms and strengthens the conclusion that the mass of the stars in the Li dip strongly depends on stellar metallicity. The mean Li abundance of the cluster is log n(Li) = 2.70 dex, which is substantially higher than that observed in 47 Tue. We derived an iron abundance of [Fe/H]=−0.54±0.10 dex for NGC 2243, in agreement (within the errors) with previous findings.

  9. Interfacial Clustering-Triggered Fluorescence-Phosphorescence Dual Solvoluminescence of Metal Nanoclusters.

    PubMed

    Yang, Taiqun; Dai, Shan; Yang, Songqiu; Chen, Li; Liu, Pengcheng; Dong, Kailong; Zhou, Jiasheng; Chen, Yuting; Pan, Haifeng; Zhang, Sanjun; Chen, Jinquan; Zhang, Kun; Wu, Peng; Xu, Jianhua

    2017-09-07

    The fluorescence-phosphorescence dual solvoluminescence (SL) of water-soluble metal nanoclusters (NCs) at room temperature was successfully achieved by a simple solvent-stimulated strategy. The strong interaction between carboxylate ligands and the metal core at the nanoscale interface not only induces rigid conformations of carbonyl groups but also affords a perfect carbonyl cluster that acts as an exact chromophore of metal NCs for aggregation-induced emission (AIE) mechanics. The clustering of carbonyl groups bearing on the polymer backbone chain is promoted by newly discovered n → π* noncovalent interactions. The efficient delocalization of electrons in overlapped C═O double bonds between neighboring carbonyl groups triggered by strong n → π* interactions in the polymer cluster accounts for its unique SL properties, especially the abnormal phosphorescence. This was further confirmed by controlled experiments for the presence of intersystem crossing (ISC) transitions. The results provide novel insights for understanding the complex SL process and open up a new way to study the inherent mechanism of SL by broadening the application of metal NCs.

  10. Cluster chemical reactions at mineral–liquid interface in metal leaching by photo-electroactive water-and-gas emulsions

    NASA Astrophysics Data System (ADS)

    Sekisov, AG

    2017-02-01

    Possibility of cluster (inter-cluster) reactions at the interface of mineral and liquid phases in leaching of metals mainly in dispersed cluster form by photo-electrically activated water-and-gas emulsions is theoretically evaluated. The governing role of active clusters of water and clustered hydrate envelopes generated under dissolution of active oxygen forms is determined. The scope of the study covers possible processes of transformation of clustered gold in mineral substance under direct interaction with the components of the active water-and-gas emulsions.

  11. Photon-Induced Thermal Desorption of CO from Small Metal-Carbonyl Clusters

    NASA Astrophysics Data System (ADS)

    Lüttgens, G.; Pontius, N.; Bechthold, P. S.; Neeb, M.; Eberhardt, W.

    2002-02-01

    Thermal CO desorption from photoexcited free metal-carbonyl clusters has been resolved in real time using two-color pump-probe photoelectron spectroscopy. Sequential energy dissipation steps between the initial photoexcitation and the final desorption event, e.g., electron relaxation and thermalization, have been resolved for Au2(CO)- and Pt2(CO)-5. The desorption rates for the two clusters differ considerably due to the different numbers of vibrational degrees of freedom. The unimolecular CO-desorption thresholds of Au2(CO)- and Pt2(CO)-5 have been approximated by means of a statistical Rice-Ramsperger-Kassel calculation using the experimentally derived desorption rate constants.

  12. Plasmon single- and multi-quantum excitation in free metal clusters as seen by photoelectron spectroscopy

    SciTech Connect

    Andersson, T.; Zhang, C.; Rosso, A.; Bradeanu, I.; Svensson, S.; Bjoerneholm, O.; Legendre, S.; Maartensson, N.; Canton, S. E.; Tchaplyguine, M.; Oehrwall, G.; Sorensen, S. L.

    2011-03-07

    Plasmons are investigated in free nanoscale Na, Mg, and K metal clusters using synchrotron radiation-based x-ray photoelectron spectroscopy. The core levels for which the response from bulk and surface atoms can be resolved are probed over an extended binding energy range to include the plasmon loss features. In all species the features due to fundamental plasmons are identified, and in Na and K also those due to either the first order plasmon overtones or sequential plasmon excitation are observed. These features are discussed in view of earlier results for planar macroscopic samples and free clusters of the same materials.

  13. A theoretical study of alkali metal atomic clusters: From Lin to Csn (n = 2-8)

    NASA Astrophysics Data System (ADS)

    Florez, Elizabeth; Fuentealba, Patricio

    A theoretical study of the electronic structure of the first members of the alkali metal atomic clusters series Lin to Csn (n = 2-8) has been done. The geometries of some isomers of the neutral, positive, and negative charged clusters have been determined. Some important properties have also been calculated: atomic binding energies, vertical and adiabatic ionization potentials, vertical and adiabatic electron affinities, static dipole polarizabilities, and energy gaps. Whenever possible they have been compared with experimental values yielding a reasonable agreement which supports some new values as reliable predictions. The data have been discussed in light of the periodic table of elements trends.

  14. Model studies in catalysis with uhv-deposited metal particles and clusters

    NASA Technical Reports Server (NTRS)

    Poppa, H.

    1984-01-01

    Small supported metal particles have become a popular area of intense research interest, and important contributions to the considered problems are being made from the fields of uhv technology, thin film physics surface science, and surface and thin film instrumentation. Attention is given to insulating supports, particulate metal deposits and their properties, metal/support interactions and gas exposures, and integrated experimental approaches. It is concluded that major contributions to the field of model catalysis should be forthcoming in the near future from uhv-based methods of research. Catalysis and catalysis-related problem areas expected to benefit from advanced model studies include catalyst preparation processing, sintering mechanisms for metals and alloys, separation of initial and final state effects for supported clusters, and the influence of particle and/or support morphologies.

  15. Age and metallicity effects in single stellar populations: application to M 31 clusters.

    NASA Astrophysics Data System (ADS)

    de Freitas Pacheco, J. A.

    1997-03-01

    We have recently calculated (Borges et al. 1995AJ....110.2408B) integrated metallicity indices for single stellar populations (SSP). Effects of age, metallicity and abundances were taken into account. In particular, the explicit dependence of the indices Mg_2_ and NaD respectively on the ratios [Mg/Fe] and [Na/Fe] was included in the calibration. We report in this work an application of those models to a sample of 12 globular clusters in M 31. A fitting procedure was used to obtain age, metallicity and the [Mg/Fe] ratio for each object, which best reproduce the data. The mean age of the sample is 15+/-2.8Gyr and the mean [Mg/Fe] ratio is 0.35+/-0.10. These values and the derived metallicity spread are comparable to those found in galactic counterparts.

  16. Bond-valence model for metal cluster compounds. II. Matrix effect.

    PubMed

    Levi, Elena; Aurbach, Doron; Isnard, Olivier

    2013-10-01

    The bond-valence model was commonly considered as inappropriate to metal cluster compounds, but recently it was shown that the model provides unique information on the lattice strains and stabilization mechanisms in (TM)6-chalcohalides, Mx(TM)6Ly (TM = transition metal, L = the chalcogen and/or halogen ligands; M = counter-cation). The previous study was mainly devoted to the non-uniform distribution of the anion valences (bond-valence sums) around clusters. This and the previous paper are focused on two additional phenomena: (i) a steric conflict between counter-cations and the cluster-ligand framework resulting in `common' lattice strains [previous paper: Levi et al. (2013). Acta Cryst. B69, 419-425], and (ii) steric conflict between the small (TM)6-cluster and the large coordination polyhedron around the cluster or so-called matrix effect (this paper). It was shown that both phenomena can be well described by changes in the bond-valence parameters. This paper demonstrates that the matrix effect results in high strains in the TM-L bonds in most of the (TM)6-chalcohalides (TM = Nb, Mo, W and Re). In spite of this, the violations for the total TM valence are minimal, because the cluster stretching is fully or partially compensated by compression of the TM-L bonds. As a result, the influence of the matrix effect on the material stability is rather positive: it decreases the volume of the structural units and in many cases ensures a more favorable distribution of the bond valences around TM atoms, stabilizing the cluster compound.

  17. Early Transition Metal Oxides as Catalysts: Crossing Scales from Clusters to Single Crystals to Functioning Materials

    SciTech Connect

    Lai-Sheng Wang

    2009-07-07

    The overall goal of this program is to investigate the electronic structure and chemical bonding of early transition metal oxide clusters and use them as well-defined molecular models to obtain insight into properties and mechanisms of oxide catalysts, as well as to provide accurate spectroscopic and molecular information to verify theoretical methods used to predict materials properties. A laser vaporization cluster source is used to produce metal oxide clusters with different sizes, structures, and compositions. Well-defined inorganic polyoxometalate clusters in solution are transported in the gas phase using electrospray. Two state-of-the-art photoelectron spectroscopy apparatuses are used to interrogate the oxide clusters and polyoxometalate anions in the gas phase to obtain spectroscopic and electronic structure information. The experimental effort is assisted by theoretical calculations to understanding the structures, chemical bonding, and catalytical properties of the transition metal oxide clusters. The research approach combines novel and flexible experimental techniques and advanced theoretical/computational methodologies and seeks molecular-level information to aiding the design of new catalysts, as well as mechanistic understanding. We have focused on the investigation of tungsten oxide clusters containing three W atoms: W{sub 3}O{sub x}{sup -} (x = 7-11). A number of interesting findings have been made. We observed that the oxygen-poor W{sub 3}O8 cluster contains a localized W{sup 4+} center, which can be used as a molecular model for O-deficient defect sites. A chemisorption energy was obtained through density functional calculations for W{sub 3}O8 + O{sub 2} {yields} W{sub 3}O{sub 10} as -78 kcal/mol. We further found that the neutral stoichiometric W{sub 2}O{sub 6} and W{sub 3}O{sub 9} clusters do not react with O{sub 2} and they only form physi-sorbed complexes, W{sub 2}O{sub 6}(O{sub 2}) and W{sub 3}O{sub 9}(O{sub 2}). However, the negatively

  18. Probing the bonding of CO to heteronuclear group 4 metal-nickel clusters by photoelectron spectroscopy.

    PubMed

    Zou, Jinghan; Xie, Hua; Yuan, Qinqin; Zhang, Jumei; Dai, Dongxu; Fan, Hongjun; Tang, Zichao; Jiang, Ling

    2017-04-12

    A series of heterobinuclear group 4 metal-nickel carbonyls MNi(CO)n(-) (M = Ti, Zr, Hf; n = 3-7) has been generated via a laser vaporization supersonic cluster source and characterized by mass-selected photoelectron velocity-map imaging spectroscopy. Quantum chemical calculations have been carried out to elucidate the geometric and electronic structures and support the spectral assignments. The n = 3 cluster is determined to be capable of simultaneously accommodating three different types of CO bonds (i.e., side-on-bonded, bridging, and terminal modes), resulting in a MNi[η(2)(μ2-C, O)](μ-CO)(CO)(-) structure, which represents the smallest metal carbonyl with the involvement of all the main modes of metal-CO coordination to date. The building block of three bridging CO molecules is favored at n = 4, the structure of which persists up to n = 7. The additional CO ligands are bonded terminally to the metal atoms. The present findings provide important new insight into the structure and bonding mechanisms of CO molecules with heteronuclear transition metals, which would have important implications for understanding chemisorbed CO molecules on alloy surfaces.

  19. AGES AND METALLICITIES OF CLUSTER GALAXIES IN A779 USING MODIFIED STROeMGREN PHOTOMETRY

    SciTech Connect

    Sreedhar, Yuvraj Harsha; Rakos, Karl D.; Hensler, Gerhard; Zeilinger, Werner W.; Odell, Andrew P.

    2012-03-01

    In the quest for the formation and evolution of galaxy clusters, Rakos and co-workers introduced a spectrophotometric method using modified Stroemgren photometry, but with the considerable debate toward the project's abilities, we re-introduce the system by testing for the repeatability of the modified Stroemgren colors and compare them with the Stroemgren colors, and check for the reproducibility of the ages and metallicities (using the Principle Component Analysis (PCA) technique and the GALEV models) for the six common galaxies in all three A779 data sets. As a result, a fair agreement between two filter systems was found to produce similar colors (with a precision of 0.09 mag in (uz - vz), 0.02 mag in (bz - yz), and 0.03 mag in (vz - vz)) and the generated ages and metallicities are also similar (with an uncertainty of 0.36 Gyr and 0.04 dex from PCA and 0.44 Gyr and 0.2 dex using the GALEV models). We infer that the technique is able to relieve the age-metallicity degeneracy by separating the age effects from the metallicity effects, but it is still unable to completely eliminate it. We further extend this paper to re-study the evolution of galaxies in the low mass, dynamically poor A779 cluster (as it was not elaborately analyzed by Rakos and co-workers in their previous work) by correlating the luminosity (mass), density, and radial distance with the estimated age, metallicity, and the star formation history. Our results distinctly show the bimodality of the young, low-mass, metal-poor population with a mean age of 6.7 Gyr ({+-} 0.5 Gyr) and the old, high-mass, metal-rich galaxies with a mean age of 9 Gyr ({+-} 0.5 Gyr). The method also observes the color evolution of the blue cluster galaxies to red (Butcher-Oemler phenomenon), and the downsizing phenomenon. Our analysis shows that modified Stroemgren photometry is very well suited for studying low- and intermediate-z clusters, as it is capable of observing deeper with better spatial resolution at

  20. Selective self-assembly of molecular clusters with designed sizes on metal surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Li, Qing; Fuentes-Cabrera, Miguel; Sumpter, Bobby G.; Baddorf, Arthur P.; Pan, Minghu

    2014-03-01

    The self-assembly of ``magic'' molecular clusters on various substrates provides a new arena for studies of surface nanocatalysis and molecular electronics. Here we present the self-assembly of phenylacetylene molecules on Cu(100) by a combined low-temperature STM and in-depth density functional theory investigation. We observe the molecules form distinct tetramer clusters on Cu(100) at 40 K. Each cluster has a four-fold symmetry and consists of four molecules. A delicate balance of intramolecular and dipole-dipole interactions between clusters maintains this magic tetramer configuration on Cu(100). The strong interaction between the molecules and the copper surface creates an anchor at each adsorption site. Through comparison with our previous observed hexamer (six-molecule) clusters on Au(111), we conclude that the epitaxial relationship between the molecules and metal surfaces is crucial in defining magic numbers of surface-supported molecular clusters under weak intermolecular interaction. This research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  1. Oxidation induced ionization and reactions of metal carbide clusters (Nb, Zr, V, Ta)

    NASA Astrophysics Data System (ADS)

    Deng, H. T.; Kerns, K. P.; Bell, R. C.; Castleman, A. W.

    1997-11-01

    Following our recent report of the oxidation induced formation of Ti8C12+ (H.T. Deng, K.P. Kerns, and A.W. Castleman, Jr., J. Chem. Phys. 104 (1996) 4862), the oxidation induced ionization of niobium and zirconium carbide clusters are studied using a triple quadrupole mass spectrometer coupled with a laser induced plasma reaction source. It was found that reactions of both of these neutral carbide clusters with dioxygen leads to formation of carbide ions. The ion product distributions show that zirconium carbide clusters mainly take the form of Met--Car cations, but niobium carbide clusters favor a cubic-like crystalline pattern. Furthermore, reactions of mass-selected NbxCy+ with dioxygen result in a sequential loss of C2 units from NbxCy+, and leads to formation of Nbx+ and NbxC+ depending on y being an even or odd number. However, NbxCy+ shows comparably low reactivity towards nitrous oxide through a single oxygen abstraction mechanism. In comparison with the reaction products of VxCy+ with dioxygen, the complementary information obtained in the present study suggests that the C2 unit is a basic building block for formation of small early transition metal carbide clusters. The oxidation induced ionization mechanisms are also discussed in relation with the stability, ionization potentials, and structures of the clusters.

  2. Catalytic dehydrogenation of alcohol over solid-state molybdenum sulfide clusters with an octahedral metal framework

    SciTech Connect

    Kamiguchi, Satoshi; Okumura, Kazu; Nagashima, Sayoko; Chihara, Teiji

    2015-12-15

    Graphical abstract: - Highlights: • Solid-state molybdenum sulfide clusters catalyzed the dehydrogenation of alcohol. • The dehydrogenation proceeded without the addition of any oxidants. • The catalytic activity developed when the cluster was activated at 300–500 °C in H{sub 2}. • The Lewis-acidic molybdenum atom and basic sulfur ligand were catalytically active. • The clusters function as bifunctional acid–base catalysts. - Abstract: Solid-state molybdenum sulfide clusters with an octahedral metal framework, the superconducting Chevrel phases, are applied to catalysis. A copper salt of a nonstoichiometric sulfur-deficient cluster, Cu{sub x}Mo{sub 6}S{sub 8–δ} (x = 2.94 and δ ≈ 0.3), is stored in air for more than 90 days. When the oxygenated cluster is thermally activated in a hydrogen stream above 300 °C, catalytic activity for the dehydrogenation of primary alcohols to aldehydes and secondary alcohols to ketones develops. The addition of pyridine or benzoic acid decreases the dehydrogenation activity, indicating that both a Lewis-acidic coordinatively unsaturated molybdenum atom and a basic sulfur ligand synergistically act as the catalytic active sites.

  3. MD simulation of cluster-surface impacts for metallic phases: soft landing, droplet spreading and implantation

    NASA Astrophysics Data System (ADS)

    Kholmurodov, Kholmirzo; Puzynin, Igor; Smith, William; Yasuoka, Kenji; Ebisuzaki, Toshikazu

    2001-11-01

    An optimized version of the DL_POLY molecular dynamics simulation code [K. Kholmurodov, W. Smith, K. Yasuoka, T. Ebisuzaki, Comput. Phys. Commun. 125 (2000) 167-192] has been used to study the cluster-surface impact processes for metallic phases. The interaction of an energetic cluster of atoms with a solid surface has been investigated using the Finnis-Sinclair many-body potential. The characteristics of the cluster-surface collisions were studied in a wide range of the cluster impact energies ( Einc=0.035-3.5 eV/atom). Modification of the surface, exposed to the cluster-beams, was studied by monitoring the molecular dynamics configurations of the system in real time. The density and temperature distributions in the system under the energetic irradiations has been investigated in detail. The three major channels of the impact yield (viz., soft landing, droplet spreading and implantation) were distinguished and estimated. Based on the density and temperature distributions data the low energy cluster-surface impact has been analyzed and a novel interpretation of droplet spreading process is given.

  4. First-principles studies on graphene-supported transition metal clusters

    SciTech Connect

    Sahoo, Sanjubala Khanna, Shiv N.; Gruner, Markus E.; Entel, Peter

    2014-08-21

    Theoretical studies on the structure, stability, and magnetic properties of icosahedral TM{sub 13} (TM = Fe, Co, Ni) clusters, deposited on pristine (defect free) and defective graphene sheet as well as graphene flakes, have been carried out within a gradient corrected density functional framework. The defects considered in our study include a carbon vacancy for the graphene sheet and a five-membered and a seven-membered ring structures for graphene flakes (finite graphene chunks). It is observed that the presence of defect in the substrate has a profound influence on the electronic structure and magnetic properties of graphene-transition metal complexes, thereby increasing the binding strength of the TM cluster on to the graphene substrate. Among TM{sub 13} clusters, Co{sub 13} is absorbed relatively more strongly on pristine and defective graphene as compared to Fe{sub 13} and Ni{sub 13} clusters. The adsorbed clusters show reduced magnetic moment compared to the free clusters.

  5. Trends in methanol decomposition on transition metal alloy clusters from scaling and Brønsted–Evans–Polanyi relationships

    SciTech Connect

    Mehmood, Faisal; Rankin, Rees B.; Greeley, Jeffrey; Curtiss, Larry A.

    2012-05-15

    A combination of first principles Density Functional Theory calculations and thermochemical scaling relationships are employed to estimate the thermochemistry and kinetics of methanol decomposition on unsupported subnanometer metal clusters. The approach uses binding energies of various atomic and molecular species, determined on the pure metal clusters, to develop scaling relationships that are then further used to estimate the methanol decomposition thermodynamics for a series of pure and bimetallic clusters with four atoms per cluster. Additionally, activation energy barriers are estimated from Brønsted–Evans–Polanyi plots relating transition and final state energies on these clusters. The energetic results are combined with a simple, microkinetically-inspired rate expression to estimate reaction rates as a function of important catalytic descriptors, including the carbon and atomic oxygen binding energies to the clusters. Finally, based on these analyses, several alloy clusters are identified as promising candidates for the methanol decomposition reaction.

  6. On the Metallicity Distribution of the Peculiar Globular Cluster M22

    NASA Astrophysics Data System (ADS)

    Lee, Jae-Woo

    2016-10-01

    In our previous study, we showed that the peculiar globular cluster (GC) M22 contains two distinct stellar populations, namely the Ca-w and Ca-s groups, which have different physical properties, chemical compositions, spatial distributions, and kinematics. We proposed that M22 was most likely formed via a merger of two GCs with heterogeneous metallicities in a dwarf galaxy environment and then later accreted to our Galaxy. In their recent study, Mucciarelli et al. claimed that M22 is a normal monometallic globular cluster without any perceptible metallicity spread among the two groups of stars, which challenges our results and those of others. We devise new strategies for the local thermodynamic equilibrium abundance analysis of red giant branch stars in GCs and show that there exists a spread in the iron abundance distribution in M22.

  7. Charging of metal clusters in helium droplets exposed to intense femtosecond laser pulses.

    PubMed

    Döppner, T; Diederich, Th; Przystawik, A; Truong, N X; Fennel, Th; Tiggesbäumker, J; Meiwes-Broer, K-H

    2007-09-07

    We review the strong field (10(13)-10(16) W cm(-2)) laser excitation of metal clusters (Cd(N), Ag(N) and Pb(N)) embedded in He nanodroplets. Plasmon enhanced ionization obtained by stretching the laser pulses to several hundreds of femtoseconds or by using dual pulses with a suitable optical delay leads to a Coulomb explosion of highly charged atomic ions. The charging dynamics can be well described by corresponding semiclassical Vlasov simulations. The influence of the He environment on the ionization process and on the final charge distribution is discussed. Evidence is found that He(2+) is generated in collisions with highly charged metal ions. In contrast, singly and doubly charged ions with low recoil energies induce the formation of He snowballs with a distinct shell structure around the ion. Laser intensity thresholds for snowball formation and for the ionization of clusters are investigated by applying intensity selective scanning.

  8. VizieR Online Data Catalog: Metallicity of the γ Vel cluster (Spina+, 2014)

    NASA Astrophysics Data System (ADS)

    Spina, L.; Randich, S.; Palla, F.; Sacco, G. G.; Magrini, L.; Franciosini, E.; Morbidelli, L.; Prisinzano, L.; Alfaro, E. J.; Biazzo, K.; Frasca, A.; Gonzalez Hernandez, J. I.; Sousa, S. G.; Adibekyan, V.; Delgado-Mena, E.; Montes, D.; Tabernero, H.; Klutsch, A.; Gilmore, G.; Feltzing, S.; Jeffries, R. D.; Micela, G.; Vallenari, A.; Bensby, T.; Bragaglia, A.; Flaccomio, E.; Koposov, S.; Lanzafame, A. C.; Pancino, E.; Recio-Blanco, A.; Smiljanic, R.; Costado, M. T.; Damiani, F.; Hill, V.; Hourihane, A.; Jofre, P.; de Laverny, P.; Masseron, T.; Worley, C.

    2014-05-01

    Atmospheric parameters, radial velocities, lithium equivalent widths are products of the Gaia-ESO Survey that were used for our membership analysis of the 48 UVES targets observed in the Gamma Velorum fields. Also photometry from Jeffries et al. (2009MNRAS.393..538J) has been used. Iron abundances of these stars have been used to determine the metal content of the cluster. We also discussed the metallicity derived through the iron abundances of the 208 cluster members targeted with GIRAFFE and identified by Jeffries et al. (2014A&A...563A..94J). Stellar parameters of 39 stars targeted by both UVES and GIRAFFE have been used to check the quality of the data. (4 data files).

  9. Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

    NASA Astrophysics Data System (ADS)

    Behera, Swayamprabha; Joseph, Jorly; Jena, Purusottam

    2011-03-01

    Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MCl n , M = Sc,Y, La; n = 1--5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl 5 . The electron affinities of MCl n (n = 1--3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl 4 , YCl 4 and LaCl 4 , respectively and remain high for n = 5. MCl n , (n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data

  10. Electron affinities of d1 transition metal chloride clusters and onset of super halogen behavior

    NASA Astrophysics Data System (ADS)

    Joseph, Jorly; Behera, Swayamprabha; Jena, Purusottam

    2010-09-01

    Geometry, electronic structure, and electron affinity of d1 transition metal chloride clusters (MCl n, M = Sc, Y, La; n = 1-5) have been calculated using density functional theory. Chlorine atoms are chemically bound in all cases except for MCl 5. The electron affinities of MCl n ( n = 1-3) are small and increase only marginally as a function of n until the valence of the metal atom is consumed. Beyond this, they rise sharply and reach a value of 5.96, 6.03 and 5.90 eV for ScCl 4, YCl 4 and LaCl 4, respectively and remain high for n = 5. MCl n, ( n = 4,5) clusters, therefore, behave as superhalogens. Results are compared with available experimental data.

  11. Electrospray Ionization Mass Spectrometry: From Cluster Ions to Toxic metal Ions in Biology

    SciTech Connect

    Lentz, Nicholas B.

    2007-01-01

    This dissertation focused on using electrospray ionization mass spectrometry to study cluster ions and toxic metal ions in biology. In Chapter 2, it was shown that primary, secondary and quarternary amines exhibit different clustering characteristics under identical instrument conditions. Carbon chain length also played a role in cluster ion formation. In Chapters 3 and 4, the effects of solvent types/ratios and various instrumental parameters on cluster ion formation were examined. It was found that instrument interface design also plays a critical role in the cluster ion distribution seen in the mass spectrum. In Chapter 5, ESI-MS was used to investigate toxic metal binding to the [Gln11]-amyloid β-protein fragment (1-16). Pb and Cd bound stronger than Zn, even in the presence of excess Zn. Hg bound weaker than Zn. There are endless options for future work on cluster ions. Any molecule that is poorly ionized in positive ion mode can potentially show an increase in ionization efficiency if an appropriate anion is used to produce a net negative charge. It is possible that drug protein or drug/DNA complexes can also be stabilized by adding counter-ions. This would preserve the solution characteristics of the complex in the gas phase. Once in the gas phase, CID could determine the drug binding location on the biomolecule. There are many research projects regarding toxic metals in biology that have yet to be investigated or even discovered. This is an area of research with an almost endless future because of the changing dynamics of biological systems. What is deemed safe today may show toxic effects in the future. Evolutionary changes in protein structures may render them more susceptible to toxic metal binding. As the understanding of toxicity evolves, so does the demand for new toxic metal research. New instrumentation designs and software make it possible to perform research that could not be done in the past. What was undetectable yesterday will

  12. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J.; Usher, Christopher; Forbes, Duncan A.; Strader, Jay

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  13. The grape cluster, metal particle 63344,1. [in lunar coarse fines

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Axon, H. J.; Agrell, S. O.

    1975-01-01

    The grape cluster metal particle 63344,1 found in lunar coarse fines is examined using the scanning electron microscope (SEM), electron microprobe, and an optical microscope. This metal particle is approximately 0.5 cm in its largest dimension and consists of hundreds of metallic globules welded together to form a structure somewhat like a bunch of grapes. Electron microprobe analysis for Fe, Ni, Co, P, and S in the metal was carried out using wavelength dispersive detectors. No primary solidification structure is observed in the globules, and the particle is slow cooled from the solidification temperature (nearly 1300 C) taking days to probably months to reach 600 C. Two mechanisms for the formation of globules are proposed. One mechanism involves the primary impact of an iron meteorite which produces a metallic liquid and vapor phase. The second mechanism involves the formation of a liquid pool of metal after impact of an iron meteorite projectile followed by a secondary impact in the liquid metal pool.

  14. Thermal Stabilization of Metal-Organic Framework-Derived Single-Site Catalytic Clusters through Nanocasting.

    PubMed

    Malonzo, Camille D; Shaker, Sammy M; Ren, Limin; Prinslow, Steven D; Platero-Prats, Ana E; Gallington, Leighanne C; Borycz, Joshua; Thompson, Anthony B; Wang, Timothy C; Farha, Omar K; Hupp, Joseph T; Lu, Connie C; Chapman, Karena W; Myers, Jason C; Penn, R Lee; Gagliardi, Laura; Tsapatsis, Michael; Stein, Andreas

    2016-03-02

    Metal-organic frameworks (MOFs) provide convenient systems for organizing high concentrations of single catalytic sites derived from metallic or oxo-metallic nodes. However, high-temperature processes cause agglomeration of these nodes, so that the single-site character and catalytic activity are lost. In this work, we present a simple nanocasting approach to provide a thermally stable secondary scaffold for MOF-based catalytic single sites, preventing their aggregation even after exposure to air at 600 °C. We describe the nanocasting of NU-1000, a MOF with 3 nm channels and Lewis-acidic oxozirconium clusters, with silica. By condensing tetramethylorthosilicate within the NU-1000 pores via a vapor-phase HCl treatment, a silica layer is created on the inner walls of NU-1000. This silica layer provides anchoring sites for the oxozirconium clusters in NU-1000 after the organic linkers are removed at high temperatures. Differential pair distribution functions obtained from synchrotron X-ray scattering confirmed that isolated oxozirconium clusters are maintained in the heated nanocast materials. Pyridine adsorption experiments and a glucose isomerization reaction demonstrate that the clusters remain accessible to reagents and maintain their acidic character and catalytic activity even after the nanocast materials have been heated to 500-600 °C in air. Density functional theory calculations show a correlation between the Lewis acidity of the oxozirconium clusters and their catalytic activity. The ability to produce MOF-derived materials that retain their catalytic properties after exposure to high temperatures makes nanocasting a useful technique for obtaining single-site catalysts suitable for high-temperature reactions.

  15. NGC 6067: a young and massive open cluster with high metallicity

    NASA Astrophysics Data System (ADS)

    Alonso-Santiago, J.; Negueruela, I.; Marco, A.; Tabernero, H. M.; González-Fernández, C.; Castro, N.

    2017-08-01

    NGC 6067 is a young open cluster hosting the largest population of evolved stars among known Milky Way clusters in the 50-150 Ma age range. It thus represents the best laboratory in our Galaxy to constrain the evolutionary tracks of 5-7 M⊙ stars. We have used high-resolution spectra of a large sample of bright cluster members (45), combined with archival photometry, to obtain accurate parameters for the cluster as well as stellar atmospheric parameters. We derive a distance of 1.78 ± 0.12 kpc, an age of 90 ± 20 Ma and a tidal radius of 14.8^{+6.8}_{-3.2} arcmin. We estimate an initial mass above 5700 M⊙, for a present-day evolved population of two Cepheids, two A supergiants and 12 red giants with masses ≈6 M⊙. We also determine chemical abundances of Li, O, Na, Mg, Si, Ca, Ti, Ni, Rb, Y and Ba for the red clump stars. We find a supersolar metallicity, [Fe/H] = +0.19 ± 0.05, and a homogeneous chemical composition, consistent with the Galactic metallicity gradient. The presence of a Li-rich red giant, star 276 with A(Li) = 2.41, is also detected. An overabundance of Ba is found, supporting the enhanced s-process. The ratio of yellow to red giants is much smaller than 1, in agreement with models with moderate overshooting, but the properties of the cluster Cepheids do not seem consistent with current Padova models for supersolar metallicity.

  16. The ODD Old, Super-Metal-Rich Open Cluster, NGC 6791

    NASA Astrophysics Data System (ADS)

    Boesgaard, Ann Merchant; Lum, Michael G.; Deliyannis, Constantine P.

    2017-03-01

    We report on the composition of turn-off stars in the intriguing open cluster, NGC 6791, which is old, but super-metal-rich using Keck/HIRES spectra. We find [Fe/H] = +0.30 +/-0.02[O/Fe]n -0.06 +/-0.02,[Mg/Fe], [Si/Fe], [Ca/Fe], and [Ti/Fe] near solar and the two Fe-peak elements, Cr and Ni, are consistent with Fe.

  17. Precipitation of Ordered Phases in Metallic Solid Solutions: A Synergistic Clustering and Ordering Process (Preprint)

    DTIC Science & Technology

    2011-07-01

    of such concurrent clustering and ordering processes in metallic solid solutions including Fe-Al [4], Ni-Al [5,6], Ni-Ti [7,8], and Cu -Ti [9,10...ordering reaction to take place. The proposition is that since the Cu -15Ni-8Sn alloy composition cannot undergo congruent ordering, spinodal...interpretation of their results. For example, Wendt and Hassan noted from [14] that in samples of the quenched alloy that have been briefly aged

  18. A Search For Planets in the Metal-Rich Open Cluster Praesepe

    NASA Astrophysics Data System (ADS)

    White, Russel

    The most promising way to distinguish between competing theories of planet formation and subsequent migration is to find and determine the basic properties of short period (< 1 yr) planets with well-determined ages younger than 1 billion years. Open clusters are the most promising locations to do this, but disappointingly no main sequence open cluster stars are known to harbor planets. This is primarily a consequence of most clusters being too distant for precise radial velocity measurements at visual wavelength. A better determined frequency of planets within open clusters would also clarify if this environment inhibits their formation, as has recently been suggested. If confirmed, that would imply that most stars will not have planets since most stars are believed to form in dense clusters. Here we request funding to support a 2-year program to search for radial velocity planets in the 600 Myr Praesepe open cluster. Praesepe is the most metal rich open cluster within 1000 pc of the sun. Based on known planet frequency - metallicity correlations, its high metallicity suggests a planet frequency enhanced by nearly a factor of 4 relative to sun- like stars; approximately 1 in 20 of its members should harbor a short period (3-10 day) hot Jupiter-like planet, and 1 in 400 of its members should have a transiting planet. The observations will be carried out using the Mayall 4-m/Echelle and Keck/HIRES facilities; nearly 100 Praesepe FGK stars will be surveyed over a 1+ year baseline. Precise radial velocities will be obtained using telluric features as a wavelength reference. We have demonstrated this technique achieves a precision of at least 50 m/s, and anticipate a final precision of 10 m/s, similar to what has been previously achieved. This precision and proposed temporal sampling will enable us to confidently identify nearly all Jupiter-sized planets with periods less than ~1 yr. The discovery of the first planets orbiting dwarf stars within an open cluster with a

  19. Fuzzy hierarchical cross-clustering of data from abandoned mine site contaminated with heavy metals

    NASA Astrophysics Data System (ADS)

    Pourjabbar, A.; Sârbu, C.; Kostarelos, K.; Einax, J. W.; Büchel, G.

    2014-11-01

    The characteristics of pore water and slate samples are critically analyzed using fuzzy hierarchical cross-clustering statistical techniques. The main aim of this study was to investigate the source of contamination near an abandoned uranium mine in Germany. The mining activities were abandoned in 1990 the site was closed, and the surrounding area was remediated. However, heavy metal contamination is still detectable in water, soil and plants today. Hence, investigating the source of the current contamination is an important task. In order to achieve the goal, results from chemical analysis of both pore water samples and leachates from slate samples were initially analyzed using hard (classical) hierarchical clustering algorithms that did not provide meaningful results. By using two fuzzy clustering algorithms, Fuzzy Divisive Hierarchical Clustering (FDHC) and Fuzzy Hierarchical Cross-Clustering (FHCC), a relationship between the leachate from Ordovician-Silurian slate samples (10 samples collected from the test site and the surrounding area) and pore water samples (53 samples collected from 3 locations within the test site at 3 depths over the course of 4 years) was identified. The leachate data formed a cluster which was statistically similar to the cluster formed by the pore water samples collected from two of three locations. In addition, the fuzzy cross-clustering approach allowed for the identification of the characteristics (qualitative and quantitative) responsible for the observed similarities between all the samples. We conclude that the fuzzy algorithms were a better tool for the analysis and interpretation of geological/hydrogeological data where the data sets have an inherent vagueness/uncertainty.

  20. Formation of the metal and energy-carrier price clusters on the world market of nonferrous metals in the postcrisis period

    NASA Astrophysics Data System (ADS)

    Bogdanov, S. V.; Shevelev, I. M.; Chernyi, S. A.

    2016-06-01

    The laws of formation of price clusters are revealed upon statistical processing of the data on changing the quotation prices of nonferrous and precious metals, oil, black oil, gasoline, and natural gas in the postcrisis period from January 1, 2009 to November 1, 2013. It is found that the metal prices entering in the price cluster of nonferrous metals most strongly affect the formation of the nonferrous metal price and that the prices of precious metals and energy carriers correct the exchange price of the metal to some extent but do not determine its formation. Equations are derived to calculate the prices. The results of calculation by these equations agree well with the real nonferrous metal prices in the near future.

  1. Cluster synthesis via ligand-arrested solid growth: triethylphosphine-capped fragments of binary metal chalcogenides.

    PubMed

    Crawford, Nathan R M; Hee, Allan G; Long, Jeffrey R

    2002-12-18

    A new and potentially highly generalizable technique for synthesizing molecular fragments of binary solids is demonstrated through application to selected transition metal chalcogenides. Employing a metal atom reactor, the solids are evaporated with a tungsten heating boat, and the resulting vapor is co-condensed with triethylphosphine. Major cluster products identified from a survey of first-row transition metal sulfides include the known species Cr6S8(PEt3)6, Co6S8(PEt3)6, and Cu12S6(PEt3)8, as well as the unprecedented species Fe4S4(PBun3)4, Ni4S4(PEt3)8, and Cu6S4(PEt3)4. Reactions utilizing Cu2Se resulted in the much larger clusters Cu26Se13(PEt3)14 and Cu70Se35(PEt3)21. The core of the former has a Th-symmetry structure featuring a body-centered icosahedron of Se2- anions, while the latter adopts a triangular structure based on three hexagonal closest packed layers of Se2- anions. In both cases, the Cu+ cations occupy distorted tetrahedral or trigonal planar sites similar to those encountered in Cu2Se; however, emergence of the face-centered cubic anion lattice of the bulk solid is not yet apparent at these cluster sizes.

  2. Classification and identification of metal-accumulating plant species by cluster analysis.

    PubMed

    Yang, Wenhao; Li, He; Zhang, Taoxiang; Sen, Lin; Ni, Wuzhong

    2014-09-01

    Identification and classification of metal-accumulating plant species is essential for phytoextraction. Cluster analysis is used for classifying individuals based on measured characteristics. In this study, classification of plant species for metal accumulation was conducted using cluster analysis based on a practical survey. Forty plant samples belonging to 21 species were collected from an ancient silver-mining site. Five groups such as hyperaccumulator, potential hyperaccumulator, accumulator, potential accumulator, and normal accumulating plant were graded. For Cd accumulation, the ancient silver-mining ecotype of Sedum alfredii was treated as a Cd hyperaccumulator, and the others were normal Cd-accumulating plants. For Zn accumulation, S. alfredii was considered as a potential Zn hyperaccumulator, Conyza canadensis and Artemisia lavandulaefolia were Zn accumulators, and the others were normal Zn-accumulating plants. For Pb accumulation, S. alfredii and Elatostema lineolatum were potential Pb hyperaccumulators, Rubus hunanensis, Ajuga decumbens, and Erigeron annuus were Pb accumulators, C. canadensis and A. lavandulaefolia were potential Pb accumulators, and the others were normal Pb-accumulating plants. Plant species with the potential for phytoextraction were identified such as S. alfredii for Cd and Zn, C. canadensis and A. lavandulaefolia for Zn and Pb, and E. lineolatum, R. hunanensis, A. decumbens, and E. annuus for Pb. Cluster analysis is effective in the classification of plant species for metal accumulation and identification of potential species for phytoextraction.

  3. The transformation of organic amines by transition metal cluster compounds: Progress report

    SciTech Connect

    Adams, R.D.

    1994-11-01

    Research during the current award period has covered several related topics which have emerged and grown as a consequence of the various discoveries that have been made during this award period. They have been divided into the following subsections for clarity and emphasis: The activation of tertiary amines by osmium cluster complexes; CH bond activation and ring opening of a nitrogen containing strained ring heterocycle by an osmium cluster complex; Ring opening of cyclic thioethers; cyclooligomerization of Thietanes; Studies of the cyclobutyne ligand; Insertion of an alkynes into metal-metal bonds; and Energy storage in metal clusters. A summary of the results of these studies is given in the following sections of this report. These studies have resulted in 50 scientific publications over the last three years and details of their studies beyond that given in the following sections can be found in those reports. All of these reports are listed in the final section of this report by the author`s names, title and journal citation.

  4. Molecular heterometallic hydride clusters composed of rare-earth and d-transition metals.

    PubMed

    Shima, Takanori; Luo, Yi; Stewart, Timothy; Bau, Robert; McIntyre, Garry J; Mason, Sax A; Hou, Zhaomin

    2011-09-18

    Heteromultimetallic hydride clusters containing both rare-earth and d-transition metals are of interest in terms of both their structure and reactivity. However, such heterometallic complexes have not yet been investigated to a great extent because of difficulties in their synthesis and structural characterization. Here, we report the synthesis, X-ray and neutron diffraction studies, and hydrogen addition and release properties of a family of rare-earth/d-transition-metal heteromultimetallic polyhydride complexes of the core structure type 'Ln(4)MH(n)' (Ln = Y, Dy, Ho; M = Mo, W; n = 9, 11, 13). Monitoring of hydrogen addition to a hydride cluster such as [{(C(5)Me(4)SiMe(3))Y}(4)(μ-H)(9)Mo(C(5)Me(5))] in a single-crystal to single-crystal process by X-ray diffraction has been achieved for the first time. Density functional theory studies reveal that the hydrogen addition process is cooperatively assisted by the Y/Mo heteromultimetallic sites, thus offering unprecedented insight into the hydrogen addition and release process of a metal hydride cluster.

  5. Luminescent sub-nanometer clusters for metal ion sensing: a new direction in nanosensors.

    PubMed

    Chakraborty, Indranath; Udayabhaskararao, T; Pradeep, T

    2012-04-15

    We describe the application of a recently discovered family of materials called quantum clusters, which are sub-nanometer particles composed of a few atoms with well-defined molecular formulae, exhibiting intense absorption and emission in the visible region in metal ion sensing, taking Ag(25) as an example. The changes in the optical properties of the cluster, in both absorption and emission upon exposure to various metal ions in aqueous medium are explored. The cluster can detect Hg(2+) down to ppb levels. It can also detect 5d block ions (Pt(2+), Au(3+) and Hg(2+)) down to ppm limits. Hg(2+) interacts with the metal core as well as the functional groups of the capping agents and the interaction is concentration-dependent. To understand the mechanism behind this type of specific interaction, we have used spectroscopic and microscopic techniques such as UV-vis spectroscopy, luminescence spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), high resolution transmission electron microscopy (HRTEM), and X-ray diffraction (XRD). Specific reasons responsible for the interaction of Hg(2+) have been proposed. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. ANISOTROPIC METAL-ENRICHED OUTFLOWS DRIVEN BY ACTIVE GALACTIC NUCLEI IN CLUSTERS OF GALAXIES

    SciTech Connect

    Kirkpatrick, C. C.; McNamara, B. R.; Cavagnolo, K. W.

    2011-04-20

    We present an analysis of the spatial distribution of metal-rich gas in 10 galaxy clusters using deep observations from the Chandra X-ray Observatory. The brightest cluster galaxies (BCGs) have experienced recent active galactic nucleus activity in the forms of bright radio emission, cavities, and shock fronts embedded in the hot atmospheres. The heavy elements are distributed anisotropically and are aligned with the large-scale radio and cavity axes. They are apparently being transported from the halo of the BCG into the intracluster medium along large-scale outflows driven by the radio jets. The radial ranges of the metal-enriched outflows are found to scale with jet power as R{sub Fe} {proportional_to} P {sup 0.42}{sub jet}, with a scatter of only 0.5 dex. The heavy elements are transported beyond the extent of the inner cavities in all clusters, suggesting that this is a long-lasting effect sustained over multiple generations of outbursts. Black holes in BCGs will likely have difficulty ejecting metal-enriched gas beyond 1 Mpc unless their masses substantially exceed 10{sup 9} M{sub sun}.

  7. Metal distribution in the intracluster medium: a comprehensive numerical study of twelve galaxy clusters

    NASA Astrophysics Data System (ADS)

    Höller, Harald; Stöckl, Josef; Benson, Andrew; Haider, Markus; Steinhauser, Dominik; Lovisari, Lorenzo; Pranger, Florian

    2014-09-01

    We present a simulation setup for studying the dynamical and chemical evolution of the intracluster medium (ICM) and analyze a sample of 12 galaxy clusters that are diverse both kinetically (pre-merger, merging, virialized) and in total mass (Mvir = 1.17 × 1014 - 1.06 × 1015 M⊙). We analyzed the metal mass fraction in the ICM as a function of redshift and discuss radial trends as well as projected 2D metallicity maps. The setup combines high mass resolution N-body simulations with the semi-analytical galaxy formation model Galacticus for consistent treatment of the subgrid physics (such as galactic winds and ram-pressure stripping) in the cosmological hydrodynamical simulations. The interface between Galacticus and the hydro simulation of the ICM with FLASH is discussed with respect to observations of star formation rate histories, radial star formation trends in galaxy clusters, and the metallicity at different redshifts. As a test for the robustness of the wind model, we compare three prescriptions from different approaches. For the wind model directly taken from Galacticus, we find mean ICM metallicities between 0.2-0.8 Z⊙ within the inner 1 Mpc at z = 0. The main contribution to the metal mass fraction comes from galactic winds. The outflows are efficiently mixed in the ICM, leading to a steady homogenization of metallicities until ram-pressure stripping becomes effective at low redshifts. We find a very peculiar and yet common drop in metal mass fractions within the inner ~200 kpc of the cool cores, which is due to a combination of wind suppression by outer pressure within our model and a lack of mixing after the formation of these dense regions. Appendix A is available in electronic form at http://www.aanda.org

  8. Electronic structure and stability of clusters, especially of alkali metals and carbon

    NASA Astrophysics Data System (ADS)

    March, N. H.

    1993-12-01

    The electronic structure of alkali metal atom clusters of various sizes is first discussed, using a spherically averaged pseudopotential model. The main technique employed is density functional theory, and a connection is established with predictions about dissociation energy from the theory of the inhomogeneous electron gas. This latter theory is then invoked explicitly to discuss the barrier to fission for doubly charged alkali metal atom clusters. In the case of asymmetric fission, comparison is made with experiment following the study of Garcias [F. Garcias, J.A. Alonso, J.M. Lopez and M. Barranco, Phys. Rev. B, 43 (1991) 9459], while for symmetric fission a connection is again made between fission barrier and concepts which follow from the general theory of the inhomogeneous electron gas. Finally, and more briefly, both density functional calculations and quantum-chemical studies of carbon clusters are referred to. After a summary of the work of Adamowicz on small linear C clusters [L. Adamowicz, J. Chem. Phys., 94 (1991) 1241], results on C 60 and its singly and doubly charged anions, and on (C 60) 2, are summarized, the potential relevance to alkali doped buckminsterfullerene superconductivity being emphasized as an important direction for future work.

  9. The Next Generation Virgo Cluster Survey (NGVS). XXVI. The Issues of Photometric Age and Metallicity Estimates for Globular Clusters

    NASA Astrophysics Data System (ADS)

    Powalka, Mathieu; Lançon, Ariane; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Muñoz, Roberto P.; Blakeslee, John P.; Côté, Patrick; Ferrarese, Laura; Roediger, Joel; Sánchez-Janssen, Rúben; Zhang, Hongxin; Durrell, Patrick R.; Cuillandre, Jean-Charles; Duc, Pierre-Alain; Guhathakurta, Puragra; Gwyn, S. D. J.; Hudelot, Patrick; Mei, Simona; Toloba, Elisa

    2017-08-01

    Large samples of globular clusters (GC) with precise multi-wavelength photometry are becoming increasingly available and can be used to constrain the formation history of galaxies. We present the results of an analysis of Milky Way (MW) and Virgo core GCs based on 5 optical-near-infrared colors and 10 synthetic stellar population models. For the MW GCs, the models tend to agree on photometric ages and metallicities, with values similar to those obtained with previous studies. When used with Virgo core GCs, for which photometry is provided by the Next Generation Virgo cluster Survey (NGVS), the same models generically return younger ages. This is a consequence of the systematic differences observed between the locus occupied by Virgo core GCs and models in panchromatic color space. Only extreme fine-tuning of the adjustable parameters available to us can make the majority of the best-fit ages old. Although we cannot exclude that the formation history of the Virgo core may lead to more conspicuous populations of relatively young GCs than in other environments, we emphasize that the intrinsic properties of the Virgo GCs are likely to differ systematically from those assumed in the models. Thus, the large wavelength coverage and photometric quality of modern GC samples, such as those used here, is not by itself sufficient to better constrain the GC formation histories. Models matching the environment-dependent characteristics of GCs in multi-dimensional color space are needed to improve the situation.

  10. First Detection of a Cluster-scale Gradient in the ISM metallicity of the Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Gupta, Anshu; Yuan, Tiantian; Tran, Kim-Vy; Martizzi, Davide; Taylor, Philip; Kewley, Lisa J.

    2017-01-01

    Understanding the effect of cluster environment on galaxy formation and evolution is a central topic in extragalactic astronomy. The interstellar medium (ISM) metallicity provides a powerful constraint on the complex interplay of star formation and the galactic inflow/outflow. Disentangling the effect of internal (stellar mass) and external (environment) processes on galaxy evolution is difficult because high mass galaxies tend to exist in dense environments. For the past decade, the difference between mass-metallicity relations in the cluster and field environment have been used to disentangle the effect of internal/external processes. Current observations of the mass-metallicity relation show minimal dependence on the large-scale environment. In this talk, I will present the radial distribution of ISM metallicity in galaxy clusters as an alternative method to study the impact of environment on galaxy evolution. I will present the first observation of cluster-scale negative abundance gradients in two CLASH clusters at z~0.35: MACS1115+0129 and RXJ1532+3021. Our observation presents the highest metallicity enhancement observed in a galaxy cluster on the mass-metallicity relation to date. Most strikingly, we discover that neither the radial metallicity gradient nor the offset on the mass-metallicity relation show any obvious dependence on the stellar mass of cluster members. I will discuss the different physical processes in the cluster environment such as disk truncation due to ram-pressure stripping and self-enrichment due to strangulation that can lead to the observed cluster-scale negative abundance gradient in ISM metallicity.In our follow-up work, we have performed simulations of the disk-truncation in cluster environment using a sample of CALIFA galaxies. Our analytical model of disk-truncation is based on the ram-pressure stripping of the cold gas component of the infalling galaxy in the cluster environment. I will present the simulated radial metallicity

  11. Globular cluster system of the galaxy. II. The spatial and metallicity distributions, the second parameter phenomenon, and the formation of the cluster system

    SciTech Connect

    Zinn, R.

    1980-10-15

    The metal abundance measurements that were collected for 84 globular clusters in the first paper of this series are used here to describe the cluster system. The ranking of the clusters by metallicity has been calibrated by a new (Fe/H) scale, which is based in part on the measurement of (Fe/H)=-1.2 for M71. According to this scale, the metal abundance gradient between the inner and outer halo clusters (i.e., R<9 kpc and 9< or =R< 40 kpc) is only a small fraction of that found with previous (Fe/H) scales. It is not clear, however, that the new scale is to be preferred over the old ones; consequently the size of this gradient remains in doubt. The most significant properties of the cluster system that do not depend on the validity of the (Fe/H) scale are the following; (i) there is a wide range in metal abundance among the cluster in the zone 9< or =R<40 kpc, but no evidence of a gradient with R or with distance from the galactic plane, Vertical BarZVertical Bar; (ii) among the clusters with R<9 kpc, there is a metal abundance gradient with Vertical BarZVertical Bar; and (iii) the magnitude of the second parameter effect increases with R, and if age is the second parameter, then over the range 0cluster age declines by approx.3 Gyr and the scatter in age increases from less than 1 Gyr to approx.2 Gyr.

  12. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    SciTech Connect

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio; Sneden, Christopher; Milone, Antonino P.; Bedin, Luigi R. E-mail: giampaolo.piotto@unipd.it E-mail: luigi.bedin@oapd.inaf.it E-mail: milone@mso.anu.edu.au

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  13. Atmospheric Parameters and Metallicities for 2191 Stars in the Globular Cluster M4

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Sneden, Christopher; Piotto, Giampaolo; Milone, Antonino P.; Bedin, Luigi R.; Nascimbeni, Valerio

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V <= 14.7, we obtain a nearly constant metallicity, lang[Fe/H]rang = -1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain lang[Fe/H]rang = -1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  14. A very deep Chandra view of metals, sloshing and feedback in the Centaurus cluster of galaxies

    NASA Astrophysics Data System (ADS)

    Sanders, J. S.; Fabian, A. C.; Taylor, G. B.; Russell, H. R.; Blundell, K. M.; Canning, R. E. A.; Hlavacek-Larrondo, J.; Walker, S. A.; Grimes, C. K.

    2016-03-01

    We examine deep Chandra X-ray observations of the Centaurus cluster of galaxies, Abell 3526. Applying a gradient magnitude filter reveals a wealth of structure, from filamentary soft emission on 100 pc (0.5 arcsec) scales close to the nucleus to features 10 s of kpc in size at larger radii. The cluster contains multiple high-metallicity regions with sharp edges. Relative to an azimuthal average, the deviations of metallicity and surface brightness are correlated, and the temperature is inversely correlated, as expected if the larger scale asymmetries in the cluster are dominated by sloshing motions. Around the western cold front are a series of ˜7 kpc `notches', suggestive of Kelvin-Helmholtz instabilities. The cold front width varies from 4 kpc down to close to the electron mean free path. Inside the front are multiple metallicity blobs on scales of 5-10 kpc, which could have been uplifted by AGN activity, also explaining the central metallicity drop and flat inner metallicity profile. Close to the nucleus are multiple shocks, including a 1.9-kpc-radius inner shell-like structure and a weak 1.1-1.4 Mach number shock around the central cavities. Within a 10 kpc radius are nine depressions in surface brightness, several of which appear to be associated with radio emission. The shocks and cavities imply that the nucleus has been repeatedly active on 5-10 Myr time-scales, indicating a tight balance between heating and cooling. We confirm the presence of a series of linear quasi-periodic structures. If they are sound waves, the ˜5 kpc spacing implies a period of 6 Myr, similar to the ages of the shocks and cavities. Alternatively, these structures may be Kelvin-Helmholtz instabilities, their associated turbulence or amplified magnetic field layers.

  15. The Design, Synthesis, and Characterization of Open Sites on Metal Clusters

    NASA Astrophysics Data System (ADS)

    Nigra, Michael Mark

    Coordinatively unsaturated corner and edge atoms have been hypothesized to have the highest activity of sites responsible for many catalytic reactions on a metal surface. Recent studies have validated this hypothesis in varied reaction systems. However, quantification of different types of coordinatively unsaturated sites, and elucidation of their individual catalytic rates has remained a largely unresolved challenge when understanding catalysis on metal surfaces. Yet such structure-function knowledge would be invaluable to the design of more active and selective metal-surface catalysts in the future. I investigated the catalytic contributions of undercoordinated sites such as corner and edge atoms are investigated in a model reaction system using organic ligands bound to the gold nanoparticle surface. The catalyst consisted of 4 nm gold nanoparticles on a metal oxide support, using resazurin to resorufin as a model reaction system. My results demonstrate that in this system, corner atom sites are the most undercoordinated sites, and are over an order of magnitude more active when compared to undercoordinated edge atom sites, while terrace sites remain catalytically inactive for the reduction reaction of resazurin to resorufin. Catalytic activity has been also demonstrated for calixarene-bound gold nanoparticles using the reduction of 4-nitrophenol. With the 4-nitrophenol reduction reaction, a comparative study was undertaken to compare calixarene phosphine and calixarene thiol bound 4 nm gold particles. The results of the study suggested that a leached site was responsible for catalysis and not sites on the original gold nanoparticles. Future experiments with calixarene bound gold clusters could investigate ligand effects in reactions where the active site is not a leached or aggregated gold species, possibly in oxidation reactions, where electron-rich gold is hypothesized to be a good catalyst. The results that emphasize the enhanced catalytic activity of

  16. Effect of reducible oxide-metal cluster charge transfer on the structure and reactivity of adsorbed Au and Pt atoms and clusters on anatase TiO2

    NASA Astrophysics Data System (ADS)

    Wang, Honghong; An, Taicheng; Selloni, Annabella

    2017-05-01

    We carried out density functional theory calculations to study the influence of oxide-metal charge transfers on the structure, energetics, and reactivity of Au and Pt atoms, dimers, and trimers adsorbed on the (101) surface of reduced anatase TiO2. Pt clusters interact much more strongly with the TiO2 support than Au clusters, and, with the exception of single Pt adatoms, generally behave as electron acceptors on reduced TiO2, whereas Au clusters can both accept and donate charge on the reduced surface. The reactivity of the supported clusters was probed by considering their interaction with CO and co-adsorbed O2. The effect of surface reduction on the interaction with CO is particularly significant when the CO adsorption site is an interfacial metal atom directly in contact with the TiO2 surface and/or in the presence of co-adsorbed O2. Pt clusters interact strongly with co-adsorbed O2 and form Pt-O2 complexes that can easily accept electrons from reduced surfaces. In contrast, Au clusters donate charge to co-adsorbed O2 even in the presence of excess electrons from a reduced support. The computed differences in the properties of the supported Pt and Au clusters are consistent with several experimental observations and highlight the important role of excess surface electrons in the behavior of supported metal catalysts on reducible oxides.

  17. Stable structures and potential energy surface of the metallic clusters: Ni, Cu, Ag, Au, Pd, and Pt

    NASA Astrophysics Data System (ADS)

    Wu, Xia; Sun, Yan

    2017-06-01

    Metallic clusters have been widely studied due to their special electrical, optical, and catalytic properties. The many-body Gupta potential is applied to describe the interatomic interaction of Ni, Cu, Ag, Au, Pd, and Pt clusters, and their global minimal structures within 100 atoms are optimized using dynamic lattice searching (DLS) method. The configurational distribution of global minima is analyzed, and the geometrical difference among these clusters is demonstrated. Results show that the dominant motif of Ni and Cu clusters is the icosahedron, and in Ag and Au clusters the number of decahedra is slightly larger than that of the icosahedra. However, more face-centered cubic (fcc), stacking fault fcc, and amorphous structures are formed in Au clusters than in Ag clusters. Furthermore, the main motif of Pd and Pt clusters is the decahedron. In particular, Ni98 adopts a Leary tetrahedral motif, and Pt54 is a central vacant icosahedron. The difference related to the potential parameters of these metallic clusters is further investigated by energy analysis. Moreover, the potential energy surfaces (PES) of 38-atom metallic clusters is characterized in terms of conformational analysis. It was found that the sequence of the number of local minima on the PES from large to low is Ni, Cu, Ag, Pt, Pd, and Au.

  18. Bonding with parallel spins: high-spin clusters of monovalent metal atoms.

    PubMed

    Danovich, David; Shaik, Sason

    2014-02-18

    Bonding is a glue of chemical matter and is also a useful concept for designing new molecules. Despite the fact that electron pairing remains the bonding mechanism in the great majority of molecules, in the past few decades scientists have had a growing interest in discovering novel bonding motifs. As this Account shows, monovalent metallic atoms having exclusively parallel spins, such as (11)Li10, (11)Au10, and (11)Cu10, can nevertheless form strongly bound clusters, without having even one traditional bond due to electron pairing. These clusters, which also can be made chiral, have high magnetic moments. We refer to this type as no-pair ferromagnetic (NPFM) bonding, which characterizes the (n+1)Mn clusters, which were all predicted by theoretical computations. The small NPFM alkali clusters that have been "synthesized" to date, using cold-atom techniques, support the computational predictions. In this Account, we describe the origins of NPFM bonding using a valence bond (VB) analysis, which shows that this bonding motif arises from bound triplet electron pairs that spread over all the close neighbors of a given atom in the cluster. The bound triplet pair owes its stabilization to the resonance energy provided by the mixing of the local ionic configurations, [(3)M(↑↑)(-)]M(+) and M(+)[(3)M(↑↑)(-)], and the various excited covalent configurations (involving pz and dz(2) atomic orbitals) into the repulsive covalent structure (3)(M↑↑M) with the s(1)s(1) electronic configuration. The NPFM bond of the bound triplet is described by a resonating wave function with "in-out" and "out-in" pointing hybrids. The VB model accounts for the tendency of NPFM clusters to assume polyhedral shapes with rather high symmetry. In addition, this model explains the very steep rise of the bonding energy per atom (De/n), which starts out small in the (3)M2 dimer (<1 kcal/mol) and reaches 12-19 kcal/mol for clusters with 10 atoms. The model further predicts that usage of

  19. Ionized cluster beam deposition and epitaxy of metal films on large lattice misfit substrates

    NASA Astrophysics Data System (ADS)

    Yamada, Isao

    1991-01-01

    This paper reviews the metal film formation by the ionized cluster beam (ICB) technique on various kinds of substrates. The ICB enables heteroepitaxy of metal films for lattice misfit larger than 25 percent. The film growth process was studied by in situ MEED, AES and XPS analyses. The films were also examined by ex situ electron diffraction and atomic resolution TEM. On Si(111), single crystal Al film was formed. The Al deposited on Si(100) formed a bicrystal structure. The film-substrate interface and the bicrystal grain boundary were very sharp and had little distortion of atomic arrangement. This explains the high thermal stability of the metal films deposited by ICB. Epitaxial Al films were also formed on CaF2, Ge, GaAs, and sapphire substrates.

  20. Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation.

    PubMed

    Iwami, Hikaru; Nakanishi, Ryo; Horii, Yoji; Katoh, Keiichi; Breedlove, Brian K; Yamashita, Masahiro

    2017-01-20

    Lanthanoid metal-organic frameworks (Ln-MOFs) can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III) and Tb(III) ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4',4″-s-triazine-2,4,6-triyl-tribenzoic acid (H₃TATB) as a ligand, two new Ln-MOFs, [Dy(TATB)(DMF)₂] (1) and [Tb(TATB)(DMF)₂] (2), were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets.

  1. Metal-Organic Framework of Lanthanoid Dinuclear Clusters Undergoes Slow Magnetic Relaxation

    PubMed Central

    Iwami, Hikaru; Nakanishi, Ryo; Horii, Yoji; Katoh, Keiichi; Breedlove, Brian K.; Yamashita, Masahiro

    2017-01-01

    Lanthanoid metal-organic frameworks (Ln-MOFs) can adopt a variety of new structures due to the large coordination numbers of Ln metal ions, and Ln-MOFs are expected to show new luminescence and magnetic properties due to the localized f electrons. In particular, some Ln metal ions, such as Dy(III) and Tb(III) ions, work as isolated quantum magnets when they have magnetic anisotropy. In this work, using 4,4′,4″-s-triazine-2,4,6-triyl-tribenzoic acid (H3TATB) as a ligand, two new Ln-MOFs, [Dy(TATB)(DMF)2] (1) and [Tb(TATB)(DMF)2] (2), were obtained. The Ln-MOFs contain Ln dinuclear clusters as secondary building units, and 1 underwent slow magnetic relaxation similar to single-molecule magnets. PMID:28772440

  2. Orbitals in inorganic chemistry: metal rings and clusters, hydronitrogens, and heterocyles.

    PubMed

    Inagaki, Satoshi

    2010-01-01

    A chemical orbital theory is useful in inorganic chemistry. Some applications are described for understanding and designing of inorganic molecules. Among the topics included are: (1) valence electron rules to predict stabilities of three- and four-membered ring metals and for those of regular octahedral M(6) metal clusters solely by counting the number of valence electrons; (2) pentagon stability (stability of five- relative to six-membered rings in some classes of molecules), predicted and applied for understanding and designing saturated molecules of group XV elements; (3) properties of unsaturated hydronitrogens N( m )H( n ) in contrast to those of hydrocarbons C( m )H( n ); (4) unusually short nonbonded distances between metal atoms in cyclic molecules.

  3. Nano-confinement inside molecular metal oxide clusters: Dynamics and modified encapsulation behavior

    DOE PAGES

    Wang, Zhe; Daemen, Luke L.; Cheng, Yongqiang; ...

    2016-08-19

    Encapsulation behavior, as well as the presence of internal catalytically-active sites, has been spurring the applications of a 3 nm hollow spherical metal oxide cluster {Mo132} as an encapsulation host and a nano-reactor. Due to its well-defined and tunable cluster structures, and nano-scaled internal void space comparable to the volumes of small molecules, this cluster provides a good model to study the dynamics of materials under ultra-confinement. Neutron scattering studies suggest that bulky internal ligands inside the cluster show slower and limited dynamics compared to their counterparts in the bulk state, revealing the rigid nature of the skeleton of themore » internal ligands. Furthermore, NMR studies indicate that the rigid internal ligands that partially cover the interfacial pore on the molybdenum oxide shells are able to block some large guest molecules from going inside the capsule cluster, which provides a convincing protocol for size-selective encapsulation and separation.« less

  4. A uniform metallicity in the outskirts of massive, nearby galaxy clusters

    NASA Astrophysics Data System (ADS)

    Urban, O.; Werner, N.; Allen, S. W.; Simionescu, A.; Mantz, A.

    2017-10-01

    Suzaku measurements of a homogeneous metal distribution of Z ˜ 0.3 Solar in the outskirts of the nearby Perseus cluster suggest that chemical elements were deposited and mixed into the intergalactic medium before clusters formed, likely over 10 billion years ago. A key prediction of this early enrichment scenario is that the intracluster medium in all massive clusters should be uniformly enriched to a similar level. Here, we confirm this prediction by determining the iron abundances in the outskirts (r > 0.25r200) of a sample of 10 other nearby galaxy clusters observed with Suzaku for which robust measurements based on the Fe-K lines can be made. Across our sample, the iron abundances are consistent with a constant value, ZFe = 0.316 ± 0.012 Solar (χ2 = 28.85 for 25 degrees of freedom). This is remarkably similar to the measurements for the Perseus cluster of ZFe = 0.314 ± 0.012 Solar, using the Solar abundance scale of Asplund et al.

  5. A uniform metallicity in the outskirts of massive, nearby galaxy clusters

    DOE PAGES

    Urban, O.; Werner, N.; Allen, S. W.; ...

    2017-06-20

    Suzaku measurements of a homogeneous metal distribution of Z ~ 0:3 Solar in the outskirts of the nearby Perseus cluster suggest that chemical elements were deposited and mixed into the intergalactic medium before clusters formed, likely over 10 billion years ago. A key prediction of this early enrichment scenario is that the intracluster medium in all massive clusters should be uniformly enriched to a similar level. Here, we confirm this prediction by determining the iron abundances in the outskirts (r > 0:25r200) of a sample of ten other nearby galaxy clusters observed with Suzaku for which robust measurements based onmore » the Fe-K lines can be made. Across our sample the iron abundances are consistent with a constant value, ZFe = 0:316 ± 0:012 Solar (Χ2 = 28:85 for 25 degrees of freedom). This is remarkably similar to the measurements for the Perseus cluster of ZFe = 0:314±0:012 Solar, using the Solar abundance scale of Asplund et al. (2009).« less

  6. A RAVE investigation on Galactic open clusters. I. Radial velocities and metallicities

    NASA Astrophysics Data System (ADS)

    Conrad, C.; Scholz, R.-D.; Kharchenko, N. V.; Piskunov, A. E.; Schilbach, E.; Röser, S.; Boeche, C.; Kordopatis, G.; Siebert, A.; Williams, M.; Munari, U.; Matijevič, G.; Grebel, E. K.; Zwitter, T.; de Jong, R. S.; Steinmetz, M.; Gilmore, G.; Seabroke, G.; Freeman, K.; Navarro, J. F.; Parker, Q.; Reid, W.; Watson, F.; Gibson, B. K.; Bienaymé, O.; Wyse, R.; Bland-Hawthorn, J.; Siviero, A.

    2014-02-01

    Context. Galactic open clusters (OCs) mainly belong to the young stellar population in the Milky Way disk, but are there groups and complexes of OCs that possibly define an additional level in hierarchical star formation? Current compilations are too incomplete to address this question, especially regarding radial velocities (RVs) and metallicities ([M/H]). Aims: Here we provide and discuss newly obtained RV and [M/H] data, which will enable us to reinvestigate potential groupings of open clusters and associations. Methods: We extracted additional RVs and [M/H] from the RAdial Velocity Experiment (RAVE) via a cross-match with the Catalogue of Stars in Open Cluster Areas (CSOCA). For the identified OCs in RAVE we derived overlineRV and overline{[M/H]} from a cleaned working sample and compared the results with previous findings. Results: Although our RAVE sample does not show the same accuracy as the entire survey, we were able to derive reliable overlineRV for 110 Galactic open clusters. For 37 OCs we publish overlineRV for the first time. Moreover, we determined overline{[M/H]} for 81 open clusters, extending the number of OCs with overline{[M/H]} by 69. Tables 8 and 9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/562/A54

  7. Effect of Temperature on Morphology of Metallic Iron and Formation of Clusters of Iron Ore Pellets

    NASA Astrophysics Data System (ADS)

    de Alencar, Jean Philippe Santos Gherardi; de Resende, Valdirene Gonzaga; de Castro, Luiz Fernando Andrade

    2016-02-01

    The increase of the reduction temperature in direct reduction furnaces has been a recurring tool due to the benefits that it provides to the process. However, its increase cannot be performed without taking into account some considerations, since the sticking phenomenon is directly correlated with it and could lead to permeability problems and reactor performance. An analysis of the formation of pellets clusters at different temperatures was carried out with focus on morphological characterization of reduced materials to better understand the causes and effects of these actions. The results showed a correlation between the morphology of the metallic iron present in the samples and the clustering index. At low reduction temperatures, 1123 K (850 °C), the iron formed is eroded and deformed and the cluster hardly remains after tumbling. When forming iron with fibrous structure, 1223 K (950 °C), the clustering index increases because of anchor points which make the material to stick together. Finally, under the effect of high temperature and long time, it generates fresh precipitated iron, enhancing the resistance of the clusters so that they cannot be separated.

  8. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    SciTech Connect

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M {sub star} as a function of redshift, and on the observed galaxy stellar mass function up to redshift z {approx} 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M {sub star} relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z {approx} 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z {approx} 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of {approx}0.5 at redshift

  9. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  10. Variable Stars in the Unusual, Metal-Rich Globular Cluster NGC-6441

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6441 using time-series BV photometry. The total number of variables found near NGC 6441 has been increased to approx. 104, with 48 new variables being found in this survey. A significant number of the variables are RR Lyrae stars (approx. 46), most of which are probable cluster members. As was noted by Layden et al. (1999), the periods of the fundamental mode RR Lyrae are unusually long compared to field stars of similar metallicity. The existence of these long period RRab stars is consistent with Sweigart & Catelan's (1998) prediction that the horizontal branch of NGC 6441 is unusually bright. This result implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal. We discuss the difficulty in determining the Oosterhoff classification of NGC 6441 due to the unusual nature of its RR Lyrae. A number of ab-type RR Lyrae are found to be both brighter and redder than the other probable RRab found along the horizontal branch, which may be a result of blending with stars of redder color. A smaller than usual gap is found between the shortest period fundamental mode and the longest period first-overtone mode RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.51 +/- 0.02 mag, with substantial differential reddening across the face of the cluster. The mean V magnitude of the RR Lyrae is found to be 17.51 +/- 0.02 resulting in a distance of 10.4 to 11.9 kpc, for a range of assumed values of < M(sub V)> for RR Lyrae stars. The possibility that stars in NGC 6441 may span a range in [Fe/H] is also discussed.

  11. Chemical Abundances in NGC 5053: A Very Metal Poor and Dynamically Complex Globular Cluster

    NASA Astrophysics Data System (ADS)

    Boberg, Owen; Friel, Eileen D.; Vesperini, Enrico

    2015-01-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the spherical distribution expected from GCs. These features include a ˜6° tidal stream (Lauchner et al. 2006), and a possible, but still debated, bridge-like structure between it and its nearby neighbor NGC 5024 (Chun et al. 2010). These features suggest that the evolution of these clusters has not only been greatly affected by their gravitational interaction with the Galaxy, but possibly each other. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sgr dSph stream (Law & Majewski 2010). Using the WIYN-Hydra multi-object spectrograph, we have collected high quality (S/N ˜75-90), medium-resolution spectra for red giant branch (RGB) stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.46 with a standard deviation of 0.05 dex, making NGC 5053 one of the most metal poor GCs in the Milky Way. The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of Milky Way halo stars at a similar metallicity, with high alpha values and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the Milky Way. This does not, however, rule out NGC 5053 being a member of the Sgr dSph stream.

  12. Encapsulation of metal clusters within MFI via interzeolite transformations and direct hydrothermal syntheses and catalytic consequences of their confinement.

    PubMed

    Goel, Sarika; Zones, Stacey I; Iglesia, Enrique

    2014-10-29

    The encapsulation of metal clusters (Pt, Ru, Rh) within MFI was achieved by exchanging cationic metal precursors into a parent zeolite (BEA, FAU), reducing them with H2 to form metal clusters, and transforming these zeolites into daughter structures of higher framework density (MFI) under hydrothermal conditions. These transformations required MFI seeds or organic templates for FAU parent zeolites, but not for BEA, and occurred with the retention of encapsulated clusters. Clusters uniform in size (1.3-1.7 nm) and exposing clean and accessible surfaces formed in BEA and FAU zeolites; their size remained essentially unchanged upon transformation into MFI. Encapsulation selectivities, determined from the relative hydrogenation rates of small (toluene) and large (alkyl arenes) molecules and defined as the ratio of the surface areas of all the clusters in the sample to that of external clusters, were very high (8.1-40.9) for both parent and daughter zeolites. Encapsulation into MFI via direct hydrothermal syntheses was unsuccessful because metal precursors precipitated prematurely at the pH and temperatures required for MFI synthesis. Delayed introduction of metal precursors and F(-) (instead of OH(-)) as the mineralizing agent in hydrothermal syntheses increased encapsulation selectivities, but they remained lower than those achieved via interzeolite transformations. These interconversions provide a general and robust strategy for encapsulation of metals when precursors can be introduced via exchange into a zeolite that can be transformed into target daughter zeolites with higher framework densities, whether spontaneously or by using seeds or structure-directing agents (SDA).

  13. Atomic Resolution of the Structure of a Metal Support Interface: Triosmium Clusters on MgO (110)

    SciTech Connect

    Browning, Nigel D.; Chi, Miaofang; Gates, Bruce C.; kulkarni, Apoorva; Ortalan, Volkan

    2010-01-01

    Aberration-corrected STEM images of MgO-supported triosmium clusters show that the osmium atoms reside atop magnesium atoms. On the basis of the results, structural models of the clusters that include the metal-support interaction are derived.

  14. Finite-difference analysis of plasmon-induced forces of metal nano-clusters by the Lorentz force formulation.

    PubMed

    Fujii, Masafumi

    2010-12-20

    We analyze light-induced forces on metal nano-spheres by using the three-dimensional finite-difference time-domain method with the Lorentz force formulation. Convergent analysis of the force on metal nano-particle clusters has been achieved by integrating the Lorentz and the Coulomb forces over the volume of the metal particles. Comparison to the Mie theory of radiation pressure on metal spheres under a plane wave illumination has verified rigorously the accuracy of the numerical method. We also analyze separate two metal spheres in close proximity and the results of the induced forces are compared to those in previous publications. The present method allows analysis of forces on various irregular structures; we apply the method to touching metal spheres, forming a simple cluster with a slight deformation at the contact point, to analyze the forces induced by the plasmonic resonance of the clusters. We show that the fundamental resonance modes, which newly appear in an infrared range when spheres are touching, exhibit strong binding forces within the clusters. Based on the numerical analyses we identify the resonance modes and evaluate quantitatively the infrared-induced forces on metal nano-sphere clusters.

  15. New Insights in Catalytic Sites: Characterization of Spectroscopy and Reactivity of Metal Oxide Clusters with Anion Slow Electron Velocity-Map Imaging

    DTIC Science & Technology

    2016-06-08

    AFRL-AFOSR-VA-TR-2016-0182 New Insights into Catalytic Sites: Characterization of Spectroscopy and Reactivity of Metal Oxide Clusters with Anion...of Metal Oxide Clusters with Anion Slow Electron Velocity-Map Imaging 5a. CONTRACT NUMBER FA9550-12-1-0160 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...in heterogeneous catalysts, many of which comprise complex transition metal oxides. Size-selected transition metal oxide clusters can serve as

  16. Global minima for rare gas clusters containing one alkali metal ion

    NASA Astrophysics Data System (ADS)

    Hernández-Rojas, Javier; Wales, David J.

    2003-10-01

    We present candidate structures for the global minima of N-atom rare gas clusters containing one additional alkali metal ion, LJNM. Lennard-Jones and Mason-Schamp potentials are used to represent the rare gas-rare gas and rare gas-alkali metal ion interactions, respectively. Results are presented for parameters appropriate to both Ar-K+ and Xe-Cs+ systems. When the ion is closer in size to the rare gas atoms (for XeNCs+) the global minima tend to be based on icosahedral packing. However, when the ion is relatively small (for ArNK+) the global minima below a certain size threshold are based on structures where the ion has lower coordination numbers. For larger clusters the global minima are again based on icosahedral packing. The latter structures can be found with minimal computational effort using the known global minima for clusters bound by Lennard-Jones or Morse potentials, substituting one atom at a time by the ion and minimizing.

  17. Photoelectron Spectroscopy of Transition Metal Hydride Cluster Anions and Their Roles in Hydrogenation Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, Xinxing; Bowen, Kit

    The interaction between transition metals and hydrogen has been an intriguing research topic for such applications as hydrogen storage and catalysis of hydrogenation and dehydrogenation. Special bonding features between TM and hydrogen are interesting not only because they are scarcely reported but also because they could help to discover and understand the nature of chemical bonding. Very recently, we discovered a PtZnH5- cluster which possessed an unprecedented planar pentagonal coordination between the H5- moiety and Pt, and exhibited special σ-aromaticity. The H5-kernel as a whole can be viewed as a η5-H5 ligand for Pt. As the second example, an H2 molecule was found to act as a ligand in the PdH3-cluster, in which two H atoms form a η2-H2 type of ligation to Pd. These transition metal hydride clusters were considered to be good hydrogen sources for hydrogenation. The reactions between PtHn- and CO2 were investigated. We observed formate in the final product H2Pt(HCO2)- .

  18. Silver cluster formation, dynamics, and chemistry in metal-organic frameworks.

    PubMed

    Houk, Ronald J T; Jacobs, Benjamin W; El Gabaly, Farid; Chang, Noel N; Talin, A Alec; Graham, Dennis D; House, Stephen D; Robertson, Ian M; Allendorf, Mark D

    2009-10-01

    Synthetic methods used to produce metal nanoparticles typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with the potential for both steric and chemical stabilization. We report a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions < or =1 nm, with a significant fraction existing as Ag(3) clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible.

  19. Transition-Metal Planar Boron Clusters: a New Class of Aromatic Compounds with High Coordination

    NASA Astrophysics Data System (ADS)

    Wang, Lai-Sheng

    2012-06-01

    Photoelectron spectroscopy in combination with computational studies over the past decade has shown that boron clusters possess planar or quasi-planar structures, in contrast to that of bulk boron, which is dominated by three-dimensional cage-like building blocks. All planar or quasi-planar boron clusters are observed to consist of a monocyclic circumference with one or more interior atoms. The propensity for planarity has been found to be due to both σ and π electron delocalization throughout the molecular plane, giving rise to concepts of σ and π double aromaticity. We have found further that the central boron atoms can be substituted by transition metal atoms to form a new class of aromatic compounds, which consist of a central metal atom and a monocyclic boron ring (M B_n). Eight-, nine-, and ten-membered rings of boron have been observed, giving rise to octa-, ennea-, and deca-coordinated aromatic transition metal compounds [1-3]. References: [1] ``Aromatic Metal-Centered Monocyclic Boron Rings: Co B_9^- and Ru B_9^-" (Constantin Romanescu, Timur R. Galeev, Wei-Li Li, A. I. Boldyrev, and L. S. Wang), Angew. Chem. Int. Ed. {50}, 9334-9337 (2011). [2] ``Transition-Metal-Centered Nine-Membered Boron Rings: M B_9 and M B_9^- (M = Rh, Ir)" (Wei-Li Li, Constantin Romanescu, Timur R. Galeev, Zachary Piazza, A. I. Boldyrev, and L. S. Wang), J. Am. Chem. Soc. {134}, 165-168 (2012). [3] ``Observation of the Highest Coordination Number in Planar Species: Decacoordinated Ta B10^- and Nb B_9^- Anions" (Timur R. Galeev, Constantin Romanescu, Wei-Li Li, L. S. Wang, and A. I. Boldyrev), Angew. Chem. Int. Ed. {51}, 2101-2105 (2012).

  20. Redox-Inactive Metals Modulate the Reduction Potential in Heterometallic Manganese-Oxido Clusters

    PubMed Central

    Tsui, Emily Y.; Tran, Rosalie; Yano, Junko; Agapie, Theodor

    2013-01-01

    Redox-inactive metals are found in biological and heterogeneous water oxidation catalysts, but their roles in catalysis are currently not well understood. A series of high oxidation state tetranuclear-dioxido clusters comprised of three manganese centers and a redox-inactive metal (M) of various charge is reported. Crystallographic studies show an unprecedented Mn3M(μ4-O)(μ2-O) core that remains intact upon changing M or the manganese oxidation state. Electrochemical studies reveal that the reduction potentials span a window of 700 mV, dependent upon the Lewis acidity of the second metal. With the pKa of the redox-inactive metal-aqua complex as a measure of Lewis acidity, these compounds display a linear dependence between reduction potential and acidity with a slope of ca. 100 mV per pKa unit. The Sr2+ and Ca2+ compounds show similar potentials, an observation that correlates with the behavior of the OEC, which is active only in the presence of one of these two metals. PMID:23511417

  1. Radial Velocity and Metallicity Determinations for Remote Globular Clusters in M31 and M33

    NASA Astrophysics Data System (ADS)

    Ferguson, Annette; Barmby, Pauline; Cote, Pat; Harris, Bill; Huxor, Avon; Mackey, Dougal; Puzia, Thomas

    2009-08-01

    We propose to determine radial velocities and metallicities for a sample of ~ 20 remote globular clusters (GCs) which we have discovered in the outer halos of the Local Group galaxies M31 and M33. Most of these objects have been uncovered in the course of the PAndAs survey, an international collaboration which is using CFHT/MegaPrime to map more than 300 square degrees in the g and i bands around M31 and M33. The target clusters, all of which have been identified from high- quality imaging (typically ≲ 0.8'' seeing), lie at projected radii of up to 130 kpc from M31 and 30 kpc from M33 and thus lie significantly beyond all previously-known GCs in these systems. Rather intriguingly, many of the new discoveries exhibit either possible associations with halo tidal streams, or show unusual spatial anisotropies with respect to their host galaxy. Velocity and metallicity data for these objects will provide a detailed characterization of the ensemble properties of the outer halo GC populations, and, through the search for kinematic and metallicity correlations within groups of GCs, help determine what fraction of these objects can be attributed to either late or ongoing accretion events. Ultimately, these data will also provide a basis for improved dynamical mass estimates of both galaxies.

  2. An updated survey of globular clusters in M 31. III. A spectroscopic metallicity scale for the Revised Bologna Catalog

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2009-12-01

    Aims. We present a new homogeneous set of metallicity estimates based on Lick indices for the old globular clusters of the M 31 galaxy. The final aim is to add homogeneous spectroscopic metallicities to as many entries as possible of the Revised Bologna Catalog of M 31 clusters, by reporting Lick index measurements from any source (literature, new observations, etc.) on the same scale. Methods: New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2≤ [Fe/H]≤ +0.5. Lick indices for M 31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. system, yielding new metallicity estimates for 245 globular clusters of M 31. Results: Our values are in good agreement with recent estimates based on detailed spectral fitting and with those obtained from color magnitude diagrams of clusters imaged with the Hubble Space Telescope. The typical uncertainty on individual estimates is ≃±0.25 dex, as resulted from the comparison with metallicities derived from color magnitude diagrams of individual clusters. Conclusions: The metallicity distribution of M 31 globular cluster is briefly discussed and compared with that of the Milky Way. Simple parametric statistical tests suggest that the distribution is probably not unimodal. The strong correlation between metallicity and kinematics found in previous studies is confirmed. The most metal-rich GCs tend to be packed into the center of the system and to cluster tightly around the galactic rotation curve defined by the HI disk, while the velocity dispersion about the curve increases with decreasing metallicity. However, also the clusters with [Fe/H]<-1.0 display a clear rotation pattern, at odds with their Milky Way counterparts. Based on observations made at La Palma, at the Spanish Observatorio del Roque

  3. Metallicity effect on stellar granulation detected from oscillating red giants in open clusters

    NASA Astrophysics Data System (ADS)

    Corsaro, E.; Mathur, S.; García, R. A.; Gaulme, P.; Pinsonneault, M.; Stassun, K.; Stello, D.; Tayar, J.; Trampedach, R.; Jiang, C.; Nitschelm, C.; Salabert, D.

    2017-08-01

    Context. The effect of metallicity on the granulation activity in stars, and hence on the convective motions in general, is still poorly understood. Available spectroscopic parameters from the updated APOGEE-Kepler catalog, coupled with high-precision photometric observations from NASA's Kepler mission spanning more than four years of observation, make oscillating red giant stars in open clusters crucial testbeds. Aims: We aim to determine the role of metallicity on the stellar granulation activity by discriminating its effect from that of different stellar properties such as surface gravity, mass, and temperature. We analyze 60 known red giant stars belonging to the open clusters NGC 6791, NGC 6819, and NGC 6811, spanning a metallicity range from [Fe/H] ≃ - 0.09 to 0.32. The parameters describing the granulation activity of these stars and their frequency of maximum oscillation power, νmax, are studied while taking into account different masses, metallicities, and stellar evolutionary stages. We derive new scaling relations for the granulation activity, re-calibrate existing ones, and identify the best scaling relations from the available set of observations. Methods: We adopted the Bayesian code Diamonds for the analysis of the background signal in the Fourier spectra of the stars. We performed a Bayesian parameter estimation and model comparison to test the different model hypotheses proposed in this work and in the literature. Results: Metallicity causes a statistically significant change in the amplitude of the granulation activity, with a dependency stronger than that induced by both stellar mass and surface gravity. We also find that the metallicity has a significant impact on the corresponding time scales of the phenomenon. The effect of metallicity on the time scale is stronger than that of mass. Conclusions: A higher metallicity increases the amplitude of granulation and meso-granulation signals and slows down their characteristic time scales toward

  4. Infrared Array Photometry of Metal-Rich Globular Clusters.III.Two More Clusters and an Analysis of V-K Colors

    NASA Astrophysics Data System (ADS)

    Kuchinski, Leslie E.; Frogel, Jay A.

    1995-12-01

    We present new JHK photometry for the disk globular clusters NGC 6440 and NUC 6624. These data are initially used to confirm and refine several important results from Kuchinski et al. [AJ, 109, 1131(1995)] for other disk globulars. First, we again demonstrate the ability to derive a reddening-independent estimate for the [Fe/H] of a cluster from the slope if its giant branch (GB) in a K, J - K color-magnitude diagram (CMD). Second, the reddening corrected J- K color and K magnitude of the center of the horizontal branch (HB) and the J - K color of its red edge are confirmed to be independent of [Fe/H] for these clusters. Thus these parameters can be used to estimate E(J - K) of metal-rich clusters with no knowledge of distance or [Fe/H] and to estimate (m - M) if one can first estimate the reddening. We also confirm that the reddening-independent quantities, the half width of a cluster's horizontal branch (HB), and the color difference between the center of the HB and the GB at the level of the HB, both appear to be insensitive to metallicity. The JHK colors of NGC 6440 are similar to those of Liller 1; in both cases these colors are unlike those seen for other globular clusters, field giants, or bulge giants. We have not been able to identify any other cluster parameter that would help to explain these anomalous colors. We have assembled V photometry from the literature for the clusters in our sample and VK photometry for two additional disk globular clusters from Davidge et al. [ApJS, 81, 251(1992)]. We conclude that K, J - K CMDs are preferable to K, V- K CMDs as tools to study basic cluster properties. Finally, we compare our data with theoretical isochrones for metal-rich clusters and present observational evidence that the dependence of the V- K color of the GB on [Fe/H] may be different for halo and disk globular clusters. This difference may be related to differences in the [0/Fe] values for the two cluster systems.

  5. Structural fluctuation and atom-permutation in transition-metal clusters

    NASA Astrophysics Data System (ADS)

    Sawada, S.; Sugano, S.

    1989-09-01

    The atomic structure and thermodynamic properties of transition-metal clusters containing N atoms are investigated for N=6 and 7 using the method of molecular dynamics, where Gupta's potential taking into account many-body interaction is employed. The caloric curve (total energy — temperature curve) and the structural fluctuations are studied. The “fluctuating state” is found for N=6 in the region of the temperature near below the melting point, where clusters undergo structural transition from one isomer to others without making any topological change. The fluctuating state differs from the coexistence state in that the former involves no atomic diffusion, and goes to a structural phase transition of the bulk when N is increased. On the other hand, the motion of atom-permutation is found in the low-temperature region of the liquid state, being induced by the cooperative motion of two atoms. It is discussed that such a motion easily occurs along the surface and may be considered to be one of the characteristics of small clusters. The fluctuating state is discussed in relation to the structural fluctuation of gold clusters observed experimentally.

  6. Computational studies of electrochemical CO2 reduction on subnanometer transition metal clusters

    SciTech Connect

    Liu, Cong; He, Haiying; Zapol, Peter; Curtiss, Larry A.

    2014-08-12

    Here, computational studies of electrochemical reduction of CO2 to CO, HCOOH and CH4 were carried out using tetra-atomic transition metal clusters (Fe4, Co4, Ni4, Cu4 and Pt4) at the B3LYP level of theory. Novel catalytic properties were discovered for these subnanometer clusters, suggesting that they may be good candidate materials for CO2 reduction. The calculated overpotentials of producing CH4 are in the order: Co4 < Fe4 < Ni4 < Cu4 < Pt4 with both Co4 and Fe4 having overpotentials less than 1 V. Investigation of the effects of supports found that a Cu4 cluster on a graphene defect site has a limiting potential for producing CH4 comparable to that of a Cu (111) surface. However, due to the strong electronic interaction with the Cu4 cluster, the defective graphene support has the advantage of significantly increasing the limiting potentials for the reactions competing with CH4, such as the hydrogen evolution reaction (HER), and CO production.

  7. Computational studies of electrochemical CO2 reduction on subnanometer transition metal clusters

    DOE PAGES

    Liu, Cong; He, Haiying; Zapol, Peter; ...

    2014-08-12

    Here, computational studies of electrochemical reduction of CO2 to CO, HCOOH and CH4 were carried out using tetra-atomic transition metal clusters (Fe4, Co4, Ni4, Cu4 and Pt4) at the B3LYP level of theory. Novel catalytic properties were discovered for these subnanometer clusters, suggesting that they may be good candidate materials for CO2 reduction. The calculated overpotentials of producing CH4 are in the order: Co4 < Fe4 < Ni4 < Cu4 < Pt4 with both Co4 and Fe4 having overpotentials less than 1 V. Investigation of the effects of supports found that a Cu4 cluster on a graphene defect site hasmore » a limiting potential for producing CH4 comparable to that of a Cu (111) surface. However, due to the strong electronic interaction with the Cu4 cluster, the defective graphene support has the advantage of significantly increasing the limiting potentials for the reactions competing with CH4, such as the hydrogen evolution reaction (HER), and CO production.« less

  8. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    SciTech Connect

    Alcaino, G.; Liller, W.

    1980-10-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (..delta..m=3/sup m/.60), the CTIO 4-m telescope (..delta..m=6/sup m/.83), and the ESO 3.6-m telescope (..delta..m=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V)/sub 0/=0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood (Astrophys. J. 159, 605 (1970)) and the isochrones of Demarque and McClure ((1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199), we deduce the cluster's age to be 14.5( +- 4.0) x 10/sup 9/ yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution.

  9. Encapsulating Metal Clusters and Acid Sites within Small Voids: Synthetic Strategies and Catalytic Consequences

    NASA Astrophysics Data System (ADS)

    Goel, Sarika

    The selective encapsulation of metal clusters within zeolites can be used to prepare clusters that are uniform in diameter and to protect them against sintering and contact with feed impurities, while concurrently allowing active sites to select reactants based on their molecular size, thus conferring enzyme-like specificity to chemical catalysis. The apertures in small and medium-pore zeolites preclude the use of post-synthetic protocols to encapsulate the relevant metal precursors because cationic or anionic precursors with their charge-balancing double layer and gaseous complexes cannot diffuse through their windows or channels. We have developed general strategies to encapsulate metal clusters within small-pore zeolites by using metal precursors stabilized by ammonia or organic amine ligands, which stabilize metal precursors against their premature precipitation at the high temperature and pH conditions required for the hydrothermal synthesis of the target zeolite structures and favor interactions between metal precursors and incipient aluminosilicate nuclei during the self-assembly of microporous frameworks. When synthesis temperatures were higher than 400 K, available ligands were unable to prevent the premature precipitation of the metal precursors. In such cases, encapsulation was achieved instead via interzeolite transformations after successfully encapsulating metal precursors or clusters via post-synthesis exchange or ligand protection into parent zeolites and subsequently converting them into the target structures while retaining the encapsulated clusters or precursors. Such strategies led to the successful selective encapsulation of a wide range of metal clusters (Pt, Pd, Ru, Rh, Ir, Re, and Ag) within small-pore (SOD (sodalite), LTA (Linde type A (zeolite A)), GIS (gismondine), and ANA (analcime)) and medium-pore (MFI (ZSM-5)) zeolites. These protocols provide novel and diverse mechanism-based strategies for the design of catalysts with protected

  10. The chiroptical signature of achiral metal clusters induced by dissymmetric adsorbates.

    PubMed

    Goldsmith, Michael-Rock; George, Christopher B; Zuber, Gérard; Naaman, Ron; Waldeck, David H; Wipf, Peter; Beratan, David N

    2006-01-07

    Using a dissymmetrically-perturbed particle-in-a-box model, we demonstrate that the induced optical activity of chiral monolayer protected clusters, such as Whetten's Au28(SG)16 glutathione-passivated gold nanoclusters (J. Phys. Chem. B, 2000, 104, 2630-2641), could arise from symmetric metal cores perturbed by a dissymmetric or chiral field originating from the adsorbates. This finding implies that the electronic states of the nanocluster core are chiral, yet the lattice geometries of these cores need not be geometrically distorted by the chiral adsorbates. Based on simple chiral monolayer protected cluster models, we rationalize how the adsorption pattern of the tethering sulfur atoms has a substantial effect on the induced CD in the NIR spectral region, and we show how the chiral image charge produced in the core provides a convenient means of visualizing dissymmetric perturbations to the achiral gold nanocluster core.

  11. Structures and stability of metal-doped GenM (n = 9, 10) clusters

    SciTech Connect

    Qin, Wei; Lu, Wen-Cai; Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Wang, C. Z.; Ho, K. M.

    2015-06-26

    The lowest-energy structures of neutral and cationic Ge nM (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge9 and Ge10 clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Gen clusters. However, the neutral and cationic FeGe9,10,MnGe9,10 and Ge10Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Gen clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge9,10Fe and Ge9Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  12. Structures and stability of metal-doped Ge{sub n}M (n = 9, 10) clusters

    SciTech Connect

    Qin, Wei Xia, Lin-Hua; Zhao, Li-Zhen; Zang, Qing-Jun; Lu, Wen-Cai; Wang, C. Z.; Ho, K. M.

    2015-06-15

    The lowest-energy structures of neutral and cationic Ge{sub n}M (n = 9, 10; M = Si, Li, Mg, Al, Fe, Mn, Pb, Au, Ag, Yb, Pm and Dy) clusters were studied by genetic algorithm (GA) and first-principles calculations. The calculation results show that doping of the metal atoms and Si into Ge{sub 9} and Ge{sub 10} clusters is energetically favorable. Most of the metal-doped Ge cluster structures can be viewed as adding or substituting metal atom on the surface of the corresponding ground-state Ge{sub n} clusters. However, the neutral and cationic FeGe{sub 9,10},MnGe{sub 9,10} and Ge{sub 10}Al are cage-like with the metal atom encapsulated inside. Such cage-like transition metal doped Ge{sub n} clusters are shown to have higher adsorption energy and thermal stability. Our calculation results suggest that Ge{sub 9,10}Fe and Ge{sub 9}Si would be used as building blocks in cluster-assembled nanomaterials because of their high stabilities.

  13. The manufacturing of a metallic nano-cluster at a tip apex for field-sensitive microscopy applications.

    PubMed

    Lin, Hung-Min; Chang, Mao-Nan; Lin, Yue-Sheng; Cheng, Chao-Chia

    2010-07-01

    Using a conductive atomic force microscopic setup, a metallic nano-cluster at a tip apex was successfully manufactured by an electrochemical redox process from an anodic aluminum oxide template. The diameter of the metallic nano-clusters ranged from 15 nm to 200 nm. The diameters of the nano-clusters could be well-controlled by adjusting the pore size of the templates. The formation of a variety of metallic nano-clusters at the tip apex was accomplished by preparing the electrolyte solution from different metallic salts. The formation mechanism for the nano-cluster is outlined and discussed. Moreover, we were able to enhance the performance of the nano-cluster tips for field-sensitive scanning probe microscopy, including electrostatic force microscopy and scanning Kelvin probe microscopy by laser annealing. Our experimental results indicated that for applications in field-sensitive scanning probe microscopy the stray field effect was significantly suppressed by the nano-cluster tip and hence the spatial resolution was improved.

  14. "Quantized" Doping of Individual Colloidal Nanocrystals Using Size-Focused Metal Quantum Clusters.

    PubMed

    Santiago-González, Beatriz; Monguzzi, Angelo; Pinchetti, Valerio; Casu, Alberto; Prato, Mirko; Lorenzi, Roberto; Campione, Marcello; Chiodini, Norberto; Santambrogio, Carlo; Meinardi, Francesco; Manna, Liberato; Brovelli, Sergio

    2017-06-27

    The insertion of intentional impurities, commonly referred to as doping, into colloidal semiconductor quantum dots (QDs) is a powerful paradigm for tailoring their electronic, optical, and magnetic behaviors beyond what is obtained with size-control and heterostructuring motifs. Advancements in colloidal chemistry have led to nearly atomic precision of the doping level in both lightly and heavily doped QDs. The doping strategies currently available, however, operate at the ensemble level, resulting in a Poisson distribution of impurities across the QD population. To date, the synthesis of monodisperse ensembles of QDs individually doped with an identical number of impurity atoms is still an open challenge, and its achievement would enable the realization of advanced QD devices, such as optically/electrically controlled magnetic memories and intragap state transistors and solar cells, that rely on the precise tuning of the impurity states (i.e., number of unpaired spins, energy and width of impurity levels) within the QD host. The only approach reported to date relies on QD seeding with organometallic precursors that are intrinsically unstable and strongly affected by chemical or environmental degradation, which prevents the concept from reaching its full potential and makes the method unsuitable for aqueous synthesis routes. Here, we overcome these issues by demonstrating a doping strategy that bridges two traditionally orthogonal nanostructured material systems, namely, QDs and metal quantum clusters composed of a "magic number" of atoms held together by stable metal-to-metal bonds. Specifically, we use clusters composed of four copper atoms (Cu4) capped with d-penicillamine to seed the growth of CdS QDs in water at room temperature. The elemental analysis, performed by electrospray ionization mass spectrometry, X-ray fluorescence, and inductively coupled plasma mass spectrometry, side by side with optical spectroscopy and transmission electron microscopy

  15. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    SciTech Connect

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  16. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    NASA Astrophysics Data System (ADS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  17. Constraining Stellar Population Models. I. Age, Metallicity and Abundance Pattern Compilation for Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane; Graves, Genevieve; Schiavon, Ricardo P.

    2014-01-01

    We present an extensive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavors, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the α elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels: in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbor them. Finally, using data on individual stars, we verify that stellar atmospheres become progressively polluted by CN(O)-processed material after they leave the main sequence. We also uncover evidence which suggests that the α elements Mg and Ca may originate from more than one nucleosynthetic production site. We estimate that our compilation incorporates all relevant analyses from the literature up to mid-2012. As an aid to investigators in the fields named above, we provide detailed electronic tables of the data upon which our work is based at http

  18. First Principles Studies of Electronic and Optical Excitations in Noble Metal and Titania Clusters

    NASA Astrophysics Data System (ADS)

    Baishya, Kopinjol

    Clusters are metastable structures that form a bridge between the atomic and the bulk phase. Due to their small size, quantum confinement effects are very important in clusters. They also have large surface to volume ratio, and as such, surface effects are also important. Due to these effects the properties of clusters are quite different from those of the bulk. When the size of a cluster is increased, its properties change from atomic to bulk values usually in nontrivial ways, often displaying interesting effects. By studying the evolution of cluster properties as a function of size one can try to understand the evolution and origin of bulk properties. This thesis concentrates on two main topics, noble-metal clusters of Ag and Cu, and TiO2 nanocrystals. I present my study of the optical properties of these systems calculated using first principles methods. Noble metal clusters have intriguing physical and chemical properties due to their electronic structure that contains a fully filled and localized d orbital energetically and spatially very close to the half filled s orbital. In Chapters 3 and 4 of this thesis, I present a detailed study of the role of d electrons on the optical properties of Ag and Cu clusters. I also show that the optical spectra of these clusters can be explained remarkably well by the classical Mie-Gans theory which uses the bulk dielectric constant of the material to predict their optical absorption spectra. The fact that the concept of the bulk dielectric constant survives up to the sub-nanometer size range is one of the main findings of this thesis. TiO2 is arguably the most studied single-crystalline material in the field of surface science of metal oxides. In chapter 5 of this thesis I present results and analyses on the electronic and optical excitations in rutile TiO2 nanocrystals. The motivation for this study stems from the following observation: In modeling optical prooperties of DSSC configurations with various organic molecules

  19. Capturing local atomic environment dependence of activation barriers in metals using cluster expansion models

    NASA Astrophysics Data System (ADS)

    Kulkarni, Nimish; Chatterjee, Abhijit

    2016-10-01

    It is well known that surface diffusion in metals can proceed via multiple mechanisms, such as hop, exchange and other types of concerted moves. However, the manner in which kinetic rates associated with a mechanism can depend sensitively on local atomic environment is relatively less understood. We describe recent attempts in our research group to capture the atomic environment dependence using the cluster expansion model (CEM). In particular, we focus on hop and exchange moves at the (001) surface in homoepitaxy, and show that while CEM can work remarkably well in most cases, it can sometimes provide inaccurate predictions for concerted moves.

  20. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    DOE PAGES

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; ...

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  1. Spatial clustering strategies for hierarchical multi-scale modelling of metal plasticity

    NASA Astrophysics Data System (ADS)

    Khairullah, M.; Gawad, J.; Roose, D.; Van Bael, A.

    2017-10-01

    In this paper we propose a novel approach to accelerate the multi-scale simulation of metal plasticity. In macroscopic zones of nearly homogeneous strain responses, the evolution of plastic anisotropy at each finite element integration point can be approximated from the properties at a representative point within a zone. We show how these zones can be identified by a clustering algorithm and can be utilised to reduce the computational cost of the simulation. We present and analyse the results obtained for two test cases.

  2. Voltage clustering in redox-active ligand complexes: mitigating electronic communication through choice of metal ion

    SciTech Connect

    Zarkesh, Ryan A.; Ichimura, Andrew S.; Monson, Todd C.; Tomson, Neil C.; Anstey, Mitchell R.

    2016-02-01

    We used the redox-active bis(imino)acenapthene (BIAN) ligand to synthesize homoleptic aluminum, chromium, and gallium complexes of the general formula (BIAN)3M. The resulting compounds were characterized using X-ray crystallography, NMR, EPR, magnetic susceptibility and cyclic voltammetry measurements and modeled using both DFT and ab initio wavefunction calculations to compare the orbital contributions of main group elements and transition metals in ligand-based redox events. Ultimately, complexes of this type have the potential to improve the energy density and electrolyte stability of grid-scale energy storage technologies, such as redox flow batteries, through thermodynamically-clustered redox events.

  3. Thermal Methane Activation by the Metal-Free Cluster Cation [Si2 O4 ](.)

    PubMed

    Sun, Xiaoyan; Zhou, Shaodong; Schlangen, Maria; Schwarz, Helmut

    2017-01-31

    The thermal reaction of methane with the metal-free cluster cation [Si2 O4 ](.+) has been examined by using Fourier transform-ion cyclotron resonance (FT-ICR) mass spectrometry. In addition to generating a methyl radical via hydrogen-atom abstraction, [Si2 O4 ](.+) can selectively oxidize methane to formaldehyde. The mechanisms of these rather efficient reactions have been elucidated by high-level quantum-chemical calculations. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices.

    PubMed

    Shpotyuk, M V; Shpotyuk, O I; Cebulski, J; Kozyukhin, S

    2016-12-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  5. Destructive Clustering of Metal Nanoparticles in Chalcogenide and Oxide Glassy Matrices

    NASA Astrophysics Data System (ADS)

    Shpotyuk, M. V.; Shpotyuk, O. I.; Cebulski, J.; Kozyukhin, S.

    2016-01-01

    The energetic χ-criterion is developed to parameterize difference in the origin of high-order optical non-linearity associated with metallic atoms (Cu, Ag, Au) embedded destructively in oxide- and chalcogenide glasses. Within this approach, it is unambiguously proved that covalent-bonded networks of soft semiconductor chalcogenides exemplified by binary As(Ge)-S(Se) glasses differ essentially from those typical for hard dielectric oxides like vitreous silica by impossibility to accommodate pure agglomerates of metallic nanoparticles. In an excellence according to known experimental data, it is suggested that destructive clustering of nanoparticles is possible in Cu-, Ag-, and Au-ion-implanted dielectric oxide glass media, possessing a strongly negative χ-criterion. Some recent speculations trying to ascribe equally this ability to soft chalcogenide glasses despite an obvious difference in the corresponding bond dissociation energies have been disclosed and criticized as inconclusive.

  6. Hydrogen activation by unsaturated mixed-metal cluster complexes: new directions.

    PubMed

    Adams, Richard D; Captain, Burjor

    2008-01-01

    There has been a renewed interest in the chemistry of hydrogen as a result of the ever-increasing global demands for energy. Recent studies have revealed new electronically unsaturated polynuclear metal complexes containing bulky ligands that exhibit a variety of reactions with hydrogen, including facile addition and elimination under mild conditions. Materials and molecules that can reversibly absorb large quantities of hydrogen are very attractive for hydrogen storage and hydrogenation catalysis. This Minireview summarizes recent studies of reactions of hydrogen with unsaturated mixed-metal cluster complexes containing platinum and bulky phosphine ligands. Some related studies on bimetallic cooperativity and the synthesis of trimetallic nanoparticles on mesoporous supports that exhibit high activity and selectivity for catalytic hydrogenations are also discussed.

  7. Quantum chemical calculation of the equilibrium structures of small metal atom clusters

    NASA Technical Reports Server (NTRS)

    Kahn, L. R.

    1981-01-01

    The application of ab initio quantum mechanical approaches in the study of metal atom clusters requires simplifying techniques that do not compromise the reliability of the calculations. Various aspects of the implementation of the effective core potential (ECP) technique for the removal of the metal atom core electrons from the calculation were examined. The ECP molecular integral formulae were modified to bring out the shell characteristics as a first step towards fulfilling the increasing need to speed up the computation of the ECP integrals. Work on the relationships among the derivatives of the molecular integrals that extends some of the techniques pioneered by Komornicki for the calculation of the gradients of the electronic energy was completed and a formulation of the ECP approach that quite naturally unifies the various state-of-the-art "shape- and Hamiltonian-consistent" techniques was discovered.

  8. METAL FORMING AND FABRICATION CLUSTER--AN INVESTIGATION AND DEVELOPMENT OF THE CLUSTER CONCEPT AS A PROGRAM IN VOCATIONAL EDUCATION AT THE SECONDARY LEVEL.

    ERIC Educational Resources Information Center

    MALEY, DONALD

    THIS COURSE OUTLINE ON METAL FORMING AND FABRICATION IS PART OF THE FINAL REPORT ON "CLUSTER CONCEPT" COURSES IN VOCATIONAL EDUCATION FOR SECONDARY EDUCATION (ED 010 301). EACH JOB ENTRY TASK WAS ANALYZED FOR HUMAN REQUIREMENTS (COMMUNICATION,MEASUREMENT, MATHEMATICS, SCIENCE, SKILLS, AND INFORMATION) NECESSARY TO PERFORMANCE OF THE…

  9. Density functional theory investigation of 3d, 4d, and 5d 13-atom metal clusters

    SciTech Connect

    Piotrowski, Mauricio J.; Piquini, Paulo; Da Silva, Juarez L. F.

    2010-04-15

    The knowledge of the atomic structure of clusters composed by few atoms is a basic prerequisite to obtain insights into the mechanisms that determine their chemical and physical properties as a function of diameter, shape, surface termination, as well as to understand the mechanism of bulk formation. Due to the wide use of metal systems in our modern life, the accurate determination of the properties of 3d, 4d, and 5d metal clusters poses a huge problem for nanoscience. In this work, we report a density functional theory study of the atomic structure, binding energies, effective coordination numbers, average bond lengths, and magnetic properties of the 3d, 4d, and 5d metal (30 elements) clusters containing 13 atoms, M{sub 13}. First, a set of lowest-energy local minimum structures (as supported by vibrational analysis) were obtained by combining high-temperature first-principles molecular-dynamics simulation, structure crossover, and the selection of five well-known M{sub 13} structures. Several new lower energy configurations were identified, e.g., Pd{sub 13}, W{sub 13}, Pt{sub 13}, etc., and previous known structures were confirmed by our calculations. Furthermore, the following trends were identified: (i) compact icosahedral-like forms at the beginning of each metal series, more opened structures such as hexagonal bilayerlike and double simple-cubic layers at the middle of each metal series, and structures with an increasing effective coordination number occur for large d states occupation. (ii) For Au{sub 13}, we found that spin-orbit coupling favors the three-dimensional (3D) structures, i.e., a 3D structure is about 0.10 eV lower in energy than the lowest energy known two-dimensional configuration. (iii) The magnetic exchange interactions play an important role for particular systems such as Fe, Cr, and Mn. (iv) The analysis of the binding energy and average bond lengths show a paraboliclike shape as a function of the occupation of the d states and hence

  10. Detection of second-generation asymptotic giant branch stars in metal-poor globular clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.

    2017-03-01

    Multiple stellar populations are actually known to be present in Galactic globular clusters (GCs). The first generation (FG) displays a halo-like chemical pattern, while the second generation (SG) one is enriched in Al and Na (depleted in Mg and O).Both generations of stars are found at different evolutionary stages like the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB), but the SG seems to be absent - especially in metal-poor ([Fe/H] < -1) GCs - in more evolved evolutionary stages such as the asymptotic giant branch (AGB) phase. This suggests that not all SG stars experience the AGB phase and that AGB-manqué stars may be quite common in metal-poor GCs, which represents a fundamental problem for the theories of GC formation and evolution and stellar evolution. Very recently, we have combined the H-band Al abundances obtained by the APOGEE survey with ground-based optical photometry, reporting the first detection of SG Al-rich AGB stars in several metal-poor GCs with different observational properties such as horizontal branch (HB) morphology, metallicity, and age. The APOGEE observations thus resolve the apparent problem for stellar evolution, supporting the existing horizontal branch star canonical models, and may help to discern the nature of the GC polluters.

  11. Electronic structures and water reactivity of mixed metal sulfide cluster anions

    SciTech Connect

    Saha, Arjun; Raghavachari, Krishnan

    2014-08-21

    The electronic structures and chemical reactivity of the mixed metal sulfide cluster anion (MoWS{sub 4}{sup −}) have been investigated with density functional theory. Our study reveals the presence of two almost isoenergetic structural isomers, both containing two bridging sulfur atoms in a quartet state. However, the arrangement of the terminal sulfur atoms is different in the two isomers. In one isomer, the two metals are in the same oxidation state (each attached to one terminal S). In the second isomer, the two metals are in different oxidation states (with W in the higher oxidation state attached to both terminal S). The reactivity of water with the two lowest energy isomers has also been studied, with an emphasis on pathways leading to H{sub 2} release. The reactive behavior of the two isomers is different though the overall barriers in both systems are small. The origin of the differences are analyzed and discussed. The reaction pathways and barriers are compared with the corresponding behavior of monometallic sulfides (Mo{sub 2}S{sub 4}{sup −} and W{sub 2}S{sub 4}{sup −}) as well as mixed metal oxides (MoWO{sub 4}{sup −})

  12. Ab Initio Molecular Dynamics of Dimerization and Clustering in Alkali Metal Vapors.

    PubMed

    Chaban, Vitaly V; Prezhdo, Oleg V

    2016-06-30

    Alkali metals are known to form dimers, trimers, and tetramers in their vapors. The mechanism and regularities of this phenomenon characterize the chemical behavior of the first group elements. We report ab initio molecular dynamics (AIMD) simulations of the alkali metal vapors and characterize their structural properties, including radial distribution functions and atomic cluster size distributions. AIMD confirms formation of Men, where n ranges from 2 to 4. High pressure sharply favors larger structures, whereas high temperature decreases their fraction. Heavier alkali metals maintain somewhat larger fractions of Me2, Me3, and Me4, relative to isolated atoms. A single atom is the most frequently observed structure in vapors, irrespective of the element and temperature. Due to technical difficulties of working with high temperatures and pressures in experiments, AIMD is the most affordable method of research. It provides valuable understanding of the chemical behavior of Li, Na, K, Rb, and Cs, which can lead to development of new chemical reactions involving these metals.

  13. A comparative topological study of different metal-metal and metal-ligand interactions in polynuclear organometallic clusters

    SciTech Connect

    Van der Maelen, Juan F.; García-Granda, Santiago

    2015-01-22

    The existence and characterization of a bond between the Zn atoms in the recently synthesized complex [Zn{sub 2}(η{sup 5}−C{sub 5}Me{sub 5}){sub 2}] (I), as well as between two of the three Ru atoms in [Ru{sub 3}(μ−H){sub 2}(μ{sub 3}−MeImCH)(CO{sub 9}] (Me{sub 2}Im = 1,3-dimethylimidazolin-2-ylidene) (II), are firmly based on low temperature X-ray synchrotron diffraction experiments. The multipolar refinement of the experimental electron densities and their topological analyses by means of the Atoms in Molecules (AIM) theory reveal the details of the Zn-Zn and Ru-Ru bonds, such as their open-shell intermediate character. The results are consistent with a typical metal-metal single σ bond for the former, whereas a delocalized kind of bond involving 5c-6e is present in the latter. In addition, experimental results are compared with theoretical ab initio calculations of the DFT (density functional theory) and MP2 (Mo/ller-Plesset perturbation theory) electron densities, giving a coherent view of the bonding in both complexes. Many other topological properties of both compounds are also studied, in particular the different metal-ligand interactions.

  14. A comparative topological study of different metal-metal and metal-ligand interactions in polynuclear organometallic clusters

    NASA Astrophysics Data System (ADS)

    Van der Maelen, Juan F.; García-Granda, Santiago

    2015-01-01

    The existence and characterization of a bond between the Zn atoms in the recently synthesized complex [Zn2(η5- C5Me5)2] (I), as well as between two of the three Ru atoms in [Ru3(μ- H )2(μ3- MeImCH )( CO9] (Me2Im = 1,3-dimethylimidazolin-2-ylidene) (II), are firmly based on low temperature X-ray synchrotron diffraction experiments. The multipolar refinement of the experimental electron densities and their topological analyses by means of the Atoms in Molecules (AIM) theory reveal the details of the Zn-Zn and Ru-Ru bonds, such as their open-shell intermediate character. The results are consistent with a typical metal-metal single σ bond for the former, whereas a delocalized kind of bond involving 5c-6e is present in the latter. In addition, experimental results are compared with theoretical ab initio calculations of the DFT (density functional theory) and MP2 (Mo/ller-Plesset perturbation theory) electron densities, giving a coherent view of the bonding in both complexes. Many other topological properties of both compounds are also studied, in particular the different metal-ligand interactions.

  15. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew

    2017-01-01

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = ‑0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. Ionic Complexes of Metal Oxide Clusters for Versatile Self-Assemblies.

    PubMed

    Li, Bao; Li, Wen; Li, Haolong; Wu, Lixin

    2017-06-20

    The combination of rational design of building components and suitable utilization of driving force affords spontaneous molecular assemblies with well-defined nanostructure and morphology over multiple length scales. The serious challenges in constructing assemblies with structural advantages for the realization of functions programmed into the building components usually lie ahead since the process that occurs does not always follow the expected roadmap in the absence of external intervention. Thus, prefabricated intermediates that help in governing the target self-assemblies are developed into a type of unique building blocks. Metal oxide cluster polyanions are considered as a type of molecular nanoclusters with size scale and structural morphology similar to those of many known inorganic particles and clusters but possess distinctive characteristics. Following the understanding of these clusters in self-assembly and the rationalization of their most efficient design strategy and approach, the obtained fundamental principles can also be applied in common nanoparticle- and cluster-based systems. On the other hand, the deliberate synergy offered by organic countercations that support the self-assembly of these clusters greatly expands the opportunity for the functionalization of complex building units via control of multiple interactions. The ionic combination of the inorganic clusters with hydrophilicity and the cationic organic component with hydrophobicity leads to discrete properties of the complexes. Significantly, the core-shell structure with rigid-flexible features and amphiphilicity will pave the way for hierarchical self-assemblies of the obtained complexes, while the intrinsic characteristics of the metal oxide clusters can be modulated through external physicochemical stimuli. Within this context, over the past decade we have extensively explored the ionic combination of inorganic polyanionic clusters with cationic organic amphiphiles and devoted our

  17. An XMM-Newton spatially-resolved study of metal abundance evolution in distant galaxy clusters

    NASA Astrophysics Data System (ADS)

    Baldi, A.; Ettori, S.; Molendi, S.; Balestra, I.; Gastaldello, F.; Tozzi, P.

    2012-01-01

    Context. We present an XMM-Newton analysis of the X-ray spectra of 39 clusters of galaxies at 0.4 < z < 1.4, covering a temperature range of 1.5 ≲ kT ≲ 11 keV. Aims: The main goal of this paper is to study how the abundance evolves with redshift not only by means of a single emission measurement performed on the whole cluster but also by spatially resolving the cluster emission. Methods: We performed a spatially resolved spectral analysis, using Cash statistics and modeling the XMM-Newton background instead of subtracting it, by analyzing the contribution of the core emission to the observed metallicity. Results: We do not observe a statistically significant (>2σ) abundance evolution with redshift. The most significant deviation from no evolution (at a 90% confidence level) is observed by considering the emission from the whole cluster (r < 0.6r500), which can be parametrized as Z ∝ (1 + z)-0.8 ± 0.5. Dividing the emission into three radial bins, no significant evidence of abundance evolution is observed when fitting the data with a power law. We find close agreement with measurements presented in previous studies. Computing the error-weighted mean of the spatially resolved abundances into three redshift bins, we find that it is consistent with being constant with redshift. Although the large error bars in the measurement of the weighted-mean abundance prevent us from claiming any statistically significant spatially resolved evolution, the trend with z in the 0.15-0.4r500 radial bin complements nicely previous measurements and broadly agrees with theoretical predictions. We also find that the data points derived from the spatially resolved analysis are well-fitted by the relation Z(r,z) = Z0(1 + (r/0.15r500)2) - a((1 + z)/1.6) - γ, where Z0 = 0.36 ± 0.03, a = 0.32 ± 0.07, and γ = 0.25 ± 0.57, which represents a significant negative trend of Z with radius and no significant evolution with redshift. Conclusions: We present the first attempt to determine

  18. Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions.

    PubMed

    Bootharaju, M S; Pradeep, T

    2011-07-05

    We report the chemical interactions of unsupported and alumina-supported Ag(7) and Ag(8) clusters protected with MSA (mercaptosuccinic acid) with heavy metal ions Hg(II), Cd(II), and Pb(II) in water at different concentrations. The investigation was carried out to determine the feasibility of this interesting new class of materials called quantum clusters for water purification. These systems were studied using various spectroscopic and microscopic techniques such as ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, dynamic light scattering, zeta potential measurements, scanning electron microscopy, transmission electron microscopy, Raman spectroscopy, and photoluminescence spectroscopy and in detail by X-ray photoelectron spectroscopy. We observed that the metal ions interact with both the silver atoms of the clusters and the functional groups of the capping agent (MSA). The mercuric ions were reduced to metallic mercury by both supported and unsupported clusters, due to the feasibility of the redox reaction, whereas no reduction was observed for Cd(II) and Pb(II). As a result of the interaction, the luminescence of the cluster is lost which can be used to sense Hg(II). At lower concentrations, the metal ions were chemically bonded to the carboxylate groups of MSA. Absence of reduction of Hg(II) at lower concentration is due to the chemical affinity of the ligands and the lower silver content per cluster compared to the number of carboxylate groups. © 2011 American Chemical Society

  19. First principle investigation of the magnetic properties of transition metal doped (ZnS)n (n=1-16) clusters

    NASA Astrophysics Data System (ADS)

    Kaur, Navjot; Singh, Kanchan L.; Sharma, Hitesh

    2015-08-01

    The magnetic properties of (ZnS)n clusters (n = 1 - 16) due to 3d transition metals have been investigated using spin polarized density functional theory. The transition metals are more stable at Zn site than at the S site in (ZnS)n clusters. The binding energy of (ZnS)n clusters increases significantly on doping with transition metal indicating enhanced structural stability of the doped (ZnS)n clusters. All 3d transition metals induced magnetic moment of order 5μB-1μB per atom in all (ZnS)n clusters. The magnetic moment is mainly localized on the TM dopant. The magnetic moment increases gradually with the increase in number of electrons in 3d orbital which is in accordance with Hund's rule till Mn and decreases thereafter. All 3d TMs retain their atomic magnetic moment in ZnS clusters of all sizes. Ti, V, Cr and Mn interact anti-ferromagnetically with the surrounding S and Zn, whereas Sc, Fe, Co, Ni and Cu interact with ferromagnetic interactions.

  20. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    SciTech Connect

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R.

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  1. Direct observation of small cluster mobility and ripening. [during annealing of metal films on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Heinemann, K.; Poppa, H.

    1975-01-01

    Direct evidence is reported for the simultaneous occurrence of Ostwald ripening and short-distance cluster mobility during annealing of discontinuous metal films on clean amorphous substrates. The annealing characteristics of very thin particulate deposits of silver on amorphized clean surfaces of single crystalline thin graphite substrates were studied by in-situ transmission electron microscopy (TEM) under controlled environmental conditions (residual gas pressure of 10 to the minus 9th power torr) in the temperature range from 25 to 450 C. Sputter cleaning of the substrate surface, metal deposition, and annealing were monitored by TEM observation. Pseudostereographic presentation of micrographs in different annealing stages, the observation of the annealing behavior at cast shadow edges, and measurements with an electronic image analyzing system were employed to aid the visual perception and the analysis of changes in deposit structure recorded during annealing. Slow Ostwald ripening was found to occur in the entire temperature range, but the overriding surface transport mechanism was short-distance cluster mobility.

  2. Method/basis set dependence of NICS values among metallic nano-clusters and hydrocarbons.

    PubMed

    Badri, Zahra; Foroutan-Nejad, Cina; Rashidi-Ranjbar, Parviz

    2012-03-14

    The influence of various all-electron basis sets and effective core potentials employed along with several DFT functionals (B3LYP, B3PW91, BLYP, BP86 and M06) on the magnitude of nucleus independent chemical shift (NICS) values in different metallic nano-clusters and hydrocarbons is studied. In general, it is demonstrated that the NICS values are very sensitive to the applied method/basis set; however, the method/basis set dependence is more prominent for computed NICS values in transition metal clusters. In hydrocarbons, medium-size basis sets perform roughly similar to large basis sets in most cases. It is also found that NICS(0) values are more sensitive to the method/basis set variation compared to the NICS values computed at 1 or 2 Å above the ring plane. However, in many cases, no broad-spectrum regulation is found for the effect of basis set/method on the magnitude of NICS values. A detailed study showed that bond length alternation in a molecule has an insignificant effect on the magnitude of NICS values so the influence of method/basis sets on the magnitude of NICS values mostly arises from the different predicted ring current intensities at various computational levels.

  3. Atomic clusters triggering nucleation and solidification of the metallic glass melt

    NASA Astrophysics Data System (ADS)

    Li, Gong; Zhang, Lijun; Zhan, Zaiji; Yu, Pengfei; Liaw, Peter K.; Liu, Riping

    2017-03-01

    The Zr41Ti14Cu12.5Ni10Be22.5 (atomic percent, at. %) melts embedded in a flux of the dehydrated B2O3 were under cooled by the repeated treatment of melting. The maximum melt undercooling of ΔT = 145 K achieved for this melt corresponds to a comparatively large relative undercooling of 0.15 times the melting-point temperature of Tm˜ about 953 K(ΔT/Tm = 0.15). The solidification and nucleation behaviors of the Zr41Ti14Cu12.5Ni10Be22.5 undercooled melts triggered by Ni, Ti, Cu, and Zr clusters introduced by sputtering these pure metal targets are studied. An anomalous solidification triggered by Zr-atomic clusters above the Zr41Ti14Cu12.5Ni10Be22.5 melting temperature of 140 K is observed. The instability of a metallic-glass (MG) liquid near the thermodynamic critical temperature is present. The nucleation in the undercooled Zr41Ti14Cu12.5Ni10Be22.5 is investigated by Monte Carlo simulations and analyzed by the classical nucleation theory. This letter reveals an effective research method on investigating the instability of a MG liquid near the thermodynamic critical temperature.

  4. Open cluster Dolidze 25: Stellar parameters and the metallicity in the Galactic anticentre

    NASA Astrophysics Data System (ADS)

    Negueruela, I.; Simón-Díaz, S.; Lorenzo, J.; Castro, N.; Herrero, A.

    2015-12-01

    Context. The young open cluster Dolidze 25, in the direction of the Galactic anticentre, has been attributed a very low metallicity, with typical abundances between -0.5 and -0.7 dex below solar. Aims: We intend to derive accurate cluster parameters and accurate stellar abundances for some of its members. Methods: We have obtained a large sample of intermediate- and high-resolution spectra for stars in and around Dolidze 25. We used the fastwind code to generate stellar atmosphere models to fit the observed spectra. We derive stellar parameters for a large number of OB stars in the area, and abundances of oxygen and silicon for a number of stars with spectral types around B0. Results: We measure low abundances in stars of Dolidze 25. For the three stars with spectral types around B0, we find 0.3 dex (Si) and 0.5 dex (O) below the values typical in the solar neighbourhood. These values, even though not as low as those given previously, confirm Dolidze 25 and the surrounding H ii region Sh2-284 as the most metal-poor star-forming environment known in the Milky Way. We derive a distance 4.5 ± 0.3 kpc to the cluster (rG ≈ 12.3 kpc). The cluster cannot be older than ~3 Myr, and likely is not much younger. One star in its immediate vicinity, sharing the same distance, has Si and O abundances at most 0.15 dex below solar. Conclusions: The low abundances measured in Dolidze 25 are compatible with currently accepted values for the slope of the Galactic metallicity gradient, if we take into account that variations of at least ±0.15 dex are observed at a given radius. The area traditionally identified as Dolidze 25 is only a small part of a much larger star-forming region that comprises the whole dust shell associated with Sh2-284 and very likely several other smaller H ii regions in its vicinity. Based on observations made with the Nordic Optical Telescope, the Mercator Telescope, and the telescopes of the Isaac Newton Group.

  5. Ages and metallicities of LMC and SMC red clusters through H-beta and G band photometry

    NASA Astrophysics Data System (ADS)

    Bica, E.; Dottori, H.; Pastoriza, M.

    1986-02-01

    The authors present narrow band integrated photometry of the Hβ and G band absorption features for 41 LMC and 10 SMC red star clusters. An age-metallicity calibration is provided for the color-color diagram. SWB types are derived between IV and VII for 23 unclassified clusters and their distribution in the ages vs metallicity plane is discussed. The authors study the chemical evolution of the Magellanic Clouds: the LMC presents a steeper chemical enrichment slope. An intrinsic metallicity dispersion is found in the LMC chemical evolution, indicating that the gas has been inhomogeneous at any time, prevailing a local enrichment over a global one. One zone models describe the evolution of both Clouds, being the efficiency of star cluster formation larger in the LMC. The LMC presents a burst of star cluster formation at t = 4.5×109yr. The authors also present new B-V data for fainter SMC clusters, providing an essentially complete color histogram for clusters with globular cluster appearance.

  6. Membership, binarity and metallicity of red giants in the southern open cluster NGC 2354

    NASA Astrophysics Data System (ADS)

    Clariá, J. J.; Mermilliod, J.-C.; Piatti, A. E.

    1999-01-01

    We present new Coravel radial-velocity observations and photoelectric photometry in the UBV, DDO and Washington systems for a sample of red giant candidates in the field of the intermediate-age open cluster NGC 2354. Photometric membership probabilities show very good agreement with those obtained from Coravel radial velocities. The analysis of the photometric and kinematical data allow us to confirm cluster membership for 9 red giants, one of them being a spectroscopic binary, while 4 confirmed spectroscopic binaries appear to be probable members. We have also discovered 4 spectroscopic binaries not belonging to the cluster. A mean radial velocity of (33.40 +/- 0.27) km s(-1) and a mean reddening E(B-V) = 0.13 +/- 0.03 were derived for the cluster giants. NGC 2354 has a mean ultraviolet excess = -0.03 +/- 0.01, relative to the field K giants, and a mean new cyanogen anomaly Delta CN = -0.035 +/- 0.007, both implying [Fe/H] ~ -0.3. The moderately metal-poor character of NGC 2354 is confirmed using five different metal abundance indicators of the Washington system. The cluster giant branch is formed by a well defined clump of 7 stars and 4 stars with high membership probabilities seem to define an ascending giant branch. The whole red giant locus cannot be reproduced by any theoretical track. Based on observations collected with the Danish\\protect\\linebreak 1.54-m telescope at the European Southern Observatory, La Silla (Chile); at Complejo Astronómico El Leoncito, which is operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan, Argentina, and at Cerro Tololo Inter-American Observatory, National Optical Astronomy Observatories, operated by the Association of Universities for Research in Astronomy, Inc., under contract with the National Science Foundation.

  7. OPTICAL AND INFRARED PHOTOMETRY OF GLOBULAR CLUSTERS IN NGC 1399: EVIDENCE FOR COLOR-METALLICITY NONLINEARITY

    SciTech Connect

    Blakeslee, John P.; Ferrarese, Laura; Martel, Andre R.; Cho, Hyejeon; Peng, Eric W.; Jordan, Andres

    2012-02-10

    We combine new Wide Field Camera 3 IR Channel (WFC3/IR) F160W (H{sub 160}) imaging data for NGC 1399, the central galaxy in the Fornax cluster, with archival F475W (g{sub 475}), F606W (V{sub 606}), F814W (I{sub 814}), and F850LP (z{sub 850}) optical data from the Advanced Camera for Surveys (ACS). The purely optical g{sub 475} - I{sub 814}, V{sub 606} - I{sub 814}, and g{sub 475} - z{sub 850} colors of NGC 1399's rich globular cluster (GC) system exhibit clear bimodality, at least for magnitudes I{sub 814} > 21.5. The optical-IR I{sub 814} - H{sub 160} color distribution appears unimodal, and this impression is confirmed by mixture modeling analysis. The V{sub 606} - H{sub 160} colors show marginal evidence for bimodality, consistent with bimodality in V{sub 606} - I{sub 814} and unimodality in I{sub 814} - H{sub 160}. If bimodality is imposed for I{sub 814} - H{sub 160} with a double Gaussian model, the preferred blue/red split differs from that for optical colors; these 'differing bimodalities' mean that the optical and optical-IR colors cannot both be linearly proportional to metallicity. Consistent with the differing color distributions, the dependence of I{sub 814} - H{sub 160} on g{sub 475} - I{sub 814} for the matched GC sample is significantly nonlinear, with an inflection point near the trough in the g{sub 475} - I{sub 814} color distribution; the result is similar for the I{sub 814} - H{sub 160} dependence on g{sub 475} - z{sub 850} colors taken from the ACS Fornax Cluster Survey. These g{sub 475} - z{sub 850} colors have been calibrated empirically against metallicity; applying this calibration yields a continuous, skewed, but single-peaked metallicity distribution. Taken together, these results indicate that nonlinear color-metallicity relations play an important role in shaping the observed bimodal distributions of optical colors in extragalactic GC systems.

  8. THE ROLE OF THERMOHALINE MIXING IN INTERMEDIATE- AND LOW-METALLICITY GLOBULAR CLUSTERS

    SciTech Connect

    Angelou, George C.; Stancliffe, Richard J.; Church, Ross P.; Lattanzio, John C.; Smith, Graeme H.

    2012-04-20

    It is now widely accepted that globular cluster red giant branch (RGB) stars owe their strange abundance patterns to a combination of pollution from progenitor stars and in situ extra mixing. In this hybrid theory a first generation of stars imprints abundance patterns into the gas from which a second generation forms. The hybrid theory suggests that extra mixing is operating in both populations and we use the variation of [C/Fe] with luminosity to examine how efficient this mixing is. We investigate the observed RGBs of M3, M13, M92, M15, and NGC 5466 as a means to test a theory of thermohaline mixing. The second parameter pair M3 and M13 are of intermediate metallicity and our models are able to account for the evolution of carbon along the RGB in both clusters, although in order to fit the most carbon-depleted main-sequence stars in M13 we require a model whose initial [C/Fe] abundance leads to a carbon abundance lower than is observed. Furthermore, our results suggest that stars in M13 formed with some primary nitrogen (higher C+N+O than stars in M3). In the metal-poor regime only NGC 5466 can be tentatively explained by thermohaline mixing operating in multiple populations. We find thermohaline mixing unable to model the depletion of [C/Fe] with magnitude in M92 and M15. It appears as if extra mixing is occurring before the luminosity function bump in these clusters. To reconcile the data with the models would require first dredge-up to be deeper than found in extant models.

  9. Faujasite-supported Ir{sub 4} clusters: A density functional model study of metal-zeolite interactions

    SciTech Connect

    Ferrari, A.M. |; Neyman, K.M.; Mayer, M.; Staufer, M.; Roesch, N.; Gates, B.C.

    1999-06-24

    The interaction of a metal cluster, Ir{sub 4}, and a zeolite support was investigated computationally with the aid of a density functional method and a cluster model of a zeolite, i.e., a six-ring consisting of six O atoms and six T (Si or Al) atoms facing a supercage of a faujasite framework. Structural parameters are reported for an Ir{sub 4} tetrahedron interacting with the zeolite six-ring. The calculations indicate two Ir-O distances, which match those reported on the basis of EXAFS spectroscopy at about 2.1--2.2 and 2.5--2.7 {angstrom} for various transition and noble metal clusters on zeolite (and metal oxide) supports, including Ir{sub 4} in the supercages of zeolite NaY. The calculations indicate an Ir-Ir distance of about 2.5 {angstrom}, only a few hundredths of an Angstrom more than the value calculated for the free Ir{sub 4} cluster, but about 0.2 {angstrom} less than the values observed repeatedly by EXAFS spectroscopy for zeolite-supported clusters approximated as Ir{sub 4}. The experimental distances characterizing the zeolite-supported clusters are in close agreement with the crystallographic and calculated value reported for the coordinatively saturated cluster Ir{sub 4}(CO){sub 12} and favor the suggestion that the supported clusters investigated with EXAFS spectroscopy were not entirely ligand free (i.e., that their formation by decarbonylation of the parent Ir{sub 4}(CO){sub 12} did not proceed by simple, complete removal of CO ligands). Consequently, calculations were performed for unsupported model clusters Ir{sub 4} with single H or C atoms as ligands; the results match the EXAFS data characterizing the Ir-Ir distance and favor the suggestion of carbon on the zeolite-supported clusters. The bonding of a single CO molecule to the supported Ir{sub 4} at the on-top site was also modeled to probe changes in the electronic structure of the metal cluster in comparison with an unsupported metal cluster. The results show that the interaction of the

  10. Heavy metals assessment in urban soil around industrial clusters in Ghaziabad, India: probabilistic health risk approach.

    PubMed

    Chabukdhara, Mayuri; Nema, Arvind K

    2013-01-01

    Metal contamination in the urban soil in the industrial city of Ghaziabad district was investigated. Spatial distribution of Cu, Cr, Pb, Cd, Zn, Mn, Fe and Ni in the urban soil was produced. The mean Cu, Cr, Pb, Cd, Zn, Mn, Fe and Ni contents in the urban topsoil samples (122, 288, 147, 0.4, 187, 386, 21,433 and 147mg/kg, respectively) were compared with the mean concentrations for other cities around the world. Cu, Cr, Pb, Zn and Ni concentrations appears to be higher than many other cities in the world. Non-cancer risk (Hazard Index) and cancer risk of children and adults due to exposure to the urban soil were estimated using 95th percentile values of total metal concentrations. Cluster analysis classified the sampling sites into three groups. Group 1 sites near commercial, industrial or dumpsite showed relatively higher concentrations of metals as compared to group 2 and 3 that were basically commercial or residential sites. It clearly indicates significant effects of rapid urbanization and industrialization in the last few decades in Ghaziabad. Correlation analysis and principal component analysis indicated common industrial source for Cu, Pb and Zn for group 1 sites. Cr may have point anthropogenic source. Except for Zn and Ni in group 2 sites, other metals may have come from natural sources while in group 3, all metals may have lithogenic source. Combined (ingestion, dermal and inhalation) hazard index (HI) values for children exceeded the safe level (HI=1) for Cr (2.21) and Pb (0.67) close to 1. Cancer risk due to Cr, Pb, Cd and Ni were within acceptable range (1E-06 to 1E-04). Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Metal Clustering and Solvation in Hydrothermal Steam: FT-MS, IRMPD, and Quantum Chemical Studies.

    NASA Astrophysics Data System (ADS)

    Lemke, K.

    2016-12-01

    FT-mass spectrometry in combination with wave tunable IRMPD spectroscopy can be used to probe the speciation of metals in aqueous media [1], and, in particular, shed light on clustering and solvation processes that occur in low-density aqueous fluids close to and on the Earth's surface [2]. In order to probe the structure of the solvation envelope around geochemicially important molecular ions, we have begun to survey a range of representative metal clusters of the form [Mn(ClO4)2n-1]+(H2O)m, (M=Mn, Ni, Cu, Co, Zn) using a combination of SWIFT mass isolation and wave tunable IR techniques. Ion cluster experiments have been conducted on a modified FT-ICR mass spectrometer coupled to a Nd:YAG pumped OPO/OPA laser; for example, ESI FT-MS of dilute (0.5 mM) aqueous Ni(ClO4)2 yields ion signals at m/z 452 (m=2), 470 (m=3), 488 (m=4) and 506 (m=5) due to clusters of the form [Ni2(ClO4)3]+(H2O)m with up to 5 waters, and larger trinuclear clusters at m/z 726, i.e. [Ni3(ClO4)5]+(H2O)3 and m/z 744, i.e.[Ni3(ClO4)5]+(H2O)4. Following mass isolation and IRMPD of Ni2(ClO4)3]+(H2O)4 at m/z 488, there is clear spectroscopic evidence for strongly red-shifted water OH stretching modes because of hydrogen bonding. Assignment of individual IR bands in Ni2(ClO4)3]+(H2O)4 was achieved by using a swarm based optimization algorithm and anharmonic DFT and MP2 calculations. Infrared spectral assignment could be made by assuming that two H2O molecules bind to each Ni center in two structurally distinct but isoenergetic Ni2(ClO4)3]+(H2O)4 clusters. In the case of Ni2(ClO4)3]+(H2O)4, the two lowest energy structures predicted by theory have all 4 water molecules bound into the first solvation shell, in other words, the strongly red-shifted OH stretching bands below 3590 cm-1 are due to asym. and sym. OH stretching modes of water moleculess directly bound to nickel and perchlorate O. These new FT-MS and IRMPD data together with results from IR spectral simulations of [Nin(ClO4)2n-1]+(H2O

  12. WIYN Open Cluster Study. LXXV. Testing the Metallicity Dependence of Stellar Lithium Depletion Using Hyades-aged Clusters. I. Hyades and Praesepe

    NASA Astrophysics Data System (ADS)

    Cummings, Jeffrey D.; Deliyannis, Constantine P.; Maderak, Ryan M.; Steinhauer, Aaron

    2017-03-01

    WIYN/Hydra spectroscopy (at R ∼ 15,000) of the moderately metal-rich Praesepe and Hyades open clusters was used to study their main-sequence (MS) iron ([Fe/H]) and lithium (A(Li)) abundances. Self-consistent [Fe/H] and Li analyses of these clusters of consistent age, which we re-evaluate, confirms that they have consistent [Fe/H] and provides a foundation to investigate the poorly understood G-dwarf and F-dwarf Li-depletions. Neither phenomenon agrees with standard stellar evolution theory, but possible explanations abound. We supplement our A(Li) with previously published results placed on a uniform abundance scale. This creates the largest self-consistently analyzed sample of A(Li) in both the Hyades (90) and Praesepe (110). For each star, high-precision UBVRI photometry was used to determine a 10-color-based {T}{eff} and then to test for photometric peculiarities indicated by a large {σ }{Teff} (>75 K). The stars that have large {σ }{Teff} were predominantly found to be binaries or stars with peculiar (apparent) A(Li). When considering only proper-motion members that have low {σ }{Teff} and are also photometrically consistent with the cluster MS fiducial, each cluster has a more tightly defined Li morphology than previously observed and the two clusters’ A(Li) are indistinguishable. This suggests that clusters of consistent age and metallicity may have consistent Li-depletion trends across a broad range of {T}{eff}; no additional major parameters are required, at least for these two clusters. We propose that the combined Hyades and Praesepe data offer more rigorous constraints than does either cluster alone, and we discuss newly revealed features of the combined Li–{T}{eff} trend.

  13. Modeling of cluster organization in metal-doped oxide glasses irradiated by a train of femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Smetanina, Evgeniya; Chimier, Benoit; Petit, Yannick; Varkentina, Nadezda; Fargin, Evelyne; Hirsch, Lionel; Cardinal, Thierry; Canioni, Lionel; Duchateau, Guillaume

    2016-01-01

    The formation of silver cluster structures at submicrometer spatial scales under the irradiation by high-power femtosecond laser pulses with high repetition rate was observed in various glasses containing silver ions. In order to account for the formation of these structures in metal-doped glasses, we present a theoretical model for the organization of noble metallic clusters induced by a train of femtosecond laser pulses. The model includes photoionization and laser heating of the sample, diffusion, kinetic reactions, and dissociation of metallic species. This model was applied to reproduce the formation of cluster structures in silver-doped phosphate glass. The parameters of the silver structures were obtained numerically under various incident pulse intensities and number of pulses. Numerical modeling shows that the involved microscopic physical and chemical processes naturally lead to the emergence of a silver cluster organization, together with charge migration and subsequent trapping giving rise to a strong static electric field buried in the irradiated area as experimentally observed. Based on this modeling, a theoretical basis is provided for the design of new metallic cluster structures with nanoscale size.

  14. Metallicities and radial velocities of two stellar clusters located in the outer regions of the Small Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Gramajo, L. V.; Parisi, M. C.; Clariá, J. J.; Geisler, D.; Vásquez, S.; Da Costa, G.; Grebel, E. K.

    2016-08-01

    We studied near-infrared spectra of red giant stars in two Small Magellanic Cloud (SMC) clusters. We used the Caii lines to measure radial velocities as well as the equivalent widths of these lines to determine metallicity. The two studied clusters (L32 and L38) are projected on the outer regions of the SMC so they are particularly interesting to examine the possible existence of a change of sign in the metallicity gradient in the outer regions, as suggested by a recent study.

  15. Reducing Capsule Based on Electron Programming: Versatile Synthesizer for Size-Controlled Ultra-Small Metal Clusters.

    PubMed

    Kambe, Tetsuya; Imaoka, Takane; Yamamoto, Kimihisa

    2016-11-07

    Controlled reducing capsules with a specific number of reducing electrons were achieved by appropriately placed BH3 units in the dendritic polyphenylazomethines (DPAs). Using the 1:1 coordination fashion on their basic branches with radius affinity gradient, the 4th generation DPA (DPAG4) possessing four BH3 units in the central positions was prepared as a template synthesizer for size-controlled ultra-small metal clusters. This was well-demonstrated by reduction of Ag, Pt, and other metal ions resulting in monodispersed ultra-small clusters.

  16. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework

    NASA Astrophysics Data System (ADS)

    Huang, Ren-Wu; Wei, Yong-Sheng; Dong, Xi-Yan; Wu, Xiao-Hui; Du, Chen-Xia; Zang, Shuang-Quan; Mak, Thomas C. W.

    2017-07-01

    Silver(I) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal-organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal-organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.

  17. Hypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic framework.

    PubMed

    Huang, Ren-Wu; Wei, Yong-Sheng; Dong, Xi-Yan; Wu, Xiao-Hui; Du, Chen-Xia; Zang, Shuang-Quan; Mak, Thomas C W

    2017-07-01

    Silver(i) chalcogenide/chalcogenolate clusters are promising photofunctional materials for sensing, optoelectronics and solar energy harvesting applications. However, their instability and poor room-temperature luminescent quantum yields have hampered more extensive study. Here, we graft such clusters to adaptable bridging ligands, enabling their interconnection and the formation of rigid metal-organic frameworks. By controlling the spatial separation and orientation of the clusters, they then exhibit enhanced stability (over one year) and quantum yield (12.1%). Ultrafast dual-function fluorescence switching (<1 s) is also achieved, with turn-off triggered by O2 and multicoloured turn-on by volatile organic compounds. Single-crystal X-ray diffraction of the inclusion materials, obtained by single-crystal-to-single-crystal transformation, enables precise determination of the position of the small molecules within the framework, elucidating the switching mechanism. The work enriches the cluster-based metal-organic framework portfolio, bridges the gap between silver chalcogenide/chalcogenolate clusters and metal-organic frameworks, and provides a foundation for further development of functional silver-cluster-based materials.

  18. Ionic versus metallic bonding in AlnNam and AlnMgm (m ≤ 3, n + m ≤ 15) clusters

    NASA Astrophysics Data System (ADS)

    Grover, Cameron J.; Reber, Arthur C.; Khanna, Shiv N.

    2017-06-01

    First principles electronic structure studies on the ground state geometries, stability, and the electronic structure of AlnNam and AlnMgm (m ≤ 3, n + m ≤ 15) clusters have been carried out to examine the nature of bonding between Na or Mg and Al. Identifying whether the bonding is ionic or metallic in bulk materials is typically straightforward; however, in small clusters where quantum confinement is important, the nature of bonding may become unclear. We have performed a critical analysis of the bonding in these bimetallic clusters using charge analysis, electrical dipole moments, hybridization of the atomic orbitals, the Laplacian of the charge density at the bond critical points, and the change in the bonding energy between neutral and anionic forms of the cluster. For NanAlm clusters, we find that the Na binding is primarily ionic, while the bonding in AlnMgm is primarily metallic. We find that the Mulliken population of the 3p orbital of Na and Mg can provide a rapid assessment of the nature of bonding. We also find that the Hirshfeld charge and dipole moments are effective indicators, when placed in context. We found that the Laplacian of the charge density at the bond critical points can be misleading in identifying whether the bonding is ionic or metallic in small clusters.

  19. Assessment of PM10 and heavy metals concentration in a Ceramic Cluster (NE Spain)

    NASA Astrophysics Data System (ADS)

    Belen Vicente, Ana; Pardo, Francisco; Sanfeliu, Teofilo; Bech, Joan

    2013-04-01

    Environmental pollution control is one of the most important goals in pollution risk assessment today. The aim of this study is conducting a retrospective view of the evolution of particulate matter (PM10) and heavy metals (As, Cd, Ni and Pb) at different localities in the Spanish cluster ceramic in the period between January 2007 and December 2011. The study area is in the province of Castellón. This province is a strategical area in the framework of European Union Pollution control. Approximately 80% of European ceramic tiles and ceramic frits manufacturers are concentrated in two areas, forming the so-called "Ceramics Clusters"; one is in Modena (Italy) and the other in Castellón (Spain). In this kind of areas, there are a lot of pollutants from this industry that represent an important contribution to soil contamination so it is necessary to control the air quality in them. These atmospheric particles are deposited in the ground through both dry and wet deposition. Soil is a major sink for heavy metals released into the environment. The level of pollution of soils by heavy metals depends on the retention capacity of the soil, especially on physical-chemical properties (mineralogy, grain size, organic matter) affecting soil particle surfaces and also on the chemical properties of the metal. The most direct consequences on the ground of air pollutants are acidification, salinization and the pollutions that can cause heavy metals as components of suspended particulate matter. For this purpose the levels of PM10 in ambient air and the corresponding annual and weekly trend were calculated. The results of the study show that the PM10 and heavy metals concentrations are below the limit values recommended by European Union Legislation for the protection of human health and ecosystems in the study period. There is an important reduction of them from 2009 in all control stations due to the economic crisis. References Moral, R., Gilkes, R.J., Jordán, M.M., 2005

  20. Ferromagnetism and suppression of metallic clusters in Fe implanted ZnO -- a phenomenon related to defects?

    SciTech Connect

    Arenholz, Elke; Zhou, S.; Potzger, K.; Talut, G.; Reuther, H.; Kuepper, K.; Grenzer, J.; Xu, Q.; Mucklich, A.; Helm, M.; Fassbender, J.; Arenholz, E.

    2008-03-12

    We investigated ZnO(0001) single crystals annealed in high vacuum with respect to their magnetic properties and cluster formation tendency after implant-doping with Fe. While metallic Fe cluster formation is suppressed, no evidence for the relevance of the Fe magnetic moment to the observed ferromagnetism was found. The latter along with the cluster suppression is discussed with respect to defects in the ZnO host matrix, since the crystalline quality of the substrates was lowered due to the preparation as observed by x-ray diffraction.

  1. Gas-phase catalysis by atomic and cluster metal ions: the ultimate single-site catalysts.

    PubMed

    Böhme, Diethard K; Schwarz, Helmut

    2005-04-15

    Gas-phase experiments with state-of-the-art techniques of mass spectrometry provide detailed insights into numerous elementary processes. The focus of this Review is on elementary reactions of ions that achieve complete catalytic cycles under thermal conditions. The examples chosen cover aspects of catalysis pertinent to areas as diverse as atmospheric chemistry and surface chemistry. We describe how transfer of oxygen atoms, bond activation, and coupling of fragments can be mediated by atomic or cluster metal ions. In some cases truly unexpected analogies of the idealized gas-phase ion catalysis can be drawn with related chemical transformations in solution or the solid state, and so improve our understanding of the intrinsic operation of a practical catalyst at a strictly molecular level.

  2. Rapid structural mapping of ternary metallic alloy systems using the combinatorial approach and cluster analysis.

    PubMed

    Long, C J; Hattrick-Simpers, J; Murakami, M; Srivastava, R C; Takeuchi, I; Karen, V L; Li, X

    2007-07-01

    We are developing a procedure for the quick identification of structural phases in thin film composition spread experiments which map large fractions of compositional phase diagrams of ternary metallic alloy systems. An in-house scanning x-ray microdiffractometer is used to obtain x-ray spectra from 273 different compositions on a single composition spread library. A cluster analysis software is then used to sort the spectra into groups in order to rapidly discover the distribution of phases on the ternary diagram. The most representative pattern of each group is then compared to a database of known structures to identify known phases. Using this method, the arduous analysis and classification of hundreds of spectra is reduced to a much shorter analysis of only a few spectra.

  3. Cluster Synthesis and Direct Ordering of Rare-Earth Transition-Metal Nanomagnets

    SciTech Connect

    Balasubramanian, B; Skomski, R; Li, XZ; Valloppilly, SR; Shield, JE; Hadjipanayis, GC; Sellmyer, DJ

    2011-04-01

    Rare-earth transition-metal (R-TM) alloys show superior permanent magnetic properties in the bulk, but the synthesis and application of R-TM nanoparticles remains a challenge due to the requirement of high-temperature annealing above about 800 degrees C for alloy formation and subsequent crystalline ordering. Here we report a single-step method to produce highly ordered R-TM nanoparticles such as YCo(5) and Y(2)Co(17), without high-temperature thermal annealing, by employing a cluster-deposition system and investigate their structural and magnetic properties. The direct ordering is highly desirable to create and assemble R-TM nanoparticle building blocks for future permanent-magnet and other significant applications.

  4. Alkali metal-cationized serine clusters studied by sonic spray ionization tandem mass spectrometry.

    PubMed

    Nanita, Sergio C; Sokol, Ewa; Cooks, R Graham

    2007-05-01

    Serine solutions containing salts of alkali metals yield magic number clusters of the type (Ser(4)+C)(+), (Ser(8)+C)(+), (Ser(12)+C)(+), and (Ser(17)+2C)(+2) (where C = Li(+), Na(+), K(+), Rb(+), or Cs(+)), in relative abundances which are strongly dependent on the cation size. Strong selectivity for homochirality is involved in the formation of serine tetramers cationized by K(+), Rb(+), and Cs(+). This is also the case for the octamers cationized by the smaller alkalis but there is a strong preference for heterochirality in the octamers cationized by the larger alkali cations. Tandem mass spectrometry shows that the octamers and dodecamers cationized by K(+), Rb(+), and Cs(+) dissociate mainly by the loss of Ser(4) units, suggesting that the neutral tetramers are the stable building blocks of the observed larger aggregates, (Ser(8)+C)(+) and (Ser(12)+C)(+). Remarkably, although the Ser(4) units are formed with a strong preference for homochirality, they aggregate further regardless of their handedness and, therefore, with a preference for the nominally racemic 4D:4L structure and an overall strong heterochiral preference. The octamers cationized by K(+), Rb(+), or Cs(+) therefore represent a new type of cluster ion that is homochiral in its internal subunits, which then assemble in a random fashion to form octamers. We tentatively interpret the homochirality of these tetramers as a consequence of assembly of the serine molecules around a central metal ion. The data provide additional evidence that the neutral serine octamer is homochiral and is readily cationized by smaller ions.

  5. CCD Photometry of the Globular Cluster ω Centauri. I. Metallicity of RR Lyrae Stars from CABY Photometry

    NASA Astrophysics Data System (ADS)

    Rey, Soo-Chang; Lee, Young-Wook; Joo, Jong-Myung; Walker, Alistair; Baird, Scott

    2000-04-01

    We present new measurements of the metallicity of 131 RR Lyrae stars in the globular cluster ω Centauri, using the hk index of the Caby photometric system. The hk method has distinct advantages over ΔS and other techniques in determining the metallicity of RR Lyrae stars and has allowed us to obtain the most complete and homogeneous metallicity data to date for the RR Lyrae stars in this cluster. For RR Lyrae stars in common with the ΔS observations of Butler, Dickens, & Epps and Gratton, Tornambe, & Ortolani, we have found that our metallicities, [Fe/H]hk, deviate systematically from their ΔS metallicity, while our [Fe/H]hk for well-observed, field RRab stars are consistent with previous spectroscopic measurements. We conclude that this is because of the larger errors associated with the previous ΔS observations for this cluster. The MV(RR)-[Fe/H] and period shift-[Fe/H] relations obtained from our new data are consistent with the evolutionary models predicted by Y.-W. Lee, confirming that the luminosity of RR Lyrae stars depends on evolutionary status as well as metallicity. Using the period-amplitude diagram, we have also identified highly evolved RRab stars in the range -1.9<=[Fe/H]<-1.5, as predicted from the synthetic horizontal-branch models.

  6. WIYN Open Cluster Study. LXXII. A uvbyCaHβ CCD Analysis of the Metal-deficient Open Cluster NGC 2506

    NASA Astrophysics Data System (ADS)

    Anthony-Twarog, Barbara J.; Deliyannis, Constantine P.; Twarog, Bruce A.

    2016-12-01

    Precision uvbyCaHβ photometry of the metal-deficient, old open cluster NGC 2506 is presented. The survey covers an area of 20\\prime × 20\\prime and extends to V˜ 18 for b - y and Hβ and to V˜ 17.0 for c 1 and hk. For V brighter than 16.0, photometric scatter among the indices leads to the recovery of six known variables within the cluster core and five new variables in the outer 5\\prime of the survey field. Proper motions, radial velocities, and precise multicolor indices are used to isolate a highly probable sample of cluster members from the very rich color-magnitude diagram. From 257 highly probable members at the cluster turnoff, we derive a reddening estimate of E(b-y)=0.042+/- 0.001 (E(B-V)=0.058+/- 0.001), where the errors refer to the internal standard errors of the mean. [Fe/H] is derived from the A/F dwarf members using both m 1 and hk, leading to [Fe/H] = -0.296 ± 0.011 (sem) and -0.317 ± 0.004 (sem), respectively. The weighted average, heavily dominated by hk, is [Fe/H] = -0.316 ± 0.033. Based on red giant members, we place an upper limit of ±0.010 on the variation in the reddening across the face of the cluster. We also identify two dozen potential red giant cluster members outside the cluster core. Victoria-Regina isochrones on the Strömgren system produce an excellent match to the cluster for an apparent modulus of (m-M)=12.75+/- 0.1 and an age of 1.85 ± 0.05 Gyr.

  7. LIGHT-ELEMENT ABUNDANCE VARIATIONS AT LOW METALLICITY: THE GLOBULAR CLUSTER NGC 5466

    SciTech Connect

    Shetrone, Matthew; Martell, Sarah L.; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H.; Smith, Graeme H.

    2010-10-15

    We present low-resolution (R {approx_equal}850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s{sup -1} via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function 'bump' on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances.

  8. Equilibrium properties of transition-metal ion-argon clusters via simulated annealing

    NASA Technical Reports Server (NTRS)

    Asher, Robert L.; Micha, David A.; Brucat, Philip J.

    1992-01-01

    The geometrical structures of M(+) (Ar)n ions, with n = 1-14, have been studied by the minimization of a many-body potential surface with a simulated annealing procedure. The minimization method is justified for finite systems through the use of an information theory approach. It is carried out for eight potential-energy surfaces constructed with two- and three-body terms parametrized from experimental data and ab initio results. The potentials should be representative of clusters of argon atoms with first-row transition-metal monocations of varying size. The calculated geometries for M(+) = Co(+) and V(+) possess radial shells with small (ca. 4-8) first-shell coordination number. The inclusion of an ion-induced-dipole-ion-induced-dipole interaction between argon atoms raises the energy and generally lowers the symmetry of the cluster by promoting incomplete shell closure. Rotational constants as well as electric dipole and quadrupole moments are quoted for the Co(+) (Ar)n and V(+) (Ar)n predicted structures.

  9. C-H Bond Activation by Early Transition Metal Carbide Cluster Anion MoC3 (-).

    PubMed

    Li, Zi-Yu; Hu, Lianrui; Liu, Qing-Yu; Ning, Chuan-Gang; Chen, Hui; He, Sheng-Gui; Yao, Jiannian

    2015-12-01

    Although early transition metal (ETM) carbides can activate CH bonds in condensed-phase systems, the electronic-level mechanism is unclear. Atomic clusters are ideal model systems for understanding the mechanisms of bond activation. For the first time, CH activation of a simple alkane (ethane) by an ETM carbide cluster anion (MoC3 (-) ) under thermal-collision conditions has been identified by using high-resolution mass spectrometry, photoelectron imaging spectroscopy, and high-level quantum chemical calculations. Dehydrogenation and ethene elimination were observed in the reaction of MoC3 (-) with C2 H6 . The CH activation follows a mechanism of oxidative addition that is much more favorable in the carbon-stabilized low-spin ground electronic state than in the high-spin excited state. The reaction efficiency between the MoC3 (-) anion and C2 H6 is low (0.23±0.05) %. A comparison between the anionic and a highly efficient cationic reaction system (Pt(+) +C2 H6 ) was made. It turned out that the potential-energy surfaces for the entrance channels of the anionic and cationic reaction systems can be very different. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Equilibrium properties of transition-metal ion-argon clusters via simulated annealing

    NASA Technical Reports Server (NTRS)

    Asher, Robert L.; Micha, David A.; Brucat, Philip J.

    1992-01-01

    The geometrical structures of M(+) (Ar)n ions, with n = 1-14, have been studied by the minimization of a many-body potential surface with a simulated annealing procedure. The minimization method is justified for finite systems through the use of an information theory approach. It is carried out for eight potential-energy surfaces constructed with two- and three-body terms parametrized from experimental data and ab initio results. The potentials should be representative of clusters of argon atoms with first-row transition-metal monocations of varying size. The calculated geometries for M(+) = Co(+) and V(+) possess radial shells with small (ca. 4-8) first-shell coordination number. The inclusion of an ion-induced-dipole-ion-induced-dipole interaction between argon atoms raises the energy and generally lowers the symmetry of the cluster by promoting incomplete shell closure. Rotational constants as well as electric dipole and quadrupole moments are quoted for the Co(+) (Ar)n and V(+) (Ar)n predicted structures.

  11. Minimum polarizability principle applied to lowest energy isomers of some gaseous all-metal clusters.

    PubMed

    Mang, Chao-Yong; Zhao, Xia; He, Li-Xian; Liu, Cai-Ping; Wu, Ke-Chen

    2008-02-21

    In comparison with the minimum energy criterion as an indicator of the most stable state, the minimum polarizability and maximum hardness principles have been examined to describe the relative stability of various isomers of nine gaseous all-metal clusters M4X- (Cu4Na-, Cu4Li-, Al4Cu-, Ag4Li-, Au4Li-, Ag4Na-, Au4Na-, Al4Ag-, Al4Au-) on the basis of MP2 calculations. In these species, there are two lowest energy isomers with near isoenergy that sometimes make it very difficult to determine which of them is more stable when we depend only on the minimum energy criterion. According to the minimum polarizability principle, however, the square-pyramidal structure is always more stable than the planar isomer at various computational levels, which was also confirmed by the results from the minimum energy principle that sometimes requires higher computational precision. Thus, there is an indication that, at least for our present cluster system, the minimum polarizability principle is less dependent on the computational levels compared to the minimum energy principle.

  12. Fluorescent probes for tracking the transfer of iron–sulfur cluster and other metal cofactors in biosynthetic reaction pathways

    DOE PAGES

    Vranish, James N.; Russell, William K.; Yu, Lusa E.; ...

    2014-12-05

    Iron–sulfur (Fe–S) clusters are protein cofactors that are constructed and delivered to target proteins by elaborate biosynthetic machinery. Mechanistic insights into these processes have been limited by the lack of sensitive probes for tracking Fe–S cluster synthesis and transfer reactions. Here we present fusion protein- and intein-based fluorescent labeling strategies that can probe Fe–S cluster binding. The fluorescence is sensitive to different cluster types ([2Fe–2S] and [4Fe–4S] clusters), ligand environments ([2Fe–2S] clusters on Rieske, ferredoxin (Fdx), and glutaredoxin), and cluster oxidation states. The power of this approach is highlighted with an extreme example in which the kinetics of Fe–S clustermore » transfer reactions are monitored between two Fdx molecules that have identical Fe–S spectroscopic properties. This exchange reaction between labeled and unlabeled Fdx is catalyzed by dithiothreitol (DTT), a result that was confirmed by mass spectrometry. DTT likely functions in a ligand substitution reaction that generates a [2Fe–2S]–DTT species, which can transfer the cluster to either labeled or unlabeled Fdx. The ability to monitor this challenging cluster exchange reaction indicates that real-time Fe–S cluster incorporation can be tracked for a specific labeled protein in multicomponent assays that include several unlabeled Fe–S binding proteins or other chromophores. Such advanced kinetic experiments are required to untangle the intricate networks of transfer pathways and the factors affecting flux through branch points. High sensitivity and suitability with high-throughput methodology are additional benefits of this approach. Lastly, we anticipate that this cluster detection methodology will transform the study of Fe–S cluster pathways and potentially other metal cofactor biosynthetic pathways.« less

  13. HEAVY-ELEMENT DISPERSION IN THE METAL-POOR GLOBULAR CLUSTER M92

    SciTech Connect

    Roederer, Ian U.; Sneden, Christopher

    2011-07-15

    Dispersion among the light elements is common in globular clusters (GCs), while dispersion among heavier elements is less common. We present detection of r-process dispersion relative to Fe in 19 red giants of the metal-poor GC M92. Using spectra obtained with the Hydra multi-object spectrograph on the WIYN Telescope at Kitt Peak National Observatory, we derive differential abundances for 21 species of 19 elements. The Fe-group elements, plus Y and Zr, are homogeneous at a level of 0.07-0.16 dex. The heavy-elements La, Eu, and Ho exhibit clear star-to-star dispersion spanning 0.5-0.8 dex. The abundances of these elements are correlated with one another, and we demonstrate that they were produced by r-process nucleosynthesis. This r-process dispersion is not correlated with the dispersion in C, N, or Na in M92, indicating that r-process inhomogeneities were present in the gas throughout star formation. The r-process dispersion is similar to that previously observed in the metal-poor GC M15, but its origin in M15 or M92 is unknown at present.

  14. An extended basis set {ital ab} {ital initio} study of alkali metal cation--water clusters

    SciTech Connect

    Feller, D.; Glendening, E.D.; Woon, D.E.; Feyereisen, M.W.

    1995-09-01

    Ionic clusters comprised of a single alkali metal cation and up to eight water molecules were studied at the Hartree--Fock and correlated levels of theory using the correlation consistent sequence of basis sets. Estimates of the degree of convergence in the computed properties with respect to the complete basis set limit were facilitated by the underlying systematic manner in which the correlation consistent sets approach completeness. In favorable cases, improved property values could be obtained by fitting finite basis set results with a simple analytical expression in order to extrapolate to the complete basis set limit. The sensitivity of structures and binding energies were analyzed with regard to the inclusion of valence and core-valence correlation recovery at the MP2, MP4, and CCSD(T) levels of theory. The replacement of metal core electrons and the introduction of relativistic contributions via effective core potentials was compared to corresponding all-electron results. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  15. Effects of Carbonyl Bond and Metal Cluster Dissociation and Evaporation Rates on Predictions of Nanotube Production in HiPco

    NASA Technical Reports Server (NTRS)

    Scott, Carl D.; Smalley, Richard E.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process for producing single-wall carbon nanotubes (SWNT) uses iron pentacarbonyl as the source of iron for catalyzing the Boudouard reaction. Attempts using nickel tetracarbonyl led to no production of SWNTs. This paper discusses simulations at a constant condition of 1300 K and 30 atm in which the chemical rate equations are solved for different reaction schemes. A lumped cluster model is developed to limit the number of species in the models, yet it includes fairly large clusters. Reaction rate coefficients in these schemes are based on bond energies of iron and nickel species and on estimates of chemical rates for formation of SWNTs. SWNT growth is measured by the co-formation of CO2. It is shown that the production of CO2 is significantly greater for FeCO due to its lower bond energy as compared with that ofNiCO. It is also shown that the dissociation and evaporation rates of atoms from small metal clusters have a significant effect on CO2 production. A high rate of evaporation leads to a smaller number of metal clusters available to catalyze the Boudouard reaction. This suggests that if CO reacts with metal clusters and removes atoms from them by forming MeCO, this has the effect of enhancing the evaporation rate and reducing SWNT production. The study also investigates some other reactions in the model that have a less dramatic influence.

  16. Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%.

    PubMed

    Chen, Yong-Siou; Choi, Hyunbong; Kamat, Prashant V

    2013-06-19

    A new class of metal-cluster sensitizers has been explored for designing high-efficiency solar cells. Thiol-protected gold clusters which exhibit molecular-like properties have been found to inject electrons into TiO2 nanostructures under visible excitation. Mesoscopic TiO2 films modified with gold clusters deliver stable photocurrent of 3.96 mA/cm(2) with power conversion efficiencies of 2.3% under AM 1.5 illumination. The overall absorption features and cell performance of metal-cluster-sensitized solar cells (MCSCs) are comparable to those of CdS quantum-dot-based solar cells (QDSCs). The relatively high open-circuit voltage of 832 mV and fill factor of 0.7 for MCSCs as compared to QDSCs show the viability of these new sensitizers as alternatives to semiconductor QDs and sensitizing dyes in the next generation of solar cells. The superior performance of MCSCs discussed in this maiden study lays the foundation to explore other metal clusters with broader visible absorption.

  17. A new family of Ln₇ clusters with an ideal D(3h) metal-centered trigonal prismatic geometry, and SMM and photoluminescence behaviors.

    PubMed

    Mazarakioti, Eleni C; Poole, Katye M; Cunha-Silva, Luis; Christou, George; Stamatatos, Theocharis C

    2014-08-14

    The first use of the flexible Schiff base ligand N-salicylidene-2-aminocyclohexanol in metal cluster chemistry has afforded a new family of Ln7 clusters with ideal D(3h) point group symmetry and metal-centered trigonal prismatic topology; solid-state and solution studies revealed SMM and photoluminescence behaviors.

  18. Unusual structures and reactivity of mixed metal cluster complexes containing the palladium/platinum tri-t-butylphosphine grouping.

    PubMed

    Adams, Richard D; Captain, Burjor

    2009-03-17

    Polynuclear metal carbonyl complexes have a range of applications in chemical research: for example, they can serve as surface models to probe features of heterogeneous catalysis and can perform novel transformations of organic molecules in solutions. Mixed metal complexes can demonstrate bimetallic cooperativity and synergism and can also serve as precursors to multimetallic heterogeneous catalysts that have superior activities and selectivities. This Account describes the results of our recent comprehensive study of the chemistry of mixed metal cluster complexes containing the sterically encumbered M(PBu(t)(3)), M = Pd or Pt, group. This grouping readily adds to the metal-metal bonds of metal carbonyl cluster complexes and modifies their reactivity. We have prepared new, highly electronically unsaturated mixed metal complexes that exhibit unusually high reactivity toward hydrogen. The platinum atom of the Pt(PBu(t)(3)) grouping can bond to as many as five metal atoms, and it can interconvert, sometimes rapidly, between the different bonding modes. The large steric effects of the PBu(t)(3) ligand allowed us to prepare highly unsaturated, stable, mixed-metal complexes, and these complexes react with hydrogen, sometimes reversibly, under very mild conditions to yield polyhydride complexes. Strong evidence suggests that the Pt(PBu(t)(3)) group can also activate metal-hydrogen bonds in other complexes. In the future, we expect that researchers will prepare a greater variety of mixed metal complexes containing the Pd/Pt(PBu(t)(3)) group or other similar bulky groups, and that some of these complexes will exhibit even more unusual chemistry than what we have observed so far.

  19. The Development of a Model for Estimating the Costs Associated with the Delivery of a Metals Cluster Program.

    ERIC Educational Resources Information Center

    Hunt, Charles R.

    A study developed a model to assist school administrators to estimate costs associated with the delivery of a metals cluster program at Norfolk State College, Virginia. It sought to construct the model so that costs could be explained as a function of enrollment levels. Data were collected through a literature review, computer searches of the…

  20. Exciton-plasmon interaction in hybrid quantum dot/metal cluster structures fabricated by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Lyamkina, A. A.; Moshchenko, S. P.; Dmitriev, D. V.; Toropov, A. I.; Shamirzaev, T. S.

    2014-04-01

    Hybrid structures consisting of InAs/AlGaAs quantum dots and In clusters on the surface separated by an AlGaAs spacer with a specified thickness are investigated. The enhancement of the photoluminescence signal in the long-wavelength region manifesting itself in the appearance of a new narrow emission line is observed. This line is absent in the control structure with a quantum-dot array and no metal clusters. It also disappears with increasing thickness of the dielectric spacer between the layers. These results are explained in terms of a model taking into account the resonance interaction of excitons in quantum dots with localized surface plasmons in metal clusters.

  1. UB CCD PHOTOMETRY OF THE OLD, METAL-RICH, OPEN CLUSTERS NGC 6791, NGC 6819, AND NGC 7142

    SciTech Connect

    Carraro, G.; Buzzoni, A.; Bertone, E.; Buson, L. E-mail: alberto.buzzoni@oabo.inaf.it E-mail: lucio.buson@oapd.inaf.it

    2013-11-01

    We report on a UV-oriented imaging survey in the fields of the old, metal-rich open clusters NGC 6791, NGC 6819, and NGC 7142. With their super-solar metallicity and ages ∼> 3-8 Gyr, these three clusters represent both very near and ideal stellar aggregates to match the distinctive properties of the evolved stellar populations, as in elliptical galaxies and bulges of spirals. Following a first discussion of NGC 6791 observations in an accompanying paper, here we complete our analysis, also presenting for NGC 6819 and NGC 7142 the first-ever U CCD photometry. The color-magnitude diagram of the three clusters is analyzed in detail, with special emphasis on the hot stellar component. We report, in this regard, one new extreme horizontal-branch star candidate in NGC 6791. For NGC 6819 and 7142, the stellar luminosity function clearly points to a looser radial distribution of faint lower main sequence stars, either as a consequence of cluster dynamical interaction with the Galaxy or as an effect of an increasing fraction of binary stars toward the cluster core, as also observed in NGC 6791. Compared to a reference theoretical model for the Galaxy disk, the analysis of the stellar field along the line of sight of each cluster indicates that a more centrally concentrated thick disk, on a scale length shorter than ∼2.8 kpc, might better reconcile the lower observed fraction of bright field stars and their white-dwarf progeny.

  2. UB CCD Photometry of the Old, Metal-rich, Open Clusters NGC 6791, NGC 6819, and NGC 7142

    NASA Astrophysics Data System (ADS)

    Carraro, G.; Buzzoni, A.; Bertone, E.; Buson, L.

    2013-11-01

    We report on a UV-oriented imaging survey in the fields of the old, metal-rich open clusters NGC 6791, NGC 6819, and NGC 7142. With their super-solar metallicity and ages >~ 3-8 Gyr, these three clusters represent both very near and ideal stellar aggregates to match the distinctive properties of the evolved stellar populations, as in elliptical galaxies and bulges of spirals. Following a first discussion of NGC 6791 observations in an accompanying paper, here we complete our analysis, also presenting for NGC 6819 and NGC 7142 the first-ever U CCD photometry. The color-magnitude diagram of the three clusters is analyzed in detail, with special emphasis on the hot stellar component. We report, in this regard, one new extreme horizontal-branch star candidate in NGC 6791. For NGC 6819 and 7142, the stellar luminosity function clearly points to a looser radial distribution of faint lower main sequence stars, either as a consequence of cluster dynamical interaction with the Galaxy or as an effect of an increasing fraction of binary stars toward the cluster core, as also observed in NGC 6791. Compared to a reference theoretical model for the Galaxy disk, the analysis of the stellar field along the line of sight of each cluster indicates that a more centrally concentrated thick disk, on a scale length shorter than ~2.8 kpc, might better reconcile the lower observed fraction of bright field stars and their white-dwarf progeny.

  3. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  4. Ab initio study of neutral (TiO2)n clusters and their interactions with water and transition metal atoms

    NASA Astrophysics Data System (ADS)

    Çakır, D.; Gülseren, O.

    2012-08-01

    We have systematically investigated the growth behavior and stability of small stoichiometric (TiO2)n (n = 1-10) clusters as well as their structural, electronic and magnetic properties by using the first-principles plane wave pseudopotential method within density functional theory. In order to find out the ground state geometries, a large number of initial cluster structures for each n has been searched via total energy calculations. Generally, the ground state structures for the case of n = 1-9 clusters have at least one monovalent O atom, which only binds to a single Ti atom. However, the most stable structure of the n = 10 cluster does not have any monovalent O atom. On the other hand, Ti atoms are at least fourfold coordinated for the ground state structures for n ≥ 4 clusters. Our calculations have revealed that clusters prefer to form three-dimensional structures. Furthermore, all these stoichiometric clusters have nonmagnetic ground state. The formation energy and the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap for the most stable structure of (TiO2)n clusters for each n have also been calculated. The formation energy and hence the stability increases as the cluster size grows. In addition, the interactions between the ground state structure of the (TiO2)n cluster and a single water molecule have been studied. The binding energy (Eb) of the H2O molecule exhibits an oscillatory behavior with the size of the clusters. A single water molecule preferably binds to the cluster Ti atom through its oxygen atom, resulting an average binding energy of 1.1 eV. We have also reported the interaction of the selected clusters (n = 3, 4, 10) with multiple water molecules. We have found that additional water molecules lead to a decrease in the binding energy of these molecules to the (TiO2)n clusters. Finally, the adsorption of transition metal (TM) atoms (V, Co and Pt) on the n = 10 cluster has been investigated for possible

  5. Quantitative Z-Contrast Imaging of Supported Metal Complexes and Clusters - A Gateway to Understanding Catalysis on the Atomic Scale

    SciTech Connect

    Browning, Nigel D.; Aydin, C.; Lu, Jing; Kulkarni, Apoorva; Okamoto, Norihiko L.; Ortalan, V.; Reed, Bryan W.; Uzun, Alper; Gates, Bruce C.

    2013-09-01

    Z-contrast imaging in an aberration-corrected scanning transmission electron microscope can be used to observe and quantify the sizes, shapes, and compositions of the metal frames in supported mono-, bi-, and multimetallic metal clusters and can even detect the metal atoms in single-metal-atom complexes, as well as providing direct structural information characterizing the metal-support interface. Herein, we assess the major experimental challenges associated with obtaining atomic resolution Z-contrast images of the materials that are highly beam-sensitive, that is, the clusters readily migrate and sinter on support surfaces, and the support itself can drastically change in structure if the experiment is not properly controlled. Calibrated and quantified Z-contrast images are used in conjunction with exsitu analytical measurements and larger-scale characterization methods such as extended X-ray absorption fine structure spectroscopy to generate an atomic-scale understanding of supported catalysts and their function. Examples of the application of these methods include the characterization of a wide range of sizes and compositions of supported clusters, primarily those incorporating Ir, Os, and Au, on highly crystalline supports (zeolites and MgO).

  6. Carbonyl substitution chemistry of some trimetallic transition metal cluster complexes with polyfunctional ligands

    SciTech Connect

    Byrne, Lindsay T.; Hondow, Nicole S.; Koutsantonis, George A.; Skelton, Brian W.; Torabi, A. Asgar; White, Allan H.; Wild, S. Bruce

    2008-11-03

    The trimetallic clusters [Ru{sub 3}(CO){sub 10}(dppm)], [Ru{sub 3}(CO){sub 12}] and [RuCo{sub 2}(CO){sub 11}] react with a number of multifunctional secondary phosphine and tertiary arsine ligands to give products consequent on carbonyl substitution and, in the case of the secondary phosphines, PH activation. The reaction with the unresolved mixed P/S donor, 1-phenylphosphino-2-thio(ethane), HSCH{sub 2}CH{sub 2}PHPh ({double_bond}LH{sub 2}), gave two products under various conditions which have been characterized by spectroscopic and crystallographic means. These two complexes [Ru{sub 3}({mu}dppm)(H)(CO){sub 7}(LH)] and [Ru{sub 3}({mu}-dppm)(H)(CO){sub 8}(LH)Ru{sub 3}({mu}-dppm)(CO){sub 9}], show the versatility of the ligand, with it chelating in the former and bridging two Ru{sub 3} units in the latter. The stereogenic centres in the molecules gave rise to complicated spectroscopic data which are consistent with the presence of diastereoisomers. In the case of [Ru{sub 3}(CO){sub 12}] the reaction with LH{sub 2} gave a poor yield of a tetranuclear butterfly cluster, [Ru{sub 4}(CO){sub 10}(L){sub 2}], in which two of the ligands bridge opposite hinge wingtip bonds of the cluster. A related ligand, HSCH{sub 2}CH{sub 2}AsMe(C{sub 6}H{sub 4}CH{sub 2}OMe), reacted with [RuCo{sub 2}(CO){sub 11}] to give a low yield of the heterobimetallic Ru-Co adduct, [RuCo(CO){sub 6}(SCH{sub 2}CH{sub 2}AsMe(C{sub 6}H{sub 4}CH{sub 2}OMe))], which appears to be the only one of its type so far structurally characterized. The secondary phosphine, HPMe(C{sub 6}H{sub 4}(CH{sub 2}OMe)) and its oxide HP(O)Me(C{sub 6}H{sub 4}(CH{sub 2}OMe)) also react with the cluster [Ru{sub 3}(CO){sub 10}(dppm)] to give carbonyl substitution products, [Ru{sub 3}(CO){sub 5}(dppm)({mu}{sub 2}-PMe(C{sub 6}H{sub 4}CH{sub 2}OMe)){sub 4}], and [Ru{sub 3}H(CO){sub 7}(dppm)({mu}{sub 2},{eta}{sup 1}P({double_bond}O)Me(C{sub 6}H{sub 4}CH{sub 2}OMe))]. The former consists of an open Ru{sub 3} triangle with four

  7. Light-element Abundance Variations at Low Metallicity: The Globular Cluster NGC 5466

    NASA Astrophysics Data System (ADS)

    Shetrone, Matthew; Martell, Sarah L.; Wilkerson, Rachel; Adams, Joshua; Siegel, Michael H.; Smith, Graeme H.; Bond, Howard E.

    2010-10-01

    We present low-resolution (R sime850) spectra for 67 asymptotic giant branch (AGB), horizontal branch, and red giant branch (RGB) stars in the low-metallicity globular cluster NGC 5466, taken with the VIRUS-P integral-field spectrograph at the 2.7 m Harlan J. Smith telescope at McDonald Observatory. Sixty-six stars are confirmed, and one rejected, as cluster members based on radial velocity, which we measure to an accuracy of 16 km s-1 via template-matching techniques. CN and CH band strengths have been measured for 29 RGB and AGB stars in NGC 5466, and the band-strength indices measured from VIRUS-P data show close agreement with those measured from Keck/LRIS spectra previously taken for five of our target stars. We also determine carbon abundances from comparisons with synthetic spectra. The RGB stars in our data set cover a range in absolute V magnitude from +2 to -3, which permits us to study the rate of carbon depletion on the giant branch as well as the point of its onset. The data show a clear decline in carbon abundance with rising luminosity above the luminosity function "bump" on the giant branch, and also a subdued range in CN band strength, suggesting ongoing internal mixing in individual stars but minor or no primordial star-to-star variation in light-element abundances. Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. A novel structure type for isolated rare-earth-metal clusters centered by transition metals: Cs{sub 4}R{sub 6}I{sub 13}Z (R = Ce, Pr; Z = Co, Os)

    SciTech Connect

    Lulei, M.; Corbett, J.D.

    1996-06-19

    The research reported here has been focused on the introduction of alkali-metal atoms into rare-earth-metal cluster structures in order to expand the variety of quaternary compounds with discrete rare-earth-metal clusters centered by transition metals. This direction was encouraged by other recent results with isolated clusters centered only by small main-group elements, such as Cs{sub 4}Pr{sub 6}I{sub 13}C{sub 2} and Cs{sub 4}Sc{sub 6}I{sub 13}C,{sup 11} and by any examples in the chemistry of reduced zirconium halides.

  9. Robust MOFs of 'tsg' Topology Based on Trigonal Prismatic Organic and Metal Cluster SBUs: Single Crystal-to-Single Crystal Postsynthetic Metal Exchange and Selective CO2 Capture.

    PubMed

    Moorthy, Narasimha Jarugu; Chandrasekhar, Pujari; Savitha, Govardhan

    2017-04-03

    The self-assembly of a rigid and trigonal prismatic triptycene-hexaacid H6THA with Co(NO3)2 and Mn(NO3)2 leads to isostructural MOFs that are sustained by 6-c metal cluster [M3(μ3-O)(COO)6] SBUs. The Co- and Mn-MOFs, constructed from organic and metal-cluster building blocks that are both trigonal prismatic, correspond to the heretofore unknown 'tsg' topology. Due to the rigidity and concave attributes of H6THA, the networks in Co- and Mn-MOFs are highly porous and undergo 3-fold interpenetration. The interpenetration imparts permanent microporosity and high thermal stability to the MOFs to permit postsynthetic metal exchange (PSME) and gas sorption. The PSME occurs in a SC-SC fashion when the crystals of Co- and Mn-MOFs are immersed in a solution of Cu(NO3)2 in MeOH/H2O. Further, the isostructural robust MOFs exhibit significant gas sorption and remarkable selectivity for CO2 over N2 (ca. 100 fold) at ambient conditions. In fact, the postsynthetically-engineered Cu-THA exhibits better CO2 sorption than Co-THA and Mn-THA. A composite of effects that include pore dimensions (ca. 0.7 nm), unsaturated metal centers and basic environments conferred by the quinoxaline nitrogen atoms appears to be responsible for the observed high CO2 capture and selectivity. The high-symmetry and structural attributes of the organic linker seemingly dictate adoption of the trigonal-prismatic metal cluster SBU by the metal ions in the MOFs.

  10. Selective electrodesorption based atomic layer deposition (SEBALD): a novel electrochemical route to deposit metal clusters on Ag(111).

    PubMed

    Innocenti, M; Bellandi, S; Lastraioli, E; Loglio, F; Foresti, M L

    2011-09-20

    The possibility of synergic effects of some metals on the catalytic activity of silver led us to study the way to perform controlled deposition on silver. In fact, many metals of technological interest such as Co, Ni, and Fe cannot be deposited at underpotential on silver, and any attempt to control the deposition at overpotential, even at potentials slightly negative of the Nernst value, did not allow an effective control. However, due to the favorable energy gain involved in the formation of the corresponding sulfides, these metals can be deposited at underpotential on sulfur covered silver. The deposition is surface limited and the successive electrodesorption of sulfur leaves confined clusters of metals. The method can also be used to obtain metal clusters of different size. In fact, the alternate underpotential deposition of elements that form a compound is the basis of the electrochemical atomic layer epitaxy (ECALE), and the reiteration of the basic cycle allows us to obtain sulfide deposits whose thickness increases with the number of cycles. Therefore, the successive selective desorption of sulfur leaves increasing amounts of metals.

  11. The extreme chemistry of multiple stellar populations in the metal-poor globular cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; D'Orazi, V.; Lucatello, S.; Momany, Y.; Sollima, A.; Bellazzini, M.; Catanzaro, G.; Leone, F.

    2014-04-01

    Our FLAMES survey of Na-O anticorrelation in globular clusters (GCs) is extended to NGC 4833, a metal-poor GC with a long blue tail on the horizontal branch (HB). We present the abundance analysis for a large sample of 78 red giants based on UVES and GIRAFFE spectra acquired at the ESO-VLT. We derived abundances of Na, O, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, La, and Nd. This is the first extensive study of this cluster from high resolution spectroscopy. On the scale of our survey, the metallicity of NGC 4833 is [Fe/H] = -2.015 ± 0.004 ± 0.084 dex (rms = 0.014 dex) from 12 stars observed with UVES, where the first error is from statistics and the second one refers to the systematic effects. The iron abundance in NGC 4833 is homogeneous at better than 6%. On the other hand, the light elements involved in proton-capture reactions at high temperature show the large star-to-star variations observed in almost all GCs studied so far. The Na-O anticorrelation in NGC 4833 is quite extended, as expected from the high temperatures reached by stars on the HB, and NGC 4833 contains a conspicuous fraction of stars with extreme [O/Na] ratios. More striking is the finding that large star-to-star variations are also seen for Mg, which spans a range of more than 0.5 dex in this GC. Depletions in Mg are correlated to the abundances of O and anti-correlated with Na, Al, and Si abundances. This pattern suggests the action of nuclear processing at unusually high temperatures, producing the extreme chemistry observed in the stellar generations of NGC 4833. These extreme changes are also seen in giants of the much more massive GCs M 54 and ω Cen, and our conclusion is that NGC 4833 has probably lost a conspicuous fraction of its original mass due to bulge shocking, as also indicated by its orbit. Based on observations collected at ESO telescopes under programmes 083.D-0208 and 68.D-0265.Full Tables 2, 6-11 are only available at the CDS via anonymous ftp to http

  12. Electrochemical lithium intercalation chemistry of condensed molybdenum metal cluster oxide: LiMo4O6

    NASA Astrophysics Data System (ADS)

    Lim, Sung-Chul; Chae, Munseok S.; Heo, Jongwook W.; Hong, Seung-Tae

    2017-10-01

    The electrochemical lithium-ion intercalation properties of molybdenum metal-cluster oxide LixMo4O6 (0.33 ≤ x ≤ 1.0) in an organic electrolyte of 1.0 M LiPF6 in ethylene carbonate/dimethyl carbonate (1:2 v/v) were characterized for the first time. Li0.66Mo4O6 (tetragonal, P4/mbm, a = 9.5914(3) Å, c = 2.8798(1) Å, V = 264.927(15) Å3, Z = 2) was prepared via ion-exchange of indium and lithium ions from InMo4O6 (tetragonal, P4/mbm, a = 9.66610(4) Å, c = 2.86507(2) Å, V = 267.694(2) Å3, Z = 2), which was first synthesized from a stoichiometric mixture of In, Mo, and MoO3 via a solid-state reaction for 11 h at 1100 °C. Then, Li0.33Mo4O6 was obtained via electrochemical charge of the electrode at 3.4 V vs. Li. The electrochemical lithium-ion insertion into Li0.33Mo4O6 occurs stepwise: three separate peaks were observed in the cyclic voltammogram and three quasi-plateaus in the galvanostatic profile, indicating a complicated intercalation mechanism. However, examination of the structural evolution of LixMo4O6 during the electrochemical cycle indicated a reversible reaction over the measured voltage range (2.0-3.2 V) and x range (0.33 ≤ x ≤ 1.00). Despite the excellent electrochemical reversibility, LixMo4O6 showed poor rate performance with a low capacity of 36.3 mAh g-1 at a rate of 0.05 C. Nonetheless, this work demonstrates a new structural class of lithium cathode materials with condensed metal clusters and 1D tunnels, and provides a host material candidate for multivalent-ion batteries.

  13. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites

    NASA Astrophysics Data System (ADS)

    Bain, Dipankar; Paramanik, Bipattaran; Sadhu, Suparna; Patra, Amitava

    2015-12-01

    Metal cluster-semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic, photovoltaic and light harvesting devices because metal nanoclusters and semiconductor QDs are promising candidates for photon harvesting. Here, we have designed well defined metal cluster-semiconductor nanostructures using different surface capped negatively charged Au25 nanoclusters (Au NCs) and positively charged cysteamine capped CdTe quantum dots using electrostatic interactions. The main focus of this article is to address the impact of surface capping agents on the photophysical properties of Au cluster-CdTe QD hybrid nanocomposites. Steady state and time resolved spectroscopic studies reveal that photoluminescence quenching, radiative and nonradiative rate, and energy transfer between Au nanoclusters and CdTe QDs have been influenced by the nature of the capping agent. We have calculated the energy transfer related parameters such as the overlap integral, distance between donor and acceptor, Förster distance, efficiency of energy transfer and rate of energy transfer from CdTe QDs to three different Au NCs. Photoluminescence quenching varies from 73% to 43% when changing the capping agents from bovine serum albumin (BSA) to glutathione (GSH). The efficiency of the energy transfer from CdTe QDs to BSA-capped Au NCs is found to be 83%, for Cys-capped Au NCs it was 46% and for GSH-capped Au NCs it was 35%. The efficiency depends on the number of Au clusters attached per QD. This reveals that the nature of capping ligands plays a crucial role in the energy transfer phenomena from CdTe QDs to Au NCs. Interesting findings reveal that the efficient energy transfer in metal cluster-semiconductor nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.Metal cluster-semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic

  14. Effect of Alkali Metal Atoms Doping on Structural and Nonlinear Optical Properties of the Gold-Germanium Bimetallic Clusters.

    PubMed

    Li, Xiaojun; Li, Shuna; Ren, Hongjiang; Yang, Juxiang; Tang, Yongqiang

    2017-07-17

    A new series of alkali-based complexes, AM@GenAu (AM = Li, Na, and K), have been theoretically designed and investigated by means of the density functional theory calculations. The geometric structures and electronic properties of the species are systematically analyzed. The adsorption of alkali metals maintains the structural framework of the gold-germanium bimetallic clusters, and the alkali metals prefer energetically to be attached on clusters' surfaces or edges. The high chemical stability of Li@Ge12Au is revealed by the spherical aromaticity, the hybridization between the Ge atoms and Au-4d states, and delocalized multi-center bonds, as well as large binding energies. The static first hyperpolarizability (βtot) is related to the cluster size and geometric structure, and the AM@GenAu (AM = Na and K) clusters exhibit the much larger βtot values up to 13050 a.u., which are considerable to establish their strong nonlinear optical (NLO) behaviors. We hope that this study will promote further application of alkali metals-adsorbed germanium-based semiconductor materials, serving for the design of remarkable and tunable NLO materials.

  15. A Differential Chemical Element Analysis of the Metal-poor Globular Cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; McWilliam, Andrew

    2011-08-01

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 ± 0.02 (stat.) ±0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by ~0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The α-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  16. First-principles simulation of light propagation and exciton dynamics in metal cluster nanostructures

    NASA Astrophysics Data System (ADS)

    Lisinetskaya, Polina G.; Röhr, Merle I. S.; Mitrić, Roland

    2016-06-01

    We present a theoretical approach for the simulation of the electric field and exciton propagation in ordered arrays constructed of molecular-sized noble metal clusters bound to organic polymer templates. In order to describe the electronic coupling between individual constituents of the nanostructure we use the ab initio parameterized transition charge method which is more accurate than the usual dipole-dipole coupling. The electronic population dynamics in the nanostructure under an external laser pulse excitation is simulated by numerical integration of the time-dependent Schrödinger equation employing the fully coupled Hamiltonian. The solution of the TDSE gives rise to time-dependent partial point charges for each subunit of the nanostructure, and the spatio-temporal electric field distribution is evaluated by means of classical electrodynamics methods. The time-dependent partial charges are determined based on the stationary partial and transition charges obtained in the framework of the TDDFT. In order to treat large plasmonic nanostructures constructed of many constituents, the approximate self-consistent iterative approach presented in (Lisinetskaya and Mitrić in Phys Rev B 89:035433, 2014) is modified to include the transition-charge-based interaction. The developed methods are used to study the optical response and exciton dynamics of Ag3+ and porphyrin-Ag4 dimers. Subsequently, the spatio-temporal electric field distribution in a ring constructed of ten porphyrin-Ag4 subunits under the action of circularly polarized laser pulse is simulated. The presented methodology provides a theoretical basis for the investigation of coupled light-exciton propagation in nanoarchitectures built from molecular size metal nanoclusters in which quantum confinement effects are important.

  17. Novel linear transition metal clusters of a heptadentate bis-beta-diketone ligand.

    PubMed

    Aromí, Guillem; Gamez, Patrick; Krzystek, J; Kooijman, Huub; Spek, Anthony L; MacLean, Elizabeth J; Teat, Simon J; Nowell, Harriott

    2007-04-02

    The synthesis and the structure of the new potentially heptadentate ligand 1,3-bis-(3-oxo-3-(2-hydroxyphenyl)-propionyl)-2-methoxybenzene (H5L) is described. The reaction in pyridine or DMF of this ligand with various M(AcO)2 salts (M = NiII, CoII, MnII) leads to very different products depending on the metal. Thus, the dinuclear complexes [M2(H3L)2(py)4] (M = NiII, 1; CoII, 2) or the linear zigzag tetranuclear clusters [Mn4(H2L)2(AcO)2(py)5] (3) and [Mn4(H2L)2(AcO)2(dmf)4] (4) have been synthesized and characterized crystallographically. Slow oxidation of complex 3 leads to the formation of the novel mixed-valence linear complex [Mn3(HL)2(py)6] (5), displaying an unprecedented asymmetric MnIIIMnIIIMnII topology. The coordination geometry of complexes 1 to 5 has been analyzed and discussed by means of continuous shape measures. Magnetic measurements of 3 and 5 demonstrate that the metals within these complexes weakly interact magnetically with coupling constants of J1 = -1.13 cm-1 and J2 = -0.43 cm-1 (S = 0) for complex 3 and J1 = -5.4 cm-1 and J2 = -0.4 cm-1 (S = 5/2) for complex 5 (using the H = -Sigma2JijSiSj convention). These results are consistent with X-band EPR measurements on these compounds.

  18. A DIFFERENTIAL CHEMICAL ELEMENT ANALYSIS OF THE METAL-POOR GLOBULAR CLUSTER NGC 6397

    SciTech Connect

    Koch, Andreas; McWilliam, Andrew E-mail: andy@obs.carnegiescience.edu

    2011-08-15

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 {+-} 0.02 (stat.) {+-}0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by {approx}0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The {alpha}-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity.

  19. THE MASS-METALLICITY RELATION OF GLOBULAR CLUSTERS IN THE CONTEXT OF NONLINEAR COLOR-METALLICTY RELATIONS

    SciTech Connect

    Blakeslee, John P.; Cantiello, Michele; Peng, Eric W.

    2010-02-10

    Two recent empirical developments in the study of extragalactic globular cluster (GC) populations are the color-magnitude relation of the blue GCs (the 'blue tilt') and the nonlinearity of the dependence of optical GC colors on metallicity. The color-magnitude relation, interpreted as a mass-metallicity relation, is thought to be a consequence of self-enrichment. Nonlinear color-metallicity relations have been shown to produce bimodal color distributions from unimodal metallicity distributions. We simulate GC populations including both a mass-metallicity scaling relation and nonlinear color-metallicity relations motivated by theory and observations. Depending on the assumed range of metallicities and the width of the GC luminosity function (GCLF), we find that the simulated populations can have bimodal color distributions with a 'blue tilt' similar to observations, even though the metallicity distribution appears unimodal. The models that produce these features have the relatively high mean GC metallicities and nearly equal blue and red peaks characteristic of giant elliptical galaxies. The blue tilt is less apparent in the models with metallicities typical of dwarf ellipticals; the narrower GCLF in these galaxies has an even bigger effect in reducing the significance of their color-magnitude slopes. We critically examine the evidence for nonlinearity versus bimodal metallicities as explanations for the characteristic double-peaked color histograms of giant ellipticals and conclude that the question remains open. We discuss the prospects for further theoretical and observational progress in constraining the models presented here and for uncovering the true metallicity distributions of extragalactic GC systems.

  20. A study into the role of surface capping on energy transfer in metal cluster-semiconductor nanocomposites.

    PubMed

    Bain, Dipankar; Paramanik, Bipattaran; Sadhu, Suparna; Patra, Amitava

    2015-12-28

    Metal cluster-semiconductor nanocomposite materials remain a frontier area of research for the development of optoelectronic, photovoltaic and light harvesting devices because metal nanoclusters and semiconductor QDs are promising candidates for photon harvesting. Here, we have designed well defined metal cluster-semiconductor nanostructures using different surface capped negatively charged Au25 nanoclusters (Au NCs) and positively charged cysteamine capped CdTe quantum dots using electrostatic interactions. The main focus of this article is to address the impact of surface capping agents on the photophysical properties of Au cluster-CdTe QD hybrid nanocomposites. Steady state and time resolved spectroscopic studies reveal that photoluminescence quenching, radiative and nonradiative rate, and energy transfer between Au nanoclusters and CdTe QDs have been influenced by the nature of the capping agent. We have calculated the energy transfer related parameters such as the overlap integral, distance between donor and acceptor, Förster distance, efficiency of energy transfer and rate of energy transfer from CdTe QDs to three different Au NCs. Photoluminescence quenching varies from 73% to 43% when changing the capping agents from bovine serum albumin (BSA) to glutathione (GSH). The efficiency of the energy transfer from CdTe QDs to BSA-capped Au NCs is found to be 83%, for Cys-capped Au NCs it was 46% and for GSH-capped Au NCs it was 35%. The efficiency depends on the number of Au clusters attached per QD. This reveals that the nature of capping ligands plays a crucial role in the energy transfer phenomena from CdTe QDs to Au NCs. Interesting findings reveal that the efficient energy transfer in metal cluster-semiconductor nanocomposites may open up new possibilities in designing artificial light harvesting systems for future applications.

  1. Site preferences in hetero-metallic [Fe9-xNix] clusters: a combined crystallographic, spectroscopic and theoretical analysis.

    PubMed

    Georgopoulou, Anastasia N; Al-Ameed, Karrar; Boudalis, Athanassios K; Anagnostopoulos, Dimitrios F; Psycharis, Vassilis; McGrady, John E; Sanakis, Yiannis; Raptopoulou, Catherine P

    2017-09-18

    The reaction of mixtures of Fe(O2CMe)2·2H2O and Ni(O2CMe)2·4H2O of various compositions with di-2-pyridyl ketone (py2CO, dpk) in MeCN under an inert atmosphere afforded a family of hetero-metallic enneanuclear clusters with general formula [Fe9-xNix(μ4-OH)2(O2CMe)8(py2CO2)4] (2, x = 1.00; 3: x = 6.02; 4, x = 7.46; 5, x = 7.81). Clusters 2-5 are isomorphous to the homo-metallic [Fe9] cluster (1) previously reported by some of us, and also isostructural to the known homo-metallic [Ni9] cluster. All four clusters contain a central M(II) ion in an unusual 8-coordinate site and eight peripheral M(II) ions in distorted octahedral environments. The distribution of Fe(II) and Ni(II) ions over these two distinct coordination sites in 2-5 can be established through a combination of X-ray fluorescence and Mössbauer spectroscopies, which show that Fe(II) preferentially occupies the unique 8-coordinate metal site while Ni(II) accumulates in the octahedral holes. Density functional theory indicates that the distribution of ions across the two sites arises not from any intrinsic preference of the Fe(II) ions for the 8-coordinate sites, but rather because of the large ligand field stabilization energy available to Ni(II) in octahedral coordination.

  2. Nature of the interaction between rare gas atoms and transition metal doped silicon clusters: the role of shielding effects.

    PubMed

    Ngan, Vu Thi; Janssens, Ewald; Claes, Pieterjan; Fielicke, André; Nguyen, Minh Tho; Lievens, Peter

    2015-07-21

    Mass spectrometry experiments show an exceptionally weak bonding between Si7Mn(+) and rare gas atoms as compared to other exohedrally transition metal (TM) doped silicon clusters and other SinMn(+) (n = 5-10) sizes. The Si7Mn(+) cluster does not form Ar complexes and the observed fraction of Xe complexes is low. The interaction of two cluster series, SinMn(+) (n = 6-10) and Si7TM(+) (TM = Cr, Mn, Cu, and Zn), with Ar and Xe is investigated by density functional theory calculations. The cluster-rare gas binding is for all clusters, except Si7Mn(+) and Si7Zn(+), predominantly driven by short-range interaction between the TM dopant and the rare gas atoms. A high s-character electron density on the metal atoms in Si7Mn(+) and Si7Zn(+) shields the polarization toward the rare gas atoms and thereby hinders formation of short-range complexes. Overall, both Ar and Xe complexes are similar except that the larger polarizability of Xe leads to larger binding energies.

  3. Electronic Structure of Transition Metal Clusters, Actinide Complexes and Their Reactivities

    SciTech Connect

    Krishnan Balasubramanian

    2009-07-18

    methods with all-electron Douglas-Kroll relativistic methods. We have the capabilities for computing full CI extrapolations including spin-orbit effects and several one-electron properties and electron density maps including spin-orbit effects. We are continuously collaborating with several experimental groups around the country and at National Labs to carry out computational studies on the DOE-BES funded projects. The past work in the last 3 years was primarily motivated and driven by the concurrent or recent experimental studies on these systems. We were thus significantly benefited by coordinating our computational efforts with experimental studies. The interaction between theory and experiment has resulted in some unique and exciting opportunities. For example, for the very first time ever, the upper spin-orbit component of a heavy trimer such as Au{sub 3} was experimentally observed as a result of our accurate computational study on the upper electronic states of gold trimer. Likewise for the first time AuH{sub 2} could be observed and interpreted clearly due to our computed potential energy surfaces that revealed the existence of a large barrier to convert the isolated AuH{sub 2} back to Au and H{sub 2}. We have also worked on yet to be observed systems and have made predictions for future experiments. We have computed the spectroscopic and thermodynamic properties of transition metal carbides transition metal clusters and compared our electronic states to the anion photodetachment spectra of Lai Sheng Wang. Prof Mike Morse and coworkers(funded also by DOE-BES) and Prof Stimle and coworkers(also funded by DOE-BES) are working on the spectroscopic properties of transition metal carbides and nitrides. Our predictions on the excited states of transition metal clusters such as Hf{sub 3}, Nb{sub 2}{sup +} etc., have been confirmed experimentally by Prof. Lombardi and coworkers using resonance Raman spectroscopy. We have also been studying larger complexes critical to the

  4. Mass-loss on the red giant branch: the value and metallicity dependence of Reimers' η in globular clusters

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.

    2015-03-01

    The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers and Schröder and Cuntz are used to measure the efficiency of RGB mass-loss for typical stars in 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, η _R = 0.477 ± 0.070 ^{+0.050}_{-0.062} and η _SC = 0.172 ± 0.024 ^{+0.018}_{-0.023} (standard deviation and systematic uncertainties, respectively). Over a factor of 200 in iron abundance, η varies by ≲30 per cent, thus mass-loss mechanisms on the RGB have very little metallicity dependence. Any remaining dependence is within the current systematic uncertainties on cluster ages and evolution models. The low standard deviation of η among clusters (≈14 per cent) contrasts with the variety of HB morphologies. Since η incorporates cluster age, this suggests that age accounts for the majority of the `second parameter problem', and that a Reimers-like law provides a good mass-loss model. The remaining spread in η correlates with cluster mass and density, suggesting helium enrichment provides the third parameter explaining HB morphology of GCs. We close by discussing asymptotic giant branch (AGB) mass-loss, finding that the AGB tip luminosity is better reproduced and η has less metallicity dependence if GCs are more co-eval than generally thought.

  5. Calculation of the magnetic hyperfine structure constant of alkali metals and alkaline-earth-metal ions using the relativistic coupled-cluster method

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudip

    2017-07-01

    The Z -vector method in the relativistic coupled-cluster framework is used to calculate the magnetic hyperfine structure constant (AJ) of alkali metals and singly charged alkaline earth metals in their ground state electronic configuration. The Z -vector results are in very good agreement with the experiment. The AJ values of Li, Na, K, Rb, Cs, Be+, Mg+, Ca+, and Sr+ obtained in the Z -vector method are compared with the extended coupled-cluster results taken from Phys. Rev. A 91, 022512 (2015), 10.1103/PhysRevA.91.022512. The same basis and cutoff are used for the comparison purpose. The comparison shows that the Z -vector method with the single and double approximation can produce a more precise wave function in the nuclear region than the ECC method.

  6. FORMATION OF METAL-POOR GLOBULAR CLUSTERS IN Ly{alpha} EMITTING GALAXIES IN THE EARLY UNIVERSE

    SciTech Connect

    Elmegreen, Bruce G.; Malhotra, Sangeeta; Rhoads, James

    2012-09-20

    The size, mass, luminosity, and space density of Ly{alpha} emitting (LAE) galaxies observed at intermediate to high redshift agree with expectations for the properties of galaxies that formed metal-poor halo globular clusters (GCs). The low metallicity of these clusters is the result of their formation in low-mass galaxies. Metal-poor GCs could enter spiral galaxies along with their dwarf galaxy hosts, unlike metal-rich GCs, which form in the spirals themselves. Considering an initial GC mass larger than the current mass to account for multiple stellar populations, and considering the additional clusters that are likely to form with massive clusters, we estimate that each GC with a mass today greater than 2 Multiplication-Sign 10{sup 5} M{sub Sun} was likely to have formed among a total stellar mass {approx}> 3 Multiplication-Sign 10{sup 7} M{sub Sun }, a molecular mass {approx}> 10{sup 9} M{sub Sun }, and 10{sup 7} to 10{sup 9} M{sub Sun} of older stars, depending on the relative gas fraction. The star formation rate would have been several M{sub Sun} yr{sup -1} lasting for {approx}10{sup 7} yr, and the Ly{alpha} luminosity would have been {approx}> 10{sup 42} erg s{sup -1}. Integrating the LAE galaxy luminosity function above this minimum, considering the average escape probability for Ly{alpha} photons (25%), and then dividing by the probability that a dwarf galaxy is observed in the LAE phase (0.4%), we find agreement between the comoving space density of LAEs and the average space density of metal-poor GCs today. The local galaxy WLM, with its early starburst and old GC, could be an LAE remnant that did not get into a galaxy halo because of its remote location.

  7. Reactions of Metal-Metal Multiple Bonds. 14. Synthesis and Characterization of Triangulo-W3 and Mo2W-oxo Capped Alkoxide Clusters. Comproportionation of M-M Triple Bonds, sigma(2)pi(4) and d(o) Metal-oxo Groups: M Triple Bond M + M Triple Bond O Yields M3(micron 3-O).

    DTIC Science & Technology

    1984-05-02

    INDU/DC/TR-84/1-MC REACTIONS OF METAL-METAL MULTIPLE BONDS. 14. SYNTHESIS AND CHARACTERIZATION OF TRIANGULO -W 3 AND Mo2W-oxo CAPPED ALKOXIDE CLUSTERS...Mtal-Metal Multiple Bonds. 14. Syn- Technical Report 1984 thesis and Characterization of Triangulo -W 3 and 0Mo2W-oxo Capped Alkoxide Clusters...block number) triangulo metal atom clusters, molybdenum, tungsten, alkoxide, oxo, electronic structure, electrochemistry, UV-visible spectroscopy 20

  8. Noble metal alloy clusters in the gas phase derived from protein templates: unusual recognition of palladium by gold

    NASA Astrophysics Data System (ADS)

    Baksi, Ananya; Pradeep, T.

    2013-11-01

    Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster formation occurs from protein adducts where Au is in the 1+ state while Pd is in the 2+ state. The creation of alloys in the gas phase is not affected whether a physical mixture of Au and Pd adducts or a Au and Pd co-adduct is used as the precursor. The formation of Au cores and AuPd alloy cores of the kind comparable to monolayer protected clusters implies that naked clusters themselves may be nucleated in solution.Matrix assisted laser desorption ionization of a mixture of gold and palladium adducts of the protein lysozyme (Lyz) produces naked alloy clusters of the type Au24Pd+ in the gas phase. While a lysozyme-Au adduct forms Au18+, Au25+, Au38+ and Au102+ ions in the gas phase, lysozyme-Pd alone does not form any analogous cluster. Addition of various transition metal ions (Ag+, Pt2+, Pd2+, Cu2+, Fe2+, Ni2+ and Cr3+) in the adducts contributes to drastic changes in the mass spectrum, but only palladium forms alloys in the gas phase. Besides alloy formation, palladium enhances the formation of specific single component clusters such as Au38+. While other metal ions like Cu2+ help forming Au25+ selectively, Fe2+ catalyzes the formation of Au25+ over all other clusters. Gas phase cluster

  9. Structures, Interconversions, and Spectroscopy of Iron Carbonyl Clusters with an Interstitial Carbide: Localized Metal Center Reduction by Overall Cluster Oxidation.

    PubMed

    Kuppuswamy, Subramaniam; Wofford, Joshua D; Joseph, Chris; Xie, Zhu-Lin; Ali, Azim K; Lynch, Vincent M; Lindahl, Paul A; Rose, Michael J

    2017-05-15

    The syntheses, interconversions, and spectroscopic properties of a set of iron carbonyl clusters containing an interstitial carbide are reported. This includes the low temperature X-ray structures of the six-iron clusters (Y)2[Fe6(μ6-C)(μ2-CO)4(CO)12] (1a-c; where Y = NMe4, NEt4, PPh4); the five-iron cluster [Fe5(μ5-C)(CO)15] (3); and the novel formulation of the five-iron cluster (NMe4)2[Fe5(μ5-C)(μ2-CO)(CO)13] (4). Also included in this set is the novel charge-neutral cluster, [Fe6(μ6-C)(CO)18] (2), for which we were unable to obtain a crystallographic structure. As synthetic proof for the identity of 2, we performed a closed loop of interconversions within a family of crystallographically defined species (1, 3, and 4): [Fe6](2-) → [Fe6](0) → [Fe5](0) → [Fe5](2-) → [Fe6](2-). The structural, spectroscopic, and electronic properties of this "missing link" cluster 2 were investigated by IR, Raman, XPS, and Mössbauer spectroscopies-as well as by DFT calculations. A single νCO feature (1965 cm(-1)) in the IR spectrum of 2, as well as a prominent Raman feature (νsymm = 1550 cm(-1)), are consistent with the presence of terminal carbonyls and a {(μ6-C)Fe6} arrangement of iron centers around the central carbide. The XPS of 2 exhibits a higher energy Fe 2p3/2 feature (707.4 eV) as compared to that of 1 (705.5 eV), consistent with the two-electron oxidation induced by treatment of 1 with two equivalents of [Fc](PF6) under CO atmosphere (for the two added CO ligands). DFT calculations indicate two axial and four equatorial Fe sites in 1, all of which have the same or similar oxidation states, for example, two Fe(0) and four Fe(+0.5). These assignments are supported by Mössbauer spectra for 1, which exhibit two closely spaced quadrupole doublets with δ = 0.076 and 0.064 mm s(-1). The high-field Mössbauer spectrum of 2 (4.2 K) exhibits three prominent quadrupole doublets with δ = -0.18, -0.11, and +0.41 mm s(-1). This indicates three pairs of chemically

  10. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    SciTech Connect

    Abbas, Mohamad A.; Layden, Andrew C.; Guldenschuh, Katherine A.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P.; Welch, Douglas L. E-mail: laydena@bgsu.edu

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  11. Tribological coatings for complex mechanical elements produced by supersonic cluster beam deposition of metal dichalcogenide nanoparticles

    NASA Astrophysics Data System (ADS)

    Piazzoni, C.; Buttery, M.; Hampson, M. R.; Roberts, E. W.; Ducati, C.; Lenardi, C.; Cavaliere, F.; Piseri, P.; Milani, P.

    2015-07-01

    Fullerene-like MoS2 and WS2 nanoparticles can be used as building blocks for the fabrication of fluid and solid lubricants. Metal dichalcogenide films have a very low friction coefficient in vacuum, therefore they have mostly been used as solid lubricants in space and vacuum applications. Unfortunately, their use is significantly hampered by the fact that in the presence of humidity, oxygen and moisture, the low-friction properties of these materials rapidly degrade due to oxidation. The use of closed-cage MoS2 and WS2 nanoparticles may eliminate this problem, although the fabrication of lubricant thin films starting from dichalcogenide nanoparticles is, to date, a difficult task. Here we demonstrate the use of supersonic cluster beam deposition for the coating of complex mechanical elements (angular contact ball bearings) with nanostructured MoS2 and WS2 thin films. We report structural and tribological characterization of the coatings in view of the optimization of tribological performances for aerospace applications.

  12. The chemical evolution of globular clusters - I. Reactive elements and non-metals

    NASA Astrophysics Data System (ADS)

    Marcolini, A.; Gibson, B. K.; Karakas, A. I.; Sánchez-Blázquez, P.

    2009-05-01

    We propose a new chemical evolution model aimed at explaining the chemical properties of globular clusters (GCs) stars. Our model depends upon the existence of (i) a peculiar pre-enrichment phase in the GC's parent galaxy associated with very low-metallicity Type II supernovae (SNe II) and (ii) localized inhomogeneous enrichment from a single Type Ia supernova (SN Ia) and intermediate-mass (4-7Msolar) asymptotic giant branch field stars. GC formation is then assumed to take place within this chemically peculiar region. Thus, in our model the first low-mass GC stars to form are those with peculiar abundances (i.e. O-depleted and Na-enhanced), while `normal' stars (i.e. O-rich and Na-depleted) are formed in a second stage when self-pollution from SNe II occurs and the peculiar pollution from the previous phase is dispersed. In this study, we focus on three different GCs: NGC 6752, 6205 (M 13) and 2808. We demonstrate that, within this framework, a model can be constructed which is consistent with (i) the elemental abundance anticorrelations, (ii) isotopic abundance patterns and (iii) the extreme [O/Fe] values observed in NGC 2808 and M 13, without violating the global constraints of approximately unimodal [Fe/H] and C+N+O.

  13. Influence of 3 d metal atoms on the geometry, electronic structure, and stability of a Mg13H26 cluster

    NASA Astrophysics Data System (ADS)

    Shelyapina, M. G.; Siretskiy, M. Yu.

    2010-09-01

    This paper reports on the results of the theoretical investigation of magnesium hydride nanoclusters doped with 3 d metals (from Sc to Zn). The influence of transition metal atoms on the geometry, electronic structure, and energy characteristics of the clusters has been analyzed. The results of the performed calculations have been compared with the available experimental data. This comparison has made it possible to predict which 3 d transition elements can serve as the most effective catalysts for the improvement of the thermodynamic characteristics of MgH2.

  14. Effects of charging and tunnelling in a structure based on magic and non-magic metal clusters.

    PubMed

    Pogosov, V V; Vasyutin, E V

    2006-07-28

    The effects of charging and single-electron tunnelling in a metal cluster structure are investigated theoretically. In the framework of the particle-in-a-box model for spherical and disc-shaped gold clusters, the electron spectrum and the temperature dependence of the electron chemical potential are calculated. The difference between the electron chemical potentials of massive electrodes and islands leads to the noticeable charging of the electrode. We show that the effective residual charge is equal to the non-integer value of the elementary charge e and depends on the shape of the cluster. The equations for the analysis of the current-voltage characteristic are used under the conditions of conservation of the total energy of the structure, taking into account the contact potential difference. Restrictions associated with the Coulomb instability of a cluster are introduced into the theory in a simple way. It is shown that the critical charge of the cluster in an open electron system is close to the effective residual charge. For single-electron molecular transistors based on small gold clusters the current gap and its voltage asymmetry are computed. We demonstrate that the current gap exhibits non-monotonic size dependences which are related to the quantization of the electron spectrum and the Coulomb blockade.

  15. Computer simulation structure and vibrations of small metal cluster on the Cu (111) surface

    NASA Astrophysics Data System (ADS)

    Borisova, Svetlana D.; Rusina, Galina G.

    2015-10-01

    Vibrational properties of the small tetrahedral cluster of Co on the Cu (111) surface are studied by using tight-binding second moment approximation interatomic interaction potentials. It was shown that interaction of the clusters with substrate leads to arising of frustrated translation and frustrated rotation in-plane polarized vibrational modes localized on the cluster atoms. The Co4 cluster on the surface the high frequency modes remain strongly localized and mixed with the nearest neighbor atoms vibrations.

  16. Computer simulation structure and vibrations of small metal cluster on the Cu (111) surface

    SciTech Connect

    Borisova, Svetlana D. Rusina, Galina G.

    2015-10-27

    Vibrational properties of the small tetrahedral cluster of Co on the Cu (111) surface are studied by using tight-binding second moment approximation interatomic interaction potentials. It was shown that interaction of the clusters with substrate leads to arising of frustrated translation and frustrated rotation in-plane polarized vibrational modes localized on the cluster atoms. The Co{sub 4} cluster on the surface the high frequency modes remain strongly localized and mixed with the nearest neighbor atoms vibrations.

  17. Water cluster confinement and methane adsorption in the hydrophobic cavities of a fluorinated metal-organic framework.

    PubMed

    Nijem, Nour; Canepa, Pieremanuele; Kaipa, Ushasree; Tan, Kui; Roodenko, Katy; Tekarli, Sammer; Halbert, Jason; Oswald, Iain W H; Arvapally, Ravi K; Yang, Chi; Thonhauser, Timo; Omary, Mohammad A; Chabal, Yves J

    2013-08-28

    Water cluster formation and methane adsorption within a hydrophobic porous metal organic framework is studied by in situ vibrational spectroscopy, adsorption isotherms, and first-principle DFT calculations (using vdW-DF). Specifically, the formation and stability of H2O clusters in the hydrophobic cavities of a fluorinated metal-organic framework (FMOF-1) is examined. Although the isotherms of water show no measurable uptake (see Yang et al. J. Am. Chem. Soc. 2011 , 133 , 18094 ), the large dipole of the water internal modes makes it possible to detect low water concentrations using IR spectroscopy in pores in the vicinity of the surface of the solid framework. The results indicate that, even in the low pressure regime (100 mTorr to 3 Torr), water molecules preferentially occupy the large cavities, in which hydrogen bonding and wall hydrophobicity foster water cluster formation. We identify the formation of pentameric water clusters at pressures lower than 3 Torr and larger clusters beyond that pressure. The binding energy of the water species to the walls is negligible, as suggested by DFT computational findings and corroborated by IR absorption data. Consequently, intermolecular hydrogen bonding dominates, enhancing water cluster stability as the size of the cluster increases. The formation of water clusters with negligible perturbation from the host may allow a quantitative comparison with experimental environmental studies on larger clusters that are in low concentrations in the atmosphere. The stability of the water clusters was studied as a function of pressure reduction and in the presence of methane gas. Methane adsorption isotherms for activated FMOF-1 attained volumetric adsorption capacities ranging from 67 V(STP)/V at 288 K and 31 bar to 133 V(STP)/V at 173 K and 5 bar, with an isosteric heat of adsorption of ca. 14 kJ/mol in the high temperature range (288-318 K). Overall, the experimental and computational data suggest high preferential uptake for

  18. Design and Formation of a Large, Tetrahedral, Metal-ligand Cluster Using 1,1'-Binaphthyl Ligands

    SciTech Connect

    Biros, Shannon M.; Yeh, Robert M.; Raymond, Kenneth N.

    2008-03-13

    Many chemists have been fascinated with the development of discrete supramolecular structures that encapsulate guest molecules. These structures can be assembled through covalent or hydrogen bonds, electrostatic or metal-ligand interactions. These host structures have provided valuable insight into the forces involved in small molecule recognition. Our work has focused on the design and study of metal-ligand clusters of varying sizes. The naphthalene [M{sub 4}L{sub 6}]{sup 12-} cluster 1, shown in Figure 1, has demonstrated diastereoselective guest binding and chiral induction properties as well as the ability to catalyze reactions carried out inside the cavity in an enzyme-like manner. However, the size of the cavity (ca. 300-500 {angstrom}{sup 3}) has often limited the scope of substrates for these transformations.

  19. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    SciTech Connect

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-04-15

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  20. Deriving Metallicities from the Integrated Spectra of Extragalactic Globular Clusters Using the Near-infrared Calcium Triplet

    NASA Astrophysics Data System (ADS)

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Strader, Jay; Brodie, Jean P.; Spitler, Lee R.

    2010-04-01

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  1. Effect of Alkali Metal Atoms Doping on Structural and Nonlinear Optical Properties of the Gold-Germanium Bimetallic Clusters

    PubMed Central

    Li, Xiaojun; Li, Shuna; Ren, Hongjiang; Yang, Juxiang; Tang, Yongqiang

    2017-01-01

    A new series of alkali-based complexes, AM@GenAu (AM = Li, Na, and K), have been theoretically designed and investigated by means of the density functional theory calculations. The geometric structures and electronic properties of the species are systematically analyzed. The adsorption of alkali metals maintains the structural framework of the gold-germanium bimetallic clusters, and the alkali metals prefer energetically to be attached on clusters’ surfaces or edges. The high chemical stability of Li@Ge12Au is revealed by the spherical aromaticity, the hybridization between the Ge atoms and Au-4d states, and delocalized multi-center bonds, as well as large binding energies. The static first hyperpolarizability (βtot) is related to the cluster size and geometric structure, and the AM@GenAu (AM = Na and K) clusters exhibit the much larger βtot values up to 13050 a.u., which are considerable to establish their strong nonlinear optical (NLO) behaviors. We hope that this study will promote further application of alkali metals-adsorbed germanium-based semiconductor materials, serving for the design of remarkable and tunable NLO materials. PMID:28714906

  2. FORMATION OF COMPACT STELLAR CLUSTERS BY HIGH-REDSHIFT GALAXY OUTFLOWS. II. EFFECT OF TURBULENCE AND METAL-LINE COOLING

    SciTech Connect

    Gray, William J.; Scannapieco, Evan

    2011-06-01

    In the primordial universe, low-mass structures with virial temperatures less than 10{sup 4} K were unable to cool by atomic line transitions, leading to a strong suppression of star formation. On the other hand, these 'minihalos' were highly prone to triggered star formation by interactions from nearby galaxy outflows. In Gray and Scannapieco, we explored the impact of nonequilibrium chemistry on these interactions. Here we turn our attention to the role of metals, carrying out a series of high-resolution three-dimensional adaptive mesh refinement simulations that include both metal cooling and a subgrid turbulent mixing model. Despite the presence of an additional coolant, we again find that outflow-minihalo interactions produce a distribution of dense, massive stellar clusters. We also find that these clusters are evenly enriched with metals to a final abundance of Z {approx} 10{sup -2} Z{sub sun}. As in our previous simulations, all of these properties suggest that these interactions may have given rise to present-day halo globular clusters.

  3. Using Predefined M3(μ3-O) Clusters as Building Blocks for an Isostructural Series of Metal-Organic Frameworks.

    PubMed

    Peng, Li; Asgari, Mehrdad; Mieville, Pascal; Schouwink, Pascal; Bulut, Safak; Sun, Daniel T; Zhou, Zhongrui; Pattison, Philip; van Beek, Wouter; Queen, Wendy L

    2017-07-19

    Metal-organic frameworks (MOFs) have attracted much attention in the past decade owing to their unprecedented internal surface areas, tunable topologies, designable surfaces, and various potential applications. One bottleneck in the field regarding MOF synthesis is controlling the metal-containing secondary building unit (SBU) incorporated into the structure. In this work we report the synthesis and characterization of five trimeric [M3(μ3-O)(CH3CO2)6](x) clusters (where M = Fe(3+), Cr(3+), Fe(3+)/Cr(3+), Fe(3+)/Co(2+), or Fe(3+)/Ni(2+) and x = +1 or 0). The monocarboxylate capping ligand, acetate in this case, readily undergoes exchange with several difunctional counterparts, including 1,4-benzenedicarboxylic acid (H2-BDC) and biphenyl-4,4'-dicarboxylic acid (H2-BPDC), for the formation of an isostructural series of MOFs, several of which are newly reported (for M = Fe(3+)/Cr(3+), Fe(3+)/Co(2+), and Fe(3+)/Ni(2+)) and show excellent CO2 adsorption properties. In this report, a host of techniques including NMR, ICP, and ESI-MS are used to probe the ligand exchange process and composition of the SBUs, and XAS is used to monitor the Fe(3+) and Cr(3+) environment throughout the reactions, giving strong evidence that the clusters stay intact throughout the MOF synthesis. This work reveals that predefined SBUs is an effective means to create metal-substituted analogues of known frameworks. Further, CO adsorption and in situ IR are used to probe accessibility of the metals after solvent removal. We show for the first time that the incorporation of the neutral clusters, containing weaker Lewis acids like Ni(2+) and Co(2+), can promote the formation of open metal sites in the MOF frameworks, structural features known to enhance the binding energy of small guest molecules like CO2.

  4. Mixed-metal cluster chemistry. 28. Core enlargement of tungsten-iridium clusters with alkynyl, ethyndiyl, and butadiyndiyl reagents.

    PubMed

    Dalton, Gulliver T; Viau, Lydie; Waterman, Susan M; Humphrey, Mark G; Bruce, Michael I; Low, Paul J; Roberts, Rachel L; Willis, Anthony C; Koutsantonis, George A; Skelton, Brian W; White, Allan H

    2005-05-02

    Reaction of [WIr3(mu-CO)3(CO)8(eta-C5Me5)] (1c) with [W(C[triple bond]CPh)(CO)3(eta-C5H5)] afforded the edge-bridged tetrahedral cluster [W2Ir3(mu4-eta2-C2Ph)(mu-CO)(CO)9(eta-C5H5)(eta-C5Me5)] (3) and the edge-bridged trigonal-bipyramidal cluster [W3Ir3(mu4-eta2-C2Ph)(mu-eta2-C=CHPh)(Cl)(CO)8(eta-C5Me5)(eta-C5H5)2] (4) in poor to fair yield. Cluster 3 forms by insertion of [W(C[triple bond]CPh)(CO)3(eta-C5H5)] into Ir-Ir and W-Ir bonds, accompanied by a change in coordination mode from a terminally bonded alkynyl to a mu4-eta2 alkynyl ligand. Cluster 4 contains an alkynyl ligand interacting with two iridium atoms and two tungsten atoms in a mu4-eta2 fashion, as well as a vinylidene ligand bridging a W-W bond. Reaction of [WIr3(CO)11(eta-C5H5)] (1a) or 1c with [(eta-C5H5)(CO)2 Ru(C[triple bond]C)Ru(CO)2(eta-C5H5)] afforded [Ru2WIr3(mu5-eta2-C2)(mu-CO)3(CO)7(eta-C5H5)2(eta-C5R5)] [R = H (5a), Me (5c)] in low yield, a structural study of 5a revealing a WIr3 butterfly core capped and spiked by Ru atoms; the diruthenium ethyndiyl precursor has undergone Ru-C scission, with insertion of the C2 unit into a W-Ir bond of the cluster precursor. Reaction of [W2Ir2(CO)10(eta-C5H5)2] with the diruthenium ethyndiyl reagent gave [RuW2Ir2{mu4-eta2-(C2C[triple bond]C)Ru(CO)2(eta-C5H5)}(mu-CO)2(CO)6(eta-C5H5)3] (6) in low yield, a structural study of 6 reveali