NASA Astrophysics Data System (ADS)
Neelakantan, M. A.; Rusalraj, F.; Dharmaraja, J.; Johnsonraja, S.; Jeyakumar, T.; Sankaranarayana Pillai, M.
2008-12-01
Metal complexes are synthesized with Schiff bases derived from o-phthalaldehyde (opa) and amino acids viz., glycine (gly) L-alanine (ala), L-phenylalanine (pal). Metal ions coordinate in a tetradentate or hexadentate manner with these N 2O 2 donor ligands, which are characterized by elemental analysis, molar conductance, magnetic moments, IR, electronic, 1H NMR and EPR spectral studies. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). Based on EPR studies, spin-Hamiltonian and bonding parameters have been calculated. The g-values calculated for copper complexes at 300 K and in frozen DMSO (77 K) indicate the presence of the unpaired electron in the d orbital. The evaluated metal-ligand bonding parameters showed strong in-plane σ- and π-bonding. X-ray diffraction (XRD) and scanning electron micrography (SEM) analysis provide the crystalline nature and the morphology of the metal complexes. The cyclic voltammograms of the Cu(II)/Mn(II)/VO(II) complexes investigated in DMSO solution exhibit metal centered electroactivity in the potential range -1.5 to +1.5 V. The electrochemical data obtained for Cu(II) complexes explains the change of structural arrangement of the ligand around Cu(II) ions. The biological activity of the complexes has been tested on eight bacteria and three fungi. Cu(II) and Ni(II) complexes show an increased activity in comparison to the controls. The metal complexes of opapal Schiff base were evaluated for their DNA cleaving activities with calf-thymus DNA (CT DNA) under aerobic conditions. Cu(II) and VO(II) complexes show more pronounced activity in presence of the oxidant.
NASA Astrophysics Data System (ADS)
Gull, Parveez; Malik, Manzoor Ahmad; Dar, Ovas Ahmad; Hashmi, Athar Adil
2017-04-01
Three new complexes Ni(II), Cu(II) and Co(II) were synthesized of macrocyclic ligand derived from 1, 4-dicarbonyl-phenyl-dihydrazide and O-phthalaldehyde in the ratio of 2:2. The synthesized compounds were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, FTIR, UV-Vis., Mass and 1H NMR spectral studies. The electronic spectra of the metal complexes indicate a six coordinate octahedral geometry of the central metal ion. These metal complexes and the ligand were evaluated for antimicrobial activity against bacteria (E. coli, B. subtilis, S. aureus) and fungi (A. niger, A. flavus, C. albicans) and compared against standard drugs chloramphenicol and nystatin respectively. In addition, the antioxidant activity of the compounds was also investigated through scavenging effect on DPPH radicals.
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Vivekanand, B.; Nagesh, G. Y.; Mruthyunjayaswamy, B. H. M.
2014-02-01
A series of new binucleating Cu(II), Co(II), Ni(II) and Zn(II) complexes of bicompartmental ligands with ONO donor were synthesized. The ligands were obtained by the condensation of 3-chloro-6-substituted benzo[b]thiophene-2-carbohydrazides and 4,6-diacetylresorcinol. The synthesized ligands and their complexes were characterized by elemental analysis and various spectroscopic techniques. Elemental analysis, IR, 1H NMR, ESI-mass, UV-Visible, TG-DTA, magnetic measurements, molar conductance and powder-XRD data has been used to elucidate their structures. The bonding sites are the oxygen atom of amide carbonyl, azomethine nitrogen and phenolic oxygen for ligands 1 and 2. The binuclear nature of the complexes was confirmed by ESR spectral data. TG-DTA studies for some complexes showed the presence of coordinated water molecules and the final product is the metal oxide. All the complexes were investigated for their electrochemical activity, only the Cu(II) complexes showed the redox property. Cu(II) complexes were square planar, whereas Co(II), Ni(II) and Zn(II) complexes were octahedral. Powder-XRD pattern have been studied in order to test the degree of crystallinity of the complexes and unit cell calculations were made. In order to evaluate the effect of antimicrobial activity of metal ions upon chelation, both the ligands and their metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligands. The DNA cleaving capacities of all the complexes were analyzed by agarose gel electrophoresis method against supercoiled plasmid DNA. Among the compounds tested for antioxidant capacity, ligand 1 displayed excellent activity than its metal complexes.
DOE R&D Accomplishments Database
Cram, D. J.
1982-09-15
The overall objective of this research is to design, synthesize, and evaluate cyclic and polycyclic host organic compounds for the abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions, or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; numbers of binding sites; characters of binding sites; and valences. The hope is to synthesize new classes of compounds useful in the separation of metal ions, their complexes, and their clusters.
Evaluation of the tratment of metal-EDTA complexes using Ti0{sub 2} photocatalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Madden, T.; Datyte, A.K.; Prairie, M.R.
1996-03-01
This study has demonstrated the feasibility of TiO{sub 2} photocatalysis to treat EDTA and several metal-EDTA complexes that can be found in industrial wastewaters. For the EDTA complexes of metals capable of photodeposition, such as Cu and Pb, certain reaction conditions were shown to facilitate the simultaneous complex degradation and photodeposition of these metals onto the catalyst. With metals that do not easily photodeposit, such as Ni and Cd, it is shown that the complex degradation is still facilitated, and can enhance other metals removal processes after photocatalytic treatment. Because the treatment of these metal-EDTA complexes typically requires special measures,more » there may exist situations where TiO{sub 2} photocatalysis could actually be the preferred method of treatment. However, its use should be compared economically to other more established advanced oxidation technologies. This necessity is demonstrated in the economic comparison to ozone treatment for EDTA degradation alone, where ozone treatment appears to be the clear choice in this application.« less
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes
NASA Astrophysics Data System (ADS)
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M. Arif
2016-05-01
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica.
NASA Astrophysics Data System (ADS)
Dhahagani, K.; Mathan Kumar, S.; Chakkaravarthi, G.; Anitha, K.; Rajesh, J.; Ramu, A.; Rajagopal, G.
2014-01-01
Metal(II) chelates of Schiff bases derived from the condensation of 4-morpholinoaniline with substituted salicylaldehyde have been prepared and characterized by 1H NMR, IR, electronic, EPR, and magnetic measurement studies. The complexes are of the type M(X-MPMP)2 [where M = Cu(II), Co(II)), Zn(II), or VO(IV); MPMP = 2-[(4 morpholinophenyl imino) methyl] 4-X-phenol, X = Cl, (L1H), X = Br (L2H)]. Single crystal X-ray crystallography studies confirm the structure of newly synthesized Schiff bases. The Schiff bases act as bidentate monobasic ligands, coordinating through deprotonated phenolic oxygen and azomethine nitrogen atoms. The free ligands and metal complexes are screened for their biopotency. Metal complexes exhibit better activity than ligands. Anticancer activity of ligands and their metal complexes are evaluated in human heptocarcinoma(HepG2) cells. The preliminary bioassay indicates that the Schiff base and its zinc complex exhibit inhibitory activity against the human gastric cancer cell lines.
Multiheteromacrocycles that Complex Metal Ions. Sixth Progress Report, 1 May 1979-30 April 1980
DOE R&D Accomplishments Database
Cram, D. J.
1980-01-15
Objective is to design synthesize, and evaluate cyclic and polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions, their complexes, and their clusters. Host organic compounds consist of strategically placed solvating, coordinating, and ion-pairing sites tied together by covalent bonds through hydrocarbon units around cavities shaped to be occupied by guest metal ions or by metal ions plus their ligands. Specificity in complexation is sought by matching the following properties of host and guest: cavity and metal ion sizes; geometric arrangements of binding sites; number of binding sites; character of binding sites; and valences. During this period, hemispherands based on an aryloxy or cyclic urea unit, spherands based on aryloxyl units only, and their complexes with alkali metals and alkaline earths were investigated. An attempt to separate {sup 6}Li and {sup 7}Li by gel permeation chromatography of lithiospherium chloride failed. (DLC)
Das, Narhari; Abdur Rahman, S. M.
2016-01-01
Purpose. The present study was designed to investigate the antinociceptive, anxiolytic, CNS depressant, and hypoglycemic effects of the naproxen metal complexes. Methods. The antinociceptive activity was evaluated by acetic acid-induced writhing method and radiant heat tail-flick method while anxiolytic activity was evaluated by elevated plus maze model. The CNS depressant activity of naproxen metal complexes was assessed using phenobarbitone-induced sleeping time test and the hypoglycemic test was performed using oral glucose tolerance test. Results. Metal complexes significantly (P < 0.001) reduced the number of abdominal muscle contractions induced by 0.7% acetic acid solution in a dose dependent manner. At the dose of 25 mg/kg body weight p.o. copper, cobalt, and zinc complexes exhibited higher antinociceptive activity having 59.15%, 60.56%, and 57.75% of writhing inhibition, respectively, than the parent ligand naproxen (54.93%). In tail-flick test, at both doses of 25 and 50 mg/kg, the copper, cobalt, silver, and zinc complexes showed higher antinociceptive activity after 90 minutes than the parent drug naproxen. In elevated plus maze (EPM) model the cobalt and zinc complexes of naproxen showed significant anxiolytic effects in dose dependent manner, while the copper, cobalt, and zinc complexes showed significant CNS depressant and hypoglycemic activity. Conclusion. The present study demonstrated that copper, cobalt, and zinc complexes possess higher antinociceptive, anxiolytic, CNS depressant, and hypoglycemic properties than the parent ligand. PMID:27478435
Morozzi, G; Cenci, G
1978-12-01
The toxic effect of the metal ions of cadmium, zinc, nickel and mercury and their tetracyanide salt complexes, on the activated sludge not previously acclimated, has been studied. The evaluation of the effect was carried out using both the Warburg and TTC-method. The results obtained have shown that the toxicity of the cadmium and zinc complexes is higher than that of the corresponding metals, while the toxicity of Ni(CN)4(2-) is lower than that of the corresponding metals. No differences have been found between the effect of mercury and the corresponding tetracyanide complex. From the data obtained it appears that it is not possible to generalize about the biological effect of complexation with the CN- group, but it should be stated that, generally, there are substantial differences between metals and their cyanide complexes as far as toxicity for activated sludge is concerned.
Synthesis, spectral studies and biological evaluation of 2-aminonicotinic acid metal complexes.
Nawaz, Muhammad; Abbasi, Muhammad Waseem; Hisaindee, Soleiman; Zaki, Muhammad Javed; Abbas, Hira Fatima; Mengting, Hu; Ahmed, M Arif
2016-05-15
We synthesized 2-aminonicotinic acid (2-ANA) complexes with metals such as Co(II), Fe(III), Ni(II), Mn(II), Zn(II), Ag(I),Cr(III), Cd(II) and Cu(II) in aqueous media. The complexes were characterized and elucidated using FT-IR, UV-Vis, a fluorescence spectrophotometer and thermo gravimetric analysis (TGA). TGA data showed that the stoichiometry of complexes was 1:2 metal/ligand except for Ag(I) and Mn(II) where the ratio was 1:1. The metal complexes showed varied antibacterial, fungicidal and nematicidal activities. The silver and zinc complexes showed highest activity against Bacillus subtilis and Bacillus licheniformis respectively. Fusarium oxysporum was highly susceptible to nickel and copper complexes whereas Macrophomina phaseolina was completely inert to the complexes. The silver and cadmium complexes were effective against the root-knot nematode Meloidogyne javanica. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.
2010-08-01
Three metal complexes of the fourth generation quinolone antimicrobial agent gatifloxacin (GFLX) with Y(ΙΙΙ), Zr(ΙV) and U(VΙ) have been prepared and characterized with physicochemical and spectroscopic techniques. In these complexes, gatifloxacin acts as a bidentate deprotonated ligand bound to the metal through the ketone oxygen and a carboxylato oxygen. The complexes are six-coordinated with distorted octahedral geometry. The kinetic parameters for gatifloxacin and the three prepared complexes have been evaluated from TGA curves by using Coats-Redfern (CR) and Horowitz-Metzeger (HM) methods. The calculated bond length and force constant, F(U dbnd O), for the UO 2 bond in uranyl complex are 1.7522 Å and 639.46 N m -1. The antimicrobial activity of the complexes has been tested against microorganisms, three bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and two fungi species, penicillium ( P. rotatum) and trichoderma ( T. sp.), showing that they exhibit higher activity than free ligand.
NASA Astrophysics Data System (ADS)
Jabeen, Muafia; Ahmad, Sajjad; Shahid, Khadija; Sadiq, Abdul; Rashid, Umer
2018-03-01
In the current research work,eleven metal complexes were synthesized from the hydrazide derivative of ursolic acid. Metal complexes of tin, antimony and iron were synthesized and characterized by FT-IR and NMR spectroscopy. The antibacterial and antioxidant activities were performed for these complexes, which revealed that the metal complexes synthesized are more potent than their parent compounds. We observed that antioxidant activity showed by triphenyltin complex was significant and least activity have been shown by antimony trichloride complex.The synthesized metal complexes were then evaluated against two Gram-negative and two Gram-positive bacterial strains. Triphenyl tin complex emerged as potent antibacterial agent with MIC value of 8 μg/ml each against Shigellaspp, S. typhi and S. aureus. While, the MIC value againstS. pneumoniae is 4 μg/ml.Computational docking studies were carried out on molecular targets to interpret the results of antioxidant and antibacterial activities. Based on the results, it may be inferred that the metal complexes of ursolic acid are more active as compared to the parent drug and may be proved for some other pharmacological potential by further analysis.
Vouk, V B; Piver, W T
1983-01-01
Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined.
Vouk, V B; Piver, W T
1983-01-01
Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined. PMID:6337825
Md Yusof, Enis Nadia; Ravoof, Thahira Begum S. A.; Tiekink, Edward R. T.; Veerakumarasivam, Abhimanyu; Crouse, Karen Anne; Mohamed Tahir, Mohamed Ibrahim; Ahmad, Haslina
2015-01-01
Two bidentate NS ligands were synthesized by the condensation reaction of S-2-methylbenzyldithiocarbazate (S2MBDTC) with 2-methoxybenzaldehyde (2MB) and 3-methoxybenzaldehyde (3MB). The ligands were reacted separately with acetates of Cu(II), Ni(II) and Zn(II) yielding 1:2 (metal:ligand) complexes. The metal complexes formed were expected to have a general formula of [M(NS)2] where M = Cu2+, Ni2+, and Zn2+. These compounds were characterized by elemental analysis, molar conductivity, magnetic susceptibility and various spectroscopic techniques. The magnetic susceptibility measurements and spectral results supported the predicted coordination geometry in which the Schiff bases behaved as bidentate NS donor ligands coordinating via the azomethine nitrogen and thiolate sulfur. The molecular structures of the isomeric S2M2MBH (1) and S2M3MBH (2) were established by X-ray crystallography to have very similar l-shaped structures. The Schiff bases and their metal complexes were evaluated for their biological activities against estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cell lines. Only the Cu(II) complexes showed marked cytotoxicity against the cancer cell lines. Both Schiff bases and other metal complexes were found to be inactive. In concordance with the cytotoxicity studies, the DNA binding studies indicated that Cu(II) complexes have a strong DNA binding affinity. PMID:25988384
Chemodynamics of aquatic metal complexes: from small ligands to colloids.
Van Leeuwen, Herman P; Buffle, Jacques
2009-10-01
Recent progress in understanding the formation/dissociation kinetics of aquatic metal complexes with complexants in different size ranges is evaluated and put in perspective, with suggestions for further studies. The elementary steps in the Eigen mechanism, i.e., diffusion and dehydration of the metal ion, are reviewed and further developed. The (de)protonation of both the ligand and the coordinating metal ion is reconsidered in terms of the consequences for dehydration rates and stabilities of the various outer-sphere complexes. In the nanoparticulate size range, special attention is given to the case of fulvic ligands, for which the impact of electrostatic interactions is especially large. In complexation with colloidal ligands (hard, soft, and combination thereof) the diffusive transport of metal ions is generally a slower step than in the case of complexation with small ligands in a homogeneous solution. The ensuing consequences for the chemodynamics of colloidal complexes are discussed in detail and placed in a generic framework, encompassing the complete range of ligand sizes.
NASA Astrophysics Data System (ADS)
Ceyhan, Gökhan; Çelik, Cumali; Uruş, Serhan; Demirtaş, İbrahim; Elmastaş, Mahfuz; Tümer, Mehmet
2011-10-01
In this study, two Schiff base ligands (HL 1 and HL 2) and their Cu(II), Co(II), Ni(II), Pd(II) and Ru(III) metal complexes were synthesized and characterized by the analytical and spectroscopic methods. Alkane oxidation activities of the metal complexes were studied on cyclohexane as substrate. The ligands and their metal complexes were evaluated for their antimicrobial activity against Corynebacterium xerosis, Bacillus brevis, Bacillus megaterium, Bacillus cereus, Mycobacterium smegmatis, Staphylococcus aureus, Micrococcus luteus and Enterococcus faecalis (as Gram-positive bacteria) and Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Yersinia enterocolitica, Klebsiella fragilis, Saccharomyces cerevisiae, and Candida albicans (as Gram-negative bacteria). The antioxidant properties of the Schiff base ligands were evaluated in a series of in vitro tests: 1,1-diphenyl-2-picrylhydrazyl (DPPH rad ) free radical scavenging and reducing power activity of superoxide anion radical generated non-enzymatic systems. Electrochemical and thermal properties of the compounds were investigated.
NASA Astrophysics Data System (ADS)
Dhankar, Raksha P.; Rahatgaonkar, Anjali M.; Chorghade, Mukund S.; Tiwari, Ashutosh
2-oxo-4-phenyl-6-styryl-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid (ADP) was complexed with acetates of Mn(II), Ni(II), Cu(II) and Zn(II). The structures of the ligand and its metal complexes were characterized by microanalysis, IR, NMR, UV-vis spectroscopy, magnetic susceptibility and TGA-DTA analyses. Octahedral and square planar geometries were suggested for the complexes in which the central metal ion coordinated with sbnd O donors of ligand and acetate ions. Each ligand binds the metal using carboxylate oxygens. The ligand and complexes were evaluated for their antimicrobial activities against different species of pathogenic bacteria and fungi. The present novel pyrimidine containing complexes could constitute a new group of antibacterial and antifungal agents.
Solid phase extraction of copper(II) by fixed bed procedure on cation exchange complexing resins.
Pesavento, Maria; Sturini, Michela; D'Agostino, Girolamo; Biesuz, Raffaela
2010-02-19
The efficiency of the metal ion recovery by solid phase extraction (SPE) in complexing resins columns is predicted by a simple model based on two parameters reflecting the sorption equilibria and kinetics of the metal ion on the considered resin. The parameter related to the adsorption equilibria was evaluated by the Gibbs-Donnan model, and that related to the kinetics by assuming that the ion exchange is the adsorption rate determining step. The predicted parameters make it possible to evaluate the breakthrough volume of the considered metal ion, Cu(II), from different kinds of complexing resins, and at different conditions, such as acidity and ionic composition. Copyright 2009. Published by Elsevier B.V.
Development of inexpensive metal macrocyclic complexes for use in fuel cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doddapaneni, N.; Ingersoll, D.; Kosek, J.A.
Several metal macrocyclic complexes were synthesized for use as catalysts in fuel cells. An initial evaluation of their ability to catalyze the fuel cell reactions were completed. Based on this initial evaluation, one metal macrocyclic catalyst was selected and long-term stability testing in a fuel cell was initiated. The fuel cell employing this catalyst was operated continuously for one year with little signs of catalyst degradation. The effect of synthetic reformates on the performance of the catalyst in the fuel cell environment also demonstrated high tolerance of this catalyst for common contaminants and poisons.
Star Organics, L.L.C., of Dallas, Texas (Star Organics) has developed Soil Rescue to treat soil contaminated with metals. Star Organics claims that Soil Rescue forms metal complexes that immobilize toxic metals, thereby reducing the risk to human health and the environment. The ...
NASA Astrophysics Data System (ADS)
David, Laurent; Amara, Patricia; Field, Martin J.; Major, François
2002-08-01
Although techniques for the simulation of biomolecules, such as proteins and RNAs, have greatly advanced in the last decade, modeling complexes of biomolecules with metal ions remains problematic. Precise calculations can be done with quantum mechanical methods but these are prohibitive for systems the size of macromolecules. More qualitative modeling can be done with molecular mechanical potentials but the parametrization of force fields for metals is often difficult, particularly if the bonding between the metal and the groups in its coordination shell has significant covalent character. In this paper we present a method for deriving bond and bond-angle parameters for metal complexes from experimental bond and bond-angle distributions obtained from the Cambridge Structural Database. In conjunction with this method, we also introduce a non-standard energy term of gaussian form that allows us to obtain a stable description of the coordination about a metal center during a simulation. The method was evaluated on Fe(II)-porphyrin complexes, on simple Cu(II) ion complexes and a number of complexes of the Pb(II) ion.
Pesavento, Maria; Alberti, Giancarla; Biesuz, Raffaela
2009-01-12
Different experimental approaches have been suggested in the last few decades to determine metal species in complex matrices of unknown composition as environmental waters. The methods are mainly focused on the determination of single species or groups of species. The more recent developments in trace elements speciation are reviewed focusing on methods for labile and free metal determination. Electrochemical procedures with low detection limit as anodic stripping voltammetry (ASV) and the competing ligand exchange with adsorption cathodic stripping voltammetry (CLE-AdCSV) have been widely employed in metal distribution studies in natural waters. Other electrochemical methods such as stripping chronopotentiometry and AGNES seem to be promising to evaluate the free metal concentration at the low levels of environmental samples. Separation techniques based on ion exchange (IE) and complexing resins (CR), and micro separation methods as the Donnan membrane technique (DMT), diffusive gradients in thin-film gels (DGT) and the permeation liquid membrane (PLM), are among the non-electrochemical methods largely used in this field and reviewed in the text. Under appropriate conditions such techniques make possible the evaluation of free metal ion concentration.
Multiheteromacrocycles that Complex Metal Ions. Fourth Progress Report, 1 May 1977 -- 30 April 1978
DOE R&D Accomplishments Database
Cram, D. J.
1978-01-15
Results are reported in a program to design, synthesize, and evaluate polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions. Work during the reporting period was devoted to synthesis and study of cyclohexametaphenylenes and cyclic phosphine oxides. (JRD)
Characterization of tannin-metal complexes by UV-visible spectrophotometry
USDA-ARS?s Scientific Manuscript database
Tannins enter soils by plant decay and rain throughfall, but little is known of their effects on soils. Tannins may influence bioavailability and toxicity of metals by forming complexes and by mediating redox reactions. We evaluated the affinity and stoichiometry of Al(III) for a gallotannin, pent...
NASA Astrophysics Data System (ADS)
Mahendra Raj, K.; Mruthyunjayaswamy, B. H. M.
2014-09-01
Schiff base ligand 3-chloro-N‧-((7-hydroxy-4-methyl-2-oxo-2H-chromen-8-yl)methylene)benzo[b]thiophene-2-carbohydrazide and its Cu(II), Co(II), Ni(II) and Zn(II) complexes were synthesized, characterized by elemental analysis and various physico-chemical techniques like, IR, 1H NMR, ESI-mass, UV-Visible, thermogravimetry - differential thermal analysis, magnetic measurements and molar conductance. Spectral analysis indicates octahedral geometry for all the complexes. Cu(II) complex have 1:1 stoichiometry of the type [M(L)(Cl)(H2O)2], whereas Co(II), Ni(II) and Zn(II) complexes have 1:2 stoichiometric ratio of the type [M(L)2]. The bonding sites are the oxygen atom of amide carbonyl, nitrogen of azomethine function and phenolic oxygen of the Schiff base ligand via deprotonation. The thermogravimetry - differential thermal analysis studies gave evidence for the presence of coordinated water molecules in the composition of Cu(II) complex which was further supported by IR measurements. All the complexes were investigated for their electrochemical activity, but only the Cu(II) complex showed the redox property. In order to evaluate the effect of antimicrobial potency of metal ions upon chelation, ligand and its metal complexes along with their respective metal chlorides were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The results showed that the metal complexes were found to be more active than free ligand. Ligand and its complexes were screened for free radical scavenging activity by DPPH method and DNA cleavage activity using Calf-thymus DNA (Cat. No-105850).
ChelomEx: Isotope-assisted discovery of metal chelates in complex media using high-resolution LC-MS.
Baars, Oliver; Morel, François M M; Perlman, David H
2014-11-18
Chelating agents can control the speciation and reactivity of trace metals in biological, environmental, and laboratory-derived media. A large number of trace metals (including Fe, Cu, Zn, Hg, and others) show characteristic isotopic fingerprints that can be exploited for the discovery of known and unknown organic metal complexes and related chelating ligands in very complex sample matrices using high-resolution liquid chromatography mass spectrometry (LC-MS). However, there is currently no free open-source software available for this purpose. We present a novel software tool, ChelomEx, which identifies isotope pattern-matched chromatographic features associated with metal complexes along with free ligands and other related adducts in high-resolution LC-MS data. High sensitivity and exclusion of false positives are achieved by evaluation of the chromatographic coherence of the isotope pattern within chromatographic features, which we demonstrate through the analysis of bacterial culture media. A built-in graphical user interface and compound library aid in identification and efficient evaluation of results. ChelomEx is implemented in MatLab. The source code, binaries for MS Windows and MAC OS X as well as test LC-MS data are available for download at SourceForge ( http://sourceforge.net/projects/chelomex ).
Influence of Humic Acid Complexation with Metal Ions on Extracellular Electron Transfer Activity.
Zhou, Shungui; Chen, Shanshan; Yuan, Yong; Lu, Qin
2015-11-23
Humic acids (HAs) can act as electron shuttles and mediate biogeochemical cycles, thereby influencing the transformation of nutrients and environmental pollutants. HAs commonly complex with metals in the environment, but few studies have focused on how these metals affect the roles of HAs in extracellular electron transfer (EET). In this study, HA-metal (HA-M) complexes (HA-Fe, HA-Cu, and HA-Al) were prepared and characterized. The electron shuttle capacities of HA-M complexes were experimentally evaluated through microbial Fe(III) reduction, biocurrent generation, and microbial azoreduction. The results show that the electron shuttle capacities of HAs were enhanced after complexation with Fe but were weakened when using Cu or Al. Density functional theory calculations were performed to explore the structural geometry of the HA-M complexes and revealed the best binding sites of the HAs to metals and the varied charge transfer rate constants (k). The EET activity of the HA-M complexes were in the order HA-Fe > HA-Cu > HA-Al. These findings have important implications for biogeochemical redox processes given the ubiquitous nature of both HAs and various metals in the environment.
Heavy ligand atom induced large magnetic anisotropy in Mn(ii) complexes.
Chowdhury, Sabyasachi Roy; Mishra, Sabyashachi
2017-06-28
In the search for single molecule magnets, metal ions are considered pivotal towards achieving large magnetic anisotropy barriers. In this context, the influence of ligands with heavy elements, showing large spin-orbit coupling, on magnetic anisotropy barriers was investigated using a series of Mn(ii)-based complexes, in which the metal ion did not have any orbital contribution. The mixing of metal and ligand orbitals was achieved by explicitly correlating the metal and ligand valence electrons with CASSCF calculations. The CASSCF wave functions were further used for evaluating spin-orbit coupling and zero-field splitting parameters for these complexes. For Mn(ii) complexes with heavy ligand atoms, such as Br and I, several interesting inter-state mixings occur via the spin-orbit operator, which results in large magnetic anisotropy in these Mn(ii) complexes.
López-Maldonado, Eduardo A; Zavala García, Oscar Gabriel; Escobedo, Kevin Cruz; Oropeza-Guzman, Mercedes T
2017-08-05
In this paper nonstoichiometric interbiopolyelectrolyte green complexes (NIBPEGCs) were prepared using chitosan (Ch), alginate (AG) and poly(acrylic acid)(PAA). They are proposed as innovative formulations (polyelectrolytes and chelating agents) suitable for the elimination heavy metals contained in wastewater. This application may represent an integral solution for industries rejecting solid and aqueous metallic materials; however, it has not been previously reported. NIBPEGCs physicochemical performance was evaluated based on pH, particle size, surface charge, isoelectric point, dose, coagulation-flocculation kinetics and chemical affinity with seven metal ions. The experimental results showed that NIBPEGCs composed by AG/Ch and PAA/Chitosan have all the three complementary functions: chemical affinity, electrostatic interaction and particle entrapment anticipating more simple operation units to remove heavy metals. Complexes of AG/Ch (negative) were higher performance in removing heavy metals, with a dose window (150-180mg/L), lower dose of 410mg/L PAA/Ch (negative). Investigation of chelating performances of NIBPEGCs show that the efficiency of metal removal is: Ca˃Cr˃Cu˃Pb˃Ni˃Zn˃Cd. Transmittance vs time profiles, metals and zeta potential analysis showed that chelation capacity is the crucial factor to ensure metallic species removal, followed by physical entrapment of the metallic colloids. Integrating all presented results allow to sustain the development of excellent metals removal formulations. Copyright © 2017 Elsevier B.V. All rights reserved.
Simmons, J E; Yang, R S; Berman, E
1995-02-01
As part of a multidisciplinary health effects study, the nephrotoxicity of complex industrial waste mixtures was assessed. Adult, male Fischer 344 rats were gavaged with samples of complex industrial waste and nephrotoxicity evaluated 24 hr later. Of the 10 tested samples, 4 produced increased absolute or relative kidney weight, or both, coupled with a statistically significant alteration in at least one of the measured serum parameters (urea nitrogen (BUN), creatinine (CREAT), and BUN/CREAT ratio). Although the waste samples had been analyzed for a number of organic chemicals and 7 of the 10 samples were analyzed also for 12 elemental metals and metalloids, their nephrotoxicity was not readily predicted from the partial chemical characterization data. Because the chemical form or speciation of the metals was unknown, it was not possible to estimate their contribution to the observed biological response. Various experimental approaches, including use of real-world complex mixtures, chemically defined synthetic mixtures, and simple mixtures, will be necessary to adequately determine the potential human health risk from exposure to complex chemical mixtures.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Al-Azab, Fathi M.; Al-Maydama, Hussein M. A.; Amin, Ragab R.; Jamil, Yasmin M. S.
2014-06-01
Metal complexes of pyridoxine mono hydrochloride (vitamin B6) are prepared using La(III), Ce(III), Sm(III) and Y(III). The resulting complexes are investigated. Some physical properties, conductivity, analytical data and the composition of the four pyridoxine complexes are discussed. The elemental analysis shows that the formed complexes of La(III), Ce(III), Sm(III) and Y(III) with pyridoxine are of 1:2 (metal:PN) molar ratio. All the synthesized complexes are brown in color and possess high melting points. These complexes are partially soluble in hot methanol, dimethylsulfoxide and dimethylformamide and insoluble in water and some other organic solvents. Elemental analysis data, spectroscopic (IR, UV-vis. and florescence), effective magnetic moment in Bohr magnetons and the proton NMR suggest the structures. However, definite particle size is determined by invoking the X-ray powder diffraction and scanning electron microscopy data. The results obtained suggested that pyridoxine reacted with metal ions as a bidentate ligand through its phenolate oxygen and the oxygen of the adjacent group at the 4‧-position. The molar conductance measurements proved that the pyridoxine complexes are electrolytic in nature. The kinetic and thermodynamic parameters such as: Ea, ΔH*, ΔS* and ΔG* were estimated from the DTG curves. The antibacterial evaluation of the pyridoxine and their complexes were also performed against some gram positive, negative bacteria as well as fungi.
The sources of heavy metals in urban stormwater runoff are diverse (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials that ...
The sources of heavy metals in urban stormwater runoff are numerous (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials tha...
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-01
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, 1H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand.
Ga metal nanoparticle-GaAs quantum molecule complexes for Terahertz generation.
Bietti, Sergio; Basso Basset, Francesco; Scarpellini, David; Fedorov, Alexey; Ballabio, Andrea; Esposito, Luca; Elborg, Martin; Kuroda, Takashi; Nemcsics, Akos; Toth, Lajos; Manzoni, Cristian; Vozzi, Caterina; Sanguinetti, Stefano
2018-06-18
A hybrid metal-semiconductor nanosystem for the generation of THz radiation, based on the fabrication of GaAs quantum molecules-Ga metal nanoparticles complexes through a self assembly approach, is proposed. The role of the growth parameters, the substrate temperature, the Ga and As flux during the quantum dot molecule fabrication and the metal nanoparticle alignment is discussed. The tuning of the relative positioning of quantum dot molecules and metal nanoparticles is obtained through the careful control of Ga droplet nucleation sites via Ga surface diffusion. The electronic structure of a typical quantum dot molecule was evaluated on the base of the morphological characterizations performed by Atomic Force Microscopy and cross sectional Scanning Electron Microscopy, and the predicted results confirmed by micro-photoluminescence experiments, showing that the Ga metal nanoparticle-GaAs quantum molecule complexes are suitable for terahertz generation from intraband transition. . © 2018 IOP Publishing Ltd.
Synthesis, characterization, spectroscopic and antioxidation studies of Cu(II)-morin complex
NASA Astrophysics Data System (ADS)
Panhwar, Qadeer Khan; Memon, Shahabuddin; Bhanger, M. I.
2010-04-01
Complex formation between copper (II) sulfate and morin (3,5,7,2',4'-pentahydroxyflavone) have been studied in methanol. Structure of the complex was determined through various analytical techniques including UV-vis, IR, 1H NMR, thermal, gravimetric and elemental analyses. The stoichiometric ratio for the reaction between the flavonoid and the metal ion in methanol has been determined by Job's method and elemental analysis for metal content of complex by titration with EDTA, which confirm that morin forms a 1:1 metal:ligand complex. 1H NMR study reveals that, 3OH and 4CO groups of morin take part in complexation with a copper ion. Individual stress was given to the site of central ion and composition of the complex. Antioxidant activity of the complex was evaluated by using 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method, which showed that the antioxidant activity of complexed morin has higher value as compared to the free morin. Moreover, it was observed that the metal complex is sufficiently stable as well as the data indicates the spontaneous formation of complex (-Δ G) that is exothermic in nature (-Δ H) and entropically unfavourable (-Δ S).
NASA Astrophysics Data System (ADS)
Marini, Luigi; Accornero, Marina
2007-07-01
The standard thermodynamic properties at 25°C, 1 bar (Δ G {f/o}, Δ H {f/o}, S o, C {P/o}, V o, ω) and the coefficients of the revised Helgeson-Kirkham-Flowers equations of state were evaluated for several aqueous complexes formed by dissolved metals and either arsenate or arsenite ions. The guidelines of Shock and Helgeson (Geochim Cosmochim Acta 52:2009-2036, 1988) and Sverjensky et al. (Geochim Cosmochim Acta 61:1359-1412, 1997) were followed and corroborated with alternative approaches, whenever possible. The SUPCRT92 computer code was used to generate the log K of the destruction reactions of these metal-arsenate and metal-arsenite aqueous complexes at pressures and temperatures required by the EQ3/6 software package, version 7.2b. Apart from the AlAsO{4/o} and FeAsO{4/o} complexes, our log K at 25°C, 1 bar are in fair agreement with those of Whiting (MS Thesis, Colorado School of Mines, Golden, CO, 1992). Moreover, the equilibrium constants evaluated in this study are in good to fair agreement with those determined experimentally for the Ca-dihydroarsenate and Ca-hydroarsenate complexes at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) and for Fe(III)-hydroarsenate complex at 25°C (Raposo et al., J Sol Chem 35:79-94, 2006), whereas the disagreement with the log K measured for the Ca-arsenate complex at 40°C (Mironov et al., Russ J Inorg Chem 40:1690, 1995) might be due to uncertainties in this measured value. The implications of aqueous complexing between dissolved metals and arsenate/arsenite ions were investigated for seawater, high-temperature geothermal liquids and acid mine drainage and aqueous solutions deriving from mixing of acid mine waters and surface waters.
Demirezen, Nihat; Tarınç, Derya; Polat, Duygu; Ceşme, Mustafa; Gölcü, Ayşegül; Tümer, Mehmet
2012-08-01
Complexes of trimethoprim (TMP), with Cu(II), Zn(II), Pt(II), Ru(III) and Fe(III) have been synthesized. Then, these complexes have been characterized by spectroscopic techniques involving UV-vis, IR, mass and (1)H NMR. CHN elemental analysis, electrochemical and thermal behavior of complexes have also been investigated. The electrochemical properties of all complexes have been investigated by cyclic voltammetry (CV) using glassy carbon electrode. The biological activity of the complexes has been evaluated by examining their ability to bind to calf-thymus DNA (CT DNA) with UV spectroscopy and cyclic voltammetry. UV studies of the interaction of the complexes with DNA have shown that these compounds can bind to CT DNA. The binding constants of the complexes with CT DNA have also been calculated. The cyclic voltammograms of the complexes in the presence of CT DNA have shown that the complexes can bind to CT DNA by both the intercalative and the electrostatic binding mode. The antimicrobial activity of these complexes has been evaluated against three Gram-positive and four Gram-negative bacteria. Antifungal activity against two different fungi has been evaluated and compared with the reference drug TMP. Almost all types of complexes show excellent activity against all type of bacteria and fungi. The morphology of the CT DNA, TMP, metal ions and metal complexes has been investigated by scanning electron microscopy (SEM). To get the SEM images, the interaction of compounds with CT DNA has been studied by means of differential pulse voltammetry (DPV) at CT DNA modified pencil graphite electrode (PGE). The decrease in intensity of the guanine oxidation signals has been used as an indicator for the interaction mechanism. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Prapaipong, Panjai; Shock, Everett L.; Koretsky, Carla M.
1999-10-01
By combining results from regression and correlation methods, standard state thermodynamic properties for aqueous complexes between metal cations and divalent organic acid ligands (oxalate, malonate, succinate, glutarate, and adipate) are evaluated and applied to geochemical processes. Regression of experimental standard-state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state yields standard partial molal entropies (S¯°) of aqueous metal-organic complexes, which allow determination of thermodynamic properties of the complexes at elevated temperatures. In cases where S¯° is not available from either regression or calorimetric measurement, the values of S¯° can be estimated from a linear correlation between standard partial molal entropies of association (ΔS¯°r) and standard partial molal entropies of aqueous cations (S¯°M). The correlation is independent of cation charge, which makes it possible to predict S¯° for complexes between divalent organic acids and numerous metal cations. Similarly, correlations between standard Gibbs free energies of association of metal-organic complexes (ΔḠ°r) and Gibbs free energies of formation (ΔḠ°f) for divalent metal cations allow estimates of standard-state equilibrium constants where experimental data are not available. These correlations are found to be a function of ligand structure and cation charge. Predicted equilibrium constants for dicarboxylate complexes of numerous cations were included with those for inorganic and other organic complexes to study the effects of dicarboxylate complexes on the speciation of metals and organic acids in oil-field brines. Relatively low concentrations of oxalic and malonic acids affect the speciation of cations more than similar concentrations of succinic, glutaric, and adipic acids. However, the extent to which metal-dicarboxylate complexes contribute to the speciation of dissolved metals depends on the type of dicarboxylic acid ligand; relative concentration of inorganic, mono-, and dicarboxylate ligands; and the type of metal cation. As an example, in the same solution, dicarboxylic acids have a greater influence on the speciation of Fe+2 and Mg+2 than on the speciation of Zn+2 and Mn+2.
Dang, Fei; Rainbow, Philip S; Wang, Wen-Xiong
2012-09-15
There is growing awareness of the toxicological effects of metal-contaminated invertebrate diets on the health of fish populations in metal-contaminated habitats, yet the mechanisms underlying metal bioaccumulation and toxicity are complex. In the present study, marine fish Terapon jurbua terepon were fed a commercial diet supplemented with specimens of the polychaete Nereis diversicolor or the clam Scrobicularia plana, collected from four metal-impacted estuaries (Tavy, Restronguet Creek, West Looe, Gannel) in southwest England, as environmentally realistic metal sources. A comparative toxicological evaluation of both invertebrates showed that fish fed S. plana for 21 d exhibited evident mortality compared to those fed N. diversicolor. Furthermore, a spatial effect on mortality was observed. Differences in metal doses rather than subcellular metal distributions between N. diversicolor and S. plana appeared to be the cause of such different mortalities. Partial least squares regression was used to evaluate the statistical relationship between multiple-metal doses and fish mortality, revealing that Pb, Fe, Cd and Zn in field-collected invertebrates co-varied most strongly with the observed mortality. This study provides a step toward exploring the underlying mechanism of dietary toxicity and identifying the potential causality in complex metal mixture exposures in the field. Copyright © 2012 Elsevier B.V. All rights reserved.
Lima, Carlos F R A C; Taveira, Ricardo J S; Costa, José C S; Fernandes, Ana M; Melo, André; Silva, Artur M S; Santos, Luís M N B F
2016-06-28
Tris(8-hydroxyquinolinate) metallic complexes, Mq3, are one of the most important classes of organic semiconductor materials. Herein, the nature of the chemical bond in Mq3 complexes and its implications on their molecular properties were investigated by a combined experimental and computational approach. Various Mq3 complexes, resulting from the alteration of the metal and substitution of the 8-hydroxyquinoline ligand in different positions, were prepared. The mer-/fac-isomerism in Mq3 was explored by FTIR and NMR spectroscopy, evidencing that, irrespective of the substituent, mer- and fac-are the most stable molecular configurations of Al(iii) and In(iii) complexes, respectively. The relative M-ligand bond dissociation energies were evaluated experimentally by electrospray ionization tandem mass spectrometry (ESI-MS-MS), showing a non-monotonous variation along the group (Al > In > Ga). The results reveal a strong covalent character in M-ligand bonding, which allows for through-ligand electron delocalization, and explain the preferred molecular structures of Mq3 complexes as resulting from the interplay between bonding and steric factors. The mer-isomer reduces intraligand repulsions, being preferred for smaller metals, while the fac-isomer is favoured for larger metals where stronger covalent M-ligand bonds can be formed due to more extensive through-ligand conjugation mediated by metal "d" orbitals.
NASA Astrophysics Data System (ADS)
Shock, Everetr L.; Koretsky, Carla M.
1995-04-01
Regression of standard state equilibrium constants with the revised Helgeson-Kirkham-Flowers (HKF) equation of state allows evaluation of standard partial molal entropies ( overlineSo) of aqueous metal-organic complexes involving monovalent organic acid ligands. These values of overlineSo provide the basis for correlations that can be used, together with correlation algorithms among standard partial molal properties of aqueous complexes and equation-of-state parameters, to estimate thermodynamic properties including equilibrium constants for complexes between aqueous metals and several monovalent organic acid ligands at the elevated pressures and temperatures of many geochemical processes which involve aqueous solutions. Data, parameters, and estimates are given for 270 formate, propanoate, n-butanoate, n-pentanoate, glycolate, lactate, glycinate, and alanate complexes, and a consistent algorithm is provided for making other estimates. Standard partial molal entropies of association ( Δ -Sro) for metal-monovalent organic acid ligand complexes fall into at least two groups dependent upon the type of functional groups present in the ligand. It is shown that isothermal correlations among equilibrium constants for complex formation are consistent with one another and with similar correlations for inorganic metal-ligand complexes. Additional correlations allow estimates of standard partial molal Gibbs free energies of association at 25°C and 1 bar which can be used in cases where no experimentally derived values are available.
Chandra, Sulekh; Gautam, Seema; Rajor, Hament Kumar; Bhatia, Rohit
2015-02-25
Novel Schiff's base ligand, benzil bis(5-amino-1,3,4-thiadiazole-2-thiol) was synthesized by the condensation of benzil and 5-amino-1,3,4-thiadiazole-2-thiol in 1:2 ratio. The structure of ligand was determined on the basis of elemental analyses, IR, (1)H NMR, mass, and molecular modeling studies. Synthesized ligand behaved as tetradentate and coordinated to metal ion through sulfur atoms of thiol ring and nitrogen atoms of imine group. Ni(II), and Cu(II) complexes were synthesized with this nitrogen-sulfur donor (N2S2) ligand. Metal complexes were characterized by elemental analyses, molar conductance, magnetic susceptibility measurements, IR, electronic spectra, EPR, thermal, and molecular modeling studies. All the complexes showed molar conductance corresponding to non-electrolytic nature, expect [Ni(L)](NO3)2 complex, which was 1:2 electrolyte in nature. [Cu(L)(SO4)] complex may possessed square pyramidal geometry, [Ni(L)](NO3)2 complex tetrahedral and rest of the complexes six coordinated octahedral/tetragonal geometry. Newly synthesized ligand and its metal complexes were examined against the opportunistic pathogens. Results suggested that metal complexes were more biological sensitive than free ligand. Copyright © 2014 Elsevier B.V. All rights reserved.
Tonietto, Alessandra Emanuele; Lombardi, Ana Teresa; Choueri, Rodrigo Brasil; Vieira, Armando Augusto Henriques
2015-10-01
This research aimed at evaluating cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn) speciation in water samples as well as determining water quality parameters (alkalinity, chlorophyll a, chloride, conductivity, dissolved organic carbon, dissolved oxygen, inorganic carbon, nitrate, pH, total suspended solids, and water temperature) in a eutrophic reservoir. This was performed through calculation of free metal ions using the chemical equilibrium software MINEQL+ 4.61, determination of labile, dissolved, and total metal concentrations via differential pulse anodic stripping voltammetry, and determination of complexed metal by the difference between the total concentration of dissolved and labile metal. Additionally, ligand complexation capacities (CC), such as the strength of the association of metals-ligands (logK'ML) and ligand concentrations (C L) were calculated via Ruzic's linearization method. Water samples were taken in winter and summer, and the results showed that for total and dissolved metals, Zn > Cu > Pb > Cd concentration. In general, higher concentrations of Cu and Zn remained complexed with the dissolved fraction, while Pb was mostly complexed with particulate materials. Chemical equilibrium modeling (MINEQL+) showed that Zn(2+) and Cd(2+) dominated the labile species, while Cu and Pb were complexed with carbonates. Zinc was a unique metal for which a direct relation between dissolved species with labile and complexed forms was obtained. The CC for ligands indicated a higher C L for Cu, followed by Pb, Zn, and Cd in decreasing amounts. Nevertheless, the strength of the association of all metals and their respective ligands was similar. Factor analysis with principal component analysis as the extraction procedure confirmed seasonal effects on water quality parameters and metal speciation. Total, dissolved, and complexed Cu and total, dissolved, complexed, and labile Pb species were all higher in winter, whereas in summer, Zn was mostly present in the complexed form. A high degree of deterioration of the reservoir was confirmed by the results of this study.
NASA Astrophysics Data System (ADS)
Naklicki, M. L.; Evans, C. E. B.; Crutchley, R. J.
1997-03-01
The extent of metal-metal coupling in the mixed-valence complexes [Ru(NH 3) 52(μ-L)] 3+], where L is 2,5-dimethyl-(Me 2dicyd 2-), 2,5-dichloro- (Cl 2dicyd 2-), 2,3,5,6-tetrachloro- (Cl 4dicyd 2-) or unsubstituted (dicyd 2-) 1,4-dicyanamidobenzene dianion, was evaluated by comparing theoretical values of metal-metal coupling elements with estimates of the free energy of resonance exchange which were derived from the free energies of comproportionation. Poor agreement was found with the Hush model; however, an excellent correlation was seen with the model of Creutz, Newton and Sutin (CNS). It would appear that the CNS model is remarkably successful in describing the extent of metal-metal coupling for the strongly coupled valence trapped complexes of this study.
Terpyridine complexes of first row transition metals and electrochemical reduction of CO₂ to CO.
Elgrishi, Noémie; Chambers, Matthew B; Artero, Vincent; Fontecave, Marc
2014-07-21
Homoleptic terpyridine complexes of first row transition metals are evaluated as catalysts for the electrocatalytic reduction of CO2. Ni and Co-based catalytic systems are shown to reduce CO2 to CO under the conditions tested. The Ni complex was found to exhibit selectivity for CO2 over proton reduction while the Co-based system generates mixtures of CO and H2 with CO : H2 ratios being tuneable through variation of the applied potential.
NASA Astrophysics Data System (ADS)
Kumar Naik, K. H.; Ashok, B.; Naik, Nagaraja; Mulla, Jameel Ahmed S.; Prakasha, Avinash
2015-04-01
Transition metal complexes containing tri-dentate NSN donor ligands i.e., 5-((1(aminomethyl)cyclohexyl)methyl)-1,3,4-thiadiazol-2-amine (AMTA) (2) and 5-(2-aminophenyl)-1,3,4-thiadiazol-2-amine (ATA) (4i-ii) have been synthesized. The newly synthesized ligands and their respective complexes were characterized by elemental analysis, molar conductance measurement and various spectral studies [infrared (IR), electronic, and NMR (for ligands only)]. Metal complexes are like [M(AMTA)2], [M(ATA)2] type, where M = Mn(II), Co(II) and Cu(II). The proposed geometries of the complexes are octahedral in nature. The synthesized ligands and their complexes were exhibits effective anti-inflammatory, analgesic and DNA binding activities. All the tested compounds exhibited significant analgesic activity, whereas the compound 4i, 4(ia) and 4(iib) is equipotent with Diclofenac sodium.
Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa
2018-02-09
We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, for synthesizing hollow transition-metal oxides (Co 3 O 4 , NiO, CuO-Cu 2 O, and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high-performance lithium-ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition-metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co 2+ , Ni 2+ , Cu 2+ , or Zn 2+ )-ammine complex ions. Moreover, the hollowing process is well correlated with the complexing capacity between metal ions and NH 3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+ ions, and no hollow structures formed for weak and/or noncomplex Mn 2+ and Fe 3+ ions. Simultaneously, this novel strategy can also achieve the direct doping of nitrogen atoms into the graphene framework. The electrochemical performance of two typical hollow Co 3 O 4 or NiO/nitrogen-doped graphene hybrids was evaluated by their use as anodic materials. It was demonstrated that these unique nanostructured hybrids, in contrast with the bare counterparts, solid transition-metal oxides/nitrogen-doped graphene hybrids, perform with significantly improved specific capacity, superior rate capability, and excellent capacity retention. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zordok, Wael A.; Sadeek, Sadeek A.
2016-09-01
Five metal complexes of antibacterial agent enrofloxacin with vanadium(V) in the presence of aniline, pyridine, orthotolidine and triethylamine as nitrogen donor molecules and dimethylformamide as oxygen donor molecule have been prepared and characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopes) as well as thermal analysis. The deprotonated enrofloxacin complexes of V(V) were isolated as solids with the general formulas; [VO(Enr)2DMF]Cl·5H2O, [VO(Enr)2An]Cl·2H2O, [VO(Enr)2o-Tol]Cl·H2O, [VO(Enr)2Py]Cl·4H2O and [VO(Enr)2Et3N]Cl·6H2O. The prepared complexes are formed with a metal to ligand ratios as 1:2:1 for all complexes. The lowest energy model structure of each complex has been proposed by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The energy barrier for the pyridine complex greater than others complexes while, Et3N complex has lower value. The ligand and their metal complexes were also evaluated for their antibacterial activity against three Gram (+ve) and three Gram (-ve) microorganisms.
Sumathi, R. B.; Halli, M. B.
2014-01-01
A new Schiff base and a new series of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) complexes were synthesized by the condensation of naphthofuran-2-carbohydrazide and diacetylmonoxime. Metal complexes of the Schiff base were prepared from their chloride salts of Co(II), Ni(II), Cu(II), Cd(II), and Hg(II) in ethanol. The ligand along with its metal complexes have been characterized on the basis of analytical data, IR, electronic, mass, 1HNMR, ESR spectral data, thermal studies, magnetic susceptibility, and molar conductance measurements. The nonelectrolytic behaviour of the complexes was assessed from the measured low conductance data. The elemental analysis of the complexes confirm the stoichiometry of the type CuL2Cl2 and MLCl2 where M = Ni(II), Co(II), Cd(II), and Hg(II) and L = Schiff base. The redox property of the Cu(II) complex was investigated by electrochemical method using cyclic voltammetry. In the light of these results, Co(II), Ni(II), and Cu(II) complexes are assigned octahedral geometry, Cd(II), and Hg(II) complexes tetrahedral geometry. In order to evaluate the effect of metal ions upon chelation, both the ligand and its metal complexes were screened for their antibacterial and antifungal activities by minimum inhibitory concentration (MIC) method. The DNA cleaving capacity of all the complexes was analysed by agarose gel electrophoresis method. PMID:24592203
NASA Astrophysics Data System (ADS)
Mallikarjuna, N. M.; Keshavayya, J.; Maliyappa, M. R.; Shoukat Ali, R. A.; Venkatesh, Talavara
2018-08-01
A novel bioactive Cu (II), Co (II) and Ni (II) complexes of the azo dye ligand (L) derived from sulfamethoxazole were synthesized. The structures of the newly synthesized compounds were characterized by elemental analysis, molar conductance, magnetic susceptibility, FTIR, UV-visible, 1H NMR, mass, thermal and powder XRD spectral techniques. Molar conductivity measurements in DMSO solution confirmed the non-electrolytic nature of the complexes. All the synthesized metal complexes were found to be monomeric and showed square planar geometry except the Co (II) complex which has six coordinate, octahedral environment. The metal complexes have exhibited potential growth inhibitory effect against tested bacterial strains as compared to the free ligand. The ligand and complexes have also shown significant antioxidant and Calf Thymus DNA cleavage activities. Further, the in silico molecular docking studies were performed to predict the possible binding sites of the ligand (L) and its metal complexes with target receptor Glu-6P.
Uranium extraction by complexation with siderophores
NASA Astrophysics Data System (ADS)
Bahamonde Castro, Cristina
One of the major concerns of energy production is the environmental impact associated with the extraction of natural resources. Nuclear energy fuel is obtained from uranium, an abundant and naturally occurring element in the environment, but the currently used techniques for uranium extraction leave either a significant fingerprint (open pit mines) or a chemical residue that alters the pH of the environment (acid or alkali leaching). It is therefore clear that a new and greener approach to uranium extraction is needed. Bioleaching is one potential alternative. In bioleaching, complexants naturally produced from fungi or bacteria may be used to extract the uranium. In the following research, the siderophore enterobactin, which is naturally produced by bacteria to extract and solubilize iron from the environment, is evaluated to determine its potential for complexing with uranium. To determine whether enterobactin could be used for uranium extraction, its acid dissociation and its binding strength with the metal of interest must be determined. Due to the complexity of working with radioactive materials, lanthanides were used as analogs for uranium. In addition, polyprotic acids were used as structural and chemical analogs for the siderophore during method development. To evaluate the acid dissociation of enterobactin and the subsequent binding constants with lanthanides, three different analytical techniques were studied including: potentiometric titration, UltraViolet Visible (UV-Vis) spectrophotometry and Isothermal Titration Calorimetry (ITC). After evaluation of three techniques, a combination of ITC and potentiometric titrations was deemed to be the most viable way for studying the siderophore of interest. The results obtained from these studies corroborate the ideal pH range for enterobactin complexation to the lanthanide of interest and pave the way for determining the strength of complexation relative to other naturally occurring metals. Ultimately, this fundamental research enhances our current understanding of heavy metal complexation to naturally occurring complexants, which may enhance the metals mobility in the environment or potentially be used as a greener alternative in uranium extraction or remediation.
Neutralization by Metal Ions of the Toxicity of Sodium Selenide
Dauplais, Marc; Lazard, Myriam; Blanquet, Sylvain; Plateau, Pierre
2013-01-01
Inert metal-selenide colloids are found in animals. They are believed to afford cross-protection against the toxicities of both metals and selenocompounds. Here, the toxicities of metal salt and sodium selenide mixtures were systematically studied using the death rate of Saccharomyces cerevisiae cells as an indicator. In parallel, the abilities of these mixtures to produce colloids were assessed. Studied metal cations could be classified in three groups: (i) metal ions that protect cells against selenium toxicity and form insoluble colloids with selenide (Ag+, Cd2+, Cu2+, Hg2+, Pb2+ and Zn2+), (ii) metal ions which protect cells by producing insoluble metal-selenide complexes and by catalyzing hydrogen selenide oxidation in the presence of dioxygen (Co2+ and Ni2+) and, finally, (iii) metal ions which do not afford protection and do not interact (Ca2+, Mg2+, Mn2+) or weakly interact (Fe2+) with selenide under the assayed conditions. When occurring, the insoluble complexes formed from divalent metal ions and selenide contained equimolar amounts of metal and selenium atoms. With the monovalent silver ion, the complex contained two silver atoms per selenium atom. Next, because selenides are compounds prone to oxidation, the stabilities of the above colloids were evaluated under oxidizing conditions. 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB), the reduction of which can be optically followed, was used to promote selenide oxidation. Complexes with cadmium, copper, lead, mercury or silver resisted dissolution by DTNB treatment over several hours. With nickel and cobalt, partial oxidation by DTNB occurred. On the other hand, when starting from ZnSe or FeSe complexes, full decompositions were obtained within a few tens of minutes. The above properties possibly explain why ZnSe and FeSe nanoparticles were not detected in animals exposed to selenocompounds. PMID:23342137
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Vandana; Kumar, Suresh
2015-01-01
Schiff's base ligand(L) hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene] and its metal complexes have been synthesized and characterized by elemental analysis, molar conductance, various spectroscopic techniques such as electronic, IR, 1H NMR, mass, EPR. Molar conductance of complexes in DMF solution corresponds to non-electrolyte. Complexes have general composition [M(L)2X2], where M = Ni(II) and Cu(II), X = Cl-, NO3-, CH3COO- and ½SO42-. On the basis of above spectral studies, an octahedral geometry has been assigned for Ni(II) complexes and tetragonal geometry for Cu(II) complexes except [Cu(L)2SO4] which possesses five coordinated trigonal bipyramidal geometry. These metal complexes were also tested for their anticancer, antibacterial and antifungal activities to assess their inhibition potential. Anticancer activity of ligand and its metal complexes were evaluated using SRB fluorometric assay and Adriamycin (ADR) was applied as positive control. Schiff's base ligand and its metal complexes were screened for their antibacterial and antifungal activity against Escherichia coli, Bacillus cereus and Aspergillus niger, Aspergillus flavus, respectively. Kirby-Bauer single disk susceptibility test was used for antibacterial activity and well diffusion method for antifungal activity of the compounds on the used fungi.
Bernier, Nicolas; Costa, Judite; Delgado, Rita; Félix, Vítor; Royal, Guy; Tripier, Raphaël
2011-05-07
The synthesis of the cross-bridged cyclen CRpy(2) {4,10-bis((pyridin-2-yl)methyl)-1,4,7,10-tetraazabicyclo[5.5.2]tetradecane}, a constrained analogue of the previously described trans-methylpyridine cyclen Cpy(2) is reported. The additional ethylene bridge confers to CRpy(2) proton-sponge type behaviour which was explored by NMR and potentiometric studies. Transition metal complexes have been synthesized (by complexation of both ligands with Co(2+), Cu(2+) and Zn(2+)) and characterized in solution and in the solid state. The single crystal X-ray structures of [CoCpy(2)](2+), [CuCpy(2)](2+) and [ZnCpy(2)](2+) complexes were determined. Stability constants of the complexes, including those of the cross-bridged derivative, were determined using potentiometric titration data and the kinetic inertness of the [CuCRpy(2)](2+) complex in an acidic medium (half-life values) was evaluated by spectrophotometry. The pre-organized structure of the cross-bridged ligand imposes an additional strain for the complexation leading to complexes with smaller thermodynamic stability in comparison with the related non-bridged ligand. The electrochemical study involving cyclic voltammetry underlines the importance of the ethylene cross-bridge on the redox properties of the transition metal complexes.
Chen, Zhimin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi
2007-11-01
A new chelating ligand, 2-(2-(5-tert-butylisoxazol-3-yl)hydrazono)-N-(2,4-dimethylphenyl)-3-oxobutanamide (HL), and its four binuclear transition metal complexes, M(2)(L)(2) (micro-OCH(3))(2) [M=Ni(II), Co(II), Cu(II), Zn(II)], were synthesized using the procedure of diazotization, coupling and metallization. Their structures were postulated based on elemental analysis, (1)H NMR, MALDI-MS, FT-IR spectra and UV-vis electronic absorption spectra. Smooth films of these complexes on K9 glass substrates were prepared using the spin-coating method and their absorption properties were evaluated. The thermal properties of the metal(II) complexes were investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC). Different thermodynamic and kinetic parameters namely activation energy (E*), enthalpy of activation (DeltaH*), entropy of activation (DeltaS*) and free energy change of activation (DeltaG*) are calculated using Coats-Redfern (CR) equation.
NASA Astrophysics Data System (ADS)
Al-Harbi, Sami A.; Bashandy, Mahmoud S.; Al-Saidi, Hammed M.; Emara, Adel A. A.; Mousa, Tarek A. A.
2015-06-01
This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, 1H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.) = 21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value = 13.30, while Zn(II) complex with S.I. value = 10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme.
Al-Harbi, Sami A; Bashandy, Mahmoud S; Al-Saidi, Hammed M; Emara, Adel A A; Mousa, Tarek A A
2015-06-15
This article describes the synthesis of novel bidentate Schiff base (H2L) from condensation of 2-amino-4-phenylthiazole (APT) with 4,6-diacetylresorcinol (DAR) in the molar ratio 2:1. We studied interaction of ligand (H2L) with transition metal ions such as Cr(III), Fe(III), Cu(II), Zn(II) and Cd(II). The ligand (H2L) has two bidentate sets of (N-O) units which can coordinate with two metal ions to afford novel binuclear metal complexes. The directions of coordinate bonds are from nitrogen atoms of azomethine groups and oxygen atoms of the phenolic groups. Structures of the newly synthesized complexes were confirmed by elemental analysis, IR, UV, (1)H NMR, ESR, TGA and mass spectral data. All of the newly synthesized complexes were evaluated for their antibacterial and anti-fungal activities. They were also evaluated for their in vitro anticancer activity against human colon carcinoma cells (HCT-116) and mammalian cells of African green monkey kidney (VERO). The Cu(II) complex with selectivity index (S.I.)=21.26 exhibited better activity than methotrexate (MTX) as a reference drug with S.I. value=13.30, while Zn(II) complex with S.I. value=10.24 was found to be nearly as active as MTX. Molecular docking studies further helped in understanding the mode of action of the compounds through their various interactions with active sites of dihydrofolate reductase (DHFR) enzyme. The observed activity of Fe(III) and Cu(II) complexes gave rise to the conclusion that they might exert their action through inhibition of the DHFR enzyme. Copyright © 2015 Elsevier B.V. All rights reserved.
Xu, Chengdong; Dodbiba, Edra; Padivitage, Nilusha L T; Breitbach, Zachary S; Armstrong, Daniel W
2012-12-30
The detection of metal cations continues to be essential in many scientific and industrial areas of interest. The most common electrospray ionization mass spectrometry (ESI-MS) approach involves chelating the metal ions and detecting the organometallic complex in the negative ion mode. However, it is well known that negative ion mode ESI-MS is generally less sensitive than the positive ion mode. To achieve greater sensitivity, it is necessary to examine the feasibility of detecting the chelated metal cations in positive ion mode ESI-MS. Since highly solvated native metal cations have relatively low ionization efficiency in ESI-MS, and can be difficult to detect in the positive ion mode, a tetracationic ion-pairing agent was added to form a complex with the negatively charged metal chelate. The use of the ion-pairing agent leads to the generation of an overall positively charged complex, which can be detected at higher m/z values in the positive ion mode by electrospray ionization linear quadrupole ion trap mass spectrometry. Thirteen chelating agents with diverse structures were evaluated in this study. The nature of the chelating agent played as important a role as was previously determined for cationic pairing agents. The detection limits of six metal cations reached sub-picogram levels and significant improvements were observed when compared to negative ion mode detection where the metal-chelates were monitored without adding the ion-pairing reagent (IPR). Also, selective reaction monitoring (SRM) analyses were performed on the ternary complexes, which improved detection limits by one to three orders of magnitude. With this method it was possible to analyze the metal cations in the positive ion mode ESI-MS with the advantage of speed, sensitivity and selectivity. The optimum solution pH for this type of analysis is 5-7. Tandem mass spectrometry (MS/MS) further increases the sensitivity. Speciation is straightforward making this a broadly useful approach for the analysis of metal ions. Copyright © 2012 John Wiley & Sons, Ltd.
Ward, Ashleigh L; Lukens, Wayne W; Lu, Connie C; Arnold, John
2014-03-05
A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium, and cobalt. Complexes incorporating the binucleating ligand N[ο-(NHCH2P(i)Pr2)C6H4]3 with either Th(IV) (4) or U(IV) (5) and a carbonyl bridged [Co(CO)4](-) unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the resulting isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively unusual class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl and formation of the metal-metal bond is accompanied by coordination of a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) Å and 3.0319(7) Å for the thorium and uranium complexes, respectively, were observed. The solution-state behavior of the thorium complexes was evaluated using (1)H, (1)H-(1)H COSY, (31)P, and variable-temperature NMR spectroscopy. IR, UV-vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.
Ganji, Nirmala; Chityala, Vijay Kumar; Marri, Pradeep Kumar; Aveli, Rambabu; Narendrula, Vamsikrishna; Daravath, Sreenu; Shivaraj
2017-10-01
Two new series of binary metal complexes [M(L 1 ) 2 ] and [M(L 2 ) 2 ] where, M=Cu(II), Ni(II) & Co(II) and L 1 =4-((3,4-dimethylisoxazol-5-ylimino)methyl)benzene-1,3-diol; L 2 =2-((3,4-dimethylisoxazol-5-ylimino)methyl)-5-methoxyphenol were synthesized and characterized by elemental analysis, 1 H NMR, 13 C NMR, FT-IR, ESI mass, UV-Visible, magnetic moment, ESR, SEM and powder XRD studies. Based on these results, a square planar geometry is assigned for all the metal complexes where the Schiff base acts as uninegatively charged bidentate chelating agent via the hydroxyl oxygen and azomethine nitrogen atoms. DNA binding studies of all the complexes with calf thymus DNA have been comprehensively investigated using electronic absorption spectroscopy, fluorescence quenching and viscosity studies. The oxidative and photo cleavage affinity of metal complexes towards supercoiled pBR322 DNA has been ascertained by agarose gel electrophoresis assay. From the results, it is observed that all the metal complexes bind effectively to CT-DNA via an intercalative mode of binding and also cleave pBR322 DNA in a promising manner. Further the Cu(II) complexes have shown better binding and cleavage properties towards DNA. The antimicrobial activities of the Schiff bases and their metal complexes were studied on bacterial and fungal strains and the results denoted that the complexes are more potent than their Schiff base ligands. Copyright © 2017 Elsevier B.V. All rights reserved.
Fluorescence-enhanced europium complexes for the assessment of renal function
NASA Astrophysics Data System (ADS)
Chinen, Lori K.; Galen, Karen P.; Kuan, K. T.; Dyszlewski, Mary E.; Ozaki, Hiroaki; Sawai, Hiroaki; Pandurangi, Raghootama S.; Jacobs, Frederick G.; Dorshow, Richard B.; Rajagopalan, Raghavan
2008-02-01
Real-time, non-invasive assessment of glomerular filtration rate (GFR) is essential not only for monitoring critically ill patients at the bedside, but also for staging and monitoring patients with chronic kidney disease. In our pursuit to develop exogenous luminescent probes for dynamic optical monitoring of GFR, we have prepared and evaluated Eu 3+ complexes of several diethylenetriamine pentaacetate (DTPA)-monoamide ligands bearing molecular "antennae" to enhance metal fluorescence via the intramolecular ligand-metal fluorescence resonance energy transfer (FRET) process. The results show that Eu-DTPA-monoamide complex 13a, which contains a quinoxanlinyl antenna, exhibits large (c.a. 2700-fold) Eu 3+ fluorescence enhancement over Eu-DTPA (4c). Indeed, complex 13a exhibits the highest fluorescent enhancement observed thus far in the DTPA-type metal complexes. The renal clearance profile of the corresponding radioactive 111In complex 13c is similar to that of 111In-DTPA, albeit 13c clears slower than 111In-DTPA. The biodistribution data indicates that 13c, and, by inference, 13a clear via a complex mechanism that includes glomerular filtration.
de Araújo, Eliene Leandro; Barbosa, Hellen Franciane Gonçalves; Dockal, Edward Ralph; Cavalheiro, Éder Tadeu Gomes
2017-02-01
Schiff bases have been prepared from biopolymer chitosan and salicylaldehyde, 5-methoxysalicylaldehyde, and 5-nitrosalicylaldehyde. Ligands were synthesized in a 1:1.5mol ratio, and their Cu(II), Ni(II) and Zn(II) complexes in a 1:1mol ratio (ligand:metal). Ligands were characterized by 1 H NMR and FTIR, resulting in degrees of substitution from 43.7 to 78.7%. Complexes were characterized using FTIR, electronic spectra, XPRD. The compounds were confirmed by the presence of an imine bond stretching in the 1630-1640cm -1 and νMetal-N and νMetal-O at <600cm -1 . Electronic spectra revealed that both Cu(II) and Ni(II) complexes present a square plane geometry. The crystallinity values were investigated by X-ray powder diffraction. Thermal behavior of all compounds was evaluated by TGA/DTG and DTA curves with mass losses related to dehydration and decomposition, with characteristic events for ligand and complexes. Schiff base complexes presented lower thermal stability and crystallinity than the starting chitosan. Residues were the metallic oxides as confirmed by XPRD, whose amounts were used in the calculation of the percentage of complexed metal ions. Surface morphologies were analyzed with SEM-EDAX. Preliminary cytotoxicity tests were performed using MTT assay with HeLa cells. Despite the differences in solubility, the free bases presented relatively low toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.
di Lena, Fabio; Matyjaszewski, Krzysztof
2009-11-07
An electrospray ionization mass spectrometer equipped with a quadrupole ion trap as the mass analyzer provided a powerful tool for the investigation of metal ligand affinities of catalysts for atom transfer radical polymerization. It allowed, in particular, (i) the identification, in a library of ligands, of the most stable, and thus active, copper catalysts; (ii) the assessment of the effects of the reaction medium on the relative stabilities of the catalyst complexes; and (iii) the evaluation of the influence of the nature of the ligand on both the complex halogenophilicity and the metal-ligand stabilities in the gas-phase.
Chohan, Zahid H.; Praveen, M.; Ghaffar, A.
1997-01-01
Biologically active tridentate amino acid (Alanine, Glycine & Tyrosine) derived Schiff-bases and their Co(II), Cu(II) & Ni(II) complexes have been synthesised and characterised on the basis of their conductance and magnetic measurements, elemental analysis and 13C-NMR, 1H-NMR, IR and electronic spectral data. These Schiff-bases and their complexes have been evaluated for their antibacterial activity against bacterial species such as Staphylococcus aureus, Escherichia coli, Klebsiella pneumonae, Proteus vulgarus and Pseudomonas aeruginosa and this activity data show the metal complexes to be more antibacterial than the Schiff-bases against one or more bacterial species. PMID:18475798
NASA Astrophysics Data System (ADS)
Staneva, Desislava; Grabchev, Ivo; Bosch, Paula; Vasileva-Tonkova, Evgenia; Kukeva, Rositsa; Stoyanova, Radostina
2018-07-01
Two novel metal complexes of modified with 1,8-naphthalimide poly(propylenamine) dendrimer of first generation have been synthesized and characterized. By different analytical methods it was shown that the complex composition includes one ligand and one metal ion. The antimicrobial activity of the dendrimer and metallodendrimers was investigated in vitro against different Gram-positive and Gram-negative bacteria and yeasts. The antibacterial effect of thin polylactide film impregnated with the new compounds was also evaluated.
Prabhakara, Chetan T; Patil, Sangamesh A; Toragalmath, Shivakumar S; Kinnal, Shivashankar M; Badami, Prema S
2016-04-01
The impregnation of halogen atoms in a molecule is an emerging trend in pharmaceutical chemistry. The presence of halogens (Cl, Br, I and F) increases the lipophilic nature of molecule and improves the penetration of lipid membrane. The presence of electronegative halogen atoms increases the bio- activity of core moiety. In the present study, Co(II), Ni(II) and Cu(II) complexes are synthesised using Schiff bases (HL(I) and HL(II)), derived from 8-formyl-7-hydroxy-4-methylcoumarin/3-chloro-8-formyl-7-hydroxy-4-methylcoumarin with 2,4-difluoroaniline/o-toluidine respectively. The synthesized compounds were characterized by spectral (IR, NMR, UV-visible, Mass, ESI-MS, ESR), thermal, fluorescence and molar conductivity studies. All the synthesized metal complexes are completely soluble in DMF and DMSO. The non-electrolytic nature of the metal complexes was confirmed by molar conductance studies. Elemental analysis study suggest [ML2(H2O)2] stoichiometry, here M=Co(II), Ni(II) and Cu(II), L=deprotonated ligand. The obtained IR data supports the binding of metal ion to Schiff base. Thermal study suggests the presence of coordinated water molecules. Electronic spectral results reveal six coordinated geometry for the synthesized metal complexes. The Schiff bases and their metal complexes were evaluated for antibacterial (Pseudomonas aureginosa and Proteus mirabilis), antifungal (Aspergillus niger and Rhizopus oryzae), anthelmintic (Pheretima posthuma) and DNA cleavage (Calf Thymus DNA) activities. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kolomiets, V. I.
2018-03-01
The influence of complex influence of climatic factors (temperature, humidity) and electric mode (supply voltage) on the corrosion resistance of metallization of integrated circuits has been considered. The regression dependence of the average time of trouble-free operation t on the mentioned factors has been established in the form of a modified Arrhenius equation that is adequate in a wide range of factor values and is suitable for selecting accelerated test modes. A technique for evaluating the corrosion resistance of aluminum metallization of depressurized CMOS integrated circuits has been proposed.
Kowol, Christian R; Nagy, Nóra V; Jakusch, Tamás; Roller, Alexander; Heffeter, Petra; Keppler, Bernhard K; Enyedy, Éva A
2015-11-01
The stoichiometry and thermodynamic stability of vanadium(IV/V) complexes of Triapine and two related α(N)-heterocyclic thiosemicarbazones (TSCs) with potential antitumor activity have been determined by pH-potentiometry, EPR and (51)V NMR spectroscopy in 30% (w/w) dimethyl sulfoxide/water solvent mixtures. In all cases, mono-ligand complexes in different protonation states were identified. Dimethylation of the terminal amino group resulted in the formation of vanadium(IV/V) complexes with considerably higher stability. Three of the most stable complexes were also synthesized in solid state and comprehensively characterized. The biological evaluation of the synthesized vanadium complexes in comparison to the metal-free ligands in different human cancer cell lines revealed only minimal influence of the metal ion. Thus, in addition the coordination ability of salicylaldehyde thiosemicarbazone (STSC) to vanadium(IV/V) ions was investigated. The exchange of the pyridine nitrogen of the α(N)-heterocyclic TSCs to a phenolate oxygen in STSC significantly increased the stability of the complexes in solution. Finally, this also resulted in increased cytotoxicity activity of a vanadium(V) complex of STSC compared to the metal-free ligand. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.
2010-09-01
Lomefloxacinate of Y(III), Zr(IV) and U(VI) were isolated as solids with the general formula; [Y(LFX) 2Cl 2]Cl·12H 2O, [ZrO(LFX) 2Cl]Cl·15H 2O and [UO 2(LFX) 3](NO 3) 2·4H 2O. The new synthesized complexes were characterized with physicochemical and diverse spectroscopic techniques (IR, UV-Vis. and 1H NMR spectroscopies) as well as thermal analyses. In these complexes lomefloxacin act as bidentate ligand bound to the metal ions through the pyridone oxygen and one carboxylate oxygen. The kinetic parameters of thermogravimetric (TGA) and its differential (DTG), such as entropy of activation, activation energy, enthalpy of activation and Gibbs free energy evaluated by using Coats- Redfern and Horowitz- Metzger equations for free lomefloxacin and three complexes were carried out. The bond stretching force constant and length of the U dbnd O bond for the [UO 2(LFX) 3](NO 3) 2·4H 2O complex were calculated. The antimicrobial activity of lomefloxacin and its metal complexes was tested against different bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) as Gram-positive and Gram-negative bacterial species and also against two species of antifungal, penicillium ( P. rotatum) and trichoderma ( T. sp.). The three complexes are of a good action against three bacterial species but the Y(III) complex exhibit excellent activity against Pseudomonas aeruginosa ( P. aeruginosa), when compared to the free lomefloxacin.
NASA Astrophysics Data System (ADS)
El-Shwiniy, Walaa H.; Zordok, Wael A.
2018-06-01
The Zr(IV), Ce(IV) and U(VI) piroxicam anti-inflammatory drug complexes were prepared and characterized using elemental analyses, conductance, IR, UV-Vis, magnetic moment, IHNMR and thermal analysis. The ratio of metal: Pir is found to be 1:2 in all complexes estimated by using molar ratio method. The conductance data reveal that Zr(IV) and U(VI) chelates are non-electrolytes except Ce(IV) complex is electrolyte. Infrared spectroscopic confirm that the Pir behaves as a bidentate ligand co-ordinated to the metal ions via the oxygen and nitrogen atoms of ν(Cdbnd O)carbonyl and ν(Cdbnd N)pyridyl, respectively. The kinetic parameters of thermogravimetric and its differential, such as activation energy, entropy of activation, enthalpy of activation, and Gibbs free energy evaluated using Coats-Redfern and Horowitz-Metzger equations for Pir and complexes. The geometry of the piroxicam drug in the Free State differs significantly from that in the metal complex. In the time of metal ion-drug bond formation the drug switches-on from the closed structure (equilibrium geometry) to the open one. The antimicrobial tests were assessed towards some types of bacteria and fungi. The in vitro cell cytotoxicity of the complexes in comparison with Pir against colon carcinoma (HCT-116) cell line was measured. Optimized geometrical structure of piroxicam ligand by using DFT calculations.
NASA Astrophysics Data System (ADS)
Shanmugakala, R.; Tharmaraj, P.; Sheela, C. D.
2014-11-01
A series of transition metal complexes of type [ML] and [ML2]Cl2 (where M = Cu(II), Ni(II), Co(II) have synthesized from 2-phenylamino-4,6-dichloro-s-triazine and 3,5-dimethyl pyrazole; their characteristics have been investigated by means of elemental analyses, magnetic susceptibility, molar conductance, IR, UV-Vis, Mass, NMR and ESR spectra. The electrochemical behavior of copper(II) complexes we have studied, by using cyclic voltammetry. The ESR spectra of copper(II) complexes are recorded at 300 K and 77 K and their salient features are appropriately reported. Spectral datas, we found, show that the ligand acts as a neutral tridentate, and coordinates through the triazine ring nitrogen and pyrazolyl ring nitrogen atoms to the metal ion. Evident from our findings, the metal(II) complexes of [ML] type exhibit square pyramidal geometry, and that of [ML2]Cl2 exhibit octahedral geometry. The in vitro antimicrobial activities of the ligand and its complexes are evaluated against Bacillus subtilis, Micrococcus luteus, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus mutans, Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Proteus vulgaris, Cryptococcus neoformans, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Shigella flexneri, Vibrio cholera, Vibris parahaemolyticus, Aspergillus niger, Candida albicans and Penicillium oxalicum by well-diffusion method. The second harmonic generation efficiency of the ligand and its complexes are determined and compared with urea and KDP.
del Carmen Hernández-Soriano, Maria; Peña, Aránzazu; Mingorance, M Dolores
2011-10-01
Accumulation of metals in soil at elevated concentrations causes risks to the environmental quality and human health for more than one hundred million people globally. The rate of metal release and the alteration of metal distribution in soil phases after soil washing with a sulfosuccinamate surfactant solution (Aerosol 22) were evaluated for four contaminated soils. Furthermore, a sequential extraction scheme was carried out using selective extractants (HAcO, NH(2)OH·HCl, H(2)O(2) + NH(4)AcO) to evaluate which metal species are extracted by A22 and the alteration in metal distribution upon surfactant-washing. Efficiency of A22 to remove metals varied among soils. The washing treatment released up to 50% of Cd, 40% of Cu, 20% of Pb and 12% of Zn, mainly from the soluble and reducible soil fractions, therefore, greatly reducing the fraction of metals readily available in soil. Metal speciation analysis for the solutions collected upon soil washing with Aerosol 22 further confirmed these results. Copper and lead in solution were mostly present as soluble complexes, while Cd and Zn were present as free ions. Besides, redistribution of metals in soil was observed upon washing. The ratios of Zn strongly retained in the soil matrix and Cd complexed with organic ligands increased. Lead was mobilized to more weakly retained forms, which indicates a high bioavailability of the remaining Pb in soil after washing. Comprehensive knowledge on chemical forms of metals present in soil allows a feasible assessment of the environmental impact of metals for a given scenario, as well as possible alteration of environmental conditions, and a valuable prediction for potential leaching and groundwater contamination.
Sun, Zeyu; Hamilton, Karyn L.; Reardon, Kenneth F.
2014-01-01
We evaluated a sequential elution protocol from immobilized metal affinity chromatography (SIMAC) employing gallium-based immobilized metal affinity chromatography (IMAC) in conjunction with titanium-dioxide-based metal oxide affinity chromatography (MOAC). The quantitative performance of this SIMAC enrichment approach, assessed in terms of repeatability, dynamic range, and linearity, was evaluated using a mixture composed of tryptic peptides from caseins, bovine serum albumin, and phosphopeptide standards. While our data demonstrate the overall consistent performance of the SIMAC approach under various loading conditions, the results also revealed that the method had limited repeatability and linearity for most phosphopeptides tested, and different phosphopeptides were found to have different linear ranges. These data suggest that, unless additional strategies are used, SIMAC should be regarded as a semi-quantitative method when used in large-scale phosphoproteomics studies in complex backgrounds. PMID:24096195
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mioduski, Tomasz; Gumiński, Cezary, E-mail: cegie@chem.uw.edu.pl; Zeng, Dewen, E-mail: dewen-zeng@hotmail.com
2014-03-15
This work presents an assessment of solubility data for rare earth metal fluorides (generally of trivalent metals and of CeF{sub 4}) in water and in aqueous ternary systems. Compilations of all available experimental data are introduced for each rare earth metal fluoride with a corresponding critical evaluation. Every such evaluation contains a collection of all solubility results in water, a selection of suggested solubility data, and a brief discussion of the multicomponent systems. Because the ternary systems were seldom studied more than once, no critical evaluations of such data were possible. Only simple fluorides (no complexes or binary salts) aremore » treated as the input substances in this report. The literature has been covered through the end of 2013.« less
Zhou, Jing-Min; Zhou, De-Min; Takagi, Yasuomi; Kasai, Yasuhiro; Inoue, Atsushi; Baba, Tadashi; Taira, Kazunari
2002-01-01
The hammerhead ribozyme is generally accepted as a well characterized metalloenzyme. However, the precise nature of the interactions of the RNA with metal ions remains to be fully defined. Examination of metal ion-catalyzed hammerhead reactions at limited concentrations of metal ions is useful for evaluation of the role of metal ions, as demonstrated in this study. At concentrations of Mn2+ ions from 0.3 to 3 mM, addition of the ribozyme to the reaction mixture under single-turnover conditions enhances the reaction with the product reaching a fixed maximum level. Further addition of the ribozyme inhibits the reaction, demonstrating that a certain number of divalent metal ions is required for proper folding and also for catalysis. At extremely high concentrations, monovalent ions, such as Na+ ions, can also serve as cofactors in hammerhead ribozyme-catalyzed reactions. However, the catalytic efficiency of monovalent ions is extremely low and, thus, high concentrations are required. Furthermore, addition of monovalent ions to divalent metal ion-catalyzed hammerhead reactions inhibits the divalent metal ion-catalyzed reactions, suggesting that the more desirable divalent metal ion–ribozyme complexes are converted to less desirable monovalent metal ion–ribozyme complexes via removal of divalent metal ions, which serve as a structural support in the ribozyme complex. Even though two channels appear to exist, namely an efficient divalent metal ion-catalyzed channel and an inefficient monovalent metal ion-catalyzed channel, it is clear that, under physiological conditions, hammerhead ribozymes are metalloenzymes that act via the significantly more efficient divalent metal ion-dependent channel. Moreover, the observed kinetic data are consistent with Lilley’s and DeRose’s two-phase folding model that was based on ground state structure analyses. PMID:12034824
Mastren, Tara; Marquez, Bernadette V.; Sultan, Deborah E.; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E.
2016-01-01
This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96GBq/µmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabelled at 3.7MBq/µg and injected into HCT-116 tumor xenografted mice. PET imaging and biodistribution studies were performed at 24 and 48 hours post injection and compared with that of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers’ uptake in the liver by 6-fold at 24 with ~1% ID/g and at 48 hours with ~0.5% ID/g, and reducing uptake in the heart by 4-fold at 24 hours with ~0.7% ID/g and 7-fold at 48 hours with ~0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for Positron Emission Tomography (PET) imaging of cancer and other diseases. PMID:26505224
Mastren, Tara; Marquez, Bernadette V; Sultan, Deborah E; Bollinger, Elizabeth; Eisenbeis, Paul; Voller, Tom; Lapi, Suzanne E
2015-01-01
This work describes the production of high-specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/μmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/μg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers' uptake in the liver by sixfold at 24 hours with ~ 1% ID/g and at 48 hours with ~ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ~ 0.7% ID/g and sevenfold at 48 hours with ~ 0.35% ID/g. These results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.
Mastren, Tara; Marquez, Bernadette V.; Sultan, Deborah E.; ...
2015-10-01
This work describes the production of high–specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide complexes in vivo. 55Co was produced via the 58Ni(p,α) 55Co reaction and purified using anion exchange chromatography with an average recovery of 92% and an average specific activity of 1.96 GBq/μmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at 3.7 MBq/μg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were performed at 24 and 48 hours postinjection and compared to those of 55CoCl 2. Both 55Co-metal-chelate complexes demonstrated good in vivo stability by reducing the radiotracers’ uptakemore » in the liver by sixfold at 24 hours with ˜ 1% ID/g and at 48 hours with ˜ 0.5% ID/g and reducing uptake in the heart by fourfold at 24 hours with ˜ 0.7% ID/g and sevenfold at 48 hours with ˜ 0.35% ID/g. Furthermore, these results support the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.« less
NASA Astrophysics Data System (ADS)
Anitha, C.; Sheela, C. D.; Tharmaraj, P.; Sumathi, S.
2012-10-01
A series of metal(II) complexes of VO(II), Co(II), Ni(II), Cu(II) and Zn(II) have been synthesized from the azo Schiff base ligand 4-((E)-4-((E)-(4-chlorophenyl)diazenyl)-2-hydroxybenzylideneamino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (CDHBAP) and characterized by elemental analysis, spectral (IR, UV-Vis, 1H NMR, ESR and EI-mass), magnetic moment measurements, molar conductance, DNA, SEM, X-ray crystallography and fluorescence studies. The electronic absorption spectra and magnetic susceptibility measurements of the complexes indicate square pyramidal geometry for VO(II) and octahedral geometry for all the other complexes. The important infrared (IR) spectral bands corresponding to the active groups in the ligand and the solid complexes under investigation were studied and implies that CDHBAP is coordinated to the metal ions in a neutral tridentate manner. The redox behavior of copper(II) and vanadyl(II) complexes have been studied by cyclic voltammetry. The nuclease activity of the above metal(II) complexes shows that the complexes cleave DNA. All the synthesized complexes can serve as potential photoactive materials as indicated from their characteristic fluorescence properties. The antibacterial and antifungal activities of the synthesized ligand and its metal complexes were screened against bacterial species (Staphylococcus aureus, Salmonella typhi, Escherichia coli, Bacillus subtilis, Shigella sonnie) and fungi (Candida albicans, Aspergillus niger, Rhizoctonia bataicola). Amikacin and Ketoconozole were used as references for antibacterial and antifungal studies. The activity data show that the metal complexes have a promising biological activity comparable with the parent Schiff base ligand against bacterial and fungal species. The second harmonic generation (SHG) efficiency of the ligand was measured and the NLO (non-linear optical) properties of the ligand are expected to result in the realization of advanced optical devices in optical fiber communication (OFC) and optical computing. The SEM image of the copper(II) complex implies that the size of the particles is 1 μm.
Kumar, Ranjeet; Pradhan, Ajay; Khan, Faisal Ahmad; Lindström, Pia; Ragnvaldsson, Daniel; Ivarsson, Per; Olsson, Per-Erik; Jass, Jana
2015-01-01
Metals are essential for many physiological processes and are ubiquitously present in the environment. However, high metal concentrations can be harmful to organisms and lead to physiological stress and diseases. The accumulation of transition metals in the environment due to either natural processes or anthropogenic activities such as mining results in the contamination of water and soil environments. The present study used Caenorhabditis elegans to evaluate gene expression as an indicator of physiological response, following exposure to water collected from three different locations downstream of a Swedish mining site and a lab reconstituted metal mixture. Our results indicated that the reconstituted metal mixture exerted a direct stress response in C. elegans whereas the environmental waters elicited either a diminished or abrogated response. This suggests that it is not sufficient to use the biological effects observed from laboratory mixtures to extrapolate the effects observed in complex aquatic environments and apply this to risk assessment and intervention. PMID:26168046
Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman
2015-04-05
This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Uddin, Noor; Sirajuddin, Muhammad; Uddin, Nizam; Tariq, Muhammad; Ullah, Hameed; Ali, Saqib; Tirmizi, Syed Ahmed; Khan, Abdur Rehman
2015-04-01
This article contains the synthesis of a novel carboxylic acid derivative, its transition metal complexes and evaluation of biological applications. Six carboxylate complexes of transition metals, Zn(II) and Hg(II), have been successfully synthesized and characterized by FT-IR and NMR (1H, 13C). The ligand, HL, (4-[(2,6-Diethylphenyl)amino]-4-oxobutanoic acid) was also characterized by single crystal X-ray analysis. The complexation occurs via oxygen atoms of the carboxylate moiety. FT-IR date show the bidentate nature of the carboxylate moiety of the ligand as the Δν value in all complexes is less than that of the free ligand. The ligand and its complexes were screened for antifungal and antileishmanial activities. The results showed that the ligand and its complexes are active with few exceptions. UV-visible spectroscopy and viscometry results reveal that the ligand and its complexes interact with the DNA via intercalative mode of interaction. A new and efficient strategy to identify the pharmacophores and anti-pharmacophores sites in carboxylate derivatives for the antibacterial/antifungal activity using Petra, Osiris and Molinspiration (POM) analyses was also carried out.
NASA Astrophysics Data System (ADS)
Sadeek, S. A.; El-Hamid, S. M. Abd
2016-10-01
[Zn(Ofl)(Phen)(H2O)2](CH3COO)·2H2O (1), [ZrO(Ofl)(Phen)(H2O)]NO3·2H2O (2) and [UO2(Ofl)(Phen)(H2O)](CH3COO)·H2O (3) complexes of fluoroquinolone antibacterial agent ofloxacin (HOfl), containing a nitrogen donor heterocyclic ligand, 1,10-phenathroline monohydrate (Phen), were prepared and their structures were established with the help of elemental analysis, molar conductance, magnetic properties, thermal studies and different spectroscopic studies like IR, UV-Vis., 1H NMR and Mass. The IR data of HOfl and Phen ligands suggested the existing of a bidentate binding involving carboxylate O and pyridone O for HOfl ligand and two pyridine N atoms for Phen ligand. The coordination geometries and electronic structures are determined from electronic absorption spectra and magnetic moment measurements. From molar conductance studies reveals that metal complexes are electrolytes and of 1:1 type. The calculated bond length and force constant, F(Udbnd O), in the uranyl complex are 1.751 Å and 641.04 Nm-1. The thermal properties of the complexes were investigated by thermogravimetry (TGA) technique. The activation thermodynamic parameters are calculated using Coats-Redfern and Horowitz-Metzger methods. Antimicrobial activity of the compounds was evaluated against some bacteria and fungi species. The activity data show that most metal complexes have antibacterial activity than that of the parent HOfl drug. The in vitro cytotoxicities of ligands and their complexes were also evaluated against human breast and colon carcinoma cells.
NASA Astrophysics Data System (ADS)
Kumar, Gajendra; Devi, Shoma; Kumar, Dharmendra
2016-03-01
The paper presents the synthesis of macrocyclic complexes [{M(C52H36N12O4)X}X2] of Cr(III), Mn(III) and Fe(III) with Schiff base ligand (C52H36N12O4) obtained through the condensation of 1,4-dicarbonyl phenyl dihydrazide with 1,2-di(1H-indol-1-yl)ethane-1,2-dione. The newly formed Schiff base and its complexes have been characterized with the help of elemental analysis, condensation measurements, magnetic measurements and their structure configuration have been determined by various spectroscopic (electronic, IR, 1H NMR, 13C NMR, GCMS) techniques. The electronic spectra of the complexes indicate a five coordinate square pyramidal geometry of the center metal ion. These metal complexes and ligand were tested for their anti-inflammation and antimicrobial inhibiting potential and compared with standard drugs Phenyl butazone (anti-inflammation), Imipenem (antibacterial) and Miconazole (antifungal).
Schneider, André; Lin, Zhongbing; Sterckeman, Thibault; Nguyen, Christophe
2018-04-01
The dissociation of metal complexes in the soil solution can increase the availability of metals for root uptake. When it is accounted for in models of bioavailability of soil metals, the number of partial differential equations (PDEs) increases and the computation time to numerically solve these equations may be problematic when a large number of simulations are required, for example for sensitivity analyses or when considering root architecture. This work presents analytical solutions for the set of PDEs describing the bioavailability of soil metals including the kinetics of complexation for three scenarios where the metal complex in solution was fully inert, fully labile, or partially labile. The analytical solutions are only valid i) at steady-state when the PDEs become ordinary differential equations, the transient phase being not covered, ii) when diffusion is the major mechanism of transport and therefore, when convection is negligible, iii) when there is no between-root competition. The formulation of the analytical solutions is for cylindrical geometry but the solutions rely on the spread of the depletion profile around the root, which was modelled assuming a planar geometry. The analytical solutions were evaluated by comparison with the corresponding PDEs for cadmium in the case of the French agricultural soils. Provided that convection was much lower than diffusion (Péclet's number<0.02), the cumulative uptakes calculated from the analytic solutions were in very good agreement with those calculated from the PDEs, even in the case of a partially labile complex. The analytic solutions can be used instead of the PDEs to predict root uptake of metals. The analytic solutions were also used to build an indicator of the contribution of a complex to the uptake of the metal by roots, which can be helpful to predict the effect of soluble organic matter on the bioavailability of soil metals. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Adly, Omima M. I.; Shebl, Magdy; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.
2017-12-01
New mono-, bi- and trinuclear metal complexes of Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2(VI) with a new Schiff base ligand H3L; ((E)-2-hydroxy-N‧-(4-(2-hydroxyphenyl)-4-oxobutan-2-ylidene)) benzohydrazide (H3L) have been synthesized. The ligand and its metal complexes were characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The metal complexes exhibited octahedral and tetrahedral geometrical arrangements. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. Structural parameters of the synthesized compounds were calculated on the basis of DFT level implemented in the Gaussian 09 program and Hyperchem 7.52 and correlated with the experimental data. The antimicrobial activity of the present compounds was screened against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), Gram-negative bacteria (Salmonella typhimurium and Escherichia coli), yeast (Candida albicans) and fungus (Aspergillus fumigatus). The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.
El-Sherif, Ahmed A; Shehata, Mohamed R; Shoukry, Mohamed M; Barakat, Mohammad H
2012-01-01
Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO(3)) using a potentiometric technique. The order of -ΔG(0) and -ΔH(0) was found to obey Co(2+) < Ni(2+) < Cu(2+) > Zn(2+), in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K.
El-Sherif, Ahmed A.; Shehata, Mohamed R.; Shoukry, Mohamed M.; Barakat, Mohammad H.
2012-01-01
Thermodynamic parameters for protonation of 1,4-bis(3-aminopropyl)-piperazine (BAPP) and its metal complexation with some divalent metal ions were determined in aqueous solution at constant ionic strength (0.1 M NaNO3) using a potentiometric technique. The order of –ΔG0 and –ΔH0 was found to obey Co2+ < Ni2+ < Cu2+ > Zn2+, in accordance with the Irving-Williams order. The formation equilibria of zinc (II) complexes and the ternary complexes Zn(BAPP)L, where L = amino acid, amides, or DNA constituents), have been investigated. Ternary complexes are formed by a simultaneous mechanism. The concentration distribution of the complexes in solution was evaluated as a function of pH. Stoichiometry and stability constants for the complexes formed are reported and discussed. The stability of ternary complexes was quantitatively compared with their corresponding binary complexes in terms of the parameter Δlog K. PMID:23226992
Evaluation of Nonferrous Metals as Potential In Vivo Tracers of Transferrin-Based Therapeutics
NASA Astrophysics Data System (ADS)
Zhao, Hanwei; Wang, Shunhai; Nguyen, Son N.; Elci, S. Gokhan; Kaltashov, Igor A.
2016-02-01
Transferrin (Tf) is a promising candidate for targeted drug delivery. While development of such products is impossible without the ability to monitor biodistribution of Tf-drug conjugates in tissues and reliable measurements of their levels in blood and other biological fluids, the presence of very abundant endogenous Tf presents a significant impediment to such efforts. Several noncognate metals have been evaluated in this work as possible tracers of exogenous transferrin in complex biological matrices using inductively coupled plasma mass spectrometry (ICP MS) as a detection tool. Placing Ni(II) on a His-tag of recombinant Tf resulted in formation of a marginally stable protein-metal complex, which readily transfers the metal to ubiquitous physiological scavengers, such as serum albumin. An alternative strategy targeted iron-binding pockets of Tf, where cognate Fe(III) was replaced by metal ions known to bind this protein. Both Ga(III) and In(III) were evaluated, with the latter being vastly superior as a tracer (stronger binding to Tf unaffected by the presence of metal scavengers and the retained ability to associate with Tf receptor). Spiking serum with indium-loaded Tf followed by ICP MS detection demonstrated that protein quantities as low as 0.04 nM can be readily detected in animal blood. Combining laser ablation with ICP MS detection allows distribution of exogenous Tf to be mapped within animal tissue cross-sections with spatial resolution exceeding 100 μm. The method can be readily extended to a range of other therapeutics where metalloproteins are used as either carriers or payloads.
NASA Astrophysics Data System (ADS)
Babahan, Ilknur; Emirdağ-Öztürk, Safiye; Poyrazoğlu-Çoban, Esin
2015-04-01
A novel ligand, vicinal dioxime ligand (egonol-hydrazone glyoxime) (LH2) was synthesized and characterized using 1H NMR, 13C NMR, MS, AAS, infrared spectroscopy, and magnetic susceptibility measurements. Mononuclear nickel (II), copper (II) and cobalt (II) complexes with a metal:ligand ratio of 1:2 for LH2 were also synthesized. Zn(II) forms complex [Zn(LH)Cl2] with a metal to ligand ratio of 1:1. IR spectrum shows that the ligand act in a bidentate manner and coordinates N4 donor groups of the ligands to NiII, CuII, CoII and ZnII ions. The detection of H-bonding (Osbnd H⋯O) in the [M(LH)2] metal complexes by IR spectra supported the square-planar MN4 coordination of Ni(II), Cu(II) and Co(II) complexes. The antimicrobial activities of compounds LH2 and their Ni(II), Cu(II), Co(II) and Zn(II) complexes were evaluated using the disc diffusion method against 16 bacteria and 5 yeasts. The minimal inhibitory concentrations (MICs) against all the bacteria and yeasts were also determined. Among the attempted test compounds, it is showed that all the compounds (L, LH2, [Ni(LH)2], [Cu(LH)2], [Co(LH)2(H2O)2], [Zn(LH)Cl2]) were effective against used test microorganisms.
Ferrari, Erika; Arezzini, Beatrice; Ferrali, Marco; Lazzari, Sandra; Pignedoli, Francesca; Spagnolo, Ferdinando; Saladini, Monica
2009-10-01
The Fe(3+) chelating ability of some curcumin glucosyl derivatives (Glc-H; Glc-OH; Glc-OCH(3)) is tested by means of UV and NMR study. The pK(a) values of the ligands and the overall stability constants of Fe(3+) and Ga(3+) complexes are evaluated from UV spectra. The only metal binding site of the ligand is the beta-diketo moiety in the keto-enolic form; the glucosyl moiety does not interact with metal ion but it contributes to the stability of metal/ligand 1:2 complexes by means of hydrophilic interactions. These glucosyl derivatives are able to bind Fe(3+) in a wide pH rage, forming complex species thermodynamically more stable than those of other ligands commonly used in the treatment of iron deficiency. In addition they demonstrate to have a poor affinity for competitive biological metal ions such as Ca(2+). All ligands and their iron complexes have a good lypophilicity (log P > -0.7) suggesting an efficient gastrointestinal absorption in view of their possible use as iron supplements in oral therapy. The ligand molecules are also tested for their antioxidant properties in "ex vivo" biological system.
Synthetic humic substances and their use for remediation of contaminated environments
NASA Astrophysics Data System (ADS)
Dudare, Diana; Klavins, Maris
2014-05-01
Soils are increasingly subjected to different chemical stresses, because of increasing industrialization process and other factors. Different anthropogenic compounds (organic or inorganic in nature) upon entering the soil, may not only influence its productivity potential, but may also affect the quality of groundwater and food chain. Consequently, soils of different environments contain a complex mixture of contaminants, such as oil products, metals, organic solvents, acids, bases and radionuclides. Thereby greater focus should be paid to risk assessment and evaluation of remedial techniques in order to restore the quality of the soil and groundwater. The treatment technologies presently used to remove contaminants are physical, chemical and biological technologies. Many functional groups in the structure of humic substances determine their ability to interact with metal ions forming stable complexes and influencing speciation of metal ions in the environment, as well mobility, behaviour and speciation forms in the environment. Humic substances are suggested for use in the remediation of environments contaminated with metals, owing to complex forming properties. Several efforts have been undertaken with respect to synthesize humic substances for their structural studies. At the same time the real number of methods suggested for synthesis of humic substances is highly limited and their synthesis in general has been used mostly for their structural analysis. The present study deals with development of approaches for synthesis of humic substances with increased complex forming ability in respect to metal ions. Industrially produced humic substances (TEHUM) were used for comparison and after their modification their properties were analyzed for their elemental composition; functional group content changes in spectral characteristics. Synthetic humic substances showed significant differences in the number of functional groups and in ability to interact with the metal ions, which were reflected in their complexation properties towards metal ions. FTIR spectra gave evidence of the presence of metal ions, strongly bound and protected in inner sphere complexes. Considering a large scale of production of humic substances, the obtained synthetic humic substances with modified properties are perspective and sustainable areas of use. The obtained results of this study showed that synthetic humic substances can be used for remediation of environments contaminated with heavy metal ions.
Refat, Moamen S; Al-Azab, Fathi M; Al-Maydama, Hussein M A; Amin, Ragab R; Jamil, Yasmin M S; Kobeasy, Mohamed I
2015-05-05
Metal complexes of Metformin hydrochloride were prepared using La(III), Ce(III), Sm(III) and Y(III). The resulting complexes were discussed and synthesized to serve as potential insulin-mimetic. Some physical properties and analytical data of the four complexes were checked. The elemental analysis shows that La(III), Ce(III) Sm(III) and Y(III) formed complexes with Metformin in 1:3 (metal:MF) molar ratio. All the synthesized complexes are white and possess high melting points. These complexes are soluble in dimethylsulfoxide and dimethylformamide, partially soluble in hot methanol and insoluble in water and some other organic solvents. From the spectroscopic (infrared, UV-vis and florescence), effective magnetic moment and elemental analyses data, the formula structures are suggested. The results obtained suggested that Metformin reacted with metal ions as a bidentate ligand through its two imino groups. The molar conductance measurements proved that the Metformin complexes are slightly electrolytic in nature. The kinetic thermodynamic parameters such as: E(∗), ΔH(∗), ΔS(∗) and ΔG(∗) were estimated from the DTG curves. The antibacterial evaluations of the Metformin and their complexes were also performed against some gram positive, negative bacteria as well as fungi. Copyright © 2015 Elsevier B.V. All rights reserved.
Nicotianamine forms complexes with Zn(II) in vivo.
Trampczynska, Aleksandra; Küpper, Hendrik; Meyer-Klaucke, Wolfram; Schmidt, Holger; Clemens, Stephan
2010-01-01
The non-proteinogenic amino acid nicotianamine (NA) is a major player in plant metal homeostasis. It is known to form complexes with different transition metals in vitro. Available evidence associates NA with translocation of Fe, and possibly other micronutrients, to and between different plant cells and tissues. To date, however, it is still extremely challenging to detect metal-ligand complexes in vivo because tissue disruption immediately changes the chemical environment and thereby the availability of binding partners. In order to overcome this limitation we used various Schizosaccharomyces pombe strains expressing a plant NAS gene to study formation of metal-NA complexes in vivo. Tolerance, accumulation and competition data clearly indicated formation of Zn(ii)-NA but not of Cu(ii)-NA complexes. Zn(ii)-NA was then identified by X-ray absorption spectroscopy (XAS). About half of the cellular Zn was found to be bound by NA in NAS-expressing cells while no NA-like ligands were detected by XAS in control cells not expressing NAS. Given the high conservation of eukaryotic metal homeostasis components, these results strongly suggest the possible existence of Zn(ii)-NA complexes also in planta. Reported observations implicating NA in plant Zn homeostasis would then indeed be attributable to direct interaction of Zn(ii) with NA rather than only indirectly to perturbations in Fe metabolism. Re-evaluation of extended X-ray absorption fine structure (EXAFS) spectra for the Zn hyperaccumulator Thlaspi caerulescens showed that NA is as expected not a major storage ligand for Zn. Instead it is hypothesized to be involved in efficient translocation of Zn to above-ground tissues in hyperaccumulators.
Sangchan, Apichat; Chaiyakunapruk, Nathorn; Supakankunti, Siripen; Pugkhem, Ake; Mairiang, Pisaln
2014-01-01
Endoscopic biliary drainage using metal and plastic stent in unresectable hilar cholangiocarcinoma (HCA) is widely used but little is known about their cost-effectiveness. This study evaluated the cost-utility of endoscopic metal and plastic stent drainage in unresectable complex, Bismuth type II-IV, HCA patients. Decision analytic model, Markov model, was used to evaluate cost and quality-adjusted life year (QALY) of endoscopic biliary drainage in unresectable HCA. Costs of treatment and utilities of each Markov state were retrieved from hospital charges and unresectable HCA patients from tertiary care hospital in Thailand, respectively. Transition probabilities were derived from international literature. Base case analyses and sensitivity analyses were performed. Under the base-case analysis, metal stent is more effective but more expensive than plastic stent. An incremental cost per additional QALY gained is 192,650 baht (US$ 6,318). From probabilistic sensitivity analysis, at the willingness to pay threshold of one and three times GDP per capita or 158,000 baht (US$ 5,182) and 474,000 baht (US$ 15,546), the probability of metal stent being cost-effective is 26.4% and 99.8%, respectively. Based on the WHO recommendation regarding the cost-effectiveness threshold criteria, endoscopic metal stent drainage is cost-effective compared to plastic stent in unresectable complex HCA.
NASA Astrophysics Data System (ADS)
Ferraresso, L. G.; de Arruda, E. G. R.; de Moraes, T. P. L.; Fazzi, R. B.; Da Costa Ferreira, A. M.; Abbehausen, C.
2017-12-01
First series transition metals are used abundantly by nature to perform catalytic transformations of several substrates. Furthermore, the cooperative activity of two proximal metal ions is common and represents a highly efficient catalytic system in living organisms. In this work three dinuclear μ-phenolate bridged metal complexes were prepared with copper(II) and zinc(II), resulting in a ZnZn, CuCu and CuZn with the ligand 2-ethylaminodimethylamino phenol (saldman) as model compounds of superoxide dismutase (CuCu and CuZn) and metallo-β-lactamases (ZnZn). Metals are coordinated in a μ-phenolate bridged symmetric system. Cu(II) presents a more distorted structure, while zinc is very symmetric. For this reason, [CuCu(saldman)] shows higher water solubility and also higher lability of the bridge. The antioxidant and hydrolytic beta-lactamase-like activity of the complexes were evaluated. The lability of the bridge seems to be important for the antioxidant activity and is suggested to because of [CuCu(saldman)] presents a lower antioxidant capacity than [CuZn(saldman)], which showed to present a more stable bridge in solution. The hydrolytic activity of the bimetallic complexes was assayed using nitrocefin as substrate and showed [ZnZn(saldman)] as a better catalyst than the Cu(II) analog. The series demonstrates the importance of the nature of the metal center for the biological function and how the reactivity of the model complex can be modulated by coordination chemistry.
Copper toxicity and organic matter: Resiliency of watersheds in the Duluth Complex, Minnesota, USA
Piatak, Nadine; Seal, Robert; Jones, Perry M.; Woodruff, Laurel G.
2015-01-01
We estimated copper (Cu) toxicity in surface water with high dissolved organic matter (DOM) for unmined mineralized watersheds of the Duluth Complex using the Biotic Ligand Model (BLM), which evaluates the effect of DOM, cation competition for biologic binding sites, and metal speciation. A sediment-based BLM was used to estimate stream-sediment toxicity; this approach factors in the cumulative effects of multiple metals, incorporation of metals into less bioavailable sulfides, and complexation of metals with organic carbon. For surface water, the formation of Cu-DOM complexes significantly reduces the amount of Cu available to aquatic organisms. The protective effects of cations, such as calcium (Ca) and magnesium (Mg), competing with Cu to complex with the biotic ligand is likely not as important as DOM in water with high DOM and low hardness. Standard hardness-based water quality criteria (WQC) are probably inadequate for describing Cu toxicity in such waters and a BLM approach may yield more accurate results. Nevertheless, assumptions about relative proportions of humic acid (HA) and fulvic acid (FA) in DOM significantly influence BLM results; the higher the HA fraction, the higher calculated resiliency of the water to Cu toxicity. Another important factor is seasonal variation in water chemistry, with greater resiliency to Cu toxicity during low flow compared to high flow.Based on generally low total organic carbon and sulfur content, and equivalent metal ratios from total and weak partial extractions, much of the total metal concentration in clastic streambedsediments may be in bioavailable forms, sorbed on clays or hydroxide phases. However, organicrich fine-grained sediment in the numerous wetlands may sequester significant amount of metals, limiting their bioavailability. A high proportion of organic matter in waters and some sediments will play a key role in the resiliency of these watersheds to potential additional metal loads associated with future mining operations.
Brillault, J; Tewes, F; Couet, W; Olivier, J C
2017-01-15
Pulmonary delivery of fluoroquinolones (FQs) is an interesting approach to treat lung infections as it may lead to high local concentrations while minimizing systemic exposure. However, FQs have a rapid diffusion through the lung epithelium giving the pulmonary route no advantage compared to the oral route. Interactions between FQs and metal cations form complexes which limit the diffusion through the epithelial barrier and would reduce the absorption of FQs and maintain high concentrations in the lung. The effects of this complexation depend on the FQ and the metal cations and optimum partners should be selected through in vitro experiments prior to aerosol drug formulation. In this study, CIP was chosen as a representative FQ and 5 cations (Ca 2+ , Mg 2+ , Zn 2+ , Al 3+ , Cu 2+ ) were selected to study the complexation and its effects on permeability, antimicrobial efficacy and cell toxicity. The results showed that the apparent association constants between CIP and cations ranked with the descending order: Cu 2+ >Al 3+ >Zn 2+ >Mg 2+ >Ca 2+ . When a target of 80% complexation was reached with the adequate concentrations of cations, the CIP permeability through the Calu-3 lung epithelial cells was decreased of 50%. Toxicity of the CIP on the Calu-3 cells, with an EC50 evaluated at 7μM, was not significantly affected by the presence of the cations. The minimum inhibitory concentration of CIP for Pseudomonas aeruginosa was not affected or slightly increased in the range of cation concentrations tested, except for Mg 2+ . In conclusion, permeability was the main parameter that was affected by the metal cation complexation while cell toxicity and antimicrobial activity were not or slightly modified. Cu 2+ , with the highest apparent constant of association and with no effect on cell toxicity and antimicrobial activity of the CIP, appeared as a promising cation for the development of a controlled-permeability formulation of CIP for lung treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
Adsorption Equilibrium and Kinetics at Goethite-Water and Related Interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katz, Lynn Ellen
This research study is an important component of a broader comprehensive project, “Geochemistry of Interfaces: From Surfaces to Interlayers to Clusters,” which sought to identify and evaluate the critical molecular phenomena at metal-oxide interfaces that control many geochemical and environmental processes. The primary goal of this research study was to better understand and predict adsorption of metal ions at mineral/water surfaces. Macroscopic data in traditional batch experiments was used to develop predictive models that characterize sorption in complex systems containing a wide range of background solution compositions. Our studies focused on systems involving alkaline earth metal (Mg 2+, Ca 2+,more » Sr 2+, Ba 2+) and heavy metal (Hg 2+, Co 2+, Cd 2+, Cu 2+, Zn 2+, Pb 2+) cations. The anions we selected for study included Cl -, NO 3 -, ClO 4 -, SO 4 2-, CO 3 2- and SeO 3 2- and the background electrolyte cations we examined included (Na +, K +, Rb + and Cs +) because these represent a range of ion sizes and have varying potentials for forming ion-pairs or ternary complexes with the metal ions studied. The research led to the development of a modified titration congruency approach for estimating site densities for mineral oxides such as goethite. The CD-MUSIC version of the surface complexation modeling approach was applied to potentiometric titration data and macroscopic adsorption data for single-solute heavy metals, oxyanions, alkaline earth metals and background electrolytes over a range of pH and ionic strength. The model was capable of predicting sorption in bi-solute systems containing multiple cations, cations and oxyanions, and transition metal cations and alkaline earth metal ions. Incorporation of ternary complexes was required for modeling Pb(II)-Se(IV) and Cd(II)-Se(IV) systems. -Both crystal face contributions and capacitance values were shown to be sensitive to varying specific surface area but were successfully accounted for in the modeling strategy. The insights gained from the macroscopic, spectroscopic and CD-MUSIC modeling developed in this study can be used to guide the implementation of less complex models which may be more applicable to field conditions. The findings of this research suggest that surface complexation models can be used as a predictive tool for fate and transport modeling of metal ions and oxyanions in fresh and saline systems typical of energy production waters and wastewaters.« less
NASA Astrophysics Data System (ADS)
Priyamvada, V. C.; Radhakrishnan, P.
2017-06-01
Fiber optic evanescent wave sensors are used for studying the absorption properties of biochemical samples. The studies give precise information regarding the actual ingredients of the samples. Recent studies report the corrosion of silver in the presence glucose dissolved in water and heated to a temperature of 70°C. Based on this report evanescent absorption studies are carried out in hibiscus herbal tea floral extracts in the presence of silver metal complexes. These studies can also lead to the evaluation of the purity of the herbal tea extract.
NASA Astrophysics Data System (ADS)
Shebl, Magdy; Adly, Omima M. I.; El-Shafiy, Hoda F.; Khalil, Saied M. E.; Taha, A.; Mahdi, Mohammed A. N.
2017-04-01
A new polydentate Schiff base ligand and its metal complexes were synthesized and characterized by elemental analyses, IR, 1H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. The free ligand was synthesized by condensation of o-acetoacetylphenol with salicylaldehyde hydrazone. The analytical and spectroscopic tools showed that the obtained complexes are mono- and binuclear complexes, which can be generally formulated as: [(L)M2X2(H2O)m]·nZ; M = Cr, Fe, Ni or Cu, X = OAc or NO3, m = 5 or nil and n = 3, 1.5 or 0.5 and Z = EtOH or H2O, [(H2L)2M(X)m].nH2O; M = Mn, Zn, or Cd, X = EtOH, H2O or nil, m = 2 or nil and n = 3.5 or 0, [(HL)2Co2]·0.5H2O and [(H2L)2UO2(H2O)]. The metal complexes displayed octahedral, tetrahedral and square-planar geometrical arrangements, while uranium complex displayed seven-coordinate. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The molecular structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data such as IR. The antimicrobial activity of the ligand and its complexes was screened against some kinds of bacteria and fungi. The antitumor activity of the ligand and its Ni(II) and Cu(II) complexes was investigated against HepG2 cell line.
Rotureau, Elise; Billard, Patrick; Duval, Jérôme F L
2015-01-20
Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.
Mandewale, Mustapha C.; Thorat, Bapu; Shelke, Dnyaneshwar; Yamgar, Ramesh
2015-01-01
A new series of quinoline hydrazone derivatives and their metal complexes have been synthesized and their biological properties have been evaluated against Mycobacterium tuberculosis (H37 RV strain). Most of the newly synthesized compounds displayed 100% inhibitory activity at a concentration of 6.25–25 μg/mL, against Mycobacterium tuberculosis. Fluorescence properties of all the synthesized compounds have been studied. PMID:26759537
NASA Astrophysics Data System (ADS)
Huang, Fuxin; Wu, Yiqun; Gu, Donghong; Gan, Fuxi
2005-10-01
Two new azo dyes of α-isoxazolylazo-β-diketones and their Ni(II) and Cu(II) complexes with blue-violet light wavelength were synthesized using a coupling component, different diazo components and metal (II) ions (Ni 2+ and Cu 2+). Based on the elemental analysis, MS spectra and FT-IR spectral analyses, azo dyes were unequivocally shown to exist as hydrazoketo and azoenol forms which were respectively obtained from the solution forms and from the solid forms. The action of sodium methoxide (NaOMe) on azo dyes in solutions converts hydrazoketo form into azoenol form, so azo dyes are coordinated with metal (II) ions as co-ligands in the azoenol forms. The solubility of all the compounds in common organic solvents such as 2,2,3,3-tetrafluoro-1-propanol (TFP) or chloroform (CHCl 3) and absorption properties of spin-coating thin films were measured. The difference of absorption maxima from the complexes to their ligands was discussed. In addition, the TG analysis of the complexes was also determined, and their thermal stability was evaluated. It is found that these new metal (II) complexes had potential application for high-density digital versatile disc-recordable (HD-DVD-R) system due to their good solubility in organic solvents, reasonable and controllable absorption spectra in blue-violet light region and high thermal stability.
NASA Astrophysics Data System (ADS)
Tabrizi, Leila; Chiniforoshan, Hossein; McArdle, Patrick
2015-02-01
The interaction of Cd(II) with the non-steroidal anti-inflammatory drug diclofenac sodium (Dic) leads to the formation of the complex [Cd2(L)41.5(MeOH)2(H2O)]n(L = Dic), 1, which has been isolated and structurally characterized by X-ray crystallography. Diclofenac sodium and its metal complex 1 have also been evaluated for antiproliferative activity in vitro against the cells of three human cancer cell lines, MCF-7 (breast cancer cell line), T24 (bladder cancer cell line), A-549 (non-small cell lung carcinoma), and a mouse fibroblast L-929 cell line. The results of cytotoxic activity in vitro expressed as IC50 values indicated the diclofenac sodium and cadmium chloride are non active or less active than the metal complex of diclofenac (1). Complex 1 was also found to be a more potent cytotoxic agent against T-24 and MCF-7 cancer cell lines than the prevalent benchmark metallodrug, cisplatin, under the same experimental conditions. The superoxide dismutase activity was measured by Fridovich test which showed that complex 1 shows a low value in comparison with Cu complexes. The binding properties of this complex to biomolecules, bovine or human serum albumin, are presented and evaluated. Antibacterial and growth inhibitory activity is also higher than that of the parent ligand compound.
NASA Astrophysics Data System (ADS)
Iftikhar, Bushra; Javed, Kanwal; Khan, Muhammad Saif Ullah; Akhter, Zareen; Mirza, Bushra; Mckee, Vickie
2018-03-01
Three new Schiff base ligands were synthesized by the reaction of Salicylaldehyde with semi-aromatic diamines, prepared by the reduction of corresponding dinitro-compounds, and were further used for the formation of complexes with Cu(II) metal ion. The structural features of the synthesized compounds were confirmed by their physical properties and infrared, electronic and NMR spectroscopic techniques. The studies revealed that the synthesized Schiff bases existed as tetradentate ligands and bonded to the metal ion through the phenolic oxygen and azomethine nitrogen. One of the dinitro precursors was also analyzed by single crystal X-ray crystallography, which showed that it crystallizes in monoclinic system with space group P2/n. The thermal behavior of the Cu(II) complexes was determined by thermogravimetric analysis (TGA) and kinetic parameters were evaluated from the data. Schiff base ligands, their precursors and metal complexes were also screened for antibacterial, antifungal, antitumor, Brine shrimp lethality, DPPH free radical scavenging and DNA damage assays. The results of these analyses indicated the substantial potential of the synthesized Schiff bases, their precursors and Cu(II) complexes in biological field as future drugs.
NASA Astrophysics Data System (ADS)
Kang, Yubin; Choi, Jaeyoung; Park, Jinju; Kim, Woo-Byoung; Lee, Kun-Jae
2017-09-01
This study attempts to improve the physical and chemical adhesion between metals and ceramics by using electrolytic oxidation and a titanium organic/inorganic complex ion solution on the SS-304 plate. Surface analysis confirmed the existence of the Tisbnd Osbnd Mx bonds formed by the bonding between the metal ions and the Ti oxide at the surface of the pre-processed SS plate, and improved chemical adhesion during ceramic coating was expected by confirming the presence of the carboxylic group. The adhesion was evaluated by using the ceramic coating solution in order to assess the improved adhesion of the SS plate under conditions. The results showed that both the adhesion and durability were largely improved in the sample processed with all the pre-processing steps, thus confirming that the physical and chemical adhesion between metals and ceramics can be improved by enhancing the physical roughness via electrolytic oxidation and pre-processing using a Ti complex ion solution.
Habala, Ladislav; Varényi, Samuel; Bilková, Andrea; Herich, Peter; Valentová, Jindra; Kožíšek, Jozef; Devínsky, Ferdinand
2016-12-17
In order to evaluate the influence of substitution on biological properties of Schiff bases and their metal complexes, a series of differently substituted fluorine-containing Schiff bases starting from the drug isoniazid (isonicotinylhydrazide) were prepared and their structures were established by single-crystal X-ray diffraction. Also, four copper(II) complexes of these Schiff bases were synthesized. The prepared compounds were evaluated for their antimicrobial activity and urease inhibition. Two of the Schiff bases exerted activity against C. albicans . All copper(II) complexes showed excellent inhibitory properties against jack bean urease, considerably better than that of the standard inhibitor acetohydroxamic acid.
Wai, Chien M.; Hunt, Fred H.; Smart, Neil G.; Lin, Yuehe
2000-01-01
A method for dissociating metal-ligand complexes in a supercritical fluid by treating the metal-ligand complex with heat and/or reducing or oxidizing agents is described. Once the metal-ligand complex is dissociated, the resulting metal and/or metal oxide form fine particles of substantially uniform size. In preferred embodiments, the solvent is supercritical carbon dioxide and the ligand is a .beta.-diketone such as hexafluoroacetylacetone or dibutyldiacetate. In other preferred embodiments, the metals in the metal-ligand complex are copper, silver, gold, tungsten, titanium, tantalum, tin, or mixtures thereof. In preferred embodiments, the reducing agent is hydrogen. The method provides an efficient process for dissociating metal-ligand complexes and produces easily-collected metal particles free from hydrocarbon solvent impurities. The ligand and the supercritical fluid can be regenerated to provide an economic, efficient process.
NASA Astrophysics Data System (ADS)
Xu, Shengsheng; Kaltashov, Igor A.
2016-12-01
Haptoglobin (Hp) is a plasma glycoprotein that generates significant interest in the drug delivery community because of its potential for delivery of antiretroviral medicines with high selectivity to macrophages and monocytes, the latent reservoirs of human immunodeficiency virus. As is the case with other therapies that exploit transport networks for targeted drug delivery, the success of the design and optimization of Hp-based therapies will critically depend on the ability to accurately localize and quantitate Hp-drug conjugates on the varying and unpredictable background of endogenous proteins having identical structure. In this work, we introduce a new strategy for detecting and quantitating exogenous Hp and Hp-based drugs with high sensitivity in complex biological samples using gallium as a tracer of this protein and inductively coupled plasma mass spectrometry (ICP MS) as a method of detection. Metal label is introduced by reconstituting hemoglobin (Hb) with gallium(III)-protoporphyrin IX followed by its complexation with Hp. Formation of the Hp/Hb assembly and its stability are evaluated with native electrospray ionization mass spectrometry. Both stable isotopes of Ga give rise to an abundant signal in ICP MS of a human plasma sample spiked with the metal-labeled Hp/Hb complex. The metal label signal exceeds the spectral interferences' contributions by more than an order of magnitude even with the concentration of the exogenous protein below 10 nM, the level that is more than adequate for the planned pharmacokinetic studies of Hp-based therapeutics.
40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.
Code of Federal Regulations, 2010 CFR
2010-07-01
... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...
40 CFR 721.4596 - Diazo substituted carbomonocyclic metal complex.
Code of Federal Regulations, 2011 CFR
2011-07-01
... metal complex. 721.4596 Section 721.4596 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.4596 Diazo substituted carbomonocyclic metal complex. (a) Chemical... as a diazo substituted carbomonocyclic metal complex (PMN P-94-1039) is subject to reporting under...
Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes.
Bullock, R Morris; Chambers, Geoffrey M
2017-08-28
This perspective examines frustrated Lewis pairs (FLPs) in the context of heterolytic cleavage of H 2 by transition metal complexes, with an emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with main group compounds, yet many reactions of transition metal complexes support a broader classification of FLPs that includes certain types of transition metal complexes with reactivity resembling main group-based FLPs. This article surveys transition metal complexes that heterolytically cleave H 2 , which vary in the degree that the Lewis pairs within these systems interact. Many of the examples include complexes bearing a pendant amine functioning as the base with the metal functioning as the hydride acceptor. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.This article is part of the themed issue 'Frustrated Lewis pair chemistry'. © 2017 The Author(s).
Mercury in mercury(II)-spiked soils is highly susceptible to plant bioaccumulation.
Hlodák, Michal; Urík, Martin; Matúš, Peter; Kořenková, Lucia
2016-01-01
Heavy metal phytotoxicity assessments usually use soluble metal compounds in spiked soils to evaluate metal bioaccumulation, growth inhibition and adverse effects on physiological parameters. However, exampling mercury phytotoxicity for barley (Hordeum vulgare) this paper highlights unsuitability of this experimental approach. Mercury(II) in spiked soils is extremely bioavailable, and there experimentally determined bioaccumulation is significantly higher compared to reported mercury bioaccumulation efficiency from soils collected from mercury-polluted areas. Our results indicate this is not affected by soil sorption capacity, thus soil ageing and formation of more stable mercuric complexes with soil fractions is necessary for reasonable metal phytotoxicity assessments.
Metal Complexation in Xylem Fluid 1
White, Michael C.; Chaney, Rufus L.; Decker, A. Morris
1981-01-01
The capacity of ligands in xylem fluid to form metal complexes was tested with a series of in vitro experiments using paper electrophoresis and radiographs. The xylem fluid was collected hourly for 8 hours from soybean (Glycine max L. Merr.) and tomato (Lycopersicon esculentum Mill.) plants grown in normal and Zn-phytotoxic nutrient solutions. Metal complexation was assayed by anodic or reduced cathodic movement of radionuclides (63Ni, 65Zn, 109Cd, 54Mn) that were presumed to have formed negatively charged complexes. Electrophoretic migration of Ni, Zn, Cd, and Mn added to xylem exudate and spotted on KCl- or KNO3-wetted paper showed that stable Ni, Zn, and Cd metal complexes were formed by exudate ligands. No anodic Mn complexes were observed in this test system. Solution pH, plant species, exudate collection time, and Zn phytotoxicity all affected the amount of metal complex formed in exudate. As the pH increased, there was increased anodic metal movement. Soybean exudate generally bound more of each metal than did tomato exudate. Metal binding usually decreased with increasing exudate collection time, and less metal was bound by the high-Zn exudate. Ni, Zn, Cd, and Mn in exudate added to exudate-wetted paper demonstrated the effect of ligand concentration on stable metal complex formation. Complexes for each metal were demonstratable with this method. Cathodic metal movement increased with time of exudate collection, and it was greater in the high-Zn exudate than in the normal-Zn exudate. A model study illustrated the effect of ligand concentration on metal complex stability in the electrophoretic field. Higher ligand (citric acid) concentrations increased the stability for all metals tested. Images PMID:16661666
Rauf, Abdur
1996-01-01
Mixed ligands biologically active complexes of cobalt(II), copper(II) and nickel(II) with nicotinoylhydrazine-derived ONO, NNO and SNO donor schiff-base ligands having the same metal ion but different anions such as sulphate, nitrate, oxalate and acetate have been synthesised and characterised on the basis of their physical, analytical and spectral data. In order to evaluate the role of anions on their bioability, these ligands and their synthesised metal complexes with various anions have been screened against bacterial species such as Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and the title studies have proved a definative role of anions in increasing the biological activity PMID:18472896
NASA Astrophysics Data System (ADS)
Shebl, Magdy; Adly, Omima M. I.; Taha, A.; Elabd, N. N.
2017-11-01
The compound in the title (L) was synthesized and reacted with Cu(II) metal ion with different anions (OAc-, NO3-, SO42-, ClO4-, Cl- and Br-) in absence and presence of auxiliary ligands (L‧); N,O-donor; or N,N-donor; to form binary and ternary Cu(II)-chelates. The metal complexes were fully characterized by analytical and spectral techniques in addition to thermal, conductivity and magnetic susceptibility measurements. The obtained results showed that the ligand behaves as a neutral bidentate, forming chelates with molar ratios: 1:1, 1:2 and 1:3; M:L for binary and 1:2:1 and 1:1:1; M:L:L‧ for ternary complexes, which can be formulated as: [LmCuXn(H2O)y]·zH2O, m = 1 or 2, n = 0, 1 or 2, X = OAc-, SO42-, Cl- or Br-, y = 0 or 2, z = 0 or 0.5; [LmCu(H2O)n]X2·zMeOH, m = 2 or 3, n = 0 or 2, X = ClO4- or NO3-, z = 0 or 1 and [Lm L'Cu(H2O)n](NO3)x·yS, m = 1 or 2, n = 0 or 2, X = 1 or 2, y = 0.5 or 4, S = H2O or MeOH. The ESR spin Hamiltonian parameters of some complexes were calculated. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The structural parameters of the ligand and its metal complexes have been calculated and correlated with the experimental data. The metal complexes exhibited octahedral and square planar geometrical arrangements according to the nature of the anion. The ligand and its metal complexes showed antibacterial activity towards Gram-positive bacteria, Gram-negative bacteria, yeast and fungus.
Chaudret, Robin; Gresh, Nohad; Narth, Christophe; Lagardère, Louis; Darden, Thomas A; Cisneros, G Andrés; Piquemal, Jean-Philip
2014-09-04
We demonstrate as a proof of principle the capabilities of a novel hybrid MM'/MM polarizable force field to integrate short-range quantum effects in molecular mechanics (MM) through the use of Gaussian electrostatics. This lead to a further gain in accuracy in the representation of the first coordination shell of metal ions. It uses advanced electrostatics and couples two point dipole polarizable force fields, namely, the Gaussian electrostatic model (GEM), a model based on density fitting, which uses fitted electronic densities to evaluate nonbonded interactions, and SIBFA (sum of interactions between fragments ab initio computed), which resorts to distributed multipoles. To understand the benefits of the use of Gaussian electrostatics, we evaluate first the accuracy of GEM, which is a pure density-based Gaussian electrostatics model on a test Ca(II)-H2O complex. GEM is shown to further improve the agreement of MM polarization with ab initio reference results. Indeed, GEM introduces nonclassical effects by modeling the short-range quantum behavior of electric fields and therefore enables a straightforward (and selective) inclusion of the sole overlap-dependent exchange-polarization repulsive contribution by means of a Gaussian damping function acting on the GEM fields. The S/G-1 scheme is then introduced. Upon limiting the use of Gaussian electrostatics to metal centers only, it is shown to be able to capture the dominant quantum effects at play on the metal coordination sphere. S/G-1 is able to accurately reproduce ab initio total interaction energies within closed-shell metal complexes regarding each individual contribution including the separate contributions of induction, polarization, and charge-transfer. Applications of the method are provided for various systems including the HIV-1 NCp7-Zn(II) metalloprotein. S/G-1 is then extended to heavy metal complexes. Tested on Hg(II) water complexes, S/G-1 is shown to accurately model polarization up to quadrupolar response level. This opens up the possibility of embodying explicit scalar relativistic effects in molecular mechanics thanks to the direct transferability of ab initio pseudopotentials. Therefore, incorporating GEM-like electron density for a metal cation enable the introduction of nonambiguous short-range quantum effects within any point-dipole based polarizable force field without the need of an extensive parametrization.
Rashid, Sadia; Shen, Chensi; Yang, Jing; Liu, Jianshe; Li, Jing
2018-04-01
Chitosan-metal complexes have been widely studied in wastewater treatment, but there are still various factors in complex preparation which are collectively responsible for improving the adsorption capacity need to be further studied. Thus, this study investigates the factors affecting the adsorption ability of chitosan-metal complex adsorbents, including various kinds of metal centers, different metal salts and crosslinking degree. The results show that the chitosan-Fe(III) complex prepared by sulfate salts exhibited the best adsorption efficiency (100%) for various dyes in very short time duration (10min), and its maximum adsorption capacity achieved 349.22mg/g. The anion of the metal salt which was used in preparation played an important role to enhance the adsorption ability of chitosan-metal complex. SO 4 2- ions not only had the effect of crosslinking through electrostatic interaction with amine group of chitosan polymer, but also could facilitate the chelation of metal ions with chitosan polymer during the synthesis process. Additionally, the pH sensitivity and the sensitivity of ionic environment for chitosan-metal complex were analyzed. We hope that these factors affecting the adsorption of the chitosan-metal complex can help not only in optimizing its use but also in designing new chitosan-metal based complexes. Copyright © 2017. Published by Elsevier B.V.
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
40 CFR 721.10104 - Halophosphate mixed metal complex (generic).
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Halophosphate mixed metal complex... Specific Chemical Substances § 721.10104 Halophosphate mixed metal complex (generic). (a) Chemical... as halophosphate mixed metal complex (PMN P-04-254) is subject to reporting under this section for...
Joyner, Jeff C.; Hocharoen, Lalintip; Cowan, J. A.
2012-01-01
A series of compounds that target reactive transition metal chelates to somatic Angiotensin Converting Enzyme (sACE-1) have been synthesized. Half maximal inhibitory concentrations (IC50) and rate constants for both inactivation and cleavage of full length sACE-1 have been determined and evaluated in terms of metal-chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediamine-tetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclo-dodecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine sidechain of lisinopril by EDC/NHS coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following pre-incubation with metal-chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal-chelate-lisinopril complexes revealed IC50 values ranging from 44 nM to 4,500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal-chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second order rate constants as high as 150,000 M−1min−1 (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primary from sidechain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein oxidation. This class of metal-chelate-lisinopril complexes possesses a range of high-affinity binding to ACE, introduces the advantage of irreversible catalytic turnover, and marks an important step toward the development of multiple-turnover drugs for selective inactivation of sACE-1. PMID:22200082
Joyner, Jeff C; Hocharoen, Lalintip; Cowan, J A
2012-02-22
A series of compounds that target reactive transition-metal chelates to somatic angiotensin converting enzyme (sACE-1) have been synthesized. Half-maximal inhibitory concentrations (IC(50)) and rate constants for both inactivation and cleavage of full-length sACE-1 have been determined and evaluated in terms of metal chelate size, charge, reduction potential, coordination unsaturation, and coreactant selectivity. Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA), and tripeptide GGH were linked to the lysine side chain of lisinopril by 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide hydrochloride/N-hydroxysuccinimide coupling. The resulting amide-linked chelate-lisinopril (EDTA-lisinopril, NTA-lisinopril, DOTA-lisinopril, and GGH-lisinopril) conjugates were used to form coordination complexes with iron, cobalt, nickel, and copper, such that lisinopril could mediate localization of the reactive metal chelates to sACE-1. ACE activity was assayed by monitoring cleavage of the fluorogenic substrate Mca-RPPGFSAFK(Dnp)-OH, a derivative of bradykinin, following preincubation with metal chelate-lisinopril compounds. Concentration-dependent inhibition of sACE-1 by metal chelate-lisinopril complexes revealed IC(50) values ranging from 44 to 4500 nM for Ni-NTA-lisinopril and Ni-DOTA-lisinopril, respectively, versus 1.9 nM for lisinopril. Stronger inhibition was correlated with smaller size and lower negative charge of the attached metal chelates. Time-dependent inactivation of sACE-1 by metal chelate-lisinopril complexes revealed a remarkable range of catalytic activities, with second-order rate constants as high as 150,000 M(-1) min(-1) (Cu-GGH-lisinopril), while catalyst-mediated cleavage of sACE-1 typically occurred at much lower rates, indicating that inactivation arose primarily from side chain modification. Optimal inactivation of sACE-1 was observed when the reduction potential for the metal center was poised near 1000 mV, reflecting the difficulty of protein oxidation. This class of metal chelate-lisinopril complexes possesses a range of high-affinity binding to ACE, introduces the advantage of irreversible catalytic turnover, and marks an important step toward the development of multiple-turnover drugs for selective inactivation of sACE-1.
Structural changes at the metal ion binding site during the phosphoglucomutase reaction.
Ray, W J; Post, C B; Liu, Y; Rhyu, G I
1993-01-12
An electron density map of the reactive, Cd2+ form of crystalline phosphoglucomutase from X-ray diffraction studies shows that the enzymic phosphate donates a nonbridging oxygen to the ligand sphere of the bound metal ion, which appears to be tetracoordinate. 31P and 113Cd NMR spectroscopy are used to assess changes in the properties of bound Cd2+ produced by substrate/product and by substrate/product analog inhibitors. The approximately 50 ppm downfield shift of the 113Cd resonance on formation of the complex of dephosphoenzyme and glucose 1,6-bisphosphate is associated with the initial sugar-phosphate binding step and likely involves a change in the geometry of the coordinating ligands. This interpretation is supported by spectral studies involving various complexes of the active Co2+ and Ni(2+)-enzyme. In addition, there is a loss of the 31P-113Cd J coupling that characterizes the monophosphate complexes of the Cd2+ enzyme either during or immediately after the PO3- transfer step that produces the bisphosphate complex, indicating a further change at the metal binding site. The implications of these observations with respect to the PO3- transfer process in the phosphoglucomutase reaction are considered. The apparent plasticity of the ligand sphere of the active site metal ion in this system may allow a single metal ion to act as a chaperone for a nonbridging oxygen during PO3- transfer or to allow a change in metal ion coordination during catalysis. A general NMR line shape/chemical-exchange analysis for evaluating binding in protein-ligand systems when exchange is intermediate to fast on the NMR time scale is described. Its application to the present system involves multiple exchange sites that depend on a single binding rate, thereby adding further constraints to the analysis.
40 CFR 721.4594 - Substituted azo metal complex dye.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal complex...
40 CFR 721.4594 - Substituted azo metal complex dye.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted azo metal complex dye. 721... Substances § 721.4594 Substituted azo metal complex dye. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as a substituted azo metal complex...
Process for the enhanced capture of heavy metal emissions
Biswas, Pratim; Wu, Chang-Yu
2001-01-01
This invention is directed to a process for forming a sorbent-metal complex. The process includes oxidizing a sorbent precursor and contacting the sorbent precursor with a metallic species. The process further includes chemically reacting the sorbent precursor and the metallic species, thereby forming a sorbent-metal complex. In one particular aspect of the invention, at least a portion of the sorbent precursor is transformed into sorbent particles during the oxidation step. These sorbent particles then are contacted with the metallic species and chemically reacted with the metallic species, thereby forming a sorbent-metal complex. Another aspect of the invention is directed to a process for forming a sorbent metal complex in a combustion system. The process includes introducing a sorbent precursor into a combustion system and subjecting the sorbent precursor to an elevated temperature sufficient to oxidize the sorbent precursor and transform the sorbent precursor into sorbent particles. The process further includes contacting the sorbent particles with a metallic species and exposing the sorbent particles and the metallic species to a complex-forming temperature whereby the metallic species reacts with the sorbent particles thereby forming a sorbent-metal complex under UV irradiation.
Parra, R; Ulery, A L; Elless, M P; Blaylock, M J
2008-01-01
The phytoremediation of recalcitrant metals such as lead and uranium rely on soil amendments to enhance metal availability within the rhizosphere. Because these amendments may persist in soils, agents that not only biodegrade rapidly but also are effective in triggering metal uptake in plants are needed for metals phytoextraction to be considered as an accepted practice. In this study, several biodegradable organic acids and chelating agents were assessed to determine if these amendments can be used in an effective manner, and if their activity and use is consistent with a proposed class of soil amendments for phytoextraction, here termed transient phytoextraction agents (TPAs). A TPA is proposed as an agent that would exhibit both effectiveness in triggering plant accumulation of the targeted metal while minimizing the risk of migration through rapid degradation or inactivation of the soluble complex. Eleven candidate TPAs (acetic acid, ascorbic acid, citric acid, malic acid, oxalic acid, succinic acid, ethylenediaminedisuccinic acid, dicarboxymethylglutamic acid, nitrilotriacetic acid, BayPure CX 100, and the siderophore desferrioxamine B) were tested in batch studies to evaluate their complexation behavior using contaminated soils, with uranium and lead as the target metals. A growth chamber study was then conducted with Brassica juncea (Indian mustard), Helianthus annuus (sunflower), and Festuca arundinacea (tall fescue) grown in a lead-contaminated soil that was treated with the candidate TPAs to assess phytoextraction effectiveness. For the soils tested, citric acid, oxalic acid, and succinic acid were found to be effective complexing agents for uranium phytoextraction, whereas Baypure CX 100 and citric acid exhibited effectiveness for lead phytoextraction.
Thermal and biological evolution of Fe(III)-Sulfanilamide complexes synthesized by green strategy
NASA Astrophysics Data System (ADS)
Prajapat, Garima; Rathore, Uma; Gupta, Rama; Bhojak, N.
2018-05-01
Sulfonamides belong to a category of sulfadrugs, that are widely used as antibiotic medicines. Their metal complexes, also called Metallodrugs, are known to have diverse pharmacological applications and are significantly used as therapeutic agents for treatment of several human diseases. Fe(III) complexes of two sulfonamides, namely Sulfanilamide and Sulfadiazine have been synthesized by the method of Microwave Assisted Organic Synthesis (MAOS), using acetone as solvent medium. Presence of excellent donor atoms such as N and O, induce these drugs to exhibit a chelating behavior with the metal ion, and to act as bidentate ligands. Both the complexes were found to have four coordinated, tetrahedral geometry with one molecule of water of crystallisation. Thermal decomposition studies were carried out in an inert nitrogen atmosphere by Thermogravimetric (TGA) and Derivative Thermogravimetric (DTA) analysis. Interpretation of thermograms have been done to evaluate various kinetic and thermodynamic parameters, using integral method of Coats and Redfern. The antibacterial activity for both complexes have been screened against E.coli, S. aureus and B. subtilis.
NASA Astrophysics Data System (ADS)
Benhassine, Anfel; Boulebd, Houssem; Anak, Barkahem; Bouraiou, Abdelmalek; Bouacida, Sofiane; Bencharif, Mustapha; Belfaitah, Ali
2018-05-01
This work presents a combined experimental and theoretical study of two new metal-carboxylate coordination compounds. These complexes were prepared from (1-methyl-1H-benzimidazol-2-yl)methanol under mild conditions. The structures of the prepared compounds were characterized by single-crystal X-ray analysis, FTIR and UV-Vis spectroscopy. In the Cupper complex, the Cu(II) ion is coordinated by two ligands, which act as bidentate chelator through the non-substituted N and O atoms, and two carboxylicg oxygen atoms, displaying a hexa-coordinated compound in a distorted octahedral geometry, while in the Zinc complex the ligand is ligated to the Zn(II) ion in monodentate fashion through the N atom, and the metal ion is also bonded to carboxylic oxygen atoms. The tetra-coordinated compound displays a distorted tetrahedral shape. The density functional theory calculations are carried out for the determination of the optimized structures. The electronic transitions and fundamental vibrational wave numbers are calculated and are in good agreement with experimental. In addition, the ligand and its Cu(II) and Zn(II) complexes were screened and evaluated for their potential as DPPH radical scavenger.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Ashleigh; Lukens, Wayne; Lu, Connie
2014-04-01
A series of actinide-transition metal heterobimetallics has been prepared, featuring thorium, uranium and cobalt. Complexes incorporating the binucleating ligand N[-(NHCH2PiPr2)C6H4]3 and Th(IV) (4) or U(IV) (5) with a carbonyl bridged [Co(CO)4]- unit were synthesized from the corresponding actinide chlorides (Th: 2; U: 3) and Na[Co(CO)4]. Irradiation of the isocarbonyls with ultraviolet light resulted in the formation of new species containing actinide-metal bonds in good yields (Th: 6; U: 7); this photolysis method provides a new approach to a relatively rare class of complexes. Characterization by single-crystal X-ray diffraction revealed that elimination of the bridging carbonyl is accompanied by coordination ofmore » a phosphine arm from the N4P3 ligand to the cobalt center. Additionally, actinide-cobalt bonds of 3.0771(5) and 3.0319(7) for the thorium and uranium complexes, respectively, were observed. The solution state behavior of the thorium complexes was evaluated using 1H, 1H-1H COSY, 31P and variable-temperature NMR spectroscopy. IR, UV-Vis/NIR, and variable-temperature magnetic susceptibility measurements are also reported.« less
Bihari, Zsolt; Vultos, Filipe; Fernandes, Célia; Gano, Lurdes; Santos, Isabel; Correia, João D G; Buglyó, Péter
2016-07-01
Heterobimetallic complexes with the evolutionary, well-preserved, histidyl-alanyl-valinyl (HAV) sequence for cadherin targeting, an organometallic Ru core with anticancer activity and a radioactive moiety for imaging may hold potential as theranostic agents for cancer. Visible-light irradiation of the HAVAY-NH2 pentapeptide in the presence of [(η(5)-Cp)Ru(η(6)-naphthalene)](+) resulted in the formation of a full sandwich type complex, (η(6)-Tyr-RuCp)-HAVAY-NH2 in aqueous solution, where the metal ion is connected to the Tyr (Y) unit of the peptide. Conjugation of this complex to 2,2'-(7-(1-carboxy-4-((4-isothiocyanatobenzyl)amino)-4-oxobutyl)-1,4,7-triazonane-1,4-diyl)diacetic acid (NODA-GA) and subsequent metalation of the resulting product with stable ((nat)Ga) and radioactive ((67)Ga) isotope yielded (nat)Ga/(67)Ga-NODA-GA-[(η(6)-Tyr-RuCp)-HAVAY-NH2]. The non-radioactive compounds were characterized by NMR spectroscopy and Mass Spectrometry. The cellular uptake and cytotoxicity of the radioactive and non-radioactive complexes, respectively, were evaluated in various human cancer cell lines characterized by different levels of N- or E-cadherins expression. Results from these studies indicate moderate cellular uptake of the radioactive complexes. However, the inhibition of the cell proliferation was not relevant. Copyright © 2016 Elsevier Inc. All rights reserved.
Linder, G.; ,
2003-01-01
Mining activities frequently impact wildlife habitats, and a wide range of habitats may require evaluations of the linkages between wildlife and environmental stressors common to mining activities (e.g., physical alteration of habitat, releases of chemicals such as metals and other inorganic constituents as part of the mining operation). Wetlands, for example, are frequently impacted by mining activities. Within an ecological assessment for a wetland, toxicity evaluations for representative species may be advantageous to the site evaluation, since these species could be exposed to complex chemical mixtures potentially released from the site. Amphibian species common to these transition zones between terrestrial and aquatic habitats are one key biological indicator of exposure, and integrated approaches which involve both field and laboratory methods focused on amphibians are critical to the assessment process. The laboratory and field evaluations of a wetland in western Montana illustrates the integrated approach to risk assessment and causal analysis. Here, amphibians were used to evaluate the potential toxicity associated with heavy metal-laden sediments deposited in a reservoir. Field and laboratory methods were applied to a toxicity assessment for metals characteristic of mine tailings to reduce potential "lab to field" extrapolation errors and provide adaptive management programs with critical site-specific information targeted on remediation.
Distribution of heavy metals in agricultural soils near a petrochemical complex in Guangzhou, China.
Li, Junhui; Lu, Ying; Yin, Wei; Gan, Haihua; Zhang, Chao; Deng, Xianglian; Lian, Jin
2009-06-01
The aim of the study was to investigate influence of an industrialized environment on the accumulation of heavy metals in agricultural soils. Seventy soil samples collected from surface layers (0-20 cm) and horizons of five selected pedons in the vicinity area of petrochemical complex in Guangzhou, China were analyzed for Zn, Cu, Pb, Cd, Hg and As concentrations, the horizontal and vertical variation of these metals were studied and geographic information system (GIS)-based mapping techniques were applied to generate spatial distribution maps. The mean concentrations of these heavy metals in the topsoils did not exceed the maximum allowable concentrations in agricultural soil of China with the exception of Hg. Significant differences between land-use types showed that Cu, Pb, Cd, Hg and As concentrations in topsoils were strongly influenced by agricultural practices and soil management. Within a radius of 1,300 m there were no marked decreasing trends for these element concentrations (except for Zn) with the increase of distance from the complex boundary, which reflected little influence of petroleum air emission on soil heavy metal accumulation. Concentrations of Zn, Cu, Pb, Cd, Hg and As in the five pedons, particularly in cultivated vegetable field and orchard, decreased with soil depth, indicating these elements mainly originated from anthropogenic sources. GIS mapping was a useful tool for evaluating spatial variability of heavy metals in the affected soil. The spatial distribution maps allowed the identification of hot-spot areas with high metal concentration. Effective measures should be taken to avoid or minimize heavy metal further contamination of soils and to remediate the contaminated areas in order to prevent pollutants affecting human health through agricultural products.
Oszwałdowski, Sławomir; Timerbaev, Andrei R
2008-02-01
The relevance of the quantitative structure-activity relationship (QSAR) principle in MEKC and microemulsion EKC (MEEKC) of metal-ligand complexes was evaluated for a better understanding of analyte migration mechanism. A series of gallium chelates were applied as test solutes with available experimental migration data in order to reveal the molecular properties that govern the separation. The QSAR models operating with n-octanol-water partition coefficients or van der Waals volumes were found to be valid for estimation of the retention factors (log k') of neutral compounds when using only an aqueous MEEKC electrolyte. On the other hand, consistent approximations of log k' for both uncharged and charged complexes in either EKC mode (and also with hydro-organic BGEs) were achievable with two-parametric QSARs in which the dipole moment is additionally incorporated as a structural descriptor, reflecting the electrostatic solute-pseudostationary phase interaction. The theoretical analysis of significant molecular parameters in MEKC systems, in which the micellar BGE is modified with an organic solvent, confirmed that concomitant consideration of hydrophobic, electrostatic, and solvation factors is essential for explaining the migration behavior of neutral metal complexes.
NASA Astrophysics Data System (ADS)
Kilian, Krzysztof; Pęgier, Maria; Pyrzyńska, Krystyna
2016-04-01
Porphyrin based photosensitizers are useful agents for photodynamic therapy and fluorescence imaging of cancer. Additionally, porphyrins are excellent metal chelators, forming stable metalo-complexes and 64Cu isotope can serve as a positron emitter (t1/2 = 12.7 h). The other advantage of 64Cu is its decay characteristics that facilitates the use of 64Cu-porphyrin complex as a therapeutic agent. Thus, 64Cu chelation with porphyrin photosensitizer may become a simple and versatile labeling strategy for clinical positron emission tomography. The present study reports a convenient method for the synthesis of Cu complex with tetrakis(4-carboxyphenyl)porphyrin (TCPP). The experimental conditions for labeling, such as the metal-to-ligand molar ratio, pH and time of reaction were optimized to achieve a high complexation efficiency in a short period of time as possible. In order to accelerate the metallation, the use of substitution reactions of cadmium or lead porphyrin and the presence of reducing agent, such as ascorbic acid, hydroxylamine and flavonoid - morin, were evaluated. The optimum conditions for the synthesis of the copper complex were borate buffer at pH 9 with the addition of 10-fold molar excess, with respect to Cu2 + ions and TCPP and ascorbic acid which resulted in reduction of the reaction time from 30 min to below 1 min.
40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and P-89-577...
Sung, Joo Hyun; Oh, Inbo; Kim, Ahra; Lee, Jiho; Sim, Chang Sun; Yoo, Cheolin; Park, Sang Jin; Kim, Geun Bae; Kim, Yangho
2018-01-29
Industrial pollution may affect the heavy metal body burden of people living near industrial complexes. We determined the average concentrations of atmospheric heavy metals in areas close to and distant from industrial complexes in Korea, and the body concentrations of these heavy metals in residents living near and distant from these facilities. The atmospheric data of heavy metals (lead and cadmium) were from the Regional Air Monitoring Network in Ulsan. We recruited 1,148 participants, 872 who lived near an industrial complex ("exposed" group) and 276 who lived distant from industrial complexes ("non-exposed" group), and measured their concentrations of blood lead, urinary cadmium, and urinary total mercury. The results showed that atmospheric and human concentrations of heavy metals were higher in areas near industrial complexes. In addition, residents living near industrial complexes had higher individual and combined concentrations (cadmium + lead + mercury) of heavy metals. We conclude that residents living near industrial complexes are exposed to high concentrations of heavy metals, and should be carefully monitored. © 2018 The Korean Academy of Medical Sciences.
2017-01-01
Background Industrial pollution may affect the heavy metal body burden of people living near industrial complexes. We determined the average concentrations of atmospheric heavy metals in areas close to and distant from industrial complexes in Korea, and the body concentrations of these heavy metals in residents living near and distant from these facilities. Methods The atmospheric data of heavy metals (lead and cadmium) were from the Regional Air Monitoring Network in Ulsan. We recruited 1,148 participants, 872 who lived near an industrial complex (“exposed” group) and 276 who lived distant from industrial complexes (“non-exposed” group), and measured their concentrations of blood lead, urinary cadmium, and urinary total mercury. Results The results showed that atmospheric and human concentrations of heavy metals were higher in areas near industrial complexes. In addition, residents living near industrial complexes had higher individual and combined concentrations (cadmium + lead + mercury) of heavy metals. Conclusion We conclude that residents living near industrial complexes are exposed to high concentrations of heavy metals, and should be carefully monitored. PMID:29349943
Balistrieri, L.S.; Blank, R.G.
2008-01-01
In order to evaluate thermodynamic speciation calculations inherent in biotic ligand models, the speciation of dissolved Cd, Cu, Pb, and Zn in aquatic systems influenced by historical mining activities is examined using equilibrium computer models and the diffusive gradients in thin films (DGT) technique. Several metal/organic-matter complexation models, including WHAM VI, NICA-Donnan, and Stockholm Humic model (SHM), are used in combination with inorganic speciation models to calculate the thermodynamic speciation of dissolved metals and concentrations of metal associated with biotic ligands (e.g., fish gills). Maximum dynamic metal concentrations, determined from total dissolved metal concentrations and thermodynamic speciation calculations, are compared with labile metal concentrations measured by DGT to assess which metal/organic-matter complexation model best describes metal speciation and, thereby, biotic ligand speciation, in the studied systems. Results indicate that the choice of model that defines metal/organic-matter interactions does not affect calculated concentrations of Cd and Zn associated with biotic ligands for geochemical conditions in the study area, whereas concentrations of Cu and Pb associated with biotic ligands depend on whether the speciation calculations use WHAM VI, NICA-Donnan, or SHM. Agreement between labile metal concentrations and dynamic metal concentrations occurs when WHAM VI is used to calculate Cu speciation and SHM is used to calculate Pb speciation. Additional work in systems that contain wide ranges in concentrations of multiple metals should incorporate analytical speciation methods, such as DGT, to constrain the speciation component of biotic ligand models. ?? 2008 Elsevier Ltd.
Zhang, Yu; Cai, Xiyun; Lang, Xianming; Qiao, Xianliang; Li, Xuehua; Chen, Jingwen
2012-07-01
Co-contamination of ligand-like antibiotics (e.g., tetracyclines and quinolones) and heavy metals prevails in the environment, and thus the complexation between them is involved in environmental risks of antibiotics. To understand toxicological significance of the complex, effects of metal coordination on antibiotics' toxicity were investigated. The complexation of two antibiotics, oxytetracycline and ciprofloxacin, with three heavy metals, copper, zinc, and cadmium, was verified by spectroscopic techniques. The antibiotics bound metals via multiple coordination sites and rendered a mixture of various complexation speciations. Toxicity analysis indicated that metal coordination did modify the toxicity of the antibiotics and that antibiotic, metal, and their complex acted primarily as concentration addition. Comparison of EC(50) values revealed that the complex commonly was highest toxic and predominately correlated in toxicity to the mixture. Finally, environmental scenario analysis demonstrated that ignoring complexation would improperly classify environmental risks of the antibiotics. Copyright © 2012 Elsevier Ltd. All rights reserved.
Metal complexes of quinolone antibiotics and their applications: an update.
Uivarosi, Valentina
2013-09-11
Quinolones are synthetic broad-spectrum antibiotics with good oral absorption and excellent bioavailability. Due to the chemical functions found on their nucleus (a carboxylic acid function at the 3-position, and in most cases a basic piperazinyl ring (or another N-heterocycle) at the 7-position, and a carbonyl oxygen atom at the 4-position) quinolones bind metal ions forming complexes in which they can act as bidentate, as unidentate and as bridging ligand, respectively. In the polymeric complexes in solid state, multiple modes of coordination are simultaneously possible. In strongly acidic conditions, quinolone molecules possessing a basic side nucleus are protonated and appear as cations in the ionic complexes. Interaction with metal ions has some important consequences for the solubility, pharmacokinetics and bioavailability of quinolones, and is also involved in the mechanism of action of these bactericidal agents. Many metal complexes with equal or enhanced antimicrobial activity compared to the parent quinolones were obtained. New strategies in the design of metal complexes of quinolones have led to compounds with anticancer activity. Analytical applications of complexation with metal ions were oriented toward two main directions: determination of quinolones based on complexation with metal ions or, reversely, determination of metal ions based on complexation with quinolones.
Weindorf, David C; Zhu, Yuanda; Chakraborty, Somsubhra; Bakr, Noura; Huang, Biao
2012-01-01
Urban expansion into traditional agricultural lands has augmented the potential for heavy metal contamination of soils. This study examined the utility of field portable X-ray fluorescence (PXRF) spectrometry for evaluating the environmental quality of sugarcane fields near two industrial complexes in Louisiana, USA. Results indicated that PXRF provided quality results of heavy metal levels comparable to traditional laboratory analysis. When coupled with global positioning system technology, the use of PXRF allows for on-site interpolation of heavy metal levels in a matter of minutes. Field portable XRF was shown to be an effective tool for rapid assessment of heavy metals in soils of peri-urban agricultural areas.
NASA Astrophysics Data System (ADS)
Gumber, Khushbu; Sidhu, Anjali; Kaur, Robinpreet
2017-04-01
Novel magnesium 1,2,4-triazole-1-carbodithioates were sonochemically synthesized as water-dispersable nanoparticles owing to their water insolubility. The two-step reaction protocol was followed to synthesize the novel triazole ligand system for complexation with magnesium metal due to its low biological toxicity. Different concentrations of Poly Vinyl Pyrrolidine were used to stabilize and standardise the size of nanoparticles, which were characterised by TEM analysis. UV-Visible and infrared spectroscopies were used to analyse the metal ligand interaction, and CHNS analysis was used to propose the structure of the metal complex. The spore germination inhibition technique was used to evaluate the antifungal potential of synthesized nano-complexes against two phytopathogenic test fungi viz . A. alternata and F. moniliforme. The nanoparticles had inflicted moderate in vitro inhibition of fungal growth, which was comparable to standard fungicide Indofil M-45. The in silico toxicity of the compounds was made using the Toxtree analysis software that indicated the compounds belong to class III group of toxicity, which was same as that of commercial standards of DTC.
NASA Astrophysics Data System (ADS)
Watkins, B. E.; Droege, M. W.; Taylor, R. T.; Satcher, J. H.
1992-06-01
Methane monooxygenase (MMO) is an enzyme found in methanotrophs that catalyses the selective oxidation of methane to methanol. MMO is protein complex one component of which is a binuclear metal center containing oxygenase. We have completed one round of a design/synthesis/evaluation cycle in the development of coordination complexes that mimic the structure/function of the MMO active site. One of these, a binuclear, coordinately-asymmetric copper complex, is capable of oxidizing cyclohexane to a mixture of cyclohexanol and cyclohexanone in the presence of hydrogen peroxide.
Mandal, Shilpi; Das, Gunajyoti; Askari, Hassan
2014-09-22
Encoded by the UUU and UUC codons of the genetic code, L-phenylalanine (LPA) serves as an important precursor for tyrosine and various other compounds that are necessary to support life on earth. Here, we report the synthesis (both in solid and solvent phases) and characterization of the Ni(2+), Cu(2+), and Zn(2+) complexes of LPA by several analytical, spectral, thermal, and electrochemical techniques. The results reveal that the products formed by following the two synthetic approaches are the same, and the metal ions bind to the LPA molecules in a 1:2 molar ratio (M(+2)/LPA). Complementary geometries of the metal complexes are modeled involving the most predominant LPA conformers predicted at the MP2/6-311++G(d,p) level. The gaseous and aqueous phase interaction enthalpies and free energies; theoretical IR and UV-vis spectra; HOMO-LUMO energy gaps; dipole moments; Wiberg bond indices as well as the partial atomic charges in LPA and its metallic complexes are calculated and evaluated using B3LYP/6-311++G(d,p) as the main computational method. This study also incorporates analyses on the efficacy of the DFT-D2 level in describing dispersion contributions, performance of the BHandHLYP functional for the open-shell Cu(2+)-LPA system, and relative metal binding affinities of the singlet versus triplet states of the Ni(2+)-LPA complex. Metal-π interactions established via the aromatic side chain of LPA add to the thermodynamic stability of the complexes, whereas metal coordination induces considerable intrinsic structural rearrangements in the molecular geometry of LPA. The LPA binding affinity order of the three Lewis acids investigated emerges as Cu(2+) > Ni(2+) > Zn(2+), paralleling the Irving-Williams series. The illustrative evidence offered by the present work suggests that the B3LYP/6-311++G(d,p) level in combination with an empirical dispersion-correction term performs well in describing the vibrational frequencies and cation-π interactions, which are undoubtedly of immense significance for natural sciences.
Welikala, Dharshika; Hucker, Cameron; Hartland, Adam; Robinson, Brett H; Lehto, Niklas J
2018-05-01
The accumulation of Cd in soils worldwide has increased the demand for methods to reduce the metal's plant bioavailability. Organic matter rich soil amendments have been shown to be effective in achieving this. However, it is not known how long these amendments can retain the Cd, and whether dissolved organic matter (DOM) released from them can enhance the metal's mobility in the environment. In this study we sought to test the Cd binding capacity of various organic soil amendments, and evaluate differences in characteristics of the DOM released to see if they can explain the lability of the Cd-DOM complexes. We collected ten organic soil amendments from around New Zealand: five different composts, biosolids from two sources, two types of peat and spent coffee grounds. We characterised the amendments' elemental composition and their ability to bind the Cd. We then selected two composts and two peats for further tests, where we measured the sorption of Ni or Zn by the amendments. We analysed the quality of the extracted DOM from the four amendments using 3D Excitation Emission Matrix analysis, and tested the lability of the metal-DOM complexes using an adapted diffusive gradients in thin-films (DGT) method. We found that composts bound the most Cd and that the emergent Cd-DOM complexes were less labile than those from the peats. Ni-DOM complexes were the least labile. The aromaticity of the extracted DOM appears to be an important factor in determining the lability of Ni complexes, but less so for Zn and Cd. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
El-Megharbel, Samy M.; Refat, Moamen S.
2015-04-01
This article presents a synthesis, characterization, theoretical and biological (anti-bacterial, and anti-fugal) evaluation studies of Ag(I), Hg(II), Cr(III) and Fe(III) complexes of clioquinol (CQ) drug ligand. Structures of the titled complexes cited herein were discussed using elemental analyses and spectral measurements e.g., IR, 1H NMR, and electronic studies. The results confirmed the formation of the clioquinol complexes by three molar ratios (1:1) for Ag(I), (1:2) for Hg(II) and (1:3) for both Cr(III) and Fe(III) metal ions. The clioquinol reacts as a bidentate chelate bound to all respected metal ions through the oxygen and nitrogen of quinoline-8-ol. The metal(II) ions coordinated to clioquinol ligand through deprotonation of sbnd OH terminal group. Infrared and 1H NMR spectral data confirm that coordination is via the oxygen of phenolic group and nitrogen atom of quinoline moiety. The molar conductance measurements of the CQ complexes in DMSO correspond to be non-electrolyte nature. Thus, these complexes may be formulated as [Ag(CQ)(H2O)2] H2O, [Hg(CQ)2]ṡ2H2O, [Cr(CQ)3] and [Fe(CQ)3]H2O. The Coats-Redfern method, the kinetic thermodynamic parameters like activation energies (E∗), entropies (ΔS∗), enthalpies (ΔH∗), and Gibbs free energies (ΔG∗) of the thermal decomposition reactions have been deduced from thermogravimetric curves (TG) with helpful of differential thermo gravimetric (DTG) curves. The narrow size distribution in nano-scale range for the clioquinol complexes have been discussed using X-ray powder diffraction (XRD), scanning electron microscope (SEM), and X-ray energy dispersive spectrometer (EDX) analyzer.
Nachbar, Markus; El Deeb, Sami; Mozafari, Mona; Alhazmi, Hassan A; Preu, Lutz; Redweik, Sabine; Lehmann, Wolf Dieter; Wätzig, Hermann
2016-03-01
Strong, sequence-specific gas-phase bindings between proline-rich peptides and alkaline earth metal ions in nanoESI-MS experiments were reported by Lehmann et al. (Rapid Commun. Mass Spectrom. 2006, 20, 2404-2410), however its relevance for physiological-like aqueous phase is uncertain. Therefore, the complexes should also be studied in aqueous solution and the relevance of the MS method for binding studies be evaluated. A mobility shift ACE method was used for determining the binding between the small peptide GAPAGPLIVPY and various metal ions in aqueous solution. The findings were compared to the MS results and further explained using computational methods. While the MS data showed a strong alkaline earth ion binding, the ACE results showed nonsignificant binding. The proposed vacuum state complex also decomposed during a molecular dynamic simulation in aqueous solution. This study shows that the formed stable peptide-metal ion adducts in the gas phase by ESI-MS does not imply the existence of analogous adducts in the aqueous phase. Comparing peptide-metal ion interaction under the gaseous MS and aqueous ACE conditions showed huge difference in binding behavior. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Dissolution of Fe(III) (hydr) oxides by metal-EDTA complexes
NASA Astrophysics Data System (ADS)
Ngwack, Bernd; Sigg, Laura
1997-03-01
The dissolution of Fe(III)(hydr)oxides (goethite and hydrous ferric oxide) by metal-EDTA complexes occurs by ligand-promoted dissolution. The process is initiated by the adsorption of metal-EDTA complexes to the surface and is followed by the dissociation of the complex at the surface and the release of Fe(III)EDTA into solution. The dissolution rate is decreased to a great extent if EDTA is complexed by metals in comparison to the uncomplexed EDTA. The rate decreases in the order EDTA CaEDTA ≫ PbEDTA > ZnEDTA > CuEDTA > Co(II)EDTA > NiEDTA. Two different rate-limiting steps determine the dissolution process: (1) detachment of Fe(III) from the oxide-structure and (2) dissociation of the metal-EDTA complexes. In the case of goethite, step 1 is slower than step 2 and the dissolution rates by various metals are similar. In the case of hydrous ferric oxide, step 2 is rate-limiting and the effect of the complexed metal is very pronounced.
Sobha, S; Mahalakshmi, R; Raman, N
2012-06-15
A series of Cu(II), Ni(II) and Zn(II) complexes of the type ML have been synthesized with Schiff bases derived from o-acetoacetotoluidide, 2-hydroxybenzaldehyde and o-phenylenediamine/1,4-diaminobutane. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMSO indicate that the complexes are non-electrolytic in nature. All the six metal complexes have been fully characterized with the help of elemental analyses, molecular weights, molar conductance values, magnetic moments and spectroscopic data. The analytical data helped to elucidate the structure of the metal complexes. The Schiff bases are found to act as tetradentate ligands using N(2)O(2) donor set of atoms leading to a square-planar geometry for the complexes around all the metal ions. The binding properties of metal complexes with DNA were investigated by absorption spectra, viscosity measurements and cyclic voltammetry. Detailed analysis reveals that the metal complexes intercalate into the DNA base stack as intercalators. All the metal complexes cleave the pUC19 DNA in presence of H(2)O(2.) The Schiff bases and their complexes have been screened for their antibacterial activity against five bacterial strains (Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, Staphylococcus epidermidis, Klebsiella pneumoniae) by disk diffusion method. All the metal complexes have potent biocidal activity than the free ligands. Copyright © 2012 Elsevier B.V. All rights reserved.
Development of peptoid-based ligands for the removal of cadmium from biological media
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
2015-05-14
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
Development of peptoid-based ligands for the removal of cadmium from biological media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knight, Abigail S.; Zhou, Effie Y.; Francis, Matthew B.
Cadmium poisoning poses a serious health concern due to cadmium's increasing industrial use, yet there is currently no recommended treatment. The selective coordination of cadmium in a biological environment—i.e. in the presence of serum ions, small molecules, and proteins—is a difficult task. To address this challenge, a combinatorial library of peptoid-based ligands has been evaluated to identify structures that selectively bind to cadmium in human serum with minimal chelation of essential metal ions. Eighteen unique ligands were identified in this screening procedure, and the binding affinity of each was measured using metal titrations monitored by UV-vis spectroscopy. To evaluate themore » significance of each chelating moiety, sequence rearrangements and substitutions were examined. Analysis of a metal–ligand complex by NMR spectroscopy highlighted the importance of particular residues. Depletion experiments were performed in serum mimetics and human serum with exogenously added cadmium. These depletion experiments were used to compare and demonstrate the ability of these peptoids to remove cadmium from blood-like mixtures. In one of these depletion experiments, the peptoid sequence was able to deplete the cadmium to a level comparable to the reported acute toxicity limit. Evaluation of the metal selectivity in buffered solution and in human serum was performed to verify minimal off-target binding. These studies highlight a screening platform for the identification of metal–ligands that are capable of binding in a complex environment. They additionally demonstrate the potential utility of biologically-compatible ligands for the treatment of heavy metal poisoning.« less
Frustration across the periodic table: heterolytic cleavage of dihydrogen by metal complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bullock, R. Morris; Chambers, Geoffrey M.
2017-07-24
This Perspective examines the field of Frustrated Lewis Pairs (FLPs) in the context of transition metal mediated heterolytic cleavage of H2, with a particular emphasis on molecular complexes bearing an intramolecular Lewis base. FLPs have traditionally been associated with group compounds, yet many transition metal reactions support a broader classification of FLPs to include certain types of transition metal complexes with reactivity resembling main group based FLPs. This article surveys transition metal complexes that heterolytically cleave H2, which vary in the degree that the Lewis pairs within these systems interact. Particular attention is focused on complexes bearing a pendant aminemore » function as the base. Consideration of transition metal compounds in the context of FLPs can inspire new innovations and improvements in transition metal catalysis.« less
NASA Astrophysics Data System (ADS)
Fahem, Abeer A.
2012-03-01
Two Schiff base ligands derived from condensation of phthalaldehyde and o-phenylenediamine in 1:2 (L1) and 2:1 (L2) having bifunctional coordinated groups (NH2 and CHO groups, respectively) and their metal complexes with Ni(II) and UO2(II) have been synthesized and characterized by elemental analysis, molar conductance, magnetic susceptibilities and spectral data (IR, 1H NMR, mass and solid reflectance) as well as thermal, XRPD and SEM analysis. The formula [Ni(L1)Cl2]·2.5H2O, [UO2(L1)(NO3)2]·2H2O, [Ni(L2)Cl2]·1.5H2O and [UO2(L2)(NO3)2] have been suggested for the complexes. The vibrational spectral data show that the ligands behave as neutral ligands and coordinated to the metal ions in a tetradentate manner. The Ni(II) complexes are six coordinate with octahedral geometry and the ligand field parameters: Dq, B, β and LFSE were calculated while, UO2(II) complexes are eight coordinate with dodecahedral geometry and the force constant, FUsbnd O and bond length, RUsbnd O were calculated. The thermal decomposition of complexes ended with metal chloride/nitrate as a final product and the highest thermal stability is displayed by [UO2(L2)(NO3)2] complex. The X-ray powder diffraction data revealed the formation of nano sized crystalline complexes. The SEM analysis provides the morphology of the synthesized compounds and SEM image of [UO2(L2)(NO3)2] complex exhibits nano rod structure. The growth-inhibiting potential of the ligands and their complexes has been assessed against a variety of bacterial and fungal strains.
Reactive solute transport in streams: A surface complexation approach for trace metal sorption
Runkel, Robert L.; Kimball, Briant A.; McKnight, Diane M.; Bencala, Kenneth E.
1999-01-01
A model for trace metals that considers in-stream transport, metal oxide precipitation-dissolution, and pH-dependent sorption is presented. Linkage between a surface complexation submodel and the stream transport equations provides a framework for modeling sorption onto static and/or dynamic surfaces. A static surface (e.g., an iron- oxide-coated streambed) is defined as a surface with a temporally constant solid concentration. Limited contact between solutes in the water column and the static surface is considered using a pseudokinetic approach. A dynamic surface (e.g., freshly precipitated metal oxides) has a temporally variable solid concentration and is in equilibrium with the water column. Transport and deposition of solute mass sorbed to the dynamic surface is represented in the stream transport equations that include precipitate settling. The model is applied to a pH-modification experiment in an acid mine drainage stream. Dissolved copper concentrations were depressed for a 3 hour period in response to the experimentally elevated pH. After passage of the pH front, copper was desorbed, and dissolved concentrations returned to ambient levels. Copper sorption is modeled by considering sorption to aged hydrous ferric oxide (HFO) on the streambed (static surface) and freshly precipitated HFO in the water column (dynamic surface). Comparison of parameter estimates with reported values suggests that naturally formed iron oxides may be more effective in removing trace metals than synthetic oxides used in laboratory studies. The model's ability to simulate pH, metal oxide precipitation-dissolution, and pH-dependent sorption provides a means of evaluating the complex interactions between trace metal chemistry and hydrologic transport at the field scale.
Process for the displacement of cyanide ions from metal-cyanide complexes
Smith, Barbara F.; Robinson, Thomas W.
1997-01-01
The present invention relates to water-soluble polymers and the use of such water-soluble polymers in a process for the displacement of the cyanide ions from the metal ions within metal-cyanide complexes. The process waste streams can include metal-cyanide containing electroplating waste streams, mining leach waste streams, mineral processing waste streams, and related metal-cyanide containing waste streams. The metal ions of interest are metals that give very strong complexes with cyanide, mostly iron, nickel, and copper. The physical separation of the water-soluble polymer-metal complex from the cyanide ions can be accomplished through the use of ultrafiltration. Once the metal-cyanide complex is disrupted, the freed cyanide ions can be recovered for reuse or destroyed using available oxidative processes rendering the cyanide nonhazardous. The metal ions are released from the polymer, using dilute acid, metal ion oxidation state adjustment, or competing chelating agents, and collected and recovered or disposed of by appropriate waste management techniques. The water-soluble polymer can then be recycled. Preferred water-soluble polymers include polyethyleneimine and polyethyleneimine having a catechol or hydroxamate group.
NASA Astrophysics Data System (ADS)
Kohler, Martin; Leary, Julie A.
1997-03-01
Doubly charged metal(II)-complexes of [alpha] 1-3, [alpha] 1-6 mannotriose and the conserved trimannosyl core pentasaccharide as well as doubly charged complexes of Co(II), Mn(II), Ca(II) and Sr(II) with acetonitrile generated by electrospray ionization were studied by low energy collision induced dissociation (CID). Two main fragmentation pathways were observed for the metal(II)-oligosaccharide complexes. Regardless of the coordinating metal, loss of a neutral dehydrohexose residue (162 Da) from the doubly charged precursor ion is observed, forming a doubly charged product ion. However, if the oligosaccharide is coordinated to Co(II) or Mn(II), loss of a dehydroxyhexose cation is also observed. Investigation of the low mass region of the mass spectra of the metal coordinated oligosaccharides revealed intense signals corresponding to [metal(II) + (CH3CN)n2+ (where n = 1-6) species which were being formed by the metal(II) ions and the acetonitrile present in the sample. Analysis of these metal(II)-acetonitrile complexes provided further insight into the processes occurring upon low energy CID of doubly charged metal complexes. The metal(II)-acetonitrile system showed neutral loss and ligand cleavage as observed with the oligosaccharide complexes, as well as a series of six different dissociation mechanisms, most notable among them reduction from [metal(II) + (CH3CN)n2+ to the bare [metal(I)]+ species by electron transfer. Depending on the metal and collision gas chosen, one observes electron transfer from the ligand to the metal, electron transfer from the collision gas to the metal, proton transfer between ligands, heterolytic cleavage of the ligands, reactive collisions and loss of neutral ligands.
NASA Astrophysics Data System (ADS)
Wang, Hongming; Yang, Chuanlu; Zhang, Zhihong; Wang, Meishan; Han, Keli
2006-06-01
The ground-state geometries, electronic structures and vibrational frequencies of metal corrolazine complexes, CzM (M = Mn, Co, Ni and Fe) have been studied using B3LYP/6-311g(d) method. The molecular geometries are sensitive to the species of the metal, and the bond length of the M sbnd N is increase with the metal atom radii. The ground-state electronic structures indicate that there are strong interactions between d of the metal fragments and the corrolazine fragments. The calculations also indicate that the CzNi is the stabilest among the four metal corrolazine complexes. Vibrational frequencies of these metal corrolazine complexes were also calculated and were assigned to the local coordinates of the corrolazine ring, which reveals the some common feature of the molecular vibrations of the metal corrolazine complexes as four-coordination metallocorrolazines.
Tolentino, Terezinha Alves; Bertoli, Alexandre Carvalho; dos Santos Pires, Maíra; Carvalho, Ruy; Labory, Claudia Regina Gontijo; Nunes, Janaira Santana; Bastos, Ana Rosa Ribeiro; de Freitas, Matheus Puggina
2015-01-01
Lead (Pb) is known by its toxicity both for animals and plants. In order to evaluate its toxicity, plants of Brachiaria brizantha were cultivated on nutritive solution of Hoagland during 90 days and submitted to different concentrations of Pb. The content of macro and micronutrients was evaluated and there was a reduction on root content of Ca, besides the lowest dosages of Pb had induced an increase of N, S, Mn, Cu, Zn and Fe. The cell ultrastructure of leaves and roots were analyzed by transmission electronic microscopy (TEM). Among the main alterations occurred there were invaginations on cell walls, the presence of crystals on the root cells, accumulation of material on the interior of cells and vacuolar compartmentalization. On the leaves the degradation of chloroplasts was observed, as well as the increase of vacuoles. Structures for the formation of oxalate crystals were proposed through molecular modeling and thermodynamic stability. Calculi suggest the formation of highly stable metal-oxalate complexes. Copyright © 2015 Elsevier B.V. All rights reserved.
Extracting metal ions with diphosphonic acid, or derivative thereof
Horwitz, Earl P.; Gatrone, Ralph C.; Nash, Kenneth L.
1994-01-01
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
Extracting metal ions with diphosphonic acid, or derivative thereof
Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.
1994-07-26
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulfur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.
NASA Astrophysics Data System (ADS)
Sharma, S. S.; Kadia, M. V.
2014-12-01
The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1 R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (Δ G, Δ H, and Δ S) are also evaluated. Negative Δ G and Δ H values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the "gadolinium break." Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.
Contaminant Organic Complexes: Their Structure and Energetics in Surface Decontamination Processes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Satish C. B. Myneni
2005-12-13
Siderophores are biological macromolecules (400-2000 Da) released by bacteria in iron limiting situations to sequester Fe from iron oxyhydroxides and silicates in the natural environment. These molecules contain hydroxamate and phenolate functional groups, and exhibit very high affinity for Fe{sup 3+}. While several studies were conducted to understand the behavior of siderophores and their application to the metal sequestration and mineral dissolution, only a few of them have examined the molecular structure of siderophores and their interactions with metals and mineral surfaces in aqueous solutions. Improved understanding of the chemical state of different functional moieties in siderophores can assist inmore » the application of these biological molecules in actinide separation, sequestration and decontamination processes. The focus of our research group is to evaluate the (a) functional group chemistry of selected siderophores and their metal complexes in aqueous solutions, and (b) the nature of siderophore interactions at the mineral-water interfaces. We selected desferrioxamine B (desB), a hydroxamate siderophore, and its small structural analogue, acetohydroxamic acid (aHa), for this investigation. We examined the functional group chemistry of these molecules as a function of pH, and their complexation with aqueous and solid phase Fe(III). For solid phase Fe, we synthesized all naturally occurring Fe(III)-oxyhydroxides (goethite, lepidocrocite, akaganeite, feroxyhite) and hematite. We also synthesized Fe-oxides (goethite and hematite) of different sizes to evaluate the influence of particle size on mineral dissolution kinetics. We used a series of molecular techniques to explore the functional group chemistry of these molecules and their complexes. Infrared spectroscopy is used to specifically identify the variations in oxime group as a function of pH and Fe(III) complexation. Resonance Raman spectroscopy was used to evaluate the nature of hydroxamate binding in the case of Fe(III)-siderophore complexes and model ligands. Soft and hard X-ray spectroscopy techniques were used to examine the electronic structure of binding groups, and their local structural environment. The synchrotron X-ray studies were conducted at the Stanford Synchrotron Radiation Laboratory and at the Advanced Light Source (Lawrence Berkeley National Laboratory). These experimental vibrational and X-ray spectroscopy studies were complemented with density functional theory calculations. The highlight of this study is the evaluation of the fundamental electronic state information of the hydroxamate moiety in siderophores during deprotonation and Fe(III) complexation. The applications of soft X-ray studies are also new, and were applied, for the first time, to examine the chemistry of organic macromolecules in aqueous solutions.« less
Ge, Ying; Guo, Yujun; Qin, Weidong
2014-04-01
Polyamidoamine (PAMAM) dendrimer generation 2.5 was synthesized and evaluated as sweeping agent for in-column enrichment and as stationary phase for capillary electrochromatographic separation of heavy metal ions, viz., Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), in a running buffer containing 4-(2-pyridylazo)resorcinol (PAR) as a chromogenic reagent. During experiment, a plug of aqueous PAMAM generation 2.5 solution was first introduced to the capillary, followed by electrokinetic injection of the heavy metal ions under a positive voltage. In this step, PAMAM acted as a sweeping agent, stacking the metal ions on the analyte/PAMAM boundary by forming metal ion-PAMAM complexes. The second preconcentration process occurred when PAR, a stronger ligand, moving toward the injection end under the electric field, reached and re-swept the metal ion-PAMAM zone, forming metal ion-PAR complexes. During separation, the neutral PAMAM moved toward the detector with the electroosmotic flow, dynamically coating the capillary wall, forming stationary phases that affected the separation of the metal ions. Due to the function of PAMAM, the detection sensitivity and resolution of the heavy metal ions improved significantly. Under the optimum conditions, the detection limits were 0.299, 0.184, 0.774, 0.182 and 0.047 μg/L for Pb(II), Cu(II), Hg(II), Zn(II) and Co(II), respectively. The method was successfully applied to the determination of heavy metals in snow, tap and rain water samples. Copyright © 2013 Elsevier B.V. All rights reserved.
1984-05-02
the syntheses of dinuclear and trinuclear complexes employing metal -alkylidyne or -alkylidene fragments.8 Reaction 1 also has a parallel with the...1 0 which was previously examined. The mixed metal complex is undoubtedly disordered with respect to the disposition of molybdenum and tungsten atoms...than for the analogous Mo3 complex suggests greater metal - metal overlap and possibly stronger bonding interactions in the W3 complex which would not
NASA Astrophysics Data System (ADS)
Chen, Zhi-Jian; Chen, Ya-Na; Xu, Chun-Na; Zhao, Shan-Shan; Cao, Qi-Yue; Qian, Shao-Song; Qin, Jie; Zhu, Hai-Liang
2016-08-01
Three novel mononuclear complexes, [MⅡ(L)2·2H2O], (M = Cu, Ni or Cd; HL = 4-(3,4-dichlorophenyl)piperazine-1-carboxylic acid)were synthesized and structurally determined by single-crystal X-ray diffraction. Molecular docking study preliminarily revealed that complex 1 had potential urease inhibitory activity. In accordance with the result of calculation, in vitro tests of the inhibitory activities of complexes 1-3 against jack bean urease showed complex 1 (IC50 = 8.17 ± 0.91 μM) had better inhibitory activities than the positive reference acetohydroxamic acid (AHA) (IC50 = 26.99 ± 1.43 μM), while complexes 2 and 3 showed no inhibitory activities., kinetics study was carried out to explore the mechanism of the inhibiting of the enzyme, and the result indicated that complex 1 was a competitive inhibitor of urease. Albumin binding experiment and in vitro toxicity evaluation of complex 1 were implemented to explore its Pharmacological properties.
NASA Astrophysics Data System (ADS)
Ksenofontov, Alexander A.; Guseva, Galina B.; Antina, Elena V.
2016-10-01
Density functional theory (DFT) and Time-dependent density functional theory (TD- DFT) computations have been used to reveal structural, molecular, electronic and spectral-luminescent parameters and features of several homoleptic transition metals bis(dipyrrine) complexes. The influence of complexing agent and ligand nature on the regularities in geometric, spectral-luminescent properties, kinetic and thermal stability changes in the [M2L2] complexes series were studied. Special attention is paid to the influence of the solvating media (PCM/TD-B3LYP/Def2-SVP) on changing spectral-luminescent properties of d-metals bis(dipyrrinate)s. The interpretation of the dependence between spectral-luminescent properties of the complexes and HOMO-LUMO (highest occupied molecular orbital and lowest unoccupied molecular orbital) energy gap's width was given. It was shown that the regularities in changing the helicates' quantum yield depending on the nature of complexing agent, ligand and solvent properties, obtained from quantum-chemical calculations, are in the agreement with our previously obtained experimental data. Thus, structural and spectral-luminescent characteristics of new [M2L2] luminophors can be evaluated with high reliability, and good forecast prospects for their use as fluorescent dyes for optical devices can be made in terms of the results of theoretical studies (B3LYP/Def2-SVP and TD-B3LYP/Def2-SVP).
Giovanella, Patricia; Cabral, Lucélia; Costa, Alexandre Pereira; de Oliveira Camargo, Flávio Anastácio; Gianello, Clesio; Bento, Fátima Menezes
2017-06-01
Contamination of the environment by heavy metals has been increasing in recent years due to industrial activities. Thus research involving microorganisms capable of surviving in multi-contaminated environments is extremely important. The objectives of the present study were to evaluate the removal of mercury alone and in the presence of cadmium, nickel and lead by four mercury-resistant microorganisms; estimate the removal of Cd, Ni and Pb; understand the mechanisms involved (reduction, siderophores, biofilms, biosorption and bioaccumulation) in the metal resistance of the isolate Pseudomonas sp. B50D; and determine the capacity of Pseudomonas sp. B50D in removing Hg, Cd, Ni and Pb from an industrial effluent. It was shown that the four isolates evaluated were capable of removing from 62% to 95% of mercury from a culture medium with no addition of other metals. The isolate Pseudomonas sp. B50D showed the best performance in the removal of mercury when evaluated concomitantly with other metals. This isolate was capable of removing 75% of Hg in the presence of Cd and 91% in the presence of Ni and Pb. With respect to the other metals it removed 60%, 15% and 85% of Cd, Ni and Pb, respectively. In tests with effluent, the isolate Pseudomonas sp. B50D removed 85% of Hg but did not remove the other metals. This isolate presented reduction, biosorption, biofilm production and siderophore production as its metal resistance mechanisms. Pseudomonas sp. B50D was thus a candidate with potential for application in the bioremediation of effluents with complex metal contaminations. Copyright © 2017 Elsevier Inc. All rights reserved.
Affan, Mohammad A; Jessop, Philip G
2017-06-19
Catalytic hydrogenation of CO 2 is an efficient and selective way to prepare formic acid derivatives, but most of the highly active catalysts used for this purpose require precious metals. In this study, in situ abundant-metal complexes have been evaluated as potential catalysts for CO 2 hydrogenation to prepare formamides, including N-formylmorpholine, 2-ethylhexylformamide, and dimethylformamide, from the corresponding amines. From these initial screening results, the most active catalysts for these reactions were found to be MX 2 /dmpe in situ catalysts (M = Fe(II), Ni(II); X = Cl - , CH 3 CO 2 - , acac - ; dmpe = 1,2-bis(dimethylphosphino)ethane) in DMSO. The optimal reaction conditions were found to be 100-135 °C and a total pressure of 100 bar. Morpholine was formylated with a TON value of up to 18000, which is the highest TON for the hydrogenation of CO 2 to formamides using any abundant-metal-phosphine complex. With an appropriate selection of catalyst and reaction conditions, >90-98% conversion of amine to formamide could be achieved.
Teuchies, Johannes; De Jonge, Maarten; Meire, Patrick; Blust, Ronny; Bervoets, Lieven
2012-08-21
The difference between the molar concentrations of simultaneously extracted metals (SEM) and acid volatile sulfides (AVS) is widely used to predict metal availability toward invertebrates in hypoxic sediments. However, this model is poorly investigated for macrophytes. The present study evaluates metal accumulation in roots and stems of the macrophyte Myriophyllum aquaticum during a 54 day lab experiment. The macrophytes, rooting in metal contaminated, hypoxic, and sulfide rich field sediments were exposed to surface water with 40% or 90% oxygen. High oxygen concentrations in the 90% treatment resulted in dissolution of the metal-sulfide complexes and a gradual increase in labile metal concentrations during the experiment. However, the general trend of increasing availability in the sediment with time was not translated in rising M. aquaticum metal concentrations. Processes at the root-sediment interface, e.g., radial oxygen loss (ROL) or the release of organic compounds by plant roots and their effect on metal availability in the rhizosphere may be of larger importance for metal accumulation than the bulk metal mobility predicted by the SEM-AVS model.
NASA Technical Reports Server (NTRS)
Francis, A. J.; Dodge, C. J.
1993-01-01
A process has been developed at Brookhaven National Laboratory (BNL) for the removal of metals and radionuclides from contaminated materials, soils, and waste sites. In this process, citric acid, a naturally occurring organic complexing agent, is used to extract metals such as Ba, Cd, Cr, Ni, Zn, and radionuclides Co, Sr, Th, and U from solid wastes by formation of water soluble, metal-citrate complexes. Citric acid forms different types of complexes with the transition metals and actinides, and may involve formation of a bidentate, tridentate, binuclear, or polynuclear complex species. The extract containing radionuclide/metal complex is then subjected to microbiological degradation followed by photochemical degradation under aerobic conditions. Several metal citrate complexes are biodegraded, and the metals are recovered in a concentrated form with the bacterial biomass. Uranium forms binuclear complex with citric acid and is not biodegraded. The supernatant containing uranium citrate complex is separated and upon exposure to light, undergoes rapid degradation resulting in the formation of an insoluble, stable polymeric form of uranium. Uranium is recovered as a precipitate (polyuranate) in a concentrated form for recycling or for appropriate disposal. This treatment process, unlike others which use caustic reagents, does not create additional hazardous wastes for disposal and causes little damage to soil which can then be returned to normal use.
Synthesis, characterization, and anti-cancer activity of emodin-Mn(II) metal complex.
Yang, Li; Tan, Jun; Wang, Bo-Chu; Zhu, Lian-Cai
2014-12-01
To synthesize and characterize a novel metal complex of Mn (II) with emodin, and evaluate its anti-cancer activity. The elemental analyses, IR, UV-vis, atomic absorption spectroscopy, TG-DSC, (1)H NMR, and (13)C NMR data were used to characterize the structure of the complex. The cytotoxicity of the complex against the human cancer cell lines HepG2, HeLa, MCF-7, B16, and MDA-MB-231 was tested by the MTT assay and flow cytometry. Emodin was coordinated with Mn(II) through the 9-C=O and 1-OH, and the general formula of the complex was Mn(II) (emodin)2·2H2O. In studies of the cytotoxicity, the complex exhibited significant activity, and the IC50 values of the complex against five cancer cell lines improved approximately three-fold compared with those of emodin. The complex could induce cell morphological changes, decrease the percentage of viability, and induce G0/G1 phase arrest and apoptosis in cancer cells. The coordination of emodin with Mn(II) can improve its anticancer activity, and the complex Mn(II) (emodin)2·2H2O could be studied further as a promising anticancer drug. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdel-Monem, Yasser K.; Abouel-Enein, Saeyda A.; El-Seady, Safa M.
2018-01-01
Multidentate Schiff base (H2L) ligand results from condensation of 5-aminouracil and 2-benzoyl pyridine and its metal chloride (Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Pd(II), Fe(III), Cr(III), Ru(III), Zr(IV) and Hf(IV)) complexes were prepared. The structural features of the ligand and its metal complexes were confirmed by elemental analyses, spectroscopic methods (IR, UV-Vis, 1H NMR, mass), magnetic moment measurements and thermal studies. The data refer to the ligand coordinates with metal ions in a neutral form and shows different modes of chelation toward the metal atom. All complexes have octahedral skeleton structure, tetrahedrally Mn(II), Ni(II), trigonalbipyramidal Co(II) and square planner Pd(II). Thermal decomposition of complexes as well as the interaction of different types of solvent of crystallization are assigned by thermogravimetric analysis. Molecular modeling of prepared complexes were investigated to study the expected anticancer activities of the prepared complexes. All metal complexes have no interaction except the complexes of Pd(II), Fe(III) and Mn(II).
Yan, Fa-Shun; Sun, Jian-Long; Xie, Wen-Hai; Shen, Liang; Ji, Hong-Fang
2017-12-28
Alzheimer's disease (AD) is the main form of dementia and has a steadily increasing prevalence. As both oxidative stress and metal homeostasis are involved in the pathogenesis of AD, it would be interesting to develop a dual function agent, targeting the two factors. Curcumin, a natural compound isolated from the rhizome of Curcuma longa , is an antioxidant and can also chelate metal ions. Whether the complexes of curcumin with metal ions possess neuroprotective effects has not been evaluated. Therefore, the present study was designed to investigate the protective effects of the complexes of curcumin with Cu(II) or Zn(II) on hydrogen peroxide (H₂O₂)-induced injury and the underlying molecular mechanisms. The use of rat pheochromocytoma (PC12) cells, a widely used neuronal cell model system, was adopted. It was revealed that curcumin-Cu(II) complexes systems possessed enhanced O₂ ·- -scavenging activities compared to unchelated curcumin. In comparison with unchelated curcumin, the protective effects of curcumin-Cu(II) complexes systems were stronger than curcumin-Zn(II) system. Curcumin-Cu(II) or -Zn(II) complexes systems significantly enhanced the superoxide dismutase, catalase, and glutathione peroxidase activities and attenuated the increase of malondialdehyde levels and caspase-3 and caspase-9 activities, in a dose-dependent manner. The curcumin-Cu(II) complex system with a 2:1 ratio exhibited the most significant effect. Further mechanistic study demonstrated that curcumin-Cu(II) or -Zn(II) complexes systems inhibited cell apoptosis via downregulating the nuclear factor κB (NF-κB) pathway and upregulating Bcl-2/Bax pathway. In summary, the present study found that curcumin-Cu(II) or -Zn(II) complexes systems, especially the former, possess significant neuroprotective effects, which indicates the potential advantage of curcumin as a promising agent against AD and deserves further study.
NASA Astrophysics Data System (ADS)
Sharma, Krishna; Singh, R. V.; Fahmi, Nighat
2011-01-01
A series of Pd(II) and Pt(II) complexes with two N ∩S donor ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and 6-nitro-3-(indolin-2-one)benzothiazoline, have been synthesized by the reaction of metal chlorides (PdCl 2 and PtCl 2) with ligands in 1:2 molar ratios. All the synthesized compounds were characterized by elemental analyses, melting point determinations and a combination of electronic, IR, 1H NMR and 13C NMR spectroscopic techniques for structure elucidation. In order to evaluate the effect of metal ions upon chelation, both the ligands and their complexes have been screened for their antimicrobial activity against the various pathogenic bacterial and fungal strains. The metal complexes have shown to be more antimicrobial against the microbial species as compared to free ligands. One of the ligands, 5-chloro-3-(indolin-2-one)benzothiazoline and its corresponding palladium and platinum complexes have been tested for their antifertility activity in male albino rats. The marked reduction in sperm motility and density resulted in infertility by 62-90%. Significant alterations were found in biochemical parameters of reproductive organs in treated animals as compared to control group. It is concluded that all these effects may finally impair the fertility of male rats.
Essawy, Amr A; Afifi, Manal A; Moustafa, H; El-Medani, S M
2014-10-15
The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Essawy, Amr A.; Afifi, Manal A.; Moustafa, H.; El-Medani, S. M.
2014-10-01
The complexes of Sm(III) and Tb(III) with 2-aminobenzoic acid (anthranilic acid, AA) and 2-amino-5-chlorobenzoic acid (5-chloroanthranilic acid, AACl) were synthesized and characterized based on elemental analysis, IR and mass spectroscopy. The data are in accordance with 1:3 [Metal]:[Ligand] ratio. On the basis of the IR analysis, it was found that the metals were coordinated to bidentate anthranilic acid via the ionised oxygen of the carboxylate group and to the nitrogen of amino group. While in 5-chloroanthranilic acid, the metals were coordinated oxidatively to the bidentate carboxylate group without bonding to amino group; accordingly, a chlorine-affected coordination and reactivity-diversity was emphasized. Thermal analyses (TGA) and biological activity of the complexes were also investigated. Density Functional Theory (DFT) calculations at the B3LYP/6-311++G (d,p)_ level of theory have been carried out to investigate the equilibrium geometry of the ligand. The optimized geometry parameters of the complexes were evaluated using SDDALL basis set. Moreover, total energy, energy of HOMO and LUMO and Mullikan atomic charges were calculated. In addition, dipole moment and orientation have been performed and discussed.
Study of distorted octahedral structure in 3d transition metal complexes using XAFS
NASA Astrophysics Data System (ADS)
Gaur, A.; Nitin Nair, N.; Shrivastava, B. D.; Das, B. K.; Chakrabortty, Monideepa; Jha, S. N.; Bhattacharyya, D.
2018-01-01
Distortion in octahedral structure of 3d transition metal complexes (Mn, Fe, Co, Ni, Cu, Zn) has been studied using XAFS showing divergent nature of Cu complex. EXAFS analysis showed elongated metal-oxygen bonds for Cu complex leading to more distorted structure. Derivative XANES spectrum at Cu K-edge exhibits splitting of main edge which is correlated to elongated Cu-O bond length. Using these coordination geometry around metal centers, theoretical XANES spectra have been generated and features observed have been correlated to the corresponding metals p-DOS. It has been shown that distorted octahedral field in Cu complex is responsible for splitting of p-DOS.
Hydrogen interactions with metals
NASA Technical Reports Server (NTRS)
Mclellan, R. B.; Harkins, C. G.
1975-01-01
Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.
Ra, Kongtae; Bang, Jae-Hyun; Lee, Jung-Moo; Kim, Kyung-Tae; Kim, Eun-Soo
2011-08-01
The vertical distribution of trace metals in sediment cores was investigated to evaluate the extent and the historical record of metal pollution over 30 years in the artificial Lake Shihwa in Korea. A marked increase of trace metals after 1980 was observed due to the operation of two large industrial complexes and dike construction for a reclamation project. There was a decreasing trend of metal concentrations with the distance from the pollution source. The enrichment factor and pollution load index of the metals indicated that the metal pollution was mainly derived from Cu, Zn and Cd loads due to anthropogenic activities. The concentrations of Cr, Ni, Cu, Zn, As and Pb in the upper part of all core sediments exceeded the ERL criteria of NOAA. Our results indicate that inadequate planning and management of industrialization and a large reclamation project accomplished by dike construction have continued to strongly accelerate metal pollution in Lake Shihwa. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Lagopati, Nefeli; Tsilibary, Effie C.
2017-01-01
In this minireview, we refer to recent results as far as the Platelet Activating Factor (PAF) inhibitors are concerned. At first, results of organic compounds (natural and synthetic ones and specific and nonspecific) as inhibitors of PAF are reported. Emphasis is given on recent results about a new class of the so-called metal-based inhibitors of PAF. A small library of 30 metal complexes has been thus created; their anti-inflammatory activity has been further evaluated owing to their inhibitory effect against PAF in washed rabbit platelets (WRPs). In addition, emphasis has also been placed on the identification of preliminary structure-activity relationships for the different classes of metal-based inhibitors. PMID:28458618
Tang, Wang-Wang; Zeng, Guang-Ming; Gong, Ji-Lai; Liang, Jie; Xu, Piao; Zhang, Chang; Huang, Bin-Bin
2014-01-15
Nowadays nanomaterials have been widely used to remove heavy metals from water/wastewater due to their large surface area and high reactivity. Humic acid (HA) and fulvic acid (FA) exist ubiquitously in aquatic environments and have a variety of functional groups which allow them to complex with metal ions and interact with nanomaterials. These interactions can not only alter the environmental behavior of nanomaterials, but also influence the removal and transportation of heavy metals by nanomaterials. Thus, the interactions and the underlying mechanisms involved warrant specific investigations. This review outlined the effects of HA/FA on the removal of heavy metals from aqueous solutions by various nanomaterials, mainly including carbon-based nanomaterials, iron-based nanomaterials and photocatalytic nanomaterials. Moreover, mechanisms involved in the interactions were discussed and potential environmental implications of HA/FA to nanomaterials and heavy metals were evaluated. © 2013.
Self-assembly of discrete metal complexes in aqueous solution via block copolypeptide amphiphiles.
Kuroiwa, Keita; Masaki, Yoshitaka; Koga, Yuko; Deming, Timothy J
2013-01-21
The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN)(2)]-, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K(183)L(19) to [Au(CN)(2)]- solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM) showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals). This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.
Determination of stability constants of aminoglycoside antibiotics with their metal complexes
NASA Astrophysics Data System (ADS)
Tiwow, Vanny M. A.
2014-03-01
One group of aminoglycoside antibiotics contains aminosugars. The aminosugar neomycin B with its derivate product neamine (2-Deoxy-4-0-(2,6-diamino-2,6-dideoxy-α-D-glucopyranosyl)-D-Streptamine) was identified as a free ligands and metal complexes. In particular, the stability constants of metal complexes by potentiometric titration techniques were investigated. Our previous study had determined the acid dissociation constants of these aminosugars with few metal complexes in fair depth. In this work, the complexation of two pyridine-containing amino alcohols and an amino sugar (neamine) have been measured potentiometrically. For instance, the stability constant of copper(II) complexation were determine and the model system generated an excellent fit. Stability constants with several metals have been determined and will be reported.
Culcu, Gursu; Iovan, Diana A; Krogman, Jeremy P; Wilding, Matthew J T; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2017-07-19
Heterometallic multiple bonds between niobium and other transition metals have not been reported to date, likely owing to the highly reactive nature of low-valent niobium centers. Herein, a C 3 -symmetric tris(phosphinoamide) ligand framework is used to construct a Nb/Fe heterobimetallic complex Cl-Nb( i PrNPPh 2 ) 3 Fe-Br (2), which features a Fe→Nb dative bond with a metal-metal distance of 2.4269(4) Å. Reduction of 2 in the presence of PMe 3 affords Nb( i PrNPPh 2 ) 3 Fe-PMe 3 (6), a compound with an unusual trigonal pyramidal geometry at a Nb III center, a Nb≡Fe triple bond, and the shortest bond distance (2.1446(8) Å) ever reported between Nb and any other transition metal. Complex 6 is thermally unstable and degrades via P-N bond cleavage to form a Nb V ═NR imide complex, i PrN═Nb( i PrNPPh 2 ) 3 Fe-PMe 3 (9). The heterobimetallic complexes i PrN═Nb( i PrNPPh 2 ) 3 Fe-Br (8) and 9 are independently synthesized, revealing that the strongly π-bonding imido functionality prevents significant metal-metal interactions. The 57 Fe Mössbauer spectra of 2, 6, 8, and 9 show a clear trend in isomer shift (δ), with a decrease in δ as metal-metal interactions become stronger and the Fe center is reduced. The electronic structure and metal-metal bonding of 2, 6, 8, and 9 are explored through computational studies, and cyclic voltammetry is used to better understand the effect of metal-metal interaction in early/late heterobimetallic complexes on the redox properties of the two metals involved.
Prell, D; Kalender, W A; Kyriakou, Y
2010-12-01
The purpose of this study was to develop, implement and evaluate a dedicated metal artefact reduction (MAR) method for flat-detector CT (FDCT). The algorithm uses the multidimensional raw data space to calculate surrogate attenuation values for the original metal traces in the raw data domain. The metal traces are detected automatically by a three-dimensional, threshold-based segmentation algorithm in an initial reconstructed image volume, based on twofold histogram information for calculating appropriate metal thresholds. These thresholds are combined with constrained morphological operations in the projection domain. A subsequent reconstruction of the modified raw data yields an artefact-reduced image volume that is further processed by a combining procedure that reinserts the missing metal information. For image quality assessment, measurements on semi-anthropomorphic phantoms containing metallic inserts were evaluated in terms of CT value accuracy, image noise and spatial resolution before and after correction. Measurements of the same phantoms without prostheses were used as ground truth for comparison. Cadaver measurements were performed on complex and realistic cases and to determine the influences of our correction method on the tissue surrounding the prostheses. The results showed a significant reduction of metal-induced streak artefacts (CT value differences were reduced to below 22 HU and image noise reduction of up to 200%). The cadaver measurements showed excellent results for imaging areas close to the implant and exceptional artefact suppression in these areas. Furthermore, measurements in the knee and spine regions confirmed the superiority of our method to standard one-dimensional, linear interpolation.
Spectroscopic, structure and antimicrobial activity of new Y(III) and Zr(IV) ciprofloxacin
NASA Astrophysics Data System (ADS)
Sadeek, Sadeek A.; El-Shwiniy, Walaa H.; Zordok, Wael A.; El-Didamony, Akram M.
2011-02-01
The preparation and characterization of the new solid complexes [Y(CIP) 2(H 2O) 2]Cl 3·10H 2O and [ZrO(CIP) 2Cl]Cl·15H 2O formed in the reaction of ciprofloxacin (CIP) with YCl 3 and ZrOCl 2·8H 2O in ethanol and methanol, respectively, at room temperature were reported. The isolated complexes have been characterized with elemental analysis, IR spectroscopy, conductance measurements, UV-vis and 1H NMR spectroscopic methods and thermal analyses. The results support the formation of the complexes and indicate that ciprofloxacin reacts as a bidentate ligand bound to the metal ion through the pyridone oxygen and one carboxylato oxygen. The activation energies, E*; entropies, Δ S*; enthalpies, Δ H*; Gibbs free energies, Δ G*, of the thermal decomposition reactions have been derived from thermogravimetric (TGA) and differential thermogravimetric (DTG) curves, using Coats-Redfern and Horowitz-Metzeger methods. The proposed structure of the two complexes was detected by using the density functional theory (DFT) at the B3LYP/CEP-31G level of theory. The ligand as well as their metal complexes was also evaluated for their antibacterial activity against several bacterial species, such as Staphylococcus aureus ( S. aureus), Escherichia coli ( E. coli) and Pseudomonas aeruginosa ( P. aeruginosa) and antifungal screening was studied against two species ( Penicillium ( P. rotatum) and Trichoderma ( T. sp.)). This study showed that the metal complexes are more antibacterial as compared to free ligand and no antifungal activity observed for ligand and their complexes.
Tsednee, Munkhtsetseg; Huang, Yu-Chen; Chen, Yet-Ran; Yeh, Kuo-Chen
2016-01-01
Electrospray ionization-mass spectrometry (ESI-MS) is used to analyze metal species in a variety of samples. Here, we describe an application for identifying metal species by tandem mass spectrometry (ESI-MS/MS) with the release of free metals from the corresponding metal–ligand complexes. The MS/MS data were used to elucidate the possible fragmentation pathways of different metal–deoxymugineic acid (–DMA) and metal–nicotianamine (–NA) complexes and select the product ions with highest abundance that may be useful for quantitative multiple reaction monitoring. This method can be used for identifying different metal–ligand complexes, especially for metal species whose mass spectra peaks are clustered close together. Different metal–DMA/NA complexes were simultaneously identified under different physiological pH conditions with this method. We further demonstrated the application of the technique for different plant samples and with different MS instruments. PMID:27240899
Wang, Hongxin; Friedrich, Stephan; Li, Lei; Mao, Ziliang; Ge, Pinghua; Balasubramanian, Mahalingam; Patil, Daulat S
2018-03-28
According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d 10 → 3d 0 . In addition, extremely dilute (<0.1% wt/wt) Ni enzymes were examined by two different approaches: (1) by using a high resolution superconducting tunnel junction X-ray detector to obtain XAS spectra with a very high signal-to-noise ratio, especially in the non-variant edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d 0 to a closed shell 3d 10 ; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L 3 and post-L 2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring <0.1% Ni enzymes are compared and discussed. This study extends L-edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.
Petasis, Doros T; Hendrich, Michael P
2015-01-01
Electron paramagnetic resonance (EPR) spectroscopy has long been a primary method for characterization of paramagnetic centers in materials and biological complexes. Transition metals in biological complexes have valence d-orbitals that largely define the chemistry of the metal centers. EPR spectra are distinctive for metal type, oxidation state, protein environment, substrates, and inhibitors. The study of many metal centers in proteins, enzymes, and biomimetic complexes has led to the development of a systematic methodology for quantitative interpretation of EPR spectra from a wide array of metal containing complexes. The methodology is now contained in the computer program SpinCount. SpinCount allows simulation of EPR spectra from any sample containing multiple species composed of one or two metals in any spin state. The simulations are quantitative, thus allowing determination of all species concentrations in a sample directly from spectra. This chapter will focus on applications to transition metals in biological systems using EPR spectra from multiple microwave frequencies and modes. © 2015 Elsevier Inc. All rights reserved.
Ravi, Mudavath; Chennam, Kishan Prasad; Ushaiah, B; Eslavath, Ravi Kumar; Perugu, Shyam; Ajumeera, Rajanna; Devi, Ch Sarala
2015-09-01
The focus of the present work is on the design, synthesis, characterization, DNA-interaction, photo-cleavage, radical scavenging, in-vitro cytotoxicity, antimicrobial, docking and kinetic studies of Cu (II), Cd (II), Ce (IV) and Zr (IV) metal complexes of an imine derivative, 3 - (1 - (6 - methoxybenzo [d] thiazol - 2 - ylimino) ethyl) - 6 - methyl - 3H - pyran - 2, 4 - dione. The investigation of metal ligand interactions for the determination of composition of metal complexes, corresponding kinetic studies and antioxidant activity in solution was carried out by spectrophotometric methods. The synthesized metal complexes were characterized by EDX analysis, Mass, IR, (1)H-NMR, (13)C-NMR and UV-Visible spectra. DNA binding studies of metal complexes with Calf thymus (CT) DNA were carried out at room temperature by employing UV-Vis electron absorption, fluorescence emission and viscosity measurement techniques. The results revealed that these complexes interact with DNA through intercalation. The results of in vitro antibacterial studies showed the enhanced activity of chelating agent in metal chelated form and thus inferring scope for further development of new therapeutic drugs. Cell viability experiments indicated that all complexes showed significant dose dependent cytotoxicity in selected cell lines. The molecular modeling and docking studies were carried out with energy minimized structures of metal complexes to identify the receptor to metal interactions.
Mahmood, Talat; Bibi, Yasmeen; Zafar, Raana; Wahab, Aneela; Mahmood, Iffat; Arshad, Nuzhat; Sherwani, Sikandar Khan
2015-03-01
β-sitosterol is a naturally occurring plant sterol (phytosterol) present in many fruits and vegetables. Scientific research has proven that β-sitosterol is helpful in maintaining the proper functioning of our body. Previously we described the complexation of β-sitosterol with trace metals (Mahmood et al., 2013). Trace metals after the formation of complex unable to absorb in the body and hence eliminated out from the body thus reducing metal toxicity (Marsha, 1996). The present article describes the complexation of μ-sitosterol with Palladium (Pd) metal. Palladium is a toxic metal and due to polluted and hazardous environment traces of this metal can be transferred into the body, which is harmful for human health. Our aim is to make Pd-sterol complex so that this toxic metal (Pd) does not absorb in the body and hence excreted out from the body in the complex form. In order to form this complex μ-sitosterol (Ib) is reacted with Tris (dibenzylideneacetone) dipalladium or [Pd(2) (DBA)(3)] (Ia) in 2:1 ratio in an inert atmosphere and dimethylformamid (DMF) added as a solvent. The resulting complex [Pd(2) (DBA)(3).(β-sitosterol) (Ic) was identified by various spectroscopic techniques such as IR, Mass and (1)H-NMR. This new organo metallic complex (Ic) also showed significant antibacterial and antifungal activity. The present work revealed that Pd-sterol complex does not only reduce metal toxicity but also helpful in minimizing bacterial and fungal infections present in the body. Our research also concluded that we must take plenty of fruits and vegetables in our diet so that natural plant sterol such as β-sitosterol can enhance our defense mechanism and maintain other functions of our body.
Chohan, Zahid H; Sumrra, Sajjad H; Youssoufi, Moulay H; Hadda, Taibi B
2010-07-01
A new series of oxovanadium(IV) complexes have been designed and synthesized with a new class of triazole Schiff bases derived from the reaction of 3,5-diamino-1,2,4-triazole with 2-hydroxy-1-naphthaldehyde, pyrrole-2-carboxaldehyde, pyridine-2-carboxaldehyde and acetyl pyridine-2-carboxaldehyde, respectively. Physical (magnetic susceptibility, molar conductance), spectral (IR, (1)H NMR, (13)C NMR, mass and electronic) and analytical data have established the structures of these synthesized Schiff bases and their oxovanadium(IV) complexes. The Schiff bases, predominantly act as bidentate and coordinate with the vanadium(IV) metal to give a stoichiometric ratio of 1:2 [M:L], forming a general formulae, [M(L-H)(2)] and [M(L)(2)]SO(4) where L = (L(1))-(L(4)) and M = VO(IV) of these complexes in a square-pyramidal geometry. In order to evaluate the biological activity of Schiff bases and to assess the role of vanadium(IV) metal on biological activity, the triazole Schiff bases and their oxovanadium(IV) complexes have been studied for in vitro antibacterial activity against four Gram-negative (Escherichia coli, Shigella flexenari, Pseudomonas aeruginosa, Salmonella typhi) and two Gram-positive (Staphylococcus aureus, Bacillus subtilis) bacterial strains, in vitro antifungal activity against Trichophyton longifucus, Candida albican, Aspergillus flavus, Microscopum canis, Fusarium solani and Candida glaberata. The simple Schiff bases showed weaker to significant activity against one or more bacterial and fungal strains. In most of the cases higher activity was exhibited upon coordination with vanadium(IV) metal. Brine shrimp bioassay was also carried out for in vitro cytotoxic properties against Artemia salina. Copyright (c) 2010 Elsevier Masson SAS. All rights reserved.
NASA Astrophysics Data System (ADS)
Daravath, Sreenu; Kumar, Marri Pradeep; Rambabu, Aveli; Vamsikrishna, Narendrula; Ganji, Nirmala; Shivaraj
2017-09-01
Two novel Schiff bases, L1 = (2-benzo[d]thiazol-6-ylimino)methyl)-4,6-dichlorophenol), L2 = (1-benzo[d]thiazol-6-ylimino)methyl)-6-bromo-4-chlorophenol) and their bivalent transition metal complexes [M(L1)2] and [M(L2)2], where M = Cu(II), Co(II) and Ni(II) were synthesized and characterized by elemental analysis, NMR, IR, UV-visible, mass, magnetic moments, ESR, TGA, SEM, EDX and powder XRD. Based on the experimental data a square planar geometry around the metal ion is assigned to all the complexes (1a-2c). The interaction of synthesized metal complexes with calf thymus DNA was explored using UV-visible absorption spectra, fluorescence and viscosity measurements. The experimental evidence indicated that all the metal complexes strongly bound to CT-DNA through an intercalation mode. DNA cleavage experiments of metal(II) complexes with supercoiled pBR322 DNA have also been explored by gel electrophoresis in the presence of H2O2 as well as UV light, and it is found that the Cu(II) complexes cleaved DNA more effectively compared to Co(II), Ni(II) complexes. In addition, the ligands and their metal complexes were screened for antimicrobial activity and it is found that all the metal complexes were more potent than free ligands.
Reactions catalyzed by haloporphyrins
Ellis, P.E. Jr.; Lyons, J.E.
1996-02-06
The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.
Haloporphyrins and their preparation and use as catalysts
Ellis, Jr., Paul E.; Lyons, James E.
1997-01-01
The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.
Reactions catalyzed by haloporphyrins
Ellis, Jr., Paul E.; Lyons, James E.
1996-01-01
The invention provides novel methods for the oxidation of hydrocarbons with oxygen-containing gas to form hydroxy-group containing compounds and for the decomposition of hydroperoxides to form hydroxygroup containing compounds. The catalysts used in the methods of the invention comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The catalyst compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of alkanes is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of alkanes and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of alkanes and decomposition of alkyl hydroperoxides.
Haloporphyrins and their preparation and use as catalysts
Ellis, P.E. Jr.; Lyons, J.E.
1997-09-02
The invention provides novel catalyst compositions, useful in the oxidation of hydrocarbons with air or oxygen to form hydroxy-group containing compounds and in the decomposition of hydroperoxides to form hydroxy-group containing compounds. The catalysts comprise transition metal complexes of a porphyrin ring having 1 to 12 halogen substituents on the porphyrin ring, at least one of said halogens being in a meso position and/or the catalyst containing no aryl group in a meso position. The compositions are prepared by halogenating a transition metal complex of a porphyrin. In one embodiment, a complex of a porphyrin with a metal whose porphyrin complexes are not active for oxidation of hydrocarbons is halogenated, thereby to obtain a haloporphyrin complex of that metal, the metal is removed from the haloporphyrin complex to obtain the free base form of the haloporphyrin, and a metal such as iron whose porphyrin complexes are active for oxidation of hydrocarbons and for the decomposition of alkyl hydroperoxides is complexed with the free base to obtain an active catalyst for oxidation of hydrocarbons and decomposition of alkyl hydroperoxides.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Min, J.H.; Hering, J.G.
1996-11-01
The rapid removal and high sorption capacity for metals as well as the cost-effectiveness of biosorption makes it a promising alternative for remediation or treatment of metals in the aquatic environment. Depending on the type of biomass, the sorption capacity may vary significantly for different metals, and thus it is important to evaluate the sorption characteristics of biomass for optimal removal of metals from the wastewaters. The objective of developing a biosorption database was to use available literature data for preliminary evaluation of potential significance of biosorption. The database was developed by collecting biosorption data sets from the published literature,more » extracting raw data from the papers, and re-analyzing the data with a consistent model. The re-analysis was crucial in developing the database because of the inconsistency in sorption models and units used by various investigators. The raw data from the literature were obtained using a digitizer and fitted with a same isotherm model with consistent units, which enabled quantitative comparison between data sets under similar conditions from different sources by comparing the isotherm constants. Metal sorption by biomass can be influenced by various environmental conditions such as pH, temperature, the characteristics or composition of the solution, and the presence of other complexing ligands in the solution. Biosorption of a specific metal by a specific species or type of biomass under different conditions can be compared to evaluate the effect of each parameter and to assess the possibility of lumping constants for a general case. The general sorption parameters for similar types of biomass under similar conditions can be used in preliminary assessment of metal/biomass combination for the optimal removal or stabilization of heavy metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hye Sun; Department of Materials Science and Engineering, Yonsei University, Seoul 120-749; Kim, Won Hee
2012-01-15
Highly ordered mesoporous silica nanoparticles with tunable morphology and pore-size are prepared by the use of a transition metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. These metal ions formed a metal-P123 micelle complex in an aqueous solution, while the metal ions are chelated to the hydrophilic domain such as the poly(ethylene oxide) group of a P123 surfactant. The different complexation abilities of the utilized transition metal ions play an important role in determining the formation of nano-sized ordered MSNs due to the different stabilization constant of the metal-P123 complex. Consequently, from amore » particle length of 1700 nm in the original mesoporous silica materials, the particle length of ordered MSNs through the metal-chelating P123 micelle templates can be reduced to a range of 180-800 nm. Furthermore, the variation of pore size shows a slight change from 8.8 to 6.6 nm. In particular, the Cu{sup 2+}-chelated MSNs show only decreased particle size to 180 nm. The stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism of MSNs by the metal-chelating P123 complex templates. In addition, solid-state {sup 29}Si, {sup 13}C-NMR and ICP-OES measurements are used for quantitative characterization reveal that the utilized metal ions affect only the formation of a metal-P123 complex in a micelle as a template. - Graphical abstract: Metal-chelating surfactant micelle templates support a simple and facile preparations of size-tunable ordered MSNs. Black-Small-Square Highlights: Black-Right-Pointing-Pointer Facile preparation of mesoporous silica nanoparticles (MSNs) was achieved by metal-chelating surfactant micelle complex using Co{sup 2+}, Ni{sup 2+}, Cu{sup 2+}, and Zn{sup 2+} ions. Black-Right-Pointing-Pointer Different complexation of metal ions plays an important role in determining the formation of nano-sized ordered MSNs. Black-Right-Pointing-Pointer Systematic characterization of the synthesized materials was achieved by solid-state {sup 29}Si and {sup 13}C-NMR techniques, BET, FT-IR, and XPS. Black-Right-Pointing-Pointer Stability constants for the metal-P123 complex are calculated on the basis of molar conductance measurements in order to elucidate the formation mechanism.« less
Lakatos, Béla; Szentmihályi, Klára; Vinkler, Péter; Balla, József; Balla, György
2004-06-20
The role of essential nutrient metal ions (Mg, Fe, Cu, Zn, Mn and Co) often deficient in our foodstuffs, although vitally essential in the function of the human organism as well as the different reasons for these deficiencies both in foods and in the human body have been studied. The most frequent nutritional disease is iron deficient anaemia. Inorganic salts, artificial synthetic monomer organic metal complexes of high stability or organic polymer complexes of high molecular mass are unsatisfactory for supplementation to the human body, owing to poor absorption, low availability and/or harmful side effects. In contrast, we have recently found that mixed metal complexes of oligo/polygalacturonic acids with medium molecular weight prepared from natural pectin of plant origin are efficient for oral supplementation. Sufficient absorption of essential metal ions from metal oligo/polygalacturonate mixed complexes with polynuclear innersphere structure is due to the high ionselectivity and medium stability values. Metal oligo/polygalacturonate mixed complexes contain all deficient essential metal ions in adequate amounts and ratios for higher bioavailability of metal ions and optimal vital function. Therefore, by oral administration of these complexes, metal ion homeostasis and optimal interactions with vitamins and hormones can be ensured. Prelatent or latent macroelement Mg deficiency can often be observed among clinical or ambulance patients. Latent or manifest mesoelement iron deficiency is the most common, however, the occurrence of microelement copper, zinc, manganese and cobalt latent deficiencies is not seldom either. Supplementation studies utilizing essential metal oligo/polygalacturonate complexes led to satisfactory outcome without harmful side effects.
NASA Astrophysics Data System (ADS)
Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad
2014-07-01
A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.
Novel Dialkylamino Derivatives of Phosphorus and Silicon.
1987-10-19
Metal Carbonyl Complexes ," Inorg. Chem. 1985, 24, 3136-3139. (7) King, R. B., Fu, W.-K.; Holt, E. M. "The Synthesis of Heterobimetallic Complexes from...Carbonyl Complexes of Diisopropylaminohalophosphines and their Application for the Synthesis of Novel Bimetallic Complexes ," presented by W.-K. Fu at the...necessary and identify by block number) FIELD -GROUP SUB-GROUP Phosphorus /Metal Complexes Silicon Dialkylamino Metal Carbonyls Boron Cyclopolyphosphinesl
NASA Astrophysics Data System (ADS)
El-Gamel, Nadia E. A.; Ali, Korany A.
2017-11-01
N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide ligand and its Nickel and Manganese complexes have been synthesized and characterized by elemental and thermal analyses, IR, diffuse reflectance, mass and UV-Vis spectra, molar conductance and magnetic moment measurements. The decomposition mechanism and thermal stability of the investigated complexes are interpreted in terms of their structures. The thermal behaviour of the complexes has been studied and different thermodynamic parameters are calculated using Coats-Redfern method. N-(benzo[d]thiazol-2-yl)-3-oxo-3-phenylpropanamide is a neutral bidentate ligand coordinating metal ions via thiazole ring nitrogen and amide carbonyl O forming high spin octahedral complexes with Mn(II) (2) and distorted square planar in case of Ni(II) (1). Natural bond orbital analysis and geometry optimization were carried out at DFT/B3LYP/6-31G(d) level of theory for the ligand and the mentioned complexes. Ab inito computations at the HF/6-31G(d) level of the theory is conducted in order to detect any probability of a hydrogen bond formation in the ligand. The dipole moment of the Ni(II) and Mn(II) complexes is recorded to be 9.69 and 7.39 Debye, respectively, indicating that the complexes are more polarized than the ligand 2.39 Debye. The in vitro biological activity of the metal chelates is screened against the Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli), fungus (Aspergillus flavus, Candida albicans). Ni(II) complexes displayed the highest activity against Candida albicans and Staphylococcus aureus with MIC values of 13, 30 μg/cm3, respectively.
Sarria, André Lucio Franceschini; Vilela, Adriana Ferreira Lopes; Frugeri, Bárbara Mammana; Fernandes, João Batista; Carlos, Rose Maria; da Silva, Maria Fátima das Graças Fernandes; Cass, Quezia Bezerra; Cardoso, Carmen Lúcia
2016-11-01
Metal chelates strongly influence the nature and magnitude of pharmacological activities in flavonoids. In recent years, studies have shown that a promising class of flavanone-metal ion complexes can act as selective cholinesterase inhibitors (ChEIs), which has led our group to synthesize a new series of flavanone derivatives (hesperidin, hesperetin, naringin, and naringenin) complexed to either copper (II) or zinc (II) and to evaluate their potential use as selective ChEIs. Most of the synthesized complexes exhibited greater inhibitory activity against acetylcholinesterase (AChE) than against butyrylcholinesterase (BChE). Nine of these complexes constituted potent, reversible, and selective ChEIs with inhibitory potency (IC 50 ) and inhibitory constant (K i ) ranging from 0.02 to 4.5μM. Copper complexes with flavanone-bipyridine derivatives afforded the best inhibitory activity against AChE and BChE. The complex Cu(naringin)(2,2'-bipyridine) (11) gave IC 50 and K i values of 0.012±0.002 and 0.07±0.01μM for huAChE, respectively, which were lower than the inhibitory values obtained for standard galanthamine (IC 50 =206±30.0 and K i =126±18.0μM). Evaluation of the inhibitory activity of this complex against butyrylcholinesterase from human serum (huBChE) gave IC 50 and K i values of 8.0±1.4 and 2.0±0.1μM, respectively. A Liquid Chromatography-Immobilized Capillary Enzyme Reactor by UV detection (LC-ICER-UV) assay allowed us to determine the IC 50 and K i values and the type of mechanism for the best inhibitors. Copyright © 2016 Elsevier Inc. All rights reserved.
Concentration and distribution of heavy metals in two Andisols of the Azuay Andes (Ecuador)
NASA Astrophysics Data System (ADS)
Bech, Jaume; Roca, Núria; Ugalde, Sandra; Tonon, Luis; Larriva, Giovani
2013-04-01
At present many governmental and environmental bureaus are interested in establishing reliable soil quality criteria for heavy metals to enable the detection of polluted sites. To evaluate the variation of heavy metal natural concentration and to assess heavy metal contamination in soils, it is necessary to survey heavy metal baseline levels in order to understand their migration and distribution during pedogenesis. Many nationwide projects report elemental baseline values in soils. Baseline levels of heavy metals in soils have also been determined at local scales. Data is scarce on qualitative and quantitative trace elements content of Ecuatorian soils. The soils in the Azuay Andes (S of Ecuador) are thought to be generally non-contaminated. The objective of this study is to determine and evaluate the natural concentrations and distribution of seven heavy metals (Cd, Co, Cr, Cu, Ni, Pb and Zn) in Andisol of Azuay Andes. Soil samples were grounded in an agate mill prior to pseudototal heavy metal analysis. Cadmium, Co, Cr, Cu, Ni, Pb and Zn were determined by a masses spectrometer (MS-ICP) after aqua regia extraction according to ISO standard procedures. Soil particle size distribution, organic carbon, electrical conductivity and pH have been previously determined. Andisols are dominated by amorphous aluminium silicates and Al-organic complexes. The soils of volcanic area usually have an Ah-Bh-Bhs/Bw-C horizon sequence. The Ah horizon is dark-coloured and normally very high in organic matter, ranging from 6.4 to 15.2 %. A strong rise in pH upon addition of a fluoride solution is used to signal the presence of allophane. The pH usually rises to 10.5 bellow 20 cm. The range of total soil values in mgkg-1 is as follows: Cd (0.03-0.3), Co (0.8-5), Cr (7-15), Cu (9-25), Ni (2-4), Pb (11-41) and Zn (12-37). All heavy metal contents, except for Cd, are strongly correlated with pH. For the pseudototal fraction, there was significant difference between the soil horizons in regards to complex profile development.
Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Horwitz, Earl Philip; Gatrone, Ralph Carl; Nash, Kenneth LaVerne
1997-01-01
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described.
Youn, Il Seung; Kim, Dong Young; Singh, N Jiten; Park, Sung Woo; Youn, Jihee; Kim, Kwang S
2012-01-10
Structures of neutral metal-dibenzene complexes, M(C6H6)2 (M = Sc-Zn), are investigated by using Møller-Plesset second order perturbation theory (MP2). The benzene molecules change their conformation and shape upon complexation with the transition metals. We find two types of structures: (i) stacked forms for early transition metal complexes and (ii) distorted forms for late transition metal ones. The benzene molecules and the metal atom are bound together by δ bonds which originate from the interaction of π-MOs and d orbitals. The binding energy shows a maximum for Cr(C6H6)2, which obeys the 18-electron rule. It is noticeable that Mn(C6H6)2, a 19-electron complex, manages to have a stacked structure with an excess electron delocalized. For other late transition metal complexes having more than 19 electrons, the benzene molecules are bent or stray away from each other to reduce the electron density around a metal atom. For the early transition metals, the M(C6H6) complexes are found to be more weakly bound than M(C6H6)2. This is because the M(C6H6) complexes do not have enough electrons to satisfy the 18-electron rule, and so the M(C6H6)2 complexes generally tend to have tighter binding with a shorter benzene-metal length than the M(C6H6) complexes, which is quite unusual. The present results could provide a possible explanation of why on the Ni surface graphene tends to grow in a few layers, while on the Cu surface the weak interaction between the copper surface and graphene allows for the formation of a single layer of graphene, in agreement with chemical vapor deposition experiments.
NASA Astrophysics Data System (ADS)
Ahamad, Tansir; Alshehri, Saad M.
2012-10-01
Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications.
Bioresorbable scaffolds: talking about a new interventional revolution [corrected].
Hassell, M E C J; Grundeken, M J D; Delewi, R; Wykrzykowska, J J; Piek, J J
2013-04-01
After the introduction of coronary balloon angioplasty, bare-metal, and drug-eluting stents, fully bioresorbable scaffolds (BRS) could be the fourth revolution in interventional cardiology. The BRS technology shares the advantages of metallic stents regarding acute gain and prevention of acute vessel occlusion by providing transient scaffolding, while potentially overcoming many of the safety concerns of drug-eluting stents. Furthermore, without a permanent metallic cage, the vessel could remodel favourably and atherosclerotic plaques could regress in the long-term. This attracted increased interest and several BRS have been developed. In this review we will describe all BRS which are thus far clinically evaluated and provide an overview of ongoing clinical studies. Although the technology seems to be very promising, more studies including patients with more complex lesions are needed to evaluate whether the BRS can be used in daily clinical practice and if it is indeed becoming a new interventional revolution.
Forward impact extrusion of surface textured steel blanks using coated tooling
NASA Astrophysics Data System (ADS)
Hild, Rafael; Feuerhack, Andreas; Trauth, Daniel; Arghavani, Mostafa; Kruppe, Nathan C.; Brögelmann, Tobias; Bobzin, Kirsten; Klocke, Fritz
2017-10-01
A method to enable dry metal forming by the means of a self-lubricating coating and surface textures was researched using an innovative Pin-On-Cylinder-Tribometer. The experimental analysis was complemented by a numerical model of the complex contact conditions between coated tools and the surface textured specimen at the micro-level. Based on the results, the explanation of the tribological interactions between surface textured specimens and the tool in dry full forward extrusion is the objective of this work. Therefore, experimental dry extrusion tests were performed using a tool system. The extruded specimens were evaluated regarding their geometry as well as by the required punch force. Thereby, the effectiveness and the feasibility of dry metal forming on the example of full forward extrusion was evaluated. Thus, one more step towards the technical realization of dry metal forming of low alloy steels under industrial conditions was realized.
The removal of precious metals by conductive polymer filtration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cournoyer, M.E.
The growing demand for platinum-group metals (PGM) within the DOE complex and in industry, the need for modern and clean processes, and the increasing volume of low-grade material for secondary PGM recovery has a direct impact on the industrial practice of recovering and refining precious metals. There is a tremendous need for advanced metal ion recovery and waste minimization techniques, since the currently used method of precipitation-dissolution is inadequate. Los Alamos has an integrated program in ligand-design and separations chemistry which has developed and evaluated a series of water- soluble metal-binding polymers for recovering actinides and toxic metals from varietymore » of process streams. A natural extension of this work is to fabricate these metal-selective polymers into membrane based separation unites, i.e., hollow-fiber membranes. In the present investigation, the material for a novel hollow-fiber membrane is characterized and its selectivity for PGM reported. Energy and waste savings and economic competitiveness are also described.« less
Energetic lanthanide complexes: coordination chemistry and explosives applications
NASA Astrophysics Data System (ADS)
Manner, V. W.; Barker, B. J.; Sanders, V. E.; Laintz, K. E.; Scott, B. L.; Preston, D. N.; Sandstrom, M.; Reardon, B. L.
2014-05-01
Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with 'tailor made' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.
Energetic Lanthanide Complexes: Coordination Chemistry and Explosives Applications
NASA Astrophysics Data System (ADS)
Manner, Virginia; Barker, Beau; Sanders, Eric; Laintz, Kenneth; Scott, Brian; Preston, Daniel; Sandstrom, Mary; Reardon, Bettina
2013-06-01
Metals are generally added to organic molecular explosives in a heterogeneous composite to improve overall heat and energy release. In order to avoid creating a mixture that can vary in homogeneity, energetic organic molecules can be directly bonded to high molecular weight metals, forming a single metal complex with Angstrom-scale separation between the metal and the explosive. To probe the relationship between the structural properties of metal complexes and explosive performance, a new series of energetic lanthanide complexes has been prepared using energetic ligands such as NTO (5-nitro-2,4-dihydro-1,2,4-triazole-3-one). These are the first examples of lanthanide NTO complexes where no water is coordinated to the metal, demonstrating novel control of the coordination environment. The complexes have been characterized by X-ray crystallography, NMR and IR spectroscopies, photoluminescence, and sensitivity testing. The structural and energetic properties are discussed in the context of enhanced blast effects and detection. Cheetah calculations have been performed to fine-tune physical properties, creating a systematic method for producing explosives with ``tailor made'' characteristics. These new complexes will be benchmarks for further study in the field of metalized high explosives.
Evaluation of thermal sprayed metallic coatings for use on the structures at Launch Complex 39
NASA Technical Reports Server (NTRS)
Welch, Peter J.
1990-01-01
The current status of the evaluation program is presented. The objective was to evaluate the applicability of Thermal Sprayed Coatings (TSC) to protect the structures in the high temperature acid environment produced by exhaust of the Solid Rocket Boosters during the launches of the Shuttle Transportation System. Only the relatively low cost aluminum TSC which provides some cathodic protection for steel appears to be a practical candidate for further investigation.
Elius Hossain, Md; Mahmudul Hasan, Md; Halim, M E; Ehsan, M Q; Halim, Mohammad A
2015-03-05
Some transition metal complexes of phenylalanine of general formula [M(C9H10NO2)2]; where M=Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) are prepared in aqueous medium and characterized by spectroscopic, thermo-gravimetric (TG) and magnetic susceptibility analysis. Density functional theory (DFT) has been employed calculating the equilibrium geometries and vibrational frequencies of those complexes at B3LYP level of theory using 6-31G(d) and SDD basis sets. In addition, frontier molecular orbital and time-dependent density functional theory (TD-DFT) calculations are performed with CAM-B3LYP/6-31+G(d,p) and B3LYP/SDD level of theories. Thermo-gravimetric analysis confirms the composition of the complexes by comparing the experimental and calculated data for C, H, N and metals. Experimental and computed IR results predict a significant change in vibrational frequencies of metal-phenylalanine complexes compared to free ligand. DFT calculation confirms that Mn, Co, Ni and Cu complexes form square planar structure whereas Zn adopts distorted tetrahedral geometry. The metal-oxygen bonds in the optimized geometry of all complexes are shorter compared to the metal-nitrogen bonds which is consistent with a previous study. Cation-binding energy, enthalpy and Gibbs free energy indicates that these complexes are thermodynamically stable. UV-vis and TD-DFT studies reveal that these complexes demonstrate representative metal-to-ligand charge transfer (MLCT) and d-d transitions bands. TG analysis and IR spectra of the metal complexes strongly support the absence of water in crystallization. Magnetic susceptibility data of the complexes exhibits that all except Zn(II) complex are high spin paramagnetic. Copyright © 2014 Elsevier B.V. All rights reserved.
Effects of iron(III)chelates on the solubility of heavy metals in calcareous soils.
Ylivainio, Kari
2010-10-01
In this study I evaluated the effects of complexing agents on the solubility of heavy metals in an incubation experiment up to 56 days when complexing agents were applied as Fe-chelates (Fe-EDDS(S,S), Fe-EDDS(mix), Fe-EDTA and Fe-EDDHA) on calcareous soils at a level sufficient to correct Fe chlorosis (0.1 mmol kg(-1)). Of these ligands, EDDHA was the most efficient in keeping Fe in water-soluble form, and EDDS increased the solubility of Cu and Zn most, and only EDTA increased the solubility of Cd and Pb. EDTA increased the solubility of Ni steadily during the incubation period, equalling about 5-8% of the added EDTA concentration. [S,S]-EDDS was biodegraded within 56 days, whereas EDDS(mix) was less biodegradable. Ni-chelates were the most recalcitrant against biodegradation. The study shows that even a moderate input of chelates to soil increases the solubility of toxic heavy metals and their risk of leaching. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ibanez, Jorge G.; And Others
1988-01-01
Describes experiments in which students prepare in situ soluble complexes of metal ions with different ligands and observe and estimate the change in formal potential that the ion undergoes upon complexation. Discusses student formation and analysis of soluble complexes of two different metal ions with the same ligand. (CW)
NASA Astrophysics Data System (ADS)
Sargent, Andrew Landman
Approximate molecular orbital and ab initio quantum chemical techniques are used to investigate the electronic structure, bonding and reactivity of several transition metal inorganic and organometallic complexes. Modest-sized basis sets are developed for the second-row transition metal atoms and are designed for use in geometry optimizations of inorganic and organometallic complexes incorporating these atoms. The basis sets produce optimized equilibrium geometries which are slightly better than those produced with standard 3-21G basis sets, and which are significantly better than those produced with effective core potential basis sets. Linear semibridging carbonyl ligands in heterobimetallic complexes which contain a coordinatively unsaturated late transition metal center are found to accept electron density from, rather than donate electron density to, these centers. Only when the secondary metal center is a coordinatively unsaturated early transition metal center does the semibridging ligand donate electron density to this center. Large holes in the d shell around the metal center are more prominent and prevalent in early than in late transition metal centers, and the importance of filling in these holes outweighs the importance of mitigating the charge imbalance due to the dative metal-metal interaction. Semibridging thiocarbonyl ligands are more effective donors of electron density than the carbonyl ligands since the occupied donor orbitals of pi symmetry are higher in energy. The stereoselectivity of H_2 addition to d^8 square-planar transition metal complexes is controlled by the interactions between the ligands in the plane of addition and the concentrations of electronic charge around the metal center as the complex evolves from a four-coordinate to a six-coordinate species. Electron -withdrawing ligands help stabilize the five-coordinate species while strong electron donor ligands contribute only to the destabilizing repulsive interactions. The relative thermodynamic stabilities of the final complexes can be predicted based on the relative orientations of the strongest sigma-donor ligands.
Metal adsorption onto bacterial surfaces: development of a predictive approach
NASA Astrophysics Data System (ADS)
Fein, Jeremy B.; Martin, Aaron M.; Wightman, Peter G.
2001-12-01
Aqueous metal cation adsorption onto bacterial surfaces can be successfully modeled by means of a surface complexation approach. However, relatively few stability constants for metal-bacterial surface complexes have been measured. In order to determine the bacterial adsorption behavior of cations that have not been studied in the laboratory, predictive techniques are required that enable estimation of the stability constants of bacterial surface complexes. In this study, we use a linear free-energy approach to compare previously measured stability constants for Bacillus subtilis metal-carboxyl surface complexes with aqueous metal-organic acid anion stability constants. The organic acids that we consider are acetic, oxalic, citric, and tiron. We add to this limited data set by conducting metal adsorption experiments onto Bacillus subtilis, determining bacterial surface stability constants for Co, Nd, Ni, Sr, and Zn. The adsorption behavior of each of the metals studied here was described well by considering metal-carboxyl bacterial surface complexation only, except for the Zn adsorption behavior, which required carboxyl and phosphoryl complexation to obtain a suitable fit to the data. The best correlation between bacterial carboxyl surface complexes and aqueous organic acid anion stability constants was obtained by means of metal-acetate aqueous complexes, with a linear correlation coefficient of 0.97. This correlation applies only to unhydrolyzed aqueous cations and only to carboxyl binding of those cations, and it does not predict the binding behavior under conditions where metal binding to other bacterial surface site types occurs. However, the relationship derived in this study permits estimation of the carboxyl site adsorption behavior of a wide range of aqueous metal cations for which there is an absence of experimental data. This technique, coupled with the observation of similar adsorption behaviors across bacterial species (Yee and Fein, 2001), enables estimation of the effects of bacterial adsorption on metal mobilities for a large number of environmental and geologic applications.
Assigning Oxidation States to Some Metal Dioxygen Complexes of Biological Interest.
ERIC Educational Resources Information Center
Summerville, David A.; And Others
1979-01-01
The bonding of dioxygen in metal-dioxygen complexes is discussed, paying particular attention to the problems encountered in assigning conventional oxidation numbers to both the metal center and coordinated dioxygen. Complexes of iron, cobalt, chromium, and manganese are considered. (BB)
Metal complex-based electron-transfer mediators in dye-sensitized solar cells
Elliott, C. Michael; Sapp, Shawn A.; Bignozzi, Carlo Alberto; Contado, Cristiano; Caramori, Stefano
2006-03-28
This present invention provides a metal-ligand complex and methods for using and preparing the same. In particular, the metal-ligand complex of the present invention is of the formula: L.sub.a-M-X.sub.b where L, M, X, a, and b are those define herein. The metal-ligand complexes of the present invention are useful in a variety of applications including as electron-transfer mediators in dye-sensitized solar cells and related photoelectrochromic devices.
Ritchie, Ellyn; Boyd, Patrick; Lawson-Halasz, Annamaria; Hawari, Jalal; Saucier, Stacey; Scroggins, Richard; Princz, Juliska
2017-12-01
Within Canada, screening-level assessments for chemical substances are required to determine whether the substances pose a risk to human health and/or the environment, and as appropriate, risk management strategies. In response to the volume of metal and metal-containing substances, process efficiencies were introduced using a metal-moiety approach, whereby substances that contain a common metal moiety are assessed simultaneously as a group, with the moiety of concern consisting of the metal ion. However, for certain subgroups, such as organometals or organic metal salts, the organic moiety or parent substance may be of concern, rather than simply the metal ion. To further investigate the need for such additional consideration, certain substances were evaluated: zinc (Zn)-containing inorganic (Zn chloride [ZnCl2] and Zn oxide) and organic (organometal: Zn diethyldithiocarbamate [Zn(DDC) 2 ] and organic metal salts (Zn stearate [ZnSt] and 4-chloro-2-nitrobenzenediazonium tetrachlorozincate [BCNZ]). The toxicity of the substances were assessed using plant (Trifolium pratense and Elymus lanceolatus) and soil invertebrate (Folsomia candida and Eisenia andrei) tests in a sandy soil. Effect measures were determined based on total metal and total parent analyses (for organic substances). In general, the inorganic Zn substances were less toxic than the organometals and organic metal salts, with 50% effective concentrations ranging from 11 to >5194 mg Zn kg -1 dry soil. The data demonstrate the necessity for alternate approaches in the assessment of organo-metal complexes, with the organic moieties or parent substances warranting consideration rather than the metal ion alone. In this instance, the organometals and organic metal salts were significantly more toxic than other test substances despite their low total Zn content. Environ Toxicol Chem 2017;36:3324-3332. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC. © 2017 Crown in the Right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.
Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-01-01
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363
Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia
2018-02-26
Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.
Modeling Biogeochemical Cycling of Heavy Metals in Lake Coeur d'Alene Sediments
NASA Astrophysics Data System (ADS)
Sengor, S. S.; Spycher, N.; Belding, E.; Curthoys, K.; Ginn, T. R.
2005-12-01
Mining of precious metals since the late 1800's have left Lake Coeur d'Alene (LCdA) sediments heavily enriched with toxic metals, including Cd, Cu, Pb, and Zn. Indigenous microbes however are capable of catalyzing reactions that detoxify the benthic and aqueous lake environments, and thus constitute an important driving component in the biogeochemical cycles of these metals. Here we report on the development of a quantitative model of transport, fate, exposure and effects of toxic compounds on benthic microbial communities at LCdA. First, chemical data from the LCdA area have been compiled from multiple sources to investigate trends in chemical occurrence, as well as to define model boundary conditions. The model is structured as 1-D diffusive reactive transport model to simulate spatial and temporal distribution of metals through the benthic sediments. Inorganic reaction processes included in the model are aqueous speciation, surface complexation, mineral precipitation/dissolution and abiotic redox reactions. Simulations with and without surface complexation are carried out to evaluate the effect of sorption and the conservative behaviour of metals within the benthic sediments under abiotic and purely diffusive transport. The 1-D inorganic diffusive transport model is then coupled to a biotic reaction network including consortium biodegradation kinetics with multiple electron acceptors, product toxicity, and energy partitioning. Multiyear simulations are performed, with water column chemistry established as a boundary condition from extant data, to explore the role of biogeochemical dynamics on benthic fluxes of metals in the long term.
Methods of selectively incorporating metals onto substrates
Ernst; Richard D. , Eyring; Edward M. , Turpin; Gregory C. , Dunn; Brian C.
2008-09-30
A method for forming multi-metallic sites on a substrate is disclosed and described. A substrate including active groups such as hydroxyl can be reacted with a pretarget metal complex. The target metal attached to the active group can then be reacted with a secondary metal complex such that an oxidation-reduction (redox) reaction occurs to form a multi-metallic species. The substrate can be a highly porous material such as aerogels, xerogels, zeolites, and similar materials. Additional metal complexes can be reacted to increase catalyst loading or control co-catalyst content. The resulting compounds can be oxidized to form oxides or reduced to form metals in the ground state which are suitable for practical use.
NASA Astrophysics Data System (ADS)
Szabó, László; Herman, Krisztian; Mircescu, Nicoleta Elena; Tódor, István Szabolcs; Simon, Botond Lorand; Boitor, Radu Alex; Leopold, Nicolae; Chiş, Vasile
2014-09-01
In recent years, surface-enhanced Raman scattering (SERS) has become an increasingly viable method for the detection of metal ions, evidenced by the existing studies on metal complexes. In this study, 1,5-diphenylcarbazide (DPC) and its Ca(II), Mn(II), Fe(III) and Cu(II) complexes were investigated by FTIR/ATR, FT-Raman and surface-enhanced Raman spectroscopies. The hybrid B3LYP exchange-correlation functional was used for the molecular geometry optimizations, molecular electrostatic potential (MEP) distribution and vibrational frequencies calculations of the DPC molecule and its complexes. Based on experimental and theoretical data, we were able to accurately identify unique and representative features for each DPC-metal complex, features that enable the detection of said metal complexes in millimolar concentrations.
Application of Δ- and λ-isomerism of octahedral metal complexes for inducing chiral nematic phases.
Sato, Hisako; Yamagishi, Akihiko
2009-11-20
The Delta- and Lambda-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(beta-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C(2) symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described.
Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases
Sato, Hisako; Yamagishi, Akihiko
2009-01-01
The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonato)metal(III) complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III), Cr(III) and Ru(III) complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described. PMID:20057959
Mechanisms for trace metal enrichment at the surface microlayer in an estuarine salt marsh
Lion, Leonard W.
1982-01-01
The relative contributions of adsorption to particulate surfaces, complexation with surface-active organic ligands and uptake by micro-organisms were evaluated with respect to their importance in the surface microlayer enrichment (‘partitioning’) of Cd, Pb and Cu. The contributions of each process were inferred from field data in which partitioning of the dissolved and particulate forms of Cd, Pb and Cu, total and dissolved organic carbon, particles and total bacteria were observed. In the South San Francisco Bay estuary, particle enrichment appears to control trace metal partitioning. Trace metal association with the particulate phase and the levels of partitioning observed were in the order Pb > Cu > Cd and reflect the calculated equilibrium chemical speciation of these metals in computer-simulated seawater matrices.
Sakthivel, A.; Rajasekaran, K.
2007-01-01
New N2O2 donor type Schiff base has been designed and synthesized by condensing acetoacetanilido-4-aminoantipyrine with 2-aminobenzoic acid in ethanol. Solid metal complexes of the Schiff base with Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) metal ions were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conduction, fast atom bombardment (FAB) mass, IR, UV-Vis, and 1H NMR spectral studies. The data show that the complexes have the composition of ML type. The UV-Vis. and magnetic susceptibility data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The in vitro antifungal activities of the compounds were tested against fungi such as Aspergillus niger, Aspergillus flavus, Rhizopus stolonifer, Candida albicans, Rhizoctonia bataicola and Trichoderma harizanum. All the metal complexes showed stronger antifungal activities than the free ligand. The minimum inhibitory concentrations (MIC) of the metal complexes were found in the range of 10~31 µg/ml. PMID:24015086
On the existence of free and metal complexed sulfide in the Arabian Sea and its oxygen minimum zone
NASA Astrophysics Data System (ADS)
Theberge, Stephen M.; Luther, George W.; Farrenkopf, Anna M.
Free hydrogen sulfide was not detected in the oxygen minimum zone (OMZ) of the Arabian Sea during legs D1 (September 1992) and D3 (October-November 1992) of the Netherlands Indian Ocean Programme (NIOP). However, sulfide complexed to metals was detected by cathodic stripping square wave voltammetry at 2 nM or less throughout the water column. A slight increase in sulfide was measured in the OMZ relative to the surface waters and may be related to sulfur release from organic matter during decomposition. Sulfide complexes are of two general types at low concentrations of metal and sulfide. First, metals such as Mn, Fe, Co and Ni form complexes with bisulfide ion (HS -) that are kinetically labile to dissociation and are reactive. Second, metals such as Cu and Zn form multinuclear complexes with sulfide (S 2-) that are kinetically inert to dissociation; thus, they are less reactive than free (bi)sulfide and the labile metal bisulfide complexes. Zinc and copper sulfide complexes are important in allowing hydrogen sulfide to persist in seawater which contains measurable oxygen.
Solubility enhancement of seven metal contaminants using carboxymethyl-β-cyclodextrin (CMCD)
NASA Astrophysics Data System (ADS)
Skold, Magnus E.; Thyne, Geoffrey D.; Drexler, John W.; McCray, John E.
2009-07-01
Carboxymethyl-β-cyclodextrin (CMCD) has been suggested as a complexing agent for remediation of sites co-contaminated with metals and organic pollutants. As part of an attempt to construct a geochemical complexation model for metal-CMCD interactions, conditional formation constants for the complexes between CMCD and 7 metal ions (Ba, Ca, Cd, Ni, Pb, Sr, and Zn) are estimated from experimental data. Stable metal concentrations were reached after approximately 1 day and estimated logarithmic conditional formation constants range from - 3.2 to - 5.1 with confidence intervals within ± 0.08 log units. Experiments performed at 10 °C and 25 °C show that temperature affects the solubility of the metal salts but the strength of CMCD-metal complexes are not affected by this temperature variation. The conditional stability constants and complexation model presented in this work can be used to screen CMCD as a potential remediation agent for clean-up of contaminated soil and groundwater.
Nuclear reactor cooling system decontamination reagent regeneration. [PWR; BWR
Anstine, L.D.; James, D.B.; Melaika, E.A.; Peterson, J.P. Jr.
1980-06-06
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution is described. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
Wang, Joanna Shaofen; Chiu, Kong-Hwa
2006-03-01
The objective of this work is to track the amount of metal complexes distributed in the extraction cell, collection vial, and tubing used in supercritical fluid extraction (SFE) systems after progressive removal of metal ions in supercritical carbon dioxide (SC-CO2). Sodium diethyldithiocarbamate (NaDDC) and dibutylammonium dibutyldithiocarbamate (DBDC) ligands were used to form complexes with Cd, Cu, Pb, and Zn and CO(2)/5% methanol as a supercritical fluid. The mass balance of metal complexes were obtained before and after extraction, and metals in different locations in the system were flushed out using an organic solvent and nitric acid (HNO3). These results infer that the stability constant (beta) of the metal-ligand complex has a strong correlation with SFE. Because of the composition of the stainless-steel cell, Fe, Cr, and Ni or other trace elements in the cell might interfere with the mass balance of metal complexes in SFE due to an exchange mechanism taking place between the cell and the sample.
Nuclear reactor cooling system decontamination reagent regeneration
Anstine, Larry D.; James, Dean B.; Melaika, Edward A.; Peterson, Jr., John P.
1985-01-01
An improved method for decontaminating the coolant system of water-cooled nuclear power reactors and for regenerating the decontamination solution. A small amount of one or more weak-acid organic complexing agents is added to the reactor coolant, and the pH is adjusted to form a decontamination solution which is circulated throughout the coolant system to dissolve metal oxides from the interior surfaces and complex the resulting metal ions and radionuclide ions. The coolant containing the complexed metal ions and radionuclide ions is passed through a strong-base anion exchange resin bed which has been presaturated with a solution containing the complexing agents in the same ratio and having the same pH as the decontamination solution. As the decontamination solution passes through the resin bed, metal-complexed anions are exchanged for the metal-ion-free anions on the bed, while metal-ion-free anions in the solution pass through the bed, thus removing the metal ions and regenerating the decontamination solution.
Electrokinetic treatment of an agricultural soil contaminated with heavy metals.
Figueroa, Arylein; Cameselle, Claudio; Gouveia, Susana; Hansen, Henrik K
2016-07-28
The high organic matter content in agricultural soils tends to complex and retain contaminants such as heavy metals. Electrokinetic remediation was tested in an agricultural soil contaminated with Co(+2), Zn(+2), Cd(+2), Cu(+2), Cr(VI), Pb(+2) and Hg(+2). The unenhanced electrokinetic treatment was not able to remove heavy metals from the soil due to the formation of precipitates in the alkaline environment in the soil section close to the cathode. Moreover, the interaction between metals and organic matter probably limited metal transportation under the effect of the electric field. Citric acid and ethylenediaminetetraacetic acid (EDTA) were used in the catholyte as complexing agents in order to enhance the extractability and removal of heavy metals from soil. These complexing agents formed negatively charged complexes that migrated towards the anode. The acid front electrogenerated at the anode favored the dissolution of heavy metals that were transported towards the cathode. The combined effect of the soil pH and the complexing agents resulted in the accumulation of heavy metals in the center of the soil specimen.
Sun, Xiaobo; Jin, Xiaozhe; Pan, Wei; Wang, Jinping
2014-11-26
In the present paper, La, Eu and Yb were selected to represent light, middle and heavy rare earths to form complexes with polysaccharides through chelating coordination of carboxyl groups, which were added into polysaccharide chains by means of carboxymethylation. Their antifungal activities against plant pathogenic fungi were evaluated using growth rate method. These rare earth complexes exhibited various antifungal activities against the tested fungi, depending on rare earth elements, polysaccharide types and fungal species. Among these three metal elements (i.e. La, Eu and Yb), Yb formed the complexes with the most effective antifungal properties. Furthermore, the results showed that ligands of carboxymethylated polysaccharides played a key role in promoting cytotoxicity of the rare earth complexes. Carboxymethylated Ganoderma applanatum polysaccharide (CGAP) was found to be the most effective ligand to form complexes with antifungal activities, followed by carboxymethylated lentinan (CLNT) and carboxymethylated Momordica charantia polysaccharide (CMCP). Copyright © 2014 Elsevier Ltd. All rights reserved.
Membrane extraction with thermodynamically unstable diphosphonic acid derivatives
Horwitz, E.P.; Gatrone, R.C.; Nash, K.L.
1997-10-14
Thermodynamically-unstable complexing agents which are diphosphonic acids and diphosphonic acid derivatives (or sulphur containing analogs), like carboxyhydroxymethanediphosphonic acid and vinylidene-1,1-diphosphonic acid, are capable of complexing with metal ions, and especially metal ions in the II, III, IV, V and VI oxidation states, to form stable, water-soluble metal ion complexes in moderately alkaline to highly-acidic media. However, the complexing agents can be decomposed, under mild conditions, into non-organic compounds which, for many purposes are environmentally-nondamaging compounds thereby degrading the complex and releasing the metal ion for disposal or recovery. Uses for such complexing agents as well as methods for their manufacture are also described. 1 fig.
Lilga, Michael A.; Hallen, Richard T.
1990-01-01
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.
Lilga, M.A.; Hallen, R.T.
1991-10-15
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.
Lilga, M.A.; Hallen, R.T.
1990-08-28
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.
Lilga, Michael A.; Hallen, Richard T.
1991-01-01
The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.
Drug Delivery Systems For Anti-Cancer Active Complexes of Some Coinage Metals.
Zhang, Ming; Saint-Germain, Camille; He, Guiling; Sun, Raymond Wai-Yin
2018-02-12
Although cisplatin and a number of platinum complexes have widely been used for the treatment of neoplasia, patients receiving these treatments have frequently suffered from their severe toxic side effects, the development of resistance with consequent relapse. In the recent decades, numerous complexes of coinage metals including that of gold, copper and silver have been reported to display promising in vitro and/or in vivo anti-cancer activities as well as potent activities towards cisplatin-resistant tumors. Nevertheless, the medical development of these metal complexes has been hampered by their instability in aqueous solutions and the nonspecific binding in biological systems. One of the approaches to overcome these problems is to design and develop adequate drug delivery systems (DDSs) for the transport of these complexes. By functionalization, encapsulation or formulation of the metal complexes, several types of DDSs have been reported to improve the desired pharmacological profile of the metal complexes, improving their overall stability, bioavailability, anti-cancer activity and reducing their toxicity towards normal cells. In this review, we summarized the recent findings for different DDSs for various anti- cancer active complexes of some coinage metals. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Recovery of precious metals from space
NASA Technical Reports Server (NTRS)
Freiser, Henry
1991-01-01
The overall objective is to develop efficient and economical separation and recovery methods for the platinum group and other precious metals. The separation of Pd(II) from Pt(II), Ir(III), and Rh(III) with trioctylphosphine oxide (TOPO) in heptane using centrifugal partition chromatography (CPC) was investigated. Activities to achieve this objective focussed on selection and evaluation of extraction systems for the PGM and modification of selected systems for multistage operation with a view to scaling up to desired macro levels. On the basis of preliminary evaluation of a series of simple metal complexing agents and chelating agents, the TOPO in heptane was selected as a likely system for isolating of Pd(II) and Pt(II) from the other PGM. A multistage apparatus capable of configuration as a simple rugged device, a centrifugal partition chromatograph (CPC), was shown to be effective. The extraction of Pd(II) was studied by CPC and batch solvent extraction. The distribution ratios for Pd(II) determined by both methods agree well. In low HCl concentrations (less than 0.1 M), the extracted species was PdCl2.(TOPO)2, irrespective of the chloride concentration, while at acid concentrations above 0.1 M, the Pd was extracted as the ion pair, 2(TOPO.H+).(PdCl4)2-. Base line separation of Pd(II) and Pt(II) in CPC was obtained under a variety of chloride and HCl concentration. It was demonstrated that the efficiency of CPC for metal separation was limited by chemical kinetic factors rather than instrumental factors, strongly suggesting that dramatic improvements can be achieved by studying reaction kinetics of formation and dissociation of the extractable metal complex.
NASA Astrophysics Data System (ADS)
Lichtenberg, Dennis L.
During this period some important breakthroughs were accomplished in understanding the relationships between molecular ionization energies and bond energies in transition metal complexes, in understanding the electronic factors of carbon-hydrogen bond activation by transition metals, in characterizing small molecule bonding interactions with transition metals, and in investigating intermolecular interactions in thin films of transition metal complexes. The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies was developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. The relationship was used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. The ionization energies were also used to correlate the rates of carbonyl substitution reactions of (eta(sup 5)-C5H4X)Rh(CO)2 complexes, and to reveal the factors that control the stability of the transition state. The investigations of the fundamental interactions of C-H sigma and sigma* orbitals metals were continued with study of eta(sup 3)-1-methylallyl metal complexes. Direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal was obtained. The ability to observe the electronic effects of intermolecular interactions by comparing the ionizations of metal complexes in the gas phase with the ionizations of thin solid organometallic films prepared in ultra-high vacuum was established. Most significantly, the scanning tunneling microscope imaging of these thin films was accomplished.
Is Electronegativity a Useful Descriptor for the "Pseudo-Alkali-Metal" NH4?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteside, Alexander; Xantheas, Sotiris S.; Gutowski, Maciej S.
2011-11-18
Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined the electronegativity of the "pseudo-alkali metal" ammonium (NH4) and evaluated its reliability as a descriptor in comparison to the electronegativities of the alkali metals. The computed properties of its binary complexes with astatine and of selected borohydrides confirm the similarity of NH4 to the alkali metal atoms, although the electronegativity of NH4 is relatively large in comparison to its cationic radius. We paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation, andmore » reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the polyatomic nature of NH4.« less
Is electronegativity a useful descriptor for the pseudo-alkali metal NH4?
Whiteside, Alexander; Xantheas, Sotiris S; Gutowski, Maciej
2011-11-18
Molecular ions in the form of "pseudo-atoms" are common structural motifs in chemistry, with properties that are transferrable between different compounds. We have determined one such property--the electronegativity--for the "pseudo-alkali metal" ammonium (NH(4)), and evaluated its reliability as a descriptor versus the electronegativities of the alkali metals. The computed properties of ammonium's binary complexes with astatine and of selected borohydrides confirm the similarity of NH(4) to the alkali metal atoms, although the electronegativity of NH(4) is relatively large in comparison to its cationic radius. We have paid particular attention to the molecular properties of ammonium (angular anisotropy, geometric relaxation and reactivity), which can cause deviations from the behaviour expected of a conceptual "true alkali metal" with this electronegativity. These deviations allow for the discrimination of effects associated with the molecular nature of NH(4). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad
2015-04-01
A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.
NASA Astrophysics Data System (ADS)
Kalyakina, A.; Utochnikova, V.; Trigub, A.; Zubavichus, Y.; Kuzmina, N.; Bräse, S.
2016-05-01
The combination of X-ray diffraction with EXAFS was employed to assess the coordination environment of lanthanide complexes in solutions. This method is based on the assumption that the local structure of lanthanide complexes in solution combines elements of the crystal structure of the complex in the solid state (single- or polycrystalline) and the elements of the local structure of a lanthanide salt, completely dissociated in the solvent (usually chlorides). The success of this approach is demonstrated with the lanthanide (III) 2,3,4,5,6-pentafluorobenzoate complexes, where the local structure in aqueous and methanol solutions were estimated. Moreover, the dissociation degree of the complexes in aqueous and methanol solutions was evaluated.
Krewald, Vera; Neese, Frank; Pantazis, Dimitrios A
2016-04-28
The redox potential of synthetic oligonuclear transition metal complexes has been shown to correlate with the Lewis acidity of a redox-inactive cation connected to the redox-active transition metals of the cluster via oxo or hydroxo bridges. Such heterometallic clusters are important cofactors in many metalloenzymes, where it is speculated that the redox-inactive constituent ion of the cluster serves to optimize its redox potential for electron transfer or catalysis. A principal example is the oxygen-evolving complex in photosystem II of natural photosynthesis, a Mn4CaO5 cofactor that oxidizes water into dioxygen, protons and electrons. Calcium is critical for catalytic function, but its precise role is not yet established. In analogy to synthetic complexes it has been suggested that Ca(2+) fine-tunes the redox potential of the manganese cluster. Here we evaluate this hypothesis by computing the relative redox potentials of substituted derivatives of the oxygen-evolving complex with the cations Sr(2+), Gd(3+), Cd(2+), Zn(2+), Mg(2+), Sc(3+), Na(+) and Y(3+) for two sequential transitions of its catalytic cycle. The theoretical approach is validated with a series of experimentally well-characterized Mn3AO4 cubane complexes that are structural mimics of the enzymatic cluster. Our results reproduce perfectly the experimentally observed correlation between the redox potential and the Lewis acidities of redox-inactive cations for the synthetic complexes. However, it is conclusively demonstrated that this correlation does not hold for the oxygen evolving complex. In the enzyme the redox potential of the cluster only responds to the charge of the redox-inactive cations and remains otherwise insensitive to their precise identity, precluding redox-tuning of the metal cluster as a primary role for Ca(2+) in biological water oxidation.
Influence of metal ions on flavonoid protection against asbestos-induced cell injury.
Kostyuk, V A; Potapovich, A I; Vladykovskaya, E N; Korkina, L G; Afanas'ev, I B
2001-01-01
Influence of metal ions (Fe2+, Fe3+, Cu2+, Zn2+) on the protective effect of rutin, dihydroquercetin, and green tea epicatechins against in vitro asbestos-induced cell injury was studied. Metals have been found to increase the capacity of rutin and dihydroquercetin to protect peritoneal macrophages against chrysotile asbestos-induced injury. The data presented here show that this effect is due to the formation of flavonoid metal complexes, which turned out to be more effective radical scavengers than uncomplexed flavonoids. At the same time epicatechins and their metal complexes have similar antiradical properties and protective capacities against the asbestos induced injury of macrophages. Metal complexes of all flavonoids were found to be considerably more potent than parent flavonoids in protecting red blood cells against asbestos-induced injury. It was also found that the metal complexes of all flavonoids were absorbed by chrysotile asbestos fibers considerably better than uncomplexed compounds and probably for this reason flavonoid metal complexes have better protective properties against asbestos induced hemolysis. Thus, the results of the present study show that flavonoid metal complexes may be effective therapy for the inflammatory response associated with the inhalation of asbestos fiber. The advantage of their application could be the strong increase in ROS scavenging by flavonoids and finally a better cell protection under the conditions of cellular oxidative stress.
Metal–organic complexation in the marine environment
Luther, George W; Rozan, Timothy F; Witter, Amy; Lewis, Brent
2001-01-01
We discuss the voltammetric methods that are used to assess metal–organic complexation in seawater. These consist of titration methods using anodic stripping voltammetry (ASV) and cathodic stripping voltammetry competitive ligand experiments (CSV-CLE). These approaches and a kinetic approach using CSV-CLE give similar information on the amount of excess ligand to metal in a sample and the conditional metal ligand stability constant for the excess ligand bound to the metal. CSV-CLE data using different ligands to measure Fe(III) organic complexes are similar. All these methods give conditional stability constants for which the side reaction coefficient for the metal can be corrected but not that for the ligand. Another approach, pseudovoltammetry, provides information on the actual metal–ligand complex(es) in a sample by doing ASV experiments where the deposition potential is varied more negatively in order to destroy the metal–ligand complex. This latter approach gives concentration information on each actual ligand bound to the metal as well as the thermodynamic stability constant of each complex in solution when compared to known metal–ligand complexes. In this case the side reaction coefficients for the metal and ligand are corrected. Thus, this method may not give identical information to the titration methods because the excess ligand in the sample may not be identical to some of the actual ligands binding the metal in the sample. PMID:16759421
Infrared Spectroscopic Analysis of Linkage Isomerism in Metal-Thiocyanate Complexes
ERIC Educational Resources Information Center
Baer, Carl; Pike, Jay
2010-01-01
We developed an experiment suitable for an advanced inorganic chemistry laboratory that utilizes a cooperative learning environment, which allows students to develop an empirical method of determining the bonding mode of a series of unknown metal-thiocyanate complexes. Students synthesize the metal-thiocyanate complexes and obtain the FT-IR…
Water-in-Supercritical CO2 Microemulsion Stabilized by a Metal Complex.
Luo, Tian; Zhang, Jianling; Tan, Xiuniang; Liu, Chengcheng; Wu, Tianbin; Li, Wei; Sang, Xinxin; Han, Buxing; Li, Zhihong; Mo, Guang; Xing, Xueqing; Wu, Zhonghua
2016-10-17
Herein we propose for the first time the utilization of a metal complex for forming water-in-supercritical CO 2 (scCO 2 ) microemulsions. The water solubility in the metal-complex-stabilized microemulsion is significantly improved compared with the conventional water-in-scCO 2 microemulsions stabilized by hydrocarbons. Such a microemulsion provides a promising route for the in situ CO 2 reduction catalyzed by a metal complex at the water/scCO 2 interface. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Li, Jianli; Kappler, Andreas; Obst, Martin
2013-01-01
Biofilms, organic matter, iron/aluminum oxides, and clay minerals bind toxic heavy metal ions and control their fate and bioavailability in the environment. The spatial relationship of metal ions to biomacromolecules such as extracellular polymeric substances (EPS) in biofilms with microbial cells and biogenic minerals is complex and occurs at the micro- and submicrometer scale. Here, we review the application of highly selective and sensitive metal fluorescent probes for confocal laser scanning microscopy (CLSM) that were originally developed for use in life sciences and propose their suitability as a powerful tool for mapping heavy metals in environmental biofilms and cell-EPS-mineral aggregates (CEMAs). The benefit of using metal fluorescent dyes in combination with CLSM imaging over other techniques such as electron microscopy is that environmental samples can be analyzed in their natural hydrated state, avoiding artifacts such as aggregation from drying that is necessary for analytical electron microscopy. In this minireview, we present data for a group of sensitive fluorescent probes highly specific for Fe3+, Cu2+, Zn2+, and Hg2+, illustrating the potential of their application in environmental science. We evaluate their application in combination with other fluorescent probes that label constituents of CEMAs such as DNA or polysaccharides and provide selection guidelines for potential combinations of fluorescent probes. Correlation analysis of spatially resolved heavy metal distributions with EPS and biogenic minerals in their natural, hydrated state will further our understanding of the behavior of metals in environmental systems since it allows for identifying bonding sites in complex, heterogeneous systems. PMID:23974141
de Souza, Raphael Bastão; de Souza, Cleiton Pereira; Bueno, Odair Correa; Fontanetti, Carmem Silvia
2017-02-01
In order to combat leaf-cutting ants, the pesticide sulfluramid used to be the most widely utilized active ingredient. However, its use was banned in 2009 by the Stockholm Convention, although some countries were allowed to continue using it. As an effective alternative to its replacement, researchers developed a metallic-insecticide system, which is a natural product linked to metal complexes. Thus, the aim of this study was to evaluate the ability of these new metallic-insecticides in change the genetic material of non-target organisms. The tests were performed utilizing chromosomal aberrations and micronucleus tests in the Allium cepa test system and the Trad-MCN test in Tradescantia pallida. To better understand the results, one of the components of the formula, 5-methyl-phenanthroline, was also analyzed according to the same parameters. To A. cepa, the results showed that one of the metallic insecticides induced cytotoxicity and genotoxicity at different concentrations, while the other metallic-insecticide showed chromosomal instability only at the highest concentration. The analysis of 5-methyl-phenanthroline revealed that it can be related with the positive results, since genotoxic effects were induced. In the Trad-MCN test, none of the metallic-insecticides showed genotoxic activity, although one of them induced more micronucleus formation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes
Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2016-01-01
8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents. PMID:27103894
Antimalarial and antimicrobial activities of 8-Aminoquinoline-Uracils metal complexes.
Phopin, Kamonrat; Sinthupoom, Nujarin; Treeratanapiboon, Lertyot; Kunwittaya, Sarun; Prachayasittikul, Supaluk; Ruchirawat, Somsak; Prachayasittikul, Virapong
2016-01-01
8-Aminoquinoline (8AQ) derivatives have been reported to have antimalarial, anticancer, and antioxidant activities. This study investigated the potency of 8AQ-5-substituted (iodo and nitro) uracils metal (Mn, Cu, Ni) complexes (1-6) as antimalarial and antimicrobial agents. Interestingly, all of these metal complexes (1-6) showed fair antimalarial activities. Moreover, Cu complexes 2 (8AQ-Cu-5Iu) and 5 (8AQ-Cu-5Nu) exerted antimicrobial activities against Gram-negative bacteria including P. shigelloides and S. dysenteriae. The results reveal application of 8AQ and its metal complexes as potential compounds to be further developed as novel antimalarial and antibacterial agents.
Some methods of increasing the density of metal in order to increase him corrosion resistance
NASA Astrophysics Data System (ADS)
Chumanov, I. V.; Anikeev, A. N.; Sergeev, D. V.; Maltseva, A. N.
2017-11-01
Methods to increase the density of metal in order to increase its corrosion resistance in an aggressive environment are examined in the article. Two steel grades, differing in the content of alloying elements, increasing the resistance to corrosion are selected for the manufacture of experimental metallic materials. Two technologies are chosen as methods for increasing the density, and as a result, corrosion resistance, of the experimental materials obtained: the first is electroslag remelting with rotation of the consumable electrode, the second is centrifugal casting with modification. The microstructure of the metal becomes more homogeneous, the degree of metal refining from non-metallic inclusions increases, the rate of crystallization during metal smelting by the ESR method increases with rotation of the consumable electrode. When ingots are produced by the method of centrifugal casting, they are modified with dispersed WC and TiC particles, which increases the crystallization rate, increases the metal density, corrosion and mechanical properties. The evaluation of their corrosion resistance with the help of the autoclaved test complex “Cortest” is made after obtaining ingots by various technologies.
The pressure tunning Raman and IR spectral studies on the multinuclear metal carbyne complexes
NASA Astrophysics Data System (ADS)
Xu, Zhenhua; Butler, Ian S.; Mayr, Andreas
2005-03-01
The Raman and infrared (IR) spectra of four tungsten metal carbyne complexes I, II, IV and V [Cl(CO) 2(L)W tbnd CC 6H 4sbnd (C tbnd CC 6H 4) nsbnd N tbnd C sbnd ] 2M (L = TMEDA, n = 0, M = PdI 2 or ReCl(CO) 3; L = DPPE, n = 1, M = PdI 2 or ReCl(CO) 3) were studied at high external pressure. Their pressure-induced phase transitions were observed near 20 kbar (complexes I), 15 kbar (complexes II), 25 kbar (complex IV) and 30 kbar (complex V). The pressure-induced phase transition likely is first order in complex I and the pressure-induced phase transitions of complexes II, IV and V are mostly second order. The pressure sensitivities d ν/d p of ν(W tbnd C) are high in the low-pressure phase area and very low in the high-pressure phase area due to the pressure strengthening π back-bonding from metal W to π * orbital of C tbnd O in fragment Cl(CO) 2(L)W tbnd C. The pressure strengthening metal π back-bonding from metal Re or Pd to π * orbital of C tbnd O or C tbnd N also happened to both of central metal centers of NCPd(I 2)CN in complex I and NCReCl(CO) 3CN in complex II.
NASA Astrophysics Data System (ADS)
Fakheri, Hamideh; Tayyari, Sayyed Faramarz; Heravi, Mohammad Momen; Morsali, Ali
2017-12-01
Theoretical quantum chemistry calculations were used to assign the observed vibrational band frequencies of Be, Mg, Ca, Sr, and Ba acetylacetonates complexes. Density functional theory (DFT) calculations have been carried out at the B3LYP level, using LanL2DZ, def2SVP, and mixed, GenECP, (def2SVP for metal ions and 6-311++G** for all other atoms) basis sets. The B3LYP level, with mixed basis sets, was utilized for calculations of vibrational frequencies, IR intensity, and Raman activity. Analysis of the vibrational spectra indicates that there are several bands which could almost be assigned mainly to the metal-oxygen vibrations. The strongest Raman band in this region could be used as a measure of the stability of the complex. The effects of central metal on the bond orders and charge distributions in alkaline earth metal acetylacetonates were studied by the Natural Bond Orbital (NBO) method for fully optimized compounds. Optimization were performed at the B3LYP/6-311++G** level for the lighter alkaline earth metal complexes (Be, Mg, and Ca acetylacetonates) while the B3LYP level, using LanL2DZ (extrabasis, d and f on oxygen and metal atoms), def2SVP and mixed (def2SVP on metal ions and 6-311++G** for all other atoms) basis sets for all understudy complexes. Calculations indicate that the covalence nature of metal-oxygen bonds considerably decreases from Be to Ba complexes. The nature of metal-oxygen bond was further studied by using Atoms In Molecules (AIM) analysis. The topological parameters, Wiberg bond orders, natural charges of O and metal ions, and also some vibrational band frequencies were correlated with the stability constants of understudy complexes.
Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.
Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji
2018-07-04
Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.
Allylic amination reactivity of Ni, Pd, and Pt heterobimetallic and monometallic complexes.
Carlsen, Ryan W; Ess, Daniel H
2016-06-14
Transition metal heterobimetallic complexes with dative metal-metal interactions have the potential for novel fast reactivity. There are few studies that both compare the reactivity of different metal centers in heterobimetallic complexes and compare bimetallic reactivity to monometallic reactivity. Here we report density-functional calculations that show the reactivity of [Cl2Ti(N(t)BuPPh2)2M(II)(η(3)-methallyl)] heterobimetallic complexes for allylic amination follows M = Ni > Pd > Pt. This reactivity trend was not anticipated since the amine addition transition state involves M(II) to M(0) reduction and this could disadvantage Ni. Comparison of heterobimetallic complexes to the corresponding monometallic (CH2)2(N(t)BuPPh2)2M(II)(η(3)-methallyl) complexes reveals that this reactivity trend is due to the bimetallic interaction and that the bimetallic interaction significantly lowers the barrier height for amine addition by >10 kcal mol(-1). The impact of the early transition metal center on the amination addition barrier height depends on the late transition metal center. The lowest barrier heights for this reaction occur when late and early transition metal centers are from the same periodic table row.
Liu, Kexi; Lei, Yinkai; Wang, Guofeng
2013-11-28
Oxygen adsorption energy is directly relevant to the catalytic activity of electrocatalysts for oxygen reduction reaction (ORR). In this study, we established the correlation between the O2 adsorption energy and the electronic structure of transition metal macrocyclic complexes which exhibit activity for ORR. To this end, we have predicted the molecular and electronic structures of a series of transition metal macrocyclic complexes with planar N4 chelation, as well as the molecular and electronic structures for the O2 adsorption on these macrocyclic molecules, using the density functional theory calculation method. We found that the calculated adsorption energy of O2 on the transition metal macrocyclic complexes was linearly related to the average position (relative to the lowest unoccupied molecular orbital of the macrocyclic complexes) of the non-bonding d orbitals (d(z(2)), d(xy), d(xz), and d(yz)) which belong to the central transition metal atom. Importantly, our results suggest that varying the energy level of the non-bonding d orbitals through changing the central transition metal atom and/or peripheral ligand groups could be an effective way to tuning their O2 adsorption energy for enhancing the ORR activity of transition metal macrocyclic complex catalysts.
Biomedical Applications of Organometal-Peptide Conjugates
NASA Astrophysics Data System (ADS)
Metzler-Nolte, Nils
Peptides are well suited as targeting vectors for the directed delivery of metal-based drugs or probes for biomedical investigations. This chapter describes synthetic strategies for the preparation of conjugates of medically interesting peptides with covalently bound metal complexes. Peptides that were used include neuropeptides (enkephalin, neuropeptide Y, neurotensin), uptake peptides (TAT and poly-Arg), and intracellular localization sequences. To these peptides, a whole variety of transition metal complexes has been attached in recent years by solid-phase peptide synthesis (SPPS) techniques. The metal complex can be attached to the peptide on the resin as part of the SPPS scheme. Alternatively, the metal complex may be attached to the peptide as a postsynthetic modification. Advantages as well as disadvantages for either strategy are discussed. Biomedical applications include radiopharmaceutical applications, anticancer and antibacterial activity, metal-peptide conjugates as targeted CO-releasing molecules, and metal-peptide conjugates in biosensor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rawls, G.
ASME is evaluating the use of additive manufacturing (AM) for the construction of pressure equipment. The information in this report assesses available AM technologies for direct metal fabrication of pressure equipment. Background information is included in the report to provide context for those not experienced in AM technology. Only commercially available technologies for direct metal fabrication are addressed in the report because these AM methods are the only viable approaches for the construction of pressure equipment. Metal AM technologies can produce near-net shape parts by using multiple layers of material from a three dimensional (3D) design model of the geometry.more » Additive manufacturing of metal components was developed from polymer based rapid prototyping or 3D printing. At the current maturity level, AM application for pressure equipment has the potential to reduce delivery times and costs for complex shapes. AM will also lead to a reduction in the use of high cost materials, since parts can be created with corrosion resistant layers of high alloy material and structural layers of lower cost materials.« less
Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina
2016-01-14
A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.
DFT study of the interaction between DOTA chelator and competitive alkali metal ions.
Frimpong, E; Skelton, A A; Honarparvar, B
2017-09-01
1, 4, 7, 10-tetraazacyclododecane-1, 4, 7, 10-tetracetic acid (DOTA) is an important chelator for radiolabeling of pharmaceuticals. The ability of alkali metals found in the body to complex with DOTA and compete with radio metal ions can alter the radiolabeling process. Non-covalent interactions between DOTA complexed with alkali metals Li + , Na + , K + and Rb + , are investigated with density functional theory using B3LYP and ωB97XD functionals. Conformational possibilities of DOTA were explored with a varying number of carboxylic pendant arms of DOTA in close proximity to the ions. It is found that the case in which four arms of DOTA are interacting with ions is more stable than other conformations. The objective of this study is to explore the electronic structure properties upon complexation of alkali metals Li + Na + , K + and Rb + with a DOTA chelator. Interaction energies, relaxation energies, entropies, Gibbs free energies and enthalpies show that the stability of DOTA, complexed with alkali metals decreases down the group of the periodic table. Implicit water solvation affects the complexation of DOTA-ions leading to decreases in the stability of the complexes. NBO analysis through the natural population charges and the second order perturbation theory, revealed a charge transfer between DOTA and alkali metals. Conceptual DFT-based properties such as HOMO/LUMO energies, ΔE HOMO-LUMO and chemical hardness and softness indicated a decrease in the chemical stability of DOTA-alkali metal complexes down the alkali metal series. This study serves as a guide to researchers in the field of organometallic chelators, particularly, radiopharmaceuticals in finding the efficient optimal match between chelators and various metal ions. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chandra, Sulekh; Gupta, Lokesh Kumar; Sangeetika
2005-11-01
The complexation of new mixed thia-aza-oxa macrocycle viz., 2,12-dithio-5,9,14,18-tetraoxo-7,16-dithia-1,3,4,10,11,13-hexaazacyclooctadecane containing thiosemicarba-zone unit with a series of transition metals Co(II), Ni(II) and Cu(II) has been investigated, by different spectroscopic techniques. The structural features of the ligand have been studied by EI-mass, 1H NMR and IR spectral techniques. Elemental analyses, magnetic moment susceptibility, molar conductance, IR, electronic, and EPR spectral studies characterized the complexes. Electronic absorption and IR spectra of the complexes indicate octahedral geometry for chloro, nitrato, thiocyanato or acetato complexes. The dimeric and neutral nature of the sulphato complexes are confirmed from magnetic susceptibility and low conductance values. Electronic spectra suggests square-planar geometry for all sulphato complexes. The redox behaviour was studied by cyclic voltammetry, show metal-centered reduction processes for all complexes. The complexes of copper show both oxidation and reduction process. The redox potentials depend on the conformation of central atom in the macrocyclic complexes. Newly synthesized macrocyclic ligand and its transition metal complexes show markedly growth inhibitory activity against pathogenic bacterias and plant pathogenic fungi under study. Most of the complexes have higher activity than that of the metal free ligand.
NASA Astrophysics Data System (ADS)
Masoud, Mamdouh S.; Ali, Alaa E.; Elasala, Gehan S.; Kolkaila, Sherif A.
2018-03-01
Synthesis, physicochemical characterization and thermal analysis of ceftazidime complexes with transition metals (Cr(III), Mn(II), Fe(III), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II)) were discussed. It's obtained that ceftazidime act as bidentate ligand. From magnetic measurement and spectral data, octahedral structures were proposed for all complexes except for cobalt, nickel and mercury had tetrahedral structural. Hyper chemistry program confirmed binding sites of ceftazidime. Ceftazidime complexes show higher activity than ceftazidime for some strains. From TG and DTA curves the thermal decomposition mechanisms of ceftazidime and their metal complexes were suggested. The thermal decomposition of the complexes ended with the formation of metal oxides as a final product except in case of Hg complex.
Structural analysis of the coordination of dinitrogen to transition metal complexes.
Peigné, Benjamin; Aullón, Gabriel
2015-06-01
Transition-metal complexes show a wide variety of coordination modes for the nitrogen molecule. A structural database study has been undertaken for dinitrogen complexes, and geometrical parameters around the L(n)M-N2 unit are retrieved from the Cambridge Structural Database. These data were classified in families of compounds, according to metal properties, to determine the degree of lengthening for the dinitrogen bonding. The importance of the nature of the metal center, such as coordination number and electronic configuration, is reported. Our study reveals poor activation by coordination of dinitrogen in mononuclear complexes, always having end-on coordination. However, partial weakening of nitrogen-nitrogen bonding is found for end-on binuclear complexes, whereas side-on complexes can be completely activated.
NASA Astrophysics Data System (ADS)
Mori, Wasuke; Sato, Tomohiko; Ohmura, Tesushi; Nozaki Kato, Chika; Takei, Tohru
2005-08-01
Copper(II) terephthalate is the first transition metal complex found capable of adsorbing gases. This complex has opened the new field of adsorbent complex chemistry. It is recognized as the lead complex in the construction of microporous complexes. This specific system has been expanded to a systematic series of derivatives of other isomorphous transition metals, molybdenum(II), ruthenium(II, III), and rhodium(II). These complexes with open frameworks are widely recognized as very useful materials for applications to catalysis, separation at molecular level, and gas storage.
Trace Metal-Humic Complexes in Natural Waters: Insights From Speciation Experiments
NASA Astrophysics Data System (ADS)
Stern, J. C.; Salters, V.; Sonke, J.
2006-12-01
The DOM cycle is intimately linked to the cycling and bioavailability of trace metals in aqueous environments. The presence or absence of DOM in the water column can determined whether trace elements will be present in limited quantities as a nutrient, or in surplus quantities as a toxicant. Humic substances (HS), which represent the refractory products of DOM degradation, strongly affect the speciation of trace metals in natural waters. To simulate metal-HS interactions in nature, experiments must be carried out using trace metal concentrations. Sensitive detection systems such as ICP-MS make working with small (nanomolar) concentrations possible. Capillary electrophoresis coupled with ICP-MS (CE-ICP-MS) has recently been identified as a rapid and accurate method to separate metal species and calculate conditional binding constants (log K_c) of metal-humic complexes. CE-ICP-MS was used to measure partitioning of metals between humic substances and a competing ligand (EDTA) and calculate binding constants of rare earth element (REE) and Th, Hf, and Zr-humic complexes at pH 3.5-8 and ionic strength of 0.1. Equilibrium dialysis ligand exchange (EDLE) experiments to validate the CE-ICP-MS method were performed to separate the metal-HS and metal-EDTA species by partitioning due to size exclusion via diffusion through a 1000 Da membrane. CE-ICP-MS experiments were also conducted to compare binding constants of REE with humic substances of various origin, including soil, peat, and aquatic DOM. Results of our experiments show an increase in log K_c with decrease in ionic radius for REE-humic complexes (the lanthanide contraction effect). Conditional binding constants of tetravalent metal-humic complexes were found to be several orders of magnitude higher than REE-humic complexes, indicating that tetravalent metals have a very strong affinity for humic substances. Because thorium is often used as a proxy for the tetravalent actinides, Th-HS binding constants can allow us to assess the importance of tetravalent actinide-humic complexes in groundwater transport from nuclear repositories. Our results suggest that tetravalent actinide-humic complexes couild be more important to account for in predictive speciation models than previously thought.
NASA Astrophysics Data System (ADS)
Hartland, Adam; Fairchild, Ian J.; Müller, Wolfgang; Dominguez-Villar, David
2014-03-01
We report the first quantitative study of the capture of colloidal natural organic matter (NOM) and NOM-complexed trace metals (V, Co, Cu, Ni) in speleothems. This study combines published NOM-metal dripwater speciation measurements with high-resolution laser ablation ICPMS (LA-ICPMS) and sub-annual stable isotope ratio (δ18O and δ13C), fluorescence and total organic carbon (TOC) analyses of a fast-growing hyperalkaline stalagmite (pH ˜11) from Poole’s Cavern, Derbyshire UK, which formed between 1997 and 2008 AD. We suggest that the findings reported here elucidate trace element variations arising from colloidal transport and calcite precipitation rate changes observed in multiple, natural speleothems deposited at ca. pH 7-8. We find that NOM-metal(aq) complexes on the boundary between colloidal and dissolved (˜1 nm diameter) show an annual cyclicity which is inversely correlated with the alkaline earth metals and is explained by calcite precipitation rate changes (as recorded by kinetically-fractionated stable isotopes). This relates to the strength of the NOM-metal complexation reaction, resulting in very strongly bound metals (Co in this system) essentially recording NOM co-precipitation (ternary complexation). More specifically, empirical partition coefficient (Kd) values between surface-reactive metals (V, Co, Cu, Ni) [expressed as ratio of trace element to Ca ratios in calcite and in solution] arise from variations in the ‘free’ fraction of total metal in aqueous solution (fm). Hence, differences in the preservation of each metal in calcite can be explained quantitatively by their complexation behaviour with aqueous NOM. Differences between inorganic Kd values and field measurements for metal partitioning into calcite occur where [free metal] ≪ [total metal] due to complexation reactions between metals and organic ligands (and potentially inorganic colloids). It follows that where fm ≈ 0, apparent inorganic Kd app values are also ≈0, but the true partition coefficient (Kd actual) is significantly higher. Importantly, the Kd of NOM-metal complexes [organic carbon-metal ratio) approaches 1 for the most stable aqueous complexes, as is shown here for Co, but has values of 24-150 for V, Ni and Cu. This implies that ternary surface complexation (metal-ligand co-adsorption) can occur (as for NOM-Co), but is the exception rather than the rule. We also demonstrate the potential for trace metals to record information on NOM composition as expressed through changing NOM-metal complexation patterns in dripwaters. Therefore, a suite of trace metals in stalagmites show variations clearly attributable to changes in organic ligand concentration and composition, and which potentially reflect the state of overlying surface ecosystems. The heterogeneous speciation and size distribution of aqueous NOM and metals (Lead and Wilkinson, 2006; Aiken et al., 2011). The variability in NOM-metal transport in caves that arises from the interaction between infiltration, flow routing, and the hydrodynamic properties of the fine colloids and particulates (Hartland et al., 2012). Variable dissociation kinetics through time as a function of (a) (Hartland et al., 2011). The surface charge of calcite and the availability of CaCO3 lattice sites as well as increased incidence of crystallographic defects with implications for incorporation of a range of trace species (Fairchild and Treble, 2009; Fairchild and Hartland, 2010). Thus, incorporation in speleothem calcite with consistent surface site properties will be determined by: The size and composition (i.e. hydrophilicity/hydrophobicity) of the NOM ligand, affecting adsorption and stability at the calcite surface. The lability (i.e. exchangeability) of the complexed metal and its binding affinity for the calcite surface. The concentration of aqueous complexes. Given the complexities, a partitioning approach to the problem is appropriate as a first approximation rather than a precise description. This study seeks to make the first quantitative connection between the organic and inorganic compositions of speleothems and thus determine the potential for speleothems to encode fluctuations in colloid-facilitated trace metal transport in karst aquifers. Recent findings of direct relevance to the present studyThe conjugate dripwater (PE1) to the stalagmite studied here (PC-08-1) was characterised in June 2009 using an array of complementary techniques, in which the size, speciation and lability of NOM-metal complexes was characterised (Hartland et al., 2011), where lability is defined as the capacity for complexes to dissociate in the context of the on-going interfacial process at the stalagmite surface. In PE1 dripwater, the most stable aqueous complexes were formed between Co and the finest, low molecular weight component of the NOM spectrum (Hartland et al., 2011). Speciation experiments demonstrated that Co was essentially non-exchangeable (free metal (fm) = <0.05), being retained in aqueous complexes, whilst Cu, Ni and V were all predominantly bound by NOM (fm = 0.2-0.3).In contrast, Sr and Ba were freely exchangeable between the solution and solid phase (Hartland et al., 2011) and Mg was absent, presumably due to the poor solubility of Mg(OH)2 at hyperalkaline pH (Ksp = 1.5 × 10-11): Mg2+(aq)+2OH-(aq)↔Mg( On the other hand, the transition metals were not lost as insoluble hydroxides (Hartland et al., 2012), despite having lower solubility than Mg (e.g. Cu(OH)2Ksp = 2.2 × 10-20); and this is consistent with the dominant role of NOM in solubilising and transporting the transition metals in this system (Hartland et al., 2011).The transport of metals by complexes with NOM in PE1 dripwater through the hydrological year was studied by Hartland et al. (2012). This study had two findings of direct relevance to the study of trace metal variations in the conjugate PC-08-1 stalagmite: Complexes between metals and the smallest, low-molecular weight fraction of NOM showed an attenuated delivery in dripwaters consistent with the non-conservative behaviour of analogous tracers in fractured-rock studies due to diffusion into micro-fractures. This mode of transport was termed ‘low-flux’ and was the dominant mode of transport for Co and V. Complexes between metals and coarse colloids (>100 nm) and particulates (>1000 nm) showed a rapid responsiveness to infiltration events. This was termed the ‘high-flux’ mode of NOM-metal transport and was interpreted as being dominantly fracture-fed. This mode of transport was dominated by Cu, Zn and Ni. The ‘high-flux’ vs ‘low-flux’ interplay of trace metal transport is summarised in Fig. 1.The PC-08-1 stalagmite studied here was deposited following the removal of stalagmite PC-97-1 studied by Baker et al. (1999b) and which grew under the PE1 drip point between 1927 and 1997. Both the PC-97-1 stalagmite and its regrowth (PC-08-1) are characterised by annual lamina couplets consisting of a porous pale layer and a dense fluorescent layer. Fluorescence in the PC-97-1 stalagmite displayed a marked sinusoidal pattern with 10% of laminae exhibiting a double band structure (Baker et al., 1999b).
Melha, Khlood Abou
2008-04-01
The Schiff base ligand, oxalyl [( 2 - hydroxybenzylidene) hydrazone] [corrected].H(2)L, and its Cu(II), Ni(II), Co(II), UO(2)(VI) and Fe(III) complexes were prepared and tested as antibacterial agents. The Schiff base acts as a dibasic tetra- or hexadentate ligand with metal cations in molar ratio 1:1 or 2:1 (M:L) to yield either mono- or binuclear complexes, respectively. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, Mass, and UV-Visible spectra and the magnetic moments and electrical conductance of the complexes were also determined. For binuclear complexes, the magnetic moments are quite low compared to the calculated value for two metal ions complexes and this shows antiferromagnetic interactions between the two adjacent metal ions. The ligand and its metal complexes were tested against a Gram + ve bacteria (Staphylococcus aureus), a Gram -ve bacteria (Escherichia coli), and a fungi (Candida albicans). The tested compounds exhibited high antibacterial activities.
Rellán-Alvarez, Rubén; Abadía, Javier; Alvarez-Fernández, Ana
2008-05-01
Nicotianamine (NA) is considered as a key element in plant metal homeostasis. This non-proteinogenic amino acid has an optimal structure for chelation of metal ions, with six functional groups that allow octahedral coordination. The ability to chelate metals by NA is largely dependent on the pK of the resulting complex and the pH of the solution, with most metals being chelated at neutral or basic pH values. In silico calculations using pKa and pK values have predicted the occurrence of metal-NA complexes in plant fluids, but the use of soft ionization techniques (e.g. electrospray), together with high-resolution mass spectrometers (e.g. time-of-flight mass detector), can offer direct and metal-specific information on the speciation of NA in solution. We have used direct infusion electrospray ionization mass spectrometry (time-of-flight) ESI-MS(TOF) to study the complexation of Mn, Fe(II), Fe(III), Ni, Cu by NA. The pH dependence of the metal-NA complexes in ESI-MS was compared to that predicted in silico. Possible exchange reactions that may occur between Fe-NA and other metal micronutrients as Zn and Cu, as well as between Fe-NA and citrate, another possible Fe ligand candidate in plants, were studied at pH 5.5 and 7.5, values typical of the plant xylem and phloem saps. Metal-NA complexes were generally observed in the ESI-MS experiments at a pH value approximately 1-2 units lower than that predicted in silico, and this difference could be only partially explained by the estimated error, approximately 0.3 pH units, associated with measuring pH in organic solvent-containing solutions. Iron-NA complexes are less likely to participate in ligand- and metal-exchange reactions at pH 7.5 than at pH 5.5. Results support that NA may be the ligand chelating Fe at pH values usually found in phloem sap, whereas in the xylem sap NA is not likely to be involved in Fe transport, conversely to what occurs with other metals such as Cu and Ni. Some considerations that need to be addressed when studying metal complexes in plant compartments by ESI-MS are also discussed.
Lim, Jun Young; Kim, Namhyun; Park, Jong-Chul; Yoo, Sun K; Shin, Dong Ah; Shim, Kyu-Won
2017-09-01
Cranioplasty for recovering skull defects carries the risk for a number of complications. Various materials are used, including autologous bone graft, metallic materials, and non-metallic materials, each of which has advantages and disadvantages. If the use of autologous bone is not feasible, those artificial materials also have constraints in the case of complex anatomy and/or irregular defects. This study used metal 3D-printing technology to overcome these existing drawbacks and analyze the clinical and mechanical performance requirements. To find an optimal structure that satisfied the structural and mechanical stability requirements, we evaluated biomechanical stability using finite element analysis (FEA) and mechanical testing. To ensure clinical applicability, the model was subjected to histological evaluation. Each specimen was implanted in the femur of a rabbit and was evaluated using histological measurements and push-out test. We believe that our data will provide the basis for future applications of a variety of unit structures and further clinical trials and research, as well as the direction for the study of other patient-specific implants.
Ahmed, Riyadh M.; Yousif, Enaam I.; Al-Jeboori, Mohamad J.
2013-01-01
New monomeric cobalt and cadmium complexes with Schiff-bases, namely, N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]furan-2-carbohydrazide (L1) and N′-[(E)-(3-hydroxy-4-methoxyphenyl)methylidene]thiophene-2-carbohydrazide (L2) are reported. Schiff-base ligands L1 and L2 were derived from condensation of 3-hydroxy-4-methoxybenzaldehyde (iso-vanillin) with furan-2-carboxylic acid hydrazide and thiophene-2-carboxylic acid hydrazide, respectively. Complexes of the general formula [M(L)2]Cl2 (where M = Co(II) or Cd(II), L = L1 or L2) have been obtained from the reaction of the corresponding metal chloride with the ligands. The ligands and their metal complexes were characterised by spectroscopic methods (FTIR, UV-Vis, 1H, and 13C NMR spectra), elemental analysis, metal content, magnetic measurement, and conductance. These studies revealed the formation of four-coordinate complexes in which the geometry about metal ion is tetrahedral. Biological activity of the ligands and their metal complexes against gram positive bacterial strain Bacillus (G+) and gram negative bacteria Pseudomonas (G−) revealed that the metal complexes become less resistive to the microbial activities as compared to the free ligands. PMID:24027449
NASA Astrophysics Data System (ADS)
Carrasco, G. G.; Morton, P. L.; Donat, J. R.
2008-12-01
We determined Zn and Cd total dissolved (0.45 µm-filtered) concentrations, organic complexation and chemical speciation in surface water samples collected along the transect of the 2002 IOC Baseline Contaminant Survey expedition in the Western North Pacific and in vertical profile water samples at nine stations. The goals of this work were (1) to compare and contrast various trace metal sources, including both natural and anthropogenic atmospheric deposition, upwelling, marginal seas and others; (2) to study the organic ligand sources, generally thought to be phytoplankton; and (3) to investigate metal and ligand transport mechanisms, residence times and eventual upwelling in the Eastern North Pacific. Total dissolved (TD) Zn and Cd values were obtained using a combination of differential pulse stripping anodic voltammetry (DPASV), preconcentration with 8-HQ or APDC/DDC and quantification at ICPMS or AA. Organic complexation and chemical speciation of Zn and Cd were determined simultaneously using DPASV at a thin-mercury-film, glassy-carbon-disk-electrode. Surface transect TDZn and TDCd concentrations were low in the Subtropical Gyre (STG), in contrast with high values in the Western Subarctic Gyre (WSG). Zn and Cd were organically complexed in most surface samples: at least one ligand class was detected for Zn and Cd, whose conditional stability constants (log K') averaged 10.2 and 10.5, respectively. These ligands were found in excess of the total dissolved metal throughout the region of study except in the WSG for Cd. Vertical distributions of TDZn and TDCd exhibited nutrient-type profiles for all the STG stations. While constant Zn/Si and Cd/P values were observed throughout the water column in the WSG, some deviations were observed within the STG. In addition, the mode and intermediate water masses of the STG displayed very high concentrations of a Zn-complexing ligand (log K' 10.0) in excess of TDZn. As these water masses moved eastward, we observed that the ligand concentrations decreased. In contrast to the STG, the upper 1000m of the WSG showed elevated concentrations of both metals. Despite elevated surface (0-200m) Zn concentrations (~2nM), a Zn-complexing ligand (log K' 9.8) was found in excess of TDZn; below the photic layer, even higher TDZn concentrations might have saturated the ligand. A ligand for Cd was present in lower-than-TDCd concentrations in the same surface waters; below them, organic complexation of Cd was observed rarely in both STG and WSG regions. By studying the geographic distribution of the total dissolved metals and ligands, along with other dissolved and particulate tracers, possible sources and transport mechanisms can be contrasted and evaluated. Furthermore, the influence of these sources and transport mechanisms on the distribution of Zn and Cd chemical species and, ultimately, the bioavailability of these micronutrient metals can be studied.
Schiff bases in medicinal chemistry: a patent review (2010-2015).
Hameed, Abdul; Al-Rashida, Mariya; Uroos, Maliha; Abid Ali, Syed; Khan, Khalid Mohammed
2017-01-01
Schiff bases are synthetically accessible and structurally diverse compounds, typically obtained by facile condensation between an aldehyde, or a ketone with primary amines. Schiff bases contain an azomethine (-C = N-) linkage that stitches together two or more biologically active aromatic/heterocyclic scaffolds to form various molecular hybrids with interesting biological properties. Schiff bases are versatile metal complexing agents and have been known to coordinate all metals to form stable metal complexes with vast therapeutic applications. Areas covered: This review aims to provide a comprehensive overview of the various patented therapeutic applications of Schiff bases and their metal complexes from 2010 to 2015. Expert opinion: Schiff bases are a popular class of compounds with interesting biological properties. Schiff bases are also versatile metal complexing ligands and have been used to coordinate almost all d-block metals as well as lanthanides. Therapeutically, Schiff bases and their metal complexes have been reported to exhibit a wide range of biological activities such as antibacterial including antimycobacterial, antifungal, antiviral, antimalarial, antiinflammatory, antioxidant, pesticidal, cytotoxic, enzyme inhibitory, and anticancer including DNA damage.
Water-soluble polymers for recovery of metal ions from aqueous streams
Smith, Barbara F.; Robison, Thomas W.
1998-01-01
A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.
NASA Astrophysics Data System (ADS)
Mostafavi, Najmeh; Ebrahimi, Ali
2018-06-01
In order to characterize various interactions in the G-quadruplex ⋯ Mn+ (G-Q ⋯ Mn+) complexes, the individual H-bond (EHB) and metal ion-ligand interaction (EMO) energies have been estimated using the electron charge densities (ρs) calculated at the X ⋯ H (X = N and O) and Mn+ ⋯ O (Mn+ is an alkaline, alkaline earth and transition metal ion) bond critical points (BCPs) obtained from the atoms in molecules (AIM) analysis. The estimated values of EMO and EHB were evaluated using the structural parameters, results of natural bond orbital analysis (NBO), aromaticity indexes and atomic charges. The EMO value increase with the ratio of ionic charge to radius, e/r, where a linear correlation is observed between EMO and e/r (R = 0.97). Meaningful relationships are also observed between EMO and indexes used for aromaticity estimation. The ENH value is higher than EOH in the complexes; this is in complete agreement with the trend of N⋯Hsbnd N and O⋯Hsbnd N angles, the E (2) value of nN → σ*NH and nO → σ*NH interactions and the difference between the natural charges on the H-bonded atom and the hydrogen atom of guanine (Δq). In general, the O1MO2 angle becomes closer to 109.5° with the increase in EMO and decrease in EHB in the presence of metal ion.
Gatus, Mark R D; Bhadbhade, Mohan; Messerle, Barbara A
2017-10-24
Two highly versatile xanthene scaffolds containing pairs of heteroditopic ligands were found to be capable of accommodating a range of transition metal ions, including Au(i), Ir(i), Ir(iii), Rh(i), and Ru(ii) to generate an array of heterobimetallic complexes. The metal complexes were fully characterised and proved to be stable in the solid and solution state, with no observed metal-metal scrambling. Heterobimetallic complexes containing the Rh(i)/Ir(i) combinations were tested as catalysts for the two-step dihydroalkoxylation reaction of alkynediols and sequential hydroamination/hydrosilylation reaction of alkynamines.
Deacon, Glen B; Junk, Peter C; Moxey, Graeme J; Ruhlandt-Senge, Karin; St Prix, Courtney; Zuniga, Maria F
2009-01-01
Treatment of a rare earth metal (Ln) and a potential divalent rare earth metal (Ln') or an alkaline earth metal (Ae) with 2,6-diphenylphenol (HOdpp) at elevated temperatures (200-250 degrees C) afforded heterobimetallic aryloxo complexes, which were structurally characterised. A charge-separated species [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] was obtained for a range of metals, demonstrating the similarities between the chemistry of the divalent rare earth metals and the alkaline earth metals. The [(Ln'/Ae)(2)(Odpp)(3)](+) cation in the heterobimetallic structures is unusual in that it consists solely of bridging aryloxide ligands. A molecular heterobimetallic species [AeEu(Odpp)(4)] (Ae = Ca, Sr, Ba) was obtained by treating an alkaline earth metal and Eu metal with HOdpp at elevated temperatures. Similarly, [BaSr(Odpp)(4)] was prepared by treating Ba metal and Sr metal with HOdpp. Treatment of [Ba(2)(Odpp)(4)] with [Mg(Odpp)(2)(thf)(2)] in toluene afforded [Ba(2)(Odpp)(3)][Mg(Odpp)(3)(thf)]. Analogous solution-based syntheses were not possible for [(Ln'/Ae)(2)(Odpp)(3)][Ln(Odpp)(4)] complexes, for which the free-metal route was essential. As a result of the absence of additional donor ligands, the crystal structures of the heterobimetallic complexes feature extensive pi-Ph-metal interactions involving the pendant phenyl groups of the Odpp ligands, thus enabling the large electropositive metal atoms to attain coordination saturation. The charge-separated heterobimetallic species were purified by extraction with toluene/thf mixtures at ambient temperature (Ba-containing compounds) or by extraction with toluene under pressure above the boiling point of the solvent (other products). In donor solvents, heterobimetallic complexes other than those containing barium were found to fragment into homometallic species.
NASA Astrophysics Data System (ADS)
El-Shafiy, H. F.; Shebl, Magdy
2018-03-01
A new series of mononuclear oxovanadium(IV), cerium(III), thorium(IV) and dioxouranium(VI) complexes of a quinolinone ligand; 1-ethyl-4-hydroxy-3-(nitroacetyl)quinolin-2(1H)-one (H2L) have been synthesized. The metal complexes were characterized by different techniques such as elemental and thermal analyses, IR, 1H NMR, electronic, ESR, mass spectra and powder XRD, TEM in addition to magnetic susceptibility and conductivity measurements. The quinolinone ligand acts as a dibasic bidentate ligand forming mononuclear complexes, which can be formulated as: [(L)VO(H2O)2]·0.5H2O, [(L)M(NO3)x(H2O)y]·nH2O; M = Ce or Th, x = 1 or 2, y = 3 or 4 and n = 2 or 7 and [(L)UO2(H2O)x(MeOH)y]·nH2O; x = 2 or 3, y = 0 or 1 and n = 0.5 or 2.5. The photoluminescent properties of the prepared complexes were studied. The ligand and its thorium(IV) complex are characterized by an intense green emission. Kinetic parameters (Ea, A, ΔH, ΔS and ΔG) of the thermal decomposition stages have been evaluated using Coats-Redfern equations. The geometry of the ligand and its oxovanadium(IV) complex has been optimized using density functional theory (DFT). Total energy, energy of HOMO and LUMO, dipole moment and structure activity relationship were performed and confirmed practical antimicrobial and antitumor results. The antimicrobial activity of the ligand and its metal complexes was conducted against the microorganisms S. aureus, K. pnemonia, E. coli, P. vulgaris and C. albicans and the MIC values were determined. The antitumor activity of the ligand and its metal complexes was investigated against human Hepatocelluar carcinoma and human breast cancer cell lines.
Nagula, Narsimha; Kunche, Sudeepa; Jaheer, Mohmed; Mudavath, Ravi; Sivan, Sreekanth; Ch, Sarala Devi
2018-01-01
Some novel transition metal [Cu (II), Ni (II) and Co (II)] complexes of nalidixic acid hydrazone have been prepared and characterized by employing spectro-analytical techniques viz: elemental analysis, 1 H-NMR, Mass, UV-Vis, IR, TGA-DTA, SEM-EDX, ESR and Spectrophotometry studies. The HyperChem 7.5 software was used for geometry optimization of title compound in its molecular and ionic forms. Quantum mechanical parameters, contour maps of highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) and corresponding binding energy values were computed using semi empirical single point PM3 method. The stoichiometric equilibrium studies of metal complexes carried out spectrophotometrically using Job's continuous variation and mole ratio methods inferred formation of 1:2 (ML 2 ) metal complexes in respective systems. The title compound and its metal complexes screened for antibacterial and antifungal properties, exemplified improved activity in metal complexes. The studies of nuclease activity for the cleavage of CT- DNA and MTT assay for in vitro cytotoxic properties involving metal complexes exhibited high activity. In addition, the DNA binding properties of Cu (II), Ni (II) and Co (II) complexes investigated by electronic absorption and fluorescence measurements revealed their good binding ability and commended agreement of K b values obtained from both the techniques. Molecular docking studies were also performed to find the binding affinity of synthesized compounds with DNA (PDB ID: 1N37) and "Thymidine phosphorylase from E.coli" (PDB ID: 4EAF) protein targets.
Ammonia release method for depositing metal oxides
Silver, Gary L.; Martin, Frank S.
1994-12-13
A method of depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates.
NASA Astrophysics Data System (ADS)
Abdel-Rahman, Laila H.; Ismail, Nabawia M.; Ismael, Mohamed; Abu-Dief, Ahmed M.; Ahmed, Ebtehal Abdel-Hameed
2017-04-01
This study highlights synthesis and characterization of a tetradentate ONNO Schiff base ligand namely (1, 1‧- (pyridine-2, 3-dimethyliminomethyl) naphthalene-2, 2‧-diol) and hereafter denotes as "HNDAP″ and selected metal complexes including Mn(II), Fe(II), Co(II) and Cd(II) as a central metal. HNDAP was synthesized from 1:2 M ratio condensation of 2, 3-diaminopyridine and 2- hydroxy-1-naphthaldhyde, respectively. The stoichiometric ratios of the prepared complexes were estimated using complementary techniques such as; elemental analyses (-C, H, N), FT-IR, magnetic measurements and molar conductivity. Furthermore, their physicochemical studies were carried out using thermal TGA, DTA and kinetic-thermodynamic studies along with DFT calculations. The results of elemental analyses showed that these complexes are present in a 1:1 metal-to- ligand molar ratio. Moreover, the magnetic susceptibilities values at room temperature revealed that Mn(II), Fe(II) and Co(II) complexes are paramagnetic in nature and have an octahedral (Oh) geometry. In contrast, Cd(II) is diamagnetic and stabilizes in square planar sites. The molar conductivity measurements indicated that all complexes are nonelectrolytes in dimethyl formamide. Spectral data suggested that the ligand is as tetradentate and coordinated with Co(II) ion through two phenolic OH and two azomethine nitrogen. However, for Mn(II), Fe(II) and Cd(II) complexes, the coordination occurred through two phenolic oxygen and two azomethine nitrogen with deprotonation of OH groups. The proposed chemical structures have been validated by quantum mechanics calculations. Antimicrobial activities of both the HNDAP Schiff base ligand and its metal complexes were tested against strains of Gram (-ve) E. coli and Gram (+ve) B. subtilis and S. aureus bacteria and C. albicans, A. flavus and T. rubrum fungi. All the prepared compounds showed good results of inhibition against the selected pathogenic microorganisms. The investigated HNDAP Schiff base complexes showed higher activity and stability than their corresponding HNDAP Schiff base ligand and the highest activity observed for Cd(II) complex. Moreover, the prepared Schiff base ligand and its Mn(II) and Co(II) complexes have been evaluated for their anticancer activities against two cancer cell lines namely; colon carcinoma cells (HCT-116 cell line) and hepatocellular carcinoma (Hep-G2) cell lines The interaction of Mn(II) and Co(II) complexes with calf thymus DNA (CT-DNA) was studied by absorption spectroscopic technique and viscosity measurements. Both complexes showed a successful interaction with CT-DNA via intercalation mode.
Craciun, Smaranda; Donald, Kelling J
2009-07-06
We examine the bonding possibilities of the bis(phenalenyl) MP(2) sandwich complexes of the divalent metals M = Be, Mg, Ca, Sr, Ba, Zn, Cd, and Hg, at the B3LYP level of theory. The outcome is an extraordinarily diverse class of low symmetry bis(phenalenyl)metal complexes in which bonding preferences and binding enthalpies differ dramatically. The lowest energy group 2 metal MP(2) complexes include an intriguing eta(1),eta(3) BeP(2) structure, and bent eta(6),eta(6) systems for M = Ca, Sr, and Ba. The group 12 bis(phenalenyl) complexes are thermodynamically unstable eta(1),eta(1) slip-sandwich structures. To better understand changes in the structural preferences going from the (eta(6),eta(6)) group 2 to the (eta(1),eta(1)) group 12 complexes, we explored the bonding in the bis(phenalenyl) complexes of transition metals with stable +2 oxidations states between Ca and Zn in period 4. The computed binding enthalpies are large and negative for nearly all of the minimum energy bis(phenalenyl) complexes of the group 2 and the transition metals; they are tiny for MgP(2), and are quite positive for the group 12 systems. The structural preferences and stability of the complexes is a subtle negotiation of several influences: the (un)availability of (n - 1)d and np, orbitals for bonding, the cost of the rehybridization at carbon sites in the phenalenyl rings in preparation for bonding to the metals, and the (P---P) interaction between the phenalenyl radicals.
He, Shuran; Li, Yongtao; Weng, Liping; Wang, Jinjin; He, Jinxian; Liu, Yonglin; Zhang, Kun; Wu, Qihong; Zhang, Yulong; Zhang, Zhen
2018-10-01
In present study, the feasibility of applying a natural adsorbent with Fe 3+ modification (Fe 3+ -modified argillaceous limestone, FAL) on the competitive adsorption of heavy metals (i.e., Cd 2+ , Pb 2+ and Ni 2+ ) was evaluated. The current results revealed an efficient adsorption on Cd 2+ , Pb 2+ and Ni 2+ in mono-metal system. Further experiments demonstrated a high selectivity of Pb 2+ during the competitive adsorption of Cd 2+ , Pb 2+ and Ni 2+ . The adsorption selectivity of the metal ions followed the order of Pb ≫ Cd > Ni. In addition, both pH and ionic strength are important factors affecting the metal adsorptions. It is interestingly that various NOMs (i.e., humic acid (HA) and glycine (Gly)) exerted different effects on the adsorption behaviors, probably due to the different affinities for Pb 2+ , Cd 2+ and Ni 2+ and the redistribution of newly-formed metal-DOM complexes. X-ray photoelectron spectroscopy (XPS) analysis together with X-ray diffraction (XRD) and energy dispersive spectrometer (EDS) analysis revealed that the metal adsorptions were mainly regulated via the synergistic mechanisms of ion exchange by Na + , Ca 2+ , and Al 3+ , precipitation to form CdCO 3 and Pb 2 (OH) 2 (CO 3 ) 2 , as well as complexes of FAL-OPb and FAL-ONi by hydroxyl groups on the surface of FAL. The application of FAL would be a promising option in leading to an efficient heavy metal removal. Copyright © 2018 Elsevier B.V. All rights reserved.
Synthesis, characterization and antioxidant activity copper-quercetin complex.
Bukhari, S Birjees; Memon, Shahabuddin; Mahroof-Tahir, M; Bhanger, M I
2009-01-01
Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, (1)H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.
Synthesis, characterization and antioxidant activity copper-quercetin complex
NASA Astrophysics Data System (ADS)
Bukhari, S. Birjees; Memon, Shahabuddin; Mahroof-Tahir, M.; Bhanger, M. I.
2009-01-01
Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, 1H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.
Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J
2018-02-19
The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.
Bistri, Olivia; Reinaud, Olivia
2015-03-14
Supramolecular chemistry in water is a very challenging research area. In biology, water is the universal solvent where transition metal ions play major roles in molecular recognition and catalysis. In enzymes, it participates in substrate binding and/or activation in the heart of a pocket defined by the folded protein. The association of a hydrophobic cavity with a transition metal ion is thus a very appealing strategy for controlling the metal ion properties in the very competitive water solvent. Various systems based on intrinsically water-soluble macrocyclic structures such as cyclodextrins, cucurbituryls, and metallo-cages have been reported. Others use calixarenes and resorcinarenes functionalized with hydrophilic substituents. One approach for connecting a metal complex to these cavities is to graft a ligand for metal ion binding at their edge. Early work with cyclodextrins has shown Michaelis-Menten like catalysis displaying enhanced kinetics and substrate-selectivity. Remarkable examples of regio- and stereo-selective transformation of substrates have been reported as well. Dynamic two-phase systems for transition metal catalysis have also been developed. They rely on either water-transfer of the metal complex through ligand embedment or synergistic coordination of a metal ion and substrate hosting. Another strategy consists in using metallo-cages, which provide a well-defined hydrophobic space, to stabilize metal complexes in water. When the cages can host simultaneously a substrate and a reactive metal complex, size- and regio-selective catalysis was obtained. Finally, construction of a polydentate coordination site closely interlocked with a calixarene or resorcinarene macrocycle has been shown to be a very fruitful strategy for obtaining metal complexes with remarkable hosting properties. For each of these systems, the synergism resulting from the biomimetic association of a hydrophobic cavity and a metal ion is discussed within the objective of developing new tools for either selective molecular recognition (with analytical perspectives) or performant catalysis, in water.
Dey, Abhishek; Green, Kayla N.; Jenkins, Roxanne M.; Jeffrey, Stephen P.; Darensbourg, Marcetta; Hodgson, Keith O.; Hedman, Britt; Solomon, Edward I.
2008-01-01
S K-edge XAS for a low-spin NiII-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high spin FeIII-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc.; 2005; 127, 12046-12053.). These differences were analyzed using DFT calculations and the results indicate that two different types of H-bonding interactions are possible in metal-thiolate systems. In the high-spin FeIII-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin NiII-thiolate the orbital involved in H-bonding is non-bonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated. PMID:17949080
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dey, A.; Green, K.N.; Jenkins, R.M.
S K-edge XAS for a low-spin Ni{sup II}-thiolate complex shows a 0.2 eV shift to higher pre-edge energy but no change in Ni-S bond covalency upon H-bonding. This is different from the H-bonding effect we observed in high-spin Fe{sup III}-thiolate complexes where there is a significant decrease in Fe-S bond covalency but no change in energy due to H-bonding (Dey, A.; Okamura, T.-A.; Ueyama, N.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. J. Am. Chem. Soc. 2005, 127, 12046-12053). These differences were analyzed using DFT calculations, and the results indicate that two different types of H-bonding interactions are possiblemore » in metal-thiolate systems. In the high-spin Fe{sup III}-thiolate case, the H-bonding involves a thiolate donor orbital which is also involved in bonding with the metal (active), while in the low-spin Ni{sup II}-thiolate, the orbital involved in H-bonding is nonbonding with respect to the M-S bonding (passive). The contributions of active and passive H-bonds to the reduction potential and Lewis acid properties of a metal center are evaluated.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balgley, Renata; de Ruiter, Graham; Evmenenko, Guennadi
In this paper, we demonstrate how photochemically enhancing the permeability of metal–organic assemblies results in a significant enhancement of the electrochemical activity of metal complexes located within the assembly. The molecular assemblies consist of different layers of redox-active metal complexes ([M(mbpy-py)3][PF6]2; M = Ru or Os) that are separated by redox-inactive spacers consisting of 1,4-bis[2-(4-pyridyl)ethenyl]benzene (BPEB) and PdCl2 of variable thicknesses (0–13.4 nm). UV-irradiation (λ = 254 nm) of our assemblies induces a photochemical reaction in the redox-inactive spacer increasing the permeability of the assembly. The observed increase was evident by trapping organic (nBu4NBF4) and inorganic (NiCl2) salts inside themore » assemblies, and by evaluating the electrochemical response of quinones absorbed inside the molecular assemblies before and after UV irradiation. The increase in permeability is reflected by higher currents and a change in the directionality of electron transfer, i.e., from mono- to bidirectional, between the redox-active metal complexes and the electrode surface. The supramolecular structure of the assemblies dominates the overall electron transfer properties and overrules possible electron transfer mediated by the extensive π-conjugation of its individual organic components.« less
Ahamad, Tansir; Alshehri, Saad M
2012-10-01
Phenylurea-formaldehyde polymer (PUF) was synthesized via polycondensation of phenylurea and formaldehyde in basic medium, its polymer-metal complexes [PUF-M(II)] were prepared with Mn(II), Co(II), Ni(II), Cu(II), and Zn(II) ions. PUF and PUF-M(II) were characterized with magnetic moment measurements, elemental and spectral (UV-visible, FTIR, 1H-NMR, 13C-NMR and ESR) analysis. The thermal behaviors of all the synthesized polymers were carried out using thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The thermal data revealed that all of the PUF-M(II) showed higher thermal stabilities than the PUF and also ascribed that the PUF-Cu(II) showed better thermal stability than the other PUF-M(II). The kinetic parameters such as activation energy, pre-exponential factor etc., were evaluated for these polymer metal complexes using Coats-Redfern equation. In addition, the antimicrobial activity of the synthesized polymers was tested against several microorganisms using agar well diffusion methods. Among all of the PUF-M(II), the antimicrobial activity of the PUF-Cu(II) showed the highest zone of inhibition because of its higher stability constant and may be used in biomedical applications. Copyright © 2012 Elsevier B.V. All rights reserved.
Humphries, T D; Sheppard, D A; Buckley, C E
2015-06-30
For homoleptic 18-electron complex hydrides, an inverse linear correlation has been established between the T-deuterium bond length (T = Fe, Co, Ni) and the average electronegativity of the metal countercations. This relationship can be further employed towards aiding structural solutions and predicting physical properties of novel complex transition metal hydrides.
NASA Astrophysics Data System (ADS)
Akbar, Rifat; Baral, Minati; Kanungo, B. K.
2015-05-01
The synthesis, thermodynamic and photophysical properties of trivalent metal complexes of biomimetic nonadentate analogue, 5,5‧-(2-(((8-hydroxyquinolin-5-yl)methylamino)methyl)-2-methylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diquinolin-8-ol (TAME5OX), have been described. Combination of absorption and emission spectrophotometry, potentiometry, electrospray mass spectrometry, IR, and theoretical investigation were used to fully characterize metal (Fe+3, Al+3 and Cr+3) chelates of TAME5OX. In solution, TAME5OX forms protonated complexes [M(H3L)]3+ below pH 3.4, which consecutively deprotonates through one to three-proton processes with rise of pH. The formation constants (Log β11n) of neutral complexes formed at or above physiological pH, have been determined to be 30.18, 23.27 and 22.02 with pM values of 31.16, 18.07 and 18.12 for Fe+3, Al+3 and Cr+3 ions, respectively, calculated at pH 7.4, indicating TAME5OX is a powerful among synthetic metal chelator. The results clearly demonstrate that the ligand in a tripodal orchestration firmly binds these ions over wide pH range and forms distorted octahedral complexes. The binding and the coordination event could be monitored from absorption and fluorescence spectroscopy. The high thermodynamic stability in water at physiological pH of ferric complex of TAME5OX indicates that these complexes are resistant to hydrolysis and therefore are well suited for the development of device for applications as probes. The ligand displays high sensitive fluorescence enhancement to Al3+ at pH 7.4, in water. Moreover, TAME5OX can distinguish Al3+ from Fe3+ and Cr3+ via two different sensing mechanisms: photoinduced electron transfer (PET) for Al3+ and internal charge transfer (ICT) for Fe3+ and Cr3+. Density functional theory was employed for optimization and evaluation of vibrational modes, NBO analysis, excitation and emission properties of the different species of metal complexes observed by solution studies.
Akbar, Rifat; Baral, Minati; Kanungo, B K
2015-05-05
The synthesis, thermodynamic and photophysical properties of trivalent metal complexes of biomimetic nonadentate analogue, 5,5'-(2-(((8-hydroxyquinolin-5-yl)methylamino)methyl)-2-methylpropane-1,3-diyl)bis(azanediyl)bis(methylene)diquinolin-8-ol (TAME5OX), have been described. Combination of absorption and emission spectrophotometry, potentiometry, electrospray mass spectrometry, IR, and theoretical investigation were used to fully characterize metal (Fe(+3), Al(+3) and Cr(+3)) chelates of TAME5OX. In solution, TAME5OX forms protonated complexes [M(H3L)](3+) below pH 3.4, which consecutively deprotonates through one to three-proton processes with rise of pH. The formation constants (Logβ11n) of neutral complexes formed at or above physiological pH, have been determined to be 30.18, 23.27 and 22.02 with pM values of 31.16, 18.07 and 18.12 for Fe(+3), Al(+3) and Cr(+3) ions, respectively, calculated at pH 7.4, indicating TAME5OX is a powerful among synthetic metal chelator. The results clearly demonstrate that the ligand in a tripodal orchestration firmly binds these ions over wide pH range and forms distorted octahedral complexes. The binding and the coordination event could be monitored from absorption and fluorescence spectroscopy. The high thermodynamic stability in water at physiological pH of ferric complex of TAME5OX indicates that these complexes are resistant to hydrolysis and therefore are well suited for the development of device for applications as probes. The ligand displays high sensitive fluorescence enhancement to Al(3+) at pH 7.4, in water. Moreover, TAME5OX can distinguish Al(3+) from Fe(3+) and Cr(3+) via two different sensing mechanisms: photoinduced electron transfer (PET) for Al(3+) and internal charge transfer (ICT) for Fe(3+) and Cr(3+). Density functional theory was employed for optimization and evaluation of vibrational modes, NBO analysis, excitation and emission properties of the different species of metal complexes observed by solution studies. Copyright © 2015 Elsevier B.V. All rights reserved.
Analysis of Supercritical-Extracted Chelated Metal Ions From Mixed Organic-Inorganic Samples
NASA Technical Reports Server (NTRS)
Sinha, Mahadeva P. (Inventor)
1996-01-01
Organic and inorganic contaminants of an environmental sample are analyzed by the same GC-MS instrument by adding an oxidizing agent to the sample to oxidize metal or metal compounds to form metal ions. The metal ions are converted to chelate complexes and the chelate complexes are extracted into a supercritical fluid such as CO2. The metal chelate extract after flowing through a restrictor tube is directly injected into the ionization chamber of a mass spectrometer, preferably containing a refractory metal filament such as rhenium to fragment the complex to release metal ions which are detected. This provides a fast, economical method for the analysis of metal contaminants in a sample and can be automated. An organic extract of the sample in conventional or supercritical fluid solvents can be detected in the same mass spectrometer, preferably after separation in a supercritical fluid chromatograph.
NASA Technical Reports Server (NTRS)
Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.
2014-01-01
The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values attained at very low metal loading conditions are compared to existing literature data. Overall, experimental data suggest that the tetravalent transition metal/-actinide-humic acid complexation is important over a wide range of pH values, including mildly acidic conditions, and thus, these complexes should be included in speciation models.
Siciliano, Steven D; James, K; Zhang, Guiyin; Schafer, Alexis N; Peak, J Derek
2009-08-15
Human exposure to contaminated soils drives clean up criteria at many urban brownfields. Current risk assessment guidelines assume that humans ingest some fraction of soil smaller than 4 mm but have no estimates of what fraction of soil is ingested by humans. Here, we evaluated soil adherence to human hands for 13 agricultural soils from Saskatchewan, Canada and 17 different soils from a brownfield located in Iqaluit, Nunavut, Canada. In addition, we estimated average particle size adhering to human hands for residents of a northern urban setting. Further, we estimated how metal concentrations differed between the adhered and bulk (< 4 mm) fraction of soil. The average particle size for adhered agricultural soils was 34 microm, adhered brownfield soils was 105 microm, and particles adhered to human residentswas 36 microm. Metals were significantly enriched in these adhered fractions with an average enrichment [(adhered-bulk)/bulk] in metal concentration of 184% (113% median) for 24 different elements. Enrichment was greater for key toxicological elements of concern such as chromium (140%), copper (140%), nickel (130%), lead (110%), and zinc (130%) and was highest for silver (810%), mercury (630%), selenium (500%), and arsenic (420%). Enrichment were positively correlated with carbonate complexation constants (but not bulk solubility products) and suggests that the dominant mechanism controlling metal enrichment in these samples is a precipitation of carbonate surfaces that subsequently adsorb metals. Our results suggest that metals of toxicological concern are selectively enriched in the fraction of soil that humans incidentally ingest. Investigators should likely process soil samples through a 45 microm sieve before estimating the risk associated with contaminated soils to humans. The chemical mechanisms resulting in metal enrichment likely differ between sites but at our site were linked to surface complexation with carbonates.
Protection of Metal Artifacts with the Formation of Metal–Oxalates Complexes by Beauveria bassiana
Joseph, Edith; Cario, Sylvie; Simon, Anaële; Wörle, Marie; Mazzeo, Rocco; Junier, Pilar; Job, Daniel
2012-01-01
Several fungi present high tolerance to toxic metals and some are able to transform metals into metal–oxalate complexes. In this study, the ability of Beauveria bassiana to produce copper oxalates was evaluated. Growth performance was tested on various copper-containing media. B. bassiana proved highly resistant to copper, tolerating concentrations of up to 20 g L−1, and precipitating copper oxalates on all media tested. Chromatographic analyses showed that this species produced oxalic acid as sole metal chelator. The production of metal–oxalates can be used in the restoration and conservation of archeological and modern metal artifacts. The production of copper oxalates was confirmed directly using metallic pieces (both archeological and modern). The conversion of corrosion products into copper oxalates was demonstrated as well. In order to assess whether the capability of B. bassiana to produce metal–oxalates could be applied to other metals, iron and silver were tested as well. Iron appears to be directly sequestered in the wall of the fungal hyphae forming oxalates. However, the formation of a homogeneous layer on the object is not yet optimal. On silver, a co-precipitation of copper and silver oxalates occurred. As this greenish patina would not be acceptable on silver objects, silver reduction was explored as a tarnishing remediation. First experiments showed the transformation of silver nitrate into nanoparticles of elemental silver by an unknown extracellular mechanism. The production of copper oxalates is immediately applicable for the conservation of copper-based artifacts. For iron and silver this is not yet the case. However, the vast ability of B. bassiana to transform toxic metals using different immobilization mechanisms seems to offer considerable possibilities for industrial applications, such as the bioremediation of contaminated soils or the green synthesis of chemicals. PMID:22291684
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schijf, Johan; Christenson, Emily A.; Potter, Kailee J.
2015-07-01
The solution speciation in seawater of divalent trace metals (Cd, Cu, Ni, Pb, Zn) is dominated by strong, ostensibly metal-specific organic ligands that may play important roles in microbial metal acquisition and/or detoxification processes. We compare the effective stabilities of these metal-organic complexes to the stabilities of their complexes with a model siderophore, desferrioxamine B (DFOB). While metal-DFOB complexation has been studied in various dilute but often moderately coordinating media, for the purpose of this investigation we measured the stability constants in a non-coordinating background electrolyte at seawater ionic strength (0.7 M NaClO4). Potentiometric titrations of single metals (M) weremore » performed in the presence of ligand (L) at different M:L molar ratios, whereupon the stability constants of multiple complexes were simultaneously determined by non-linear regression of the titration curves with FITEQL, using the optimal binding mode for each metal. Cadmium, Ni, and Zn, like trivalent Fe, sequentially form a bi-, tetra-, and hexadentate complex with DFOB as pH increases, consistent with their coordination number of 6 and regular octahedral geometry. Copper has a Jahn-Teller-distorted square-bipyramidal geometry whereas the geometry of Pb is cryptic, involving a range of bond lengths. Supported by a thermodynamic argument, our data suggest that this impedes binding of the third hydroxamate group and that the hexadentate Cu-DFOB and Pb-DFOB complex identified in earlier reports may instead be a deprotonated tetradentate complex. Absence of the hexadentate complex promotes the formation of a dinuclear (bidentate-tetradentate) complex, M2HL2+, albeit not for Pb in 0.7 M NaCl, evidently due to extensive complexation with chloride. Stabilities of the hexadentate Ni-DFOB, Zn-DFOB, and the tetradentate Pb-DFOB complex are nearly equal, yet about 2 orders of magnitude higher and 4 orders of magnitude lower than those of the hexadentate Cd-DFOB and tetradentate Cu-DFOB complex, respectively. Linear free-energy relations defined by the rare earth elements are able to predict stabilities of the Cd, Zn, and one of the Pb complexes, but underestimate those of the Ni and Cu complexes. The comparison with metal-specific organic ligands detected in seawater yields fair agreement for three of the five metals, implying that they could be siderophore-like. The Cd- and Ni-specific ligands are much stronger and may contain quite different functional groups. Calculations with MINEQL incorporating our new stability constants indicate that very high DFOB concentrations would be required to match the extent of metal-organic complexation observed in seawater, however DFOB may well represent a much broader class of structurally related ligands.« less
Wang, Hongxin; Friedrich, Stephan; Li, Lei; ...
2018-02-13
According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d 10 → 3d 0. In addition, extremely dilute (<0.1% wt/wt) Ni enzymes were examined by two different approaches: (1) by using a high resolution superconducting tunnel junction X-ray detector to obtain XAS spectra with a very high signal-to-noisemore » ratio, especially in the non-variant edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d0 to a closed shell 3d 10; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L 3 and post-L 2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring <0.1% Ni enzymes are compared and discussed. As a result, this study extends L-edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hongxin; Friedrich, Stephan; Li, Lei
According to L-edge sum rules, the number of 3d vacancies at a transition metal site is directly proportional to the integrated intensity of the L-edge X-ray absorption spectrum (XAS) for the corresponding metal complex. In this study, the numbers of 3d holes are characterized quantitatively or semi-quantitatively for a series of manganese (Mn) and nickel (Ni) complexes, including the electron configurations 3d 10 → 3d 0. In addition, extremely dilute (<0.1% wt/wt) Ni enzymes were examined by two different approaches: (1) by using a high resolution superconducting tunnel junction X-ray detector to obtain XAS spectra with a very high signal-to-noisemore » ratio, especially in the non-variant edge jump region; and (2) by adding an inert tracer to the sample that provides a prominent spectral feature to replace the weak edge jump for intensity normalization. In this publication, we present for the first time: (1) L-edge sum rule analysis for a series of Mn and Ni complexes that include electron configurations from an open shell 3d0 to a closed shell 3d 10; (2) a systematic analysis on the uncertainties, especially on that from the edge jump, which was missing in all previous reports; (3) a clearly-resolved edge jump between pre-L 3 and post-L 2 regions from an extremely dilute sample; (4) an evaluation of an alternative normalization standard for L-edge sum rule analysis. XAS from two copper (Cu) proteins measured using a conventional semiconductor X-ray detector are also repeated as bridges between Ni complexes and dilute Ni enzymes. The differences between measuring 1% Cu enzymes and measuring <0.1% Ni enzymes are compared and discussed. As a result, this study extends L-edge sum rule analysis to virtually any 3d metal complex and any dilute biological samples that contain 3d metals.« less
2016-01-01
Metal ion cofactors can alter the energetics and specificity of sequence specific protein–DNA interactions, but it is unknown if the underlying effects on structure and dynamics are local or dispersed throughout the protein–DNA complex. This work uses EcoRV endonuclease as a model, and catalytically inactive lanthanide ions, which replace the Mg2+ cofactor. Nuclear magnetic resonance (NMR) titrations indicate that four Lu3+ or two La3+ cations bind, and two new crystal structures confirm that Lu3+ binding is confined to the active sites. NMR spectra show that the metal-free EcoRV complex with cognate (GATATC) DNA is structurally distinct from the nonspecific complex, and that metal ion binding sites are not assembled in the nonspecific complex. NMR chemical shift perturbations were determined for 1H–15N amide resonances, for 1H–13C Ile-δ-CH3 resonances, and for stereospecifically assigned Leu-δ-CH3 and Val-γ-CH3 resonances. Many chemical shifts throughout the cognate complex are unperturbed, so metal binding does not induce major conformational changes. However, some large perturbations of amide and side chain methyl resonances occur as far as 34 Å from the metal ions. Concerted changes in specific residues imply that local effects of metal binding are propagated via a β-sheet and an α-helix. Both amide and methyl resonance perturbations indicate changes in the interface between subunits of the EcoRV homodimer. Bound metal ions also affect amide hydrogen exchange rates for distant residues, including a distant subdomain that contacts DNA phosphates and promotes DNA bending, showing that metal ions in the active sites, which relieve electrostatic repulsion between protein and DNA, cause changes in slow dynamics throughout the complex. PMID:27786446
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.
Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less
Wood, Kevin N.; Kazyak, Eric; Chadwick, Alexander F.; ...
2015-10-14
Enabling ultra-high energy density rechargeable Li batteries would have widespread impact on society. But, the critical challenges of Li metal anodes (most notably cycle life and safety) remain unsolved. This is attributed to the evolution of Li metal morphology during cycling, which leads to dendrite growth and surface pitting. Herein, we present a comprehensive understanding of the voltage variations observed during Li metal cycling, which is directly correlated to morphology evolution through the use of operando video microscopy. A custom-designed visualization cell was developed to enable operando synchronized observation of Li metal electrode morphology and electrochemical behavior during cycling. Amore » mechanistic understanding of the complex behavior of these electrodes is gained through correlation with continuum-scale modeling, which provides insight into the dominant surface kinetics. Our work provides a detailed explanation of (1) when dendrite nucleation occurs, (2) how those dendrites evolve as a function of time, (3) when surface pitting occurs during Li electrodissolution, (4) kinetic parameters that dictate overpotential as the electrode morphology evolves, and (5) how this understanding can be applied to evaluate electrode performance in a variety of electrolytes. Our results provide detailed insight into the interplay between morphology and the dominant electrochemical processes occurring on the Li electrode surface through an improved understanding of changes in cell voltage, which represents a powerful new platform for analysis.« less
Zhao, Jiong-Peng; Hu, Bo-Wen; Lloret, Francesc; Tao, Jun; Yang, Qian; Zhang, Xiao-Feng; Bu, Xian-He
2010-11-15
By changing template cation but introducing trivalent iron ions in the known niccolite structural metal formate frameworks, three complexes formulated [NH(2)(CH(3))(2)][Fe(III)M(II)(HCOO)(6)] (M = Fe for 1, Mn for 2, and Co for 3) were synthesized and magnetically characterized. The variation in the compositions of the complexes leads to three different complexes: mixed-valent complex 1, heterometallic but with the same spin state complex 2, and heterometallic heterospin complex 3. The magnetic behaviors are closely related to the divalent metal ions used. Complex 1 exhibits negative magnetization assigned as Néel N-Type ferrimagnet, with an asymmetric magnetization reversal in the hysteresis loop, and complex 2 is an antiferromagnet with small spin canting (α(canting) ≈ 0.06° and T(canting) = 35 K), while complex 3 is a ferrimagnet with T(N) = 32 K.
N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.
Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias
2015-01-01
Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.
NASA Astrophysics Data System (ADS)
Grabchev, Ivo; Yordanova, Stanislava; Bosch, Paula; Vasileva-Tonkova, Evgenia; Kukeva, Rositsa; Stoyanov, Stanimir; Stoyanova, Radostina
2017-02-01
Two new 1,8-naphthalimide derivatives (NI1 and NI2) have been synthesized and characterized. The photophysical properties of the new compounds have been investigated in organic solvents of different polarity. It has been shown that both compounds are solvent depended. Cu(II) and Zn(II) complexes of NI2 were obtained and characterized by IR-NMR, fluorescence and EPR spectroscopy. The influence of different metal cations on the fluorescence intensity has been investigated in acetonitrile solution. Antimicrobial composite PLA-metal complexes materials have been obtained for the first time. Microbiological activity of both metal complexes has been investigated in vitro against different Gram-positive and Gram-negative bacteria and two yeasts. The various antimicrobial activities and the minimum inhibitory concentrations (MICs) of both complexes have been determined. The microbiological activity of composite materials PLA-metal complexes in thin polymeric film has also been investigated. The results suggest that the new metal complexes could find application in designing new antimicrobial preparations to control the spread of infections.
Surface Plasmon States in Inhomogeneous Media at Critical and Subcritical Metal Concentrations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seal, Katyayani; Genov, Dentcho A.
Semicontinuous metal-dielectric films are composed of a wide range of metal clusters of various geometries—sizes as well as structures. This ensures that at any given wavelength of incident radiation, clusters exist in the film that will respond resonantly, akin to resonating nanoantennas, resulting in the broad optical response (absorption) that is a characteristic of semicontinuous films. The physics of the surface plasmon states that are supported by such systems is complex and can involve both localized and propagating plasmons. This chapter describes near-field experimental and numerical studies of the surface plasmon states in semicontinuous films at critical and subcritical metalmore » concentrations and evaluates the local field intensity statistics to discuss the interplay between various eigenmodes.« less
Summary of NASA research on thermal-barrier coatings
NASA Technical Reports Server (NTRS)
Stepka, F. S.; Liebert, C. H.; Stecura, S.
1977-01-01
A durable, two-layer, plasma-sprayed coating consisting of a ceramic layer over a metallic layer was developed that has the potential of insulating hot engine parts and thereby reducing metal temperatures and coolant flow requirements and/or permitting use of less costly and complex cooling configurations and materials. The investigations evaluated the reflective and insulative capability, microstructure, and durability of several coating materials on flat metal specimens, a combustor liner, and turbine vanes and blades. In addition, the effect on the aerodynamic performance of a coated turbine vane was measured. The tests were conducted in furnaces, cascades, hot-gas rigs, an engine combustor, and a research turbojet engine. Summaries of current research related to the coating and potential applications for the coating are included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasad, R.L., E-mail: rlpjc@yahoo.co.in; Kushwaha, A.; Shrivastava, O.N.
2012-12-15
New heterobimetallic complexes [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n} {l_brace}where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization{r_brace} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributedmore » from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour. - Graphical abstract: Contrast to the semiconductor monometallic complexes 2 and 3, the heterobimetallic complex 4 exhibits metallic behaviour attributed to the mixed valency/non-integral oxidation state of the metal ions concluded from magnetic and ESR spectral studies. Highlights: Black-Right-Pointing-Pointer 1-D coordination compounds of the type Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O were synthesized and characterized. Black-Right-Pointing-Pointer Thermal degradation of the complexes provides an indication of long range electronic communication between metal to ligand. Black-Right-Pointing-Pointer On inclusion of Ni(II) into 1-D coordination polymer of Cu(II). (a) Cu(II) and Ni(II) ions exhibit non-integral oxidation state. (b) resulting heterobimetallic complex 4 exhibits metallic behaviour at all temperature range of the present study whereas monometallic complexes are semiconductor.« less
Charge Transfer Between Quantum Dots and Peptide-Coupled Redox Complexes
2009-01-01
labeled with reactive metal complexes includ- ing a ruthenium chelate (Ru), a bis-bipyridine ruthe- nium chelate (ruthenium-bpy), and a ferrocene metal...of unconjugated QDs and the metal complex–labeled peptides immobilized on indium tin oxide (ITO) electrodes. The ruthenium and ferrocene peptide...Ag/AgCI E v s. N H E E v s. v ac uu m (e V ) Ruthenium Ferrocene Ruthenium-bpy DHLA QDs DHLA-PEG QDs Quantum dot Metal complex CB VB E0X of QDs Fe
Katti, Kattesh V.; Prabhu, Kandikere R.; Gali, Hariprasad; Pillarsetty, Nagavara Kishore; Volkert, Wynn A.
2003-10-21
There is provided a method of labeling a biomolecule with a transition metal or radiometal in a site specific manner to produce a diagnostic or therapeutic pharmaceutical compound by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radio metal or a transition metal, and covalently linking the resulting metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. Also provided is a method of synthesizing the --PR.sub.2 containing biomolecules by synthesizing a P.sub.2 N.sub.2 -bifunctional chelating agent intermediate, complexing the intermediate with a radiometal or a transition metal, and covalently linking the resulting radio metal-complexed bifunctional chelating agent with a biomolecule in a site specific manner. There is provided a therapeutic or diagnostic agent comprising a --PR.sub.2 containing biomolecule.
NASA Astrophysics Data System (ADS)
Jean-Marc, Custos; Christian, Moyne; Sterckeman, Thibault
2010-05-01
The context of this study is phytoextraction of soil trace metals such as Cd, Pb or Zn. Trace metal transfer from soil to plant depends on physical and chemical processes such as minerals alteration, transport, adsorption/desorption, reactions in solution and biological processes including the action of plant roots and of associated micro-flora. Complexation of metal ions by organic ligands is considered to play a role on the availability of trace metals for roots in particular in the event that synthetic ligands (EDTA, NTA, etc.) are added to the soil to increase the solubility of the contaminants. As this role is not clearly understood, we wanted to simulate it in order to quantify the effect of organic ligands on root uptake of trace metals and produce a tool which could help in optimizing the conditions of phytoextraction.We studied the effect of an aminocarboxilate ligand on the absorption of the metal ion by roots, both in hydroponic solution and in soil solution, for which we had to formalize the buffer power for the metal. We assumed that the hydrated metal ion is the only form which can be absorbed by the plants. Transport and reaction processes were modelled for a system made up of the metal M, a ligand L and the metal complex ML. The Tinker-Nye-Barber model was adapted to describe the transport of solutes M, L and ML in the soil and absorption of M by the roots. This allowed to represent the interactions between transport, chelating reactions, absorption of the solutes at the root surface, root growth with time, in order to simulate metal uptake by a whole root system.Several assumptions were tested such as i) absorption of the metal by an infinite sink and according to a Michaelis-Menten kinetics, solutes transport by diffusion with and without ii) mass flow and iii) soil buffer power for the ligand L. In hydroponic solution (without soil buffer power), ligands decreased the trace metal flux towards roots, as they reduced the concentration of hydrated metal ion. In soil, depending on the L/M ratio, the presence of metal complexes could increase the metal flux taken up by roots since the ligand desorbed the metal on soil solid phase while the complex dissociated and provided metal ions to the solution in the vicinity of the root.The model enabled to surround the conditions in which phytoextraction is thus optimized. In addition of complexation by organic ligands added to the soil, we expect to integrate complexation by roots organic exudates and by soil organic matter, as well as the competition of the metal ions with Ca2+ et H+.
Ammonia release method for depositing metal oxides
Silver, G.L.; Martin, F.S.
1994-12-13
A method is described for depositing metal oxides on substrates which is indifferent to the electrochemical properties of the substrates and which comprises forming ammine complexes containing metal ions and thereafter effecting removal of ammonia from the ammine complexes so as to permit slow precipitation and deposition of metal oxide on the substrates. 1 figure.
Synthesis and Properties of Ortho-Nitro-Fe Complex
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, A.; Mishra, Niyati; Sharma, R.
2011-07-15
Ortho-Nitro-Fe complex (Transition metal complex) has synthesized by chemical route method and properties of made complex has characterized by X-Ray diffraction (XRD), Moessbauer spectroscopy, Fourier transformation infra-red spectroscopy (FTIR) and X-Ray photoelectron spectroscopy (XPS). XRD analysis shows that sample is crystalline in nature and having particle size in the range of few nano meters. Moessbauer spectroscopy at room temperature shows the oxidation state of Iron (central metal ion) after complaxasion. FTIR spectra of the complex confirms the coordination of metal ion with ligand.
Kowalska, Joanna Beata; Mazurek, Ryszard; Gąsiorek, Michał; Zaleski, Tomasz
2018-04-05
The paper provides a complex, critical assessment of heavy metal soil pollution using different indices. Pollution indices are widely considered a useful tool for the comprehensive evaluation of the degree of contamination. Moreover, they can have a great importance in the assessment of soil quality and the prediction of future ecosystem sustainability, especially in the case of farmlands. Eighteen indices previously described by several authors (I geo , PI, EF, C f , PI sum , PI Nemerow , PLI, PI ave , PI Vector , PIN, MEC, CSI, MERMQ, C deg , RI, mCd and ExF) as well as the newly published Biogeochemical Index (BGI) were compared. The content, as determined by other authors, of the most widely investigated heavy metals (Cd, Pb and Zn) in farmland, forest and urban soils was used as a database for the calculation of all of the presented indices, and this shows, based on statistical methods, the similarities and differences between them. The indices were initially divided into two groups: individual and complex. In order to achieve a more precise classification, our study attempted to further split indices based on their purpose and method of calculation. The strengths and weaknesses of each index were assessed; in addition, a comprehensive method for pollution index choice is presented, in order to best interpret pollution in different soils (farmland, forest and urban). This critical review also contains an evaluation of various geochemical backgrounds (GBs) used in heavy metal soil pollution assessments. The authors propose a comprehensive method in order to assess soil quality, based on the application of local and reference GB.
Fabrication of carbon nanotube films from alkyne-transition metal complexes
Iyer, Vivekanantan S [Delft, NL; Vollhardt, K Peter C. [Oakland, CA
2007-08-28
A simple method for the production or synthesis of carbon nanotubes as free-standing films or nanotube mats by the thermal decomposition of transition metal complexed alkynes with aryl, alkyl, alkenyl, or alkynyl substituents. In particular, transition metal (e.g. Co, Ni, Fe, Mo) complexes of diarylacetylenes, e.g. diphenylacetylene, and solid mixtures of these complexes with suitable, additional carbon sources are heated in a vessel. More specifically, the heating of the transition metal complex is completed at a temperature between 400-800.degree. C. and more particularly 550-700.degree. C. for between 0.1 to 24 hours and more particularly 0.5-3 hours in a sealed vessel under a partial pressure of argon or helium.
Homo- and Heterometallic Bis(Pentafluorobenzoyl)Methanide Complexes of Copper(II) and Cobalt(II)
NASA Astrophysics Data System (ADS)
Crowder, Janell M.
beta-Diketones are well known to form metal complexes with practically every known metal and metalloid. Metal complexes of fluorinated beta-diketones generally exhibit increased volatility and thermal stability compared to the non-fluorinated analogues, and thus are used extensively in various chemical vapor deposition (CVD) processes for the deposition of metal, simple or mixed metal oxides, and fluorine-doped metal oxide thin films. Furthermore, the electron-withdrawing nature of the fluorinated ligand enhances the Lewis acidity of a coordinatively unsaturated metal center which facilitates additional coordination reactions. The physical and structural properties of fluorinated beta-diketonate complexes are discussed in Chapter 1 and a few key application examples are given. The focus of this work is the synthesis and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated metal complexes of bis(pentafluorobenzoyl)- methanide (L, C6F5COCHCOC 6F5-). In Chapter 2, we present the preparation and isolation of the unsolvated complex [Cu(L)2] in pure crystalline form for the first time. We subsequently investigated the reaction of unsolvated [Cu(L)2] with sodium hexafluoroacetylacetonate [Na(hfac)] in a solvent-free environment. This reaction allowed the isolation of the first heterometallic Na-Cu diketonate [Na2Cu2(L) 4(hfac)2] structurally characterized by single crystal X-ray crystallography. Thermal decomposition of [Na2Cu2(L) 4(hfac)2] was investigated for its potential application in MOCVD processes. In the final chapter, we present the first exploration of the anhydrous synthesis of Co(II) complexed with bis(pentafluorobenzoyl)methanide in order to produce a complex without ligated water. Single crystal X-ray crystallographic investigations revealed the isolation of the ethanol adduct, [Co2(L)4(C2H5OH)2], and following the removal of ethanol, a 1,4-dioxane adduct, [{Co 2(L)4}2(C4H8O2)]. In this work, we have provided the first investigation of the synthesis, isolation and single crystal X-ray structural characterization of unsolvated and coordinatively unsaturated Cu(II) and Co(II) complexes of bis(pentafluorobenzoyl)methanide ligand. These studies demonstrate how the electrophilicity of a coordinatively unsaturated metal complexed to highly-fluorinated â-diketone ligands can be utilized for the formation of new adducts or new and interesting heterometallic complexes. This body of work provides a basis upon which future research into unsolvated and unligated bis(pentafluorobenzoyl)methanide metal complexes can expand.
Surface Modification and Nanojunction Fabrication with Molecular Metal Wires
2014-02-17
Title: Transition Metal Complexes of a Super Rigid Anthyridine Ligand: Structural, Magnetic and DFT Studies. Transition metal complexes of iron ( II ...Compounds with Masked Diazonium Capping Groups (J. Organomet. Chem. 2013, 745, 93). (3) New Diruthenium( II ,III) Compounds Bearing Terminal Olefin Groups...2012, 36, 2340). (2) Synthesis , Structure, Magnetism, and Single Molecular Conductance of Linear Trinickel String Complexes with Sulfur-Containing
ERIC Educational Resources Information Center
Bo¨rgel, Jonas; Campbell, Michael G.; Ritter, Tobias
2016-01-01
The presentation of d-orbital splitting diagrams for square planar transition metal complexes in textbooks and educational materials is often inconsistent and therefore confusing for students. Here we provide a concise summary of the key features of orbital splitting diagrams for square planar complexes, which we propose may be used as an updated…
Electrolyte salts for nonaqueous electrolytes
Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai
2012-10-09
Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.
Lindahl, Paul A; Moore, Michael J
2016-08-02
Iron, copper, zinc, manganese, cobalt, and molybdenum play important roles in mitochondrial biochemistry, serving to help catalyze reactions in numerous metalloenzymes. These metals are also found in labile "pools" within mitochondria. Although the composition and cellular function of these pools are largely unknown, they are thought to be comprised of nonproteinaceous low-molecular-mass (LMM) metal complexes. Many problems must be solved before these pools can be fully defined, especially problems stemming from the lability of such complexes. This lability arises from inherently weak coordinate bonds between ligands and metals. This is an advantage for catalysis and trafficking, but it makes characterization difficult. The most popular strategy for investigating such pools is to detect them using chelator probes with fluorescent properties that change upon metal coordination. Characterization is limited because of the inevitable destruction of the complexes during their detection. Moreover, probes likely react with more than one type of metal complex, confusing analyses. An alternative approach is to use liquid chromatography (LC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). With help from a previous lab member, the authors recently developed an LC-ICP-MS approach to analyze LMM extracts from yeast and mammalian mitochondria. They detected several metal complexes, including Fe580, Fe1100, Fe1500, Cu5000, Zn1200, Zn1500, Mn1100, Mn2000, Co1200, Co1500, and Mo780 (numbers refer to approximate masses in daltons). Many of these may be used to metalate apo-metalloproteins as they fold inside the organelle. The LC-based approach also has challenges, e.g., in distinguishing artifactual metal complexes from endogenous ones, due to the fact that cells must be disrupted to form extracts before they are passed through chromatography columns prior to analysis. Ultimately, both approaches will be needed to characterize these intriguing complexes and to elucidate their roles in mitochondrial biochemistry.
Svanedal, Ida; Boija, Susanne; Norgren, Magnus; Edlund, Håkan
2014-06-10
The correlation between interaction parameters and ion flotation efficiency in mixtures of chelating surfactant metal complexes and different foaming agents was investigated. We have recently shown that chelating surfactant 2-dodecyldiethylenetriaminepentaacetic acid (4-C12-DTPA) forms strong coordination complexes with divalent metal ions, and this can be utilized in ion flotation. Interaction parameters for mixed micelles and mixed monolayer formation for Mg(2+) and Ni(2+) complexes with the chelating surfactant 4-C12-DTPA and different foaming agents were calculated by Rubingh's regular solution theory. Parameters for the calculations were extracted from surface tension measurements and NMR diffusometry. The effects of metal ion coordination on the interactions between 4-C12-DTPA and the foaming agents could be linked to a previously established difference in coordination chemistry between the examined metal ions. As can be expected from mixtures of amphoteric surfactants, the interactions were strongly pH-dependent. Strong correlation was found between interaction parameter β(σ) for mixed monolayer formation and the phase-transfer efficiency of Ni(2+) complexes with 4-C12-DTPA during flotation in a customized flotation cell. In a mixture of Cu(2+) and Zn(2+), the significant difference in conditional stability constants (log K) between the metal complexes was utilized to selectively recover the metal complex with the highest log K (Cu(2+)) by ion flotation. Flotation experiments in an excess concentration of metal ions confirmed the coordination of more than one metal ion to the headgroup of 4-C12-DTPA.
Habas, Susan E.; Baddour, Frederick G.; Ruddy, Daniel A.; ...
2015-11-05
Metal phosphides have been identified as a promising class of materials for the catalytic upgrading of bio-oils, which are renewable and potentially inexpensive sources for liquid fuels. Herein, we report the facile synthesis of a series of solid, phase-pure metal phosphide nanoparticles (NPs) (Ni 2P, Rh 2P, and Pd 3P) utilizing commercially available, air-stable metal–phosphine complexes in a one-pot reaction. This single-source molecular precursor route provides an alternative method to access metal phosphide NPs with controlled phases and without the formation of metal NP intermediates that can lead to hollow particles. The formation of the Ni 2P NPs was shownmore » to proceed through an amorphous Ni–P intermediate, leading to the desired NP morphology and metal-rich phase. This low-temperature, rapid route to well-defined metal NPs is expected to have broad applicability to a variety of readily available or easily synthesized metal–phosphine complexes with high decomposition temperatures. Hydrodeoxygenation of acetic acid, an abundant bio-oil component, was performed to investigate H 2 activation and deoxygenation pathways under conditions that are relevant to ex situ catalytic fast pyrolysis (high temperatures, low pressures, and near-stoichiometric H 2 concentrations). The catalytic performance of the silica-supported metal phosphide NPs was compared to the analogous incipient wetness (IW) metal and metal phosphide catalysts over the range 200–500 °C. Decarbonylation was the primary pathway for H 2 incorporation in the presence of all of the catalysts except NP-Pd 3P, which exhibited minimal productive activity, and IW-Ni, which evolved H 2. The highly controlled NP-Ni2P and NP-Rh2P catalysts, which were stable under these conditions, behaved comparably to the IW-metal phosphides, with a slight shift to higher product onset temperatures, likely due to the presence of surface ligands. Most importantly, the NP-Ni 2P catalyst exhibited H 2 activation and incorporation, in contrast to IW-Ni, indicating that the behavior of the metal phosphide is significantly different from that of the parent metal, and more closely resembles that of noble metal catalysts.« less
Features of proteolytic properties of tetraphenylporphyrin complex with lanthanide group metals
NASA Astrophysics Data System (ADS)
Tobolkina, Elena A.; Skripnikova, Tatiana A.; Starikova, Anna A.; Shumilova, Galina I.; Pendin, Andrey A.
2018-01-01
Demetallation of metalloporphyrin molecules is one of the essential degradation reactions in photosynthesis. The effect of metalloporphyrin nature on removal of central metals from tetraphenylporphyrin complexes based on lanthanide group metals (Dy, Er, Lu, Ho) has been studied. pH values, at which the metal ions leave the metalloporphyrin complex were established using two-phase spectrophotometric titration with potentiometric pH-control. The pH values decrease with the increase of atomic numbers of lanthanide groups, as well as with increase of 4f-electrons. The reaction of an extra ligand exchange for the hydroxide ion was studied. For Dy-, Er- and Ho-tetraphenylporphyrin complexes one particle of extra ligand coordinates with one porphyrin complex. A complex with dimeric particles can be formed for the system of Lu-tetraphenylporphyrin. Constants of the ion exchange reactions were calculated.
Montavon, G; Bouby, M; Huclier-Markai, S; Grambow, B; Geckeis, H; Rabung, T; Pashalidis, I; Amekraz, B; Moulin, C
2008-11-15
The trivalent metal ion (M(III)=Cm, Eu)/polyacrylic acid (PAA) system was studied in the pH range between 3 and 5.5 for a molar PAA-to-metal ratio above 1. The interaction was studied for a wide range of PAA (0.05 mg L(-1)-50 g L(-1)) and metal ion concentrations (2x10(-9)-10(-3) M). This work aimed at 3 goals (i) to determine the stoichiometry of M(III)-PAA complexes, (ii) to determine the number of complexed species and the local environment of the metal ion, and (iii) to quantify the reaction processes. Asymmetric flow-field-flow fractionation (AsFlFFF) coupled to ICP-MS evidenced that size distributions of Eu-PAA complexes and PAA were identical, suggesting that Eu bound to only one PAA chain. Time-resolved laser fluorescence spectroscopy (TRLFS) measurements performed with Eu and Cm showed a continuous shift of the spectra with increasing pH. The environment of complexed metal ions obviously changes with pH. Most probably, spectral variations arose from conformational changes within the M(III)-PAA complex due to pH variation. Complexation data describing the distribution of complexed and free metal ion were measured with Cm by TRLFS. They could be quantitatively described in the whole pH-range studied by considering the existence of only a single complexed species. This indicates that the slight changes in M(III) speciation with pH observed at the molecular level do not significantly affect the intrinsic binding constant. The interaction constant obtained from the modelling must be considered as a mean interaction constant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moore, K.J.; Lee, L.; Mabbott, G.A.
1983-03-30
The electrochemistry of a series of mixed-metal bimetallic complexes of the type B/sub 5/MLM'B'/sub 5/, where B/sub 5/M = (CNN)/sub 5/Fe/sup II/ or (NH/sub 3/)/sub 5/Ru/sup II/, L = pyrazine, 4,4'-bipyridine, or 4-cyanopyridine, M'B'/sub 5/ = Rh/sup III/(NH/sub 3/)/sub 5/ or Co/sup III/(CN)/sub 5/, is reported. The bimetallic complexes all have metal-to-ligand charge-transfer (MLCT) bands associated with the M-B unit (d/sub ..pi../M ..-->.. p/sub ..pi../*L). The effect of the remote metal center, M'B'/sub 5/, is to function as a Lewis acid, shifting the MLCT maximum to lower energy and shifting the M/sup III///sup II/ reduction potential more positive with respectmore » to free B/sub 5/ML. The remote metal influence is attenuated by longer bridging ligands and by reduced ..pi..-overlap. A comparison of the electrochemical data of the mixed-valence Fe(II)/Fe(III) and Ru(II)/Ru(III) complexes to the mixed-metal Fe(II)/Co(III) and Ru(II)/Rh(III) complexes has enabled a quantitative measure of the stabilization due to electron delocalization in the mixed-valence complexes. The results show that electron delocalization is greater for the ruthenium complexes than for the iron complexes, is a small contributor to the total stabilization of the mixed-valence state, and even in ruthenium drops off rapidly as the length of the bridge increases.« less
NASA Astrophysics Data System (ADS)
Shankarwar, Sunil G.; Nagolkar, Bhagwat B.; Shelke, Vinod A.; Chondhekar, Trimbak K.
2015-06-01
A series of metal complexes of Mn(II), Co(II), Ni(II), Cu(II), have been synthesized with newly synthesized biologically active macrocyclic ligand. The ligand was synthesized by condensation of β-diketone 1-(4-chlorophenyl)-3-(2-hydroxyphenyl)propane-1,3-dione and o-phenylene diamine. All the complexes were characterized by elemental analysis, molar conductivity, magnetic susceptibility, thermal analysis, X-ray diffraction, IR, 1H-NMR, UV-Vis spectroscopy and mass spectroscopy. From the analytical data, stoichiometry of the complexes was found to be 1:2 (metal:ligand). Thermal behavior (TG/DTA) and kinetic parameters suggest more ordered activated state in complex formation. All the complexes are of high spin type and six coordinated. On the basis of IR, electronic spectral studies and magnetic behavior, an octahedral geometry has been assigned to these complexes. The antibacterial and antifungal activities of the ligand and its metal complexes, has been screened in vitro against Staphylococcus aureus, Escherichia coli and Aspergillus niger, Trichoderma respectively.
NASA Astrophysics Data System (ADS)
Asadi, Mozaffar; Asadi, Zahra; Zarei, Leila; Sadi, Somaye Barzegar; Amirghofran, Zahra
2014-12-01
Metal Schiff-base complexes show biological activity but they are usually insoluble in water so four new water-soluble metal Schiff base complexes of Na2[M(5-SO3-1,2-salben]; (5-SO3-1,2-salben denoted N,N";-bis(5-sulphosalicyliden)-1,2-diaminobenzylamine and M = Mg, Mn, Cu, Zn) were synthesized and characterized. The formation constants of the metal complexes were determined by UV-Vis absorption spectroscopy. The interaction of these complexes with bovine serum albumin (BSA) was studied by fluorescence spectroscopy. Type of quenching, binding constants, number of binding sites and binding stoichiometries were determined by fluorescence quenching method. The results showed that the mentioned complexes strongly bound to BSA. Thermodynamic parameters indicated that hydrophobic association was the major binding force and that the interaction was entropy driven and enthalpically disfavoured. The displacement experiment showed that these complexes could bind to the subdomain IIA (site I) of albumin. Furthermore the synchronous fluorescence spectra showed that the microenvironment of the tryptophan residues was not apparently changed. Based on the Förster theory of non-radiation energy transfer, the distance between the donor (Trp residues) and the acceptor metal complexes was obtained. The growth inhibitory effect of complexes toward the K562 cancer cell line was measured.
Residual stress alleviation of aircraft metal structures reinforced with filamentary composites
NASA Technical Reports Server (NTRS)
Kelly, J. B.; June, R. R.
1973-01-01
Methods to eliminate or reduce residual stresses in aircraft metal structures reinforced by filamentary composites are discussed. Residual stress level reductions were achieved by modifying the manufacturing procedures used during adhesive bonding. The residual stress alleviation techniques involved various forms of mechanical constraint which were applied to the components during bonding. Nine methods were evaluated, covering a wide range in complexity. All methods investigated during the program affected the residual stress level. In general, residual stresses were reduced by 70 percent or more from the stress level produced by conventional adhesive bonding procedures.
Development of a novel wet oxidation process for hazardous and mixed wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhooge, P.M.
1994-11-01
This article describes and evaluates the DETOX{sup sm} process for processing of mixed wastes. Many DOE waste streams and remediates contain complex and variable mixtures of organic compounds, toxic metals, and radionuclides, often dispersed in organic or inorganic matrices, such as personal protective equipment, various sludges, soils, and water. The DETOX{sup sm} process, patented by Delphi Research, uses a unique combination of metal catalysts to increase the rate of oxidation of organic materials. Included are the following subject areas: project description (phases I-IV); results of all phases; and future work. 5 figs., 1 tab.
Preparation of nanoporous metal foam from high nitrogen transition metal complexes
Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.
2006-11-28
Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.
A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence
NASA Astrophysics Data System (ADS)
Chábera, Pavel; Liu, Yizhu; Prakash, Om; Thyrhaug, Erling; Nahhas, Amal El; Honarfar, Alireza; Essén, Sofia; Fredin, Lisa A.; Harlang, Tobias C. B.; Kjær, Kasper S.; Handrup, Karsten; Ericson, Fredric; Tatsuno, Hideyuki; Morgan, Kelsey; Schnadt, Joachim; Häggström, Lennart; Ericsson, Tore; Sobkowiak, Adam; Lidin, Sven; Huang, Ping; Styring, Stenbjörn; Uhlig, Jens; Bendix, Jesper; Lomoth, Reiner; Sundström, Villy; Persson, Petter; Wärnmark, Kenneth
2017-03-01
Transition-metal complexes are used as photosensitizers, in light-emitting diodes, for biosensing and in photocatalysis. A key feature in these applications is excitation from the ground state to a charge-transfer state; the long charge-transfer-state lifetimes typical for complexes of ruthenium and other precious metals are often essential to ensure high performance. There is much interest in replacing these scarce elements with Earth-abundant metals, with iron and copper being particularly attractive owing to their low cost and non-toxicity. But despite the exploration of innovative molecular designs, it remains a formidable scientific challenge to access Earth-abundant transition-metal complexes with long-lived charge-transfer excited states. No known iron complexes are considered photoluminescent at room temperature, and their rapid excited-state deactivation precludes their use as photosensitizers. Here we present the iron complex [Fe(btz)3]3+ (where btz is 3,3‧-dimethyl-1,1‧-bis(p-tolyl)-4,4‧-bis(1,2,3-triazol-5-ylidene)), and show that the superior σ-donor and π-acceptor electron properties of the ligand stabilize the excited state sufficiently to realize a long charge-transfer lifetime of 100 picoseconds (ps) and room-temperature photoluminescence. This species is a low-spin Fe(III) d5 complex, and emission occurs from a long-lived doublet ligand-to-metal charge-transfer (2LMCT) state that is rarely seen for transition-metal complexes. The absence of intersystem crossing, which often gives rise to large excited-state energy losses in transition-metal complexes, enables the observation of spin-allowed emission directly to the ground state and could be exploited as an increased driving force in photochemical reactions on surfaces. These findings suggest that appropriate design strategies can deliver new iron-based materials for use as light emitters and photosensitizers.
Metal-isonitrile adducts for preparing radionuclide complexes for labelling and imaging agents
Jones, Alun G.; Davison, Alan; Abrams, Michael J.
1987-01-01
A method for preparing a coordination complex of an isonitrile ligand and radionuclide such as Tc, Ru, Co, Pt, Fe, Os, Ir, W, Re, Cr, Mo, Mn, Ni, Rh, Pd, Nb and Ta is disclosed. The method comprises preparing a soluble metal adduct of said isonitrile ligand by admixing said ligand with a salt of a displaceable metal having a complete d-electron shell selected from the group consisting of Zn, Ga, Cd, In, Sn, Hg, Tl, Pb and Bi to form a soluble metal-isonitrile salt, and admixing said metal isonitrile salt with a salt comprising said radioactive metal in a suitable solvent to displace said displaceable metal with the radioactive metal thereby forming said coordination. The complex is useful as a diagnostic agent for labelling liposomes or vesicles, and selected living cells containing lipid membranes, such as blood clots, myocardial tissue, gall bladder tissue, etc.
NASA Astrophysics Data System (ADS)
Rathi, Parveen; Singh, D. P.
2015-08-01
Bioactive cobalt(II), nickel(II), copper(II) and zinc(II) complexes of octaazamacrocycle, 19, 20-dioxa-2,3,5,6,11,12,14,15-octaazatricyclo[14.2.1.1]icosa-1,6,8,10,15,17-hexaene-4,13-dithione, derived from furan-2,5-dione and thiocarbonohydrazide in the mole ratio 2:2:1 have been engineered via template methodology. The synthesized metal complexes have also been structurally characterized in the light of various physicochemical techniques and evaluated for antimicrobial and antioxidant activities. All these studies point toward the formation of divalent macrocyclic complexes possessing distorted octahedral geometry and having significant antimicrobial and antioxidant properties as compared to the starting precursors. Virtual screening of a representative complex was done through docking to the binding site of COX-2 to evaluate the anti-inflammatory activity of the series. Non-electrolytic nature of the complexes has been predicted on the basis of low value of molar conductivity in DMSO. All the complexes were having notable activities against pathogenic microbes as compared to precursors-thiocarbonohydrazide and furan-2,5-dione however, the complex 5, [Ni (C10H8N8O2S2) (NO3)2], shows the best antimicrobial activity.
Richland five-year O2 R and D Program. Integrated site operation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1966-07-11
The technical feasibility of using an electrolytic reduction process to reduce metal scrap and oxide to usable uranium metal is being studied. The incentives for using electrolytic reduction at Richland may be summarized as follows: (1) reduce the unit and total costs of producing plutonium; (2) increase the flexibility of the Richland reactors for producing isotopes, particularly U-236; and (3) simplify the present fuel cycle complex. The scope of the mission is limited to the evaluation of hollow extruded I and E cores, the evaluation of electro-reduced uranium, an investigation of the solution rate of UO{sub 2} in the electrolyte,more » and small-scale irradiations of UO{sub 2} fuels in the N and K Reactors. Progress during FY 1966 is summarized.« less
Group transfer and electron transfer reactions of organometallic complexes
NASA Astrophysics Data System (ADS)
Atwood, Jim D.
During 1994, despite the disruptions, the authors have made progress in several aspects of their research on electron transfer reactions between organometallic complexes. This summary covers three areas that are relatively complete: (1) reactions between metal carbonyl anions and metal carbonyl halides, (2) reactions of hydrido- and alkyl-containing anions (RFe(CO)4(-) and RW(CO)5(-) with metal carbonyl cations; and (3) reactions of a seventeen-electron complex (Cp* Cr(CO)3*) with metal carbonyl derivatives. Two areas of examination that have just begun (possible carbene transfer and the possible role of metal carbonyl anions in carbon-hydrogen bond activation) will also be described.
NASA Astrophysics Data System (ADS)
Yadav, Manju; Mishra, Neelima; Sharma, Nutan; Chandra, Sulekh; Kumar, Dinesh
2014-11-01
This study is planned to report the advancement of green microwave approach in the fabrication of a new series of biologically potent (N^X, where X = O/S) donor Schiff bases and their cadmium(II) and tin(II) complexes. The ligands and their metal complexes have been characterized in terms of elemental analysis, molar ionic conductance, magnetic moment and spectral (IR, UV-Vis, NMR (1H, 119Sn), FAB-mass, thermal and XRD) data. The data revealed that the ligands coordinated to the metal center via nitrogen and oxygen/sulfur atoms and form an octahedral arrangement of the ligands around central metal atom. All compounds were evaluated for their in vitro antimicrobial activities against two pathogenic bacteria Bacillus subtilis and Escherichia coli and two fungi Aspergillus niger and Aspergillus flavus by standard disc diffusion method. The discs were stored in an incubator at 37 °C. The compounds were dissolved in DMF at 500 and 1000 ppm concentrations for screening biocidal activity. The compounds were dissolved in DMF to get the 100 and 200 ppm concentration of test solutions for screening fungicidal activity. The inhibition zone around each disc was measured (in mm) after 24 h and 96 h for biocidal and fungicidal activities respectively.
Robotham, Scott A.; Brodbelt, Jennifer S.
2011-01-01
Based on reactions with five flavonoids, the regioselectivities of twelve human UDP-glucuronosyltransferase (UGT) isozymes were elucidated. The various flavonoid glucuronides were differentiated based on LC-MS/MS fragmentation patterns of [Co(II)(flavonoid – H)(4,7-diphenyl-1,10-phenanthroline)2]+ complexes generated upon post-column complexation. Glucuronide distributions were evaluated to allow a systematic assessment of the regioselectivity of each isozyme. The various UGT enzymes, including eight UGT1A and four UGT2B, displayed a remarkable range of selectivities, both in terms of the positions of glucuronidation and relative reactivity with flavanones versus flavonols. PMID:21889496
Electrocatalytic reduction of CO2 with CCC-NHC pincer nickel complexes.
Cope, James D; Liyanage, Nalaka P; Kelley, Paul J; Denny, Jason A; Valente, Edward J; Webster, Charles Edwin; Delcamp, Jared H; Hollis, T Keith
2017-08-22
A CCC-NHC pincer Ni(ii)Cl complex was prepared according to the metallation/transmetallation methodology. It was fully characterized by electrochemical, NMR spectroscopic, theoretical, and X-ray crystallographic methods. The complex and its cation were evaluated for electrocatalytic reduction of CO 2 under a variety of conditions and found to provide some of the fastest catalytic rates and highest substrate selectivities (CO 2 vs. H + ) reported. Rates improved in the presence of water and, significantly, catalysis occurred at the first reduction potential, presumably at the Ni(i) state. Controlled potential electrolysis (CPE) was found to yield CO at 34% and formate at 47% Faradaic efficiency (FE).
Polyakov, Pavel D; Duval, Jérôme F L
2014-02-07
We report a comprehensive theory to evaluate the kinetics of complex formation between metal ions and charged spherical nanoparticles. The latter consist of an ion-impermeable core surrounded by a soft shell layer characterized by a discrete axisymmetric 2D distribution of charged sites that bind metal ions. The theory explicitly integrates the conductive diffusion of metal ions from bulk solution toward the respective locations of the reactive sites within the particle shell volume. The kinetic constant k for outer-sphere nanoparticle-metal association is obtained from the sum of the contributions stemming from all reactive sites, each evaluated from the corresponding incoming flux of metal ions derived from steady-state Poisson-Nernst-Planck equations. Illustrations are provided to capture the basic intertwined impacts of particle size, overall particle charge, spatial heterogeneity in site distribution, type of particle (hard, core-shell or porous) and concentration of the background electrolyte on k. As a limit, k converges with predictions from previously reported analytical expressions derived for porous particles with low and high charge density, cases that correspond to coulombic and mean-field (smeared-out) electrostatic treatments, respectively. The conditions underlying the applicability of these latter approaches are rigorously identified in terms of (i) the extent of overlap between electric double layers around charged neighbouring sites, and (ii) the magnitude of the intraparticulate metal concentration gradient. For the first time, the proposed theory integrates the differentiated impact of the local potential around the charged binding sites amidst the overall particle field, together with that of the so-far discarded intraparticulate flux of metal ions.
Ren, Huimin; Liu, Huijuan; Qu, Jiuhui; Berg, Michael; Qi, Weixiao; Xu, Wei
2010-01-01
The role of colloids in estuarine and marine systems has been studied extensively in recent years, whereas less is known about the polluted freshwater system. Yongdingxin River is one of the major recipients of industrial effluents in Tianjin. This article evaluates the role of colloids in controlling geochemical behavior of Cu, Zn, Fe, Mn, Hg and Cr at the confluences between Yongdingxin River and its major tributaries Beijing Drainage River, Jinzhong River and Beitang Drainage River. Based on the distribution of metal partitioning among particulate (>0.22mum), colloidal (1kDa to 0.22mum) and truly dissolved (<1kDa) fractions, the metals can be assigned to the following groups: Group 1 - organic colloidal pool-borne elements Cu and Cr; Group 2 - inorganic colloidal pool-borne metals Fe and Mn; Group 3 - Zn and Hg characterized by varying complexation patterns. The distribution of metal partitioning among particulate, colloidal and truly dissolved fractions was influenced by anthropogenic input. In addition, the theoretical concentrations of elements in case of conservative mixing between the waters of Yongdingxin River and the waters of its tributaries were compared with the measured values to evaluate the geochemical role of colloids. The result showed that all of the metals presented a non-conservative mixing behavior. Addition of colloids resulted in the removal of metals from the water column to bed sediment during river water mixing, which was furthermore confirmed by the similar partition coefficient of metal concentration between colloid and sediment. Copyright 2009 Elsevier Ltd. All rights reserved.
Mangano, Carlo; Piattelli, Adriano; Raspanti, Mario; Mangano, Francesco; Cassoni, Alessandra; Iezzi, Giovanna; Shibli, Jamil Awad
2011-01-01
Recent studies have shown that direct laser metal sintering (DLMS) produces structures with complex geometry and consequently that allow better osteoconductive properties. The aim of this patient report was to evaluate the early bone response to DLMS implant surface retrieved from human jaws. Four experimental DLMS implants were inserted in the posterior mandible of four patients during conventional dental implant surgery. After 8 weeks, the micro-implants and the surrounding tissue were removed and prepared for scanning electron microscopy (SEM) and histomorphometric analysis to evaluate the bone-implant interface. The SEM and EDX evaluations showed a newly formed tissue composed of calcium and phosphorus. The bone-to-implant contact presented a mean of 60.5 ± 11.6%. Within the limits of this patient report, data suggest that the DLMS surfaces presented a close contact with the human bone after a healing period of 8 weeks.
Research of Influence Modification of Natural Concentrate on Quality Metal
NASA Astrophysics Data System (ADS)
Fedoseev, S. N.; Gizatulin, R. A.; Korotkova, E. A.
2016-08-01
Questions of increase of mechanical, technological and service properties of metal at minimum cost to produce it are relevant for the metallurgical enterprises. Modification of complex steel alloys containing reactive elements is one of the effective ways to improve the quality of steel. At the same time the direct costs for the use of modifiers are 0.2-0.3%, which little effect on the cost of production. The paper presents the results of the application of natural concentrates as a modifier steel. The effects on the metal quality changes due to the impact of the modification concentrates demonstrate the effectiveness of their application. As a result of modification decreased the content of nonmetallic inclusions and grain size. Reduction of impurity modified metal of was the cause more high plastic properties, especially, impact strength at ordinary and low temperatures of tests. Based on the experimental data evaluated hardening mechanisms that lead to a significant improvement of physic-mechanical properties of the metal workpiece after administration modifier.
NASA Astrophysics Data System (ADS)
Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.
2011-09-01
A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.
Fabrication of transparent ceramics using nanoparticles
Cherepy, Nerine J; Tillotson, Thomas M; Kuntz, Joshua D; Payne, Stephen A
2012-09-18
A method of fabrication of a transparent ceramic using nanoparticles synthesized via organic acid complexation-combustion includes providing metal salts, dissolving said metal salts to produce an aqueous salt solution, adding an organic chelating agent to produce a complexed-metal sol, heating said complexed-metal sol to produce a gel, drying said gel to produce a powder, combusting said powder to produce nano-particles, calcining said nano-particles to produce oxide nano-particles, forming said oxide nano-particles into a green body, and sintering said green body to produce the transparent ceramic.
Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, C.D.; Green, J.D.
1993-01-01
Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyedmore » by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700[degree]C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.« less
Vanadium and nickel complexes in petroleum resid acid, base, and neutral fractions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, C.D.; Green, J.D.
1993-01-01
Acid and base fractions from petroleum vacuum resids with no detectable (by visible spectrophotometry) quantities of porphyrinic Ni or V complexes were hydrotreated under various conditions to determine if significant amounts of porphyrinic metals were released, via disassociation or other means, upon hydrotreating. No significant quantities were observed, thereby indicating that nonporphyrinic metals were not simply associated, complexed or otherwise masked (in terms of visible spectrophotometric response) porphyrinic metal complexes. However, it is possible that hydrotreating was simply not effective in breaking up these associates and/or that some porphyrinic forms of metal were in fact released but were rapidly destroyedmore » by hydrotreating. In addition, three liquid chromatographic (LC) separation methods were sequentially applied to Cerro Negro (Orinoco belt Venezuelan heavy crude) >700{degree}C resid in an effort to separate and concentrate the metal complexes present. Nonaqueous ion exchange chromatography was used initially to separate the resid into acid, base and neutral types. Two concentrates containing 19,500 and 13,500 ppm total V, or an estimated 19 and 13 wt % V-containing compounds respectively, were obtained. The degree of enrichment of Ni compounds obtained was significantly lower. By visible spectrophotometry, using vanadyl etioporphyrin as a standard, each of the concentrates contained near a 1:1 ratio of porphyrinic:nonporphyrinic V complexes. Analogous separation behavior for porphyrinic versus nonporphyrinic metal forms was observed throughout much of the work, thereby suggesting that a comparable diversity of structures existed within each general class of metal compounds. The generally wide dispersion of both Ni and V over the LC separation scheme suggests a structural variety of metal complexes that is comparable to that observed for other heteroatoms (N, S, O) in petroleum.« less
Metal species involved in long distance metal transport in plants
Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier
2014-01-01
The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928
Speciation of heavy metals in landfill leachate: a review.
Baun, Dorthe L; Christensen, Thomas H
2004-02-01
The literature was reviewed with respect to metal speciation methods in aquatic samples specifically emphasizing speciation of heavy metals in landfill leachate. Speciation here refers to physical fractionation (particulate, colloidal, dissolved), chemical fractionation (organic complexes, inorganic complexes, free metal ions), as well as computer-based thermodynamic models. Relatively few landfill leachate samples have been speciated in detail (less than 30) representing only a few landfills (less than 15). This suggests that our knowledge about metal species in landfill leachate still is indicative. In spite of the limited database and the different definitions of the dissolved fraction (< 0.45 microm or < 0.001 microm) the studies consistently show that colloids as well as organic and inorganic complexes are important for all heavy metals in landfill leachate. The free metal ion constitutes less than 30%, typically less than 10%, of the total metal concentration. This has significant implications for sampling, since no standardized procedures exist, and for assessing the content of metals in leachate in the context of its treatment, toxicity and migration in aquifers.
NASA Technical Reports Server (NTRS)
Beck, M.
1979-01-01
In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.
NASA Astrophysics Data System (ADS)
Fraser, Roan; van Rooyen, Petrus H.; Landman, Marilé
2016-02-01
Bi- and trimetallic carbene complexes of group VI and VII transition metals (Cr, Mo, W, Mn and Re), with CpMn(CO)3 as the initial synthon, have been synthesised according to the classical Fischer methodology. Crystal structures of the novel carbene complexes with general formula [Mx(CO)y-1{C(OEt)(MnCp(CO)3)}], where x = 1 then y = 3 or 6; x = 2 then y = 10, of the complexes are reported. A density functional theory (DFT) study was undertaken to determine natural bonding orbitals (NBOs) and conformational as well as isomeric aspects of the polymetallic complexes. Application of the second-order perturbation theory (SOPT) of the natural bond orbital (NBO) method revealed stabilizing interactions between the methylene C-H bonds and the carbonyl ligands of the carbene metal moiety. These stabilization interactions show a linear decrease for the group VI metal carbene complexes down the group.
Shen, Laifa; Yu, Le; Yu, Xin-Yao; Zhang, Xiaogang; Lou, Xiong Wen David
2015-02-02
Despite the significant advancement in preparing metal oxide hollow structures, most approaches rely on template-based multistep procedures for tailoring the interior structure. In this work, we develop a new generally applicable strategy toward the synthesis of mixed-metal-oxide complex hollow spheres. Starting with metal glycerate solid spheres, we show that subsequent thermal annealing in air leads to the formation of complex hollow spheres of the resulting metal oxide. We demonstrate the concept by synthesizing highly uniform NiCo2O4 hollow spheres with a complex interior structure. With the small primary building nanoparticles, high structural integrity, complex interior architectures, and enlarged surface area, these unique NiCo2O4 hollow spheres exhibit superior electrochemical performances as advanced electrode materials for both lithium-ion batteries and supercapacitors. This approach can be an efficient self-templated strategy for the preparation of mixed-metal-oxide hollow spheres with complex interior structures and functionalities. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nir, R.; Gasith, A.; Perry, A.S.
1990-01-01
Water hyacinth, Eichornia crassipes has drawn attention as a plant of rapid growth and high biomass production, and capable of removing pollutants from domestic and industrial waste effluents. Most of the studies were static assays of short duration (1 to 3 days) and with a single exposure of the plants to cadmium. The authors presumed that repeated exposures to Cd might change the rate of uptake of the metal as well as the growth and physiological state of the plant. This prompted us to undertake the present study in order to evaluate the potential capacity of water hyacinth to removemore » Cd from solution under conditions of repeated exposures but otherwise favorable growth conditions and without interference from other toxic compounds. Removal of metal from effluents by plants is expected to be compounded by the influence of specific conditions of the medium such as temperature, pH, ionic strength, presence of other metals or complexing ligands. The results of the present study will serve as a comparative reference for evaluating the effect of effluent conditions on CD toxicity to water hyacinth and the plant's capacity for metal removal.« less
NASA Astrophysics Data System (ADS)
Shobana, Sutha; Dharmaraja, Jeyaprakash; Selvaraj, Shanmugaperumal
2013-04-01
Equilibrium studies of Ni(II), Cu(II) and Zn(II) mixed ligand complexes involving a primary ligand 5-fluorouracil (5-FU; A) and imidazoles viz., imidazole (him), benzimidazole (bim), histamine (hist) and L-histidine (his) as co-ligands(B) were carried out pH-metrically in aqueous medium at 310 ± 0.1 K with I = 0.15 M (NaClO4). In solution state, the stoichiometry of MABH, MAB and MAB2 species have been detected. The primary ligand(A) binds the central M(II) ions in a monodentate manner whereas him, bim, hist and his co-ligands(B) bind in mono, mono, bi and tridentate modes respectively. The calculated Δ log K, log X and log X' values indicate higher stability of the mixed ligand complexes in comparison to binary species. Stability of the mixed ligand complex equilibria follows the Irving-Williams order of stability. In vitro biological evaluations of the free ligand(A) and their metal complexes by well diffusion technique show moderate activities against common bacterial and fungal strains. Oxidative cleavage interaction of ligand(A) and their copper complexes with CT DNA is also studied by gel electrophoresis method in the presence of oxidant. In vitro antioxidant evaluations of the primary ligand(A), CuA and CuAB complexes by DPPH free radical scavenging model were carried out. In solid, the MAB type of M(II)sbnd 5-FU(A)sbnd his(B) complexes were isolated and characterized by various physico-chemical and spectral techniques. Both the magnetic susceptibility and electronic spectral analysis suggest distorted octahedral geometry. Thermal studies on the synthesized mixed ligand complexes show loss of coordinated water molecule in the first step followed by decomposition of the organic residues subsequently. XRD and SEM analysis suggest that the microcrystalline nature and homogeneous morphology of MAB complexes. Further, the 3D molecular modeling and analysis for the mixed ligand MAB complexes have also been carried out.
Solar chemistry of metal complexes
NASA Astrophysics Data System (ADS)
Gray, H. B.; Maverick, A. W.
1981-12-01
Electronic excited states of certain transition metal complexes undergo oxidation-reduction reactions that store chemical energy. Such reactions have been extensively explored for mononuclear complexes. Two classes of polynuclear species exhibit similar properties, and these complexes are now being studied as possible homogeneous sensitizer-catalysts for hydrogen production from aqueous solutions.
Marolt, Gregor; Pihlar, Boris
2015-01-01
Determination of correct amount (concentration) of phytic acid is of vital importance when dealing with protonation and/or metal complexation equilibria. A novel approach for precise and reliable assay of phytic acid, based on the difference between end points by potentiometric titration, has been presented. Twelve phytic acid protons are classified into three groups of acidity, which enables detection of 2 to 3 distinct equivalent points (EPs) depending on experimental conditions, e.g. counter-ion concentration. Using the differences between individual EPs enables correct phytate determination as well as identification of potential contamination and/or determination of initial protonation degree. Impact of uncertainty of phytate amount on the calculation of protonation constants has been evaluated using computer simulation program (Hyperquad2013). With the analysis of titration curves different binding sites on phytate ligand have been proposed for complexation of Ca2+ and Fe3+ ions.
Park, Young Jun; Cook, Sarah A.; Sickerman, Nathaniel S.; Sano, Yohei; Ziller, Joseph W.
2013-01-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new FeII complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O2 than its MnII analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the FeII and MnII complexes, which followed the trend NMe4+ < BaII < CaII = SrII. These studies led to the isolation of heterobimetallic complexes containing FeIII-(μ-OH)-MII cores (MII = Ca, Sr, and Ba) and one with a [SrII(OH)MnIII]+ motif. The analogous [CaII(OH)GaIII]+ complex was also prepared and its solid state molecular structure is nearly identical to that of the [CaII(OH)FeIII]+ system. Nuclear magnetic resonance studies indicated that the diamagnetic [CaII(OH)GaIII]+ complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [CaII(OH)FeIII]+ and [SrII(OH)FeIII]+ complexes, which were more positive than the potential observed for [BaII(OH)FeIII]+. Similar results were obtained for the heterobimetallic MnII complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II. PMID:24058726
Park, Young Jun; Cook, Sarah A; Sickerman, Nathaniel S; Sano, Yohei; Ziller, Joseph W; Borovik, A S
2013-02-01
The effects of redox-inactive metal ions on dioxygen activation were explored using a new Fe II complex containing a tripodal ligand with 3 sulfonamido groups. This iron complex exhibited a faster initial rate for the reduction of O 2 than its Mn II analog. Increases in initial rates were also observed in the presence of group 2 metal ions for both the Fe II and Mn II complexes, which followed the trend NMe 4 + < Ba II < Ca II = Sr II . These studies led to the isolation of heterobimetallic complexes containing Fe III -( μ -OH)-M II cores (M II = Ca, Sr, and Ba) and one with a [Sr II (OH)Mn III ] + motif. The analogous [Ca II (OH)Ga III ] + complex was also prepared and its solid state molecular structure is nearly identical to that of the [Ca II (OH)Fe III ] + system. Nuclear magnetic resonance studies indicated that the diamagnetic [Ca II (OH)Ga III ] + complex retained its structure in solution. Electrochemical measurements on the heterobimetallic systems revealed similar one-electron reduction potentials for the [Ca II (OH)Fe III ] + and [Sr II (OH)Fe III ] + complexes, which were more positive than the potential observed for [Ba II (OH)Fe III ] + . Similar results were obtained for the heterobimetallic Mn II complexes. These findings suggest that Lewis acidity is not the only factor to consider when evaluating the effects of group 2 ions on redox processes, including those within the oxygen-evolving complex of Photosystem II.
NASA Astrophysics Data System (ADS)
Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika
2017-01-01
Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.
Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.
Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk
2014-07-01
Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.
Bahl, Deepa; Athar, Fareeda; Soares, Milena Botelho Pereira; de Sá, Matheus Santos; Moreira, Diogo Rodrigo Magalhães; Srivastava, Rajendra Mohan; Leite, Ana Cristina Lima; Azam, Amir
2010-09-15
A useful concept for the rational design of antiparasitic drug candidates is the complexation of bioactive ligands with transition metals. In view of this, an investigation was conducted into a new set of metal complexes as potential antiplasmodium and antiamoebic agents, in order to examine the importance of metallic atoms, as well as the kind of sphere of co-ordination, in these biological properties. Four functionalized furyl-thiosemicarbazones (NT1-4) treated with divalent metals (Cu, Co, Pt, and Pd) to form the mononuclear metallic complexes of formula [M(L)2Cl2] or [M(L)Cl2] were examined. The pharmacological characterization, including assays against Plasmodium falciparum and Entamoeba histolytica, cytotoxicity to mammalian cells, and interaction with pBR 322 plasmid DNA was performed. Structure-activity relationship data revealed that the metallic complexation plays an essential role in antiprotozoal activity, rather than the simple presence of the ligand or metal alone. Important steps towards identification of novel antiplasmodium (NT1Cu, IC50 of 4.6 microM) and antiamoebic (NT2Pd, IC50 of 0.6 microM) drug prototypes were achieved. Of particular relevance to this work, these prototypes were able to reduce the proliferation of these parasites at concentrations that are not cytotoxic to mammalian cells. Copyright (c) 2010. Published by Elsevier Ltd.
Lu, Cailing; Svoboda, Kurt R; Lenz, Kade A; Pattison, Claire; Ma, Hongbo
2018-06-01
Manganese (Mn) is considered as an emerging metal contaminant in the environment. However, its potential interactions with companying toxic metals and the associated mixture effects are largely unknown. Here, we investigated the toxicity interactions between Mn and two commonly seen co-occurring toxic metals, Pb and Cd, in a model organism the nematode Caenorhabditis elegans. The acute lethal toxicity of mixtures of Mn+Pb and Mn+Cd were first assessed using a toxic unit model. Multiple toxicity endpoints including reproduction, lifespan, stress response, and neurotoxicity were then examined to evaluate the mixture effects at sublethal concentrations. Stress response was assessed using a daf-16::GFP transgenic strain that expresses GFP under the control of DAF-16 promotor. Neurotoxicity was assessed using a dat-1::GFP transgenic strain that expresses GFP in dopaminergic neurons. The mixture of Mn+Pb induced a more-than-additive (synergistic) lethal toxicity in the worm whereas the mixture of Mn+Cd induced a less-than-additive (antagonistic) toxicity. Mixture effects on sublethal toxicity showed more complex patterns and were dependent on the toxicity endpoints as well as the modes of toxic action of the metals. The mixture of Mn+Pb induced additive effects on both reproduction and lifespan, whereas the mixture of Mn+Cd induced additive effects on lifespan but not reproduction. Both mixtures seemed to induce additive effects on stress response and neurotoxicity, although a quantitative assessment was not possible due to the single concentrations used in mixture tests. Our findings demonstrate the complexity of metal interactions and the associated mixture effects. Assessment of metal mixture toxicity should take into consideration the unique property of individual metals, their potential toxicity mechanisms, and the toxicity endpoints examined.
Highly selective BSA imprinted polyacrylamide hydrogels facilitated by a metal-coding MIP approach.
El-Sharif, H F; Yapati, H; Kalluru, S; Reddy, S M
2015-12-01
We report the fabrication of metal-coded molecularly imprinted polymers (MIPs) using hydrogel-based protein imprinting techniques. A Co(II) complex was prepared using (E)-2-((2 hydrazide-(4-vinylbenzyl)hydrazono)methyl)phenol; along with iron(III) chloroprotoporphyrin (Hemin), vinylferrocene (VFc), zinc(II) protoporphyrin (ZnPP) and protoporphyrin (PP), these complexes were introduced into the MIPs as co-monomers for metal-coding of non-metalloprotein imprints. Results indicate a 66% enhancement for bovine serum albumin (BSA) protein binding capacities (Q, mg/g) via metal-ion/ligand exchange properties within the metal-coded MIPs. Specifically, Co(II)-complex-based MIPs exhibited 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/non-imprinted (NIP) control). The selectivity of our Co(II)-coded BSA MIPs were also tested using bovine haemoglobin (BHb), lysozyme (Lyz), and trypsin (Tryp). By evaluating imprinting factors (K), each of the latter proteins was found to have lower affinities in comparison to cognate BSA template. The hydrogels were further characterised by thermal analysis and differential scanning calorimetry (DSC) to assess optimum polymer composition. The development of hydrogel-based molecularly imprinted polymer (HydroMIPs) technology for the memory imprinting of proteins and for protein biosensor development presents many possibilities, including uses in bio-sample clean-up or selective extraction, replacement of biological antibodies in immunoassays and biosensors for medicine and the environment. Biosensors for proteins and viruses are currently expensive to develop because they require the use of expensive antibodies. Because of their biomimicry capabilities (and their potential to act as synthetic antibodies), HydroMIPs potentially offer a route to the development of new low-cost biosensors. Herein, a metal ion-mediated imprinting approach was employed to metal-code our hydrogel-based MIPs for the selective recognition of bovine serum albumin (BSA). Specifically, Co(II)-complex based MIPs exhibited a 66% enhancement (in comparison to our normal MIPs) exhibiting 92 ± 1% specific binding with Q values of 5.7 ± 0.45 mg BSA/g polymer and imprinting factors (IF) of 14.8 ± 1.9 (MIP/ non-imprinted (NIP) control). The proposed metal-coded MIPs for protein recognition are intended to lead to unprecedented improvement in MIP selectivity and for future biosensor development that rely on an electrochemical redox processes. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Válega, M; Lima, A I G; Figueira, E M A P; Pereira, E; Pardal, M A; Duarte, A C
2009-01-01
In the presence of metal stress, plants can resort to a series of tolerance mechanisms. Therefore field studies should be undertaken in order to evaluate the real role of these mechanisms in stress coping. The aim of this paper was to clarify the biochemical processes behind mercury tolerance in Halimione portulacoides (L.) Aellen (Caryophyllales: Chenopodiaceae) collected in a mercury contaminated salt marsh. Different fractions of mercury were separated: buffer-soluble (mainly cytosolic) and insoluble mercury (mainly associated with membranes and cell walls). The amounts in each fraction of metal were compared and related to metal distribution within plant organs. Protein-mercury complexes were isolated and analysed for their thiol content in order to assess wether the tolerance of this salt marsh plant was associated with the induction of metal chelation by phytochelatins. Overall, the mercury tolerance strategies of the plant are likely to involve root cell wall immobilization as a major mechanism of metal resistance, rather than metal chelation in the cytosolic fraction. Nevertheless, phytochelatins were demonstrated to chelate mercury under environmental exposure.
Transition Metal Intercalators as Anticancer Agents—Recent Advances
Deo, Krishant M.; Pages, Benjamin J.; Ang, Dale L.; Gordon, Christopher P.; Aldrich-Wright, Janice R.
2016-01-01
The diverse anticancer utility of cisplatin has stimulated significant interest in the development of additional platinum-based therapies, resulting in several analogues receiving clinical approval worldwide. However, due to structural and mechanistic similarities, the effectiveness of platinum-based therapies is countered by severe side-effects, narrow spectrum of activity and the development of resistance. Nonetheless, metal complexes offer unique characteristics and exceptional versatility, with the ability to alter their pharmacology through facile modifications of geometry and coordination number. This has prompted the search for metal-based complexes with distinctly different structural motifs and non-covalent modes of binding with a primary aim of circumventing current clinical limitations. This review discusses recent advances in platinum and other transition metal-based complexes with mechanisms of action involving intercalation. This mode of DNA binding is distinct from cisplatin and its derivatives. The metals focused on in this review include Pt, Ru and Cu along with examples of Au, Ni, Zn and Fe complexes; these complexes are capable of DNA intercalation and are highly biologically active. PMID:27809241
Nesterenko, Ekaterina P; Nesterenko, Pavel N; Paull, Brett
2008-12-05
The retention and separation selectivity of inorganic anions and on-column derivatised negatively charged citrate or oxalate metal complexes on reversed-phase stationary phases dynamically coated with N-(dodecyl-N,N-dimethylammonio)undecanoate (DDMAU) has been investigated. The retention mechanism for the metal-citrate complexes was predominantly anion exchange, although the amphoteric/zwitterionic nature of the stationary phase coating undoubtedly also contributed to the unusual separation selectivity shown. A mixture of 10 inorganic anions and metal cations was achieved using a 20 cm monolithic DDMAU modified column and a 1 mM citrate eluent, pH 4.0, flow rate equal to 0.8 mL/min. Selectivity was found to be strongly pH dependent, allowing additional scope for manipulation of solute retention, and thus application to complex samples. This is illustrated with the analysis of an acidic mine drainage sample with a range of inorganic anions and transition metal cations, varying significantly in their concentrations levels.
Pereira, Regina M S; Andrades, Norma E D; Paulino, Niraldo; Sawaya, Alexandra C H F; Eberlin, Marcos N; Marcucci, Maria C; Favero, Giovani Marino; Novak, Estela Maria; Bydlowski, Sérgio Paulo
2007-07-09
The antioxidant activity of flavonoids is believed to increase when they are coordinated with transition metal ions. However, the literature on this subject is contradictory and the outcome seems to largely depend on the experimental conditions. In order to understand the contribution of the metal coordination and the type of interaction between a flavonoid and the metal ion, in this study a new metal complex of Cu (II) with naringin was synthesized and characterized by FT-IR, UV-VIS, mass spectrometry (ESI-MS/MS), elemental analysis and 1H-NMR. The results of these analyses indicate that the complex has a Cu (II) ion coordinated via positions 4 and 5 of the flavonoid. The antioxidant, anti-inflammatory and antimicrobial activities of this complex were studied and compared with the activity of free naringin. The Naringin-Cu (II) complex 1 showed higher antioxidant, anti-inflammatory and tumor cell cytotoxicity activities than free naringin without reducing cell viability.
The QSAR study of flavonoid-metal complexes scavenging rad OH free radical
NASA Astrophysics Data System (ADS)
Wang, Bo-chu; Qian, Jun-zhen; Fan, Ying; Tan, Jun
2014-10-01
Flavonoid-metal complexes have antioxidant activities. However, quantitative structure-activity relationships (QSAR) of flavonoid-metal complexes and their antioxidant activities has still not been tackled. On the basis of 21 structures of flavonoid-metal complexes and their antioxidant activities for scavenging rad OH free radical, we optimised their structures using Gaussian 03 software package and we subsequently calculated and chose 18 quantum chemistry descriptors such as dipole, charge and energy. Then we chose several quantum chemistry descriptors that are very important to the IC50 of flavonoid-metal complexes for scavenging rad OH free radical through method of stepwise linear regression, Meanwhile we obtained 4 new variables through the principal component analysis. Finally, we built the QSAR models based on those important quantum chemistry descriptors and the 4 new variables as the independent variables and the IC50 as the dependent variable using an Artificial Neural Network (ANN), and we validated the two models using experimental data. These results show that the two models in this paper are reliable and predictable.
Ferrari, Erika; Benassi, Rois; Sacchi, Stefania; Pignedoli, Francesca; Asti, Mattia; Saladini, Monica
2014-10-01
Curcuminoids represent new perspectives for the development of novel therapeutics for Alzheimer's disease (AD), one probable mechanism of action is related to their metal complexing ability. In this work we examined the metal complexing ability of substituted curcuminoids to propose new chelating molecules with biological properties comparable with curcumin but with improved stability as new potential AD therapeutic agents. The K2T derivatives originate from the insertion of a -CH2COOC(CH3)3 group on the central atom of the diketonic moiety of curcumin. They retain the diketo-ketoenol tautomerism which is solvent dependent. In aqueous solution the prevalent form is the diketo one but the addition of metal ion (Ga(3+), Cu(2+)) causes the dissociation of the enolic proton creating chelate complexes and shifting the tautomeric equilibrium towards the keto-enol form. The formation of metal complexes is followed by both NMR and UV-vis spectroscopy. The density functional theory (DFT) calculations on K2T21 complexes with Ga(3+) and Cu(2+) are performed and compared with those on curcumin complexes. [Ga(K2T21)2(H2O)2](+) was found more stable than curcumin one. Good agreement is detected between calculated and experimental (1)H and (13)C NMR data. The calculated OH bond dissociation energy (BDE) and the OH proton dissociation enthalpy (PDE), allowed to predict the radical scavenging ability of the metal ion complexed with K2T21, while the calculated electronic affinity (EA) and ionization potential (IP) represent yardsticks of antioxidant properties. Eventually theoretical calculations suggest that the proton-transfer-associated superoxide-scavenging activity is enhanced after binding metal ions, and that Ga(3+) complexes display possible superoxide dismutase (SOD)-like activity. Copyright © 2014 Elsevier Inc. All rights reserved.
The preparation and use of metal salen complexes derived from cyclobutane diamine
NASA Astrophysics Data System (ADS)
Patil, Smita
The helix is an important chiral motif in nature, there is increasing development in field of helical transition metal complexes and related supramolecular structures. Hence, the goals of this work are to apply the principles of helicity in order to produce metal complexes with predictable molecular shapes and to study their properties as asymmetric catalysts. Computational studies suggest that the (1R,2 R)-cyclobutyldiamine unit can produce highly twisted salen complexes with a large energy barrier between the M and P helical forms. To test this prediction, the tartrate salt of (1R,2R)-cyclobutyldiamine was synthesized and condensed with a series of saliclaldehydes to produce novel salen ligands. The salicylaldehydes chosen have extended phenanthryl or benz[a]anthryl sidearms to encourage formation of helical coordination complexes. These ligands were metallated with zinc, iron and manganese salts to produce salen metal complexes which were characterized by NMR analysis, high-resolution mass spectrometry, and IR spectroscopy. A second ligand type, neutral bis(pyridine-imine) has also been synthesized from (1R,2R)-cyclobutyldiamine and quinolylaldehydes. The synthesis of bis(pyridine-imine) ligands was conducted using greener method, solvent assisted grinding. These ligands, in-situ with nickel metal salts, showed good catalytic activity for asymmetric Diels-Alder reactions. The third ligand type studied was chiral acid-functionalized Schiff-base ligands. These were synthesized by the condensation of 3-formyl-5-methyl salicylic acid and (1R,2R)-cyclobutyldiamine. With this type of ligand, there is possibility of producing both mono and dinuclear metal complexes. In our studies, we were only able to synthesize mononuclear complexs. These were tested as catalysts for asymmetric direct Mannich-type reaction, but were found to be ineffective.
NASA Astrophysics Data System (ADS)
Gaur, A.; Klysubun, W.; Soni, Balram; Shrivastava, B. D.; Prasad, J.; Srivastava, K.
2016-10-01
X-ray absorption spectroscopy (XAS) is very useful in revealing the information about geometric and electronic structure of a transition-metal absorber and thus commonly used for determination of metal-ligand coordination. But XAFS analysis becomes difficult if differently coordinated metal centers are present in a system. In the present investigation, existence of distinct coordination geometries around metal centres have been studied by XAFS in a series of trimesic acid Cu(II) complexes. The complexes studied are: Cu3(tma)2(im)6 8H2O (1), Cu3(tma)2(mim)6 17H2O (2), Cu3(tma)2(tmen)3 8.5H2O (3), Cu3(tma) (pmd)3 6H2O (ClO4)3 (4) and Cu3(tma)2 3H2O (5). These complexes have not only Cu metal centres with different coordination but in complexes 1-3, there are multiple coordination geometries present around Cu centres. Using XANES spectra, different coordination geometries present in these complexes have been identified. The variation observed in the pre-edge features and edge features have been correlated with the distortion of the specific coordination environment around Cu centres in the complexes. XANES spectra have been calculated for the distinct metal centres present in the complexes by employing ab-initio calculations. These individual spectra have been used to resolve the spectral contribution of the Cu centres to the particular XANES features exhibited by the experimental spectra of the multinuclear complexes. Also, the variation in the 4p density of states have been calculated for the different Cu centres and then correlated with the features originated from corresponding coordination of Cu. Thus, these spectral features have been successfully utilized to detect the presence of the discrete metal centres in a system. The inferences about the coordination geometry have been supported by EXAFS analysis which has been used to determine the structural parameters for these complexes.
Effect of Jig Design and Assessment of Stress Distribution in Testing Metal-Ceramic Adhesion.
Özcan, Mutlu; Kojima, Alberto Noriyuki; Nishioka, Renato Sussumu; Mesquita, Alfredo Mikail Melo; Bottino, Marco Antonio; Filho, Gilberto Duarte
2016-12-01
In testing adhesion using shear bond test, a combination of shear and tensile forces occur at the interface, resulting in complex stresses. The jig designs used for this kind of test show variations in published studies, complicating direct comparison between studies. This study evaluated the effect of different jig designs on metal-ceramic bond strength and assessed the stress distribution at the interface using finite element analysis (FEA). Metal-ceramic (Metal: Ni-Cr, Wiron 99, Bego; Ceramic: Vita Omega 900, Vita) specimens (N = 36) (diameter: 4 mm, veneer thickness: 4 mm; base diameter: 5 mm, thickness: 1 mm) were fabricated and randomly divided into three groups (n = 12 per group) to be tested using one of the following jig designs: (a) chisel (CH) (ISO 11405), (b) steel strip (SS), (c) piston (PI). Metal-ceramic interfaces were loaded under shear until debonding in a universal testing machine (0.5 mm/min). Failure types were evaluated using scanning electron microscopy (SEM). FEA was used to study the stress distribution using different jigs. Metal-ceramic bond strength data (MPa) were analyzed using ANOVA and Tukey's tests (α = 0.05). The jig type significantly affected the bond results (p = 0.0001). PI type of jig presented the highest results (MPa) (p < 0.05) (58.2 ± 14.8), followed by CH (38.7 ± 7.6) and SS jig type (23.3 ± 4.2) (p < 0.05). Failure types were exclusively a combination of cohesive failure in the opaque ceramic and adhesive interface failure. FEA analysis indicated that the SS jig presented slightly more stress formation than with the CH jig. The PI jig presented small stress concentration with more homogeneous force distribution compared to the CH jig where the stress concentrated in the area where the force was applied. Metal-ceramic bond strength was affected by the jig design. Accordingly, the results of in vitro studies on metal-ceramic adhesion should be evaluated with caution. When adhesion of ceramic materials to metals is evaluated in in vitro studies, it should be noted that the loading jig type affects the results. Clinical observations should report on the location and type of ceramic fractures in metal-ceramic reconstructions so that the most relevant test method can be identified. © 2015 by the American College of Prosthodontists.
Solvation Effect on Complexation of Alkali Metal Cations by a Calix[4]arene Ketone Derivative.
Požar, Josip; Nikšić-Franjić, Ivana; Cvetnić, Marija; Leko, Katarina; Cindro, Nikola; Pičuljan, Katarina; Borilović, Ivana; Frkanec, Leo; Tomišić, Vladislav
2017-09-14
The medium effect on the complexation of alkali metal cations with a calix[4]arene ketone derivative (L) was systematically examined in methanol, ethanol, N-methylformamide, N,N-dimethylformamide, dimethyl sulfoxide, and acetonitrile. In all solvents the binding of Na + cation by L was rather efficient, whereas the complexation of other alkali metal cations was observed only in methanol and acetonitrile. Complexation reactions were enthalpically controlled, while ligand dissolution was endothermic in all cases. A notable influence of the solvent on NaL + complex stability could be mainly attributed to the differences in complexation entropies. The higher NaL + stability in comparison to complexes with other alkali metal cations in acetonitrile was predominantly due to a more favorable complexation enthalpy. The 1 H NMR investigations revealed a relatively low affinity of the calixarene sodium complex for inclusion of the solvent molecule in the calixarene hydrophobic cavity, with the exception of acetonitrile. Differences in complex stabilities in the explored solvents, apart from N,N-dimethylformamide and acetonitrile, could be mostly explained by taking into account solely the cation and complex solvation. A considerable solvent effect on the complexation equilibria was proven to be due to an interesting interplay between the transfer enthalpies and entropies of the reactants and the complexes formed.
Zhang, Jing-Jing; Muenzner, Julienne K; Abu El Maaty, Mohamed A; Karge, Bianka; Schobert, Rainer; Wölfl, Stefan; Ott, Ingo
2016-08-16
A rhodium(i) and a ruthenium(ii) complex with a caffeine derived N-heterocyclic carbene (NHC) ligand were biologically investigated as organometallic conjugates consisting of a metal center and a naturally occurring moiety. While the ruthenium(ii) complex was largely inactive, the rhodium(i) NHC complex displayed selective cytotoxicity and significant anti-metastatic and in vivo anti-vascular activities and acted as both a mammalian and an E. coli thioredoxin reductase inhibitor. In HCT-116 cells it increased the reactive oxygen species level, leading to DNA damage, and it induced cell cycle arrest, decreased the mitochondrial membrane potential, and triggered apoptosis. This rhodium(i) NHC derivative thus represents a multi-target compound with promising anti-cancer potential.
Molecular Speciation of Trace Metal Organic Complexes in the Pacific Ocean
NASA Astrophysics Data System (ADS)
Repeta, D.; Boiteau, R. M.; Bundy, R. M.; Babcock-Adams, L.
2017-12-01
Microbial production across approximately one third of the surface ocean is limited by extraordinarily low (picomolar) concentrations of dissolved iron, essentially all of which is complexed to strong organic ligands of unknown composition. Other biologically important trace metals (cobalt, copper, zinc, nickel) are also complexed to strong organic ligands, which again have not been extensively characterized. Nevertheless, organic ligands exert a strong influence on metal bioavailability and toxicity. For example, amendment experiments using commercially available siderophores, organic compounds synthesized by microbes to facilitate iron uptake, show these ligands can both facilitate or impede iron uptake depending on the siderophore composition and available uptake pathways. Over the past few years we have developed analytical techniques using high pressure liquid chromatography interfaced with inductively coupled plasma and electrospray ionization mass spectrometry to identify and quantify trace metal organic complexes in laboratory cultures of marine microbes and in seawater. We found siderophores to be widely distributed in the ocean, particularly in regions characterized by low iron concentrations. We also find chemically distinct complexes of copper, zinc, colbalt and nickel that we have yet to fully characterize. We will discuss some of our recent work on trace metal organic speciation in seawater and laboratory cultures, and outline future efforts to better understand the microbial cycling of trace metal organic complexes in the sea.
Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S
2011-01-01
The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Yohsin; Stang, P.J.; Arif, A.M.
1990-07-04
Heterobimetallic complexes containing asymmetric metal-metal bonds as well as homogeneous C-H bond activation by organometallic compounds are of considerable current interest largely because of their relevance to catalysis. Although coordination of an alkene to transition metal systems is generally considered a necessary activation step in many catalytic and stoichiometric organometallic reactions, little is known about alkene C-H bond activation of precomplexed olefin substrates. In this paper the authors report the first intermolecular example of olefin C-H activation by a second, different metal system of a precomplexed {pi}-ethylene transition-metal complex and the concomitant formation of a novel alkene-bridged heterobimetallic Ir-Pt complex.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas, Christine M.
2015-08-01
Recent attention in the chemical community has been focused on the energy efficient and environmentally benign conversion of abundant small molecules (CO2, H2O, etc.) to useful liquid fuels. This project addresses these goals by examining fundamental aspects of catalyst design to ultimately access small molecule activation processes under mild conditions. Specifically, Thomas and coworkers have targetted heterobimetallic complexes that feature metal centers with vastly different electronic properties, dictated both by their respective positions on the periodic table and their coordination environment. Unlike homobimetallic complexes featuring identical or similar metals, the bonds between metals in early/late heterobimetallics are more polarized, withmore » the more electron-rich late metal center donating electron density to the more electron-deficient early metal center. While metal-metal bonds pose an interesting strategy for storing redox equivalents and stabilizing reactive metal fragments, the polar character of metal-metal bonds in heterobimetallic complexes renders these molecules ideally poised to react with small molecule substrates via cleavage of energy-rich single and double bonds. In addition, metal-metal interactions have been shown to dramatically affect redox potentials and promote multielectron redox activity, suggesting that metal-metal interactions may provide a mechanism to tune redox potentials and access substrate reduction/activation at mild overpotentials. This research project has provided a better fundamental understanding of how interactions between transition metals can be used as a strategy to promote and/or control chemical transformations related to the clean production of fuels. While this project focused on the study of homogeneous systems, it is anticipated that the broad conclusions drawn from these investigations will be applicable to heterogeneous catalysis as well, particularly on heterogeneous processes that occur at interfaces in multicomponent systems.« less
NASA Astrophysics Data System (ADS)
Kleinnijenhuis, Anne J.; Mihalca, Romulus; Heeren, Ron M. A.; Heck, Albert J. R.
2006-07-01
Doubly protonated ions of the disulfide bond containing nonapeptide hormone oxytocin and oxytocin complexes with different transition metal ions, that have biological relevance under physiological conditions, were subjected to electron capture dissociation (ECD) to probe their structural features in the gas phase. Although, all the ECD spectra were strikingly different, typical ECD behavior was observed for complexes of the nonapeptide hormone oxytocin with Ni2+, Co2+ and Zn2+, i.e., abundant c/z' and a'/y backbone cleavages and ECD characteristic S-S and S-C bond cleavages were observed. We propose that, although in the oxytocin-transition metal ion complexes the metal ions serve as the main initial capture site, the captured electron is transferred to other sites in the complex to form a hydrogen radical, which drives the subsequent typical ECD fragmentations. The complex of oxytocin with Cu2+ displayed noticeably different ECD behavior. The fragment ions were similar to fragment ions typically observed with low-energy collision induced dissociation (CID). We propose that the electrons captured by the oxytocin-Cu2+ complex might be favorably involved in reducing the Cu2+ metal ion to Cu+. Subsequent energy redistribution would explain the observed low-energy CID-type fragmentations. Electron capture resulted also in quite different specific cleavage sites for the complexes of oxytocin with Ni2+, Co2+ and Zn2+. This is an indication for structural differences in these complexes possibly linked to their significantly different biological effects on oxytocin-receptor binding, and suggests that ECD may be used to study subtle structural differences in transition metal ion-peptide complexes.
NASA Astrophysics Data System (ADS)
Bharti, Sulakshna; Choudhary, Mukesh; Mohan, Bharti; Rawat, S. P.; Sharma, S. R.; Ahmad, K.
2018-07-01
A series of new dimer complexes of copper (II) and nickel (II) were designed and synthesized using the Schiff base ligands which was formed by the condensation of 2-aminothiophenol with 2- methoxybenzaldehyde, 3-formylbenzonitrile and 3-bromo-2-hydroxy-5-nitrobenzaldehyde, respectively. The synthesized metallic complexes were characterized by using different physicochemical and spectroscopic methods. The most plausible geometry for the 1:2 complexes appeared to be distorted square-planar or tetrahedral environments. All the synthesized metal complexes are found to be binuclear and confirmed by elemental analyses, magnetic susceptibility measurements and ESR spectroscopy. The Schiff base ligands (HL1/HL2/H2L) were coordinated to the metal ions through the ONS/SNN and/or N, S donor atoms. In order to prevent the oxidation of the thiol group during the formation of Schiff bases and its complexes, all of the reactions were carried out under an inert atmosphere of argon. The X-ray structures of the Schiff base ligands showed that in the crystalline form the SH groups were oxidized to produce a disulfide Schiff bases as a new double Schiff base ligands (L1a/L2a/H2La). The L1b ligand is a bicyclic ring system of N, S-containing heterocyclic. The crystal structures of the double Schiff bases were determined by single crystal X-ray diffraction. The molar conductivity values of the complexes in DMSO implied the presence of non-electrolyte species. The SOD-like activity of Schiff bases and its complexes were investigated by NBT-DMSO assay and IC50 values were evaluated. Their biological properties have also been studied. These complexes were also tested for their in vitro antibacterial screening activities against three bacteria (Streptococcus aureus, Salmonella typhi, and Escherichia coli) comparing with the Schiff base ligands. Most of the complexes have higher antibacterial activities than those of the free Schiff bases, double Schiff bases and the control.
Kong, Lingbing; Ganguly, Rakesh; Li, Yongxin
2015-01-01
The reactivity of a tricoordinate organoboron L2PhB: (L = oxazol-2-ylidene) 1 towards metal precursors and its coordination chemistry were comprehensively studied. While the boron center in 1 is reluctant to coordinate to the alkali metals in their trifluoromethanesulfonate salts (MOTf) (M = Li, Na, K), the unprecedented compound 2 containing two L2PhB: units linked by a cyclic Li(OTf)2Li spacer was obtained from the reaction of 1 with LiOTf. Treatment of 1 with group 9 metal complexes [MCl(COD)]2 (M = Rh, Ir) afforded the first zwitterionic rhodium(i)–boronium complex 3 and the iridium(iii)–borane complex 4, respectively. The reaction pathway may involve C–H activation followed by proton migration from the metals to the boron center, demonstrating the first example of the deprotonation of metal hydrides by a basic boron. In the reactions with coinage metals, 1 could act as a two-electron reducing agent towards the metal chlorides MCl (M = Cu, Ag, Au). Meanwhile, the reaction of 1 with gold chloride supported by a N-heterocyclic carbene (NHC) produced a heteroleptic cationic gold complex [(L2PhB)Au(NHC)]Cl (6) featuring both carbene and L2PhB: ligands on the gold atom. In contrast, an isolable gold chloride complex (L2PhB)AuCl (8) was obtained by direct complexation between 1 and triphenylphosphine-gold chloride via ligand exchange. X-ray diffraction analysis and computational studies revealed the nature of the B:→Au bonding interaction in complexes 6 and 8. Natural Population Analysis (NPA) and Natural Bond Orbital (NBO) analysis support the strong σ-donating property of the L2PhB: ligand. Moreover, preliminary studies showed that complex 8 can serve as an efficient precatalyst for the addition of X–H (X = N, O, C) to alkynes under ambient conditions, demonstrating the first application of a metal complex featuring a neutral boron-based ligand in catalysis. PMID:29308167
NASA Technical Reports Server (NTRS)
Yolken, H. Thomas; Matzkanin, George A.
2009-01-01
Because of their increasing utilization in structural applications, the nondestructive evaluation (NDE) of advanced fiber reinforced polymer composites continues to receive considerable research and development attention. Due to the heterogeneous nature of composites, the form of defects is often very different from a metal and fracture mechanisms are more complex. The purpose of this report is to provide an overview and technology assessment of the current state-of-the-art with respect to NDE of advanced fiber reinforced polymer composites.
Frigerio, N.A.
1962-03-27
A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)
Wojcieszek, Justyna; Kwiatkowski, Piotr; Ruzik, Lena
2017-04-07
Goji berries (Lycium Barbarum, L.) are known for their nutritional potential as a great source of trace metals (e.g., copper, zinc and manganese) which are present in the form of highly bioaccessible compounds. In order to assess the bioaccessibility of trace elements and to identify compounds responsible for better bioaccessibility of copper and zinc, an in vitro simulation of gastrointestinal digestion was used in this study. The total content of trace metals was evaluated using sample digestion followed by inductively coupled plasma mass spectrometry. Bioaccessibility of trace elements was estimated by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. These analytical methods were used to analyse samples of goji berries to determine the highest amount of elements. For total trace metal content in goji berries, Zn had the highest level of the three studied (10.6μgg -1 ), while the total content of manganese and copper was 9.9μgg -1 and 6.1μgg -1 , respectively. Additionally, the analysed metals were found to be highly bioaccessible to the human body (about 56% for Mn, 72% for Cu and 64% for Zn in the gastric extract and approximately 35% for Mn, 23% for Cu and 31% for Zn in the case of gastrointestinal extract). To obtain information about metal complexes present in goji berries, extraction treatment using different solutions (ionic liquid, HEPES, SDS, Tris-HCl, ammonium acetate, water) was performed. Enzymatic treatment using pectinase and hemicellulase was also checked. Extracts of berries were analysed by SEC-ICP-MS and μHPLC-ESI-MS/MS techniques. The ionic liquid and pectinase extraction helped efficiently extract copper (seven compounds) and zinc (four compounds) complexes. Compounds identified in goji berries are most likely to be responsible for better bioaccessibility of those elements to the human organism. Copyright © 2017 Elsevier B.V. All rights reserved.
Lo, Kenneth Kam-Wing
2015-12-15
Although the interactions of transition metal complexes with biological molecules have been extensively studied, the use of luminescent transition metal complexes as intracellular sensors and bioimaging reagents has not been a focus of research until recently. The main advantages of luminescent transition metal complexes are their high photostability, long-lived phosphorescence that allows time-resolved detection, and large Stokes shifts that can minimize the possible self-quenching effect. Also, by the use of transition metal complexes, the degree of cellular uptake can be readily determined using inductively coupled plasma mass spectrometry. For more than a decade, we have been interested in the development of luminescent transition metal complexes as covalent labels and noncovalent probes for biological molecules. We argue that many transition metal polypyridine complexes display triplet charge transfer ((3)CT) emission that is highly sensitive to the local environment of the complexes. Hence, the biological labeling and binding interactions can be readily reflected by changes in the photophysical properties of the complexes. In this laboratory, we have modified luminescent tricarbonylrhenium(I) and bis-cyclometalated iridium(III) polypyridine complexes of general formula [Re(bpy-R(1))(CO)3(py-R(2))](+) and [Ir(ppy-R(3))2(bpy-R(4))](+), respectively, with reactive functional groups and used them to label the amine and sulfhydryl groups of biomolecules such as oligonucleotides, amino acids, peptides, and proteins. Additionally, using a range of biological substrates such as biotin, estradiol, and indole, we have designed luminescent rhenium(I) and iridium(III) polypyridine complexes as noncovalent probes for biological receptors. The interesting results generated from these studies have prompted us to investigate the possible applications of luminescent transition metal complexes in intracellular systems. Thus, in the past few years, we have developed an interest in the cytotoxic activity, cellular uptake, and bioimaging applications of these complexes. Additionally, we and other research groups have demonstrated that many transition metal complexes have facile cellular uptake and organelle-localization properties and that their cytotoxic activity can be readily controlled. For example, complexes that can target the nucleus, nucleolus, mitochondria, lysosomes, endoplasmic reticulum, and Golgi apparatus have been identified. We anticipate that this selective localization property can be utilized in the development of intracellular sensors and bioimaging reagents. Thus, we have functionalized luminescent rhenium(I) and iridium(III) polypyridine complexes with various pendants, including molecule-binding moieties, sugar molecules, bioorthogonal functional groups, and polymeric chains such as poly(ethylene glycol) and polyethylenimine, and examined their potentials as biological reagents. This Account describes our design of luminescent rhenium(I) and iridium(III) polypyridine complexes and explains how they can serve as a new generation of biological reagents for diagnostic and therapeutic applications.
El-wakiel, Nadia; El-keiy, Mai; Gaber, Mohamed
2015-08-05
A new Schiff base of 2-aminobenzimidazole with 2,4-dihydroybezaldehyde (H₃L), and its Cu(II), Ni(II) and Co(II) complexes have been synthesized and characterized by elemental analyses, molar conductance, thermal analysis (TGA), inductive coupled plasma (ICP), magnetic moment measurements, IR, EI-mass, UV-Vis. and ESR spectral studies. On the basis of spectral studies and analytical data, it is evident that the Schiff base acts as dibasic tridentate ligand coordinating via deprotonated OH, NH and azomethine nitrogen atom. The results showed that Co(II) and Ni(II) complexes have tetrahedral structure while Cu(II) complexes has octahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated. The studied complexes were tested for their in vitro antimicrobial activities against some bacterial strains. The anticancer activity of the ligand and its metal complexes is evaluated against human liver Carcinoma (HEPG2) cell. These compounds exhibited a moderate and weak activity against the tested HEPG2 cell lines with IC₅₀ of 9.08, 18.2 and 19.7 μg/ml for ligand, Cu(II) and Ni(II) complexes, respectively. In vitro antioxidant activity of the newly synthesized compounds has also been evaluated. Copyright © 2015 Elsevier B.V. All rights reserved.
A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes
ERIC Educational Resources Information Center
Mohamadou, Aminou; Haudrechy, Arnaud
2008-01-01
Octahedral transition-metal complexes are involved in a number of reactions and octahedral coordination geometry, frequently observed for metallic centers, includes important topographical stereochemistry. Depending on the number and nature of different ligands, octahedral coordination units with at least two different monodentate ligands give…
NASA Astrophysics Data System (ADS)
Mirambet, F.; Reguer, S.; Rocca, E.; Hollner, S.; Testemale, D.
2010-05-01
Metallic artefacts of the cultural heritage are often stored in uncontrolled environmental conditions. They are very sensitive to atmospheric corrosion caused by a succession of wet and dry periods due to variations of relative humidity and temperature. To avoid the complete degradation of the metallic artefacts, new preventive strategies must be developed. In this context, we have studied new compounds based on sodium carboxylates solutions CH3(CH2) n-2COO-, Na+ hereafter called NaC n . They allow the formation of a passive layer at the metallic surface composed of a metal-carboxylate complex. To understand the action of those inhibitors in the passivation process of iron we have performed electrochemical measurements and surface characterisation. Moreover, to monitor in real time the growth of the coating, in situ X-ray absorption spectroscopy (XAS) experiments at iron K-edge were carried out in an electrochemical cell. These analyses have shown that in the case of NaC10 solution, the protection of iron surface is correlated to the precipitation of a well-organised layer of FeC10. These experiments confirmed that this compound is a fully oxidised trinuclear Fe(III) complex containing decanoate anions as ligands. Such information concerning the passive layer is a key factor to evaluate its stability and finally the long-term efficiency of the protection treatment.
Synthesis and Characterization of Heterobimetallic Iridium-Aluminum and Rhodium-Aluminum Complexes.
Brewster, Timothy P; Nguyen, Tan H; Li, Zhongjing; Eckenhoff, William T; Schley, Nathan D; DeYonker, Nathan J
2018-02-05
We demonstrate the synthesis and characterization of a new class of late-transition-metal-aluminum heterobimetallic complexes via a novel synthetic pathway. Complexes of this type are exceedingly rare. Joint experimental and theoretical data sheds light on the electronic effect of ligands containing aluminum moieties on late-transition-metal complexes.
Wu, Bing; Wilding, Matthew J T; Kuppuswamy, Subramaniam; Bezpalko, Mark W; Foxman, Bruce M; Thomas, Christine M
2016-12-05
To understand the metal-metal bonding and conformational flexibility of first-row transition metal heterobimetallic complexes, a series of heterobimetallic Ti/M and V/M complexes (M = Fe, Co, Ni, and Cu) have been investigated. The titanium tris(phosphinoamide) precursors ClTi(XylNP i Pr 2 ) 3 (1) and Ti(XylNP i Pr 2 ) 3 (2) have been used to synthesize Ti/Fe (3), Ti/Ni (4, 4 THF ), and Ti/Cu (5) heterobimetallic complexes. A series of V/M (M = Fe (7), Co (8), Ni (9), and Cu (10)) complexes have been generated starting from the vanadium tris(phosphinoamide) precursor V(XylNP i Pr 2 ) 3 (6). The new heterobimetallic complexes were characterized and studied by NMR spectroscopy, X-ray crystallography, electron paramagnetic resonance, and Mössbauer spectroscopy, where applicable, and computational methods (DFT). Compounds 3, 4 THF , 7, and 8 are C 3 -symmetric with three bridging phosphinoamide ligands, while compounds 9 and 10 adopt an asymmetric geometry with two bridging phosphinoamides and one phosphinoamide ligand bound η 2 to vanadium. Compounds 4 and 5, on the other hand, are asymmetric in the solid state but show evidence for fluxional behavior in solution. A correlation is established between conformational flexibility and metal-metal bond order, which has important implications for the future reactivity of these and other heterobimetallic molecules.
Boiocchi, Massimo; Fabbrizzi, Luigi; Garolfi, Mauro; Licchelli, Maurizio; Mosca, Lorenzo; Zanini, Cristina
2009-10-26
Copper(II) azacyclam complexes 3(2+) and 4(2+) were obtained through a metal-templated procedure involving the pertinent open-chain tetramine, formaldehyde and a phenylurea derivative as a locking fragment. Both metal complexes can establish interactions with anions through the metal centre and the amide NH group. Equilibrium studies in DMSO by a spectrophotometric titration technique were carried out to assess the affinity of 3(2+) and 4(2+) towards anions. While the NH group of an amide model compound and the metal centre of the plain Cu(II)(azacyclam)(2+) complex do not interact at all with anions, 3(2+) and 4(2+) establish strong interactions with oxo anions, profiting from a pronounced cooperative effect. In particular, 1) they form stable 1:1 and 1:2 complexes with H(2)PO(4) (-) ions in a stepwise mode with both hydrogen-bonding and metal-ligand interactions, and 2) in the presence of CH(3)COO(-), they undergo deprotonation of the amido NH group and thus profit from axial coordination of the partially negatively charged carbonyl oxygen atom in a scorpionate binding mode.
Infrared Multiple-Photon Dissociation spectroscopy of group II metal complexes with salicylate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryan P. Dain; Gary Gresham; Gary S. Groenewold
2011-07-01
Ion-trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations were used to characterize singly-charged, 1:1 complexes of Ca2+, Sr2+ and Ba2+ with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO2 and (b) formation of [MOH]+ where M=Ca2+, Sr2+ or Ba2+. DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cationmore » is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 – 1650 cm-1, and the best correlation between theoretical and experimental spectra for the structure that features coordination of the metal ion by phenoxide and the carbonyl group of the carboxylic acid group, consistent with calculated energies for the respective species.« less
Infrared multiple-photon dissociation spectroscopy of group II metal complexes with salicylate.
Dain, Ryan P; Gresham, Gary; Groenewold, Gary S; Steill, Jeffrey D; Oomens, Jos; van Stipdonk, Michael J
2011-07-15
Ion trap tandem mass spectrometry with collision-induced dissociation, and the combination of infrared multiple-photon dissociation (IRMPD) spectroscopy and density functional theory (DFT) calculations, were used to characterize singly charged, 1:1 complexes of Ca(2+), Sr(2+) and Ba(2+) with salicylate. For each metal-salicylate complex, the CID pathways are: (a) elimination of CO(2) and (b) formation of [MOH](+) where M = Ca(2+), Sr(2+) or Ba(2+). DFT calculations predict three minima for the cation-salicylate complexes which differ in the mode of metal binding. In the first, the metal ion is coordinated by O atoms of the (neutral) phenol and carboxylate groups of salicylate. In the second, the cation is coordinated by phenoxide and (neutral) carboxylic acid groups. The third mode involves coordination by the carboxylate group alone. The infrared spectrum for the metal-salicylate complexes contains a number of absorptions between 1000 and 1650 cm(-1), and the best correlation between theoretical and experimental spectra is found for the structure that features coordination of the metal ion by phenoxide and the carbonyl O of the carboxylic acid group, consistent with the calculated energies for the respective species. Copyright © 2011 John Wiley & Sons, Ltd.
Nicolay, Amélie; Tilley, T Don
2018-05-31
Metal-metal cooperation is integral to the function of many enzymes and materials, and model complexes hold enormous potential for providing insights into the capabilities of analogous multimetallic cores. However, the selective synthesis of heterobimetallic complexes still presents a significant challenge, especially for systems that hold the metals in close proximity and feature open or reactive coordination sites for both metals. To address this issue, a rigid, naphthyridine-based dinucleating ligand featuring distinct binding environments was synthesized. This ligand enables the selective synthesis of a series of MIICuI bimetallic complexes (M = Mn, Fe, Co, Ni, Cu, Zn), in which each metal center exclusively occupies its preferred binding pocket, from simple chloride salts. The precision of this selectivity is evident from cyclic voltammetry, ESI-MS and anomalous X-ray diffraction measurements. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Discovery and development of microporous metal carboxylates.
Mori, Wasuke; Sato, Tomohiko; Kato, Chika Nozaki; Takei, Tohru; Ohmura, Tetsushi
2005-01-01
We have found a form of copper(II) terephthalate that occluded an enormous amount of gases such as N2, Ar, O2, and Xe. Copper(II) terephthalate is the first metal complex found capable of adsorbing gases. This complex has opened a new field of adsorbent chemistry and is recognized as a leader in the construction of microporous metal complexes. In extending the route for the synthesis of microporous complexes, we obtained many new porous materials that are widely recognized as useful materials for applications in areas such as gas storage, molecular sieves, catalysis, inclusion complexes, and surface science. 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc.
Mechanics of metal-catecholate complexes: The roles of coordination state and metal types
Xu, Zhiping
2013-01-01
There have been growing evidences for the critical roles of metal-coordination complexes in defining structural and mechanical properties of unmineralized biological materials, including hardness, toughness, and abrasion resistance. Their dynamic (e.g. pH-responsive, self-healable, reversible) properties inspire promising applications of synthetic materials following this concept. However, mechanics of these coordination crosslinks, which lays the ground for predictive and rational material design, has not yet been well addressed. Here we present a first-principles study of representative coordination complexes between metals and catechols. The results show that these crosslinks offer stiffness and strength near a covalent bond, which strongly depend on the coordination state and type of metals. This dependence is discussed by analyzing the nature of bonding between metals and catechols. The responsive mechanics of metal-coordination is further mapped from the single-molecule level to a networked material. The results presented here provide fundamental understanding and principles for material selection in metal-coordination-based applications. PMID:24107799
Carbon quantum dots and a method of making the same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zidan, Ragaiy; Teprovich, Joseph A.; Washington, Aaron L.
The present invention is directed to a method of preparing a carbon quantum dot. The carbon quantum dot can be prepared from a carbon precursor, such as a fullerene, and a complex metal hydride. The present invention also discloses a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride and a polymer containing a carbon quantum dot made by reacting a carbon precursor with a complex metal hydride.
Liu, Shu-Juan; Chen, Yang; Xu, Wen-Juan; Zhao, Qiang; Huang, Wei
2012-04-13
Polymers containing transition-metal complexes exhibit excellent optical and electronic properties, which are different from those of polymers with a pure organic skeleton and combine the advantages of both polymers and metal complexes. Hence, research about this class of polymers has attracted more and more interest in recent years. Up to now, a number of novel polymers containing transition-metal complexes have been exploited, and significant advances in their optical and electronic applications have been achieved. In this article, we summarize some new research trends in the applications of this important class of optoelectronic polymers, such as chemo/biosensors, electronic memory devices and photovoltaic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DNA binding of supramolecular mixed-metal complexes
NASA Astrophysics Data System (ADS)
Swavey, Shawn; Williams, Rodd L.; Fang, Zhenglai; Milkevitch, Matthew; Brewer, Karen J.
2001-10-01
The high binding affinity of cisplatin toward DNA has led to its popularity as an anticancer agent. Due to cumulative drug resistance and toxic side effects, researchers are exploring related metallodrugs. Our approach involves the use of supramolecular complexes. These mixed-metal complexes incorporate a reactive platinum moiety bridged by a polyazine ligand to a light absorbing metal-based chromophore. The presence of the light absorber allows excitation of these systems, opening up the possibility of photoactivation. The use of a supramolecular design allows components of the assembly to be varied to enhance device function and light absorbing properties. Aspects of our molecular design process and results on the DNA binding properties for a number of these mixed-metal complexes will be discussed.
Photodissociation Studies of Metal-Containing Clusters and Complexes
NASA Astrophysics Data System (ADS)
Pilgrim, Jeffrey Scott
1995-01-01
There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met-cars formed from second-row transition metal atoms. Larger metal-carbon clusters are found to be face-centered-cubic nanocrystals. Photodissociation of these nanocrystals causes fragmentation into smaller nanocrystals. In addition, nanocrystals also dissociatively rearrange into the met -car structure. Two of the metal-carbon nanocrystals ( rm Ti_{14}C_{13 }^+ and rm V_{14 }C_{13}^+) fragment into the met-car with a trapped carbon atom.
Schenkeveld, W D C; Kimber, R L; Walter, M; Oburger, E; Puschenreiter, M; Kraemer, S M
2017-02-01
The efficiency of chelating ligands in mobilizing metals from soils and sediments is generally examined under conditions remote from those under which they are exuded or applied in the field. This may lead to incorrect estimations of the mobilizing efficiency. The aim of this study was to establish the influence of the soil solution ratio (SSR) and pre-equilibration with electrolyte solution on metal mobilization and metal displacement. For this purpose a series of interaction experiments with a calcareous clay soil and a biogenic chelating agent, the phytosiderophore 2'-deoxymugineic acid (DMA) were carried out. For a fixed ligand concentration, the SSR had a strong influence on metal mobilization and displacement. Metal complexation was faster at higher SSR. Reactive pools of metals that were predominantly mobilized at SSR 6 (in this case Cu), became depleted at SSR 0.1, whereas metals that were marginally mobilized at SSR 6, were dominantly mobilized at SSR 0.1 (in this case Fe), because of large soil reactive pools. For a fixed "amount of ligand"-to-"amount of soil"-ratio, metal complexation scaled linearly with the SSR. The efficiency of ligands in mobilizing metals under field conditions can be predicted with batch experiments, as long as the ligand-to-soil-ratio is matched. In most previously reported studies this criterion was not met. Equivalent metal-complex concentrations under field conditions can be back-calculated using adsorption isotherms for the respective metal-complexes. Drying and dry storage created labile pools of Fe, Cu and Zn, which were rapidly mobilized upon addition of DMA solution to dry soil. Pre-equilibration decreased these labile pools, leading to smaller concentrations of these metals during initial mobilization, but did not reduce the lag time between ligand addition and onset of microbial degradation of the metal-complexes. Hence SSR and pre-equilibration should be carefully considered when testing the metal mobilizing efficiency of chelating ligands. Copyright © 2016. Published by Elsevier B.V.
Trace metal speciation in natural waters: Computational vs. analytical
Nordstrom, D. Kirk
1996-01-01
Improvements in the field sampling, preservation, and determination of trace metals in natural waters have made many analyses more reliable and less affected by contamination. The speciation of trace metals, however, remains controversial. Chemical model speciation calculations do not necessarily agree with voltammetric, ion exchange, potentiometric, or other analytical speciation techniques. When metal-organic complexes are important, model calculations are not usually helpful and on-site analytical separations are essential. Many analytical speciation techniques have serious interferences and only work well for a limited subset of water types and compositions. A combined approach to the evaluation of speciation could greatly reduce these uncertainties. The approach proposed would be to (1) compare and contrast different analytical techniques with each other and with computed speciation, (2) compare computed trace metal speciation with reliable measurements of solubility, potentiometry, and mean activity coefficients, and (3) compare different model calculations with each other for the same set of water analyses, especially where supplementary data on speciation already exist. A comparison and critique of analytical with chemical model speciation for a range of water samples would delineate the useful range and limitations of these different approaches to speciation. Both model calculations and analytical determinations have useful and different constraints on the range of possible speciation such that they can provide much better insight into speciation when used together. Major discrepancies in the thermodynamic databases of speciation models can be evaluated with the aid of analytical speciation, and when the thermodynamic models are highly consistent and reliable, the sources of error in the analytical speciation can be evaluated. Major thermodynamic discrepancies also can be evaluated by simulating solubility and activity coefficient data and testing various chemical models for their range of applicability. Until a comparative approach such as this is taken, trace metal speciation will remain highly uncertain and controversial.
Plastic scintillators with high loading of one or more metal carboxylates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherepy, Nerine; Sanner, Robert Dean
According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.
A new metalation complex for organic synthesis and polymerization reactions
NASA Technical Reports Server (NTRS)
Hirshfield, S. M.
1971-01-01
Organometallic complex of N,N,N',N' tetramethyl ethylene diamine /TMEDA/ and lithium acts as metalation intermediate for controlled systhesis of aromatic organic compounds and polymer formation. Complex of TMEDA and lithium aids in preparation of various organic lithium compounds.
Duval, Jérôme F L
2016-04-14
A mechanistic understanding of the processes governing metal toxicity to microorganisms (bacteria, algae) calls for an adequate formulation of metal partitioning at biointerfaces during cell exposure. This includes the account of metal transport dynamics from bulk solution to biomembrane and the kinetics of metal internalisation, both potentially controlling the intracellular and surface metal fractions that originate cell growth inhibition. A theoretical rationale is developed here for such coupled toxicodynamics and interfacial metal partitioning dynamics under non-complexing medium conditions with integration of the defining cell electrostatic properties. The formalism explicitly considers intertwined metal adsorption at the biointerface, intracellular metal excretion, cell growth and metal depletion from bulk solution. The theory is derived under relevant steady-state metal transport conditions on the basis of coupled Nernst-Planck equation and continuous logistic equation modified to include metal-induced cell growth inhibition and cell size changes. Computational examples are discussed to identify limitations of the classical Biotic Ligand Model (BLM) in evaluating metal toxicity over time. In particular, BLM is shown to severely underestimate metal toxicity depending on cell exposure time, metal internalisation kinetics, cell surface electrostatics and initial cell density. Analytical expressions are provided for the interfacial metal concentration profiles in the limit where cell-growth is completely inhibited. A rigorous relationship between time-dependent cell density and metal concentrations at the biosurface and in bulk solution is further provided, which unifies previous equations formulated by Best and Duval under constant cell density and cell size conditions. The theory is sufficiently flexible to adapt to toxicity scenarios with involved cell survival-death processes.
Fluorescence lifetime evaluation of whole soils from the Amazon rainforest.
Nicolodelli, Gustavo; Tadini, Amanda Maria; Nogueira, Marcelo Saito; Pratavieira, Sebastião; Mounier, Stephane; Huaman, Jose Luis Clabel; Dos Santos, Cléber Hilário; Montes, Célia Regina; Milori, Débora Marcondes Bastos Pereira
2017-08-20
Time-resolved fluorescence spectroscopy (TRFS) is a new tool that can be used to investigate processes of interaction between metal ions and organic matter (OM) in soils, providing a specific analysis of the structure and dynamics of macromolecules. To the best of our knowledge, there are no studies in the literature reporting the use of this technique applied to whole/non-fractionated soil samples, making it a potential method for use in future studies. This work describes the use of TRFS to evaluate the fluorescence lifetimes of OM of whole soils from the Amazon region. Analysis was made of pellets of soils from an oxisol-spodosol system, collected in São Gabriel da Cachoeira (Amazonas, Brazil). The fluorescence lifetimes in the oxisol-spodosol system were attributed to two different fluorophores. One was related to complexation of an OM fraction with metals, resulting in a shorter fluorophore lifetime. A short fluorescence lifetime (2-12 ns) could be associated with simpler structures of the OM, while a long lifetime (19-66 ns) was associated with more complex OM structures. This new TRFS technique for analysis of the fluorescence lifetime in whole soil samples complies with the principles of green chemistry.
NASA Astrophysics Data System (ADS)
Hao, Likai; Guo, Yuan; Byrne, James M.; Zeitvogel, Fabian; Schmid, Gregor; Ingino, Pablo; Li, Jianli; Neu, Thomas R.; Swanner, Elizabeth D.; Kappler, Andreas; Obst, Martin
2016-05-01
Aggregates consisting of bacterial cells, extracellular polymeric substances (EPS) and Fe(III) minerals formed by Fe(II)-oxidizing bacteria are common at bulk or microscale chemical interfaces where Fe cycling occurs. The high sorption capacity and binding capacity of cells, EPS, and minerals controls the mobility and fate of heavy metals. However, it remains unclear to which of these component(s) the metals will bind in complex aggregates. To clarify this question, the present study focuses on 3D mapping of heavy metals sorbed to cells, glycoconjugates that comprise the majority of EPS constituents, and Fe(III) mineral aggregates formed by the phototrophic Fe(II)-oxidizing bacteria Rhodobacter ferrooxidans SW2 using confocal laser scanning microscopy (CLSM) in combination with metal- and glycoconjugates-specific fluorophores. The present study evaluated the influence of glycoconjugates, microbial cell surfaces, and (biogenic) Fe(III) minerals, and the availability of ferrous and ferric iron on heavy metal sorption. Analyses in this study provide detailed knowledge on the spatial distribution of metal ions in the aggregates at the sub-μm scale, which is essential to understand the underlying mechanisms of microbe-mineral-metal interactions. The heavy metals (Au3+, Cd2+, Cr3+, CrO42-, Cu2+, Hg2+, Ni2+, Pd2+, tributyltin (TBT) and Zn2+) were found mainly sorbed to cell surfaces, present within the glycoconjugates matrix, and bound to the mineral surfaces, but not incorporated into the biogenic Fe(III) minerals. Statistical analysis revealed that all ten heavy metals tested showed relatively similar sorption behavior that was affected by the presence of sorbed ferrous and ferric iron. Results in this study showed that in addition to the mineral surfaces, both bacterial cell surfaces and the glycoconjugates provided most of sorption sites for heavy metals. Simultaneously, ferrous and ferric iron ions competed with the heavy metals for sorption sites on the organic compounds. In summary, the information obtained by the present approach using a microbial model system provides important information to better understand the interactions between heavy metals and biofilms, and microbially formed Fe(III) minerals and heavy metals in complex natural environments.
Paxton, Avery B; Pickering, Emily A; Adler, Alyssa M; Taylor, J Christopher; Peterson, Charles H
2017-01-01
Structural complexity, a form of habitat heterogeneity, influences the structure and function of ecological communities, generally supporting increased species density, richness, and diversity. Recent research, however, suggests the most complex habitats may not harbor the highest density of individuals and number of species, especially in areas with elevated human influence. Understanding nuances in relationships between habitat heterogeneity and ecological communities is warranted to guide habitat-focused conservation and management efforts. We conducted fish and structural habitat surveys of thirty warm-temperate reefs on the southeastern US continental shelf to quantify how structural complexity influences fish communities. We found that intermediate complexity maximizes fish abundance on natural and artificial reefs, as well as species richness on natural reefs, challenging the current paradigm that abundance and other fish community metrics increase with increasing complexity. Naturally occurring rocky reefs of flat and complex morphologies supported equivalent abundance, biomass, species richness, and community composition of fishes. For flat and complex morphologies of rocky reefs to receive equal consideration as essential fish habitat (EFH), special attention should be given to detecting pavement type rocky reefs because their ephemeral nature makes them difficult to detect with typical seafloor mapping methods. Artificial reefs of intermediate complexity also maximized fish abundance, but human-made structures composed of low-lying concrete and metal ships differed in community types, with less complex, concrete structures supporting lower numbers of fishes classified largely as demersal species and metal ships protruding into the water column harboring higher numbers of fishes, including more pelagic species. Results of this study are essential to the process of evaluating habitat function provided by different types and shapes of reefs on the seafloor so that all EFH across a wide range of habitat complexity may be accurately identified and properly managed.
NASA Astrophysics Data System (ADS)
El-Samanody, El-Sayed A.; Polis, Magdy W.; Emara, Esam M.
2017-09-01
A new series of biologically active Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) complexes derived from the novel thiosemicarbazone ligand; (E)-N‧-(1-(4-aminophenyl)ethylidene)morpholine-4-carbothiohydrazide (HL) were synthesized. The mode of bonding of the ligand and the geometrical structures of its metal complexes were achieved by different analytical and spectral methods. The ligand coordinated with metal ions in a neutral bidentate fashion through the thione sulfur and azomethine nitrogen atoms. All metal complexes adopted octahedral geometry, except Cu(II) complexes (3, 6, 7) which have a square planar structure. The general thermal decomposition pathways of the ligand along with its metal complexes were explained. The thermal stability of the complexes is controlled by the number of outer and inner sphere water molecules, ionic radii and the steric hindrance. The activation thermodynamic parameters; (activation energy (E*), enthalpy of activation (ΔH*), entropy of activation (ΔS*) and Gibbs free energy (ΔG*)) along with order of reaction (n) were estimated from DTG curves. The ESR spectra of Cu(II) complexes indicated that (dx2-y2)1 is the ground state with covalence character of metal-ligand bonds. The molluscicidal and biochemical effects of the ligand and its Ni(II); Cu(II) complexes (2; 3, 5, 7) along with their combinations with metaldehyde were screened in vitro on the mucous gland of Eobania vermiculata. The tested compounds exhibited a significant toxicity against the tested animals and have almost the same toxic effect of metaldehyde which increases the mucous secretion of the snails and leads to death.
Platinated DNA oligonucleotides: new probes forming ultrastable conjugates with graphene oxide
NASA Astrophysics Data System (ADS)
Wang, Feng; Liu, Juewen
2014-05-01
Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials.Metal containing polymers have expanded the property of polymers by involving covalently associated metal complexes. DNA is a special block copolymer. While metal ions are known to influence DNA, little is explored on its polymer property when strong metal complexes are associated. In this work, we study cisplatin modified DNA as a new polymer and probe. Out of the complexes formed between cisplatin-A15, HAuCl4-A15, Hg2+-T15 and Ag+-C15, only the cisplatin adduct is stable under the denaturing gel electrophoresis condition. Each Pt-nucleobase bond gives a positive charge and thus makes DNA a zwitterionic polymer. This allows ultrafast adsorption of DNA by graphene oxide (GO) and the adsorbed complex is highly stable. Non-specific DNA, protein, surfactants and thiolated compounds cannot displace platinated DNA from GO, while non-modified DNA is easily displaced in most cases. The stable GO/DNA conjugate is further tested for surface hybridization. This is the first demonstration of using metallated DNA as a polymeric material for interfacing with nanoscale materials. Electronic supplementary information (ESI) available: Methods, additional gels, kinetics, mass spectrum. See DOI: 10.1039/c4nr00867g
Hedberg, Yolanda; Hedberg, Jonas; Liu, Yi; Wallinder, Inger Odnevall
2011-12-01
Iron, chromium, nickel, and manganese released from gas-atomized AISI 316L stainless steel powders (sized <45 and <4 μm) were investigated in artificial lysosomal fluid (ALF, pH 4.5) and in solutions of its individual inorganic and organic components to determine its most aggressive component, elucidate synergistic effects, and assess release mechanisms, in dependence of surface changes using atomic absorption spectroscopy, Raman, XPS, and voltammetry. Complexation is the main reason for metal release from 316L particles immersed in ALF. Iron was mainly released, while manganese was preferentially released as a consequence of the reduction of manganese oxide on the surface. These processes resulted in highly complexing media in a partial oxidation of trivalent chromium to hexavalent chromium on the surface. The extent of metal release was partially controlled by surface properties (e.g., availability of elements on the surface and structure of the outermost surface) and partially by the complexation capacity of the different metals with the complexing agents of the different media. In general, compared to the coarse powder (<45 μm), the fine (<4 μm) powder displayed significantly higher released amounts of metals per surface area, increased with increased solution complexation capacity, while less amounts of metals were released into non-complexing solutions. Due to the ferritic structure of lower solubility for nickel of the fine powder, more nickel was released into all solutions compared with the coarser powder.
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Sharshar, T.; Elsabawy, Khaled M.; Heiba, Zein K.
2013-09-01
Metal aspirinate complexes, M2(Asp)4, where M is Mg(II), Ca(II), Sr(II) or Ba(II) are formed by refluxed of aspirin (Asp) with divalent non-transition metal ions of group (II) and characterized by elemental analysis and spectroscopic measurements (infrared, electronic, 1H NMR, Raman, X-ray powder diffraction and scanning electron microscopy). Elemental analysis of the chelates suggests the stoichiometry is 1:2 (metal:ligand). Infrared spectra of the complexes agree with the coordination to the central metal atom through three donation sites of two oxygen atoms of bridge bidentate carboxylate group and oxygen atom of sbnd Cdbnd O of acetyl group. Infrared spectra coupled with the results of elemental analyzes suggested a distorted octahedral structure for the M(II) aspirinate complexes. Gamma irradiation was tested as a method for stabilization of aspirin as well as their complexes. The effect of gamma irradiation, with dose of 80 Gy, on the properties of aspirinate complexes was studied. The aspirinate chelates have been screened for their in vitro antibacterial activity against four bacteria, gram-positive (Bacillus subtilis and Staphylococcus aureus) and gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two strains of fungus (Aspergillus flavus and Candida albicans). The metal chelates were shown to possess more antibacterial activity than the free aspirin chelate.
NASA Astrophysics Data System (ADS)
Hassan, Walid M. I.; Badawy, M. A.; Mohamed, Gehad G.; Moustafa, H.; Elramly, Salwa
2013-07-01
The binuclear complexes of 2-(3-amino-2-hydrazono-4-oxothiazolidin-5-yl) acetic acid ligand (HL) with Fe(III), Co(II), Ni(II), Cu(II) and Zn(II) ions were prepared and their stoichiometry was determined by elemental analysis. The stereochemistry of the studied series of metal complexes was established by analyzing their infrared, 1H NMR spectra and the magnetic moment measurements. According to the elemental analysis data, the complexes were found to have the formulae [Fe2L(H2O)8]Cl5 and [M2L(H2O)8]Cl3 (M = Co(II), Ni(II), Cu(II) and Zn(II)). The present analyses demonstrate that all metal ions coordinated to the ligand via O(9), O(11), N(16) and N(18) atoms. Thermal decomposition studies of the ligand-metal complexes have been performed to verify the status of water molecules present in these metal complexes and their general decomposition pattern. Density Functional Theory (DFT) calculations at the B3LYP/6-31G* level of theory have been carried out to investigate the equilibrium geometry of the ligand and complexes. Moreover, charge density distribution, extent of distortion from regular geometry, dipole moment and orientation have been performed and discussed.
Properties- and applications of quasicrystals and complex metallic alloys.
Dubois, Jean-Marie
2012-10-21
This article aims at an account of what is known about the potential for applications of quasicrystals and related compounds, the so-called family of Complex Metallic Alloys (CMAs‡). Attention is focused at aluminium-based CMAs, which comprise a large number of crystalline compounds and quasicrystals made of aluminium alloyed with transition metals (like Fe or Cu) or normal metals like Mg. Depending on composition, the structural complexity varies from a few atoms per unit cell up to thousands of atoms. Quasicrystals appear then as CMAs of ultimate complexity and exhibit a lattice that shows no periodicity anymore in the usual 3-dimensional space. Properties change dramatically with lattice complexity and turn the metal-type behaviour of simple Al-based crystals into a far more complex behaviour, with a fingerprint of semi-conductors that may be exploited in various applications, potential or realised. An account of the ones known to the author is given in the light of the relevant properties, namely light absorption, reduced adhesion and friction, heat insulation, reinforcement of composites for mechanical devices, and few more exotic ones. The role played by the search for applications of quasicrystals in the development of the field is briefly addressed in the concluding section.
Metal-metal bond lengths in complexes of transition metals.
Pauling, L
1976-12-01
In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths.
Young, Tessa R; Wedd, Anthony G; Xiao, Zhiguang
2018-01-24
The extracellular domain E2 of the amyloid precursor protein (APP) features a His-rich metal-binding site (denoted as the M1 site). In conjunction with surrounding basic residues, the site participates in interactions with components of the extracellular matrix including heparins, a class of negatively charged polysaccharide molecules of varying length. This work studied the chemistry of Cu(i) binding to APP E2 with the probe ligands Bcs, Bca, Fz and Fs. APP E2 forms a stable Cu(i)-mediated ternary complex with each of these anionic ligands. The complex with Bca was selected for isolation and characterization and was demonstrated, by native ESI-MS analysis, to have the stoichiometry E2 : Cu(i) : Bca = 1 : 1 : 1. Formation of these ternary complexes is specific for the APP E2 domain and requires Cu(i) coordination to the M1 site. Mutation of the M1 site was consistent with the His ligands being part of the E2 ligand set. It is likely that interactions between the negatively charged probe ligands and a positively charged patch on the surface of APP E2 are one aspect of the generation of the stable ternary complexes. Their formation prevented meaningful quantification of the affinity of Cu(i) binding to the M1 site with these probe ligands. However, the ternary complexes are disrupted by heparin, allowing reliable determination of a picomolar Cu(i) affinity for the E2/heparin complex with the Fz or Bca probe ligands. This is the first documented example of the formation of stable ternary complexes between a Cu(i) binding protein and a probe ligand. The ready disruption of the complexes by heparin identified clear 'tell-tale' signs for diagnosis of ternary complex formation and allowed a systematic review of conditions and criteria for reliable determination of affinities for metal binding via ligand competition. This study also provides new insights into a potential correlation of APP functions regulated by copper binding and heparin interaction.
Peng, Deqian; Du, Gaixia; Zhang, Pengfei; Yao, Bo; Li, Xiaofang; Zhang, Shaowen
2016-06-01
The polymerization of ocimene has been first achieved by half-sandwich rare-earth metal dialkyl complexes in combination with activator and Al(i) Bu3 . The regio- and stereoselectivity in the ocimene polymerization can be controlled by tuning the cyclopentadienyl ligand and the central metal of the complex. The chiral cyclopentadienyl-ligated Sc complex 1 prepares syndiotactic cis-1,4-polyocimene (cis-1,4-selectivity up to 100%, rrrr = 100%), while the corresponding Lu, Y, and Dy complexes 2-4 and the achiral pentamethylcyclopentadienyl Sc, Lu, and Y complexes 5-7 afford isotactic trans-1,2-polyocimenes (trans-1,2-selectivity up to 100%, mm = 100%). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Activation of carbon-hydrogen bonds and dihydrogen by 1,2-CH-addition across metal-heteroatom bonds.
Webb, Joanna R; Burgess, Samantha A; Cundari, Thomas R; Gunnoe, T Brent
2013-12-28
The controlled conversion of hydrocarbons to functionalized products requires selective C-H bond cleavage. This perspective provides an overview of 1,2-CH-addition of hydrocarbons across d(0) transition metal imido complexes and compares and contrasts these to examples of analogous reactions that involve later transition metal amide, hydroxide and alkoxide complexes with d(6) and d(8) metals.
Handheld Delivery System for Modified Boron-Type Fire Extinguishment Agent
1993-11-01
was to develop and test a handheld portable delivery system for use with the modified boron-type fire extinguishing agent for metal fires . B...BACKGROUND A need exists for an extinguishing agent and accompanying delivery system that are effective against complex geometry metal fires . A modified...agent and its delivery system have proven effective against complex geometry metal fires containing up to 200 pounds of magnesium metal. Further
Method of stripping metals from organic solvents
Todd, Terry A [Aberdeen, ID; Law, Jack D [Pocatello, ID; Herbst, R Scott [Idaho Falls, ID; Romanovskiy, Valeriy N [St. Petersburg, RU; Smirnov, Igor V [St.-Petersburg, RU; Babain, Vasily A [St-Petersburg, RU; Esimantovski, Vyatcheslav M [St-Petersburg, RU
2009-02-24
A new method to strip metals from organic solvents in a manner that allows for the recycle of the stripping agent. The method utilizes carbonate solutions of organic amines with complexants, in low concentrations, to strip metals from organic solvents. The method allows for the distillation and reuse of organic amines. The concentrated metal/complexant fraction from distillation is more amenable to immobilization than solutions resulting from current practice.
NASA Astrophysics Data System (ADS)
Mehta, Jignasu P.; Bhatt, Prashant N.; Misra, Sudhindra N.
2003-02-01
The coordination chemistry of glutathione (reduced) GSH is of great importance as it acts as an excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. We have studied two chemically dissimilar metal ions viz. Nd (III) being hard metal ion, which will prefer hard donor sites like carboxylic groups, and Zn (II) the soft metal ion more suited to peptide-NH and sulfhydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic complexation of GSH with Nd (III) and Zn (II) has been explored in aqueous and aquated organic solvents. The changes in the oscillator strengths of different 4f-4f bands and Judd-Ofelt intensity (Tλ) parameters determined experimentally is being used to investigate the complexation of GSH. The in vivo intracellular complexation of GSH with Ca (II) in presence of Zn (II) ion has been mimicked through Nd (III)-GSH-Zn (II) absorption spectral studies in vitro.
Mahmoud, W H; Mahmoud, N F; Mohamed, G G; El-Sonbati, A Z; El-Bindary, A A
2015-01-01
The coordination behavior of a series of transition metal ions named Cr(III), Fe(III), Mn(II), Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) with a mono negative tridentate guaifenesin ligand (GFS) (OOO donation sites) and 1,10-phenanthroline (Phen) is reported. The metal complexes are characterized based on elemental analyses, IR, (1)H NMR, solid reflectance, magnetic moment, molar conductance, UV-vis spectral studies, mass spectroscopy, ESR, XRD and thermal analysis (TG and DTG). The ternary metal complexes were found to have the formulae of [M(GFS)(Phen)Cl]Cl·nH2O (M=Cr(III) (n=1) and Fe(III) (n=0)), [M(GFS)(Phen)Cl]·nH2O (M=Mn(II) (n=0), Zn(II) (n=0) and Cu(II) (n=3)) and [M(GFS)(Phen)(H2O)]Cl·nH2O (M=Co(II) (n=0), Ni(II) (n=0) and Cd(II) (n=4)). All the chelates are found to have octahedral geometrical structures. The ligand and its ternary chelates are subjected to thermal analyses (TG and DTG). The GFS ligand, in comparison to its ternary metal complexes also was screened for their antibacterial activity on gram positive bacteria (Bacillus subtilis and Staphylococcus aureus), gram negative bacteria (Escherichia coli and Neisseria gonorrhoeae) and for in vitro antifungal activity against (Candida albicans). The activity data show that the metal complexes have antibacterial and antifungal activity more than the parent GFS ligand. The complexes were also screened for its in vitro anticancer activity against the Breast cell line (MFC7) and the results obtained show that they exhibit a considerable anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Shasha; Zhao, Xiuming; Li, Yuanzuo; Zhao, Xiaohong; Chen, Maodu
2009-06-01
Density functional theory (DFT) and time-dependent DFT calculations have been performed to investigate the Raman scattering spectra of metal-molecule complex and metal-molecule-metal junction architectures interconnected with 4-aminothiophenol (PATP) molecule. The simulated profiles of normal Raman scattering (NRS) spectra for the two complexes (Ag2-PATP and PATP-Au2) and the two junctions (Ag2-PATP-Au2 and Au2-PATP-Ag2) are similar to each other, but exhibit obviously different Raman intensities. Due to the lager static polarizabilities of the two junctions, which directly influence the ground state chemical enhancement in NRS spectra, the calculated normal Raman intensities of them are stronger than those of two complexes by the factor of 102. We calculate preresonance Raman scattering (RRS) spectra with incident light at 1064 nm, which is much lower than the S1 electronic transition energy of complexes and junctions. Ag2-PATP-Au2 and Au2-PATP-Ag2 junctions yield higher Raman intensities than those of Ag2-PATP and PATP-Au2 complexes, especially for b2 modes. This effect is mainly attributed to charge transfer (CT) between the metal gap and the PAPT molecule which results in the occurrence of CT resonance enhancement. The calculated pre-RRS spectra strongly depend on the electronic transition state produced by new structures. With excitation at 514.5 nm, the calculated pre-RRS spectra of two complexes and two junctions are stronger than those of with excitation at 1064 nm. A charge difference densities methodology has been used to visually describe chemical enhancement mechanism of RRS spectrum. This methodology aims at visualizing intermolecular CT which provides direct evidence of the Herzberg-Teller mechanism.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Pei-Wei; Fox, M.A.
1994-06-22
Electrochemical, EPR, and spectroelectrochemical methods have been used to probe electronic coupling through a 1,2,4,5-tetrakis(diphenylphosphino)benzene bridging ligand connecting metal centers in several Ni-, Pd-, and Pt-containing dimetallic complexes. These dimetalated complexes showed weak intervalence charge transfer (IT) bands and slightly shifted redox potentials in comparison with their monometallic models. A Marcus-Hush analysis of the energies of the IT bands for the electrochemically generated mixed-valence heterodimetallic complexes (Ni{sup o}-Pd{sup II} and Ni{sup o}-Pt{sup II}, respectively) established the magnitude of intermetallic electronic coupling. The weak thermal coupling observed in these dimetalated complexes is consistent with the very low conductivities (10{sup {minus}8}-10{sup {minus}10}{omega}{supmore » -1} cm{sup {minus}1}) observed in the polymeric analogs of these complexes, namely, the newly prepared metal coordination polymers (M = Ni{sup II}, Pd{sup II}, Pt{sup II}) with 1,2,4,5-tetrakis(diphenylphosphino)benzene.« less
NASA Astrophysics Data System (ADS)
Hosny, Nasser M.; Hassan, Nader Y.; Mahmoud, Heba M.; Abdel-Rhman, Mohamed H.
2018-03-01
The ligand 2-isonicotinoyl-N-phenylhydrazine-1-carboxamide (H3L) and its metal complexes with Co(II), Ni(II), Cu(II) and Zn(II) acetates have been synthesized. The isolated compounds have been characterized by elemental analyses, FT-IR, 1H NMR, 13C NMR, ESR, mass, electronic spectra, electrical conductivity, effective magnetic moments and thermal analyses. The free organic ligand exists in the keto form, but in the metal complexes, it coordinates in the enol form. Four coordinated species were suggested for all the isolated metal complexes. The measured optical band gap values confirmed the presence of direct electronic transition and the semi-conductivity of the compounds. The ligand and its Zn(II) complex were examined as cytotoxic agent against HCT-116 and HePG-2. The ligand showed very strong cytotoxic effect against HePG-2, but moderate cytotoxicity against HCT-116. Zn(II) complex showed weak cytotoxicity against the two cell lines.
NASA Astrophysics Data System (ADS)
Liu, Boyang; Shao, Yingfeng; Xiang, Xin; Zhang, Fuhua; Yan, Shengchang; Li, Wenge
2017-08-01
Various carbon encapsulated nanocrystals, including MnS and MnO, Cr2O3, MoO2, Fe7S8 and Fe3O4, and ZrO2, are prepared in one step and in situ by a simple and highly efficient synthesis approach. The nanocrystals have an equiaxed morphology and a median size smaller than 30 nm. Tens and hundreds of these nanocrystals are entirely encapsulated by a wormlike amorphous carbon shell. The formation of a core-shell structure depends on the strongly exothermic reaction of metal π-complexes with ammonium persulfate in an autoclave at below 200 °C. During the oxidation process, the generated significant amounts of heat will destroy the molecular structure of the metal π-complex and cleave the ligands into small carbon fragments, which further transform into an amorphous carbon shell. The central metal atoms are oxidized to metal oxide/sulfide nanocrystals. The formation of a core-shell structure is independent of the numbers of ligands and carbon atoms as well as the metal types, implying that any metal π-complex can serve as a precursor and that various carbon encapsulated nanocrystals can be synthesized by this method.
NASA Astrophysics Data System (ADS)
Singh, Th. David; Sumitra, Ch.; Yaiphaba, N.; Devi, H. Debecca; Devi, M. Indira; Singh, N. Rajmuhon
2005-04-01
The coordination chemistry of glutathione reduced (GSH) is of great importance as it acts as excellent model system for the binding of metal ions. The GSH complexation with metal ions is involved in the toxicology of different metal ions. Its coordination behaviour for soft metal ions and hard metal ions is found different because of the structure of GSH and its different potential binding sites. In our work we have studied two chemically dissimilar metal ions viz. Pr(III), which prefer hard donor site like carboxylic groups and Zn(II) the soft metal ion which prefer peptide-NH and sulphydryl groups. The absorption difference and comparative absorption spectroscopy involving 4f-4f transitions of the heterobimetallic Complexation of GSH with Pr(III) and Zn(II) has been explored in aqueous and aquated organic solvents. The variation in the energy parameters like Slater-Condon ( F K), Racah ( E K) and Lande ( ξ4f), Nephelauxetic parameter ( β) and bonding parameter ( b1/2) are computed to explain the nature of complexation.
Sundararajan, M L; Jeyakumar, T; Anandakumaran, J; Karpanai Selvan, B
2014-10-15
Metal complexes of Zn(II), Cd(II), Ni(II), Cu(II), Fe(III), Co(II), Mn(II) Hg(II), and Ag(I) have been synthesized from Schiff base ligand, prepared by the condensation of 3,4-(methylenedioxy)aniline and 5-bromo salicylaldehyde. All the compounds have been characterized by using elemental analysis, molar conductance, FT-IR, UV-Vis, (1)H NMR, (13)C NMR, mass spectra, powder XRD and thermal analysis (TG/DTA) technique. The elemental analysis suggests the stoichiometry to be 1:1 (metal:ligand). The FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectral data suggest that the ligand coordinate to the metal atom by imino nitrogen and phenolic oxygen as bidentate manner. Mass spectral data further support the molecular mass of the compounds and their structure. Powder XRD indicates the crystalline state and morphology of the ligand and its metal complexes. The thermal behaviors of the complexes prove the presence of lattice as well as coordinated water molecules in the complexes. Melting point supports the thermal stability of all the compounds. The in vitro antimicrobial effects of the synthesized compounds were tested against five bacterial and three fungal species by well diffusion method. Antioxidant activities have also been performed for all the compounds. Metal complexes show more biological activity than the Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemistry in acetone complexes of metal dications: a remarkable ethylene production pathway.
Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung Soo; Shvartsburg, Alexandre A
2007-06-07
Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of representative divalent metals (Ca, Mn, Co, Ni, and Cu), comparing the results of collision-induced dissociation with the predictions of density functional theory. As for other solvated dications, channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, like in DMSO and acetonitrile complexes. Of primary interest is the unanticipated neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca and Mn. We focus on understanding that process in the context of competing dissociation pathways, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving two intermediates. These results suggest that chemistry in microsolvated multiply charged ions may still hold major surprises.
Tabrizi, Leila; McArdle, Patrick; Erxleben, Andrea; Chiniforoshan, Hossein
2015-10-20
Metal complexes of the type [Ni(LC)2(X)2], 1 and 2, [Co(LC)2(X)2], 3 and 4 (LC: lidocaine, X = dca (dicyanamide), 1 and 3, X = NCS(-), 2 and 4) have been synthesized and characterized. The geometries of 1-4 were confirmed by single crystal X-ray crystallography. The complexes are water soluble and stable in aqueous solution. The interaction of 1-4 with calf thymus DNA (CT DNA) and bovine serum albumin (BSA) was investigated using UV-visible and fluorescence spectrophotometric methods. A gel electrophoresis assay demonstrated that the complexes cleave pUC19 plasmid DNA. The in vitro free radical scavenging, antimicrobial activity and cytotoxic potential of all the complexes were examined. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Armstrong, David R; Garden, Jennifer A; Kennedy, Alan R; Leenhouts, Sarah M; Mulvey, Robert E; O'Keefe, Philip; O'Hara, Charles T; Steven, Alan
2013-01-01
Most recent advances in metallation chemistry have centred on the bulky secondary amide 2,2,6,6-tetramethylpiperidide (TMP) within mixed metal, often ate, compositions. However, the precursor amine TMP(H) is rather expensive so a cheaper substitute would be welcome. Thus this study was aimed towards developing cheaper non-TMP based mixed-metal bases and, as cis-2,6-dimethylpiperidide (cis-DMP) was chosen as the alternative amide, developing cis-DMP zincate chemistry which has received meagre attention compared to that of its methyl-rich counterpart TMP. A new lithium diethylzincate, [(TMEDA)LiZn(cis-DMP)Et2] (TMEDA=N,N,N′,N′-tetramethylethylenediamine) has been synthesised by co-complexation of Li(cis-DMP), Et2Zn and TMEDA, and characterised by NMR (including DOSY) spectroscopy and X-ray crystallography, which revealed a dinuclear contact ion pair arrangement. By using N,N-diisopropylbenzamide as a test aromatic substrate, the deprotonative reactivity of [(TMEDA)LiZn(cis-DMP)Et2] has been probed and contrasted with that of the known but previously uninvestigated di-tert-butylzincate, [(TMEDA)LiZn(cis-DMP)tBu2]. The former was found to be the superior base (for example, producing the ortho-deuteriated product in respective yields of 78 % and 48 % following D2O quenching of zincated benzamide intermediates). An 88 % yield of 2-iodo-N,N-diisopropylbenzamide was obtained on reaction of two equivalents of the diethylzincate with the benzamide followed by iodination. Comparisons are also drawn using 1,1,1,3,3,3-hexamethyldisilazide (HMDS), diisopropylamide and TMP as the amide component in the lithium amide, Et2Zn and TMEDA system. Under certain conditions, the cis-DMP base system was found to give improved results in comparison to HMDS and diisopropylamide (DA), and comparable results to a TMP system. Two novel complexes isolated from reactions of the di-tert-butylzincate and crystallographically characterised, namely the pre-metallation complex [{(iPr)2N(Ph)C=O}LiZn(cis-DMP)tBu2] and the post-metallation complex [(TMEDA)Li(cis-DMP){2-[1-C(=O)N(iPr)2]C6H4}Zn(tBu)], shed valuable light on the structures and mechanisms involved in these alkali-metal-mediated zincation reactions. Aspects of these reactions are also modelled by DFT calculations. PMID:23955639
Determination of natural organic matter and iron binding capacity in fen samples
NASA Astrophysics Data System (ADS)
Kügler, Stefan; Cooper, Rebecca E.; Frieder Mohr, Jan; Wichard, Thomas; Küsel, Kirsten
2017-04-01
Natural organic matter (NOM) plays an important role in ecosystem processes such as soil carbon stabilization, nutrient availability and metal complexation. Iron-NOM-complexes, for example, are known to increase the solubility and, as a result, the bioavailability of iron in natural environments leading to several effects on the microbial community. Due to the various functions of NOM in natural environments, there is a high level of interest in the characterization of the molecular composition. The complexity of NOM presents a significant challenge in the elucidation of its composition. However, the development and utilization of high resolution mass spectrometry (HR-MS) as a tool to detect single compounds in complex samples has spearheaded the effort to elucidate the composition of NOM. Over the past years, the accuracy of ion cyclotron- or Orbitrap mass spectrometers has increased dramatically resulting in the possibility to obtain a mass differentiation of the large number of compounds in NOM. Together these tools provide significant and powerful insight into the molecular composition of NOM. In the current study, we aim to understand abiotic and biotic interactions between NOM and metals, such as iron, found in the Schlöppnerbrunnen fen (Fichtelgebirge, Germany) and how these interactions impact the microbial consortia. We characterized the dissolved organic matter (DOM) as well as basic chemical parameters in the iron-rich (up to 20 mg (g wt peat)-1), slightly acidic (pH 4.8) fen to gain more information about DOM-metal interactions. This minerotrophic peatland connected to the groundwater has received Fe(II) released from the surrounding soils in the Lehstenbach catchment. Absorption spectroscopy (AAS), differential pulse polarography (DPP) and high resolution electrospray ionization mass spectrometry (HR-ESI-Orbitrap-MS) was applied to characterize the molecular composition of DOM in the peat water extract (PWE). We identified typical patterns for DOM illustrated by van Krevelen plots, which indicate the presence of different substance classes including condensed aromatics, lignins and tannins known to complex iron. Our results indicate a variety of potential Fe-DOM-complexes present in the PWE samples when iron is incorporated into the elemental composition search. Using DPP we determine the complexation capacity of iron in the natural matrix of the fen along with the identification of ligands in order to estimate the iron bioavailability for bacteria. As the microbial redox system of the fen is impacted by other metals in the environment, we perform comprehensive analysis of the entirety of metal ions and concentrations in the water samples. Dialysis chambers are currently installed in the iron-rich fen from which pore water samples will be collected at 1 cm increments between 0-20 cm depth to determine the depth profiles of Fe(II)- and Fe(III)-concentration and evaluate the influence of the depth profiles on the interplay between microorganism comprising the natural microbial redox system of the fen. We have shown that metal-DOM-pH interactions affect the bioavailable metal concentration in fen water systems. This information will pave the way for a better understanding of the bacterial recruitment of trace elements and microbial redox reactions.
Infrared Spectroscopy of Metal Ion Complexes: Models for Metal Ligand Interactions and Solvation
NASA Astrophysics Data System (ADS)
Duncan, Michael
2006-03-01
Weakly bound complexes of the form M^+-Lx (M=Fe, Ni, Co, etc.; L=CO2, C2H2, H2O, benzene, N2) are prepared in supersonic molecular beams by laser vaporization in a pulsed-nozzle cluster source. These species are mass analyzed and size-selected in a reflectron time-of-flight mass spectrometer. Clusters are photodissociated at infrared wavelengths with a Nd:YAG pumped infrared optical parametric oscillator/amplifier (OPO/OPA) laser or with a tunable infrared free-electron laser. M^+-(CO2)x complexes absorb near the free CO2 asymmetric stretch near 2349 cm-1 but with an interesting size dependent variation in the resonances. Small clusters have blue-shifted resonances, while larger complexes have additional bands due to surface CO2 molecules not attached to the metal. M^+(C2H2)n complexes absorb near the C-H stretches in acetylene, but resonances in metal complexes are red-shifted with repect to the isolated molecule. Ni^+ and Co^+ complexes with acetylene undergo intracluster cyclization reactions to form cyclobutadiene. Transition metal water complexes are studied in the O-H stretch region, and partial rotational structure can be measured. M^+(benzene) and M^+(benzene)2 ions (M=V, Ti, Al) represent half-sandwich and sandwich species, whose spectra are measured near the free benzene modes. These new IR spectra and their assignments will be discussed as well as other new IR spectra for similar complexes.
Moon, Seok Joon; Kim, Jong Moon; Choi, Ji Youn; Kim, Seog K; Lee, Je Seung; Jang, Ho G
2005-05-01
The luminescence intensity of the Delta- and Lambda-enantiomer of [Ru(phen)2DPPZ]2+ ([Ru(phenanthroline)2 dipyrido[3,2-a:2',3'-c]phenazine]2+) complex enhanced upon binding to double stranded DNA, which has been known as "light switch effect". The enhancement of the luminescence required the intercalation of the large ligand between DNA base pairs. In this study, we report the enhancement in the luminescence intensity when the metal complexes bind to single stranded oligonucleotides, indicating that the "light switch effect" does not require intercalation of the large DPPZ ligand. Oligonucleotides may provide a hydrophobic cavity for the [Ru(phen)2DPPZ]2+ complex to prevent the quenching by the water molecule. In the cavity, the metal complex is in contact with DNA bases as is evidenced by the observation that the excited energy of the DNA bases transfer to the bound metal complex. However, the contact of the metal complex with DNA bases is different from the stacking of DPPZ in the intercalation pocket. In addition to the normal two luminescence lifetimes, a short lifetime in the range of 1-2 ns was found for both the delta- and lambda-enantiomer of [Ru(phen)2DPPZ]2+ when complexed with single stranded oligonucleotides, which may be assigned to the metal complex that is outside of the cavity, interacting with phosphate groups of DNA.
Control of cerium oxidation state through metal complex secondary structures
Levin, Jessica R.; Dorfner, Walter L.; Carroll, Patrick J.; ...
2015-08-11
A series of alkali metal cerium diphenylhydrazido complexes, M x(py) y[Ce(PhNNPh) 4], M = Li, Na, and K, x = 4 (Li and Na) or 5 (K), and y = 4 (Li), 8 (Na), or 7 (K), were synthesized to probe how a secondary coordination sphere would modulate electronic structures at a cerium cation. The resulting electronic structures of the heterobimetallic cerium diphenylhydrazido complexes were found to be strongly dependent on the identity of the alkali metal cations. When M = Li + or Na +, the cerium(III) starting material was oxidized with concomitant reduction of 1,2-diphenylhydrazine to aniline. Reductionmore » of 1,2-diphenylhydrazine was not observed when M = K +, and the complex remained in the cerium(III) oxidation state. Oxidation of the cerium(III) diphenylhydrazido complex to the Ce( IV) diphenylhydrazido one was achieved through a simple cation exchange reaction of the alkali metals. As a result, UV-Vis spectroscopy, FTIR spectroscopy, electrochemistry, magnetic susceptibility, and DFT studies were used to probe the oxidation state and the electronic changes that occurred at the metal centre.« less
Novel metals and metal complexes as platforms for cancer therapy.
Frezza, Michael; Hindo, Sarmad; Chen, Di; Davenport, Andrew; Schmitt, Sara; Tomco, Dajena; Dou, Q Ping
2010-06-01
Metals are essential cellular components selected by nature to function in several indispensable biochemical processes for living organisms. Metals are endowed with unique characteristics that include redox activity, variable coordination modes, and reactivity towards organic substrates. Due to their reactivity, metals are tightly regulated under normal conditions and aberrant metal ion concentrations are associated with various pathological disorders, including cancer. For these reasons, coordination complexes, either as drugs or prodrugs, become very attractive probes as potential anticancer agents. The use of metals and their salts for medicinal purposes, from iatrochemistry to modern day, has been present throughout human history. The discovery of cisplatin, cis-[Pt(II) (NH(3))(2)Cl(2)], was a defining moment which triggered the interest in platinum(II)- and other metal-containing complexes as potential novel anticancer drugs. Other interests in this field address concerns for uptake, toxicity, and resistance to metallodrugs. This review article highlights selected metals that have gained considerable interest in both the development and the treatment of cancer. For example, copper is enriched in various human cancer tissues and is a co-factor essential for tumor angiogenesis processes. However the use of copper-binding ligands to target tumor copper could provide a novel strategy for cancer selective treatment. The use of nonessential metals as probes to target molecular pathways as anticancer agents is also emphasized. Finally, based on the interface between molecular biology and bioinorganic chemistry the design of coordination complexes for cancer treatment is reviewed and design strategies and mechanisms of action are discussed.
Kalpana, Duraisamy; Shim, Jae Hong; Oh, Byung-Taek; Senthil, Kalaiselvi; Lee, Yang Soo
2011-12-30
The present study was conducted to evaluate the decolorization and degradation of the chromium metal complex dye Isolan Dark Blue 2SGL-01 by Irpex lacteus, a white rot lignolytic fungus. I. lacteus effectively decolorized the sulphonated reactive dye at a high concentration of 250 mg/l over a wide range of pH values of 5-9 and temperatures between 20 and 35°C. Complete (100%) decolorization occurred within 96h, and I. lacteus demonstrated resistance to the metallic dye. UV-vis spectroscopy, HPLC, GC-MS, and FT-IR analyses of the extracted metabolites confirmed that the decolorization process occurred due to degradation of the dye and not merely by adsorption. GC-MS analysis indicated the formation of 1(2H)-naphthalenone, 3,4-dihydro- and 2-naphthalenol as the main metabolite. ICP analysis demonstrated the removal of 13.49% chromium, and phytotoxicity studies using germinated seeds of Vigna radiata and Brassica juncea demonstrated the nontoxic nature of the metabolites formed during the degradation of Isolan Dark Blue 2SGL-01 dye. Copyright © 2011 Elsevier B.V. All rights reserved.
Optimal selection of biochars for remediating metals ...
Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment due to possible exposure to the residuals of heavy metal extraction. Historically, a variety of chemical and biological methods have been used to reduce the bioavailability of the metals at mine sites. Biochar with its potential to complex and immobilize heavy metals, is an emerging alternative for reducing bioavailability. Furthermore, biochar has been reported to improve soil conditions for plant growth and can be used for promoting the establishment of a soil-stabilizing native plant community to reduce offsite movement of metal-laden waste materials. Because biochar properties depend upon feedstock selection, pyrolysis production conditions, and activation procedures used, they can be designed to meet specific remediation needs. As a result biochar with specific properties can be produced to correspond to specific soil remediation situations. However, techniques are needed to optimally match biochar characteristics with metals contaminated soils to effectively reduce metal bioavailability. Here we present experimental results used to develop a generalized method for evaluating the ability of biochar to reduce metals in mine spoil soil from an abandoned Cu and Zn mine. Thirty-eight biochars were produced from approximately 20 different feedstocks and produced via slow pyrolysis or gasification, and were allowed to react with a f
NASA Astrophysics Data System (ADS)
Refat, Moamen S.; Moussa, Mohamed A. A.; Mohamed, Soha F.
2011-05-01
Riboflavin (RF) complexes of Mg(II), Ca(II), Sr(II) and Ba(II) were successfully synthesized. Structures of metal complexes obtained were confirmed and characterized by elemental analysis, molar conductance, and infrared spectra. DC electrical conductivity measurements indicated that the alkaline earth metal (II) complexes of RF ligand are non-electrolytes. Elemental analysis of chelates suggest that the metal(II) ligand ratio is 1:2 with structure formula as [M(RF) 2( X) 2]· nH 2O. Infrared assignments clearly show that RF ligand coordinated as a bidentate feature through azomethine nitrogen of pyrazine ring and C dbnd O of pyrimidine-2,4-dione. Thermal analyses of Mg(II), Ca(II), Sr(II) and Ba(II) complexes were investigated using (TG/DSC) under atmospheric nitrogen between 30 and 800 °C. The surface morphology of the complexes was studied by SEM. The electrical conductivities of RF and its metal complexes were also measured with DC electrical conductivity in the temperature range from room to 483 K.
NASA Astrophysics Data System (ADS)
Radha, V. P.; Jone Kirubavathy, S.; Chitra, S.
2018-08-01
Novel imidazoline based Schiff base ligands L1 and L2 were synthesized from o-phenylenediamine/o-aminophenol with creatinine. The ligands were complexed with Co(II) and Cu(II) by direct reaction with metal salts. The synthesized ligands and the metal complexes were characterized by elemental analysis, FT-IR, 1H NMR, mass, electronic, thermal analyses, conductivity and magnetic susceptibility measurements. The conductivity measurements showed the non-electrolytic nature of the complexes. The thermogravimetric analyses confirmed the presence of lattice and coordinated water molecules in the complexes. The DFT calculations were carried out at B3LYP/6-31G(d,p) level for the determination of the optimized structure of the ligands. The synthesized ligands and the metal complexes were screened for their antimicrobial activity against two gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) and two gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa) and two fungal strains (Aspergillus niger and Candida albicans). The outcomes revealed that the metal complexes showed pronounced activity than the ligands.
Designed topology and site-selective metal composition in tetranuclear [MM'...M'M] linear complexes.
Barrios, Leoní A; Aguilà, David; Roubeau, Olivier; Gamez, Patrick; Ribas-Ariño, Jordi; Teat, Simon J; Aromí, Guillem
2009-10-26
The ligand 1,3-bis[3-oxo-3-(2-hydroxyphenyl)propionyl]benzene (H(4)L), designed to align transition metals into tetranuclear linear molecules, reacts with M(II) salts (M=Ni, Co, Cu) to yield complexes with the expected [MMMM] topology. The novel complexes [Co(4)L(2)(py)(6)] (2; py=pyridine) and [Na(py)(2)][Cu(4)L(2)(py)(4)](ClO(4)) (3) have been crystallographically characterised. The metal sites in complexes 2 and 3, together with previously characterised [Ni(4)L(2)(py)(6)] (1), favour different coordination geometries. These have been exploited for the deliberate synthesis of the heterometallic complex [Cu(2)Ni(2)L(2)(py)(6)] (4). Complexes 1, 2, 3 and 4 exhibit antiferromagnetic interactions between pairs of metals within each cluster, leading to S=0 spin ground states, except for the latter cluster, which features two quasi-independent S=1/2 moieties within the molecule. Complex 4 gathers the structural and physical conditions, thus allowing it to be considered as prototype of a two-qbit quantum gate.
NASA Astrophysics Data System (ADS)
Morgan, Sh. M.; El-Ghamaz, N. A.; Diab, M. A.
2018-05-01
Co(II) complexes (1-4) and Ni(II) complexes (5-8) were prepared and characterized by elemental analysis, IR spectra and thermal analysis data. Thermal decomposition of all complexes was discussed using thermogravimetric analysis. The dielectric properties and alternating current conductivity were investigated in the frequency range 0.1-100 kHz and temperature range 300-660 K. The thermal activation energies of electrical conductivity (ΔE1 and ΔE2) values for complexes were calculated and discussed. The values of ΔE1 and ΔE2 for complexes (1-8) were found to decrease with increasing the frequency. Ac electrical conductivity (σac) values increases with increasing temperatures and the values of σac for Co(II) complexes are greater than Ni(II) complexes. Co(II) complexes showed a higher conductivity than other Ni(II) complexes due to the higher crystallinity as confirmed by X-ray diffraction analysis.
Izquierdo, A; Carrasco, J
1981-05-01
Automatic thermometric titration was applied to some beta-aryl-alpha-mercaptopropenoic acids and the stoichiometry of their complexes with several metal ions was investigated. The heats of neutralization of the mercapto-acids with sodium hydroxide and the heats of their reaction with metal ions were calculated.
ERIC Educational Resources Information Center
Davis, Craig M.; Curran, Kelly A.
2007-01-01
Before taking an inorganic laboratory course few students have experience handling air-sensitive materials using Schlenk techniques. This exercise introduces them to techniques they will employ in later syntheses. The procedure involves the formation of anhydrous tetrahydrofuran complexes of transition-metal chlorides from metal-chloride hydrates;…
NASA Astrophysics Data System (ADS)
Brancolini, Giorgia; Di Felice, Rosa
2011-05-01
Novel DNA derivatives have been recently investigated in the pursuit of modified DNA duplexes to tune the electronic structure of DNA-based assemblies for nanotechnology applications. Size-expanded DNAs (e.g., xDNA) and metalated DNAs (M-DNA) may enhance stacking interactions and induce metallic conductivity, respectively. Here we explore possible ways of tailoring the DNA electronic structure by combining the aromatic size expansion with the metal-doping. We select the salient structures from our recent study on natural DNA pairs complexed with transition metal ions and consider the equivalent model configurations for xDNA pairs. We present the results of density functional theory electronic structure calculations of the metalated expanded base-pairs with various localized basis sets and exchange-correlation functionals. Implicit solvent and coordination water molecules are also included. Our results indicate that the effect of base expansion is largest in Ag-xGC complexes, while Cu-xGC complexes are the most promising candidates for nanowires with enhanced electron transfer and also for on-purpose modification of the DNA double-helix for signal detection.
Ruan, Chunhai; Huang, Hai; Rodgers, M T
2008-02-01
Threshold collision-induced dissociation techniques are employed to determine the bond dissociation energies (BDEs) of complexes of alkali metal cations to trimethyl phosphate, TMP. Endothermic loss of the intact TMP ligand is the only dissociation pathway observed for all complexes. Theoretical calculations at the B3LYP/6-31G* level of theory are used to determine the structures, vibrational frequencies, and rotational constants of neutral TMP and the M+(TMP) complexes. Theoretical BDEs are determined from single point energy calculations at the B3LYP/6-311+G(2d,2p) level using the B3LYP/6-31G* optimized geometries. The agreement between theory and experiment is reasonably good for all complexes except Li+(TMP). The absolute M+-(TMP) BDEs are found to decrease monotonically as the size of the alkali metal cation increases. No activated dissociation was observed for alkali metal cation binding to TMP. The binding of alkali metal cations to TMP is compared with that to acetone and methanol.
NASA Astrophysics Data System (ADS)
Bich, Vu Thi; Thuy, Nguyen Thi; Binh, Nguyen Thanh; Huong, Nguyen Thi Mai; Yen, Pham Nguyen Dong; Luong, Tran Thanh
Structural and spectral properties of curcumin and metal- curcumin complex derived from turmeric (Curcuma longa) were studied by SEM and vibrational (FTIR and Raman) techniques. By comparison between curcumin commercial, fresh turmeric and a yellow powder obtained via extraction and purification of turmeric, we have found that this insoluble powder in water is curcumin. The yellow compound could complex with certain ion metal and this metal-curcumin coloring complex is water soluble and capable of producing varying hues of the same colors and having antimicrobial, cytotoxicity activities for use in foodstuffs and pharmacy. The result also demonstrates that Micro-Raman spec-troscopy is a valuable non-destructive tool and fast for investigation of a natural plant even when occurring in low concentrations.
Metal complexes of substituted Gable porphyrins as oxidation catalysts
Lyons, James E.; Ellis, Jr., Paul E.; Wagner, Richard W.
1996-01-01
Transition metal complexes of Gable porphyrins having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.
Serpa, Gisele; Augusto, Elisabeth Fátima Pires; Tamashiro, Wirla Maria Silva Cunha; Ribeiro, Mariana Borçoe; Miranda, Everson Alves; Bueno, Sônia Maria Alves
2005-02-25
The large scale production of monoclonal antibodies (McAbs) has gaining increased relevance with the development of the hybridoma cell culture in bioreactors creating a need for specific efficient bioseparation techniques. Conventional fixed bead affinity adsorption commonly applied for McAbs purification has the drawback of low flow rates and colmatage. We developed and evaluated a immobilized metal affinity chromatographies (IMAC) affinity membrane for the purification of anti-TNP IgG(1) mouse McAbs. We immobilized metal ions on a poly(ethylene vinyl alcohol) hollow fiber membrane (Me(2+)-IDA-PEVA) and applied it for the purification of this McAbs from cell culture supernatant after precipitation with 50% saturation of ammonium sulphate. The purity of IgG(1) in the eluate fractions was high when eluted from Zn(2+) complex. The anti-TNP antibody could be eluted under conditions causing no loss of antigen binding capacity. The purification procedure can be considered as an alternative to the biospecific adsorbent commonly applied for mouse IgG(1) purification, the protein G-Sepharose.
Chandra, Sulekh; Raizada, Smriti; Tyagi, Monika; Gautam, Archana
2007-01-01
A series of metal complexes of Cu(II) and Ni(II) having the general composition [M(L)X2] with benzil bis(thiosemicarbazone) has been prepared and characterized by element chemical analysis, molar conductance, magnetic susceptibility measurements, and spectral (electronic, IR, EPR, mass) studies. The IR spectral data suggest the involvement of sulphur and azomethane nitrogen in coordination to the central metal ion. On the basis of spectral studies, an octahedral geometry has been assigned for Ni(II) complexes but a tetragonal geometry for Cu(II) complexes. The free ligand and its metal complexes have been tested in vitro against a number of microorganisms in order to assess their antimicrobial properties. PMID:18273385
Towards metals analysis using corona discharge ionization ion mobility spectrometry.
Jafari, Mohammad T; Saraji, Mohammad; Sherafatmand, Hossein
2016-02-25
For the first time, the capability of corona discharge ionization ion mobility spectrometry (CD-IMS) in the determination of metal complex was evaluated. The extreme simplicity of dispersive liquid-liquid microextraction (DLLME) coupled to the high sensitivity of CD-IMS measurement could make this combination really useful for simple, rapid, and sensitive determination of metals in different samples. In this regard, mercury, as a model metal, was complexed with diethyldithiocarbamate (DEDTC), and then extracted into the carbon tetrachloride using DLLME. Some parameters affecting the extraction efficiency, including the type and volume of the extraction solvent, the type and volume of the disperser solvent, the concentration of the chelating agent, salt addition and, pH were exhaustively investigated. Under the optimized condition, the enrichment factor was obtained to be 142. The linear range of 0.035-10.0 μg mL(-1) with r(2) = 0.997 and the detection limit of 0.010 μg mL(-1) were obtained. The relative standard deviation values were calculated to be lower than 4% and 8% for intra-day and inter-day, respectively. Finally, the developed method was successfully applied for the extraction and determination of mercury in various real samples. The satisfactory results revealed the capability of the proposed method in trace analysis without tedious derivatization or hydride generation. Copyright © 2016 Elsevier B.V. All rights reserved.
Yadav, Manju; Mishra, Neelima; Sharma, Nutan; Chandra, Sulekh; Kumar, Dinesh
2014-11-11
This study is planned to report the advancement of green microwave approach in the fabrication of a new series of biologically potent (N^X, where X=O/S) donor Schiff bases and their cadmium(II) and tin(II) complexes. The ligands and their metal complexes have been characterized in terms of elemental analysis, molar ionic conductance, magnetic moment and spectral (IR, UV-Vis, NMR ((1)H, (119)Sn), FAB-mass, thermal and XRD) data. The data revealed that the ligands coordinated to the metal center via nitrogen and oxygen/sulfur atoms and form an octahedral arrangement of the ligands around central metal atom. All compounds were evaluated for their in vitro antimicrobial activities against two pathogenic bacteria Bacillus subtilis and Escherichia coli and two fungi Aspergillus niger and Aspergillus flavus by standard disc diffusion method. The discs were stored in an incubator at 37°C. The compounds were dissolved in DMF at 500 and 1000 ppm concentrations for screening biocidal activity. The compounds were dissolved in DMF to get the 100 and 200 ppm concentration of test solutions for screening fungicidal activity. The inhibition zone around each disc was measured (in mm) after 24 h and 96 h for biocidal and fungicidal activities respectively. Copyright © 2014 Elsevier B.V. All rights reserved.
Pappas, Iraklis; Chirik, Paul J
2016-10-03
The hydrogenolysis of titanium-nitrogen bonds in a series of bis(cyclopentadienyl) titanium amides, hydrazides and imides by proton coupled electron transfer (PCET) is described. Twelve different N-H bond dissociation free energies (BDFEs) among the various nitrogen-containing ligands were measured or calculated, and effects of metal oxidation state and N-ligand substituent were determined. Two metal hydride complexes, (η 5 -C 5 Me 5 )(py-Ph)Rh-H (py-Ph = 2-pyridylphenyl, [Rh]-H) and (η 5 -C 5 R 5 )(CO) 3 Cr-H ([Cr] R -H, R= H, Me) were evaluated for formal H atom transfer reactivity and were selected due to their relatively weak M-H bond strengths yet ability to activate and cleave molecular hydrogen. Despite comparable M-H BDFEs, disparate reactivity between the two compounds was observed and was traced to the vastly different acidities of the M-H bonds and overall redox potentials of the molecules. With [Rh]-H, catalytic syntheses of ammonia, silylamine and N,N-dimethylhydrazine have been accomplished from the corresponding titanium(IV) complex using H 2 as the stoichiometric H atom source. The data presented in this study provides the thermochemical foundation for the synthesis of NH 3 by proton coupled electron transfer at a well-defined transition metal center.
Quinonoid metal complexes: toward molecular switches.
Dei, Andrea; Gatteschi, Dante; Sangregorio, Claudio; Sorace, Lorenzo
2004-11-01
The peculiar redox-active character of quinonoid metal complexes makes them extremely appealing to design materials of potential technological interest. We show here how the tuning of the properties of these systems can be pursued by using appropriate molecular synthetic techniques. In particular, we focus our attention on metal polyoxolene complexes exhibiting intramolecular electron transfer processes involving either the ligand and the metal ion or the two dioxolene moieties of a properly designed ligand thus inducing electronic bistability. The transition between the two metastable electronic states can be induced by different external stimuli such as temperature, pressure, light, or pH suggesting the use of these systems for molecular switches.
Sugisaki, Kenji; Toyota, Kazuo; Sato, Kazunobu; Shiomi, Daisuke; Takui, Takeji
2017-11-15
Spin-orbit contributions to the zero-field splitting (ZFS) tensor (D SO tensor) of M III (acac) 3 complexes (M = V, Cr, Mn, Fe and Mo; acac = acetylacetonate anion) are evaluated by means of ab initio (a hybrid CASSCF/MRMP2) and DFT (Pederson-Khanna (PK) and natural orbital-based Pederson-Khanna (NOB-PK)) methods, focusing on the behaviour of DFT-based approaches to the D SO tensors against the valence d-electron configurations of the transition metal ions in octahedral coordination. Both the DFT-based approaches reproduce trends in the D tensors. Significantly, the differences between the theoretical and experimental D (D = D ZZ - (D XX + D YY )/2) values are smaller in NOB-PK than in PK, emphasising the usefulness of the natural orbital-based approach to the D tensor calculations of transition metal ion complexes. In the case of d 2 and d 4 electronic configurations, the D SO (NOB-PK) values are considerably underestimated in the absolute magnitude, compared with the experimental ones. The D SO tensor analysis based on the orbital region partitioning technique (ORPT) revealed that the D SO contributions attributed to excitations from the singly occupied region (SOR) to the unoccupied region (UOR) are significantly underestimated in the DFT-based approaches to all the complexes under study. In the case of d 3 and d 5 configurations, the (SOR → UOR) excitations contribute in a nearly isotropic manner, which causes fortuitous error cancellations in the DFT-based D SO values. These results indicate that more efforts to develop DFT frameworks should be directed towards the reproduction of quantitative D SO tensors of transition metal complexes with various electronic configurations and local symmetries around metal ions.
Revisiting Mn and Fe removal in humic rich estuaries
NASA Astrophysics Data System (ADS)
Oldham, Véronique E.; Miller, Megan T.; Jensen, Laramie T.; Luther, George W.
2017-07-01
Metal removal by estuarine mixing has been studied for several decades, but few studies emphasize dissolved metal speciation and organic ligand complexation. Findings from the last decade indicate that metal-humic complexation can be significant for dissolved metals including Cu(II), Al(III) and Fe(III), but little consideration is given to the precipitation of these complexes with humic material at pH < 2. Given that total soluble metal analysis involves an acidification step for sample preservation, we show that Mn and other metal concentrations may have been underestimated in estuaries, especially when humic substance concentrations are high. A competitive ligand assay of selected samples from our study site, a coastal waterway bordered by wetlands (Broadkill River, DE), showed that Mn(III)-humic complexation is significant, and that some Mn(III)-L complexes precipitate during acidification. In the oxygenated surface waters of the Broadkill River, total dissolved Mn (dMnT) was up to 100% complexed to ambient ligands as Mn(III)-L, and we present evidence for humic-type Mn(III)-L complexes. The Mn(III) complexes were kinetically stabilized against Fe(II) reduction, even when [Fe(II)] was 17 times higher than [dMnT]. Unlike typical oceanic surface waters, [Fe(II)] > [Fe(III)-L] in surface waters, which may be attributed to high rates of photoreduction of Fe(III)-L complexes. Total [Mn(III)-L] ranged from 0.22 to 8.4 μM, in excess of solid MnOx (below 0.28 μM in all samples). Filtration of samples through 0.02 μm filters indicated that all Mn(III)-L complexes pass through the filters and were not colloidal species in contrast to dissolved Fe. Incubation experiments indicated that the reductive dissolution of solid MnOx by ambient ligands may be responsible for Mn(III) formation in this system. Unlike previous studies of estuarine mixing, which demonstrated metal removal during mixing, we show significant export of dMn and dissolved Fe (dFe) in the summer and fall of 2015. Thus, we propose that estuarine removal should be considered seasonal for dMn and dFe, with export in the summer and fall and removal during the winter.
Kamiyama, Asako; Noguchi, Tomoko; Kajiwara, Takashi; Ito, Tasuku
2002-02-11
Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.
NASA Astrophysics Data System (ADS)
Rathi, Parveen; Sharma, Kavita; Singh, Dharam Pal
2014-09-01
Macrocyclic complexes of the type [MLX]X2; where L is (C30H28N4), a macrocyclic ligand, M = Cr(III) and Fe(III) and X = Cl-, CH3COO- or NO3-, have been synthesized by template condensation reaction of 1,8-diaminonaphthalene and acetylacetone in the presence of trivalent metal salts in a methanolic medium. The complexes have been formulated as [MLX]X2 due to 1:2 electrolytic nature of these complexes. The complexes have been characterized with the help of elemental analyses, molar conductance measurements, magnetic susceptibility measurements, electronic, infrared, far infrared, Mass spectral studies and molecular modelling. Molecular weight of these complexes indicates their monomeric nature. On the basis of all these studies, a five coordinated square pyramidal geometry has been proposed for all these complexes. These metal complexes have also been screened for their in vitro antimicrobial activities.
Sulfur-induced structural motifs on copper and gold surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walen, Holly
The interaction of sulfur with copper and gold surfaces plays a fundamental role in important phenomena that include coarsening of surface nanostructures, and self-assembly of alkanethiols. Here, we identify and analyze unique sulfur-induced structural motifs observed on the low-index surfaces of these two metals. We seek out these structures in an effort to better understand the fundamental interactions between these metals and sulfur that lends to the stability and favorability of metal-sulfur complexes vs. chemisorbed atomic sulfur. The experimental observations presented here—made under identical conditions—together with extensive DFT analyses, allow comparisons and insights into factors that favor the existence ofmore » metal-sulfur complexes, vs. chemisorbed atomic sulfur, on metal terraces. We believe this data will be instrumental in better understanding the complex phenomena occurring between the surfaces of coinage metals and sulfur.« less
Evidence for single metal two electron oxidative addition and reductive elimination at uranium.
Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T
2017-12-01
Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.
Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions.
Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj
2017-01-01
Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4 ± 0.05, 7 ± 0.05 and 9 ± 0.05) and three different temperatures (15 ± 0.5°C, 30 ± 0.5°C and 45 ± 0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.
Pesticides Curbing Soil Fertility: Effect of Complexation of Free Metal Ions
NASA Astrophysics Data System (ADS)
Kaur, Sukhmanpreet; Kumar, Vijay; Chawla, Mohit; Cavallo, Luigi; Poater, Albert; Upadhyay, Niraj
2017-07-01
Researchers have suggested that the reason behind infertility is pernicious effect of broad spectrum pesticides on non target, beneficial microorganism of soil. Here, studying the chelating effect of selective organophosphate and carbamate pesticides with essential metal ions, at all possible combinations of three different pH (4±0.05, 7±0.05 and 9±0.05) and three different temperatures (15±0.5°C, 30±0.5°C and 45±0.5°C), shows very fast rate of reaction which further increases with increase of pH and temperature. Carbonyl oxygen of carbamate and phosphate oxygen of organophosphate were found to be common ligating sites among all the complexes. Formed metal complexes were found to be highly stable and water insoluble on interaction with essential metal ions in solvent medium as well as over silica. Density functional theory (DFT) calculations not only reinforced the experimental observations, but, after a wide computational conformational analysis, unraveled the nature of the high stable undesired species that consist of pesticides complexed by metal ions from the soil. All in all, apart from the direct toxicity of pesticides, the indirect effect by means of complexation of free metal ions impoverishes the soil.
Photoactivatable metal complexes: from theory to applications in biotechnology and medicine.
Smith, Nichola A; Sadler, Peter J
2013-07-28
This short review highlights some of the exciting new experimental and theoretical developments in the field of photoactivatable metal complexes and their applications in biotechnology and medicine. The examples chosen are based on some of the presentations at the Royal Society Discussion Meeting in June 2012, many of which are featured in more detail in other articles in this issue. This is a young field. Even the photochemistry of well-known systems such as metal-carbonyl complexes is still being elucidated. Striking are the recent developments in theory and computation (e.g. time-dependent density functional theory) and in ultrafast-pulsed radiation techniques which allow photochemical reactions to be followed and their mechanisms to be revealed on picosecond/nanosecond time scales. Not only do some metal complexes (e.g. those of Ru and Ir) possess favourable emission properties which allow functional imaging of cells and tissues (e.g. DNA interactions), but metal complexes can also provide spatially controlled photorelease of bioactive small molecules (e.g. CO and NO)--a novel strategy for site-directed therapy. This extends to cancer therapy, where metal-based precursors offer the prospect of generating excited-state drugs with new mechanisms of action that complement and augment those of current organic photosensitizers.
Bioavailability of cyanide and metal-cyanide mixtures to aquatic life.
Redman, Aaron; Santore, Robert
2012-08-01
Cyanide can be toxic to aquatic organisms, and the U.S. Environmental Protection Agency has developed ambient water-quality criteria to protect aquatic life. Recent work suggests that considering free, rather than total, cyanide provides a more accurate measure of the biological effects of cyanides and provides a basis for water-quality criteria. Aquatic organisms are sensitive to free cyanide, although certain metals can form stable complexes and reduce the amount of free cyanide. As a result, total cyanide is less toxic when complexing metals are present. Cyanide is often present in complex effluents, which requires understanding how other components within these complex effluents can affect cyanide speciation and bioavailability. The authors have developed a model to predict the aqueous speciation of cyanide and have shown that this model can predict the toxicity of metal-cyanide complexes in terms of free cyanide in solutions with varying water chemistry. Toxicity endpoints based on total cyanide ranged over several orders of magnitude for various metal-cyanide mixtures. However, predicted free cyanide concentrations among these same tests described the observed toxicity data to within a factor of 2. Aquatic toxicity can be well-described using free cyanide, and under certain conditions the toxicity was jointly described by free cyanide and elevated levels of bioavailable metals. Copyright © 2012 SETAC.
Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts.
Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo
2016-12-31
Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower.
Fosso, Marina Y; LeVine, Harry; Green, Keith D; Tsodikov, Oleg V; Garneau-Tsodikova, Sylvie
2015-09-28
As the number of individuals affected with Alzheimer's disease (AD) increases and the availability of drugs for AD treatment remains limited, the need to develop effective therapeutics for AD becomes more and more pressing. Strategies currently pursued include inhibiting acetylcholinesterase (AChE) and targeting amyloid-β (Aβ) peptides and metal-Aβ complexes. This work presents the design, synthesis, and biochemical evaluation of a series of chalcones, and assesses the relationship between their structures and their ability to bind metal ions and/or Aβ species, and inhibit AChE/BChE activity. Several chalcones were found to exhibit potent disaggregation of pre-formed N-biotinyl Aβ1-42 (bioAβ42) aggregates in vitro in the absence and presence of Cu(2+)/Zn(2+), while others were effective at inhibiting the action of AChE.
Reduction of Surface Roughness by Means of Laser Processing over Additive Manufacturing Metal Parts
Alfieri, Vittorio; Argenio, Paolo; Caiazzo, Fabrizia; Sergi, Vincenzo
2016-01-01
Optimization of processing parameters and exposure strategies is usually performed in additive manufacturing to set up the process; nevertheless, standards for roughness may not be evenly matched on a single complex part, since surface features depend on the building direction of the part. This paper aims to evaluate post processing treating via laser surface modification by means of scanning optics and beam wobbling to process metal parts resulting from selective laser melting of stainless steel in order to improve surface topography. The results are discussed in terms of roughness, geometry of the fusion zone in the cross-section, microstructural modification, and microhardness so as to assess the effects of laser post processing. The benefits of beam wobbling over linear scanning processing are shown, as heat effects in the base metal are proven to be lower. PMID:28772380
Macrocyclic metal complexes for metalloenzyme mimicry and sensor development.
Joshi, Tanmaya; Graham, Bim; Spiccia, Leone
2015-08-18
Examples of proteins that incorporate one or more metal ions within their structure are found within a broad range of classes, including oxidases, oxidoreductases, reductases, proteases, proton transport proteins, electron transfer/transport proteins, storage proteins, lyases, rusticyanins, metallochaperones, sporulation proteins, hydrolases, endopeptidases, luminescent proteins, iron transport proteins, oxygen storage/transport proteins, calcium binding proteins, and monooxygenases. The metal coordination environment therein is often generated from residues inherent to the protein, small exogenous molecules (e.g., aqua ligands) and/or macrocyclic porphyrin units found, for example, in hemoglobin, myoglobin, cytochrome C, cytochrome C oxidase, and vitamin B12. Thus, there continues to be considerable interest in employing macrocyclic metal complexes to construct low-molecular weight models for metallobiosites that mirror essential features of the coordination environment of a bound metal ion without inclusion of the surrounding protein framework. Herein, we review and appraise our research exploring the application of the metal complexes formed by two macrocyclic ligands, 1,4,7-triazacyclononane (tacn) and 1,4,7,10-tetraazacyclododecane (cyclen), and their derivatives in biological inorganic chemistry. Taking advantage of the kinetic inertness and thermodynamic stability of their metal complexes, these macrocyclic scaffolds have been employed in the development of models that aid the understanding of metal ion-binding natural systems, and complexes with potential applications in biomolecule sensing, diagnosis, and therapy. In particular, the focus has been on "coordinatively unsaturated" metal complexes that incorporate a kinetically inert and stable metal-ligand moiety, but which also contain one or more weakly bound ligands, allowing for the reversible binding of guest molecules via the formation and dissociation of coordinate bonds. With regards to mimicking metallobiosites, examples are presented from our work on tacn-based complexes developed as simplified structural models for multimetallic enzyme sites. In particular, structural comparisons are made between multinuclear copper(II) complexes formed by such ligands and multicopper enzymes featuring type-2 and type-3 copper centers, such as ascorbate oxidase (AO) and laccase (Lc). Likewise, with the aid of relevant examples, we highlight the importance of cooperativity between either multiple metal centers or a metal center and a proximal auxiliary unit appended to the macrocyclic ligand in achieving efficient phosphate ester cleavage. Finally, the critical importance of the Zn(II)-imido and Zn(II)-phosphate interactions in Zn-cyclen-based systems for delivering highly sensitive electrochemical and fluorescent chemosensors is also showcased. The Account additionally highlights some of the factors that limit the performance of these synthetic nucleases and the practical application of the biosensors, and then identifies some avenues for the development of more effective macrocyclic constructs in the future.
Moore, Evan G; D'Aléo, Anthony; Xu, Jide; Raymond, Kenneth N
2009-10-13
The luminescence properties of lanthanoid ions can be dramatically enhanced by coupling them to antenna ligands that absorb light in the UV/visible and then efficiently transfer the energy to the lanthanoid center. The synthesis and the complexation of Ln(III) cations (Ln=Eu; Gd) for a ligand based on four 1-hydroxy-2-pyridinone (1,2-HOPO) chelators appended to a ligand backbone derived by linking two L-lysine units (3LI-bis-LYS) is described. This octadentate Eu(III) complex ([Eu(3LI-bis-LYS-1,2-HOPO)](-)) has been evaluated in terms of its thermodynamic stability, UV/visible absorption and luminescence properties. For this complex the conditional stability constant (pM) is 19.9, which is an order of magnitude higher than diethylenetriaminepentacetic acid (DTPA) at pH= 7.4. This Eu(III) complex also shows an almost two-fold increase in its luminescence quantum yield in aqueous solution (pH= 7.4) when compared to other octadentate ligands. Hence, despite a slight decrease of the molar absorption coefficient, a much higher brightness is obtained for [Eu(3LI-bis-LYS-1,2-HOPO)](-). This overall improvement was achieved by saturating the coordination sphere of the Eu(III) cation, yielding an increased metal centered efficiency by excluding solvent water molecules from the metal's inner sphere.
NASA Astrophysics Data System (ADS)
Ammar, Reda A.; Alaghaz, Abdel-Nasser M. A.; Zayed, Mohamed E.; Al-Bedair, Lamia A.
2017-08-01
Tridentate Schiff's base (HL) ligand was synthesized via condensation of salicylaldehyde and 3-hydroxypyridin-2-yliminomethyl-4H-chromen-4-one and their corresponding Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes have been synthesized. The isolated solid complexes were characterized by elemental analyses, molar conductance, spectral (IR, UV-Vis, 1H NMR), magnetic moment, EPR, and thermal measurements. The IR spectra showed that HL was coordinated to the metal ions in tridentate manner with O2N donor sites of the azomethine N, deprotonated phenolic-OH and carbonyl-O. The activation of thermodynamic parameters are calculated using Coast-Redfern and Horowitz-Metzger (HM). The octahedral geometry of the complexes is confirmed using DFT method from DMOL3 calculations, UV-Vis and magnetic moment measurements, ESR and ligand field parameters. Antioxidant activities have also been performed for all the compounds. The investigated ligand and metal complexes were screened for their in-vitro antimicrobial activities against different types of fungal and bacterial strains. The resulting data assert on the inspected compounds as a highly promising bactericides and fungicides. The antitumor activities of all inspected compounds were evaluated towards human liver Carcinoma (HepG2) cell line.
El Sayed Aly, Mohamed Ramadan; Abd El Razek Fodah, Hamadah Hamadah; Saleh, Sherif Yousef
2014-04-09
Four sets of rationally designed chalcones were prepared for evaluation of their antiobesity, antioxidant and cytotoxicity activities. These sets include nine oleoyl chalcones as mimics of oleoyl estrone, three monohydroxy chalcones (chalcone ligands), Schiff base-derived chalcones and four copper as well as zinc complexes. Oleoyl chalcones 4d, 4e and particularly 6a as an isosteric isomer of oleoyl estrone, were as active as Orlistat on weight loss and related metabolic parameters using male SD rats in vivo. Chalcone ligands 10a-c and Schiff base-derived chalcones 11 and 14a,b were weakly antioxidants, while, the copper and zinc complexes 15a-d were good antioxidants with zinc chelates 15b,d being more active than their copper analogues 15a,cin vitro. Compounds 10c and 14a showed good cytotoxicity activities as Doxorubicin against PC3 cancer cell line in vitro, while, the copper complex 15c showed promising activity with IC₅₀ value of 5.95 μM. The estimated IC₅₀ value for Doxorubicin was 8.7 μM. Chalcones 14a,b are bifunctional probes for potential investigations in cancer diagnosis and radiotherapy by complexation with Gd(3+) or metal radioisotopes followed by posttranslation of Shiga toxin B-subunits that target globotriosyl ceramide expressing cancer cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.
Ghazy, Haneen A; Abdel-Razek, Mohamed A S; El Nahas, Abeer F; Mahmoud, Shawky
2017-09-01
Alteration of immunological function of an aquatic organism can be used as an indicator for evaluating the direct effect of exposure to pollutants. The aim of this work is to assess the impact of complex water pollution with special reference to Pyrethroid pesticides and heavy metals on mRNA transcript levels of Metallothionine and some immune related genes of Nile tilapia (Oreochromas Niloticus). Residues of six heavy metals and six Pyrethroid were assessed in water as well as fish tissues at three different sites of Lake Burullus, located at Northern Egypt. Variations of water physicochemical properties associated with different levels of heavy metals at the three different sections were recorded. Tissue residues of Fe, Mn and Zn, Cu, Ni exceed water levels in contrast to elevated water level of Pb. All assessed Pyrethroids are detected in fish tissue samples with higher concentration (3-42 folds) than that found in water samples especially Cypermethrin. Significant down-regulation of expression levels of metallothionein (MT) at the three sections of the lake was observed. The expression of immune related genes (IgM) and inflammatory cytokines (TNF, IL.8 and IL.1) were affected. IgM and TNF were significantly down-regulated at eastern and western section of the lake; meanwhile the expression of IL8 is down regulated at the three sections of the lack. IL1 was significantly up-regulated at eastern and middle sections. We conclude that, variable gene expression of MT and immune-related genes at the three sections of the lack impose different response to complex water pollution in relation to variable aquatic environment. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Fan; Cao, Xiao-Ming; Wang, Jiwei; Jiao, Jiajun; Huang, Yongming; Shi, Min; Braunstein, Pierre; Zhang, Jun
2018-05-21
Homo (Au3)- and heterotrinuclear coinage metal complexes (Au2Ag and Au2Cu) ligated by the first tritopic carbanionic N-heterocyclic carbene (NHC) have been prepared by deprotonation of ditopic NHC digold complexes and structurally characterized by single-crystal X-ray diffraction.
An Experiment on Isomerism in Metal-Amino Acid Complexes.
ERIC Educational Resources Information Center
Harrison, R. Graeme; Nolan, Kevin B.
1982-01-01
Background information, laboratory procedures, and discussion of results are provided for syntheses of cobalt (III) complexes, I-III, illustrating three possible bonding modes of glycine to a metal ion (the complex cations II and III being linkage/geometric isomers). Includes spectrophotometric and potentiometric methods to distinguish among the…
Metal complexes of substituted Gable porphyrins as oxidation catalysts
Lyons, J.E.; Ellis, P.E. Jr.; Wagner, R.W.
1996-01-02
Transition metal complexes of Gable porphyrins are disclosed having two porphyrin rings connected through a linking group, and having on the porphyrin rings electron-withdrawing groups, such as halogen, nitro or cyano. These complexes are useful as catalysts for the oxidation of organic compounds, e.g. alkanes.
NASA Astrophysics Data System (ADS)
Shakir, M.; Hanif, Summaiya; Sherwani, Mohd. Asif; Mohammad, Owais; Al-Resayes, Saud I.
2015-07-01
A novel series of metal complexes of the types, [ML2(H2O)2]Cl2 and [ML2]Cl2 [M = Mn(II), 1; Co(II), 2; Ni(II), 3; Cu(II), 4; and Zn(II), 5] were synthesized by the interaction of ligand, L (E)-N-(furan-2-yl methylene) quinolin-8-amine, derived from the condensation of 2-furaldehyde and 8-aminoquinoline. The synthesized ligand and its metal complexes were characterized on the basis of results obtained from elemental analysis, ESI-MS, XRD, SEM, TGA/DTA, FT-IR, UV-Vis, magnetic moment and 1H and 13C NMR spectroscopic studies. EPR parameters were recorded in case of complex 4. The comparative in-vitro antimicrobial activities against various pathogens with reference to known antibiotics and antioxidant activity against standard control at variable concentrations revealed that the metal complexes show enhanced antimicrobial and free radical scavenging activities in general as compared to free ligand. However, the complexes 1 and 5 have shown best antioxidant activity among all the metal complexes. Furthermore, comparative in-vitro antiproliferative activity on ligand and its metal chelates performed on MDA-MB-231 (breast carcinoma), KCL22 (blood lymphoid carcinoma), HeLa (cervical carcinoma) cell lines and normal cells (PBMC) revealed that metal chelates show moderate to good activity as compared to ligand where as complex 1 seems to be the most promising one possessing a broad spectrum of activity against all the selected cancer cell lines with IC50 < 2.10 μM.
Interaction of d(10) metal ions with thioether ligands: a thermodynamic and theoretical study.
Melchior, Andrea; Peralta, Elena; Valiente, Manuel; Tavagnacco, Claudio; Endrizzi, Francesco; Tolazzi, Marilena
2013-05-07
Thermodynamic parameters of complex formation between d(10) metal ions, such as Zn(2+), Cd(2+), Hg(2+) and Ag(+), and the macrocyclic thioether 1,4,7-trithiacyclononane ([9]AneS3) or the monodentate diethylsulfide (Et(2)S), in acetonitrile (AN) at 298.15 K, were studied by a systematic methodology including potentiometry, calorimetry and polarography. [9]AneS3 is able to form complexes with all the target cations, Et(2)S only reacts with Hg(2+) and Ag(+). Mononuclear ML(j) (j = 1, 2) complexes are formed with all the metal ions investigated, where the affinity order is Hg(2+) > Ag(+) > Cd(2+) ≈ Zn(2+) when L = [9]AneS3 and Hg(2+) > Ag(+) when L = Et(2)S. Enthalpy and entropy values are generally negative, as a consequence of both metal ion interactions with neutral ligands, the reagents' loss of degrees of freedom and the release of solvating molecules. DFT calculations on the complexes formed with [9]AneS3 in vacuum and in AN are also carried out, to correlate experimental and theoretical thermodynamic values and to highlight the interplay between the direct metal-thioether interaction and the solvation effects. Trends obtained for the stability constants and enthalpies of the 1 : 1 and 1 : 2 complexes in solvent well reproduce the experimental ones for all the divalent metal ion complexes with [9]AneS3 and indicate the release of 3 AN molecules in the formation of each consecutive octahedral complex. In addition, calculated and experimental values for Ag(+) complex formation in solution suggest that in AgL(2) species [9]AneS3 ligands are not both tridentate.
NASA Astrophysics Data System (ADS)
Mohamed, Gehad G.; Omar, M. M.; Ibrahim, Amr A.
2010-02-01
Novel Schiff base (H 2L) ligand is prepared via condensation of benzil and triethylenetetraamine. The ligand is characterized based on elemental analysis, mass, IR and 1H NMR spectra. Metal complexes are reported and characterized based on elemental analyses, IR, 1H NMR, solid reflectance, magnetic moment, molar conductance, and thermal analyses (TG, DTG and DTA). 1:1 [M]:[H 2L] complexes are found from the elemental analyses data having the formulae [M(H 2L)Cl 2]· yH 2O (M = Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II)), [Fe(H 2L)Cl 2]Cl·H 2O, [Th(H 2L)Cl 2]Cl 2·3H 2O and [UO 2(H 2L)](CH 3COO) 2·2H 2O. The metal chelates are found to be non-electrolytes except Fe(III), Th(IV) and UO 2(II) complexes are electrolytes. IR spectra show that H 2L is coordinated to the metal ions in a neutral tetradentate manner with 4Ns donor sites of the two azomethine N and two NH groups. The geometrical structures of these complexes are found to be octahedral. The thermal behaviour of these chelates is studied where the hydrated complexes lose water molecules of hydration in the first step followed immediately by decomposition of the anions and ligand molecules in the subsequent steps. The activation thermodynamic parameters are calculated using Coats-Redfern method. The ligand (H 2L), in comparison to its metal complexes, is screened for its antibacterial activity. The activity data show that the metal complexes have antibacterial activity more than the parent Schiff base ligand and cefepime standard against one or more bacterial species.
Metal-metal bond lengths in complexes of transition metals*
Pauling, Linus
1976-01-01
In complexes of the transition metals containing clusters of metal atoms the cobalt-cobalt bond lengths are almost always within 1 pm of the single-bond value 246 pm given by the enneacovalent radius of cobalt, whereas most of the observed iron-iron bond lengths are significantly larger than the single-bond value 248 pm, the mean being 264 pm, which corresponds to a half-bond. A simple discussion of the structures of these complexes based on spd hybrid orbitals, the electroneutrality principle, and the partial ionic character of bonds between unlike atoms leads to the conclusion that resonance between single bonds and no-bonds would occur for iron and its congeners but not for cobalt and its congeners, explaining the difference in the bond lengths. PMID:16592368
Raymond, Kenneth N.; Xu, Jide; Pham, Tiffany A.
2016-09-13
The invention provides macrocycles useful in chelating metal ions, particularly radionuclides, to provide metal ion complexes. The invention also provides methods of using the compounds and complexes of the invention, such as in therapeutic and diagnostic applications.
Integrating bioavailability approaches into waste rock evaluations
Ranville, James F.; Blumenstein, E. P.; Adams, Michael J.; Choate, LaDonna M.; Smith, Kathleen S.; Wildeman, Thomas R.
2006-01-01
The presence of toxic metals in soils affected by mining, industry, agriculture and urbanization, presents problems to human health, the establishment and maintenance of plant and animal habitats, and the rehabilitation of affected areas. A key to managing these problems is predicting the fraction of metal in a given soil that will be biologically labile, and potentially harmful ('bioavailable'). The molecular form of metals and metalloids, particularly the uncomplexed (free) form, controls their bioavailability and toxicity in solution. One computational approach for determining bioavailability, the biotic ligand model (BLM), takes into account not only metal complexation by ligands in solution, but also competitive binding of hardness cations (Ca 2+,Mg 2+,) and metal ions to biological receptor sites. The more direct approach to assess bioavailability is to explicitly measure the response of an organism to a contaminant. A number of microbial enzyme tests have been developed to assess the impact of pollution in a rapid and procedurally simple way. These different approaches in making bioavailability predictions may have value in setting landuse priorities, remediation goals, and habitat reclamation strategies.
Nizoli, Erico Casare; Luiz-Silva, Wanilson
2012-04-01
In anoxic sediments, as those found in estuaries, the mobility of metals can be controlled by the formation of stable sulfide complexes. The potential bioavailability of a metal can then be predicted on the basis of the acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) criterion. Distributions of AVS and SEM (Hg, Cu, Pb, Cd, Zn, and Ni) along the sediment profiles were determined seasonally for three rivers that constitute the Santos-Cubatão estuarine system (SE Brazil), which is located in one of the most industrialized areas of Latin America. AVS and SEM concentrations varied significantly, from 0.04 to 31.9 μmol g(-1) and 0.086-6.659 μmol g(-1), respectively. The highest AVS levels in sediments were detected in the winter, whereas high SEM values predominated in the summer. Considering SEM-AVS molar differences as a parameter to evaluate potential bioavailability, sediments nearest to the industrial area represent higher risk to biota, especially during the summer. It is due to relatively low AVS values and not necessarily high concentrations of metals.
Büldt, Laura A.
2017-01-01
Some complexes of Cr(iii) and Cr(0) have long been known to exhibit interesting photophysical and photochemical properties, but in the past few years important conceptual progress was made. This Perspective focuses on the recent developments of Cr(iii) complexes as luminophores and dyes for solar cells, their application in photoredox catalysis, their use as sensitizers in upconversion processes, and their performance as photochemical nitric oxide sources. The example of a luminescent Cr(0) isocyanide complex illustrates the possibility of obtaining photoactive analogues of d6 metal complexes that are commonly made from precious metals such as Ru(ii) or Ir(iii). The studies highlighted herein illustrate the favorable excited-state properties of robust first-row transition metal complexes with broad application potential. PMID:29163886