Sample records for metal content analysis

  1. Feasibility analysis of EDXRF method to detect heavy metal pollution in ecological environment

    NASA Astrophysics Data System (ADS)

    Hao, Zhixu; Qin, Xulei

    2018-02-01

    The change of heavy metal content in water environment, soil and plant can reflect the change of heavy metal pollution in ecological environment, and it is important to monitor the trend of heavy metal pollution in eco-environment by using water environment, soil and heavy metal content in plant. However, the content of heavy metals in nature is very low, the background elements of water environment, soil and plant samples are complex, and there are many interfering factors in the EDXRF system that will affect the spectral analysis results and reduce the detection accuracy. Through the contrastive analysis of several heavy metal elements detection methods, it is concluded that the EDXRF method is superior to other chemical methods in testing accuracy and method feasibility when the heavy metal pollution in soil is tested in ecological environment.

  2. Metal Contents, Bioaccumulation, and Health Risk Assessment in Wild Edible Boletaceae Mushrooms.

    PubMed

    Sun, Liping; Chang, Weidan; Bao, Changjun; Zhuang, Yongliang

    2017-06-01

    Eight wild edible Boletaceae mushrooms (227 samples) and their soils were collected from 40 locations, Yunnan province, China. Four essential metals (Fe, Mg, Zn, and Cu) and 2 toxic metals (Pb and Cd) were determined. The results showed that Boletaceae mushrooms have abundance of 4 essential metals. The highest Pb mean value was 0.70 mg/kg DW, lower than legal limits, but Cd contents significantly exceeded legal limits. Generally, bioconcentration factor (BCF) indicated that Zn and Cu were easily bioaccumulated by mushrooms. However, the BCF Cd of Boletus griseus reached to 6.40. Target hazard quotients showed Cd was the main risk metal in Boletaceae mushrooms. The metal compositional variability and the similarity of metal contents were further determined by principal component analysis. Regression model analysis indicated that Cd contents in mushrooms were positively correlated with soil Cd contents, and negatively correlated with soil pH, except for the samples of Boletus bicolor. © 2017 Institute of Food Technologists®.

  3. [Investigation and analysis of heavy metal pollution related to soil-Panax notoginseng system].

    PubMed

    Chen, Lu; Mi, Yan-Hua; Lin, Xin; Liu, Da-Hui; Zeng, Min; Chen, Xiao-Yan

    2014-07-01

    In this study, five heavy metals contamination of soil and different parts of Panax notoginseng in the plantation area was investigated. Analysis of heavy metals correlation between the planting soil and P. notoginseng; and the absorption and accumulation characteristics and translocation of soil heavy metals by P. notoginseng plants was revealed. Through field investigation and laboratory analytical methods, analysis of China's 30 different soil P. notoginseng origin and content of heavy metals in five different parts of the P. notoginseng plant content of heavy metals. The results revealed that the soil heavy metals should not be neglected in the plantation area Referring to the national soil quality standards (GB15608-1995), the excessive degree of soil heavy metals pollution showed Hg > As > Cd > Cr in the plantation area, and Pb content of soil was in the scope of the standard. Refer to 'Green Industry Standards for Import and Export of Medical Plants and Preparations', the excessive degree of heavy metals content of P. notoginseng plants showed As > Pb > Cr > Cd, and Hg content of plants was in the scope of the standard. Concentrations of five heavy metals of underground parts of P. notoginseng plants are higher than aboveground, and heavy metals elements are more concentrated in the root, followed by the rhizome of P. notoginseng plants. Heavy metal accumulation characteristics of the different parts of the P. notoginseng of the overall performance is the root > the rhizome > the root tuber > leaves > stems. From the point of view BCF value analysis of various parts of the P. notoginseng plants to absorb heavy metals in soil, BCF values of all samples were less than 1, description P. notoginseng not belong Hyperaccumulator. From the view of transportation and related analysis of the soil-P. notoginseng systems, the rhizome of P. notoginseng and the content of As and Cr in soil was significantly correlated, the root of P. notoginseng and the content of Cd in soil was significantly correlated, and no significant correlation between the other indicators. Through the analysis of transportation transfer coefficient showed: Pb, As and Cr are not easy to transport aboveground part from the underground, but Cd and Hg are relatively easy to transport stems from rhizome, the migration of five heavy metals in the aerial part is relatively strong, and heavy metal of stems is easily transported to the leaves. P. notoginseng does not belong to the enrichment of heavy metals in crops, especially for Hg in soil with strong patience. In survey area, the content of heavy metals of P. notoginseng's planting soil is relatively high, and the heavy metals As, Pb, Cr, Cd of P. notoginseng also exist heavy metals exceeded problems. Due to the presence of heavy metals in crops internal absorption and translocation of special laws, accumulation of heavy metals varied significantly in different parts of P. notoginseng. The overall, the performance for the heavy metal content of the underground parts is more than aboveground, it explain heavy metals of P. notoginseng plants is still the main source of the soiL Therefore, the key to control of planting area soil environmental quality and reduce exogenous harmful substances secondary pollution of soil in the cultivation process are to study and solve the heavy metals pollution problem of P. notoginseng.

  4. Blackberry wines mineral and heavy metal content determination after dry ashing: multivariate data analysis as a tool for fruit wine quality control.

    PubMed

    Amidžić Klarić, Daniela; Klarić, Ilija; Mornar, Ana; Velić, Darko; Velić, Natalija

    2015-08-01

    This study brings out the data on the content of 21 mineral and heavy metal in 15 blackberry wines made of conventionally and organically grown blackberries. The objective of this study was to classify the blackberry wine samples based on their mineral composition and the applied cultivation method of the starting raw material by using chemometric analysis. The metal content of Croatian blackberry wine samples was determined by AAS after dry ashing. The comparison between an organic and conventional group of investigated blackberry wines showed statistically significant difference in concentrations of Si and Li, where the organic group contained higher concentrations of these compounds. According to multivariate data analysis, the model based on the original metal content data set finally included seven original variables (K, Fe, Mn, Cu, Ba, Cd and Cr) and gave a satisfactory separation of two applied cultivation methods of the starting raw material.

  5. Analysis of physical composition and heavy metals pollution of municipal solid waste (MSW) in Beijing

    NASA Astrophysics Data System (ADS)

    Zhang, H. B.; Zhang, H. Y.; Wang, G. Q.; Bai, X. J.

    2018-03-01

    By using on-site sampling and physical-chemical analysis, the physical composition and the contents of heavy metals in Beijing MSW were researched. The result showed that the main components of MSW in Beijing are mainly kitchen waste, the average content of kitchen waste are more than 60% and 50% in summer and in winter, respectively. The pollution of Cu, Hg and Cr are all more serious for MSW in Haidian and Dongcheng district. The heavy metal pollution of MSW in summer is higher than that in winter in Beijing. Seasonal impacts should be taken into consideration when dealing with MSW. The content of heavy metals in MSW exceeded the background value of soil in Haidian and Dongcheng districts. In order to reduce heavy metal pollution, the MSW should be separated collection and treated.

  6. Assessment and genetic analysis of heavy metal content in rice grain using an Oryza sativa × O. rufipogon backcross inbred line population.

    PubMed

    Huang, De-Run; Fan, Ye-Yang; Hu, Biao-Lin; Xiao, Ye-Qing; Chen, Da-Zhou; Zhuang, Jie-Yun

    2018-03-01

    Heavy metal accumulation in rice is a growing concern for public health. Backcross inbred lines derived from an interspecific cross of Oryza sativa × O. rufipogon were grown in two distinct ecological locations (Hangzhou and Lingshui, China). The objective of this study was to characterise the contents of heavy metal in rice grains, and to identify quantitative trait loci (QTLs) for heavy metal contents. The contents of Ni, As, Pb, Cr and Hg in milled rice showed a significant decline as compared with those in brown rice, whereas the content of Cd showed little change. The concentration of heavy metal in rice grain varied greatly between the two environments. A total of 24 QTLs responsible for heavy metal contents were detected, including two for both the brown and milled rice, 13 for brown rice only, and nine for milled rice only. All the QTLs except two had the enhancing alleles derived from O. rufipogon. Sixteen QTLs were clustered in six chromosomal regions. Environmental variation plays an important role in the heavy metal contents in rice grain. QTLs detected in this study might be useful for breeding rice varieties with low heavy metal content. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Metal speciation of environmental samples using SPE and SFC-AED analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, S.C.; Burford, M.D.; Robson, M.

    1995-12-31

    Due to growing public concern over heavy metals in the environment, soil, water and air particulate samples azre now routinely screened for their metal content. Conventional metal analysis typically involves acid digestion extraction and results in the generation of large aqueous and organic solvent waste. This harsh extraction process is usually used to obtain the total metal content of the sample, the extract being analysed by atomic emission or absorption spectroscoply techniques. A more selective method of metal extraction has been investigated which uses a supercritical fluid modified with a complexing agent. The relatively mild extraction method enables both organometallicmore » and inorganic metal species to be recovered intact. The various components from the supercritical fluid extract can be chromatographically separated using supercritical fluid chromatography (SFC) and positive identification of the metals achieved using atomic emission detection (AED). The aim of the study is to develop an analytical extraction procedure which enables a rapid, sensitive and quantitative analysis of metals in environmental samples, using just one extraction (eg SFE) and one analysis (eg SFC-AED) procedure.« less

  8. Investigation on a Roman copper alloy artefact from Pompeii (Italy).

    PubMed

    Baraldi, Pietro; Baraldi, Cecilia; Ferrari, Giorgia; Foca, Giorgia; Marchetti, Andrea; Tassi, Lorenzo

    2006-01-01

    A selection of samples, obtained from a particular copper-alloy domestic artefact of Roman style from Pompeii, has been analysed by using different techniques (IR, Raman, SEM-EDX, FAAS), in order to investigate the chemical nature and composition of the metals utilised for such manufacturing pieces. The surface analysis of the bright red metallic microfragments conducted by different analytical techniques, emphasises the presence of pure unalloyed copper and confirms the absence of other metallic species on the upper layers. On the contrary, the mapping analysis of the section of the laminar metal of the investigated sample shows a consistent enrichment in tin content. Finally, destructive analysis by FAAS confirms that the artefact looks like a bronze metal alloy, with a medium Sn content of about 6.5%.

  9. Flow analysis of metals in a municipal solid waste management system.

    PubMed

    Jung, C H; Matsuto, T; Tanaka, N

    2006-01-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria for landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.

  10. Flow analysis of metals in a municipal solid waste management system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, C.H.; Matsuto, T.; Tanaka, N.

    2006-07-01

    This study aimed to identify the metal flow in a municipal solid waste (MSW) management system. Outputs of a resource recovery facility, refuse derived fuel (RDF) production facility, carbonization facility, plastics liquefaction facility, composting facility, and bio-gasification facility were analyzed for metal content and leaching concentration. In terms of metal content, bulky and incombustible waste had the highest values. Char from a carbonization facility, which treats household waste, had a higher metal content than MSW incinerator bottom ash. A leaching test revealed that Cd and Pb in char and Pb in RDF production residue exceeded the Japanese regulatory criteria formore » landfilling, so special attention should be paid to final disposal of these substances. By multiplying metal content and the generation rate of outputs, the metal content of input waste to each facility was estimated. For most metals except Cr, the total contribution ratio of paper/textile/plastics, bulky waste, and incombustible waste was over 80%. Approximately 30% of Cr originated from plastic packaging. Finally, several MSW management scenarios showed that most metals are transferred to landfills and the leaching potential of metals to the environment is quite small.« less

  11. Experimental and numerical analysis of metal leaching from fly ash-amended highway bases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cetin, Bora; Aydilek, Ahmet H., E-mail: aydilek@umd.edu; Li, Lin

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer This study is the evaluation of leaching potential of fly ash-lime mixed soils. Black-Right-Pointing-Pointer This objective is met with experimental and numerical analysis. Black-Right-Pointing-Pointer Zn leaching decreases with increase in fly ash content while Ba, B, Cu increases. Black-Right-Pointing-Pointer Decrease in lime content promoted leaching of Ba, B and Cu while Zn increases. Black-Right-Pointing-Pointer Numerical analysis predicted lower field metal concentrations. - Abstract: A study was conducted to evaluate the leaching potential of unpaved road materials (URM) mixed with lime activated high carbon fly ashes and to evaluate groundwater impacts of barium, boron, copper, and zinc leaching. Thismore » objective was met by a combination of batch water leach tests, column leach tests, and computer modeling. The laboratory tests were conducted on soil alone, fly ash alone, and URM-fly ash-lime kiln dust mixtures. The results indicated that an increase in fly ash and lime content has significant effects on leaching behavior of heavy metals from URM-fly ash mixture. An increase in fly ash content and a decrease in lime content promoted leaching of Ba, B and Cu whereas Zn leaching was primarily affected by the fly ash content. Numerically predicted field metal concentrations were significantly lower than the peak metal concentrations obtained in laboratory column leach tests, and field concentrations decreased with time and distance due to dispersion in soil vadose zone.« less

  12. Multivariate analysis of heavy metal contents in soils, sediments and water in the region of Meknes (central Morocco).

    PubMed

    Tahri, M; Benyaïch, F; Bounakhla, M; Bilal, E; Gruffat, J J; Moutte, J; Garcia, D

    2005-03-01

    Concentrations of Al, Fe, Cr, Cu, Ni, Pb and Zn in soils, sediments and water samples collected along the Oued Boufekrane river (Meknes, central Morocco) were determined. In soils, a homogeneous distribution of metal concentrations was observed throughout the study area except for Pb, which presents high enrichment at sites located at the vicinity of a main highway. In sediments, high enrichment, with respect to upstream sites, were observed downstream of the city of Meknes for Al, Cr, Fe and Ni and inside the city for Cu, Zn and Pb. In water samples, the metal contents showed to correlate with their homologues in sediments suggesting that the metal contents in water and sediments have identical origins. Descriptive statistics and multivariate analysis (principal factor method, PFM) were used to assist the interpretation of elemental data. This allowed the determination of the correlations between the metals and the identification of three main factor loadings controlling the metal variability in soils and sediments.

  13. Multiple factors impact the contents of heavy metals in vegetables in high natural background area of China.

    PubMed

    Gan, Yandong; Wang, Lihong; Yang, Guiqiang; Dai, Jiulan; Wang, Renqing; Wang, Wenxing

    2017-10-01

    A field survey was conducted to investigate the concentrations of chromium (Cr), nickel (Ni), copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in vegetables, corresponding cultivated soils and irrigation waters from 36 open sites in high natural background area of Wuzhou, South China. Redundancy analysis, Spearman's rho correlation analysis and multiple regression analysis were adopted to evaluate the contributions of impacting factors on metal contents in the edible parts of vegetables. This study concluded that leafy and root vegetables had relatively higher metal concentrations and adjusted transfer factor values compared to fruiting vegetables according to nonparametric tests. Plant species, total soil metal content and soil pH value were affirmed as three critical factors with the highest contribution rate among all the influencing factors. The bivariate curve equation models for heavy metals in the edible vegetable tissues were well fitted to predict the metal concentrations in vegetables. The results from this case study also suggested that it could be one of efficient strategies for clean agricultural production and food safety in high natural background area to breed vegetable varieties with low heavy metal accumulation and to enlarge planting scale of these varieties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. [Health risk assessment of heavy metals in atmospheric dust of Qingdao City].

    PubMed

    Zhang, Chun-Rong; Wu, Zheng-Long; Yao, Chun-Hui; Gao, Zong-Jun

    2014-07-01

    Based on the 89 atmospheric dust samples and soil samples that were collected around Qingdao, we tested and analyzed the contents of Cd, Cr, Cu, Hg, Ni, Pb, Zn. Based on these analysis results, the risk of heavy metals in atmospheric dusts to human health were assessed by using the US EPA Health Risk Assessment Model. Analysis showed that the average contents of Cd, Cr, Cu, Hg, Pb, Zn in the atmospheric dust of Shinan, Shibei and Laoshan districts were the highest. Therefore, the air pollution of these districts was more serious than the districts of Licang, Chengyang and Huangdao. Comparing the average contents of heavy metals in atmospheric dust with those in soil, we found that only the content of Hg in atmospheric dust collected from the districts of Shinan, Shibei and Laoshan was lower than that in the corresponding soil. All the contents of other heavy metals in atmospheric dust were higher than those in corresponding soil. As a whole, the heavy metals in atmospheric dust of Qingdao City showed slight difference and were less harmful to human health. However, it was harmful in some samples to human health if the contents of Cr and Pb in atmospheric dusts of Shinan, Laoshan and Chengyang districts were always kept at such high densities. Besides, the accumulation of heavy metals in atmospheric dust through various approaches and categories may obviously increase the risk of damaging human health.

  15. Impact of sediment characteristics on the heavy metal concentration and their ecological risk level of surface sediments of Vaigai river, Tamilnadu, India.

    PubMed

    Paramasivam, K; Ramasamy, V; Suresh, G

    2015-02-25

    The distributions of the metals (Al, Fe, Mg, Cd, Cr, Cu, Ni, Pb and Zn) were measured for the surface sediments of the Vaigai river, Tamilnadu, India. These values are compared with different standard values to assess the level of toxicity of the heavy metals in the sediments. Risk indices (CF, PLI and PER) are also calculated to understand the level of toxicity of the metals. Multivariate statistical analyses (Pearson's correlation analysis, cluster analysis and factor analysis) are carried out to know the inter-relationship between sediment characteristics and the heavy metals. From this analysis, it is confirmed that the contents of clay and organic matter play an important role to raise the level of heavy metal contents as well as PLI and PER (level of toxicity). Heavy metal concentrations of the samples (after removing silt and clay fractions from bulk samples) show decrease in their concentrations and risk indices compared to the level of bulk samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    PubMed

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper in sediments and the contents of copper in overlying water. And there was also significant positive correlation between the contents of copper in sediments and the contents of copper in the surface soils. And the correlation analysis showed that there were significant positive correlations among the contents of cadmium in sediments and the contents of cadmium in surface soils. The above results reflected that the copper pollution or cadmium sources of water, soil and sediments were consistent, which were mainly from heavy metal acidic waste of mining emissions. The correlations between other components were not very obvious, which reflected the sources of pollutants were different.

  17. [Effects of Tillage on Distribution of Heavy Metals and Organic Matter Within Purple Paddy Soil Aggregates].

    PubMed

    Shi, Qiong-bin; Zhao, Xiu-lan; Chang, Tong-ju; Lu, Ji-wen

    2016-05-15

    A long-term experiment was utilized to study the effects of tillage methods on the contents and distribution characteristics of organic matter and heavy metals (Cu, Zn, Pb, Cd, Fe and Mn) in aggregates with different sizes (including 1-2, 0.25-1, 0.05-0.25 mm and < 0.05 mm) in a purple paddy soil under two tillage methods including flooded paddy field (FPF) and paddy-upland rotation (PR). The relationship between heavy metals and organic matter in soil aggregates was also analyzed. The results showed that the aggregates of two tillage methods were dominated by 0.05-0.25 mm and < 0.05 mm particle size, respectively. The contents of organic matter in each aggregate decreased with the decrease of aggregate sizes, however, compared to PR, FPF could significantly increase the contents of organic matter in soils and aggregates. The tillage methods did not significantly affect the contents of heavy metals in soils, but FPF could enhance the accumulation and distribution of aggregate, organic matter and heavy metals in aggregates with diameters of 1-2 mm and 0.25-1 mm. Correlation analysis found that there was a negative correlation between the contents of heavy metals and organic matter in soil aggregates, but a positive correlation between the amounts of heavy metal and organic matter accumulated in soil aggregates. From the slope of the correlation analysis equations, we could found that the sensitivities of heavy metals to the changes of soil organic matters followed the order of Mn > Zn > Pb > Cu > Fe > Cd under the same tillage. When it came to the same heavy metal, it was more sensitive in PR than in FPF.

  18. Metals and organic compounds in the biosynthesis of cannabinoids: a chemometric approach to the analysis of Cannabis sativa samples.

    PubMed

    Radosavljevic-Stevanovic, Natasa; Markovic, Jelena; Agatonovic-Kustrin, Snezana; Razic, Slavica

    2014-01-01

    Illicit production and trade of Cannabis sativa affect many societies. This drug is the most popular and easy to produce. Important information for the authorities is the production locality and the indicators of a particular production. This work is an attempt to recognise correlations between the metal content in the different parts of C. sativa L., in soils where plants were cultivated and the cannabinoids content, as a potential indicator. The organic fraction of the leaves of Cannabis plants was investigated by GC-FID analysis. In addition, the determination of Cu, Fe, Cr, Mn, Zn, Ca and Mg was realised by spectroscopic techniques (FAAS and GFAAS). In this study, numerous correlations between metal content in plants and soil, already confirmed in previous publications, were analysed applying chemometric unsupervised methods, that is, principal component analysis, factor analysis and cluster analysis, in order to highlight their role in the biosynthesis of cannabinoids.

  19. [Evaluation on environmental quality of heavy metals in soils and vegetables based on geostatistics and GIS].

    PubMed

    Xie, Zheng-miao; Li, Jing; Wang, Bi-ling; Chen, Jian-jun

    2006-10-01

    Contents of heavy metals (Pb, Zn, Cd, Cu) in soils and vegetables from Dongguan town in Shangyu city, China were studied using geostatistical analysis and GIS technique to evaluate environmental quality. Based on the evaluation criteria, the distribution of the spatial variability of heavy metals in soil-vegetable system was mapped and analyzed. The results showed that the distribution of soil heavy metals in a large number of soil samples in Dongguan town was asymmetric. The contents of Zn and Cu were lower than those of Cd and Pb. The concentrations distribution of Pb, Zn, Cd and Cu in soils and vegetables were different in spatial variability. There was a close relationship between total and available contents of heavy metals in soil. The contents of Pb and Cd in green vegetables were higher than those of Zn and Cu and exceeded the national sanitation standards for vegetables.

  20. METAL SPECIATION IN SOIL, SEDIMENT, AND WATER SYSTEMS VIA SYNCHROTRON RADIATION RESEARCH

    EPA Science Inventory

    Metal contaminated environmental systems (soils, sediments, and water) have challenged researchers for many years. Traditional methods of analysis have employed extraction methods to determine total metal content and define risk based on the premise that as metal concentration in...

  1. Geochemical characteristics of Heavy metals of river sediment from the main rivers at Texas, USA.

    NASA Astrophysics Data System (ADS)

    Matsumoto, I.; Hoffman, D.; MacAlister, J.; Ishiga, H.

    2008-12-01

    Trinity River is one of the biggest rivers which flows through Dallas and Fort Worth two big cities of USA and are highly populated. Trinity river drains into the Gulf of Mexico. Sediment samples collected from various points along the upper and lower streams were subjected to content analysis and elution analysis (using liquate (flow) out test) on the heavy metals like Cd, CN, Pb, Cr, As, Hg, Ni, Zn and Cu from the river sediment for the purpose of environment assessment. A total of 22 sample points were identified from upper stream to lower stream and samples were collected such that almost the whole stream length of Trinity River is covered. Results show that heavy metal content through out the river stream is below the recommended limits posing no immediate environmental threat. However, the experimental results show clear impact of human population in bigger cities on heavy metal concentrations in the river sediments as compared to smaller cities with low human population. It could be seen from the analysis that all the heavy metals show relatively high content and high elution value in Dallas and Fort Worth. As we move away from the big cities, the value of content and elution of sediment decreased by natural dilution effect by the river. And we also present the data of the Colorado and San Antonio rivers.

  2. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces.

    PubMed

    Gunawardana, Chandima; Egodawatta, Prasanna; Goonetilleke, Ashantha

    2014-01-01

    Despite common knowledge that the metal content adsorbed by fine particles is relatively higher compared to coarser particles, the reasons for this phenomenon have gained little research attention. The research study discussed in the paper investigated the variations in metal content for different particle sizes of solids associated with pollutant build-up on urban road surfaces. Data analysis confirmed that parameters favourable for metal adsorption to solids such as specific surface area, organic carbon content, effective cation exchange capacity and clay forming minerals content decrease with the increase in particle size. Furthermore, the mineralogical composition of solids was found to be the governing factor influencing the specific surface area and effective cation exchange capacity. There is high quartz content in particles >150 μm compared to particles <150 μm. As particle size reduces below 150 μm, the clay forming minerals content increases, providing favourable physical and chemical properties that influence adsorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Distributing Characteristics of Heavy Metal Elements in A Tributary of Zhedong River in Laowangzhai Gold Deposit, Yunnan (China): An Implication to Environmentology from Sediments

    NASA Astrophysics Data System (ADS)

    Yang, Shuran; Danĕk, Tomáš; Yang, Xiaofeng; Cheng, Xianfeng

    2016-10-01

    Five heavy metal contents from five sediments and seven sediment profiles in an upstream reach of Zhedong river in Laowangzhai gold deposit were investigated in this research, along with analysis of the horizontal distribution, the surface distribution, the vertical distribution and the interlayer distribution of five heavy metal contents: arsenic (As), mercury (Hg), copper (Cu), lead (Pb) and zinc (Zn). The potential ecological risk of five heavy metals was evaluated to help understanding pollution control of Laowangzhai deposit.

  4. Trace element analysis of extraterrestrial metal samples by inductively coupled plasma mass spectrometry: the standard solutions and digesting acids.

    PubMed

    Wang, Guiqin; Wu, Yangsiqian; Lin, Yangting

    2016-02-28

    Nearly 99% of the total content of extraterrestrial metals is composed of Fe and Ni, but with greatly variable trace element contents. The accuracy obtained in the inductively coupled plasma mass spectrometry (ICP-MS) analysis of solutions of these samples can be significantly influenced by matrix contents, polyatomic ion interference, and the concentrations of external standard solutions. An ICP-MS instrument (X Series 2) was used to determine 30 standard solutions with different concentrations of trace elements, and different matrix contents. Based on these measurements, the matrix effects were determined. Three iron meteorites were dissolved separately in aqua regia and HNO3. Deviations due to variation of matrix contents in the external standard solutions were evaluated and the analysis results of the two digestion methods for iron meteorites were assessed. Our results show obvious deviations due to unmatched matrix contents in the external standard solutions. Furthermore, discrepancy in the measurement of some elements was found between the sample solutions prepared with aqua regia and HNO3, due to loss of chloride during sample preparation and/or incomplete digestion of highly siderophile elements in iron meteorites. An accurate ICP-MS analysis method for extraterrestrial metal samples has been established using external standard solutions with matched matrix contents and digesting the samples with HNO3 and aqua regia. Using the data from this work, the Mundrabilla iron meteorite previously classified as IAB-ung is reclassified as IAB-MG. Copyright © 2016 John Wiley & Sons, Ltd.

  5. Analysis of several heavy metals in wild edible mushrooms from regions of China.

    PubMed

    Chen, Xin-Hua; Zhou, Hong-Bo; Qiu, Guan-Zhou

    2009-08-01

    The metal (Cu, Ni, Cd, Hg, As, Pb) contents in wild edible mushrooms collected from three different sites in China were determined by atomic absorption spectrometry and atomic fluorescence spectrometry. All element concentrations were determined on a dry weight basis. A total of 11 species was studied, five being from the urban area and six from rural areas in China. The As content ranged from 0.44 to 1.48 mg/kg. The highest As content was seen in Macrolepiota crustosa from the urban area, and the lowest in Russula virescens from rural areas. A high Ni concentration (1.35 mg/kg) was found in Calvatia craniiformis from the urban area. The lowest Ni level was 0.11 mg/kg, for the species R. virescens and Cantharellus cibarius. The Cu content ranged from 39.0 to 181.5 mg/kg. The highest Cu content was seen in Agaricus silvaticus and the lowest in C. cibarius. The Pb content ranged from 1.9 to 10.8 mg/kg. The highest Pb value was found in C. craniiformis. The Cd content ranged from 0.4 to 91.8 mg/kg. The highest Cd value was found in M. crustosa. The Hg content ranged from 0.28 to 3.92 mg/kg. The highest Hg level was found in Agaricus species. The levels of the heavy metals Cd, Pb, and Hg in the studied mushroom species from urban area can be considered high. The metal-to-metal correlation analysis supported they were the same source of contamination. High automobile traffic was identified as the most likely source of the contamination. Based upon the present safety standards, consumption of those mushrooms that grow in the polluted urban area should be avoided.

  6. Ionic Liquids as a Basis Context for Developing High school Chemistry Teaching Materials

    NASA Astrophysics Data System (ADS)

    Hernani; Mudzakir, A.; Sumarna, O.

    2017-02-01

    This research aims to produce a map of connectedness highschool chemical content with the context of the modern chemical materials applications based on ionic liquids. The research method is content analysis of journal articles related to the ionic liquid materials and the textbooks of high school chemistry and textbooks of general chemistry at the university. The instrument used is the development format of basic text that connect and combine content and context. The results showed the connectedness between: (1) the context lubricants ionic liquid with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, the elements of main group, the elements of transition group, and the classification of macromolecules; (2) the context of fuel cell electrolite with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, Volta cell, and electrolysis cell; (3) the contect of nanocellulose with the content of ionic bonding, covalent bonding, metal bonding, interaction between the particles of matter, colloid, carbon compound, and the classification of macromolecules; and (4) the context of artificial muscle system with the content of ionic bond, covalent bond, metal bonding, interaction between the particles of matter, hydrocarbons, electrolytes and non-electrolytes, and the classification of macromolecules. Based on the result of this content analysis, the context of ionic liquid is predicted can be utilized for the enrichment of high school chemistry and has the potential to become teaching material’s context of high school chemistry in the future.

  7. Effect of the edaphic factors and metal content in soil on the diversity of Trichoderma spp.

    PubMed

    Racić, Gordana; Körmöczi, Péter; Kredics, László; Raičević, Vera; Mutavdžić, Beba; Vrvić, Miroslav M; Panković, Dejana

    2017-02-01

    Influence of edaphic factors and metal content on diversity of Trichoderma species at 14 different soil sampling locations, on two depths, was examined. Forty-one Trichoderma isolates from 14 sampling sites were determined as nine species based on their internal transcribed spacer (ITS) sequences. Our results indicate that weakly alkaline soils are rich sources of Trichoderma strains. Also, higher contents of available K and P are connected with higher Trichoderma diversity. Increased metal content in soil was not inhibiting factor for Trichoderma species occurrence. Relationship between these factors was confirmed by locally weighted sequential smoothing (LOESS) nonparametric smoothing analysis. Trichoderma strain (Szeged Microbiology Collection (SZMC) 22669) from soil with concentrations of Cr and Ni above remediation values should be tested for its potential for bioremediation of these metals in polluted soils.

  8. Value analysis of neodymium content in shredder feed: toward enabling the feasibility of rare earth magnet recycling.

    PubMed

    Bandara, H M Dhammika; Darcy, Julia W; Apelian, Diran; Emmert, Marion H

    2014-06-17

    In order to facilitate the development of recycling technologies for rare earth magnets from postconsumer products, we present herein an analysis of the neodymium (Nd) content in shredder scrap. This waste stream has been chosen on the basis of current business practices for the recycling of steel, aluminum, and copper from cars and household appliances, which contain significant amounts of rare earth magnets. Using approximations based on literature data, we have calculated the average Nd content in the ferrous shredder product stream to be between 0.13 and 0.29 kg per ton of ferrous scrap. A value analysis considering rare earth metal prices between 2002 and 2013 provides values between $1.32 and $145 per ton of ferrous scrap for this material, if recoverable as pure Nd metal. Furthermore, we present an analysis of the content and value of other rare earths (Pr, Dy, Tb).

  9. [Investigation of metal element content of some European and Far Eastern herbs].

    PubMed

    Süle, Krisztina; Kurucz, Dóra; Kajári, Ágnes; May, Zoltán

    2015-08-02

    Metal elements and their excess intake have significant influence on general health. There is only little information how Far Eastern herbs resemble European's regarding their purity and essential metal element content. The aim of the authors was to determine metal elements in different Chinese and European herbs and extracts. The studied European herbs included Calendula officinalis petals, Achillea millefolium, Epilobium parviflorum herba, Urtica dioica leaves, Crataegus monogyna flowers while Far Eastern herbs were Cordyceps sinensis, Ganoderma lucidum, Ginkgo biloba leaves, Panax ginseng and Curcuma longa roots. The analysis was performed using inductively coupled plasma optical emission spectroscopy. There was no considerable difference in essential metal elements and the Ca:Mg concentration ratio between European and Far Eastern drugs and extracts. The extracts are preferential metal element sources and their magnesium content are also advantageous, because of a shift of the Ca:Mg concentration ratio towards magnesium.

  10. Metal Matrix Composite Material by Direct Metal Deposition

    NASA Astrophysics Data System (ADS)

    Novichenko, D.; Marants, A.; Thivillon, L.; Bertrand, P. H.; Smurov, I.

    Direct Metal Deposition (DMD) is a laser cladding process for producing a protective coating on the surface of a metallic part or manufacturing layer-by-layer parts in a single-step process. The objective of this work is to demonstrate the possibility to create carbide-reinforced metal matrix composite objects. Powders of steel 16NCD13 with different volume contents of titanium carbide are tested. On the base of statistical analysis, a laser cladding processing map is constructed. Relationships between the different content of titanium carbide in a powder mixture and the material microstructure are found. Mechanism of formation of various precipitated titanium carbides is investigated.

  11. Effect of thermal processing and canning on cadmium and lead levels in California market squid: the role of metallothioneins.

    PubMed

    Galitsopoulou, A; Georgantelis, D; Kontominas, M G

    2013-01-01

    The effects of two common seafood preparation practices (roasting and industrial canning) on the heavy metal content--cadmium (Cd) and lead (Pb)--of various tissues of California market squid were studied. Emphasis was placed on the role of metallothioneins (MT) in Cd and Pb behaviour during processing. Cd and Pb analysis was conducted by a Zeeman GTA-AAS atomic absorption spectrometry system; MT analysis was performed by a mercury saturation assay. Results showed that Cd levels in the mantle and whole squid were considerably affected by both processing practices, reaching a 240% increase in mantle and a 40% increase in whole squid. Interestingly, Cd behaviour was associated with MT changes during squid processing. On the other hand, Pb content was not affected from either processing or associated with MT content in the raw or processed squid. Therefore, processing operations may affect Cd and Pb content differently due to the specific metal bioaccumulation and chemical features of each heavy metal type.

  12. Heavy metals content in degraded agricultural soils of a mountain region related to soil properties

    NASA Astrophysics Data System (ADS)

    Navarro-Pedreño, José; Belén Almendro-Candel, María; Gómez, Ignacio; Jordán, Manuel M.; Bech, Jaume; Zorpas, Antonis

    2017-04-01

    Agriculture has been practiced for long time in Mediterranean regions. Intensive agriculture and irrigation have developed mainly in the valleys and coastal areas. In the mountainous areas, dry farming has been practiced for centuries. Soils have been fertilized using mainly organic amendments. Plants extracted nutrients and other elements like heavy metals presented in soils and agricultural practices modified soil properties that could favor the presence of heavy metals. In this work, it has been checked the content of heavy metals in 100 agricultural soils samples of the NorthWest area of the province of Alicante (Spain) which has been long cultivated with cereals and olive trees, and now soils are abandoned and degraded because of the low agricultural yields. European policy has the aim to improve the sustainable agriculture and recover landscapes of mountain regions. So that, it is important to check the state of the soils (Marques et al. 2007). Soils samples (arable layer) were analyzed determining: pH (1:5, w/v, water extract), equivalent calcium carbonate content, organic matter by Walkley-Black method (Nelson and Sommers 1996), micronutrients (Cu, Fe, Mn, Zn) extracted with DTPA (Lindsay and Norvell, 1978) and measured by atomic absorption spectrometry, and total content of metals (Cd, Cr, Ni, Pb) measured in soil samples after microwave acid digestion (Moral et al. 1996), quantifying the content of metals by ICP analysis. The correlation between soil properties and metals. The results indicated that pH and carbonates are the most important properties of these soils correlated with the metals (both micronutrients and heavy metals). The available micronutrients (all of them) are close correlated with the pH and carbonates in soils. Moreover, heavy metals like Pb and Ni are related to available Mn and Zn. Keywords: pH, carbonates, heavy metals, abandoned soils. References: Lindsay,W.L., andW.A. Norvell. 1978. "Development of a DTPA Soil Test for Zinc, Iron, Manganese and Copper." Soil Science Society of America Journal 42: 421-428. Marques,M.J., R. Jimenez-Ballesta, A. Á lvarez, and R. Bienes. 2007. "Spanish Research on Soil Damage." Science of the Total Environment 378: 1-4. Moral, R., J. Navarro-Pedreño, I. Gómez, and J. Mataix. 1996. "Quantitative Analysis of Organic Residues: Effects of Samples Preparation in the Determination of Metal." Communications in Soil Science and Plant Analysis 27: 753-761. Nelson, D.W., and L.E. Sommers. 1996. "Total Carbon, Organic Carbon, and Organic Matter." In Methods of Soil Analysis. Part 3. Chemical Methods, edited by D.L. Sparks, A.L. Page, P.A. Helmke, R.H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M.E. Sumner. Madison, WI: American Society of Agronomy.

  13. Gas-phase synthesis of magnetic metal/polymer nanocomposites.

    PubMed

    Starsich, Fabian H L; Hirt, Ann M; Stark, Wendelin J; Grass, Robert N

    2014-12-19

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  14. Gas-phase synthesis of magnetic metal/polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Starsich, Fabian H. L.; Hirt, Ann M.; Stark, Wendelin J.; Grass, Robert N.

    2014-12-01

    Highly magnetic metal Co nanoparticles were produced via reducing flame spray pyrolysis, and directly coated with an epoxy polymer in flight. The polymer content in the samples varied between 14 and 56 wt% of nominal content. A homogenous dispersion of Co nanoparticles in the resulting nanocomposites was visualized by electron microscopy. The size and crystallinity of the metallic fillers was not affected by the polymer, as shown by XRD and magnetic hysteresis measurements. The good control of the polymer content in the product nanocomposite was shown by elemental analysis. Further, the successful polymerization in the gas phase was demonstrated by electron microscopy and size measurements. The presented effective, dry and scalable one-step synthesis method for highly magnetic metal nanoparticle/polymer composites presented here may drastically decrease production costs and increase industrial yields.

  15. Will heavy metals in the soils of newly submerged areas threaten the water quality of Danjiangkou Reservoir, China?

    PubMed

    Song, Zhixin; Shan, Baoqing; Tang, Wenzhong; Zhang, Chao

    2017-10-01

    Soil heavy metal contents were measured in newly submerged areas of the Danjiangkou Reservoir, China. We aimed to determine the heavy metal distribution in this area and the associated ecological risk. Most of these heavy metal contents (except Pb and Mn) suggest enrichment compared with the background values of soils from Henan Province, especially As and Cd with mean geo-accumulation index (I geo ) values of 0.84 and 0.54. The spatial analysis results indicated that the highest heavy metal contents were distributed in the arable soils above 160m elevation, whereas low heavy metal contents were observed under other land-use types above 160m elevation. According to I geo and EF values, Cd was the major heavy metal contaminant in the newly submerged area, Cr, Pb and Mn mainly originated from natural geochemical sources. In contrast, Ni, Cd, As, Cu, and Zn mainly originated from anthropogenic sources. Evaluation using the potential ecological risk (PER) method indicated that PER of individual elements were low in the studied soils, and the comprehensive PER index was at a moderate level, indicating heavy metals in the soils of newly submerged areas may not threaten the water quality of Danjiangkou Reservoir, especially in winter. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Mineral Element Contents in Commercially Valuable Fish Species in Spain

    PubMed Central

    Peña-Rivas, Luis; Ortega, Eduardo; López-Martínez, Concepción; Olea-Serrano, Fátima; Lorenzo, Maria Luisa

    2014-01-01

    The aim of this study was to measure selected metal concentrations in Trachurus trachurus, Trachurus picturatus, and Trachurus mediterraneus, which are widely consumed in Spain. Principal component analysis suggested that the variable Cr was the main responsible variable for the identification of T. trachurus, the variables As and Sn for T. mediterraneus, and the rest of variables for T. picturatus. This well-defined discrimination between fish species provided by mineral element allows us to distinguish them on the basis of their metal content. Based on the samples collected, and recognizing the inferential limitation of the sample size of this study, the metal concentrations found are below the proposed limit values for human consumption. However, it should be taken into consideration that there are other dietary sources of these metals. In conclusion, metal contents in the fish species analyzed are acceptable for human consumption from a nutritional and toxicity point of view. PMID:24895678

  17. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  18. A city scale study on the effects of intensive groundwater heat pump systems on heavy metal contents in groundwater.

    PubMed

    García-Gil, Alejandro; Epting, Jannis; Garrido, Eduardo; Vázquez-Suñé, Enric; Lázaro, Jesús Mateo; Sánchez Navarro, José Ángel; Huggenberger, P; Calvo, Miguel Ángel Marazuela

    2016-12-01

    As a result of the increasing use of shallow geothermal resources, hydraulic, thermal and chemical impacts affecting groundwater quality can be observed with ever increasing frequency (Possemiers et al., 2014). To overcome the uncertainty associated with chemical impacts, a city scale study on the effects of intensive geothermal resource use by groundwater heat pump systems on groundwater quality, with special emphasis on heavy metal contents was performed. Statistical analysis of geochemical data obtained from several field campaigns has allowed studying the spatiotemporal relationship between temperature anomalies in the aquifer and trace element composition of groundwater. The relationship between temperature and the concentrations of trace elements resulted in weak correlations, indicating that temperature changes are not the driving factor in enhancing heavy metal contaminations. Regression models established for these correlations showed a very low reactivity or response of heavy metal contents to temperature changes. The change rates of heavy metal contents with respect to temperature changes obtained indicate a low risk of exceeding quality threshold values by means of the exploitation regimes used, neither producing nor enhancing contamination significantly. However, modification of pH, redox potential, electrical conductivity, dissolved oxygen and alkalinity correlated with the concentrations of heavy metals. In this case, the change rates of heavy metal contents are higher, with a greater risk of exceeding threshold values. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2017-02-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity ( R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  20. Heavy Metal Concentrations in Soils and Factors Affecting Metal Uptake by Plants in the Vicinity of a Korean Cu-W Mine.

    PubMed

    Jung, Myung Chae

    2008-04-04

    Heavy metal concentrations were measured in soils and plants in and around a copper-tungsten mine in southeast Korea to investigate the influence of past base metal mining on the surface environment. The results of chemical analysis indicate that the heavy metals in soils decreased with distance from the source, controlled mainly by water movement and topography. The metal concentrations measured in plant species generally decreased in the order; spring onions > soybean leaves > perilla leaves » red pepper > corn grains » jujube grains, although this pattern varied moderately between different elements. The results agree with other reports that metal concentrations in leaves are usually much higher than those in grain. Factors influencing the bioavailability of metals and their occurrences in crops were found as soil pH, cation exchange capacity, organic matter content, soil texture, and interaction among the target elements. It is concluded that total metal concentrations in soils are the main controls on their contents in plants. Soil pH was also an important factor. A stepwise linear multiple regression analysis was also conducted to identify the dominant factors influencing metal uptake by plants. Metal concentrations in plants were also estimated by computer-aided statistical methods.

  1. Heavy metal contamination in soil, food crops and associated health risks for residents of Ropar wetland, Punjab, India and its environs.

    PubMed

    Sharma, Sakshi; Nagpal, Avinash Kaur; Kaur, Inderpreet

    2018-07-30

    In the present study, an assessment of heavy metal content in soil and food crops (wheat, rice, maize grains and mustard seeds) and associated health risks was carried out for residents of Ropar wetland and its environs. All the soil samples had high cadmium and cobalt contents, whereas, all crop samples had high contents of cobalt and lead. Bioconcentration factor (BCF) analysis indicated that rice grains act as hyper-accumulators of chromium (BCF = 17.98) and copper (BCF = 10.91), whereas, maize grains act as hyper-accumulators of copper (BCF = 30.43). One-way ANOVA suggested that heavy metal content in food crops varied significantly at p ≤ 0.05 for different sites, indicating anthropogenic contribution of heavy metals in agricultural fields. Dietary intake of cobalt via all food crops posed higher non-cancer health risk to residents in comparison to other heavy metals. Chromium posed highest cancer risk through consumption of wheat grains, being staple diet in study area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Heavy metal contents in the sediments of astatic ponds: Influence of geomorphology, hydroperiod, water chemistry and vegetation.

    PubMed

    Gołdyn, Bartłomiej; Chudzińska, Maria; Barałkiewicz, Danuta; Celewicz-Gołdyn, Sofia

    2015-08-01

    The contents of heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) were analysed in the bottom sediments of 30 small, astatic ponds located in the agricultural landscape of Western Poland. The samples were collected from 118 stations located in patches of four vegetation types. Relationships between the contents of particular elements and four groups of factors (geomorphology, hydroperiod, water quality and vegetation) were tested using Redundancy Analysis (RDA). The most important factors influencing the heavy metal contents were the maximum depth and area of the pond, its hydroperiod, water pH and conductivity values. In general, low quantities of heavy metals were recorded in the sediments of kettle-like ponds (small but located in deep depressions) and high in water bodies of the shore-bursting type (large but shallow). Moreover, quantities of particular elements were influenced by the structure of the vegetation covering the pond. Based on the results, we show which types of astatic ponds are most exposed to contamination and suggest some conservation practices that may reduce the influx of heavy metals. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria.

    PubMed

    Lederer, Jakob; Trinkel, Verena; Fellner, Johann

    2017-02-01

    A number of studies present the utilization of fly ashes from municipal solid waste incineration (MSWI) in cement production as a recycling alternative to landfilling. While there is a lot of research on the impact of MSWI fly ashes utilization in cement production on the quality of concrete or the leaching of heavy metals, only a few studies have determined the resulting heavy metal content in cements caused by this MSWI fly ashes utilization. Making use of the case of Austria, this study (1) determines the total content of selected heavy metals in cements currently produced in the country, (2) designs a scenario and calculates the resulting heavy metal contents in cements assuming that all MSWI fly ashes from Austrian grate incinerators were used as secondary raw materials for Portland cement clinker production and (3) evaluates the legal recyclability of demolished concretes produced from MSWI fly ash amended cements based on their total heavy metal contents. To do so, data from literature and statistics are combined in a material flow analysis model to calculate the average total contents of heavy metals in cements and in the resulting concretes according to the above scenario. The resulting heavy metal contents are then compared (i) to their respective limit values for cements as defined in a new technical guideline in Austria (BMLFUW, 2016), and (ii) to their respective limit values for recycling materials from demolished concrete. Results show that MSWI fly ashes utilization increases the raw material input in cement production by only +0.9%, but the total contents of Cd by +310%, and Hg, Pb, and Zn by +70% to +170%. However these and other heavy metal contents are still below their respective limit values for Austrian cements. The same legal conformity counts for recycling material derived from concretes produced from the MSWI fly ash cements. However, if the MSWI fly ash ratio in all raw materials used for cement production were increased from 0.9% to 22%, which is suggested by some studies, the limit values for cements as defined by the BMLFUW (2016) will be exceeded. Furthermore, the concrete produced from this cement will not be recyclable anymore due to its high total heavy metal contents. This and the comparatively high contribution of MSWI fly ashes to total heavy metal contents in cements indicate their relatively low resource potential if compared to other secondary raw materials in the cement industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Source of Global Scale Variations in the Midday Vertical Content of Ionospheric Metal Ions

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Grebowsky, J. M.; Pesnell, W. D.; Aikin, A. C.; Goldberg, Richard A.

    1999-01-01

    An analysis of long baseline NIMBUS 7 SBUV (Solar Backscatter UV Spectrometer) observations of the latitudinal variation of the noontime vertical Mg' content above approx. 70 km have revealed seasonal, solar activity and magnetic activity dependencies in the Mg+ content. The distributions were categorized in terms of magnetic coordinates partially because transport processes lifting metallic ions from the main meteor ionization layer below 100 km up into the F- region and down again are controlled by electrodynamical processes. Alternatively, the Nimbus Mg+ distributions may simply be a result of ion/neutral chemistry changes resulting from atmospheric changes and not dynamics. In such a case magnetic control would not dominate the distributions. Using in situ satellite measurements of metal ions from the Atmosphere Explorer satellites in the region above the main meteor layer and published sounding rocket measurements of the main metallic ion layers, the effects of the dynamics on the vertical content are delineated. The consequences of atmospheric changes on the vertical content are explored by separating the Nimbus measurements in a geodetic frame of reference.

  5. Characterization of Printed Circuit Boards for Metal and Energy Recovery after Milling and Mechanical Separation

    PubMed Central

    Bizzo, Waldir A.; Figueiredo, Renata A.; de Andrade, Valdelis F.

    2014-01-01

    The proper disposal of electrical and electronic waste is currently a concern of researchers and environmental managers not only because of the large volume of such waste generated, but also because of the heavy metals and toxic substances it contains. This study analyzed printed circuit boards (PCBs) from discarded computers to determine their metal content and characterized them as solid waste and fuel. The analysis showed that PCBs consist of approximately 26% metal, made up mainly of copper, lead, aluminum, iron and tin, as well as other heavy metals such as cadmium and nickel. Comparison with the results of other studies indicated that the concentration of precious metals (gold and silver) has declined over time. Analysis of the leachate revealed high concentrations of cadmium and lead, giving the residue the characteristics of hazardous waste. After milling the PCBs, we found that larger amounts of metal were concentrated in smaller fractions, while the lightest fraction, obtained by density separation, had a gross calorific value of approximately 11 MJ/kg, although with a high ash content. Milling followed by density separation proved potentially useful for recovery of metals and energy-rich fractions. PMID:28788692

  6. Assessment of metal(loid)s phytoavailability in intensive agricultural soils by the application of single extractions to rhizosphere soil.

    PubMed

    Pinto, Edgar; Almeida, Agostinho A; Ferreira, Isabel M P L V O

    2015-03-01

    The influence of soil properties on the phytoavailability of metal(loid)s in a soil-plant system was evaluated. The content of extractable metal(loid)s obtained by using different extraction methods was also compared. To perform this study, a test plant (Lactuca sativa) and rhizosphere soil were sampled at 5 different time points (2, 4, 6, 8 and 10 weeks of plant growth). Four extraction methods (Mehlich 3, DTPA, NH4NO3 and CaCl2) were used. Significant positive correlations between the soil extractable content and lettuce shoot content were obtained for several metal(loid)s. The extraction with NH4NO3 showed the higher number of strong positive correlations indicating the suitability of this method to estimate metal(loid)s phytoavailability. The soil CEC, OM, pH, texture and oxides content significantly influenced the distribution of metal(loid)s between the phytoavailable and non-phytoavailable fractions. A reliable prediction model for Cr, V, Ni, As, Pb, Co, Cd, and Sb phytoavailability was obtained considering the amount of metal(loid) extracted by the NH4NO3 method and the main soil properties. This work shows that the analysis of rhizosphere soil by single extractions methods is a reliable approach to estimate metal(loid)s phytoavailability. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    PubMed Central

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-01-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments. PMID:27681994

  8. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries.

    PubMed

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-29

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  9. Accumulation of heavy metals and trace elements in fluvial sediments received effluents from traditional and semiconductor industries

    NASA Astrophysics Data System (ADS)

    Hsu, Liang-Ching; Huang, Ching-Yi; Chuang, Yen-Hsun; Chen, Ho-Wen; Chan, Ya-Ting; Teah, Heng Yi; Chen, Tsan-Yao; Chang, Chiung-Fen; Liu, Yu-Ting; Tzou, Yu-Min

    2016-09-01

    Metal accumulation in sediments threatens adjacent ecosystems due to the potential of metal mobilization and the subsequent uptake into food webs. Here, contents of heavy metals (Cd, Cr, Cu, Ni, Pb, and Zn) and trace elements (Ga, In, Mo, and Se) were determined for river waters and bed sediments that received sewage discharged from traditional and semiconductor industries. We used principal component analysis (PCA) to determine the metal distribution in relation to environmental factors such as pH, EC, and organic matter (OM) contents in the river basin. While water PCA categorized discharged metals into three groups that implied potential origins of contamination, sediment PCA only indicated a correlation between metal accumulation and OM contents. Such discrepancy in metal distribution between river water and bed sediment highlighted the significance of physical-chemical properties of sediment, especially OM, in metal retention. Moreover, we used Se XANES as an example to test the species transformation during metal transportation from effluent outlets to bed sediments and found a portion of Se inventory shifted from less soluble elemental Se to the high soluble and toxic selenite and selenate. The consideration of environmental factors is required to develop pollution managements and assess environmental risks for bed sediments.

  10. Usefulness of laser ablation ICP-MS for analysis of metallic particles released to oral mucosa after insertion of dental implants.

    PubMed

    Sajnóg, Adam; Hanć, Anetta; Koczorowski, Ryszard; Makuch, Krzysztof; Barałkiewicz, Danuta

    2018-03-01

    Despite the fact that titanium is considered highly biocompatible, its presence in the oral cavity (an environment of frequently changing pH and temperature) may result in the release of titanium from intraosseous implants into the oral mucosa, causing a range of reactions from the human body. Fragments of oral mucosa collected from patients after dental implant insertion were analyzed by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The study revealed an elevated content of elements (Ti, Al, V) which are components of the metal implants and temporary cover screws. Dynamic ablation of the tissue surface was used in order to obtain maps of the content and distribution of analyzed elements. The material consisted of 30 oral mucosa tissue fragments collected 3-5 months after implantation and 10 samples collected before implantation (control group). The application of optical microscope allowed for indication and confirmation of the location of metal particles prior to LA-ICP-MS analysis. The so-obtained map permitted location of regions containing metal particles. LA-ICP-MS analysis revealed groups of samples with similar properties of metal particles, thus confirming that those metal particles were the main source of the elevated content of metals (Ti, Al, V) in the tissue after implantation. A calibration strategy based on matrix matched solid standards with powdered egg white proteins as matrix material was applied with 34 S as an internal standard. The accuracy of the analytical method was verified by ablating pellets of certified reference material ERM-BB422 Fish muscle. Copyright © 2017 Elsevier GmbH. All rights reserved.

  11. Potential Of Microalgae Chlorella vulgaris As Bioremediation Agents of Heavy Metal Pb (Lead) On Culture Media

    NASA Astrophysics Data System (ADS)

    Dewi, Endah Rita Sulistya; Nuravivah, Riza

    2018-02-01

    The purpose of this study to determine the ability of Chlorella vulgaris in absorbing Pb (lead) and the effect of the variation of Pb metal concentration on the growth of Chlorella vulgaris.This study using an experimental study with complete random design with 4 treatments, namely control (without the addition of metal), Pb1 (addition of metal 1 mg / l), Pb3 (3 mg / l) and Pb5 (5 mg / l), respectively 3 replications. Exposure Pb ion in Chlorella vulgaris for 7 days. Analysis of the metal content of Pb concentration performed on culture media after exposure it at 3 hours after dispersion Chlorella vulgaris and on day 7 of culture using the AAS method. Do also counting the growth of cells each day. The results of the analysis of the average metal content of Pb in the culture medium at the end of the study was the control (0.1980), Pb1 (0.1453), Pb3 (0.4144) and Pb5 (0.5305). While the average growth of Chlorella vulgaris at the end of the study were control (630.1116 x 104), Pb1 (829.0012 x 104), Pb3 (1069.9446 x 104) and Pb 5 (808.94450 x 104). The results of the analysis of the content of Pb in the F test shown that the difference in concentration of water Pb given real influence on the ability of Chlorella vulgaris in absorbing Pb and growth. The conclusion of this study was Chlorella vulgaris has the ability to absorb metals in the waters, and the provision of various concentrations of Pb can affect the growth of Chlorella vulgaris.

  12. Metallic content of wines from the Canary Islands (Spain). Application of artificial neural networks to the data analysis.

    PubMed

    Frías, Sergio; Conde, José E; Rodríguez, Miguel A; Dohnal, Vlasta; Pérez-Trujillo, Juan P

    2002-10-01

    Eleven elements, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb, were determined in dry and sweet wines bearing the denominations of origin of El Hierro, La Palma and Lanzarote islands (Canary Islands, Spain). Analyses were performed by flame atomic absorption spectrophotometry, with the exceptions of Li and Rb for which flame atomic emission spectrophotometry was used. The content in copper and iron did not present risks of cases. All samples presented a copper and zinc content below the maximum amount recommended by the Office International de la Vigne et du Vin (OIV) for these elements. Significant differences in the metallic content were found among the different islands. Thus, Lanzarote presented the highest mean content in sodium and lithium and the lowest mean content in rubidium, and La Palma presented the highest mean content in strontium and rubidium. Sweet wines from La Palma, elaborated as naturally sweet with over-ripe grapes, presented mean contents significantly higher with regard to dry wines from the same island in the majority of the analysed elements. Cluster analysis and Kohonen self-organising maps showed differences in wines according to the island of origin and the ripening state of the grapes. Back-propagation artificial neural networks showed better prediction ability than stepwise linear discriminant analysis.

  13. Polycyclic Aromatic Hydrocarbons Content in Contaminated Forest Soils with Different Humus Types.

    PubMed

    Lasota, Jarosław; Błońska, Ewa

    2018-01-01

    The aim of the study was to determine polycyclic aromatic hydrocarbon (PAH) content in different forest humus types. The investigation was carried out in Chrzanów Forest District in southern Poland. Twenty research plots with different humus types (mor and mull) were selected. The samples for analysis were taken after litter horizons removing from a depth of 0-10 cm (from the Of- and Oh-horizon total or A-horizon). pH, organic carbon and total nitrogen content, base cations, acidity, and heavy metal content were determined. In the natural moisture state, the activity of dehydrogenase was determined. The study included the determination of PAH content. The conducted research confirms strong contamination of study soil by PAHs and heavy metals. Our experiment provided evidence that different forest humus types accumulate different PAH amounts. The highest content of PAHs and heavy metals was recorded in mor humus type. The content of PAHs in forest humus horizon depends on the content and quality of soil organic matter. Weaker degradation of hydrocarbons is associated with lower biological activity of soils. The mull humus type showed lower content of PAHs and at the same time the highest biological activity confirmed by high dehydrogenase activity.

  14. Biomonitoring of Urban Pollution Using Silicon-Accumulating Species, Phyllostachys aureosulcata 'Aureocaulis'.

    PubMed

    Morina, Filis; Vidović, Marija; Srećković, Tatjana; Radović, Vesela; Veljović-Jovanović, Sonja

    2017-12-01

    We investigated metal accumulation in bamboo leaves during three seasons at three urban locations differing in pollution levels. The higher content of Cu, Pb, and Zn in the leaves was in correlation with the highest bioavailable content of these elements in the soil at the most polluted location. The content of leaf trace elements was higher in summer and autumn compared to spring. Scanning electron microscopy with energy dispersive X-ray spectroscopy showed that Si accumulation in bamboo leaves was the highest in epidermis and vascular tissue, and was co-localized with trace metals. Analysis of phytoliths showed co-deposition of Al, C, and Si, implying the involvement of Si in metal detoxification. Compared to a common urban tree, linden, bamboo showed better capacity to maintain cellular redox homeostasis under deteriorated environmental conditions. The results suggest that bamboo can be efficiently used for biomonitoring of air and soil metal pollution and remediation in urban areas.

  15. Trace elemental composition of curry by inductively coupled plasma optical emission spectrometry (ICP-OES).

    PubMed

    Gonzálvez, A; Armenta, S; De La Guardia, M

    2008-01-01

    A methodology based on inductively coupled plasma optical emission spectrometry (ICP-OES) after microwave-assisted acid digestion was developed to determine the content of traces elements in curry samples from the Spanish market. The methodology was validated in terms of accuracy by the analysis of citrus and tomato leaf reference materials achieving comparable results with the certified values. The trace metal content of curry samples was compared with data available from previously published reports concerning Indian samples, especially in terms of heavy metal composition, in order to guarantee the quality of the commercially available spices in the European countries. Values found for the analysis of arsenic, lead and cadmium were significantly lower than the maximum limit allowed by European Union statutory limits for heavy metals and lower than those obtained for Indian curry leaves reported by Indian research teams by using neutron activation and γ-ray analysis.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hichwa, B.P.; Pun, D.D.; Wang, D.

    A multielemental analysis to determine the trace metal content of generic and name-brand aspirins and name-brand lipsticks was done via proton induced x-ray (PIXE) measurements. The Hope College PIXE system is described as well as the target preparation methods. The trace metal content of twelve brands of aspirin and aspirin substitutes and fourteen brands of lipstick are reported. Detection limits for most elements are in the range of 100 parts per billion (ppb) to 10 parts per million (ppm).

  17. The effects of low-tide rainfall on metal content of suspended sediment in the Sacramento-San Joaquin Delta

    NASA Astrophysics Data System (ADS)

    Moskalski, S. M.; Torres, R.; Bizimis, M.; Bergamaschi, B. A.; Fleck, J.; Goni, M. A.

    2012-12-01

    Rain falling near low tide is capable of eroding and transporting cohesive sediment from marsh and mudflat surfaces. Given that metals adsorb strongly to silt- and clay-sized particles, it is conceivable that lowtide rainfall may also liberate previously-deposited metals from storage in intertidal sediment. To investigate the potential for rainfall as an agent of remobilization of metals, this study tested the hypothesis of sediment, and therefore metals and nutrients, mobilization during these punctuated low-tide rainfall events. Water samples were collected during low-tide rain events in winter and wind resuspension events in summer from a marsh in central California. The concentrations of suspended sediment, particulate organic carbon and nitrogen, and total adsorbed concentration (mass of metal per volume of filtered water) of most metals were higher during a low tide rainfall event than during wind-only and fair-weather events. Metal contents (mass of metal per mass of sediment) were also greater during the rain event for most metals. Principle components analysis and the relationships between total adsorbed metals and SSC suggest rainfall during low tide can mobilize a different source of sediment than the background sediment available for tidal and wind-wave resuspension. The metal content of bulk sediment samples from around the study area could not be matched satisfactorily to the suspended sediment in any of the events, implying that bulk sediment should not be used to extrapolate to suspended sediment in terms of adsorbed metal content. Some of the adsorbed metals were present during the rain event in amounts that could be toxic, depending on the actual bioavailability of the metals.; Summary plots of measured organic parameters. (A) POC (B) PN (C) C:N (D) total leachable metal concentration, sum of all measured metals. The solid line inside box is the median and the dashed line is the mean.

  18. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  19. [Biochemical protective mechanisms in the accumulation of heavy metals in organisms].

    PubMed

    Petukhov, A S; Petukhova, G A

    At present due to the environmental contamination by heavy metals there is a great interest to investigate the processes of their both accumulation in plants and toxic effect on biochemical indices. Therefore the objective of this research was the analysis of the alteration of the system of antioxidant protection ofplants in conditions of soil contamination by copper and zinc. Research object were germinants of oat in amount of300 plants in each variant of the experiment. For the performance of the experiment, the sand was equally contaminated by sulfates of Cu and Zn in concentration of 2 MPC on its gross content in soil. The experiment lastedfor 2 weeks. For the implementation of the objective of research there was analyzed the contentof both Cu and Zn in plants exposed to soil contamination. Additionally there was performed an analysis of as the content of lipids peroxidation products, phenols and flavonoids; as well the activity ofperoxidase, catalase and photosynthetic system. Under the soil contamination by copper and zinc corresponding to 2 MPC the accumulation of heavy metals was established to be happening in plants. If compared copper accumulation was higher than zinc accumulation that can be explained by the high migration capability of zinc. Under combined impact of two metals there was revealed their antagonistic interaction. There was established an elevated content of lipids peroxidation products in cells as a sequence of the accumulation of heavy metals in plants. As a result of the elevation of the content of lipids peroxidation products there was revealed a raised activity ofphotosynthetic apparatus and antioxidant system (carotenoids, catalase and peroxidase) in the cell. The decrease of the content ofphenols and flavonoids is related with the usage of this system of antioxidant protection for the neutralization of lipids peroxidation processes.

  20. Investigation of historical metal objects using Laser Induced Breakdown Spectroscopy (LIBS) technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abdel-Kareem, O.; Ghoneim, M.; Harith, M. A.

    2011-09-22

    Analysis of metal objects is a necessary step for establishing an appropriate conservation treatment of an object or to follow up the application's result of the suggested treatments. The main considerations on selecting a method that can be used in investigation and analysis of metal objects are based on the diagnostic power, representative sampling, reproducibility, destructive nature/invasiveness of analysis and accessibility to the appropriate instrument. This study aims at evaluating the usefulness of the use of Laser Induced Breakdown Spectroscopy (LIBS) Technique for analysis of historical metal objects. In this study various historical metal objects collected from different museums andmore » excavations in Egypt were investigated using (LIBS) technique. For evaluating usefulness of the suggested analytical protocol of this technique, the same investigated metal objects were investigated by other methods such as Scanning Electron Microscope with energy-dispersive x-ray analyzer (SEM-EDX) and X-ray Diffraction (XRD). This study confirms that Laser Induced Breakdown Spectroscopy (LIBS) Technique is considered very useful technique that can be used safely for investigating historical metal objects. LIBS analysis can quickly provide information on the qualitative and semi-quantitative elemental content of different metal objects and their characterization and classification. It is practically non-destructive technique with the critical advantage of being applicable in situ, thereby avoiding sampling and sample preparations. It is can be dependable, satisfactory and effective method for low cost study of archaeological and historical metals. But we have to take into consideration that the corrosion of metal leads to material alteration and possible loss of certain metals in the form of soluble salts. Certain corrosion products are known to leach out of the object and therefore, their low content does not necessarily reflect the composition of the metal at the time of the object manufacture. Another point should be taken into consideration that the heterogeneity of a metal alloy object that often result from poor mixing of the different metal alloy composition.There is a necessity to carry out further research to investigate and determine the most appropriate and effective approaches and methods for conservation of these metal objects.« less

  1. Characterization of Arab medium crude fractions with emphasis on kinematic viscosity - temperature behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beg, S.A.; Amin, M.B.; Hussain, I.

    1986-01-01

    Characterization of Arab medium Crude Oil, has been carried out in terms of API gravity, debutanized crude gravity, total sulfur content, Reid vapour pressure ash content, heating value, salt content, viscosity SUS, vanadium content as V/sub 2/O/sub 5/, pour point and analysis of various metals. Further, six true boiling point (TBP) fractions (IBP-95/sup 0/C, 95-205/sup 0/C, 205-260/sup 0/C, 260-345/sup 0/C, 345-455/sup 0/C and 455/sup 0/C+) of this crude were characterized in terms of API gravity, total sulfur contents H/sub 2/S content, mercaptons content, molecular weight, elemental analyses for total carbon, hydrogen and nitrogen, analyses of various metals and paraffin, aromaticmore » and naphthene contents of lighter fractions. The kinematic viscosity-temperature data have been obtained for 95/sup 0/C+ TBP fractions for a wide range of temperatures.« less

  2. [Application of in vitro bionic digestion and biomembrane extraction for metal speciation analysis, bioavailability and risk assessment in lianhua qingwen capsule].

    PubMed

    Lin, Lu-Xiu; Li, Shun-Xing; Zheng, Feng-Ying

    2014-06-01

    One of the causes of the high cost of pharmaceuticals and the major obstacles to rapidly assessing the bioavailability and risk of a chemical is the lack of experimental model systems. A new pre-treatment technology, in vitro bionic digestion was designed for metal analysis in Lianhua Qingwen capsule. The capsule was digested on 37 degrees C under the acidity of the stomach or intestine, and with the inorganic and organic compounds (including digestive enzymes) found in the stomach or intestine, and then the chyme was obtained. Being similar to the biomembrane between the gastrointestinal tract and blood vessels, monolayer liposome was used as biomembrane model Affinity-monolayer liposome metals (AMLMs) and water-soluble metals were used for metal speciation analysis in the capsule. Based on the concentration of AMLMs, the main absorption site of trace metals was proposed. The metal total contents or the concentration of AMLMs in the capsule were compared to the nutritional requirements, daily permissible dose and heavy metal total contents from the "import and export of medicinal plants and preparation of green industry state standards". The metal concentrations in the capsule were within the safety baseline levels for human consumption. After in vitro bionic digestion, most of trace metals were absorbed mainly in intestine. The concentration of As, Cd, Pb was 0.38, 0.07, 1.60 mg x kg(-1), respectively, far less than the permissible dose from the "import and export of medicinal plants and preparation of green industry state standards".

  3. Content Heavy Metal Pb, Cd In Perna viridis And Sediments In Semarang Bay

    NASA Astrophysics Data System (ADS)

    Suprapto, D.; Suryanti, S.; Latifah, N.

    2018-02-01

    Waste disposal from human activities, generally contain heavy metals such as Pb and Cd which derived from industrial activities. The aims of the study were to know the concentration of Pb and Cd heavy metals contained in Perna viridis tissue, sediment and water at Semarang Bay. This study was conducted in May 2017 at Semarang Bay. - Samples were collected using purposive sampling method. The heavy metal content in the water and clam was observed using- APHA method and was analyzed using AAS (Atomic Absorption Spectrophotometer). The results showed that concentration of heavy metal of Pb in the water was 0.00-50.5mg/L and the Cd content was of 26.9-51.7 mg/L, whereas the concentration of Pb in the sediment is 445.5-2.053.0mg/L and Cd 963.3-2,150.0 mg/L. Pb content in soft tissue of Perna viridis - is 67.1-1.933.9 mg/L and the concentration of Cd was 203.5-5.787.3 mg/L. The analysis of Pb and Cd in seawater, sediment and soft tissue of Perna viridis according to Enviroment Ministerial decree (KepMenLH ) number 51 of 2004 and applied by NOAA 1999 does not exceed the quality standard, that meant that the Perna viridis has been contaminated by metal Pb it is controversial with the above sentence and Cd. It concluded that the metal content of Pb and Cd in Perna viridis tissue exceeds the quality standard, so it is not suitable to be consumed, especially in high quantity

  4. Property Analysis of Ethanol− Natural Gasoline−BOB Blends to Make Flex Fuel

    EPA Pesticide Factsheets

    Ten natural gasolines were analyzed for a wide range of properties, including Reid vapor pressure (RVP), benzene, sulfur, distillation, stability, metals, and aromatic content, to determine their quality. Benzene and sulfur content were sufficiently low

  5. Characterization of Spanish honeys with protected designation of origin "Miel de Granada" according to their mineral content.

    PubMed

    de Alda-Garcilope, C; Gallego-Picó, A; Bravo-Yagüe, J C; Garcinuño-Martínez, R M; Fernández-Hernando, P

    2012-12-01

    Honey attributes such as geographical origin or specified botanical sources often command a premium price due to their organoleptic or pharmacoactive properties. "Miel de Granada" is a highly quality product with protected designation of origin (PDO) which includes six monofloral honeys and two multifloral honeys. Our objective was the characterization of "Miel de Granada" according to their metal content. Metal content was specific enough and allowed discrimination from honeys of different botanical and geographical origins and confirmed the authenticity of PDO labelling as Granada product with the determination of only five elements (K, Na, Ca, Mg and Zn). Chemometric techniques as cluster analysis and ANOVA were used to classify honeys according to their botanical and geographical origin in the metal data. Metal content marks the differences in honey samples and can be used as a tool to assess the quality of honeys. ANOVA showed significant differences among rosemary honeys from different geographical areas despite the botanical factor weight. Our research contributes to the groundwork studies to determine the geographical origin of Spanish honeys. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Hydrogen mitigation in submerged arc welding

    NASA Astrophysics Data System (ADS)

    Klimowicz, Steven

    With the role of hydrogen in weld metal well understood in its relation to cold cracking, there has been a push to produce welds with lower and lower diffusible hydrogen contents. The push for lower diffusible hydrogen contents has placed pressure on consumables manufactures to create consumables that can achieve the requirements for lower diffusible hydrogen content. Currently EM12K flux is produced so that it can achieve below 4 ml of diffusible hydrogen for every 100g of weld metal deposited (ml/100g) for submerged arc welding (SAW). The recent trend for industry is to preferentially achieve diffusible hydrogen contents below 3 ml/100g. Making it necessary to find a way to modify the flux to achieve a lower diffusible hydrogen content for the welds it produces. To achieve this goal a two phase plan was developed. The first phase was to characterize the entire welding system for hydrogen. Since the goal of the project is hydrogen mitigation, any amount of hydrogen that could be reduced is helpful and therefore must first be discovered. Sources of hydrogen may be found by analyzing the welding wire and base metal, as well as breaking the flux down into its components and production steps. The wire was analyzed for total hydrogen content as was the base metal. The flux and its components were analyzed using differential thermal analysis-simultaneous thermal analysis (DTA-STA) and later vacuum degassing for moisture content. The analysis of the wire showed that the copper coating on the wire was the largest contributor of hydrogen. There was lubricant present on the wire surface as well, but it did not contribute as much as the copper coating. It was found that a simple low temperature baking of the wire was enough to remove the lubricant and coating moisture. The base metal was found to have a similar total hydrogen content to that of the wire. The breakdown of the flux and production process for moisture content analysis revealed that the production process removes the moisture that is added by the water based binder. The second phase of the project was to modify the flux with fluoride additions to remove hydrogen from the arc while welding. The introduction of fluorine into the arc would lower the amount of hydrogen that may be absorbed as diffusible hydrogen by the weld metal. To select the fluorides a series of thermodynamic calculations were performed as well as simple tests to determine the fluorides behavior in a welding arc and flux. From these tests the following fluorides were selected to be used to be added to EM12K flux as oneweight percent additions: SrF 2, K2TiF6, K2SiF6, and LiF. Welds were then run with the experimental fluxes according to AWS A4.3 standard for diffusible hydrogen testing. From these tests it was found that none experimental fluxes were able to achieve a diffusible hydrogen content lower than the original EM12K flux. It was also found that fluoride reduction in a simple flux is a better predictor of fluoride effectiveness than decomposition temperature.

  7. Trace Metals Derived from Electronic Cigarette (ECIG) Generated Aerosol: Potential Problem of ECIG Devices That Contain Nickel

    PubMed Central

    Palazzolo, Dominic L.; Crow, Andrew P.; Nelson, John M.; Johnson, Robert A.

    2017-01-01

    Introduction: ECIGs are currently under scrutiny concerning their safety, particularly in reference to the impact ECIG liquids (E-liquids) have on human health. One concern is that aerosolized E-liquids contain trace metals that could become trapped in respiratory tissues and induce pathology. Methods: To mimic this trapping, peristaltic pumps were used to generate and transport aerosol onto mixed cellulose ester (MCE) membranes where aluminum (Al), arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), lead (Pb), and zinc (Zn) were subsequently captured and quantified. The presence of trace metals on unexposed MCE membranes and on MCE membranes exposed to mainstream smoke served as control and comparison, respectively. The presence of these metals was also determined from the E-liquid before aerosolization and untouched by the ECIG device. All metals were quantified using ICP-MS. The ECIG core assembly was analyzed using scanning electron microscopy with elemental analysis capability. Results: The contents (μg) of Al, As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn on control MCE membranes were 1.2 ± 0.2, 0.050 ± 0.002, 0.047 ± 0.003, 0.05 ± 0.01, 0.001 ± 0.001, 0.16 ± 0.04, 0.005 ± 0.003, 0.014 ± 0.006, and 0.09 ± 0.02, respectively. The contents of all trace metals on MCE membranes exposed to aerosol were similar to controls, except Ni which was significantly (p < 0.01) higher (0.024 ± 0.004 μg). In contrast, contents of Al, As, Fe, Mn, and Zn on MCE membranes exposed to smoke were significantly higher (p < 0.05) than controls. The contents of Al, As, Cu, Fe, and Mn on smoke-exposed MCE membranes were also significantly higher (p < 0.05) than their content on aerosol-exposed membranes. The contents per cigarette equivalent of metals in E-liquid before aerosolization were negligible compared to amounts of aerosolized E-liquid, except for Fe (0.002 μg before and 0.001 μg after). Elemental analysis of the core assembly reveals the presence of several of these trace metals, especially Al, Fe, Ni, and Zn. Conclusions: In general, from the single ECIG-device/E-liquid combination used, the amount of trace metals from ECIG-generated aerosol are lower than in traditional mainstream smoke, Only Ni in the ECIG-generated aerosol was higher than control. The most probable source of Ni in this aerosol is the core assembly. PMID:28119618

  8. Trace metal depositional patterns from an open pit mining activity as revealed by archived avian gizzard contents.

    PubMed

    Bendell, L I

    2011-02-15

    Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. [Analysis of biological material originating from the body of general Władysław Sikorski for inorganic poisons and diatoms presence].

    PubMed

    Sadlik, Józefa Krystyna; Brozek-Mucha, Zuzanna

    2009-01-01

    Results of the analysis of biological materials originating from the body of general Sikorski are presented in the paper. Samples of the liver, kidney, intestine and lung were analysed for metals and As content, and samples of the lung, liver, kidney, stomach, intestine and bone marrow--for diatoms presence. The analysis for metals and As was performed by atomic absorption spectrometry (AAS) and inductively coupled plasma optical emission spectrometry (ICP-OES). Before the analysis, the samples were wet digested by the classic and microwave assisted method. The analysis did not result in detecting the presence of As, Co, Ni, and Tl in any of the studied materials, while Hg was not revealed in the liver, intestines and lung and Pb in the intestines and lung. The content of Ba, Cd, Cr, Cu, Fe, Mn, Sr and Zn in all the studied materials, Hg in the kidney, and Pb in the liver and kidney did not indicate poisoning by the above-mentioned metals or arsenic. No diatoms were found in the studied materials.

  10. Microchemical Analysis of Non-Metallic Inclusions in C-Mn Steel Shielded Metal Arc Welds by Analytical Transmission Electron Microscopy.

    DTIC Science & Technology

    1998-06-01

    transformation ( CCT ) diagram Figure 2.2. The microstructures that develop are determined by the cooling rate, alloying element and oxygen content of the weld...TIME Figure 2.2 CCT Diagram for the weld metal of low-carbon, low-alloy steels [From Ref. 2] To assist material scientists in microstructure

  11. Mathematical modelling for distribution of heavy metals in estuary area of Red River (Vietnam)

    NASA Astrophysics Data System (ADS)

    Nguyen, N. T. T.; Volkova, I. V.

    2018-05-01

    In this paper, the authors studied the features of spatial distribution of some heavy metals (Pb, Hg, As) in the system “suspended substance - bottom sediments” in the mouth area of the Red River (Vietnam). A mathematical modelling for diffusion processes of heavy metals in a suspended form, in bottom sediments and the spatial analysis for the results of these models were proposed and implemented. The studies were carried out during main hydrological seasons of 2014 - 2016 (during the flood and inter-natal periods). The propagation of heavy metals was modeled by solving the equation of turbulent diffusion. A spatial analysis of the content of heavy metals in the suspended form and in the bottom sediments was implemented by using the interpolation model in ArcGIS 10.2.2. The distribution of Pb, Hg, As concentration of the suspended form and bottom sediment phases in the estuary area of the Red River was characterized by maximum in the mouths of the branches and general decreasing gradient towards the sea. Maximum concentrations of Pb, Hg in suspended forms were observed in the surface layer of water at the river-sea barrier. The content of Hg and As in the estuary region of the Red River was observed in the following order: SSsurf< SSbott< BS; and content of Pb – SS >BS.

  12. Monitoring of heavy metals in selected Water Supply Systems in Poland, in relation to current regulations

    NASA Astrophysics Data System (ADS)

    Szuster-Janiaczyk, Agnieszka; Zeuschner, Piotr; Noga, Paweł; Skrzypczak, Marta

    2018-02-01

    The study presents an analysis of water quality monitoring in terms of the content of heavy metals, which is conducted in three independent water supply systems in Poland. The analysis showed that the monitoring of heavy metals isn't reliable - both the quantity of tested water samples and the location of the monitoring points are the problem. The analysis of changes in water quality from raw water to tap water was possible only for one of the analysed systems and indicate a gradual deterioration of water quality, although still within acceptable limits of legal regulations.

  13. Influence of head size on the development of metallic wear and on the characteristics of carbon layers in metal-on-metal hip joints

    PubMed Central

    Sprecher, Christoph M; Wimmer, Markus A; Milz, Stefan; Taeger, Georg

    2009-01-01

    Background and purpose Particles originating from the articulating surfaces of hip endoprostheses often induce an inflammatory response, which can be related to implant failure. We therefore analyzed the metal content in capsular tissue from 44 McKee-Farrar metal-on-metal hip prostheses (with 3 different head sizes) and we also analyzed the morphological structure of layers located on articulating surfaces. Methods Atomic absorption spectrometry (AAS) was used to analyze the metal content in capsular tissue. Visually detectable carbon layers located on the articulating surfaces were evaluated using scanning electron microscopy (SEM), energy-dispersive Xray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). Results Metallic debris was detected in all capsular tissue samples but no statistically significant differences in metal content were found in relation to implant head size. The morphological characteristics of the different layer zones allowed an exact analysis of contact and non-contact areas. Furthermore, surface layers appear to have a protective function because they can prevent sharp-edged particles from damaging the prostheses surface. Interpretation The implant head size does not appear to influence the amount of metallic debris. The layers obviously act like a lubricating agent because the protection function does not occur in regions without layers where the metal surface often shows numerous scratches. As layers are not generated immediately after the implantation of hip prostheses, these findings may at least partially explain the high amount of wear early after implantation. PMID:19421914

  14. A new perspective on metals and other contaminants in fluoridation chemicals*

    PubMed Central

    Mullenix, Phyllis J

    2014-01-01

    Background: Fluoride additives contain metal contaminants that must be diluted to meet drinking water regulations. However, each raw additive batch supplied to water facilities does not come labeled with concentrations per contaminant. This omission distorts exposure profiles and the risks associated with accidents and routine use. Objectives: This study provides an independent determination of the metal content of raw fluoride products. Methods: Metal concentrations were analyzed in three hydrofluorosilicic acid (HFS) and four sodium fluoride (NaF) samples using inductively coupled plasma-atomic emission spectrometry. Arsenic levels were confirmed using graphite furnace atomic absorption analysis. Results: Results show that metal content varies with batch, and all HFS samples contained arsenic (4.9–56.0 ppm) or arsenic in addition to lead (10.3 ppm). Two NaF samples contained barium (13.3–18.0 ppm) instead. All HFS (212–415 ppm) and NaF (3312–3630 ppm) additives contained a surprising amount of aluminum. Conclusions: Such contaminant content creates a regulatory blind spot that jeopardizes any safe use of fluoride additives. PMID:24999851

  15. Does heavy metal exposure affect the condition of Whitethroat (Sylvia communis) nestlings?

    PubMed

    Turzańska-Pietras, Katarzyna; Chachulska, Justyna; Polechońska, Ludmiła; Borowiec, Marta

    2018-03-01

    Anthropogenic pollution results in high concentrations of heavy metals in the environment. Due to their persistence and a high potential for bioaccumulation, metals are a real threat for birds breeding in industrial areas. The aim of the present study has been to explore the contents of heavy metals (arsenic As, cadmium Cd, chromium Cr, copper Cu, iron Fe, nickel Ni, lead Pb and zinc Zn) in the excreta of Whitethroat (Sylvia communis) nestlings living in polluted environment and to investigate the relationship between these contents and the nestlings' condition. Excrement samples contained all the studied elements. The contents of arsenic, cadmium, copper and zinc in the excreta of nestlings from nests located close to a slag dump were several times higher than in the soil near the dump, which suggested accumulation in food consumed by the birds. Condition parameters (body mass and haemoglobin concentration) were not related to heavy metal concentrations in the nestlings' excreta, except of Zn. It is possible that Whitethroats are able to detoxicate heavy metals to a certain extent. Detailed, multi-element analysis of the environment, food and bird tissues or excreta should be performed to explore relations between different chemicals and bird condition.

  16. Assessment of human health risk related to metals by the use of biomonitors in the province of Córdoba, Argentina.

    PubMed

    Carreras, Hebe A; Wannaz, Eduardo D; Pignata, María L

    2009-01-01

    The evaluation of metal contents in the environment is of vital importance for the assessment of human exposure. Thus the species Usnea amblyoclada, Ramalina celastri and Tillandsia capillaris were tested as bioaccumulators of transition metals in the urban area of Córdoba city, Argentina. The level of metals on biomonitors was compared to that of total deposition samples. All three species discriminated zones within the urban area of Córdoba city with different pollution levels; they revealed high levels of Zn in the downtown area and confirmed high levels of some transition metals in an industrial area. The correlation analysis revealed that the lichen R. celastri had the highest correlation rates with total deposition samples, suggesting it is a valuable biomonitor of atmospheric pollution. A significant relationship was also observed between respiratory diseases in children and the contents of metal accumulated in R. celastri and T. capillaris, indicating their usefulness when assessing human exposure to metals.

  17. Pixe analysis of trace elements in tissues of rats treated with anticonvulsants

    NASA Astrophysics Data System (ADS)

    Hurd, R. W.; Van Rinsvelt, H. A.; Kinyua, A. M.; O'Neill, M. P.; Wilder, B. J.; Houdayer, A.; Hinrichsen, P. F.

    1987-04-01

    Several lines of evidence implicate metals in epilepsy. Anticonvulsant drugs are noted to alter levels of metals in humans and animals. PIXE analysis was used to investigate effects of three anticonvulsant drugs on tissue and brain cortex trace elements. The content of zinc and copper was increased in liver and spleen of rats treated with anticonvulsants while selenium was decreased in cortex.

  18. Mobility and storage sinks for chromium and other metals in soils impacted by leather tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2012-12-01

    Leather tanneries around the world, including China, introduce chromium (Cr) and other metals into the environment. In China, the population pressure compels the utilization of every piece of available land for food production. In this study, we investigated the content, leachability and possible storage sinks for Cr and other metals in soils around facilities of leather industry in southern China. It was found that Cr in soils impacted by tannery can be as high as 2484 mg Cr kg⁻¹ soil, and the mean contents of other metals such as Zn (214 mg Zn kg⁻¹ soil), Cd (5.4 mg Cd kg⁻¹ soil), As (17 mg As kg⁻¹ soil) exceeded the soil quality standards and guidelines in China and Canada. Simulated leaching studies (i.e., Synthetic Precipitation Leaching Procedure) indicated that these soils could release Cr and other metals in concentrations above the environmental quality guidelines and standards for water in China and Canada. As a result, the mobility of metals from these soils can potentially contaminate both groundwater and surface water. We also found differential leachability of metals with soil properties such as total metal and total carbon contents. Principal component analysis of the total contents of 32 elements showed that the possible major sinks for Cr are organic matter and oxides of Fe/Mn/Al, while sulfates and phosphates are potential storage of Cd, Zn, Cu and Pb. The information obtained from this study can be valuable for the restoration of ecosystem functions (i.e., food production) in the study area.

  19. The impact of sewage sludge treatment on the content of selected heavy metals and their fractions.

    PubMed

    Ignatowicz, Katarzyna

    2017-07-01

    The aim of the study was to assess the physicochemical properties of compost made of municipal sewage sludge from selected Municipal Sewage Treatment Plant. Content of basic macroelements and heavy metals (Zn, Cu, Cr, Cd, Ni, Pb, Hg, Mg, Ca, N, P, K, Na) and their fractions was determined by means of BCR method. Based on the analyzes, it was found that the content of heavy metals in compost did not exceed the limits set by natural land management of sewage sludge; the compost is very abundant in biogenic elements - nitrogen and phosphorus - and it can be also considered a significant source of calcium and magnesium. The analysis of results obtained from the three-stage chemical extraction revealed that deposits subjected to aerobic stabilization and composting accumulate metals (in descending sequence) in fractions III and II, i.e. fractions virtually inaccessible to the ecosystem in optimal conditions of use. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Analysis on Heavy Metal Distribution in Overlying Deposit and Pollution Characteristics in Drainage Basin of Xiaojiang River in Dongchuan District, China

    NASA Astrophysics Data System (ADS)

    Huang, Qianrui; Cheng, Xianfeng; Xu, Jun; Qi, Wufu; Yang, Shuran; Dong, Tao; Zhang, Xiangqun

    2017-12-01

    The distribution characteristics of heavy metal (Cu, Zn, As, Pb and Cd) content in overlying deposit in Xiaojiang River is analyzed in this thesis, and potential ecological risk index is adopted to evaluate the potential ecological risk of heavy metal pollution in the overlying deposit. Results indicate that the heavy metal (Cu, Zn, As, Pb and Cd) content in overlying deposit in Xiaojiang River all has exceeded standard, especially the content near diggings which is much higher than the national first standard value. And this will affect the bottom mud and river system of Jinsha River to some extent. Cu and Cd are the key pollutants and should be taken as the key object of study. It can be seen from comparison between samples in wet season and that in dry season that pollutants in bottom mud will be released due to the effect of pH value, and secondary pollution of the river will be caused.

  1. Environmental radiation and potential ecological risk levels in the intertidal zone of southern region of Tamil Nadu coast (HBRAs), India.

    PubMed

    Punniyakotti, J; Ponnusamy, V

    2018-02-01

    Natural radioactivity content and heavy metal concentration in the intertidal zone sand samples from the southern region of Tamil Nadu coast, India, have been analyzed using gamma ray spectrometer and ICP-OES, respectively. From gamma spectral analysis, the average radioactivity contents of 238 U, 232 Th, and 40 K in the intertidal zone sand samples are 12.13±4.21, 59.03±4.26, and 197.03±26.24Bq/kg, respectively. The average radioactivity content of 232 Th alone is higher than the world average value. From the heavy metal analysis, the average Cd, Cr, Cu, Ni, Pb, and Zn concentrations are 3.1, 80.24, 82.84, 23.66, 91.67, and 137.07ppm, respectively. The average Cr and Ni concentrations are lower, whereas other four metal (Cd, Cu, Pb, and Zn) concentrations are higher than world surface rock average values. From pollution assessment parameter values, the pollution level is "uncontaminated to moderately contaminated" in the study area. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    PubMed

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  3. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    PubMed

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  4. Mineral Composition of Wild and Cultivated Blueberries.

    PubMed

    Dróżdż, Paulina; Šėžienė, Vaida; Pyrzynska, Krystyna

    2018-01-01

    The concentrations of 13 elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn) were determined in several samples of native (wild) naturally growing and cultivated blueberry fruits. The total metal contents after mineralization were analyzed by inductively coupled plasma optical emission spectrometry. Reliability of the procedure was checked by the analysis of the certified reference materials Mixed Polish Herbs (INGT-MPH-2) and Leaves of Poplar (NCS DC 73350). In the fruits collected in the forest (wild blueberries), higher contents of Ca, Na, and Mg as well as Mn and Zn were observed. Similar levels of Cu, Cr, Fe, and Ni were detected in both wild-growing and cultivated plants. The significantly higher content of Fe and Cd in cultivated blueberries was connected with the content of these metals in soil samples collected from the same places. The metal extraction efficiency by hot water varied widely for the different blueberries (wild or cultivated) as well as their form (fresh or dried).

  5. Proximate Composition, Amino Acid, Mineral, and Heavy Metal Content of Dried Laver

    PubMed Central

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-01-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals. PMID:24471123

  6. Proximate composition, amino Acid, mineral, and heavy metal content of dried laver.

    PubMed

    Hwang, Eun-Sun; Ki, Kyung-Nam; Chung, Ha-Yull

    2013-06-01

    Laver, a red algae belonging to the genus Porphyra, is one of the most widely consumed edible seaweeds. The most popular commercial dried laver species, P. tenera and P. haitanensis, were collected from Korea and China, respectively, and evaluated for proximate composition, amino acids, minerals, trace heavy metals, and color. The moisture and ash contents of P. tenera and P. haitanensis ranged from 3.66~6.74% and 8.78~9.07%, respectively; crude lipid and protein contents were 1.96~2.25% and 32.16~36.88%, respectively. Dried lavers were found to be a good source of amino acids, such as asparagine, isoleucine, leucine, and taurine, and γ-aminobutyric acid. K, Ca, Mg, Na, P, I, Fe, and Se minerals were selected for analysis. A clear regional variation existed in the amino acid, mineral, and trace metal contents of lavers. Regular consumption of lavers may have heath benefits because they are relatively low in fat and high in protein, and contain functional amino acids and minerals.

  7. Greenhouse studies on the phyto-extraction capacity of Cynodon nlemfuensis for lead and cadmium under irrigation with treated wastewater

    NASA Astrophysics Data System (ADS)

    Madyiwa, S.; Chimbari, M. J.; Schutte, C. F.; Nyamangara, J.

    For over 30 years, discharge of sewage effluent and sludge on pasturelands has been used in Zimbabwe as a cheap method for secondary treatment of wastewater without any monitoring of accumulation of heavy metals in soils and grasses, let alone in animals grazing on the pastures. Cynodon nlemfuensis (star grass) has been the main grass planted on the wastewater irrigated pasturelands. This study was conducted to assess the capacity of star grass to accumulate lead (Pb) and cadmium (Cd) and develop models incorporating grass yield, metal uptake and soil bio-available (EDTA extractable) metal content, that could be used to determine critical grass and soil concentrations at which grass productivity declines. Star grass was planted in 30 fertilized pots containing sandy soil within a greenhouse. The pots consisted of nine treatments of varying levels of added inorganic Pb and Cd subjected to treated wastewater application and one control that had no added metals and received water application only. The elements were applied to the soils once just after planting the grass. Chemical analyses showed that star grass had a relatively high phyto-extraction capacity of Pb and Cd, comparable to that of hyper-accumulating grasses such as Lolium perenne (rye grass). It accumulated Pb and Cd to levels far beyond the recommended maximum limits for pasture grass. Analysis of variance on log-normal transformed data showed that bio-available soil metal concentrations correlated strongly with grass metal content and grass metal content correlated strongly with the yield. There was however a weak correlation between the yield and bio-available soil levels. The yield versus grass metal content models that were developed for the first crop and re-growth predicted similar critical metal concentrations and yields. Using the critical grass metal concentrations in the soil bio-available metal concentration versus grass metal concentration models allowed for the prediction of the corresponding critical soil concentrations.

  8. Effect of the metal concentration on the structural, mechanical and tribological properties of self-organized a-C:Cu hard nanocomposite coatings

    NASA Astrophysics Data System (ADS)

    Pardo, A.; Buijnsters, J. G.; Endrino, J. L.; Gómez-Aleixandre, C.; Abrasonis, G.; Bonet, R.; Caro, J.

    2013-09-01

    The influence of the metal content (Cu: 0-28 at.%) on the structural, mechanical and tribological properties of amorphous carbon films grown by pulsed filtered cathodic vacuum arc deposition is investigated. Silicon and AISI 301 stainless steel have been used as substrate materials. The microstructure, composition and bonding structure have been determined by scanning electron microscopy, combined Rutherford backscattered spectroscopy-nuclear reaction analysis, and Raman spectroscopy, respectively. The mechanical and tribological properties have been assessed using nanoindentation and reciprocating sliding (fretting tests) and these have been correlated with the elemental composition of the films. A self-organized multilayered structure consisting of alternating carbon and copper metal nanolayers (thickness in the 25-50 nm range), whose formation is enhanced by the Cu content, is detected. The nanohardness and Young’s modulus decrease monotonically with increasing Cu content. A maximum value of the Young’s modulus of about 255 GPa is obtained for the metal-free film, whereas it drops to about 174 GPa for the film with a Cu content of 28 at.%. In parallel, a 50% drop in the nanohardness from about 28 GPa towards 14 GPa is observed for these coatings. An increase in the Cu content also produces an increment of the coefficient of friction in reciprocating sliding tests performed against a corundum ball counterbody. As compared to the metal free film, a nearly four times higher coefficient of friction value is detected in the case of a Cu content of 28 at.%. Nevertheless, the carbon-copper composite coatings produced a clear surface protection of the substrate despite an overall increase in wear loss with increasing Cu content in the range 3-28 at.%.

  9. Interpretation FTIR spectrum of seawater and sediment in the Ambon Bay (TAD)

    NASA Astrophysics Data System (ADS)

    Patty, Diana Julaidy; Loupatty, Grace; Sopalauw, Fitria

    2017-01-01

    Research has done to interpretated FTIR spectrum of seawaters and sediment of the Ambon Bay (TAD). Analysis of samples of sediment and seawater using FTIR spectroscopy. The results showed the sand sediment samples identified Stretch bond OH group (3600-3500 cm-1), N-H Stretch (3400-3300 cm-1), C≡N (2250 cm-1), and NH bending (1640 to 1550 cm-1). And for seawater samples identified bonding group that is N-H Stretch (3400-3350 cm-1), N-H bending (1640 to 1550 cm-1) and C=O (1670-1640 cm-1). The existence of functional groups, carbonyl (C=O), alcohol (OH), carboxyl (COOH) can cause the complexation of metal cations. And the results showed analysis group N-O bond-containing compounds Nitro indicate heavy metal content of Lead (Pb) and group N-H bond-containing compound Amina indicate heavy metal content of Cadmium (Cd).

  10. Analysis of various versions of the deoxidation of rail steel at OAO NTMK

    NASA Astrophysics Data System (ADS)

    Garber, A. K.; Arsenkin, A. M.; Grigorovich, K. V.; Shibaev, S. S.; Kushnarev, A. V.; Petrenko, Yu. P.

    2009-12-01

    The deoxidation of steel melted using various types of deoxidizers during out-of-furnace treatment is studied. The total oxygen and nitrogen content and the oxygen contents in the main types of oxide nonmetallic inclusions are determined by fractional gas analysis of steel samples taken from heats performed by various schedules. The main types of nonmetallic inclusions and their size distributions are found with qualitative and quantitative metallography. The oxygen content in the rail steel is minimal (5 ppm) when calcium carbide CaC2 is introduced into the metal in tapping of a converter. When the metal is deoxidized using a steel wire filled with calcium or a steel wire filled with silicocalcium, the oxygen content in rail steel is ≈8 and ≈11 ppm, respectively. A comparison of various processes of rail steel deoxidation under the OAO NTMK conditions shows that the limitation of the aluminum content (no more than 30 ppm) or the use of a wire with a calcium or calcium carbide filler is more effective than the use of a wire filled with silicocalcium.

  11. Multivariate-Statistical Assessment of Heavy Metals for Agricultural Soils in Northern China

    PubMed Central

    Yang, Pingguo; Yang, Miao; Mao, Renzhao; Shao, Hongbo

    2014-01-01

    The study evaluated eight heavy metals content and soil pollution from agricultural soils in northern China. Multivariate and geostatistical analysis approaches were used to determine the anthropogenic and natural contribution of soil heavy metal concentrations. Single pollution index and integrated pollution index could be used to evaluate soil heavy metal risk. The results show that the first factor explains 27.3% of the eight soil heavy metals with strong positive loadings on Cu, Zn, and Cd, which indicates that Cu, Zn, and Cd are associated with and controlled by anthropic activities. The average value of heavy metal is lower than the second grade standard values of soil environmental quality standards in China. Single pollution index is lower than 1, and the Nemerow integrated pollution index is 0.305, which means that study area has not been polluted. The semivariograms of soil heavy metal single pollution index fitted spherical and exponential models. The variable ratio of single pollution index showed moderately spatial dependence. Heavy metal contents showed relative safety in the study area. PMID:24892058

  12. Application of principal component analysis in the pollution assessment with heavy metals of vegetable food chain in the old mining areas

    PubMed Central

    2012-01-01

    Background The aim of the paper is to assess by the principal components analysis (PCA) the heavy metal contamination of soil and vegetables widely used as food for people who live in areas contaminated by heavy metals (HMs) due to long-lasting mining activities. This chemometric technique allowed us to select the best model for determining the risk of HMs on the food chain as well as on people's health. Results Many PCA models were computed with different variables: heavy metals contents and some agro-chemical parameters which characterize the soil samples from contaminated and uncontaminated areas, HMs contents of different types of vegetables grown and consumed in these areas, and the complex parameter target hazard quotients (THQ). Results were discussed in terms of principal component analysis. Conclusion There were two major benefits in processing the data PCA: firstly, it helped in optimizing the number and type of data that are best in rendering the HMs contamination of the soil and vegetables. Secondly, it was valuable for selecting the vegetable species which present the highest/minimum risk of a negative impact on the food chain and human health. PMID:23234365

  13. Assessment of Heavy Metal Contamination in the Surrounding Soils and Surface Sediments in Xiawangang River, Qingshuitang District

    PubMed Central

    Jiang, Min; Zeng, Guangming; Zhang, Chang; Ma, Xiaoying; Chen, Ming; Zhang, Jiachao; Lu, Lunhui; Yu, Qian; Hu, Langping; Liu, Lifeng

    2013-01-01

    Xiawanggang River region is considered to be one of the most polluted areas in China due to its huge amount discharge of pollutants and accumulation for years. As it is one branch of Xiang River and the area downstream is Changsha city, the capital of Hunan Province, the ecological niche of Xiawangang River is very important. The pollution treatment in this area was emphasized in the Twelfth Five-Year Plan of Chinese government for Xiang River Water Environmental Pollution Control. In order to assess the heavy metal pollution and provide the base information in this region for The Twelfth Five-Year Plan, contents and fractions of four heavy metals (Cd, Cu, Pb and Zn) covering both sediments and soils were analyzed to study their contamination state. Three different indexes were applied to assess the pollution extent. The results showed this area was severely polluted by the four heavy metals, and the total concentrations exceeded the Chinese environmental quality standard for soil, grade III, especially for Cd. Moreover, Cd, rated as being in high risk, had a high mobility as its great contents of exchangeable and carbonates fractions in spite of its relative low content. Regression analysis revealed clay could well explain the regression equation for Cd, Cu and Zn while pH and sand could significantly interpret the regression equation for Pb. Moreover, there was a significant correlation between Non-residual fraction and Igeo for all the four metals. Correlation analysis showed four metals maybe had similar pollution sources. PMID:23951103

  14. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area].

    PubMed

    Qu, Yong-hua; Jiao, Si-hong; Liu, Su-hong; Zhu, Ye-qing

    2015-11-01

    Heavy metal mining activities have caused the complex influence on the ecological environment of the mining regions. For example, a large amount of acidic waste water containing heavy metal ions have be produced in the process of copper mining which can bring serious pollution to the ecological environment of the region. In the previous research work, bare soil is mainly taken as the research target when monitoring environmental pollution, and thus the effects of land surface vegetation have been ignored. It is well known that vegetation condition is one of the most important indictors to reflect the ecological change in a certain region and there is a significant linkage between the vegetation spectral characteristics and the heavy metal when the vegetation is effected by the heavy metal pollution. It means the vegetation is sensitive to heavy metal pollution by their physiological behaviors in response to the physiological ecology change of their growing environment. The conventional methods, which often rely on large amounts of field survey data and laboratorial chemical analysis, are time consuming and costing a lot of material resources. The spectrum analysis method using remote sensing technology can acquire the information of the heavy mental content in the vegetation without touching it. However, the retrieval of that information from the hyperspectral data is not an easy job due to the difficulty in figuring out the specific band, which is sensitive to the specific heavy metal, from a huge number of hyperspectral bands. Thus the selection of the sensitive band is the key of the spectrum analysis method. This paper proposed a statistical analysis method to find the feature band sensitive to heavy metal ion from the hyperspectral data and to then retrieve the metal content using the field survey data and the hyperspectral images from China Environment Satellite HJ-1. This method selected copper ion content in the leaves as the indicator of copper pollution level, using stepwise multiple linear regression and cross validation on the dataset which is consisting of 44 groups of copper ion content information in the polluted vegetation leaves from Dexing Copper Mine in Jiangxi Province to build up a statistical model by also incorporating the HJ-1 satellite images. This model was then used to estimate the copper content distribution over the whole research area at Dexing Copper Mine. The result has shown that there is strong statistical significance of the model which revealed the most sensitive waveband to copper ion is located at 516 nm. The distribution map illustrated that the copper ion content is generally in the range of 0-130 mg · kg⁻¹ in the vegetation covering area at Dexing Copper Mine and the most seriously polluted area is located at the South-east corner of Dexing City as well as the mining spots with a higher value between 80 and 100 mg · kg⁻¹. This result is consistent with the ground observation experiment data. The distribution map can certainly provide some important basic data on the copper pollution monitoring and treatment.

  15. Used battery collection in central Mexico: metal content, legislative/management situation and statistical analysis.

    PubMed

    Guevara-García, José Antonio; Montiel-Corona, Virginia

    2012-03-01

    A statistical analysis of a used battery collection campaign in the state of Tlaxcala, Mexico, is presented. This included a study of the metal composition of spent batteries from formal and informal markets, and a critical discussion about the management of spent batteries in Mexico with respect to legislation. A six-month collection campaign was statistically analyzed: 77% of the battery types were "AA" and 30% of the batteries were from the informal market. A substantial percentage (36%) of batteries had residual voltage in the range 1.2-1.4 V, and 70% had more than 1.0 V; this may reflect underutilization. Metal content analysis and recovery experiments were performed with the five formal and four more frequent informal trademarks. The analysis of Hg, Cd and Pb showed there is no significant difference in content between formal and informal commercialized batteries. All of the analyzed trademarks were under the permissible limit levels of the proposed Mexican Official Norm (NOM) NMX-AA-104-SCFI-2006 and would be classified as not dangerous residues (can be thrown to the domestic rubbish); however, compared with the EU directive 2006/66/EC, 8 out of 9 of the selected battery trademarks would be rejected, since the Mexican Norm content limit is 20, 7.5 and 5 fold higher in Hg, Cd and Pb, respectively, than the EU directive. These results outline the necessity for better regulatory criteria in the proposed Mexican NOM in order to minimize the impact on human health and the environment of this type of residues. Copyright © 2010 Elsevier Ltd. All rights reserved.

  16. Theoretic model and computer simulation of separating mixture metal particles from waste printed circuit board by electrostatic separator.

    PubMed

    Li, Jia; Xu, Zhenming; Zhou, Yaohe

    2008-05-30

    Traditionally, the mixture metals from waste printed circuit board (PCB) were sent to the smelt factory to refine pure copper. Some valuable metals (aluminum, zinc and tin) with low content in PCB were lost during smelt. A new method which used roll-type electrostatic separator (RES) to recovery low content metals in waste PCB was presented in this study. The theoretic model which was established from computing electric field and the analysis of forces on the particles was used to write a program by MATLAB language. The program was design to simulate the process of separating mixture metal particles. Electrical, material and mechanical factors were analyzed to optimize the operating parameters of separator. The experiment results of separating copper and aluminum particles by RES had a good agreement with computer simulation results. The model could be used to simulate separating other metal (tin, zinc, etc.) particles during the process of recycling waste PCBs by RES.

  17. Immobilization of heavy metals on pillared montmorillonite with a grafted chelate ligand.

    PubMed

    Brown, Loren; Seaton, Kenneth; Mohseni, Ray; Vasiliev, Aleksey

    2013-10-15

    The objective of this work was the development of an efficient adsorbent for irreversible immobilization of heavy metals in contaminated soils. The adsorbent was prepared by pillaring of montmorillonite with silica followed by grafting of a chelate ligand on its surface. Obtained adsorbent was mesoporous with high content of adsorption sites. Its structure was studied by BET adsorption of N2, dynamic light scattering, and scanning electron microscopy. The adsorption capacity of the organoclay was measured by its mixing with contaminated kaolin and soil samples and by analysis of heavy metal contents in leachate. Deionized water and 50% acetic acid were used for leaching of metals from the samples. As it was demonstrated by the experiments, the adsorbent was efficient in immobilization of heavy metals not only in neutral aqueous media but also in the presence of weak acid. As a result, the adsorbent can be used for reduction of heavy metal leaching from contaminated sites. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Risk assessment of mineral and heavy metal content of selected tea products from the Ghanaian market.

    PubMed

    Nkansah, Marian Asantewah; Opoku, Francis; Ackumey, Abiathar Abraham

    2016-06-01

    Food consumption is the most likely route of human exposure to metals. Tea (Camellia sinensis L.) is among the most widely consumed non-alcoholic beverages. Concentrations of heavy metals and minerals in tea from 15 different brands in Kumasi, Ghana were measured to assess the health risk associated with their consumption. The mineral and metal contents (Fe, Cu, Zn, Pb, As, Cd) were analyzed using atomic absorption spectrophotometer (Z-8100 polarized Zeeman). The results revealed that the mean concentrations were in the order: Ca > Fe > As > Cd > Zn > Pb. The average contents of Ca, Fe, Zn, Pb, Cd, and As in the samples were 94.08, 6.15, 0.20, 0.16, 0.36, and 1.66 mg/kg, respectively. All the minerals and heavy metals were below the maximum permissible limits stipulated by the World Health Organization (WHO) and US Pharmacopeia (USP). Metal-to-metal correlation indicated strong correlations between As/Zn, Cd/Zn, Cd/As, and Pb/As pairs. Factor analysis demonstrated a clear separation between minerals, grouped on one side, and heavy metals, clustered on another side. Both the target hazard quotient (THQ) and hazard index (HI) levels in green tea were far below 1, suggesting that consumption of green tea should pose no potential risk to human health. However, carcinogenic risk levels for arsenic were high; R > 10(-6). The results showed that residents in Kumasi consume tea could be at risk from exposure to these heavy metals and minerals.

  19. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage.

    PubMed

    Xie, Yingying; Lu, Guining; Yang, Chengfang; Qu, Lu; Chen, Meiqin; Guo, Chuling; Dang, Zhi

    2018-01-01

    Trace-element concentrations in acid mine drainage (AMD) are primarily controlled by the mineralogy at the sediment-water interface. Results are presented for a combined geochemical and mineralogical survey of Dabaoshan Mine, South China. Developed sequential extraction experiments with the analysis of the main mineralogical phases by semi-quantitative XRD, differential X-ray diffraction (DXRD) and scanning electron microscopy (SEM) were conducted to identify the quantitative relationship between iron minerals and heavy metals. Results showed that schwertmannite, jarosite, goethite and ferrihydrite were the dominant Fe-oxyhydroxide minerals which were detected alternately in the surface sediment with the increasing pH from 2.50 to 6.93 along the Hengshi River. Decreasing contents of schwertmannite ranging from 35 wt % to 6.5 wt % were detected along the Hengshi River, which was corresponding to the decreasing metal contents. The easily reducible fractions exert higher affinity of metals while compared with reducible and relatively stable minerals. A qualitative analysis of heavy metals extracted from the sediments indicated that the retention ability varied: Pb > Mn > Zn > As ≈ Cu > Cr > Cd ≈ Ni. Results in this study are avail for understanding the fate and transport of heavy metals associated with iron minerals and establishing the remediation strategies of AMD systems.

  20. Mineralogical characteristics of sediments and heavy metal mobilization along a river watershed affected by acid mine drainage

    PubMed Central

    Xie, Yingying; Yang, Chengfang; Qu, Lu; Chen, Meiqin; Guo, Chuling; Dang, Zhi

    2018-01-01

    Trace-element concentrations in acid mine drainage (AMD) are primarily controlled by the mineralogy at the sediment-water interface. Results are presented for a combined geochemical and mineralogical survey of Dabaoshan Mine, South China. Developed sequential extraction experiments with the analysis of the main mineralogical phases by semi-quantitative XRD, differential X-ray diffraction (DXRD) and scanning electron microscopy (SEM) were conducted to identify the quantitative relationship between iron minerals and heavy metals. Results showed that schwertmannite, jarosite, goethite and ferrihydrite were the dominant Fe-oxyhydroxide minerals which were detected alternately in the surface sediment with the increasing pH from 2.50 to 6.93 along the Hengshi River. Decreasing contents of schwertmannite ranging from 35 wt % to 6.5 wt % were detected along the Hengshi River, which was corresponding to the decreasing metal contents. The easily reducible fractions exert higher affinity of metals while compared with reducible and relatively stable minerals. A qualitative analysis of heavy metals extracted from the sediments indicated that the retention ability varied: Pb > Mn > Zn > As ≈ Cu > Cr > Cd ≈ Ni. Results in this study are avail for understanding the fate and transport of heavy metals associated with iron minerals and establishing the remediation strategies of AMD systems. PMID:29304091

  1. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy.

    PubMed

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-15

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Study on the prediction of soil heavy metal elements content based on visible near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Zhang, Yang; Wang, Huanyuan; Du, Yichun

    2018-06-01

    The estimation of soils heavy metal content can reflect the impending surroundings of surface, which lays theoretical foundation for using covered vegetation to monitor environment and investigate resource. In this study, the contents of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb in 44 soil samples were collected from Fufeng County, Yangling County and Wugong County, Shaanxi Province and were used as data sources. ASD FieldSpec HR (350-2500 nm), and then the NOR, MSC and SNV of the reflectance were pretreated, the first deviation, second deviation and reflectance reciprocal logarithmic transformation were carried out. The optimal spectroscopy estimation model of nine heavy metal elements of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb was established by regression method. Comparing the diffuse reflectance characteristics of different heavy metal contents and the effect of different pretreatment methods on the establishment of soil heavy metal spectral inversion model. The results of chemical analysis show that there was a serious Hg pollution in the study area, and the Cd content was close to the critical value. The results show that: (1) NOR, MSC and SNV were adopted for the acquisition of visible near-infrared. Combining differential transformation can improve the information of heavy metal elements in the soil, and use the correlation band energy Significantly improve the stability and predictability of the model. (2) The modeling accuracy of the optimal model of nine heavy metal spectra of Cr, Mn, Ni, Cu, Zn, As, Cd, Hg and Pb by PLSR method were 0.70, 0.79, 0.69, 0.81, 0.86, 0.58, 0.55, 0.99, 0.62. (3) The optimal estimation model of different elements using different treatment methods has better stability and higher precision, and can realize the rapid prediction of nine kinds of heavy metal elements in this region.

  3. Recovering heavy rare earth metals from magnet scrap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ott, Ryan T.; McCallum, Ralph W.; Jones, Lawrence L.

    A method of treating rare earth metal-bearing permanent magnet scrap, waste or other material in a manner to recover the heavy rare earth metal content separately from the light rare earth metal content. The heavy rare earth metal content can be recovered either as a heavy rare earth metal-enriched iron based alloy or as a heavy rare earth metal based alloy.

  4. Pollution Assessment and Sources Identification of Heavy Metals in Surface Sediments from the Nantaizi Lake, Middle China

    NASA Astrophysics Data System (ADS)

    Ma, Jinlong; Li, Fei; Jia, Xiaolin; Zhang, Jingdong

    2018-01-01

    The total contents of heavy metal elements including Cr, Cd, Cu, Zn, Pb and As were investigated in sediments from the Nantaizi Lake in Hanyang district of Wuhan. The heavy metal pollution level of Nantaizi Lake was calculated by potential ecological risk index and the main sources of pollutants were researched by correlation analysis and principal component analysis. The results show that heavy metal concentration of Nantaizi Lake sediments is within the Chinese Environmental Quality Standard for Soils (GB 15618-1995) level-II standard limitation. According to the result of potential ecological risk index, ecological hazard rank of heavy metal element of Nantaizi Lake sediments is: Cd>Cu>As>Pb>Zn>Cr, and whole water environment of lake is slightly polluted. Through correlation analysis and principal component analysis, it is found that industrial sewage and domestic wastewater in human activities are the main contributors to heavy metal sources of Nantaizi Lake, and chemical processes, such as endogenous microbial activities of lake etc., also affect heavy metal sources in sediments simultaneously.

  5. Valorization of titanium metal wastes as tanning agent used in leather industry.

    PubMed

    Crudu, Marian; Deselnicu, Viorica; Deselnicu, Dana Corina; Albu, Luminita

    2014-10-01

    The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromium salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77°C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    PubMed

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment. © 2014 SETAC.

  7. Spatial distribution and source identification of heavy metals in surface soils in a typical coal mine city, Lianyuan, China.

    PubMed

    Liang, Jie; Feng, Chunting; Zeng, Guangming; Gao, Xiang; Zhong, Minzhou; Li, Xiaodong; Li, Xin; He, Xinyue; Fang, Yilong

    2017-06-01

    In this study, we investigated the pollution degree and spatial distribution of heavy metals and determined their sources in topsoil in a typical coal mine city, Lianyuan, Hunan Province, China. We collected 6078 soil surface samples in different land use types. And the concentrations of Zn, Cd, Cu, Hg, Pb, Sb, As, Mo, V, Mn, Fe and Cr were measured. The average contents of all heavy metals were lower than their corresponding Grade II values of Chinese Soil Quality Standard with the exception of Hg. However, average contents of twelve heavy metals, except for Mn, exceeded their background level in soils in Hunan Province. Based on one-way analysis of variance (ANOVA), the contents of Cu, Zn, Cd, Pb, Hg, Mo and V were related to the anthropogenic source and there were statistically significant differences in their concentrations among different land use patterns. The spatial variation of heavy metal was visualized by GIS. The PMF model was used to ascertain contamination sources of twelve heavy metals and apportion their source contributions in Lianyuan soils. The results showed that the source contributions of the natural source, atmospheric deposition, industrial activities and agricultural activities accounted for 33.6%, 26.05%, 23.44% and 16.91%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Environmental risk assessment of radioactivity and heavy metals in soil of Toplica region, South Serbia.

    PubMed

    Stevanović, Vladica; Gulan, Ljiljana; Milenković, Biljana; Valjarević, Aleksandar; Zeremski, Tijana; Penjišević, Ivana

    2018-03-13

    Activity levels of natural and artificial radionuclides and content of ten heavy metals (As, Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn and Hg) were investigated in 41 soil samples collected from Toplica region located in the south part of Serbia. Radioactivity was determined by gamma spectrometry using HPGe detector. The obtained mean activity concentrations ± standard deviations of radionuclides 226 Ra, 232 Th, 40 K and 137 Cs were 29.9 ± 9.4, 36.6 ± 11.5, 492 ± 181 and 13.4 ± 18.7 Bq kg -1 , respectively. According to Shapiro-Wilk normality test, activity concentrations of 226 Ra and 232 Th were consistent with normal distribution. External exposure from radioactivity was estimated through dose and radiation risk assessments. Concentrations of heavy metals were measured by using ICP-OES, and their health risks were then determined. Enrichment by heavy metals and pollution level in soils were evaluated using the enrichment factor, the geoaccumulation index (I geo ), pollution index and pollution load index. Based on GIS approach, the spatial distribution maps of radionuclides and heavy metal contents were made. Spearman correlation coefficient was used for correlation analysis between radionuclide activity concentrations and heavy metal contents.

  9. Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia.

    PubMed

    Sim, Siong Fong; Ling, Teck Yee; Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu; Bakeh, Tomy

    2014-01-01

    This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization.

  10. Distribution of Major and Trace Elements in a Tropical Hydroelectric Reservoir in Sarawak, Malaysia

    PubMed Central

    Nyanti, Lee; Ean Lee, Terri Zhuan; Mohd Irwan Lu, Nurul Aida Lu

    2014-01-01

    This paper reports the metals content in water, sediment, macroalgae, aquatic plant, and fish of Batang Ai Hydroelectric Reservoir in Sarawak, Malaysia. The samples were acid digested and subjected to atomic absorption spectrometry analysis for Na, K, Mn, Cr, Ni, Zn, Mg, Fe, Sn, Al, Ca, As, Se, and Hg. The total Hg content was analysed on the mercury analyser. Results showed that metals in water, sediment, macroalgae, aquatic plant, and fish are distinguishable, with sediment and biota samples more susceptible to metal accumulation. The distributions of heavy metals in water specifically Se, Sn, and As could have associated with the input of fish feed, boating, and construction activities. The accumulation of heavy metals in sediment, macroalgae, and aquatic plant on the other hand might be largely influenced by the redox conditions in the aquatic environment. According to the contamination factor and the geoaccumulation index, sediment in Batang Ai Reservoir possesses low risk of contamination. The average metal contents in sediment and river water are consistently lower than the literature values reported and well below the limit of various guidelines. For fishes, trace element Hg was detected; however, the concentration was below the permissible level suggested by the Food and Agriculture Organization. PMID:27437493

  11. Evaluation of Phytoavailability of Heavy Metals to Chinese Cabbage (Brassica chinensis L.) in Rural Soils

    PubMed Central

    Hseu, Zeng-Yei; Zehetner, Franz

    2014-01-01

    This study compared the extractability of Cd, Cu, Ni, Pb, and Zn by 8 extraction protocols for 22 representative rural soils in Taiwan and correlated the extractable amounts of the metals with their uptake by Chinese cabbage for developing an empirical model to predict metal phytoavailability based on soil properties. Chemical agents in these protocols included dilute acids, neutral salts, and chelating agents, in addition to water and the Rhizon soil solution sampler. The highest concentrations of extractable metals were observed in the HCl extraction and the lowest in the Rhizon sampling method. The linear correlation coefficients between extractable metals in soil pools and metals in shoots were higher than those in roots. Correlations between extractable metal concentrations and soil properties were variable; soil pH, clay content, total metal content, and extractable metal concentration were considered together to simulate their combined effects on crop uptake by an empirical model. This combination improved the correlations to different extents for different extraction methods, particularly for Pb, for which the extractable amounts with any extraction protocol did not correlate with crop uptake by simple correlation analysis. PMID:25295297

  12. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Expression analysis of metallothioneins and mineral contents in tomato (Lycopersicon esculentum) under heavy metal stress.

    PubMed

    Kısa, Dursun; Öztürk, Lokman; Doker, Serhat; Gökçe, İsa

    2017-04-01

    Heavy metals are considered to be the most important pollutants in the contamination of soils; they adversely affect plant growth and development and cause some physiological and molecular changes. The contamination of agricultural soils by heavy metals has changed the mineral element content of vegetables. Plant metallothioneins (MTs) are thought to have the functional role in heavy metal homeostasis, and they are used as the biomarkers for evaluating environmental pollution. We aimed to evaluate the expression of MT isoforms (MT1, 2, 3 and 4) and some mineral element composition of tomato roots, leaves and fruits exposed to copper and lead. Heavy metal applications increased MT1 and MT2 gene expressions compared to the control in the tissues of tomato. The highest level of MT1 and MT2 transcripts was found in roots and leaves, respectively. The expression of MT3 is induced in roots, leaves and fruits except for Pb treatment in roots. MT4 expression increased in fruits; however, other tissues did not show a clear change. Our results indicated that Cu content was higher than Pb in all tissues of tomato. The lower doses of Cu (10 ppm) increased the content of Mg, Fe, Ca and Mn in roots. Pb generally increased the level of minerals in leaves and fruits, but it decreased Mg, Mn and Fe contents in roots. Both heavy metals not only moved to aerial parts but also caused alterations to mineral element levels. These results show that MT transcripts are regulated by Cu and Pb, and expression pattern changes to MT isoforms and tissue types. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  14. Microstructural Characterization and Mechanical Properties Analysis of Weld Metals with Two Ni Contents During Post-Weld Heat Treatments

    NASA Astrophysics Data System (ADS)

    Wu, Da-yong; Han, Xiu-lin; Tian, Hong-tao; Liao, Bo; Xiao, Fu-ren

    2015-05-01

    This study designed post-weld heat treatments, including reheating and tempering, associated with hot bending to investigate the microstructures, toughness, and hardness of two weld metals with different Ni contents (<1 wt pct level). The results indicated that a high Ni content decreased the ferrite transformation temperature and increased the proportion of acicular ferrite (AF). Furthermore, a high Ni content promoted the martensite/austenite (M/A) constituent formation after reheating. The promotion of the M/A formation increased the number of cementite particles, and accelerated cementite coarsening during tempering. The large-angle grain boundary density from the AF improved the toughness despite the negative effect of cementite. The strengthening contributions were calculated, and the grain refinement was the greatest. The high Ni content decreased the effective grain size with a 2 deg tolerance angle, thus enhancing the grain refinement contribution.

  15. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE).

    PubMed

    Stenvall, Erik; Tostar, Sandra; Boldizar, Antal; Foreman, Mark R StJ; Möller, Kenneth

    2013-04-01

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile-butadiene-styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubber contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Do acid volatile sulfides (AVS) influence the accumulation of sediment-bound metals to benthic invertebrates under natural field conditions?

    PubMed

    De Jonge, Maarten; Dreesen, Freja; De Paepe, Josefina; Blust, Ronny; Bervoets, Lieven

    2009-06-15

    The present study evaluates the influence of acid volatile sulfides (AVS) on accumulation of sediment-bound metals in benthic invertebrates under natural field conditions. Natural sediments, pore water, surface water, and two species of widespread benthic invertebrates (Chironomus gr. thummi and Tubifex tubifex) were collected from 17 historical polluted Flemish lowland rivers and measured for metal concentrations. Different sediment characteristics were determined (AVS, organic matter, clay content) and multiple regression was used to study their relationship with accumulated metals in the invertebrates. Physical and chemical analysis of the field samples indicated low metal concentrations in the water and pore water, but very high metal concentrations in the sediment and the invertebrates, especially for Pb (5.99 micromol/ g). In general, metal accumulation in chironomids and tubificid worms was most strongly correlated with total metal concentrations in the sediment and sediment metal concentrations normalized for organic matter and clay content. Following the results of the linear regression model, AVS did not turn out to be a significant variable in describing variation in metal accumulation. Our study clearly demonstrates that, in addition to the results gained from experiments under lab conditions, benthic invertebrates can accumulate metals from unspiked field sediments even when there's an excess of AVS.

  17. Determination of trace and heavy metals in some commonly used medicinal herbs in Ayurveda.

    PubMed

    Nema, Neelesh K; Maity, Niladri; Sarkar, Birendra K; Mukherjee, Pulok K

    2014-11-01

    Traditionally, the herbal drugs are well established for their therapeutic benefits. Depending upon their geographical sources sometimes the trace and heavy metals' content may differ, which may lead to severe toxicity. So, the toxicological and safety assessment of these herbal drugs are one of the major issues in recent days. Eight different plant species including Aloe vera, Centella asiatica, Calendula officinalis, Cucumis sativus, Camellia sinensis, Clitoria ternatea, Piper betel and Tagetes erecta were selected to determine their heavy and trace metals content and thereby to assure their safer therapeutic application. The trace and heavy metals were detected through atomic absorption spectrometry analysis. The selected medicinal plant materials were collected from the local cultivated regions of West Bengal, India, and were digested with nitric acid and hydrochloric acid as specified. Absorbance was measured through atomic absorption spectrometer (AA 303) and the concentration of different trace and heavy metals in the plant samples were calculated. The quantitative determinations were carried out using standard calibration curve obtained by the standard solutions of different metals. The contents of heavy metals were found to be within the prescribed limit. Other trace metals were found to be present in significant amount. Thus, on the basis of experimental outcome, it can be concluded that the plant materials collected from the specific region are safe and may not produce any harmful effect of metal toxicity during their therapeutic application. The investigated medicinal plants contain trace metals such as copper (Cu), chromium (Cr), manganese (Mn), iron (Fe) and nickel (Ni) as well as heavy metals such as arsenic (As), lead (Pb) and mercury (Hg), which were present within the permissible limit. © The Author(s) 2012.

  18. Chemical and petrochemical industry

    NASA Astrophysics Data System (ADS)

    Staszak, Katarzyna

    2018-03-01

    The potential sources of various metals in chemical and petrochemical processes are discussed. Special emphasis is put on the catalysts used in the industry. Their main applications, compositions, especially metal contents are presented both for fresh and spent ones. The focus is on the main types of metals used in catalysts: the platinum-group metals, the rare-earth elements, and the variety of transition metals. The analysis suggested that chemical and petrochemical sectors can be considered as the secondary source of metals. Because the utilization of spent refinery catalysts for metal recovery is potentially viable, different methods were applied. The conventional approaches used in metal reclamation as hydrometallurgy and pyrometallurgy, as well as new methods include bioleaching, were described. Some industrial solutions for metal recovery from spent solution were also presented.

  19. Valorization of titanium metal wastes as tanning agent used in leather industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crudu, Marian, E-mail: mariancrudu@yahoo.com; Deselnicu, Viorica, E-mail: viorica.deselnicu@icpi.ro; Deselnicu, Dana Corina, E-mail: d_deselnicu@yahoo.com

    2014-10-15

    Highlights: • Valorization of titanium wastes which cannot be recycled in metallurgical industry. • Transferring Ti waste into raw materials for obtaining Ti based tanning agent. • Characterization of new Ti based tanning agents and leather tanned with them. • Characterization of sewage waste water and sludge resulted from leather manufacture. • Analysis of the impact of main metal component of Ti waste. - Abstract: The development of new tanning agents and new technologies in the leather sector is required to cope with the increasingly higher environmental pressure on the current tanning materials and processes such as tanning with chromiummore » salts. In this paper, the use of titanium wastes (cuttings) resulting from the process of obtaining highly pure titanium (ingots), for the synthesis of new tanning agent and tanning bovine hides with new tanning agent, as alternative to tanning with chromium salts are investigated. For this purpose, Ti waste and Ti-based tanning agent were characterized for metal content by inductively coupled plasma mass spectrometry (ICP-MS) and chemical analysis; the tanned leather (wet white leather) was characterized by Scanning Electron Microscope/Energy Dispersive Using X-ray (Analysis). SEM/EDX analysis for metal content; Differential scanning calorimetric (DSC), Micro-Hot-Table and standard shrinkage temperature showing a hydrothermal stability (ranged from 75.3 to 77 °C) and chemical analysis showing the leather is tanned and can be processed through the subsequent mechanical operations (splitting, shaving). On the other hand, an analysis of major minor trace substances from Ti-end waste (especially vanadium content) in new tanning agent and wet white leather (not detected) and residue stream was performed and showed that leachability of vanadium is acceptable. The results obtained show that new tanning agent obtained from Ti end waste can be used for tanning bovine hides, as eco-friendly alternative for chrome tanning.« less

  20. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil.

    PubMed

    Khan, Shbbir R; Singh, Satish K; Rastogi, Neelkamal

    2017-04-01

    The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.

  1. Heavy metals effects on forage crops yields and estimation of elements accumulation in plants as affected by soil.

    PubMed

    Grytsyuk, N; Arapis, G; Perepelyatnikova, L; Ivanova, T; Vynograds'ka, V

    2006-02-01

    Heavy metals (Cu, Cd, Pb, Zn) effect on the productivity of forage crops (clover and perennial cereal grasses) and their accumulation in plants, depending on the concentration of these elements in a soil, has been studied in micro-field experiments on three types of soil. The principle objective was to determine regularities of heavy metals migration in a soil-plant system aiming the estimation of permissible levels of heavy metals content in soils with the following elaboration of methods, which regulate the toxicants transfer to plants. Methods of field experiments, agrochemical and atomic absorption analysis were used. Results were statistically treated by Statistica 6.0, S-Plus 6. Experimental results have shown that the intensity of heavy metals accumulation in plants depends on the type of the soil, the species of plants, the physicochemical properties of heavy metals and their content in the soil. Logarithmic interdependency of heavy metals concentration in soils and their accumulation in plants is suggested. However, the strong correlation between the different heavy metals concentrations in the various soils and the yield of crops was not observed. Toxicants accumulation in crops decreased in time.

  2. The Elemental Composition of Demospongiae from the Red Sea, Gulf of Aqaba

    PubMed Central

    Mayzel, Boaz; Aizenberg, Joanna; Ilan, Micha

    2014-01-01

    Trace elements are vital for the growth and development of all organisms. Little is known about the elemental content and trace metal biology of Red Sea demosponges. This study establishes an initial database of sponge elemental content. It provides the necessary foundation for further research of the mechanisms used by sponges to regulate the uptake, accumulation, and storage of metals. The metal content of 16 common sponge species was determined using ICP measurements. A combination of statistical methods was used to determine the correlations between the metals and detect species with significantly high or low concentrations of these metals. Bioaccumulation factors were calculated to compare sponge metal content to local sediment. Theonella swinhoei contained an extremely high concentration of arsenic and barium, much higher (at least 200 times) than all other species and local sediment. Hyrtios erecta had significantly higher concentration of Al, Cr, Fe, Mn, Ti and V than all other species. This is due to sediment accumulation and inclusion in the skeleton fibers of this sponge species. Suberites clavatus was found to contain significantly higher concentration of Cd, Co, Ni and Zn than all other species and local sediment, indicating active accumulation of these metals. It also has the second highest Fe concentration, but without the comparably high concentrations of Al, Mn and Ti that are evident in H. erecta and in local sediment. These differences indicate active uptake and accumulation of Fe in S. clavatus, this was also noted in Niphates rowi. A significantly higher B concentration was found in Crella cyatophora compared to all other species. These results indicate specific roles of trace elements in certain sponge species that deserve further analysis. They also serve as a baseline to monitor the effects of anthropogenic disturbances on Eilat's coral reefs. PMID:24759635

  3. Influence of Aluminum Content on Grain Refinement and Strength of AZ31 Magnesium GTA Weld Metal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, N. Kishore; Cross, Carl E.

    2012-06-28

    The goal is to characterize the effect of Al content on AZ31 weld metal, the grain size and strength, and examine role of Al on grain refinement. The approach is to systematically vary the aluminum content of AZ31 weld metal, Measure average grain size in weld metal, and Measure cross-weld tensile properties and hardness. Conclusions are that: (1) increased Al content in AZ31 weld metal results in grain refinement Reason: higher undercooling during solidification; (2) weld metal grain refinement resulted in increased strength & hardness Reason: grain boundary strengthening; and (3) weld metal strength can be raised to wrought basemore » metal levels.« less

  4. Ecological and Human Health Risk Assessment of Heavy Metal Content of Atmospheric Dry Deposition, a Case Study: Kermanshah, Iran.

    PubMed

    Sobhanardakani, Soheil

    2018-05-12

    The present study was intended to investigate the ecological and human health risk of cobalt, nickel, and vanadium in the atmospheric dry deposition of the Kermanshah city, Iran, in 2015. Totally 54 samples of atmospheric dry deposition were collected from the three regions of the city with different traffic intensity, and after acid digestion of the samples with ultrapure concentrated HNO 3 , the total contents of the metals were determined using inductively coupled plasma optical emission spectrometer (ICP-OES). Also, all statistical analyses were performed using the SPSS statistical package. The atmospheric dry deposition element contents increase according to the following descending order for both autumn seasons: Ni > Co > V. The results of potential ecological risk analysis demonstrated that metals in the samples are in low ecological risk levels, whereas the results of human health risk assessment showed that ingestion is the main exposure pathway of heavy metals in the dust to the local residents compared with inhalation and dermal pathways. Also, the upper limit of the 95% confidence interval (95% UCL) of hazard indices for non-carcinogenic risks of all analyzed metals in the dust samples was within the safe level for both children and adults. On the other hand, the carcinogenic risk levels of Co and Ni were all lower than the acceptable range (10 -6 -10 -4 ) to local citizens. Consequently, the results advocate the necessity of understanding the heavy metal content of atmospheric dry deposition and regular monitoring of air pollution.

  5. A chemometrics as a powerful tool in the elucidation of the role of metals in the biosynthesis of volatile organic compounds in Hungarian thyme samples.

    PubMed

    Arsenijević, Jelena; Marković, Jelena; Soštarić, Ivan; Ražić, Slavica

    2013-10-01

    The volatile fraction of the leaves of Thymus pannonicus All. (Lamiaceae) was analyzed by headspace extraction followed by GC-FID and GC-MS analysis. The different headspace profiles were recognized, with citral and with monoterpene hydrocarbons as dominant compounds. In addition, the determination of Cr, Co, Ni, Mo, Cu, Zn, Mn, Fe, Mg, Ca, K and Na was conducted by spectroscopic techniques (FAAS, GFAAS and ICP-OES). In order to evaluate the relationship between volatile organic compounds and metals, a chemometrics approach was applied. The data obtained by analysis of the headspace and elemental content were subjected to correlation analysis, factor analysis, principal component analysis and cluster analysis. A number of significant correlations of metals with plant volatiles were found. Correlation of Zn with citral, Mn with oxygenated monoterpenes and Mg with β-bourbonene, could be explained by involvement of metals in the biosynthesis of volatile organic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. [Distribution Characteristics and Source Analysis of Dustfall Trace Elements During Winter in Beijing].

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Chen, Fan-tao; Shu, Tong-tong; Zheng, Xiao-xia; Zhao, Wen-hui

    2015-08-01

    The dustfall content is one of the evaluation indexes of atmospheric pollution. Trace elements especially heavy metals in dustfall can lead to risks to ecological environment and human health. In order to study the distribution characteristics of trace elements, heavy metals pollution and their sources in winter atmospheric dust, 49 dustfall samples were collected in Beijing City and nearby during November 2013 to March 2014. Then the contents (mass percentages) of 40 trace elements were measured by Elan DRC It type inductively coupled plasma mass (ICP-MS). Test results showed that more than half of the trace elements in the dust were less than 10 mg x kg(-1); about a quarter were between 10-100 mg x kg-1); while 7 elements (Pb, Zr, Cr, Cu, Zn, Sr and Ba) were more than 100 mg x kg(-1). The contents of Pb, Cu, Zn, Bi, Cd and Mo of winter dustfall in Beijing city.were respectively 4.18, 4.66, 5.35, 6.31, 6.62, and 8.62 times as high as those of corresponding elements in the surface soil in the same period, which went beyond the soil background values by more than 300% . The contribution of human activities to dustfall trace heavy metals content in Beijing city was larger than that in the surrounding region. Then sources analysis of dustfall and its 20 main trace elements (Cd, Mo, Nb, Ga, Co, Y, Nd, Li, La, Ni, Rb, V, Ce, Pb, Zr, Cr, Cu, Zn, Sr, Ba) was conducted through a multi-method analysis, including Pearson correlation analysis, Kendall correlation coefficient analysis and principal component analysis. Research results indicated that sources of winter dustfall in Beijing city were mainly composed of the earth's crust sources (including road dust, construction dust and remote transmission of dust) and the burning of fossil fuels (vehicle emissions, coal combustion, biomass combustion and industrial processes).

  7. Is PM(10) mass measurement a reliable index for air quality assessment? An environmental study in a geographical area of north-eastern Italy.

    PubMed

    Cozzi, F; Adami, G; Barbieri, P; Reisenhofer, E; Bovenzi, M

    2008-09-01

    The aim of this study was to measure the concentration of some metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Ti) in PM(10) samples collected in one urban and one industrial site and to assess that PM(10) total mass measurement may be not sufficient as air quality index due to its complex composition. Metals were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and differential pulsed anodic stripping voltammetry (DPASV). The measured concentrations were used to calculate the content of metals in the PM(10) total mass, and to estimate the enrichment factors and the correlations between PM(10), metal concentrations and meteorological data for the two sites. The mean PM10 concentration during the sampling period in the urban site exceeded the annual European Union (EU) standard (40 microg/m(3)) and, for some sampling days, the daily EU standard (50 microg/m(3)) was also exceeded. In opposite, both EU standards were never exceeded in the industrial site. The overall metal content was nearly double in the industrial site compared to the urban one, and the mean Ni concentration exceeded the EU annual limit value (10 ng/m(3)). The metals with the highest enrichment factor were Cd, Cu, Ni and Pb for both sites, suggesting a dominant anthropogenic source for these metals. Metal concentrations were very low and typical of rural background during Christmas holidays, when factories were closed. PM(10) total mass measurement is not a sufficient air quality index since the metal content of PM(10) is not related to its total mass, especially in sites with industrial activities. This measurement should be associated with the analysis of toxic metals.

  8. Application of Synchrotron Techniques in Environmental Science

    EPA Science Inventory

    The complexity of metal contaminated sites has and continues to be simplified to a measure of the total metal content. While total metal content is a critical measure in assessing risk of a contaminated site, total metal content alone does not provide predictive insights on the b...

  9. Bioecological Aspects and Heavy Metal Contamination of the Mollusk Donax denticulatus in the Colombian Caribbean Coastline.

    PubMed

    Valdelamar-Villegas, Juan; Olivero-Verbel, Jesus

    2018-02-01

    Donax denticulatus is a key mollusk for the ecology of sandy beaches, serving as a controller of organic matter, microorganisms, and as bioindicator of heavy metals pollution. The goal of this study was to characterize some ecological aspects of D. denticulatus and its relationship with the content of heavy metals in their tissue, in three beaches of the Caribbean coast of Colombia. The results showed the study populations were different in terms of morphological characteristics and density (Berrugas-Sucre < Cartagena-Bolívar < Riohacha-Guajira), but not in sexual proportion; although density was clearly related to beach occupancy by tourists. Analysis of metals revealed tissue concentrations varied depending on the location (Greater means: Hg = 0.018 ± 0.004 in Riohacha; Pb = 0.110 ± 0.060 in Berrugas and Cd = 0.040 ± 0.010 µg/g in Cartagena). No relationships were found between morphometric variables and heavy metals content. Principal components analysis highlighted Riohacha for presenting differences respecting to Bocagrande and Berrugas in terms of physicochemical water parameters such as pH, temperature, salinity, dissolved oxygen and conductivity. Results suggest tourism rather than environmental pollution could be a sensitive factor for biota survival in Caribbean beaches.

  10. [Characteristics and Risk Assessment of Heavy Metals in Core Sediments from Lakes of Tibet].

    PubMed

    Guo, Bi-xi; Liu, Yong-qin; Zhang, Fan; Hou, Ju-zhi; Zhang, Hong-bo

    2016-02-15

    To explore the source of heavy metals in lake sediments and their hazard to environment on Tibetan Plateau, China, heavy metal (Cu, Zn, Cd, Pb, Cr, Co, Ni and As) levels in surface sediments of 18 lakes were investigated. Inductively Coupled Plasma Mass Spectrometry (ICP-MS, X-7 series) was used to determine the contents of heavy metals and the concentrations of carbon and nitrogen in sediment samples were analyzed by element analyzer (Vario Max CN, Elementar, Germany). The average concentrations for Cu, Zn, Cd, Pb, Cr, Co, Ni and As were 24.61 mg x kg(-1), 70.14 mg x kg(-1), 0.26 mg x kg(-1), 25.43 mg x kg(-1), 74.12 mg x kg(-1), 7.93 mg x kg(-1), 33.85 mg x kg(-1), 77.69 mg x kg(-1). It was found that heavy-metal concentrations in Tibet sediments were higher than those in Antarctic, but lower than those in the regions affected by anthropogenic activities. The contents of Cu, Zn, Pb, Cr and Co in the samples were lower than the background values of Tibet. Correlation analysis and principal components analysis (PCA) were used to analyze the origins of heavy metals. The result showed that Cu, Zn, Cd, Pb, Co, Ni and As came from soil in drainage basin and atmospheric deposition. Cr was mainly affected by human activities. Assessment on ecological risk of heavy metals was carried out using Hakanson's method and cluster analysis (CA). Assessment on ecological risk indicated that Pumoyum Co, Longmo Co and Bangong Co were at low risks, Bieruoze Co was at high ecological risk level and the other lakes were at different risk levels.

  11. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico

    PubMed Central

    Meza-Figueroa, Diana; Maier, Raina M.; de la O-Villanueva, Margarita; Gómez-Alvarez, Agustín; Moreno-Zazueta, Alan; Rivera, Jacinto; Campillo, Alberto; Grandlic, Christopher; Anaya, Ricardo; Palafox-Reyes, Juan

    2009-01-01

    Past mining activities in northern Mexico left a legacy of delerict landscapes devoid of vegetation and seasonal formation of salt efflorescence. Metal content was measured in mine tailings, efflorescent salts, soils, road dust and residential soils to investigate contamination. Climatic effects such as heavy wind and rainfall events can have great impact on the dispersion of metals in semi-arid areas, since soils are typically sparsely vegetated. Geochemical analysis of this site revealed that even though total metal content in mine tailings was relatively low (e.g. Cu = 1000 mg kg-1), metals including Mn, Ba, Zn, and Cu were all found at significantly higher levels in efflorescence salts formed by evaporation on the tailings impoundment surface following the rainy season (e.g. Cu=68000 mg kg-1). Such efflorescent fine-grained salts are susceptible to wind erosion resulting in increased metal spread to nearby residential soils. Our results highlight the importance of seasonally dependent salt-formation and wind erosion in determining risk levels associated with potential inhalation or ingestion of airborne particulates originating from contaminated sites such as tailings impoundments. In low metal-content mine tailings located in arid and semi-arid environments, efflorescence salts could represent a human health risk and a challenge for plant establishment in mine tailings. PMID:19500816

  12. The impact of unconfined mine tailings in residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico.

    PubMed

    Meza-Figueroa, Diana; Maier, Raina M; de la O-Villanueva, Margarita; Gómez-Alvarez, Agustín; Moreno-Zazueta, Alan; Rivera, Jacinto; Campillo, Alberto; Grandlic, Christopher J; Anaya, Ricardo; Palafox-Reyes, Juan

    2009-09-01

    Past mining activities in northern Mexico left a legacy of delerict landscapes devoid of vegetation and seasonal formation of salt efflorescence. Metal content was measured in mine tailings, efflorescent salts, soils, road dust, and residential soils to investigate contamination. Climatic effects such as heavy wind and rainfall events can have great impact on the dispersion of metals in semi-arid areas, since soils are typically sparsely vegetated. Geochemical analysis of this site revealed that even though total metal content in mine tailings was relatively low (e.g. Cu= 1000 mg kg(-1)), metals including Mn, Ba, Zn, and Cu were all found at significantly higher levels in efflorescence salts formed by evaporation on the tailings impoundment surface following the rainy season (e.g. Cu= 68,000 mg kg(-1)). Such efflorescent fine-grained salts are susceptible to wind erosion resulting in increased metal spread to nearby residential soils. Our results highlight the importance of seasonally dependent salt-formation and wind erosion in determining risk levels associated with potential inhalation or ingestion of airborne particulates originating from contaminated sites such as tailings impoundments. In low metal-content mine tailings located in arid and semi-arid environments, efflorescence salts could represent a human health risk and a challenge for plant establishment in mine tailings.

  13. Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: evaluating the risk of transfer into the food chain.

    PubMed

    Lopes, Carla; Herva, Marta; Franco-Uría, Amaya; Roca, Enrique

    2011-07-01

    In this work, an environmental risk assessment of reusing organic waste of differing origins and raw materials as agricultural fertilizers was carried out. An inventory of the heavy metal content in different organic wastes (i.e., compost, sludge, or manure) from more than 80 studies at different locations worldwide is presented. The risk analysis was developed by considering the heavy metal (primarily Cd, Cu, Ni, Pb, and Zn) concentrations in different organic residues to assess their potential environmental accumulation and biotransfer to the food chain and humans. A multi-compartment model was used to estimate the fate and distribution of metals in different environmental compartments, and a multi-pathway model was used to predict human exposure. The obtained hazard index for each waste was concerning in many cases, especially in the sludge samples that yielded an average value of 0.64. Among the metals, Zn was the main contributor to total risk in all organic wastes due to its high concentration in the residues and high biotransfer potential. Other more toxic metals, like Cd or Pb, represented a negligible contribution. These results suggest that the Zn content in organic waste should be reduced or more heavily regulated to guarantee the safe management and reuse of waste residues according to the current policies promoted by the European Union.

  14. [Determination of trace heavy metal elements in cortex Phellodendron chinense by ICP-MS after microwave-assisted digestion].

    PubMed

    Kou, Xing-Ming; Xu, Min; Gu, Yong-Zuo

    2007-06-01

    An inductively coupled plasma mass spectrometry (ICP-MS) for determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense after microwave-assisted digestion of the sample has been developed. The accuracy of the method was evaluated by the analysis of corresponding trace heavy metal elements in standard reference materials (GBW 07604 and GBW 07605). By applying the proposed method, the contents of 8 trace heavy metal elements in cortex Phellodendron chinense cultivated in different areas (in Bazhong, Yibin and Yingjing, respectively) of Sichuan and different growth period (6, 8 and 10 years of samples from Yingjing) were determined. The relative standard deviation (RSD) is in the range of 3.2%-17.8% and the recoveries of standard addition are in the range of 70%-120%. The results of the study indicate that the proposed method has the advantages of simplicity, speediness and sensitivity. It is suitable for the determination of the contents of 8 trace heavy metal elements in cortex Phellodendron chinense. The results also show that the concentrations of 4 harmful trace heavy metal elements As, Cd, Hg and Pb in cortex Phellodendron chinense are all lower than the limits of Chinese Pharmacopoeia and Green Trade Standard for Importing and Exporting Medicinal Plant and Preparation. Therefore, the cortex Phellodendron chinense is fit for use as medicine and export.

  15. Zinc oxide nanoparticles (ZnONPs) alleviate heavy metal-induced toxicity in Leucaena leucocephala seedlings: A physiochemical analysis.

    PubMed

    Venkatachalam, P; Jayaraj, M; Manikandan, R; Geetha, N; Rene, Eldon R; Sharma, N C; Sahi, S V

    2017-01-01

    The present study describes the role of zinc oxide nanoparticles (ZnONPs) in reversing oxidative stress symptoms induced by heavy metal (Cd and Pb) exposure in Leucaena leucocephala (Lam.) de Wit. Seedling growth was significantly enhanced with the augmentation of ZnONPs following Cd and Pb exposure. Heavy metal accumulations were recorded as 1253.1 mg Cd per kg DW and 1026.8 mg Pb per kg DW for the respective treatments. Results demonstrated that ZnONPs augmentation caused an increase in photosynthetic pigment and total soluble protein contents while a significant decrease in malondialdehyde (MDA-lipid peroxidation) content in leaves. Antioxidative enzymes such as superoxide dismutase (SOD), catalase (CAT) and peroxidase (POX) were, in turn, elevated in heavy metal-exposed leaves amended with ZnONPs. The ameliorating effect of ZnO nanoparticles on oxidative stress induced toxicity was also confirmed by the reduced MDA content and the elevated level of antioxidative enzyme activities in leaf tissues of L. leucocephala seedlings. Further, addition of ZnONPs in combination with Cd and Pb metals induced distinct genomic alterations such as presence of new DNA bands and/or absence of normal bands in the RAPD pattern of the exposed plants. This study uniquely suggests a potential role of zinc oxide nanoparticles in the remediation of heavy metal contaminated media. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  16. Microbial Diversity and Metal Speciation Changes in Mine Tailings Following Compost-Assisted Direct Planting: A Four-Year Superfund Site Field Study

    NASA Astrophysics Data System (ADS)

    Maier, R. M.; Gil-Loaiza, J.; Honeker, L. K.; Hottenstein, J. D.; Valentin-Vargas, A.; Jennings, L. L.; Hammond, C.; Neilson, J. W.; Root, R. A.; Chorover, J.

    2014-12-01

    EPA estimates that future mine tailings remediation costs will exceed US $50 billion using present technologies based on constructing an inert or biological cap on the tailings. Both approaches require large amounts of capping materials that can be difficult and expensive to obtain especially for sites several thousand hectares in size. An alternative technology is direct planting into tailings. However, direct planting alone is not feasible for many legacy sites due to extreme acidity and high metal content which prevent plant germination and growth. Therefore the process must be "assisted" through the addition of amendments such as compost. Here we present results from the first four years of a field study at the Iron King Mine and Humboldt Smelter Superfund site demonstrating the feasibility of compost-assisted direct planting. Parameters measured during the field study included: canopy cover, pH, nutrient content, plant metal uptake, metal(loid) speciation, mineral analysis, microbiome analysis, and plant root-metal-microbe interactions. Integrated analysis of these parameters suggests that even in this "worst-case scenario" mine tailings site (pH 2.5; As and Pb each exceeding 2 g kg-1), we have created a sustainable system. In this system, phyto-catalyzed stabilization of inorganic contaminants in the root zone is driven by plant root exudates and the associated rhizosphere microbial community. The results of this research will be put into context of a larger topic- that of ecological engineering of mine tailings sites - a technique being proposed to prevent creation of acidic conditions and metal(loid) mobilization in the first place.

  17. Microbial Diversity and Metal Speciation Changes in Mine Tailings Following Compost-Assisted Direct Planting: A Four-Year Superfund Site Field Study

    NASA Astrophysics Data System (ADS)

    Maier, R. M.; Gil-Loaiza, J.; Honeker, L. K.; Hottenstein, J. D.; Valentin-Vargas, A.; Jennings, L. L.; Hammond, C.; Neilson, J. W.; Root, R. A.; Chorover, J.

    2015-12-01

    EPA estimates that future mine tailings remediation costs will exceed US $50 billion using present technologies based on constructing an inert or biological cap on the tailings. Both approaches require large amounts of capping materials that can be difficult and expensive to obtain especially for sites several thousand hectares in size. An alternative technology is direct planting into tailings. However, direct planting alone is not feasible for many legacy sites due to extreme acidity and high metal content which prevent plant germination and growth. Therefore the process must be "assisted" through the addition of amendments such as compost. Here we present results from the first four years of a field study at the Iron King Mine and Humboldt Smelter Superfund site demonstrating the feasibility of compost-assisted direct planting. Parameters measured during the field study included: canopy cover, pH, nutrient content, plant metal uptake, metal(loid) speciation, mineral analysis, microbiome analysis, and plant root-metal-microbe interactions. Integrated analysis of these parameters suggests that even in this "worst-case scenario" mine tailings site (pH 2.5; As and Pb each exceeding 2 g kg-1), we have created a sustainable system. In this system, phyto-catalyzed stabilization of inorganic contaminants in the root zone is driven by plant root exudates and the associated rhizosphere microbial community. The results of this research will be put into context of a larger topic- that of ecological engineering of mine tailings sites - a technique being proposed to prevent creation of acidic conditions and metal(loid) mobilization in the first place.

  18. Mineral phases and metals in baghouse dust from secondary ...

    EPA Pesticide Factsheets

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 µgL-1 As; >1000 µgL-1 Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). The objective of this study was to investigate BHD from SAP facilities in the U.S. by determining the mineral phases and the metal (Al, As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, Se and Zn) content of the sample

  19. Subcellular partitioning of metals in Aporrectodea caliginosa along a gradient of metal exposure in 31 field-contaminated soils.

    PubMed

    Beaumelle, Léa; Gimbert, Frédéric; Hedde, Mickaël; Guérin, Annie; Lamy, Isabelle

    2015-07-01

    Subcellular fractionation of metals in organisms was proposed as a better way to characterize metal bioaccumulation. Here we report the impact of a laboratory exposure to a wide range of field-metal contaminated soils on the subcellular partitioning of metals in the earthworm Aporrectodea caliginosa. Soils moderately contaminated were chosen to create a gradient of soil metal availability; covering ranges of both soil metal contents and of several soil parameters. Following exposure, Cd, Pb and Zn concentrations were determined both in total earthworm body and in three subcellular compartments: cytosolic, granular and debris fractions. Three distinct proxies of soil metal availability were investigated: CaCl2-extractable content dissolved content predicted by a semi-mechanistic model and free ion concentration predicted by a geochemical speciation model. Subcellular partitionings of Cd and Pb were modified along the gradient of metal exposure, while stable Zn partitioning reflected regulation processes. Cd subcellular distribution responded more strongly to increasing soil Cd concentration than the total internal content, when Pb subcellular distribution and total internal content were similarly affected. Free ion concentrations were better descriptors of Cd and Pb subcellular distribution than CaCl2 extractable and dissolved metal concentrations. However, free ion concentrations and soil total metal contents were equivalent descriptors of the subcellular partitioning of Cd and Pb because they were highly correlated. Considering lowly contaminated soils, our results raise the question of the added value of three proxies of metal availability compared to soil total metal content in the assessment of metal bioavailability to earthworm. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. A study of ignition of metal impregnated carbons: the influence of oxygen content in the activated carbon matrix.

    PubMed

    van der Merwe, M M; Bandosz, T J

    2005-02-01

    A study of the reason for the early ignition of coconut-based impregnated carbon in comparison with the peat-based impregnated carbon was conducted. The surface features of carbons were evaluated using various physicochemical methods. The metal analysis of the initial carbon indicated that the content of potassium was higher in the coconut-based carbon. The surface functional group analysis revealed the presence of similar surface species; however, the peat-based carbon was more acidic in its chemical nature. Since the oxygen content was higher in the peat-based carbon, the early ignition of the coconut-based material was attributed to its higher affinity to chemisorb oxygen, which leads to exothermic effects. This conclusion was confirmed by performing oxidation of coconut-based carbon prior to impregnation. This process increased the ignition temperature for Cu/Cr impregnated coconut-based material from 186 to 289 degrees C and for the Cu/Zn/Mo impregnated carbon from 235 to 324 degrees C.

  1. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  2. Assessment of different methods to estimate heavy metal bioavailability in 30 contrasting Spanish and New Zealand soils

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Speir, T. W.; Gómez, I.; Clucas, L. M.; McLaren, R. G.; Navarro-Pedreño, J.

    2009-04-01

    The accumulation of heavy metals in soil from different sources (atmospheric deposition, agricultural practices, urban-industrial activities, etc.) is of a great environmental concern because of metal persistence and toxicity. In this sense, there is a consensus in the literature that the estimation of the bioavailable heavy metals in soil is a preferable tool to determine potential risks from soil contamination than the total contents. However, controversy exists around the definition of an accurate and universal bioavailability estimator that is useful for soils with different properties, since many factors control this parameter. Thus, the main objective of this work was to compare the effectiveness of different methods to predict heavy metals plant uptake from soils with different properties and heavy metal contents. For the development of the present work, 30 contrasting soils from New Zealand and Spain were selected. Apart from the analysis of the basic soil properties, different methods to estimate heavy metal bioavailability were performed: total heavy metals, DTPA-extractable soil metals, diffusive gradient technique (DGT), and total heavy metals in soil solution. In these soils, a bioassay using wheat (Triticum aestivum) was carried out in a constant environment room for 25 days (12 hours photoperiod, day and night temperature of 20°C and 15°C respectively). After this time, the plants were divided in roots and shoots and heavy metal content was analysed in each part. Simple correlations were performed comparing the phytoavailable contents with the bioavailability estimated by the different methods. As expected, higher heavy metal concentrations were found in roots compared with shoots. Comparing the theoretical available heavy metals estimated by the different methods with the root and shoot uptake, better correlations were found with the root contents, thus, the discussion is based in the comparisons with the uptake by this part of the plant. According to the results, DTPA seemed to be the extractant that best estimated plant uptake (except for Cd, not estimated by any of the methods used). Similar good results were found using the total heavy metal contents, except for Ni and Zn. DGT also worked well, but its use for Pb is not advisable, since many values were below the detection level. The heavy metals in soil solution were less successful for predicting plant uptake. In general, the good results obtained for Cr and Zn seemed to be influenced by a few high values found in some soils. Taking this point into account, the soils with very high levels of these heavy metals were removed from the analysis and simple correlations were done again with the remaining soils having a lower range of these metals. For the case of Cr, four soils were removed (soils with ten times or more total Cr than the average of the others 26 samples) and three for the case of Zn (soils with two times or more total Zn than the average of the others 27 samples). After this, the correlations with total heavy metals and DTPA became very weak, being the heavy metals in soil solution for Cr, and DGT for Zn, the methods that best estimated the plant uptake of these metals. This work has proved the importance of careful revision of the data distribution, since good results can be influenced by just few samples with high values. In this sense and as a conclusion, DTPA and total heavy metals followed similar patterns and were good predictors of Cu and Pb uptake, and useful to distinguish between low and high values for Cr and Zn. On the other hand, DGT and heavy metals in soil solution showed a similar effectiveness to estimate Cu, Ni, Pb, Zn and Cr, but DGT presented, in general, higher correlation levels (except for Cr). Taking all of the results together, it seems that the most robust and efficient estimator for all metals studied (except Cd, impossible to predict with any of the methods used) was the DGT. Acknowledgements: Jose. M. Soriano-Disla gratefully acknowledges the Spanish Ministry of Innovation and Culture for a research fellowship (AP2005-0320).

  3. Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods.

    PubMed

    Santos-Francés, Fernando; Martínez-Graña, Antonio; Zarza, Carmelo Ávila; Sánchez, Antonio García; Rojo, Pilar Alonso

    2017-05-26

    The environmental quality of soil in the central part of the Northern Plateau of Spain has been analyzed by studying the heavy metal content of 166 samples belonging to the horizons A, B and C of 89 soil profiles. The analysis to assess the environmental risk of heavy metals in the soil was carried out by means of the spatial distribution of nine heavy metals and the use of several pollution indices. The results showed that the concentration values of heavy metals (x ± S) in the superficial soil horizons were the following: With a total of 6.71 ± 3.51 mg kg -1, the contents of Cd is 0.08 ± 0.06 mg kg-1, Co is 6.49 ± 3.21 mg kg-1, Cu is 17.19 ± 10.69 mg kg-1, Cr is 18.68 ± 12.28 mg kg-1, Hg is 0.083 ± 0.063 mg kg-1, Ni is 12.05 ± 6.76 mg kg-1, Pb is 14.10 ± 11.32 mg kg-1 and Zn is 35.31 ± 14.63 mg kg-1. These nine metals exceed the values of the natural geological background level of Tertiary period sediments and rocks that form part of the Northern Plateau in Spain. Nemerow and Potential Ecological Risk indices were calculated, with the "improved" Nemerow index allowing pollution within the soil superficial horizons to be determined. The data obtained indicated that the majority of the soil (54.61%) showed low to moderate contamination, 22.31% showed moderate contamination and 21.54% of the samples were not contaminated. If we consider the Potential of Ecological Risk Index (RI), the largest percentage of soil samples showed low (70.79%) to moderate (25.38%) ecological risk of potential contamination, where the rest of the soil presented a considerable risk of contamination. The nine trace elements were divided into three principal components: PC1 (Cu, Cr, Ni, Co and Zn), PC2 (As and Hg) and PC3 (Cd). All metals accumulated in the soil came from parent rock, agricultural practices and the run-off of residual waters towards rivers and streams caused by industrial development and an increase in population density. Finally, cartography of the spatial distribution of the heavy metal contents in the soil of the Northern Plateau of Spain was generated using Kriging interpolation methods. Furthermore, the total heavy metal contents in three soil orders present in the area, namely Entisols, Inceptisols, and Alfisols, were analyzed. Other soil parameters, such as the organic matter content, pH, clay content and cation exchange capacity, was measured to determine their influence on and correlation with the heavy metal contents.

  4. Carcinogenicity of Embedded Tungsten Alloys in Mice

    DTIC Science & Technology

    2011-03-01

    year carcinogenicity (Aim 1) and serial euthanasia (Aim 2) studies were analyzed for metal content using inductively coupled-plasma mass spectrometry...inductively coupled- plasma mass spectrometer (PQ ExCell ICPMS System, ThermoElemental, Franklin, MA) equipped with a Cetac ASX500 Autosampler. High...Metal analysis using inductively coupled-plasma mass spectrometry showed that both the tungsten/nickel/cobalt and tungsten/nickel/iron

  5. ASTM Committee G-4 metals flammability test program - Data and discussion

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M.; Homa, John M.; Williams, Ralph E.; Benz, Frank J.

    1988-01-01

    Results of metals flammability tests performed on twenty-six metals in the NASA/White Sands Test Facility are discussed together with the test systems. The promoted combustion and ignition characteristics of these metals are described, and the metals are ranked according to their suitability for use in oxygen systems. In general, alloys with high copper and nickel contents and low iron content were found to rank higher than those that had high iron content, while alloys that had high aluminum content were ranked the lowest.

  6. [Spatial distribution and pollution assessment of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area, China ].

    PubMed

    Zhang, Lei; Qin, Yan-wen; Ma, Ying-qun; Zhao, Yan-min; Shi, Yao

    2014-09-01

    The aim of this article was to explore the pollution level of heavy metals in the tidal reach and its adjacent sea estuary of Daliaohe area. The contents and spatial distribution of As, Cd, Cr, Cu, Ph and Zn in surface water, suspended solids and surface sediments were analyzed respectively. The integrated pollution index and geoaccumulation index were used to evaluate the contamination degree of heavy metals in surface water and surface sediments respectively. The results indicated that the contents of heavy metals in surface water was in the order of Pb < Cu < Cd < Cr < As < Zn. The heavy metal contents in surface water increased from river to sea. Compared with the contents of heavy metals in surface water of the typical domestic estuary in China, the overall contents of heavy metals in surface water were at a higher level. The contents of heavy metals in suspended solids was in the order of Cd < Cu < As < Cr

  7. Method for reducing the sulfur content of a sulfur-containing hydrocarbon stream

    DOEpatents

    Mahajan, Devinder

    2004-12-28

    The sulfur content of a liquid hydrocarbon stream is reduced under mild conditions by contracting a sulfur-containing liquid hydrocarbon stream with transition metal particles containing the transition metal in a zero oxidation state under conditions sufficient to provide a hydrocarbon product having a reduced sulfur content and metal sulfide particles. The transition metal particles can be produced in situ by adding a transition metal precursor, e.g., a transition metal carbonyl compound, to the sulfur-containing liquid feed stream and sonicating the feed steam/transition metal precursor combination under conditions sufficient to produce the transition metal particles.

  8. Cation Ordering in Li[NixMnxCo(1-2x)]O2-Layered Cathode Materials: A Nuclear Magnetic Resonance (NMR), Pair Distribution Function, X-ray Absorption Spectroscopy, and Electrochemical Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng,D.; Cabana, J.; Breger, J.

    2007-01-01

    Several members of the compositional series Li[NixMnxCo(1-2x)]O2 (0.01 = x = 1/3) were synthesized and characterized. X-ray diffraction results confirm the presence of the layered a-NaFeO2-type structure, while X-ray absorption near-edge spectroscopy experiments verify the presence of Ni2+, Mn4+, and Co3+. Their local environment and short-range ordering were investigated by using a combination of 6Li magic angle spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy and neutron pair distribution function (PDF) analysis, associated with reverse Monte Carlo (RMC) calculations. The 6Li MAS NMR spectra of compounds with low Ni/Mn contents (x = 0.10) show several well-resolved resonances, which start to mergemore » when the amount of Ni and Mn increases, finally forming a broad resonance at high Ni/Mn contents. Analysis of the 6Li MAS NMR 6Li[Ni0.02Mn0.02Co0.96]O2 spectrum, is consistent with the formation of Ni2+ and Mn4+ clusters within the transition-metal layers, even at these low-doping levels. The oxidation state of Ni in this high Co content sample strongly depends upon the Li/transition metal ratio of the starting materials. Neutron PDF analysis of the highest Ni/Mn content sample Li[Ni1/3Mn1/3Co1/3]O2 shows a tendency for Ni cations to be close to Mn cations in the first coordination shell; however, the Co3+ ions are randomly distributed. Analysis of the intensity of the 'LiCoO2' resonance, arising from Li surrounded by Co3+ in its first two cation coordination shells, for the whole series provides further evidence for a nonrandom distribution of the transition-metal cations. The presence of the insulator-to-metal transition seen in the electrochemical profiles of these materials upon charging correlates strongly with the concentration of the 'LiCoO2' resonance.« less

  9. Characterization, heavy metal content and health risk assessment of urban road dusts from the historic center of the city of Thessaloniki, Greece.

    PubMed

    Bourliva, Anna; Christophoridis, Christophoros; Papadopoulou, Lambrini; Giouri, Katerina; Papadopoulos, Argyrios; Mitsika, Elena; Fytianos, Konstantinos

    2017-06-01

    In the present study, an investigation of the mineralogy and morphology, the heavy metal content and the health risk of urban road dusts from the second largest city of Greece was conducted. For this reason road dust samples from selected sites within the city core area were collected. No differences were observed in the mineralogy of road dusts coming from different sampling sites, and they were mainly consisted of quartz and calcite, while an elevated amorphous content was detected. Morphologically road dusts presented Ca-rich, Fe-rich and silicates particles with various shapes and sizes. The mean concentrations of Cd, Cr, Cu, Mn, Ni, Pb and Zn in road dust were 1.76, 104.9, 662.3, 336.4, 89.43, 209 and 452.8 μg g -1 , respectively. A series of spatial distribution patterns revealed that the hotspot areas were tended to associate with major road junctions and regions with high traffic. Combination of pollution indexes and statistical analyses (correlation analysis, cluster analysis and principal component analysis) revealed that road dusts have a severe influence by anthropogenic activities. In attempt to identify the source of metals through geostatistical and multivariate statistical analyses, it was concluded as follows: Cr, Cu, Fe and Zn mainly originated from tire/break wear and vehicle abrasions, while Cd, Mn and Pb were mainly related to fuel/oil leakage from automobiles along with oil lubricants and vehicle abrasion. Hazard quotient values for children based on total metal concentrations for the road dust ingestion route were lower than safe level (=1). However, the fact that the Hazard Index value for Pb (0.459) which is a particularly toxic metal, was close to safe level, renders essential further investigation in order to provide more reliable characterizations of potential health risks.

  10. A Study of the Possible Harmful Effects of Cosmetic Beauty Products on Human Health.

    PubMed

    Kaličanin, Biljana; Velimirović, Dragan

    2016-04-01

    The origins of the usage of different substances in beauty, skin, body, hair, and nails care products can be found in ancient times. To achieve better quality and enhance their effects, some additives such as preservatives, stabilizers, mineral pigments, dye, and shine were added to these products. Some of these substances may also have allergic, irritating, and harmful effects on human health. The aim of this study was the optimization of the potentiometric stripping analysis (PSA) for the purpose of determining the content of heavy metals (lead, cadmium, zinc), in some commercial cosmetic beauty products (lipsticks, lip glosses, eye shadows, and henna hair dye). In addition, in order to monitor the potential adverse effects of henna dye on hair quality, as well as the total body burden of heavy metals (Pb, Cd), the paper analyzed hair samples before and after henna dye treatment. Beauty products used for cosmetic purposes can have adverse effects to human health due to the fact that they contain lead, a highly toxic metal. The lead content in the tested samples varied depending on the additives used along with the method of production. The cosmetic products that were analyzed in this study contained a certain amount of zinc, which is an essential element, although its content above the prescribed limit may lead to side effects. Highly toxic metal, cadmium, was not detected in the tested samples. The presence of these metals in cosmetic products certainly indicate that it is necessary to monitor and determinate the content of toxic heavy metals in these products, especially because they are in direct contact with skin or mucous membranes and are often used in daily life.

  11. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    PubMed

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals pollution was in the order of As > Cr > Ni > Cd > Pb. Simultaneously, comprehensive pollution evaluation showed that the degree of heavy metals pollution in the study area was very serious, with comprehensive pollution index ranging from 2.17 to 4.66, among which, the numbers of moderate and heavy pollution samples were 10 and 26, respectively. Areas with heavy pollution were mainly distributed in the Sangyuan Coal Mine, Beizao Coal Mine, Liuhai Coal Mine; and the areas with moderate pollution covered Wali Coal Mine, Liangjia Coal Mine, and other regions. The results of this paper will provide data reference and theoretical support for the study of ecological risk assessment in the study area.

  12. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors.

    PubMed

    Willow, Mark A; Cohen, Ronald R H

    2003-01-01

    Anaerobic bioreactors were used to test the effect of the pH of influent on the removal efficiency of heavy metals from acid-rock drainage. Two studies used a near-neutral-pH, metal-laden influent to examine the heavy metal removal efficiency and hydraulic residence time requirements of the reactors. Another study used the more typical low-pH mine drainage influent. Experiments also were done to (i) test the effects of oxygen content of feed water on metal removal and (ii) the adsorptive capacity of the reactor organic substrate. Analysis of the results indicates that bacterial sulfate reduction may be a zero-order kinetic reaction relative to sulfate concentrations used in the experiments, and may be the factor that controls the metal mass removal efficiency in the anaerobic treatment systems. The sorptive capacities of the organic substrate used in the experiments had not been exhausted during the experiments as indicated by the loading rates of removal of metals exceeding the mass production rates of sulfide. Microbial sulfate reduction was less in the reactors receiving low-pH influent during experiments with short residence times. Sulfate-reducing bacteria may have been inhibited by high flows of low-pH water. Dissolved oxygen content of the feed waters had little effect on sulfate reduction and metal removal capacity.

  13. Temporal dynamics of urbanization-driven environmental changes explored by metal contamination in surface sediments in a restoring urban wetland park.

    PubMed

    Ma, Jun; Liu, Yi; Yu, Guangbin; Li, Hongbo; Yu, Shen; Jiang, Yueping; Li, Guilin; Lin, Jinchang

    2016-05-15

    Spatial patterns of metal distribution along urban-rural or multi-city gradients indicate that the urbanization process directly lead to metal enrichment and contamination in the environments. However, it has not yet looked at homogenization dynamics of an urban-rural gradient pattern over time with urbanization process in an area. This study monitored anthropogenic metals (Cr, Cu, Pb, and Zn) in surface sediments from channels of a newly-opened National Wetland Park to elucidate the urbanization-driven dissolution of urban-rural gradient pattern between 2008 and 2011. Sixty-eight surface sediment samples were taken from these channels in July of both 2008 and 2011. Results showed that a spatial distribution pattern of total metal contents along the gradient of urbanization influence, evident in 2008, was homogenized in 2011 with the area development. The lead stable isotope ratio analysis identified anthropogenic Pb origins from vehicular exhausts, cements, and coal flying ashes, which elevated metal contents in the inner channels via atmospheric deposition. Specific hazard quotients of the metal contamination in surface sediment were also assessed and enhanced over time in the study wetland park. These findings suggest that emissions from traffic, construction, and energy generation contribute metal loadings in the urbanizing environment. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Heavy metal anomalies in the Tinto and Odiel River and estuary system, Spain

    USGS Publications Warehouse

    Nelson, C.H.; Lamothe, P.J.

    1993-01-01

    The Tinto and Odiel rivers drain 100 km from the Rio Tinto sulphide mining district, and join at a 20-km long estuary entering the Atlantic Ocean. A reconnaissance study of heavy metal anomalies in channel sand and overbank mud of the river and estuary by semi-quantitative emission dc-arc spectrographic analysis shows the following upstream to downstream ranges in ppm (??g g-1): As 3,000 to <200, Cd 30 to <0.1, Cu 1,500 to 10, Pb 2,000 to <10, Sb 3000 to <150, and Zn 3,000 to <200. Organic-rich (1.3-2.6% total organic carbon, TOC), sandysilty overbank clay has been analyzed to represent suspended load materials. The high content of heavy metals in the overbank clay throughout the river and estuary systems indicates the importance of suspended sediment transport for dispersing heavy metals from natural erosion and anthropogenic mining activities of the sulfide deposit. The organic-poor (0.21-0.37% TOC) river bed sand has been analyzed to represent bedload transport of naturally-occurring sulfide minerals. The sand has high concentrations of metals upstream but these decrease an order of magnitude in the lower estuary. Although heavy metal contamination of estuary mouth beach sand has been diluted to background levels estuary mud exhibits increased contamination apparently related to finer grain size, higher organic carbon content, precipitation of river-borne dissolved solids, and input of anthropogenic heavy metals from industrial sources. The contaminated estuary mud disperses to the inner shelf mud belt and offshore suspended sediment, which exhibit metal anomalies from natural erosion and mining of upstream Rio Tinto sulphide lode sources (Pb, Cu, Zn) and industrial activities within the estuary (Fe, Cr, Ti). Because heavy metal contamination of Tinto-Odiel river sediment reaches or exceeds the highest levels encountered in other river sediments of Spain and Europe, a detailed analysis of metals in water and suspended sediment throughout the system, and epidemiological analysis of heavy metal effects in humans is appropriate. ?? 1993 Estuarine Research Federation.

  15. Heavy Metal Contents and Physical Parameters of Aegiceras corniculatum, Brassica juncea, and Litchi chinensis Honeys from Bangladesh

    PubMed Central

    Sarker, Nandita; Chowdhury, Muhammed Alamgir Zaman; Fakhruddin, Abu Naieum Muhammad; Fardous, Zeenath; Moniruzzaman, Mohammed; Gan, Siew Hua

    2015-01-01

    The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness. PMID:26618176

  16. Heavy Metal Contents and Physical Parameters of Aegiceras corniculatum, Brassica juncea, and Litchi chinensis Honeys from Bangladesh.

    PubMed

    Sarker, Nandita; Chowdhury, Muhammed Alamgir Zaman; Fakhruddin, Abu Naieum Muhammad; Fardous, Zeenath; Moniruzzaman, Mohammed; Gan, Siew Hua

    2015-01-01

    The present study was undertaken to determine the heavy metal levels and the physicochemical parameters (pH, electrical conductivity (EC), and ash, moisture, and total sugar content) of honeys from Bangladesh. Three different floral honeys were investigated, namely, khalsi (Aegiceras corniculatum), mustard (Brassica juncea), and litchi (Litchi chinensis) honeys. The heavy metals in the honeys were determined by using a High Temperature Dry Oxidation method followed by Atomic Absorption Spectroscopy. The mean pH, EC, and ash, moisture, and total sugar contents of the investigated honeys were 3.6, 0.51 mS/cm, 0.18%, 18.83%, and 68.30%, respectively. Iron was the most abundant among all the investigated heavy metals, ranging from 13.51 to 15.44 mg/kg. The mean concentrations of Mn and Zn in the investigated honeys were 0.28 mg/kg and 2.99 mg/kg, respectively. Cd was below the detection limit, and lead was found in some honey samples, but their contents were below the recommended Maximum Acceptable Level. Cr was also found in all of the samples, but its concentration was within the limit. The physicochemical analysis of the honey samples yielded levels within the limits set by the international honey legislation, indicating that the honey samples were of good quality and had acceptable values for maturity, purity, and freshness.

  17. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2015-05-01

    This study was undertaken to have comparative assessment of heavy metals content during composting and vermicomposting processing of Municipal Solid Waste (MSW). Six scenarios were set up in which three experiments were for composting (controls) denoted as S1 for food waste, S2 for paper waste and S3 for yard waste and the corresponding replicates for vermicomposting processes were S4, S5 and S6. Vermicomposting caused significant reduction in Cd (43.3-73.5%), Cr (11.3-52.8%), Cu (18.9-62.5%), Co (21.4-47.6%), Zn (34.6%) and Ni (19.9-49.6%) compared to composting which showed a progressive increase. Addition of worms did not show any effect on Fe and Mn, most probably from the genesis of organic-bound complexes. The efficacy of utilizing Eudrilus eugeniae was indicated by the high values of bioconcentration factors (BCFs) which were in the order of Cd>Ni>Cu>Co>Cr>Zn and the increase amount of these metals in the earthworms' tissue after the vermicomposting processes. Different values of BCFs were obtained for different heavy metals and this accounted that earthworms exert different metabolic mechanisms. Regression analysis of the reduction percentages (R) in relation to BCF showed that RCdtot.S6, RCrtot.S5 and RCutot.S6 were significantly correlated with BCFCd.S6, BCFCr.S5 and BCFCu.S6 respectively. Thus, in comparison to simple composting processes, data analysis suggested the feasibility of inoculating E. eugeniae to MSW in order to mitigate the content of toxic heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Trace-element partition coefficients in the calcite-water system and their paleoclimatic significance in cave studies

    NASA Astrophysics Data System (ADS)

    Gascoyne, Melvyn

    1983-02-01

    Speleothems (stalactites, stalagmites) formed in limestone caves have been found to contain much information on the timing and intensity of past climates, from analysis of their U, Th, 13C and 18O contents. Because the incorporation of certain trace elements (e.g., Mg, Mn and Zn) in calcite is known to be temperature-dependent, it may be possible to use variations in trace-metal content of fossil speleothems as an alternative paleotem-perature indicator. Using specially developed ion-exchange sampling techniques, analysis of trace-metal content of seepage water and associated fresh calcite deposits in caves in Vancouver Island and Jamaica shows that Mg is distributed between phases in a consistent manner within the temperature regimes of the caves (7° and 23°C, respectively). Average values of the distribution coefficient for Mg are respectively 0.017 and 0.045 at these temperatures. These results indicate that the Mg content of calcite varies directly with temperature and in a sufficiently pronounced manner that a 1°C rise in depositional temperature of a speleothem containing 500 ppm Mg, at ˜10°C, would be seen as an increase of ˜35ppm Mg — a readily determinable shift. Other factors affecting Mg content of a speleothem are considered.

  19. Analysis of heavy metals (Pb and Zn) concentration in sediment of Blanakan fish ponds, Subang, West Java

    NASA Astrophysics Data System (ADS)

    Wiriawan, A.; Takarina, N. D.; Pin, T. G.

    2017-07-01

    Blanakan fish ponds receive water resource from Kali Malang and Blanakan rivers. Industrial and domestic activities along the river can cause pollution, especially heavy metals. Zinc (Zn) is an essential element that needed by an organism, while Lead (Pb) is a nonessential element that is not needed. Discharge of waste water from industries and anthropogenic activities continuously not only pollute the water but also the sediment and biota live on it. This research was aimed to know the heavy metals content in the sediment of Blanakan fish ponds. Sediment samples were taken on July and August 2016 at three locations. Heavy metals were analyzed using Atomic Absorption Spectrophotometry (AAS) Shimadzu 6300. The result of Lead (Pb) measurement showed that Fish Pond 1 had higher average concentration compared Fish Pond 2 and Fish Pond 3 which was 0.55 ppm. Standard for Lead (Pb) in sediment according to Ontario Sediment Standards (2008) is 31 ppm. Based on Zinc (Zn) measurement, it was known that average of Zinc (Zn) concentration also higher on Fish Pond 1 compared to Fish Pond 2 and 3 which was 1.93 ppm. According to Ontario Sediment Standards (2008), a standard for Zinc (Zn) in sediment is 120 ppm. This indicated that heavy metals in the sediment of fish ponds were below standards. Statistical analysis using t-test showed that there was no significant difference of heavy metals content among fish ponds.

  20. Influence of process conditions and interventions on metals content in biocrude from hydrothermal liquefaction of microalgae

    DOE PAGES

    Jiang, Jimeng; Savage, Phillip E.

    2017-07-15

    We determined how different reaction conditions influence the metals contents in biocrude oil and other product fractions from hydrothermal liquefaction (HTL) of microalgae. We then assessed the effect of using different solvents for biocrude recovery and adding catalysts on the metal content in the biocrude. The Fe content was lower and the Na content higher in biocrude produced at higher temperature (400 vs 350 °C) and longer holding time (60 vs 3 min). The Fe and Na contents were reduced over 50% and 95%, respectively, by use of methyl tert-butyl ether (MTBE ) rather than dichloromethane as the organic solventmore » for biocrude recovery and they were reduced over 98% via additional application of a supported Ni catalyst during HTL. Finally, this work demonstrates that the hydrothermal treatment conditions influence the metal content in biocrude and that judicious selection of solvent and catalyst can lead to significant reduction in the metal content in biocrude.« less

  1. Influence of process conditions and interventions on metals content in biocrude from hydrothermal liquefaction of microalgae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Jimeng; Savage, Phillip E.

    We determined how different reaction conditions influence the metals contents in biocrude oil and other product fractions from hydrothermal liquefaction (HTL) of microalgae. We then assessed the effect of using different solvents for biocrude recovery and adding catalysts on the metal content in the biocrude. The Fe content was lower and the Na content higher in biocrude produced at higher temperature (400 vs 350 °C) and longer holding time (60 vs 3 min). The Fe and Na contents were reduced over 50% and 95%, respectively, by use of methyl tert-butyl ether (MTBE ) rather than dichloromethane as the organic solventmore » for biocrude recovery and they were reduced over 98% via additional application of a supported Ni catalyst during HTL. Finally, this work demonstrates that the hydrothermal treatment conditions influence the metal content in biocrude and that judicious selection of solvent and catalyst can lead to significant reduction in the metal content in biocrude.« less

  2. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  3. High resolution photoemission investigation: The oxidation of W

    NASA Astrophysics Data System (ADS)

    Morar, J. F.; Himpsel, F. J.; Hughes, G. J.; Jordan, J. L.; McFeely, F. R.; Hollinge, G.

    High resolution photoemission measurements of surface oxide layers on tungsten has revealed a set of well resolved core level shifts characteristic of individual metal oxidation states. Measurement and analysis of this type of data can provide specific and quantitative chemical information about surface oxides. The formation of bonds between transition metals and strongly electronegative elements such as oxygen and fluorine results in charge transfer with the effect of shifting the metal core electron binding energies. The magnitude of such shifts depends primarily on two factors; the amount of charge transfer and the screening ability of the metals electrons. The size of core-level shifts tend to increase with additional charge transfer and be decreased by screening. In the case of tungsten the amount of screening should be a function of oxygen content since the oxygen ties up free electrons which are effective at screening. A continuous change in the tungsten core level shifts is observed with increasing oxygen content, i.e., as the screening changes from that characteristic of a metal screened to that characteristic of an insulator unscreened.

  4. Sediment matrix characterization as a tool for evaluating the environmental impact of heavy metals in metal mining, smelting, and ore processing areas.

    PubMed

    Ružičková, Silvia; Remeteiová, Dagmar; Mičková, Vladislava; Dirner, Vojtech

    2018-02-21

    In this work, the matrix characterization (mineralogy, total and local chemical composition, and total organic (TOC) and inorganic carbon (TIC) contents) of different types of sediments from mining- and metallurgy-influenced areas and the assessment of the impact of the matrix on the association of potentially hazardous metals with the mineral phases of these samples, which affect their mobility in the environment, are presented. For these purposes, sediment samples with different origins and from different locations in the environment were analyzed. Anthropogenic sediments from metal-rich post-flotation tailings (Lintich, Slovakia) represent waste from ore processing, natural river sediments from the Hornád River (Košice, Slovakia) represent areas influenced predominantly by the metallurgical industry, and lake sediments from a water reservoir Ružín (inflow from the Hornád and Hnilec Rivers, Slovakia) represent the impact of the metallurgical and/or mining industries. The total metal contents were determined by X-ray fluorescence (XRF) analysis, the local chemical and morphological microanalysis by scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), and the TOC and TIC contents by infrared (IR) spectrometry. The mobility/bioavailability of Cu, Pb, and Zn in/from sediments at the studied areas was assessed by ethylenediaminetetraacetic acid (EDTA) and acetic acid (AA) extraction and is discussed in the context of the matrix composition. The contents of selected potentially hazardous elements in the extracts were determined by the high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS).

  5. Antiferroelectricity in lanthanum doped zirconia without metallic capping layers and post-deposition/-metallization anneals

    NASA Astrophysics Data System (ADS)

    Wang, Zheng; Gaskell, Anthony Arthur; Dopita, Milan; Kriegner, Dominik; Tasneem, Nujhat; Mack, Jerry; Mukherjee, Niloy; Karim, Zia; Khan, Asif Islam

    2018-05-01

    We report the effects of lanthanum doping/alloying on antiferroelectric (AFE) properties of ZrO2. Starting with pure ZrO2, an increase in La doping leads to the narrowing of the AFE double hysteresis loops and an increase in the critical voltage/electric field for AFE → ferroelectric transition. At higher La contents, the polarization-voltage characteristics of doped/alloyed ZrO2 resemble that of a non-linear dielectric without any discernible AFE-type hysteresis. X-ray diffraction based analysis indicates that the increased La content while preserving the non-polar, parent AFE, tetragonal P42/nmc phase leads to a decrease in tetragonality and the (nano-)crystallite size and an increase in the unit cell volume. Furthermore, antiferroelectric behavior is obtained in the as-deposited thin films without requiring any capping metallic layers and post-deposition/-metallization anneals due to which our specific atomic layer deposition system configuration crystallizes and stabilizes the AFE tetragonal phase during growth.

  6. Quantitative relations between soil heavy metal contamination and landscape pattern in Wuxi, China

    NASA Astrophysics Data System (ADS)

    Zhu, Ming; Pu, Lijie; Xu, Yan

    2017-04-01

    Land use practices changed landscape pattern and meanwhile, brought forth numerous environmental problems including heavy metal contamination in soil. In this study, we investigated the quantitative relations between soil heavy metal contamination and its surrounding landscape pattern based on topsoil samples and land use map of Wuxi in 2009. The results of vector fitting with Redundancy analysis in R package vegan showed that Percent Coverage of build-up area (PCB) within 2500 m, Perimeter-Area Fractal Dimension (PAFD) within 2500 m, Edge Density (ED) within 2500 m, Patch Density (PD) within 200 m, Percent Coverage of wetland (PCW) within 2000 m and Patch Cohesion (PC) within 200 m significantly affected the contents of heavy metal elements. The results of Stepwise regression suggested that increase of build-up area and fragmentation would increase Cu and Zn, while increase of wetland would decrease the contents of As and Cu. PAFD was negative with Cd, Hg, Pb and Zn.

  7. The mobility and distribution of heavy metals during the formation of first cycle red beds.

    USGS Publications Warehouse

    Zielinski, R.A.; Bloch, S.; Walker, T.R.

    1983-01-01

    Analysis of the heavy metal content in a Holocene-Pliocene red bed sequence near San Felipe in N Baja California, Mexico, has yielded new information on the mobility and distribution of these metals during ageing of iron oxyhydroxides from the amorphous to the crystalline state. Whole-rock samples (27) and a series of successive leachates were analysed for V, Al, Cr, Mn, Fe, Co, Ni, Cu and Zn by ICP spectrometry and for U by a delayed neutron technique. These data are supported by a variety of other mineralogical and petrographical observations. The results indicate that the metal content of the samples is predominantly inherited from the constituent detrital minerals. Reddening of the whole-rock samples does not promote major open-system migration of the heavy metals; rather, contained metals redistribute themselves on an intergranular scale, moving from detrital mineral hosts to the secondary iron oxides. The amount of secondary iron oxides and the fraction of whole-rock metals associated with these oxides increase during red-bed development. In addition, the abundance of well- crystallized iron oxides increases during this period. Differences in the leaching efficiency for various metals are related to differences in metal site distribution and intergranular permeability. Inferred conditions for rapid vs limited removal of metals from red beds are summarized. It is suggested that developed red beds which are well flushed by suitable pore fluids may be sources of significant quantities of heavy metals. -J.E.S.

  8. Environmental Factors Determining the Accumulation of Metals: Cu, Zn, Mn and Fe in Tissues of Taraxacum sp. sect. Taraxacum.

    PubMed

    Królak, Elżbieta; Marciniuk, Jolanta; Popijantus, Katarzyna; Wasilczuk, Paulina; Kasprzykowski, Zbigniew

    2018-05-19

    The genus Taraxacum is used in the assessment of soil contamination with heavy metals. There are relatively few studies using sections or species representing this genus. The presented research was conducted in Poland on two habitats, varied in terms of nutrients and metals content. The content of selected metals in leaves and roots of Taraxacum sect. Taraxacum was determined. It was found that in the conditions of increased content of metals in the soil, the analysed species representing sect. Taraxacum accumulate higher amounts of metals in their leaves and roots. Factors of translocation of selected metals from roots to leaves of Taraxacum species, representing the Taraxacum section, are affected by i.a. soil reaction and the content of Corg, Ntot. in the soil. No influence of soil properties on metal biological concentration factor was observed.

  9. Determination of heavy metals and halogens in plastics from electric and electronic waste.

    PubMed

    Dimitrakakis, Emmanouil; Janz, Alexander; Bilitewski, Bernd; Gidarakos, Evangelos

    2009-10-01

    The presence of hazardous substances and preparations in small waste electrical and electronic equipment (sWEEE) found in the residual household waste stream of the city of Dresden, Germany has been investigated. The content of sWEEE plastics in heavy metals and halogens is determined using handheld X-ray fluorescence analysis (HXRF), elemental analysis by means of atomic absorption spectrometry (AAS) and ion exchange chromatography (IEC). Mean value of results for heavy metals in samples (n=51) by AAS are 17.4 mg/kg for Pb, 5.7 mg/kg for Cd, 8.4 mg/kg for Cr. The mass fraction of an additive as shown by HXRF (n=161) can vary over a wide range. Precise deductions as regards sWEEE plastics content in hazardous substances and preparations cannot be made. Additional research would be expedient regarding the influence of hazardous substances to recycling processes, in particular regarding the contamination of clean fractions in the exit streams of a WEEE treatment plant. Suitable standards for calibrating HXRF for use on EEE plastics or complex electr(on)ic components do not exist and should be developed.

  10. Combination of beehive matrices analysis and ant biodiversity to study heavy metal pollution impact in a post-mining area (Sardinia, Italy).

    PubMed

    Satta, Alberto; Verdinelli, Marcello; Ruiu, Luca; Buffa, Franco; Salis, Severyn; Sassu, Antonio; Floris, Ignazio

    2012-11-01

    Mining activities represent a major source of environment contamination. The aim of this study was to evaluate the use of bees and ants as bioindicators to detect the heavy metal impact in post-mining areas. A biomonitoring programme involving a combination of honeybee hive matrices analysis and ant biodiversity survey was conducted over a 3-year period. The experimental design involved three monitoring stations where repeated sampling activities focused on chemical detection of cadmium (Cd), chrome (Cr) and lead (Pb) from different matrices, both from hosted beehives (foraging bees, honey and pollen) and from the surrounding environment (stream water and soil). At the same time, ant biodiversity (number and abundance of species) was determined through a monitoring programme based on the use of pitfall traps placed in different habitats inside each mining site. The heavy metal content detected in stream water from the control station was always below the analytical limit of quantification. In the case of soil, the content of Cd and Pb from the control was lower than that of mining sites. The mean heavy metal concentrations in beehive matrices from mining sites were mainly higher than the control, and as a result of regression and discriminant analysis, forager bee sampling was an efficient environmental pollution bioindicator. Ant collection and identification highlighted a wide species variety with differences among habitats mostly associated with vegetation features. A lower variability was observed in the polluted landfill characterised by lack of vegetation. Combined biomonitoring with forager bees and ants represents a reliable tool for heavy metal environmental impact studies.

  11. Geographical and pedological drivers of distribution and risks to soil fauna of seven metals (Cd, Cu, Cr, Ni, Pb, V and Zn) in British soils.

    PubMed

    Spurgeon, David J; Rowland, Philip; Ainsworth, Gillian; Rothery, Peter; Long, Sara; Black, Helaina I J

    2008-05-01

    Concentrations of seven metals were measured in over 1000 samples as part of an integrated survey. Sixteen metal pairs were significantly positively correlated. Cluster analysis identified two clusters. Metals from the largest (Cr, Cu, Ni, V, Zn), but not the smallest (Cd, Pb) cluster were significantly negatively correlated with spatial location and soil pH and organic matter content. Cd and Pb were not correlated with these parameters, due possibly to the masking effect of recent extensive release. Analysis of trends with soil properties in different habitats indicated that general trends may not necessarily be applicable to all areas. A risk assessment indicated that Zn poses the most widespread direct risk to soil fauna and Cd the least. Any risks associated with high metal concentrations are, however, likely to be greatest in habitats such as arable and horticultural, improved grassland and built up areas where soil metal concentrations are more frequently elevated.

  12. Spatial Distribution of Heavy Metals and the Environmental Quality of Soil in the Northern Plateau of Spain by Geostatistical Methods

    PubMed Central

    Santos-Francés, Fernando; Martínez-Graña, Antonio; Ávila Zarza, Carmelo; García Sánchez, Antonio; Alonso Rojo, Pilar

    2017-01-01

    The environmental quality of soil in the central part of the Northern Plateau of Spain has been analyzed by studying the heavy metal content of 166 samples belonging to the horizons A, B and C of 89 soil profiles. The analysis to assess the environmental risk of heavy metals in the soil was carried out by means of the spatial distribution of nine heavy metals and the use of several pollution indices. The results showed that the concentration values of heavy metals (x¯ ± S) in the superficial soil horizons were the following: With a total of 6.71 ± 3.51 mg·kg−1, the contents of Cd is 0.08 ± 0.06 mg·kg−1, Co is 6.49 ± 3.21 mg·kg−1, Cu is 17.19 ± 10.69 mg·kg−1, Cr is 18.68 ± 12.28 mg·kg−1, Hg is 0.083 ± 0.063 mg·kg−1, Ni is 12.05 ± 6.76 mg·kg−1, Pb is 14.10 ± 11.32 mg·kg−1 and Zn is 35.31 ± 14.63 mg·kg−1. These nine metals exceed the values of the natural geological background level of Tertiary period sediments and rocks that form part of the Northern Plateau in Spain. Nemerow and Potential Ecological Risk indices were calculated, with the “improved” Nemerow index allowing pollution within the soil superficial horizons to be determined. The data obtained indicated that the majority of the soil (54.61%) showed low to moderate contamination, 22.31% showed moderate contamination and 21.54% of the samples were not contaminated. If we consider the Potential of Ecological Risk Index (RI), the largest percentage of soil samples showed low (70.79%) to moderate (25.38%) ecological risk of potential contamination, where the rest of the soil presented a considerable risk of contamination. The nine trace elements were divided into three principal components: PC1 (Cu, Cr, Ni, Co and Zn), PC2 (As and Hg) and PC3 (Cd). All metals accumulated in the soil came from parent rock, agricultural practices and the run-off of residual waters towards rivers and streams caused by industrial development and an increase in population density. Finally, cartography of the spatial distribution of the heavy metal contents in the soil of the Northern Plateau of Spain was generated using Kriging interpolation methods. Furthermore, the total heavy metal contents in three soil orders present in the area, namely Entisols, Inceptisols, and Alfisols, were analyzed. Other soil parameters, such as the organic matter content, pH, clay content and cation exchange capacity, was measured to determine their influence on and correlation with the heavy metal contents. PMID:28587142

  13. Contents of heavy metals in urban parks and university campuses

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Chen, Qian

    2018-01-01

    Because the city park has become an important place for people's daily leisure, and the university campus is one of the most densely populated areas of the city, their environmental pollution is critical for the health and safety of the residents. In this paper, two kinds of evaluation methods were used to evaluate the content of Cu, Zn, As and Pb in soils of city parks and university campus in Xiangtan. The results showed that only Juhuatang Park was a non-polluted area, and the other 7 sampling sites were lightly polluted; Analysis shows the heavy metal contents of soil in city parks are closely related to vehicle emissions, agriculture and irrigation, combustion of household waste, living area and commercial shops, the use of fossil fuels, industrial waste gas and waste residue and other human activities.

  14. Comparative study on thermodynamic characteristics of AgCuZnSn brazing alloys

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-01-01

    AgCuZnSn brazing alloys were prepared based on the BAg50CuZn filler metal through electroplating diffusion process, and melting alloying method. The thermodynamics of phase transformations of those fillers were analyzed by non-isothermal differentiation and integration methods of thermal analysis kinetics. In this study, it was demonstrated that as the Sn content increased, the reaction fractional integral curves of AgCuZnSn fillers from solid to liquid became straighter at the endothermic peak. Under the same Sn contents, the reaction fractional integral curve of the Sn-plated filler metal was straighter, and the phase transformation activation energy was higher compared to the traditional silver filler metal. At the 7.2 wt% Sn content, the activation energies and pre-exponential factors of the two fillers reached the maximum, then the phase transformation rate equations of the Sn-plated silver filler and the traditional filler were determined as: k = 1.41 × 1032exp(-5.56 × 105/RT), k = 7.29 × 1020exp(-3.64 × 105/RT), respectively.

  15. The influence of Zr substitution for Nb on the corrosion behaviors of the Ni-Nb-Zr bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Li, DengKe; Zhu, ZhengWang; Zhang, HaiFeng; Wang, AiMin; Hu, ZhuangQi

    2012-12-01

    The influence of Zr content on corrosion behaviors of the Ni61.5Nb38.5- x Zr x ( x=1, 3, 5, 7, 9 at.%) bulk metallic glasses (BMGs) in 1 M HCl aqueous solution was investigated by potentiodynamic polarization measurements and X-ray photo-electron spectroscopy (XPS). It was found that these BMG alloys possess superior corrosion resistance, that is, with large passive region of about 1.5 V and low passive current density (as low as 0.05 Am-2 for Ni61.5Nb31.5Zr7). XPS analysis indicates that the high corrosion resistance is attributed to the formation of Nb- and Zr-enriched surface films formed in the aggressive acid solution. The Zr substitution for Nb effectively reduces the Ni content, particularly the metallic state Ni content in the surface films, which depresses the electrical conduction of the surface films and reduces the passive current density, thus leading to the enhancement of the corrosion resistance of these Ni-Nb-Zr BMGs. These alloys may potentially be useful for engineering applications.

  16. Phytochelatin 2 accumulates in roots of the seagrass Enhalus acoroides collected from sediment highly contaminated with lead.

    PubMed

    Nguyen, Xuan-Vy; Le-Ho, Khanh-Hy; Papenbrock, Jutta

    2017-04-01

    Phytochelatins (PCs), the heavy metal-binding peptides of plants, play a main function in heavy metal detoxification. In this study, Enhalus acoroides samples collected at six distinct seagrass beds from the coast of Khanh Hoa province, Viet Nam, were evaluated for their PCs. The contents of different PCs in each organ including leaf, rhizome, and root were determined by using HPLC analysis. Significant differences of PC 2 contents among specific organs and their relation were tested by ANOVA, Tukey test, and Pearson's correlation. The results showed that higher PC 2 , appearance of PC 3 and a strong correlation between PC 2 and Pb concentration were found in the root organ collected from a Pb contaminated area. We conclude that high Pb in the sediment induce high PC 2 and PC 3 production in the root. This first report on in situ detection of PCs of seagrass encourages future investigation on the ability to use seagrass for phytoremediation and as a bioindicator of heavy metals based on PC contents.

  17. Depuration Study of Heavy Metal Lead (Pb) and Copper (Cu) in Green Mussels Perna viridis through Continues-discontinues and Acid Extraction Methods

    NASA Astrophysics Data System (ADS)

    Budiawan; Bakri, Ridla; Cahaya Dani, Intan; Handayani, Sri; Ade Kurnia Putri, Rizki; Tamala, Riska

    2018-01-01

    Green mussel or Perna viridis is filter feeder, which is very susceptible to heavy metals. It takes an effort to release heavy metal contents on the green shell, one of method that can be used to release heavy metal from green shell is depuration proccess. In this research, the depuration process was conducted by continues method of depuration, discontinues method by using various kind of water and acid extraction. The optimum time of continues depuration method is 1.5 hours, with circulation speed 250 L/h and result of Pb metal content decreased is equal to 30.048% and 29.748% for Cu. In the discontinues method, the optimum result was reached at 100oC by using PAM water as the media at 3 h immersion period with decrease of Pb metal content 35.001% and Cu metal content 39.015%. In the acid extraction method, the optimum condition was achieved by 11% acetic acid solvent with decreasing of Pb and Cu levels are 88.224% and 76.298%. For the determination of protein content, the decrease of protein content obtained by treatment with 11% acetic acid extract showed decrease of protein content 36.656% with Kjeldahl method.

  18. USSR and Eastern Europe Scientific Abstracts, Materials Science and Metallurgy, Number 56.

    DTIC Science & Technology

    1978-10-05

    metals and materials, coatings, composites , metal corrosion, extraction and refining, forming, instrumentation, lubricants, mechanical and physical...Aluminum and Its Alloys 1 Analysis and Testing 5 Beryllium • > • 1 Coatings • 8 Composite Materials 9 Conferences • 15 Corrosion 18 Graphite...alloys, consisting in changing the chemi- cal composition of the surface layer, which plays an important role in corrosion processes. The content of

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stenvall, Erik, E-mail: erik.stenvall@chalmers.se; Tostar, Sandra; Boldizar, Antal

    The compositions of three WEEE plastic batches of different origin were investigated using infrared spectroscopy, and the metal content was determined with inductively coupled plasma. The composition analysis of the plastics was based mainly on 14 samples collected from a real waste stream, and showed that the major constituents were high impact polystyrene (42 wt%), acrylonitrile–butadiene–styrene copolymer (38 wt%) and polypropylene (10 wt%). Their respective standard deviations were 21.4%, 16.5% and 60.7%, indicating a considerable variation even within a single batch. The level of metal particle contamination was found to be low in all samples, whereas wood contamination and rubbermore » contamination were found to be about 1 wt% each in most samples. In the metal content analysis, iron was detected at levels up to 700 ppm in the recyclable waste plastics fraction, which is of concern due to its potential to catalyse redox reactions during melt processing and thus accelerate the degradation of plastics during recycling. Toxic metals were found only at very low concentrations, with the exception of lead and cadmium which could be detected at 200 ppm and 70 ppm levels, respectively, but these values are below the current threshold limits of 1000 ppm and 100 ppm set by the Restriction of Hazardous Substances directive.« less

  20. Accumulation of heavy metals by vegetables grown in mine wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cobb, G.P.; Sands, K.; Waters, M.

    2000-03-01

    Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assessmore » metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.« less

  1. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    PubMed

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  2. The Sagittarius Dwarf Galaxy Survey (SDGS) - II. The stellar content and constraints on the star formation history

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Ferraro, F. R.; Buonanno, R.

    1999-08-01

    A detailed study of the star formation history of the Sagittarius dwarf spheroidal galaxy is performed through the analysis of data from the Sagittarius Dwarf Galaxy Survey (SDGS). Accurate statistical decontamination of the SDGS colour-magnitude diagrams (CMDs) allows us to obtain many useful constraints on the age and metal content of the Sgr stellar populations in three different regions of the galaxy. A coarse metallicity distribution of Sgr stars is derived, ranging from [Fe/H]~-2.0 to [Fe/H]~-0.7, the upper limit being somewhat higher in the central region of the galaxy. A qualitative global fit to all the observed CMD features is attempted, and a general scheme for the star formation history of the Sgr dSph is derived. According to this scheme, star formation began at a very early time from a low metal content interstellar medium and lasted for severalGyr, coupled with progressive chemical enrichment. The star formation rate (SFR) had a peak from 8 to 10Gyr ago, when the mean metallicity was in the range -1.3<=[Fe/H]<=-0.7. After that maximum, the SFR rapidly decreased and a very low rate of star formation took place until ~1-0.5Gyr ago.

  3. Assessment of heavy metals in Averrhoa bilimbi and A. carambola fruit samples at two developmental stages.

    PubMed

    Soumya, S L; Nair, Bindu R

    2016-05-01

    Though the fruits of Averrhoa bilimbi and A. carambola are economically and medicinally important, they remain underutilized. The present study reports heavy metal quantitation in the fruit samples of A. bilimbi and A. carambola (Oxalidaceae), collected at two stages of maturity. Heavy metals are known to interfere with the functioning of vital cellular components. Although toxic, some elements are considered essential for human health, in trace quantities. Heavy metals such as Cr, Mn, Co, Cu, Zn, As, Se, Pb, and Cd were analyzed by atomic absorption spectroscopy (AAS). The samples under investigation included, A. bilimbi unripe (BU) and ripe (BR), A. carambola sour unripe (CSU) and ripe (CSR), and A. carambola sweet unripe (CTU) and ripe (CTR). Heavy metal analysis showed that relatively higher level of heavy metals was present in BR samples compared to the rest of the samples. The highest amount of As and Se were recorded in BU samples while Mn content was highest in CSU samples and Co in CSR. Least amounts of Cr, Zn, Se, Cd, and Pb were noted in CTU while, Mn, Cu, and As were least in CTR. Thus, the sweet types of A. carambola (CTU, CTR) had comparatively lower heavy metal content. There appears to be no reason for concern since different fruit samples of Averrhoa studied presently showed the presence of various heavy metals in trace quantities.

  4. Dust-Metal Sources in an Urbanized Arid Zone: Implications for Health-Risk Assessments.

    PubMed

    García-Rico, Leticia; Meza-Figueroa, Diana; Gandolfi, A Jay; Del Río-Salas, Rafael; Romero, Francisco M; Meza-Montenegro, Maria Mercedes

    2016-04-01

    The available information concerning metal pollution in different dust sources and the health effects in children remains limited in Mexico. This study focuses on Hermosillo, which is an urbanized area located in the Sonoran Desert in which soil resuspension and dust emission processes are common. The metal content of arsenic (As), chromium (Cr), manganese (Mn), and lead (Pb) were determined in three dust sources (playgrounds, roofs, and roads), each representing different exposure media (EM) for these elements. The metal levels in dust were found in the order of Mn > Cr > Pb > As with the highest metal content found in road dust. Despite the similar average metal distributions, principal component analysis shows a clear separation of the three EM with playground dust related to Cr and Mn and road dust to As and Pb. However, the geoaccumulation index results indicate that dust samples are uncontaminated to moderately polluted, except for Pb in road dust, which is considerably high. In addition, the enrichment factor suggests an anthropogenic origin for all of the studied metals except for Mn. In this context, the hazard index (HI) for noncarcinogenic risk is >1 in this population and thus represents a potential health risk. The spatial distribution for each metal on EM and the HI related to the marginality index could represent a more accurate decision-making tool in risk assessment studies.

  5. Metal status in human endometrium: Relation to cigarette smoking and histological lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rzymski, Piotr, E-mail: rzymskipiotr@ump.edu.pl; Rzymski, Paweł; Tomczyk, Katarzyna

    Human endometrium is a thick, blood vessel-rich, glandular tissue which undergoes cyclic changes and is potentially sensitive to the various endogenous and exogenous compounds supplied via the hematogenous route. As recently indicated, several metals including Cd, Pb, Cr and Ni represent an emerging class of potential metalloestrogens and can be implicated in alterations of the female reproductive system including endometriosis and cancer. In the present study, we investigated the content of five metals: Cd, Cr, Ni, Pb and Zn in 25 samples of human endometrium collected from Polish females undergoing diagnostic or therapeutic curettage of the uterine cavity. The overallmore » mean metal concentration (analyzed using microwave induced plasma atomic emission spectrometry MIP-OES) decreased in the following order: Cr>Pb>Zn>Ni>Cd. For the first time it was demonstrated that cigarette smoking significantly increases the endometrial content of Cd and Pb. Concentration of these metals was also positively correlated with years of smoking and the number of smoked cigarettes. Tissue samples with recognized histologic lesions (simple hyperplasia, polyposis and atrophy) were characterized by a 2-fold higher Cd level. No relation between the age of the women and metal content was found. Our study shows that human endometrium can be a potential target of metal accumulation within the human body. Quantitative analyses of endometrial metal content could serve as an additional indicator of potential impairments of the menstrual cycle and fertility. - Highlights: • Cd, Cr, Ni, Pb and Zn are detectable in human endometrium. • Mean metal content in human endometrium decreases in Cr>Pb>Zn>Ni>Cd order. • Cigarettes smoking increases endometrial content of Cd and Pb. • Lesioned endometrial tissue was characterized by higher metal contents.« less

  6. Distribution of metals in various particle-size fractions in topsoils of a small dry valley system (European Russia, forest zone)

    NASA Astrophysics Data System (ADS)

    Samonova, Olga; Aseyeva, Elena

    2017-04-01

    A detailed study of heavy metals distribution in various soil grain-size fractions helps to increase the knowledge about the complex nature of metals' occurrence and their distribution pathways in the environment. On the basis of particle size fractionation of topsoil horizons we examined the specific behavior of heavy metals in a small erosional landform located in the humid temperate zone of the Russian Plain. The object of the study is a 400 m small U-shaped dry valley (balka in Russian) with a catchment area of 32.8 ha located in the central part of the Protva river basin, 100 km southwest of Moscow. The uppermost parts of the landform are incised in Late Pleistocene loessial loams, which cover significant portions of interfluve area in the region, while the middle and the lower parts cut through Middle Pleistocene glacial sediments. A total of 50 samples were collected from topsoil horizons of different landform geomorphic units along three cross-sections as well as along the bottom of the landform and its detrital fan. Samples were analyzed for Mn, Cu, Ni, Co, Cr, Zn, Pb, Ti, Zr, and Fe content. Eleven samples were chosen for physical fractionation into 5 grain-size fractions (1-0.25 mm, 0.25-0.05 mm, 0.05-0.01 mm, 0.01-0.001 mm and <0.001 mm) and further analysis for fractionized metal contents. Across the grain-size fractions the maximum Zr content was observed in the coarse silt fraction and Ti - in the medium and fine silt fraction, while other metals, such as Fe, Mn, Co, Ni, Cr, Pb, and Zn revealed their highest concentrations in the clay fraction. For Fe, Mn, Co and Ni a second concentration peak was observed in the coarse and medium sand fraction. Due to probably eolian genesis and (or) transformation during weathering, the coarse silt fraction in comparison to other fractions showed a depletion of the majority of metals while the minimum concentrations of Ti, Zr and Cr were limited to the coarse and medium sand. Statistical analysis showed that the variation of metal contents depends on particle sizes: the Cv coefficients calculated for Cu, Ni, Co, Fe, Mn, Ti and Zr reach their maximum in the 1-0.25 mm fraction (for Cu and Ni exceeding 75%, for Ti, Zr being around 40%). For Zn, Cr and Pb the maximum variation (50-60%) was found in the 0.25-0.05 mm fraction. In contrast, the two studied silt fractions and also the clay showed very low variations of all metal contents (except for Mn) characteristically in the range between 6% (Cr) and 23.5% (Zn). Unlike the finer fractions, which displayed very poor geochemical differentiation across the landform's geomorphic units, the coarser (sand) fractions showed distinct spatial patterns in the elements' distribution, possibly related to migration processes, the depletion of metals in the landforms' slopes and their prevalent enrichment in the bottom unit is observed.

  7. Analysis of the world distribution of metal-rich subsea manganese nodules

    USGS Publications Warehouse

    McKelvey, Vincent Ellis; Wright, Nancy A.; Bowen, Roger W.

    1983-01-01

    Publicly available data on the composition of subsea manganese nodules extend previous reports of differences in average metal contents from ocean to ocean and of variations related to latitude and depth. Pacific Ocean nodules have the highest average manganese, nickel, and copper contents, and Atlantic Ocean nodules have the highest average iron content. The average manganese, nickel, and copper contents generally increase toward the equator in both hemispheres, and iron content generally decreases. The variation of metal content with water depth is not linear; instead, there appears to be a threshold depth of about 2,900 to 3,000 m, above which combined nickel and copper contents are generally less than 1 percent and below which cobalt content is generally less than about 0.6 percent. The composition of the nodules varies widely, but three rarely overlapping types that are of possible economic interest can be recognized. (1) Nodules containing more than about 1 percent combined nickel and copper only exceptionally contain more than 0.5 percent cobalt and 35 percent manganese. (2) Nodules containing more than 0.5 percent cobalt rarely contain more than 1 percent combined nickel and copper and 35 percent manganese. (3) Nodules containing more than 35 percent manganese only exceptionally contain more than 0.5 percent cobalt, although they average nearly 1.1 percent combined nickel and copper. Current economic interest in nodule mining is focused on the Clarion-Clipperton zone in the northeastern equatorial Pacific Ocean, the largest known area in which nodules average 1.8 percent or more combined nickel and copper. Several other areas in which nodules are rich in these metals are found in the Pacific and Indian Oceans and may be viewed as targets for exploration. Nearly 60 chemical elements have been found in manganese nodules, many in concentrations far exceeding their crustal abundances. The amounts in which many minor elements are present vary with the amounts of principal metals present, but the three metal types described above do not include the maximum reported values for several other elements, such as titanium (8.9 percent), vanadium (0.5), zinc (9.0), and lead (0.75). It seems possible, therefore, that there may be other kinds of metal-rich types, some of which may have p6tential economic value. Many of the variations in nodule composition are in large part a function of variations in mineral composition, to which many factors contribute. Some of the regional variations can be broadly related to oceanic circulation, basin morphology, and depth, but a better understanding of ocean processes and regional oceanography and geology is needed to explain all the variations observed in the composition of manganese nodules.

  8. Multivariate analysis of selected metals in tannery effluents and related soil.

    PubMed

    Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M

    2005-06-30

    Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.

  9. Comparative serum albumin interactions and antitumor effects of Au(III) and Ga(III) ions.

    PubMed

    Sarioglu, Omer Faruk; Ozdemir, Ayse; Karaboduk, Kuddusi; Tekinay, Turgay

    2015-01-01

    In the present study, interactions of Au(III) and Ga(III) ions on human serum albumin (HSA) were studied comparatively via spectroscopic and thermal analysis methods: UV-vis absorbance spectroscopy, fluorescence spectroscopy, Fourier transform infrared (FT-IR) spectroscopy and isothermal titration calorimetry (ITC). The potential antitumor effects of these ions were studied on MCF-7 cells via Alamar blue assay. It was found that both Au(III) and Ga(III) ions can interact with HSA, however; Au(III) ions interact with HSA more favorably and with a higher affinity. FT-IR second derivative analysis results demonstrated that, high concentrations of both metal ions led to a considerable decrease in the α-helix content of HSA; while Au(III) led to around 5% of decrease in the α-helix content at 200μM, it was around 1% for Ga(III) at the same concentration. Calorimetric analysis gave the binding kinetics of metal-HSA interactions; while the binding affinity (Ka) of Au(III)-HSA binding was around 3.87×10(5)M(-1), it was around 9.68×10(3)M(-1) for Ga(III)-HSA binding. Spectroscopy studies overall suggest that both metal ions have significant effects on the chemical structure of HSA, including the secondary structure alterations. Antitumor activity studies on MCF7 tumor cell line with both metal ions revealed that, Au(III) ions have a higher antiproliferative activity compared to Ga(III) ions. Copyright © 2014 Elsevier GmbH. All rights reserved.

  10. UV-Fluorescent Sensing for Primary Selection of Metal-rich Seafloor Massive Sulfide Ore

    NASA Astrophysics Data System (ADS)

    Yamazaki, T.; Nakatani, T.; Nakatani, N.; Arai, R.

    2012-12-01

    Seafloor massive sulfides (SMS) in the western Pacific have received much attention as resources for Au, Ag, Cu, Zn, and Pb. Because of the higher metal contents, the venture commercial mining project may start in 2013 in the East Manus Basin, Papua New Guinea. One of important problems to be solved is reducing the waste rock disposal costs for the economy. The best location for the reducing is on seafloor just after the excavation of SMS ores. The authors select UV-fluorescent sensing for primary selection of the ores, because no additional environmental impact is created with the application of the method. First of all, the effectiveness of the UV-fluorescent sensing by a combination system with a UV-light and a camera (See attached figure) in deep water condition is clarified. Then many UV-fluorescent data of SMS ore, SMS accompanied rock, and seafloor rock samples are collected. In the analyses phase, the ore and rock samples are classified into some groups by applying the cluster analysis to the metal contents at first. Then, using the UV fluorescent color brightness and contrasts of the ore and rock samples, the discriminant analysis based on Mahalanobis distance is applied. The higher possibility to identify the SMS ores containing valuable metals from camera image is suggested from the analyses. When additional UV-fluorescent and chemical assay data are obtained, the renewal of discriminant analysis is necessary. Therefore, the results and conclusions described in this study are tentative ones.; UV-fluorescent sensing

  11. Heavy metal (Cu, Zn, Cd and Pb) partitioning and bioaccessibility in uncontaminated and long-term contaminated soils.

    PubMed

    Lamb, Dane T; Ming, Hui; Megharaj, Mallavarapu; Naidu, Ravi

    2009-11-15

    We investigated the pore-water content and speciation of copper (Cu), zinc (Zn), cadmium (Cd) and lead (Pb) in a range of uncontaminated and long-term contaminated soils in order to establish their potential bioaccessibility to soil biota, plants and humans. Among the samples, soil pH (0.01 M CaCl(2)) ranged from 4.9 to 8.2. The total metal content of the uncontaminated soils ranged from 3.8 to 93.8 mg Cu kg(-1), 10.3 to 95 mg kg(-1) Zn, 0.1 to 1.8 mg Cd kg(-1) and 5.2 to 183 mg kg(-1) Pb, while metal content in the contaminated soils ranged from 104 to 6841 mg Cu kg(-1), 312 to 39,000 mg kg(-1) Zn, 6 to 302 mg Cd kg(-1) and 609 to 12,000 mg kg(-1) Pb. Our analysis of pore-water found the Cu concentrations to be much higher in contaminated soils than in uncontaminated soils, with the distribution coefficients (K(d)) correlating significantly with the log of dissolved organic carbon concentrations. Despite the high total metal content of the contaminated soil, Zn, Cd and Pb were not generally found at elevated levels in the pore-water with the exception of a single contaminated soil. A long period of ageing and soil weathering may have led to a substantial reduction in heavy metal concentrations in the pore-water of contaminated soils. On the other hand, Pb bioaccessibility was found to be comparatively high in Pb contaminated soils, where it tended to exceed the total Pb values by more than 80%. We conclude that, despite the extensive ageing of some contaminated soils, the bioaccessibility of Pb remains relatively high.

  12. Rapid detection of soils contaminated with heavy metals and oils by laser induced breakdown spectroscopy (LIBS).

    PubMed

    Kim, Gibaek; Kwak, Jihyun; Kim, Ki-Rak; Lee, Heesung; Kim, Kyoung-Woong; Yang, Hyeon; Park, Kihong

    2013-12-15

    A laser induced breakdown spectroscopy (LIBS) coupled with the chemometric method was applied to rapidly discriminate between soils contaminated with heavy metals or oils and clean soils. The effects of the water contents and grain sizes of soil samples on LIBS emissions were also investigated. The LIBS emission lines decreased by 59-75% when the water content increased from 1.2% to 7.8%, and soil samples with a grain size of 75 μm displayed higher LIBS emission lines with lower relative standard deviations than those with a 2mm grain size. The water content was found to have a more pronounced effect on the LIBS emission lines than the grain size. Pelletizing and sieving were conducted for all samples collected from abandoned mining areas and military camp to have similar water contents and grain sizes before being analyzed by the LIBS with the chemometric analysis. The data show that three types of soil samples were clearly discerned by using the first three principal components from the spectral data of soil samples. A blind test was conducted with a 100% correction rate for soil samples contaminated with heavy metals and oil residues. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry

    PubMed Central

    Abdelrahman, Ahmed I.; Ornatsky, Olga; Bandura, Dmitry; Kinach, Robert; Dai, Sheng; Thickett, Stuart C.; Tanner, Scott

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells. PMID:20390041

  14. Metal-Containing Polystyrene Beads as Standards for Mass Cytometry.

    PubMed

    Abdelrahman, Ahmed I; Ornatsky, Olga; Bandura, Dmitry; Baranov, Vladimir; Kinach, Robert; Dai, Sheng; Thickett, Stuart C; Tanner, Scott; Winnik, Mitchell A

    2010-01-01

    We examine the suitability of metal-containing polystyrene beads for the calibration of a mass cytometer instrument, a single particle analyser based on an inductively coupled plasma ion source and a time of flight mass spectrometer. These metal-containing beads are also verified for their use as internal standards for this instrument. These beads were synthesized by multiple-stage dispersion polymerization with acrylic acid as a comonomer. Acrylic acid acts as a ligand to anchor the metal ions within the interior of the beads. Mass cytometry enabled the bead-by-bead measurement of the metal-content and determination of the metal-content distribution. Beads synthesized by dispersion polymerization that involved three stages were shown to have narrower bead-to-bead variation in their lanthanide content than beads synthesized by 2-stage dispersion polymerization. The beads exhibited insignificant release of their lanthanide content to aqueous solutions of different pHs over a period of six months. When mixed with KG1a or U937 cell lines, metal-containing polymer beads were shown not to affect the mass cytometry response to the metal content of element-tagged antibodies specifically attached to these cells.

  15. Analysis of heavy metals in road-deposited sediments.

    PubMed

    Herngren, Lars; Goonetilleke, Ashantha; Ayoko, Godwin A

    2006-07-07

    Road-deposited sediments were analysed for heavy metal concentrations at three different landuses (residential, industrial, commercial) in Queensland State, Australia. The sediments were collected using a domestic vacuum cleaner which was proven to be highly efficient in collecting sub-micron particles. Five particle sizes were analysed separately for eight heavy metal elements (Zn, Fe, Pb, Cd, Cu, Cr, Al and Mn). At all sites, the maximum concentration of the heavy metals occurred in the 0.45-75 microm particle size range, which conventional street cleaning services do not remove efficiently. Multicriteria decision making methods (MCDM), PROMETHEE and GAIA, were employed in the data analysis. PROMETHEE, a non-parametric ranking analysis procedure, was used to rank the metal contents of the sediments sampled at each site. The most polluted site and particle size range were the industrial site and the 0.45-75 microm range, respectively. Although the industrial site displayed the highest metal concentrations, the highest heavy metal loading coincided with the highest sediment load, which occurred at the commercial site. GAIA, a special form of principal component analysis, was applied to determine correlations between the heavy metals and particle size ranges and also to assess possible correlation with total organic carbon (TOC). The GAIA-planes revealed that irrespective of the site, most of the heavy metals are adsorbed to sediments below 150 microm. A weak correlation was found between Zn, Mn and TOC at the commercial site. This could lead to higher bioavailability of these metals through complexation reactions with the organic species in the sediments.

  16. Heavy metal solubility in podzolic soils exposed to the alkalizing effect of air pollutants.

    PubMed

    Haapala, H; Goltsova, N; Lodenius, M

    2001-01-01

    The heavy metal content of pine forest soil was studied near the boundary between Russia and Estonia, an area characterized by large amounts of acidic and basic air pollutants, mainly sulfur dioxide and calcium. Alkalization dominates the processes in soil, since sulfur is adsorbed only in small quantities, and calcium is much better adsorbed. In addition to Ca, great amounts of Al, Fe, K, and Mg are accumulated in the humus layer due to air pollution. The heavy metal content has increased. The exchangeable content of heavy metals was in many cases much higher in polluted alkaline soils than in non-polluted acidic soils, even the ratio of exchangeable to total metal content being higher in alkaline plots. To avoid a dangerous increase in soluble heavy metal content, it is important to decrease not only the large sulfur emissions of local pollutant sources, but also the alkaline pollutants. A similar concern must be taken into account when liming of acidic forest soils is planned.

  17. Inertization of heavy metals present in galvanic sludge by DC thermal plasma.

    PubMed

    Leal Vieira Cubas, Anelise; de Medeiros Machado, Marília; de Medeiros Machado, Marina; Gross, Frederico; Magnago, Rachel Faverzani; Moecke, Elisa Helena Siegel; Gonçalvez de Souza, Ivan

    2014-01-01

    Galvanic sludge results from the treatment of effluents generated by the industrial metal surface treatment of industrial material, which consists in the deposition of a metal on a surface or a metal surface attack, for example, electrodeposition of conductors (metals) and non conductive, phosphate, anodizing, oxidation and/or printed circuit. The treatment proposed here is exposure of the galvanic sludge to the high temperatures provided by thermal plasma, a process which aims to vitrify the galvanic sludge and render metals (iron, zinc, and chromium) inert. Two different plasma reactors were assembled: with a DC transferred arc plasma torch and with a DC nontransferred arc plasma torch. In this way it was possible to verify which reactor was more efficient in the inertization of the metals and also to investigate whether the addition of quartzite sand to the sludge influences the vitrification of the material. Quantification of water content and density of the galvanic raw sludge were performed, as well as analyzes of total organic carbon (TOC) and identify the elements that make up the raw sludge through spectroscopy X-ray fluorescence (XRF). The chemical composition and the form of the pyrolyzed and vitrified sludge were analyzed by scanning electron microscopy with energy-dispersive X-ray spectrometer (SEM-EDS) analysis, which it is a analysis that shows the chemical of the sample surface. The inertization of the sludge was verified in leaching tests, where the leachate was analyzed by flame atomic absorption spectroscopy (FAAS). The results of water content and density were 64.35% and 2.994 g.cm(-3), respectively. The TOC analysis determined 1.73% of C in the sample of galvanic raw sludge, and XRF analysis determined the most stable elements in the sample, and showed the highest peaks (higher stability) were Fe, Zn, and Cr. The efficiency of the sludge inertization was 100% for chromium, 99% for zinc, and 100% for iron. The results also showed that the most efficient reactor was that with the DC transferred arc plasma torch and quartzite sand positively influenced by the vitrification during the pyrolysis of the galvanic sludge.

  18. Process for producing enriched uranium having a .sup.235 U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, James A.; Hayden, Jr., Howard W.

    1995-01-01

    An uranium enrichment process capable of producing an enriched uranium, having a .sup.235 U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower .sup.235 U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF.sub.6 tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a .sup.235 U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % .sup.235 U; fluorinating this enriched metallic uranium isotopic mixture to form UF.sub.6 ; processing the resultant isotopic mixture of UF.sub.6 in a gaseous diffusion process to produce a final enriched uranium product having a .sup.235 U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low .sup.235 U content UF.sub.6 having a .sup.235 U content of about 0.71 wt. % of the total uranium content of the low .sup.235 U content UF.sub.6 ; and converting this low .sup.235 U content UF.sub.6 to metallic uranium for recycle to the atomic vapor laser isotope separation process.

  19. Process for producing enriched uranium having a {sup 235}U content of at least 4 wt. % via combination of a gaseous diffusion process and an atomic vapor laser isotope separation process to eliminate uranium hexafluoride tails storage

    DOEpatents

    Horton, J.A.; Hayden, H.W. Jr.

    1995-05-30

    An uranium enrichment process capable of producing an enriched uranium, having a {sup 235}U content greater than about 4 wt. %, is disclosed which will consume less energy and produce metallic uranium tails having a lower {sup 235}U content than the tails normally produced in a gaseous diffusion separation process and, therefore, eliminate UF{sub 6} tails storage and sharply reduce fluorine use. The uranium enrichment process comprises feeding metallic uranium into an atomic vapor laser isotope separation process to produce an enriched metallic uranium isotopic mixture having a {sup 235} U content of at least about 2 wt. % and a metallic uranium residue containing from about 0.1 wt. % to about 0.2 wt. % {sup 235} U; fluorinating this enriched metallic uranium isotopic mixture to form UF{sub 6}; processing the resultant isotopic mixture of UF{sub 6} in a gaseous diffusion process to produce a final enriched uranium product having a {sup 235}U content of at least 4 wt. %, and up to 93.5 wt. % or higher, of the total uranium content of the product, and a low {sup 235}U content UF{sub 6} having a {sup 235}U content of about 0.71 wt. % of the total uranium content of the low {sup 235}U content UF{sub 6}; and converting this low {sup 235}U content UF{sub 6} to metallic uranium for recycle to the atomic vapor laser isotope separation process. 4 figs.

  20. Common barbel (Barbus barbus) as a bioindicator of surface river sediment pollution with Cu and Zn in three rivers of the Danube River Basin in Serbia.

    PubMed

    Morina, Arian; Morina, Filis; Djikanović, Vesna; Spasić, Sladjana; Krpo-Ćetković, Jasmina; Kostić, Bojan; Lenhardt, Mirjana

    2016-04-01

    River sediments are a major source of metal contamination in aquatic food webs. Due to the ability of metals to move up the food chain, fishes, occupying higher trophic levels, are considered to be good environmental indicators of metal pollution. The aim of this study was to analyze the metal content in tissues of the common barbel (Barbus barbus), a rheophilous cyprinid fish widely distributed in the Danube Basin, in order to find out if it can be used as a bioindicator of the metal content in the river sediment. We analyzed bioavailable concentrations of 15 elements (Al, As, B, Ba, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Se, Sr, and Zn) in sediments of the Danube (D), the Zapadna Morava (ZM), and the Južna Morava (JM) using the inductively coupled plasma spectroscopy (ICP-OES). The barbel specimens were collected in the proximity of sediment sampling sites for the analysis of metals in four tissues, gills, muscle, intestine, and liver. The sediment analysis indicated that the ZM is the most polluted with Cu, Ni, and Zn compared to other two rivers. The JM had the lowest concentrations of almost all observed elements, while the Danube sediments were mainly characterized by higher concentrations of Pb. The fish from the ZM had the highest concentration of Cu and Ni in the liver and intestine, and of Zn in the muscle tissue, which was in accordance with the concentrations of these metals in the sediment. Scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDS) was used for further analyses of metal interactions with fish tissues. The results suggest that the barbel can potentially be used as a bioindicator of sediment quality with respect to metal contamination.

  1. Multi-phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage.

    PubMed

    Liao, Jianbo; Ru, Xuan; Xie, Binbin; Zhang, Wanhui; Wu, Haizhen; Wu, Chaofei; Wei, Chaohai

    2017-07-01

    To date, there is a lack of a comprehensive research on heavy metals detection and ecological risk assessment in river water, sediments, pore water (PW) and suspended solids (SS). Here, the concentrations of heavy metals, including Cu, Zn, Mn, Cd, Pb and As, and their distribution between the four phases was studied. Samples for analysis were taken from twelve sites of the Hengshi River, Guangdong Province, China, during the rainy and dry seasons. A new comprehensive ecological risk index (CERI) based on considering metal contents, pollution indices, toxicity coefficients and water categories is offered for prediction of potential risk on aquatic organisms. The results of comprehensive analysis showed that the highest concentrations of Cu, Zn and Mn of 6.42, 87.17 and 98.74mg/L, respectively, in PW were comparable with those in water, while concentrations of Cd, Pb and As of 609.5, 2757 and 96.38μg/L, respectively, were 2-5 times higher. The sum of the exchangeable and carbonate fractions of target metals in sediments followed the order of Cd > Mn > Zn > Pb > Cu > As. The distribution of heavy metals in phases followed the order of sediment > SS > water > PW, having the sum content in water and PW lower than 2% of total. The elevated ecological risk for a single metal and the phase were 34,585 for Cd and 1160 for water, respectively, implied Cd as a priority pollutant in the considered area. According to the CERI, the maximum risk value of 769.3 was smaller than 1160 in water, but higher than those in other phases. Out of considering the water categories and contribution coefficients, the CERI was proved to be more reliable for assessing the pollution of rivers with heavy metals. These results imply that the CERI has a potential of adequate assessment of multi-phase composite metals pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Cobalt doping of the MOF-5 framework and its effect on gas-adsorption properties.

    PubMed

    Botas, Juan A; Calleja, Guillermo; Sánchez-Sánchez, Manuel; Orcajo, M Gisela

    2010-04-20

    Partial isomorphic substitution of Zn in IRMOF metal clusters by cobalt ions is described for the first time. Specifically, different numbers of Co(2+) ions have been incorporated during solvothermal crystallization into the Zn-based MOF-5 (IRMOF-1) framework, which is one of the most studied MOF materials. The amount of Zn that can be substituted seems to be limited, being no more than 25% of total metal content, that is, no more than one Co atom inside every metal cluster formed by four transition-metal ions, on average. Several characterization techniques, including X-ray diffraction, DR UV-visible spectroscopy, N(2) adsorption isotherms, and thermogravimetrical analysis, strongly support the effective incorporation of Co into the material framework. As-synthesized CoMOF-5 has cobalt ions in octahedral coordination, changing to tetrahedral by simple evacuation, presumably by the removal of two diethylformamide molecules per Co ion. Moreover, the H(2), CH(4), and CO(2) uptake of MOF-5 materials systematically increases with the Co content, particularly at high pressure. Such an increase is moderate anyway, considering that Co is incorporated into unexposed metal sites that are less accessible to gas molecules.

  3. Health risk evaluation of heavy metals in green land soils from urban parks in Urumqi, northwest China.

    PubMed

    Zhaoyong, Zhang; Xiaodong, Yang; Simay, Zibibula; Mohammed, Anwar

    2018-02-01

    Here, we sampled, tested, and analyzed heavy metals in soil obtained from green land in urban parks of Urumqi. Analysis included soil nutrient contents, particle size distribution, and health risks of heavy metal contaminants. Results showed that (1) organic matter and rapidly available phosphorus contents of all samples ranged from 6.07-58.34 and 6.52-116.15 mg/kg, with average values of 31.26 and 36.24 mg/kg, respectively; (2) silt (particle size 20-200 μm) comprised most of the particle distribution, accounting for 46.56-87.38% of the total, and the remaining particles were clay particles (0-20 μm) and sand (200-2000 μm); (3) calculations of HQ ing , HQ inh , and HQ derm for eight heavy metals in three exposure patterns revealed values less than 1 for children and adults, indicating a level of carcinogenic risk for these heavy metals; and (4) calculating the carcinogenic risks of nickel, chromium, and cadmium through breathing pathway indicating no potential carcinogenic risk for any of the three. This research showed high soil nutrient content, providing fertile ground for plant growth in the green land of these urban parks. However, measures such as using sprinklers and increased green vegetation areas have been proposed to improve soil texture. This research can serve as a reference point for soil environmental protection efforts as well as future plant growth in urban Urumqi parks.

  4. Effects of different cleaning treatments on heavy metal removal of Panax notoginseng (Burk) F. H. Chen.

    PubMed

    Dahui, Liu; Na, Xu; Li, Wang; Xiuming, Cui; Lanping, Guo; Zhihui, Zhang; Jiajin, Wang; Ye, Yang

    2014-01-01

    The quality and safety of Panax notoginseng products has become a focus of concern in recent years. Contamination with heavy metals is one of the important factors as to P. notoginseng safety. Cleaning treatments can remove dust, soil, impurities or even heavy metals and pesticide residues on agricultural products. But effects of cleaning treatments on the heavy metal content of P. notoginseng roots have still not been studied. In order to elucidate this issue, the effects of five different cleaning treatments (CK, no treatment; T1, warm water (50°C) washing; T2, tap water (10°C) washing; T3, drying followed by polishing; and T4, drying followed by tap water (10°C) washing) on P. notoginseng roots' heavy metal (Cu, Pb, Cd, As and Hg) contents were studied. The results showed that heavy metal (all five) content in the three parts all followed the order of hair root > rhizome > root tuber under the same treatment. Heavy metal removals were in the order of Hg > As > Pb > Cu > Cd. Removal efficiencies of the four treatments were in the order of T2 > T1 > T3 > T4. Treatments (T1-T4) could decrease the contents of heavy metal in P. notoginseng root significantly. Compared with the requirements of WM/T2-2004, P. notoginseng roots' heavy metal contents of Cu, Pb, As and Hg were safe under treatments T1 and T2. In conclusion, the cleaning process after production was necessary and could reduce the content of heavy metals significantly. Fresh P. notoginseng root washed with warm water (T2) was the most efficient treatment to remove heavy metal and should be applied in production.

  5. [Compositional Variation of Spent Mushroom Substrate During Cyclic Utilization and Its Environmental Impact].

    PubMed

    Lou, Zi-mo; Wang, Zhuo-xing; Zhou, Xiao-xin; Fu, Rui-qi; Liu, Yu; Xu, Xin-hua

    2016-01-15

    Nutrition components and elements analysis of spent mushroom substrates/composts (SMS/SMC) during a cyclic utilization were performed to state the compositional variation during reutilization and composting process. Environmental risk assessment of heavy metals and other pollutants were also taken into consideration. The results showed that the water consumption during reutilization reached 13.8%; while the protein and polysaccharide contents increased by 32.9% and 20.4%, respectively, suggesting that SMS still had a lot of nutrients. After composting disposal, however, the protein and polysaccharide contents decreased by 50% and 79%, respectively, while the lignin, cellulose and hemicellulose contents didn't show a significant difference; the C/N ratio decreased; the total humic acid content increased by 18.6%, all of which means that the composting process made great contributions to organic degradation. The heavy metal analysis showed that As, Hg, Pb, Cd, Cr concentrations in organic compost met the requirement of limit standard (NY525-2012). In addition, the results of column leaching test showed that N, P and organics in both SMS and SMC had a possibility of leaching loss, and the accumulation of TN and COD in SMC leachate decreased by 15.0% and 62.8%, respectively, compared to SMS group.

  6. Impact of heavy metals on photosynthetic pigment content in roadside plant communities

    NASA Astrophysics Data System (ADS)

    Popova, Elena

    2017-11-01

    The research is dedicated to the study of the impact of heavy metals (As, Cr, Cu, Mo, Ni, Pb, Sr, Zn) found in plant samples on photosynthetic pigments in anthropogenic roadside plant communities. In the process of research, the anthropogenic load intensity for the selected sites (1 < 6 < 5 < 4 < 2 < 3) was determined. The analysis of the results showed that the impact of heavy metals on photosynthetic pigment content depends not only on metal toxicity but also on its concentration. A high level was noted for Pb (7.2-10.6), Cr (2.6-4.5), As (0.1-0.9) and Sr (9.4-12.1) mg/kg. The inverse relation between the heavy metal and photosynthetic pigment concentrations was revealed. The research showed that the concentration of chlorophyll a, b and carotenoids changes depending on the growing conditions. Carotenoids are less vulnerable to the negative impact of heavy metals as compared to chlorophylls. A higher concentration of carotenoids is noted in stressing environment. On the one hand, it decreases stress effect; on the other hand, it performs a protective function by preventing destruction of chlorophyll molecules and other organic substances. The obtained data may be used to forecast dynamics of plant populations and communities in the polluted areas and to monitor conditions of natural ecosystems.

  7. Mineral phases and metals in baghouse dust from secondary aluminum production.

    PubMed

    Huang, Xiao-Lan; El Badawy, Amro M; Arambewela, Mahendranath; Adkins, Renata; Tolaymat, Thabet

    2015-09-01

    Baghouse dust (BHD) is a solid waste generated by air pollution control systems during secondary aluminum processing (SAP). Management and disposal of BHD can be challenging in the U.S. and elsewhere. In this study, the mineral phases, metal content and metal leachability of 78 BHD samples collected from 13 different SAP facilities across the U.S. were investigated. The XRD semi-quantitative analysis of BHD samples suggests the presence of metallic aluminum, aluminum oxide, aluminum nitride and its oxides, spinel, elpasolite as well as diaspora. BHD also contains halite, sylvite and fluorite, which are used as fluxes in SAP activities. Total aluminum (Al) in the BHD samples averaged 18% by weight. Elevated concentrations of trace metals (>100 μg L(-1) As; >1000 μg L(-1) Cu, Mn, Se, Pb, Mn and Zn) were also detected in the leachate. The U.S. toxicity characteristic leaching procedure (TCLP) results showed that some samples leached above the toxicity limit for Cd, Pb and Se. Exceeding the TCLP limits in all sample is independent of facilities generating the BHD. From the metal content perspective only, it appears that BHD has a higher potential to exhibit toxicity characteristics than salt cake (the largest waste stream generated by SAP facilities). Published by Elsevier Ltd.

  8. [Beijing common green tree leaves' accumulation capacity for heavy metals].

    PubMed

    Li, Shao-Ning; Kong, Ling-Wei; Lu, Shao-Wei; Chen, Bo; Gao, Chen; Shi, Yuan

    2014-05-01

    Seasonal variation of heavy metal contents in leaves and their relationships with soil heavy metal pollution levels were studied through measuring and analyzing the leaves of the common tree species in Beijing and soil heavy metal contents, to detect heavy metal accumulation ability of plant leaves. The results showed that: (1) the contents of Cu, Pb, Zn in plant leaves first decreased and then increased, again declined with changing the seasons (from spring to winter). Cr concentration showed the trend of first increase and then decrease from spring to winter, and the highest in the autumn; the accumulation capacities of Cu for Babylonica and Japonica were higher in the spring, summer and autumn, while Tabuliformis was in winter; the higher accumulation capacities for Cr, Pb were Japonica and Platycladus, and in winter were Platycladus and Bungeana; the higher accumulation capacities for Zn were Babylonica and Bungeana, while Platycladus in winter; (2) the pollution degree of four kinds of heavy metals (Cu, Cr, Pb, Zn) from downtown to suburbs showed that: Jingshan (C =2.48, C is contamination factor) > Olympic (C = 1.27) > Songshan (C = 1.20) > Shuiguan (C = 1. 18); (3) the heavy metals concentration of same plant leaves in the water of the Great Wall changed larger, but those in the other three areas showed that: Jingshan > Olympic > Songshan; the ability of same species leaf to absorb different sorts of heavy metals showed that: Zn >Cu >Pb >Cr; the difference between Zn content and Cr content was significant (P <0.01); (4) the relationship between heavy metal content in plant leaves and soil heavy metal pollution levels presented a quadratic polynomial relation; the significant correlation was found between other three heavy metal contents of plant samples and soil samples, but they were not the case for the Cu, and the correlation coefficients were above 0. 9.

  9. Quantitation of Surface Coating on Nanoparticles Using Thermogravimetric Analysis.

    PubMed

    Dongargaonkar, Alpana A; Clogston, Jeffrey D

    2018-01-01

    Nanoparticles are critical components in nanomedicine and nanotherapeutic applications. Some nanoparticles, such as metallic nanoparticles, consist of a surface coating or surface modification to aid in its dispersion and stability. This surface coating may affect the behavior of nanoparticles in a biological environment, thus it is important to measure. Thermogravimetric analysis (TGA) can be used to determine the amount of coating on the surface of the nanoparticle. TGA experiments run under inert atmosphere can also be used to determine residual metal content present in the sample. In this chapter, the TGA technique and experimental method are described.

  10. Humic substances and trace metals associated with Fe and Al oxides deposited in an acidic mountain stream

    USGS Publications Warehouse

    McKnight, Diane M.; Wershaw, R. L.; Bencala, K.E.; Zellweger, G.W.; Feder, G.L.

    1992-01-01

    Hydrous iron and aluminum oxides are deposited on the streambed in the confluence of the Snake River and Deer Creek, two streams in the Colorado Rocky Mountains. The Snake River is acidic and has high concentrations of dissolved Fe and Al. These metals precipitate at the confluence with the pristine, neutral pH, Deer Creek because of the greater pH (4.5-6.0) in the confluence. The composition of the deposited oxides changes consistently with distance downstream, with the most upstream oxide samples having the greatest Fe and organic carbon content. Fulvic acid accounts for most of the organic content of the oxides. Results indicate that streambed oxides in the confluence are not saturated with respect to their capacity to sorb dissolved humic substances from streamwater. The contents of several trace metals (Mn, Zn, Cu, Pb, Ni and Co) also decrease with distance downstream and are correlated with both the Fe and organic carbon contents. Strong metal-binding sites associated with the sorbed fulvic acid are more than sufficient to account for the trace metal content of the oxides. Complexation of trace metals by sorbed fulvic acid may explain the observed downstream decrease in trace metal content.

  11. Trends and sources for heavy metals in urban atmosphere

    NASA Astrophysics Data System (ADS)

    Kemp, Kåre

    2002-04-01

    The concentrations of a number of heavy metals in the air in three Danish cities have been measured by means of PIXE for more than two decades. The well-known capability of PIXE for fast and efficient analysis of aerosol samples has been employed for analysis of daily samples from several sites during the whole period. The main sources are traffic, domestic heating and long-range transport. Source apportionment and trends for single metals are assessed by means of simple statistical methods. The most striking change has occurred for the Pb concentration, which is reduced by almost a factor of 100 following the reduction of the Pb content in petrol. The main source of Cu, Cr and Zn is the traffic. The concentrations of these elements have been slightly increasing. The concentrations for most of the other heavy metals, which originate mainly from sources outside the cities, have been decreasing.

  12. Use of lidar point cloud data to support estimation of residual trace metals stored in mine chat piles in the Old Lead Belt of southeastern, Missouri

    USGS Publications Warehouse

    Witt, Emitt C.

    2016-01-01

    Historic lead and zinc (Pb-Zn) mining in southeast Missouri’s ―Old Lead Belt‖ has left large chat piles dominating the landscape where prior to 1972 mining was the major industry of the region. As a result of variable beneficiation methods over the history of mining activity, these piles remain with large quantities of unrecovered Pb and Zn and to a lesser extent cadmium (Cd). Quantifying the residual content of trace metals in chat piles is problematic because of the extensive field effort that must go into collecting elevation points for volumetric analysis. This investigation demonstrates that publicly available lidar point data from the U.S. Geological Survey 3D Elevation Program (3DEP) can be used to effectively calculate chat pile volumes as a method of more accurately estimating the total residual trace metal content in these mining wastes. Five chat piles located in St. Francois County, Missouri, were quantified for residual trace metal content. Utilizing lidar point cloud data collected in 2011 and existing trace metal concentration data obtained during remedial investigations, residual content of these chat piles ranged from 9247 to 88,579 metric tons Pb, 1925 to 52,306 metric tons Zn, and 51 to 1107 metric tons Cd. Development of new beneficiation methods for recovering these constituents from chat piles would need to achieve current Federal soil screening standards. To achieve this for the five chat piles investigated, 42 to 72% of residual Pb would require mitigation to the 1200 mg/kg Federal non-playground standard, 88 to 98% of residual Zn would require mitigation to the Ecological Soil Screening level (ESSL) for plant life, and 70% to 98% of Cd would require mitigation to achieve the ESSL. Achieving these goals through an existing or future beneficiation method(s) would remediate chat to a trace metal concentration level that would support its use as a safe agricultural soil amendment.

  13. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2018-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  14. Comparison of organic geochemistry and metal enrichment in two black shales: Cambrian Alum Shale of Sweden and Devonian Chattanooga Shale of United States

    USGS Publications Warehouse

    Leventhal, J.S.

    1991-01-01

    In most black shales, such as the Chattanooga Shale and related shales of the eastern interior United States, increased metal and metalloid contents are generally related to increased organic carbon content, decreased sedimentation rate, organic matter type, or position in the basin. In areas where the stratigraphic equivalents of the Chattanooga Shale are deeply buried and and the organic material is thermally mature, metal contents are essentially the same as in unheated areas and correlate with organic C or S contents. This paradigm does not hold for the Cambrian Alum Shale Formation of Sweden where increased metal content does not necessarily correlate with organic matter content nor is metal enrichment necessarily related to land derived humic material because this organic matter is all of marine source. In southcentral Sweden the elements U, Mo, V, Ni, Zn, Cd and Pb are all enriched relative to average black shales but only U and Mo correlate to organic matter content. Tectonically disturbed and metamorphosed allochthonous samples of Alum Shale on the Caledonian front in western Sweden have even higher amounts for some metals (V, Ni, Zn and Ba) relative to the autochthonous shales in this area and those in southern Sweden. ?? 1991 Springer-Verlag.

  15. Evaluation of cadmium, lead and metallothionein contents in the tissues of mussels (Mytilus galloprovincialis) from the Campania coast (Italy): levels and seasonal trends.

    PubMed

    Scudiero, Rosaria; Cretì, Patrizia; Trinchella, Francesca; Grazia Esposito, Maria

    2014-01-01

    The biological effect of seasonality on cadmium, lead and metallothionein contents was assessed in mussels Mytilus galloprovincialis from natural banks located along the coastline of the Gulf of Naples (Campania, Italy). Heavy metals and metallothionein concentrations were measured in digestive and reproductive glands. The results showed a clear correlation between metallothionein content and the reproductive gland status determined during the seasons; on the contrary, no correlation was found between metallothionein and metal contents. Data allow us to hypothesize that metallothionein functions go beyond metal detoxification, thus opening new scenarios for these proteins in invertebrates. The effect of seasons on metals concentration in mussel tissues showed similar seasonal patterns between the sites, regardless of their anthropogenic impacts. Cadmium content was not strictly related to seasonal periods, whereas lead content was significantly lower in summer. The results also indicate that the metal contents in mussels from the Gulf of Naples do not represent a risk to human health, even in the period of their maximum accumulation, and that the relaying of mussels before marketing could improve the animal stress conditions, but having a slight effect on metal excretion. Copyright © 2014 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  16. [Study on distribution characteristics and potential ecological risk of soil heavy metals in the Yellow River beach region in Kaifeng City].

    PubMed

    Zhang, Peng-yan; Qin, Ming-zhou; Chen, Long; Hu, Chang-hui; Zhao, Ya-ping; Dong, Wei-jun

    2013-09-01

    The distributions, soil environment status and potential ecological risk of heavy metals were studied in beach soil of returning the cropland into Yellow River beach region in Kaifeng by the Nemerows and Håkansons methods. The results showed that (1) as Among the average contents of the five heavy metals Pb, Cr, Hg, As and Cd, the highest was the average content of Cr, and the lowest was the average content of Pb and Hg. In addition to Hg, the coefficients of variation of other heavy metals were relatively small, indicating that the content of heavy metals was quite different at different sites, and to some extent, relecting that Hg, As and Pb were the major elements polluting the soil, among which, Pb pollution was the pollution with universality. There was little difference in the contents of Cr and Cd from village to village the coefficient of variation was small, and the contents were below the national standard level. (2) There was significant difference in the spatial distribution of soil heavy metal elements in the upper, the middle and lower sections of the study area. The upper section was clean, the middle section was slightly polluted, and the lower section was enriched with pollutants. (3) The distribution of heavy metals in the beach region inside and outside the levees of Yellow River was closely related to the distribution of the residential regions. In the upper section of the beach region (southwest), the population was large and the contents of heavy metals were high. The contents of heavy metals were lower in the near river zone than outside the levees of Yellow River. And the heavy metal contents in the middle and lower section were higher than those outside the levees of Yellow River, while the lower section (northwest) showed a tendency of pollution enrichment. (4) In the view of the average individual potential ecological risk index of heavy metals (E(r)i), the potential ecological risk of Hg reached intense levels, and the potential ecological risk of Pb's contribution to the integrated risk was 50.5%, which was the heavy metal with highest ecological risks. Cd and Pb had a moderate ecological risk, while As and Cr had minor ecological risk. Ecological hazards of heavy metals ranked in the ascending order of Hg > Pb > As > Cd > Cr. (5) The ecological hazard of the heavy metals was ranked in the order Hg > Cd > As > Pb > Cr. Based on the potential ecological risk level corresponding to the RI values, it was shown that there was moderate potential ecological risks of heavy metals in the Yellow River beach region in Kaifeng.

  17. Resistance of black soldier fly (Diptera: Stratiomyidae) larvae to combined heavy metals and potential application in municipal sewage sludge treatment.

    PubMed

    Cai, Minmin; Hu, Ruiqi; Zhang, Ke; Ma, Shiteng; Zheng, Longyu; Yu, Ziniu; Zhang, Jibin

    2018-01-01

    Treating municipal sewage sludge (MSS) sustainably and economically in China remains a challenge because of risks associated with the heavy metals it contains. In this study, black solider fly larvae (BSFL) were used for MSS treatment. The resistance of larvae to combined heavy metals and their potential use in conversion of MSS were investigated. The results indicated that seven MSS samples contained large amounts of heavy metals, with the lead and nickel contents of several samples exceeding Chinese national discharge standards. BSFL were highly tolerant to an artificial diet spiked with combined heavy metals. Principal component analysis revealed that high concentrations of lead, nickel, boron, and mercury potentially interfered with larval weight gain, while zinc, copper, chromium, cadmium, and mercury slightly reduced larval survival. The addition of chicken manure and wheat bran as co-substrates improved the conversion process, which was influenced by the nature and amount of added co-substrate and especially the quantity of nitrogen added. With the amended substrate, the BSFL accumulated heavy metals into their bodies but not into extracted larval oil. The heavy metal content of the treatment residue was lower than that considered safe for organic-inorganic compound fertilizers standards in China and the harvested larvae could be used as a source of oil for industrial application.

  18. The Possibility of Using Composite Nanoparticles in High Energy Materials

    NASA Astrophysics Data System (ADS)

    Komarova, M. V.; Vorozhtsov, A. B.; Wakutin, A. G.

    2017-01-01

    The effect of nanopowders on the burning rate varying with the metal content in mixtures of different high energy composition is investigated. Experiments were performed on compositions based on an active tetrazol binder and electroexplosive nanoaluminum with addition of copper, nickel, or iron nanopowders, and of Al-Ni, Al-Cu, or Al-Fe composite nanoparticles produced by electrical explosion of heterogeneous metal wires. The results obtained from thermogravimetric analysis of model metal-based compositions are presented. The advantages of the composite nanoparticles and the possibility of using them in high energy materials are discussed.

  19. Submerged Glow-Discharge Plasma: An Economical Approach to Convert Construction Scrap Metal into Nanomaterials

    NASA Astrophysics Data System (ADS)

    Yek, Peter Nai Yuh; Rafiq Mirza Julaihi, Muhammad; Shahril Osman, Mohammad; Tiong, Tung Chuan; Lee, Wak Ha; Leing Lee, Chern

    2018-03-01

    Submerged glow-discharge plasma (SGDP) is relatively new among the various methods available for nanomaterials synthesis (NMs) techniques. This method allows great control over the production cost of nanomaterials synthesis. A lab-scale batch type SDGP technology has been constructed to produce nanomaterials and investigate the inter-relationship between plasma excitation voltages, electrodes submerged areas and electrolyte concentration. Metal oxide nanospheres has been synthesised from different electrolyte concentrations (1M-0.001M) and characterized by Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). As the major results showed that the nanospheres are uniformly spherical with diameter size distribution are between 100 nm - 2μm. EDS analysis shown the nano-Iron Oxide have been formed. Scrap metal initially showed around 6.45% and 93.55% of Carbon and Iron composition respectively. After SGDP process to the scrap metal, Carbon content has increased to 34-35% and Iron content has reduced to around 15-40%. EDS results also shown the higher percentage of Iron amount has remained with lower electrolyte concentration and Current is proportionally related to submersion area of cathode.

  20. Impact of elemental uptake in the root chemistry of wetland plants.

    PubMed

    Aryal, Rupak; Nirola, Ramkrishna; Beecham, Simon; Kamruzzaman, Mohammad

    2016-09-01

    Plants play a key role in the accumulation of metals in contaminated environment. Ephemeral plants, such as cyperus vaginatus, from the family Cyperaceae have been used in constructed wetlands to alter the biogeochemistry of waterlogged soils. High elemental content in wetlands often induces chemical changes in the root, stem and leaf of wetland plants. Elemental uptake and possible chemical changes in the roots of Cyperus vaginatus was investigated and compared with plants grown away from the wetland. Among the 9 heavy metals (Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb) and metalloid (As) measured, with the exception of Mn, all metals had higher content in the plant roots grown within the wetland. This was followed by plants grown near to the wetland that receive stormwater occasionally and then plants grown far from the wetland. The 3-D fluorescence spectra record showed notable differences in the chemical composition of roots grown in the three locations. The spectra combined with parallel factor analysis showed three dominant fluorescence components. Comparison of the fluorescence signatures showed a continuum of spectral properties constrained by the degree of metal contamination.

  1. Uptake and elimination kinetics of metals in soil invertebrates: a review.

    PubMed

    Ardestani, Masoud M; van Straalen, Nico M; van Gestel, Cornelis A M

    2014-10-01

    Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Preliminary assessment of metal-porcelain bonding strength of CoCrW alloy after 3wt.% Cu addition.

    PubMed

    Lu, Yanjin; Zhao, Chaoqian; Ren, Ling; Guo, Sai; Gan, Yiliang; Yang, Chunguang; Wu, Songquan; Lin, Junjie; Huang, Tingting; Yang, Ke; Lin, Jinxin

    2016-06-01

    In this work, a novel Cu-bearing CoCrW alloy fabricated by selective laser melting for dental application has been studied. For its successful application, the bonding strength of metal-porcelain is essential to be systematically investigated. Therefore, the aim of this study was to evaluate the metal-porcelain bonding strength of CoCrWCu alloy by three-point bending test, meanwhile the Ni-free CoCrW alloy was used as control. The oxygen content was investigated by an elemental analyzer; X-ray photoelectron spectroscopy (XPS) was used to analyze the surface chemical composition of CoCrW based alloy after preoxidation treatment; the fracture mode was investigated by X-ray energy spectrum analysis (EDS) and scanning electron microscope (SEM). Result from the oxygen content analysis showed that the content of oxygen dramatically increased after the Cu addition. And the XPS suggested that Co-oxidation, Cr2O3, CrO2, WO3, Cu2O and CuO existed on the preoxidated surface of the CoCrWCu alloy; the three-point bending test showed that the bonding strength of the CoCrWCu alloy was 43.32 MPa, which was lower than that of the CoCrW group of 47.65 MPa. However, the average metal-porcelain bonding strength is significantly higher than the minimum value in the ISO 9693 standard. Results from the SEM images and EDS indicated that the fracture mode of CoCrWCu-porcelain was mixed between cohesive and adhesive. Based on the results obtained in this study, it can be indicated that the Cu-bearing CoCrW alloy fabricated by the selective laser melting is a promising candidate for use in dental application. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    NASA Astrophysics Data System (ADS)

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-07-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting.

  4. Study on the Effects of Irrigation with Reclaimed Water on the Content and Distribution of Heavy Metals in Soil

    PubMed Central

    Lu, Shibao; Wang, Jianhua; Pei, Liang

    2016-01-01

    Reclaimed water is an important resource for irrigation, and exploration in making full use of it is an important way to alleviate water shortage. This paper analyzes the effects of irrigation with reclaimed water through field trials on the content and distribution of heavy metals in both tomatoes and the soil. By exploring the effects of reclaimed water after secondary treatment on the content and distribution characteristics of heavy metals in tomatoes and the heavy metal balance in the soil-crop system under different conditions, the study shows that there are no significant differences in the heavy metal content when the quantity of reclaimed water for irrigation varies. Reclaimed water for short-term irrigation does not cause pollution to either the soil environment or the crops. Nor will it cause the accumulation of heavy metals, and the index for the heavy metal content is far below the critical value of the national standard, which indicates that the vegetables irrigated with reclaimed water during their growth turn out to be free of pollutants. The heavy metals brought into the soil by reclaimed water are less than that taken away by the crops. The input and output quantities have only small effects on the heavy metal balance in the soil. This paper provides a reference for the evaluation and safety control of irrigation with reclaimed water. PMID:27005639

  5. Study on the Effects of Irrigation with Reclaimed Water on the Content and Distribution of Heavy Metals in Soil.

    PubMed

    Lu, Shibao; Wang, Jianhua; Pei, Liang

    2016-03-08

    Reclaimed water is an important resource for irrigation, and exploration in making full use of it is an important way to alleviate water shortage. This paper analyzes the effects of irrigation with reclaimed water through field trials on the content and distribution of heavy metals in both tomatoes and the soil. By exploring the effects of reclaimed water after secondary treatment on the content and distribution characteristics of heavy metals in tomatoes and the heavy metal balance in the soil-crop system under different conditions, the study shows that there are no significant differences in the heavy metal content when the quantity of reclaimed water for irrigation varies. Reclaimed water for short-term irrigation does not cause pollution to either the soil environment or the crops. Nor will it cause the accumulation of heavy metals, and the index for the heavy metal content is far below the critical value of the national standard, which indicates that the vegetables irrigated with reclaimed water during their growth turn out to be free of pollutants. The heavy metals brought into the soil by reclaimed water are less than that taken away by the crops. The input and output quantities have only small effects on the heavy metal balance in the soil. This paper provides a reference for the evaluation and safety control of irrigation with reclaimed water.

  6. Migration protocol to estimate metal exposure from mouthing copper and tin alloy objects

    PubMed Central

    2014-01-01

    Background Low blood lead levels previously thought to pose no health risks may have an adverse impact on the cognitive development of children. This concern has given rise to new regulatory restrictions upon lead metal containing products intended for child use. However few reliable experimental testing methods to estimate exposure levels from these materials are available. Methods The present work describes a migration test using a mimetic saliva fluid to estimate the chronic exposure of children to metals such as lead while mouthing metallic objects. The surrogate saliva medium was composed of: 150 mM NaCl, 0.16% porcine Mucin and 5 mM buffer MOPS, adjusted to pH 7.2. Alloys samples, in the form of polished metallic disc of known surface area, were subjected to an eight hours test. Results Two whitemetal alloys Sn/Pb/Sb/Cu and three brass alloys Cu/Zn/Pb were tested using the saliva migration protocol. In the case of the whitemetal alloys, first order release kinetics resulting in the release of 0.03 and 0.51 μg lead/cm2 after 8 hours of tests were observed, for lead contents of 0.05-0.07% and 5.5%, respectively. Brasses exhibited linear incremental release rates of 0.043, 0.175 and 0.243 μg lead/cm2h for lead contents of 0.1-0.2%, 1.7-2.2% and 3.1-3.5%, respectively. The linear regression analysis of lead release rates relative to Pb content in brasses yielded a slope of 0.08 μg lead/cm2h%Pb (r2 = 0.92). Lead release rates were used to estimate the mean daily mouthing exposure of a child to lead, according to age-specific estimates of mouthing time behavior. Calculated daily intakes were used as oral inputs for the IEUBK toxicokinetic model, predicting only marginal changes in blood lead levels (0.2 μg lead/dL or less) for children aged 0.5 to 1 years old exposed to either class of alloy. Conclusions The results of this study as a whole support the use of migration data of metal ions, rather than total metal content, to estimate health risk from exposure to metals and metal alloys substances in children. PMID:25113236

  7. The Relationship between Bulk and Mobile Forms of Heavy Metals in Soils of Kursk

    NASA Astrophysics Data System (ADS)

    Nevedrov, N. P.; Protsenko, E. P.; Glebova, I. V.

    2018-01-01

    The contamination of Kursk urboecotopes by heavy metals (Pb, Cd, Zn, Cu, Ni) is considered. The relationships between the contents of bulk and mobile forms of heavy metal ions have been examined. The results of monitoring studies attest to a tendency for the accumulation of both bulk and mobile forms of heavy metals in the humus-accumulative horizon, except for bulk cadmium and mobile nickel. Linear and nonlinear regression models of the bulk contents of Pb, Cd, Zn, and Ni as dependent on the contents of their mobile forms have been developed. These models allow us to calculate the bulk content of heavy metal ions in the soils of urboecotopes using simpler methods of the extraction and laboratory determination of their mobile forms.

  8. Metal Load of the Crops Depending on Land Use, Land Management and Soil Characteristics

    NASA Astrophysics Data System (ADS)

    Oeztan, Sezin; Duering, Rolf-Alexander

    2010-05-01

    The increase of pollutant concentrations in soil and in the food chain became very important in the past few decades. Metals of different toxicities (Cd, Zn, As, Cr, Cu, Pb, Ni, Co, V, Tl) occur in soils as a result of weathering, industrial processes, fertilization and atmospheric deposition. Some of them can be absorbed by the plants due to their mobility. The transfer of metals from soil into the plants can be explained by the physicochemical characteristics of the soil such as pH-value, organic matter and clay content. Badly adapted cultivation of the agricultural soils (declining pH-value, application of unsuitable fertilizers) can enhance the mobility of the metals and by the way increase their concentrations in agricultural products. With this study, a field experiment was established and the aim is to test the relations between available metal concentrations in the soil and metal load of the plants depending on the fertilization techniques. The plants and soil samples of the reference sites were taken, heavy metal contents of the soil samples identified by Microwave Assisted Extraction (MAE) and compared to the Aqua Regia Digestion Method for confirming the methodology. For the determination of the metal content in plants, MAE was executed to the selected plant samples and for that procedure, the samples were digested with HNO3 and H2O2 in the microwave oven. Quantation of the metals in soil and in plants was done by ICP-OES Methodology. The evaluation of the first results confirmed that the metal content of the soil is strongly dependent on the properties of different fertilization variants (N,P,K) used and physicochemical characteristics of the soils. According to the fertilization variants, total metal contents of the soil are increased in the soil samples which have high amounts of N, P, K fertilization. Soils which were enforced with high P fertilization degrees had significantly higher total Cd content. Results on the Cd content of the plant samples also revealed that transition of metals from soil to plants depend heavily on the fertilizer since plant samples and soil samples treated with the same fertilizer showed similar results.

  9. Calcium availability but not its content modulates metal toxicity in Scenedesmus quadricauda.

    PubMed

    Kováčik, Jozef; Dresler, Sławomir

    2018-01-01

    Impact of calcium nutrition (pre-culture on solid medium with standard or elevated Ca dose, i. e. 0.17 and 4.40mM marked as low and high Ca) on acute metal toxicity (Cd, Mn and Pb, 24h of exposure to 10µM) in freshwater green alga Scenedesmus quadricauda was studied. Surprisingly, Ca content differed only slightly between low and high Ca samples and applied metals rather suppressed its amount. Na content was higher in metal-exposed high Ca samples, indicating that Ca/Na ratio may affect accumulation of metals. Content of heavy metals increased in order Cd < Mn < Pb and high Ca samples contained less metal than low Ca samples at least in absorbed fraction. Accumulation of ascorbic acid and thiols (GSH - glutathione and PC2 - phytochelatin 2) was affected mainly by Cd, GSH also by Mn and PC2 by Pb with often significant differences between low Ca and high Ca samples. Calcium nutrition also affected responses of algae to metals at the level of antioxidative enzyme activities (SOD, APX, and CAT) and elevated values were typically found in high Ca samples while ROS (hydrogen peroxide and superoxide radical) were mainly depleted in Mn treatment. These data confirm that Ca nutrition affects accumulation of metals in algae and metabolic parameters as observed in vascular plants but, unlike them, rather Ca/Na ratio than absolute Ca content seems to regulate the uptake of metals. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Organic matter and heavy metals content modeling in sewage sludge treated with reed bed system

    NASA Astrophysics Data System (ADS)

    Boruszko, Dariusz; Dąbrowski, Wojciech; Malinowski, Paweł

    2017-11-01

    The long process of sludge stabilization (7-15 years) remarkably reduces the organic matter content and causes the process of sludge humifaction. This paper presents the results of using low-cost methods of sludge treatment in the wastewater treatment plant located in Zambrow, Podlaskie Province. The results of studies on the organic matter and heavy metals content in sewage sludge after treatment in a reed bed system are presented. The aim of the research was to evaluate and model organic matter and heavy metals concentrations during sewage stabilization in reed bed lagoons. The lowest concentration, below 1.3 mg/kg DM of the examined seven heavy metals was mercury (Hg). The highest concentration, exceeding 1300 mg/kg DM was zinc (Zn). The obtained results for the heavy metals in sewage sludge from the reed bed lagoons in Zambrow show that the average content of the analyzed heavy metals is approximately 1620 mg/kg DM. The results of the study demonstrate a high efficiency of low-cost methods used in Zambrów WWTP in terms of the quality of the processed sludge. Sewage sludge from the lowest layer of the reed lagoon (12-14 years of dewatering and transformation) is characterized by the lowest organic matter and heavy metals content. The higher a sediment layer lies, i.e. the shorter the time of processing, the higher is the heavy metals content. This indicates a great role of reeds in the accumulation of these compounds.

  11. Evaluation of heavy metal concentrations of edible wild-grown mushrooms from China.

    PubMed

    Wang, Xuemei; Liu, Honggao; Zhang, Ji; Li, Tao; Wang, Yuanzhong

    2017-03-04

    The heavy metal contents (Co, Cu, Fe, Mn, Ni, and Zn) of eight species of wild edible mushrooms from China were determined. The analyses were performed using inductively coupled plasma atomic emission spectrophotometry after microwave digestion. The contents of Co, Cu, Fe, Mn, Ni, and Zn in caps of mushroom samples were 0.7-7.2, 16.2-70.4, 371-1315, 12.5-29.8, 7.1-58.5, and 77.8-187.4 mg kg -1 dry matter (dm), respectively, while considerable differences were found to be 1.8-25.9, 9.8-36.3, 288-6762, 13.3-103.9, 5.9-78.7, and 38.7-118 mg kg -1 dm for stipes. The results indicated that higher levels of Co, Fe, and Ni were found in the mushrooms samples analyzed. Zinc and manganese levels were similar to previous reports, whereas Cu was lower than literature values. Correlation analysis suggested that significant correlations were found between the minerals determined and the greatest amount of contamination is associated with Co, Mn, Ni, and Fe. The results of this study indicate that heavy metal contents in mushroom species are mainly related to the mineral resources of sampling sites.

  12. Concentrations of trace elements and iron in the Arctic soils of Belyi Island (the Kara Sea, Russia): patterns of variation across landscapes.

    PubMed

    Moskovchenko, D V; Kurchatova, A N; Fefilov, N N; Yurtaev, A A

    2017-05-01

    The concentrations of several trace elements and iron were determined in 26 soil samples from Belyi Island in the Kara Sea (West Siberian sector of Russian Arctic). The major types of soils predominating in the soil cover were sampled. The concentrations of trace elements (mg kg -1 ) varied within the following ranges: 119-561 for Mn, 9.5-126 for Zn, 0.082-2.5 for Cd, <0.5-19.2 for Cu, <0.5-132 for Pb, 0.011-0.081 for Hg, <0.5-10.3 for Co, and 7.6-108 for Cr; the concentration of Fe varied from 3943 to 37,899 mg kg -1 . The impact of particular soil properties (pH, carbon and nitrogen contents, particle-size distribution) on metal concentrations was analyzed by the methods of correlation, cluster, and factor analyses. The correlation analysis showed that metal concentrations are negatively correlated with the sand content and positively correlated with the contents of silt and clay fractions. The cluster analysis allowed separation of the soils into three clusters. Cluster I included the soils with the high organic matter content formed under conditions of poor drainage; cluster II, the low-humus sandy soils of the divides and slopes; and cluster III, saline soils of coastal marshes. It was concluded that the geomorphic position largely controls the soil properties. The obtained data were compared with data on metal concentrations in other regions of the Russian Arctic. In general, the concentrations of trace elements in the studied soils were within the ranges typical of the background Arctic territories. However, some soils of Belyi Island contained elevated concentrations of Pb and Cd.

  13. Real life experimental determination of platinum group metals content in automotive catalytic converters

    NASA Astrophysics Data System (ADS)

    Yakoumis, I.; Moschovi, A. M.; Giannopoulou, I.; Panias, D.

    2018-03-01

    The real life experimental protocol for the preparation of spent automobile catalyst samples for elemental analysis is thoroughly described in the following study. Collection, sorting and dismantling, homogenization and sample preparation for X-Ray fluorescence spectroscopy and Atomic Adsorption Spectroscopy combined with Inductive coupled plasma mass spectrometry are discussed in detail for both ceramic and metallic spent catalysts. The concentrations of Platinum Group Metals (PGMs) in spent catalytic converters are presented based on typical consignments of recycled converters (more than 45,000 pieces) from the Greek Market. The conclusions clearly denoted commercial metallic catalytic foil contains higher PGMs loading than ceramic honeycombs. On the other hand, the total PGMs loading in spent ceramic catalytic converters has been found higher than the corresponding value for the metallic ones.

  14. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds

    PubMed Central

    Hu, Yu; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-01-01

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at −40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness. PMID:29258262

  15. Microstructure, Pitting Corrosion Resistance and Impact Toughness of Duplex Stainless Steel Underwater Dry Hyperbaric Flux-Cored Arc Welds.

    PubMed

    Hu, Yu; Shi, Yong-Hua; Shen, Xiao-Qin; Wang, Zhong-Min

    2017-12-18

    Duplex stainless steel multi-pass welds were made at 0.15 MPa, 0.45 MPa, and 0.75 MPa pressure, simulating underwater dry hyperbaric welding by the flux-cored arc welding (FCAW) method, with welds of normal pressure as a benchmark. The purpose of this work was to estimate the effect of ambient pressure on the microstructure, pitting corrosion resistance and impact toughness of the weld metal. The microstructure measurement revealed that the ferrite content in the weld metal made at 0.45 MPa is the lowest, followed by that of 0.75 MPa and 0.15 MPa. The analysis of potentiodynamic polarization tests at 30 °C and 50 °C demonstrated that the pitting corrosion resistance depends on the phases of the lower pitting resistance equivalent numbers (PREN), secondary austenite and ferrite. The weld metal made at 0.45 MPa had the best resistance to pitting corrosion at 30 °C and 50 °C with the highest PRENs of secondary austenite and ferrite. The weld metal made at 0.15 MPa displayed the lowest pitting corrosion resistance at 30 °C with the lowest PREN of secondary austenite, while the weld metal made at 0.75 MPa was the most seriously eroded after being tested at 50 °C for the lowest PREN of ferrite, with large cluster pits seen in ferrite at 50 °C. The impact tests displayed a typical ductile-brittle transition because of the body-centered cubic (BCC) structure of the ferrite when the test temperature was lowered. All the weld metals met the required value of 34 J at -40 °C according to the ASTM A923. The highest ferrite content corresponded to the worst impact toughness, but the highest toughness value did not correspond to the greatest austenite content. With the decreasing of the test temperature, the drop value of absorbed energy was correlated to the ferrite content. Additionally, in this work, the weld metal made at 0.45 MPa had the best combined properties of pitting resistance and impact toughness.

  16. [Determination of total mass and morphology analysis of heavy metal in soil with potassium biphthalate-sodium hydroxide by ICP-AES].

    PubMed

    Qu, Jiao; Yuan, Xing; Cong, Qiao; Wang, Shuang

    2008-11-01

    Blank soil was used as quality controlling samples, soil sample dealt by potassium biphthalate-sodium hydroxide buffer solution was used as check sample, mixed acid HNO3-HF-HClO4 was chosen to nitrify soil samples, and plasma emission spectrometer (ICP-AES) was used as detecting method. The authors determined the total metal mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the extracted and dealt soil samples, and determined the mass of Mo, Pb, As, Hg, Cr, Cd, Zn, Cu and Ni in the three chemical morphologies, including acid extractable morphology, oxide associated morphology, and organics associated modality. The experimental results indicated that the different pH of potassium biphthalate-sodium hydroxide buffer solution had obvious influence on the total mass of heavy metal and morphology transformation. Except for metal element Pb and Zn, the addition of different pH potassium dihydrogen phosphate-sodium hydroxide buffer solution could accelerate the soil samples nitrification and the total mass determination of heavy metal in the soil samples. The potassium biphthalate-sodium hydroxide buffer solution could facilitate the acid extractable morphology of Cr, Cu, Hg and Pb, oxidation associated morphology of As, Hg, Pb and Zn and the organic associated morphology transforming of As and Hg. At pH 5.8, the maximum acid extractable morphology contents of Cu and Hg were 2.180 and 0.632 mg x kg(-1), respectively; at pH 6.2, the maximal oxidation associated morphology content of Pb could achieve 27.792 mg x kg(-1); at pH 6.0, the maximum organic associated morphology content of heavy metal Hg was 4.715 mg x kg(-1).

  17. [Accumulation, distribution and pollution assessment of heavy metals in surface sediment of Caohai plateau wetland, Guizhou province].

    PubMed

    Zhang, Qing-Hai; Lin, Chang-Hu; Tan, Hong; Lin, Shao-Xia; Yang, Hong-Bo

    2013-03-01

    The objective of this paper is to investigate the concentrations and distribution characteristics of heavy metals in surface sediments of different areas in the Caohai plateau wetland. 16 samples of surface sediments were collected and 7 heavy metals were analyzed. Heavy metal pollution in surface sediments of different areas in the Caohai plateau wetland was estimated by the Tomlinson Pollution Load Index (PLI) method. The analyzed results indicated that the average contents of Cd, Hg, As, Pb, Cr, Cu, Zn were 0.985, 0.345, 15.8, 38.9, 38.6, 22.8 and 384 mg x kg(-1), respectively. The heavy metal distributions varied with regional environment changes, the order of average contents of Cd and Hg in different regions was E (the eastern region) > S (the southern region) > N (the northern region), the order of the average content of Pb was N > E > S, and that of Zn was S > E > N. The results also suggested a medium heavy metal pollution level in the surface sediment of the Caohai plateau wetland with the PLI(zone) reaching 1.17. The order of pollution level in surface sediments of different regions was E > S > N. The results showed medium pollution levels in E and Hg which reached the extreme intensity pollution level were also the major polluted elements in surface sediments of the Caohai plateau wetland. And also, results showed medium pollution levels of Cd and Pb in surface sediments of Caohai plateau wetland. Cluster analysis results showed similar pollution sources of Cd, Zn, Pb and Hg, which should be attached great importance in terms of the prevention of the Caohai plateau wetland.

  18. [Sources, pollution statue and potential ecological risk of heavy metals in surface sediments of Aibi Lake, Northwest China].

    PubMed

    Zhang, Zhao-Yong; Abuduwaili, Jilili; Jiang, Feng-Qing

    2015-02-01

    In this paper, the surface sediment samples were harvested from Aibi Lake, and total contents of 8 heavy metals ( Cu, Pb, Zn, As, Hg, Cr, Ni and Cd) were determined. Then the sources, pollution statue, and potential ecological risk were analyzed by using multiple analysis methods. The results show that: (1) The order of the skewness for these 8 heavy metals is: Hg > Cd > Pb > Zn > As > Cu > Cr > Ni. (2) Multivariate statistical analysis shows that 8 heavy metals can be classified to 2 principle components, among which PC1 ( Cd, Pb, Hg and Zn) is man-made source factor and mainly came from all kinds of waste of agriculture; PC2 ( Cu, Ni, Cr and As) is natural source and was mainly controlled by the background of the natural geography of this area. (3) Accumulation of index evaluation results show that the order of pollution degree values of 8 heavy metals in surface sediments of Aibi Lake is: Cd > Hg > Pb > Zn > As > Cu > Ni > Cr. In all samples, heavy metals Hg, Cd and Pb all belong to low and partial moderate pollution statue, while Zn, As, Cr, Ni and Cu belong to no pollution statue in majority samples. (4) Potential ecological risk assessment results show that the potential ecological risk of heavy metals in surface sediments of Aibi Lake mainly caused by Cd, Hg and Pb, and they accounting for 42.6%, 28.6% and 24.0% of the total amount, respectively, among which Cd is the main ecological risk factor, followed by Hg and Pb. In all samples, the potential ecological risk index values (RI) of 8 heavy metals are all lower than 150, and they are all at low ecological risk levels. However, this research also shows that there have high content of Cd and Pb in the sediment. Therefore, we should make long-term monitoring of the lake environment.

  19. Study of ecologo-biological reactions of common flax to finely dispersed metallurgical wastes

    NASA Astrophysics Data System (ADS)

    Zakharova, O.; Gusev, A.; Skripnikova, E.; Skripnikova, M.; Krutyakov, Yu; Kudrinsky, A.; Mikhailov, I.; Senatova, S.; Chuprunov, C.; Kuznetsov, D.

    2015-11-01

    Study was carried out on the influence of metallurgic industrial sludge on morphometric and biochemical indicators as well as productivity of common flax under laboratory and field conditions. In laboratory settings negative influence on seed germinating ability and positive influence on sprouts biomass production in water medium were observed. In sand medium suppression of biological productivity under the influence of sludge together with photosynthetic system II (FS II) activity stimulation were registered. Biochemical study showed peroxidase activity decrease in laboratory, while activity of polyphenol oxidase, superoxide dismutase and catalase were given a mild boost under the influence of sludge. In the field trial, positive influence of sludge on flax photosynthetic apparatus was shown. Positive influence of sludge on vegetation and yield indicators was observed. The analysis of heavy metals content showed excess over maximum allowable concentration (MAC) of copper and zinc in control plants, it may point to the background soil pollution. In the plants from the trial groups receiving 0.5 and 2 ton/ha heavy metals content below the control values was registered. Application of 4 ton/ha led to the maximum content of copper and zinc in the plants among the trial groups. The analysis of soils from the test plots indicated no excess over maximum allowable concentrations of heavy metals. Thus, further study of possibilities of using metallurgic industrial sludge as a soil stimulator in flax cultivation at the application rate of 0.5 t/ha seems promising.

  20. Application of sintered titanium alloys to metal denture bases: a study of titanium powder sheets for complete denture base.

    PubMed

    Doi, H; Harrori, M; Hasegawa, K; Yoshinari, M; Kawada, E; Oda, Y

    2001-02-01

    The purpose of this study was the fabrication of titanium powder sheets to enable the application of sintered titanium alloys as metal denture bases. The effects of titanium particle shape and size, binder content, and plasticizer content on the surface smoothness, tensile strength and elongation of titanium powder sheets was investigated. To select a suitable ratio of powdered metal contents for application as a metal denture base, the effects of aluminum content in Ti sheets and various other powder metal contents in Ti-Al sheets on the density, sintering shrinkage, and bending strength were evaluated. Based on the results of the above experiments, we developed a mixed powder sheet composed of 83Ti-7Al-10Cr with TA45 titanium powder (atomized, -45 microm), and 8 mass% binder content. This titanium alloy sheet had good formability and ductility. Its sintered titanium alloy had a density of 3.2 g/cm3, sintering shrinkage of 3.8%, and bending strength of 403 MPa. The titanium alloy sheet is clinically acceptable for fabricating denture bases.

  1. [Contamination Assessment and Sources Analysis of Soil Heavy Metals in Opencast Mine of East Junggar Basin in Xinjiang].

    PubMed

    Liu, Wei; Yang, Jian-jun; Wang, Jun; Wang, Guo; Cao, Yue-e

    2016-05-15

    The opencast mine of East Junggar Basin in Xinjiang is the largest self-contained coalfield in China, and the ecological environment of the opencast is very fragile because of its arid climate and poor soil. In this study, 50 soil samples (from 0 to 30 cm depth soil at intervals of 10 cm) in opencast Mine of East Junggar Basin in Xinjiang were collected in order to explore the heavy metals contamination of the coal mining. The contents of zinc (Zn), copper (Cu), cadmium (Cr), lead (Pb), mercury (Hg) and arsenic (As) were measured and the degree of pollution was assessed by Nemerow index, geo-accumulation (Igeo) index and potential ecological risk index. In addition, the layered comparison, dust fall and the distance between coal mine and samples location were used to analyze the source of heavy metals contamination. The results showed that value of As surpassed the Chinese soil quality standard class I (GB 15618-1995) mostly severely, followed by Cr, a relatively lower surpass was obtained by Hg and Cu, while Zn and Pb did not surpass the standard. According to the standard, the soil heavy metals content of research region was in light pollution status and the pollution index for each heavy metal followed the order of As (2.07) > Cr (0.95) > Cu (0.55) > Zn (0.48) > Hg (0.45) > Pb (0.38), which demonstrated a heavy pollution of As and clean status of others. Additionally, an Igeo value of 1.14 for Hg reflected a moderated pollution. The major contribution factor was Hg with a risk index of 251.40. The source analysis showed that the content of Pb in the surface soil (10-20 cm) was different from that in the deep layer (20-30 cm), which may be caused by coal combustion and other human activities. The sources of Hg and As were similar and may come from coal combustion. The distance to the mining area was not the major factor affecting the diffusion of heavy metals, other candidate factors included terrain, aspect and wind direction, etc.

  2. Surficial geology along the Spokane River, Washington and its relationship to the metal content of sediments (Idaho-Washington stateline to Latah Creek confluence)

    USGS Publications Warehouse

    Box, Stephen E.; Wallis, John C.

    2002-01-01

    3. to compare the metal contents of different sedimentary lithologies. This data is used to gain some understanding of the physical and chemical processes that control those metal contents. It is hoped this study can be used to guide potential future remedial actions aimed at reducing the biologic impact of metal-enriched sediments in this area. This work was undertaken in cooperation with the Washington Department of Ecology and the Environmental Protection Agency.

  3. Differences in Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient

    PubMed Central

    Feris, Kevin; Ramsey, Philip; Frazar, Chris; Moore, Johnnie N.; Gannon, James E.; Holben, William E.

    2003-01-01

    The hyporheic zone of a river is nonphotic, has steep chemical and redox gradients, and has a heterotrophic food web based on the consumption of organic carbon entrained from downwelling surface water or from upwelling groundwater. The microbial communities in the hyporheic zone are an important component of these heterotrophic food webs and perform essential functions in lotic ecosystems. Using a suite of methods (denaturing gradient gel electrophoresis, 16S rRNA phylogeny, phospholipid fatty acid analysis, direct microscopic enumeration, and quantitative PCR), we compared the microbial communities inhabiting the hyporheic zone of six different river sites that encompass a wide range of sediment metal loads resulting from large base-metal mining activity in the region. There was no correlation between sediment metal content and the total hyporheic microbial biomass present within each site. However, microbial community structure showed a significant linear relationship with the sediment metal loads. The abundances of four phylogenetic groups (groups I, II, III, and IV) most closely related to α-, β-, and γ-proteobacteria and the cyanobacteria, respectively, were determined. The sediment metal content gradient was positively correlated with group III abundance and negatively correlated with group II abundance. No correlation was apparent with regard to group I or IV abundance. This is the first documentation of a relationship between fluvially deposited heavy-metal contamination and hyporheic microbial community structure. The information presented here may be useful in predicting long-term effects of heavy-metal contamination in streams and provides a basis for further studies of metal effects on hyporheic microbial communities. PMID:12957946

  4. [Pollution by heavy metals in the petrochemical sewage waters of the sea area of Daya Bay and assessment on potential ecological risks].

    PubMed

    Xu, Shan-Nan; Li, Chun-Hou; Xu, Jiao-Jiao; Xiao, Ya-Yuan; Lin, Lin; Huang, Xiao-Ping

    2014-06-01

    This study aimed to gain a clear understanding on the status of pollution by heavy metals in the petrochemical sewage and the potential ecological risk caused by heavy metal pollution in the sea area of Daya Bay. The contents and spatial distributions of heavy metals including Zn, Pb, Cu, Cd, Cr, As and Hg in seawater, sediment and fishes collected from Daya Bay were analyzed. The comprehensive pollution index (CPI) and ecological risk indexes (ERIs) were used to evaluate the contaminated severity and potential ecological risks of heavy metals in seawater and sediment. The results showed that the contents of these heavy metals, except for those of Zn and Pb, in several stations set in Daya Bay from 2011 to 2012 were relatively low, which were lower than the quality standard of class I according to the China National Standard Criteria for Seawater Quality, suggesting that the seawater in Daya Bay has not been polluted yet by these heavy metals. The average CPI of heavy metals in seawater during flooding season (0.72) was higher than that during dry season (0.38) whereas the average CPI of heavy metals in sediment during dry season (7.77) was higher than that during flooding season (5.70). Hg was found to be the primary contaminating heavy metal in sediment during dry season, which was followed by As and Zn whereas during flooding season, Hg was the primary contaminating metal in sediment, followed by Zn and Cu. The contents of these 7 heavy metals in fishes collected from the surveyed areas were lower than those of the standard requirements. A correlation analysis indicated that there were significant differences in the correlations between the midst of the heavy metals in sea water and the different periods. The ERIs of heavy metals in sediment during dry season (129.20) was higher than that during flooding season (102.86), and 25% of the sampling sites among all stations were under the risk of high-level alarm. The potential ERIs of heavy metals in sediment in offshore waters were higher than those of inshore waters, and were higher in the bay-mouth than in the bay-head. However, the distributions of potential ERIs showed reversed trend during dry season. The comprehensive assessment results showed that Hg was the primary heavy metal with a high ecological risk whereas the potential ERIs for the other six heavy metals in the petrochemical sewage waters in Daya Bay were relatively low.

  5. Evaluation of Nutritional Composition of The Dried Seaweed Ulva lactuca from Pameungpeuk Waters, Indonesia.

    PubMed

    Rasyid, Abdullah

    2017-07-01

    The nutritional composition of the dried seaweed Ulva lactuca from Pameungpeuk waters, including proximate, vitamins, minerals, dietary fibre and heavy metal has been carried out. The objective of this present study is to know the nutritional composition of the dried seaweed U. lactuca for utilisation in human nutrition in the future. Results show that carbohydrate was the major component in the proximate analysis of U. lactuca in the present study. The carbohydrate content was 58.1%. Moisture, ash, protein and fat content were 16.9%, 11.2%, 13.6% and 0.19% respectively, while dietary fibre was 28.4%. The vitamin A content was examined in this study less than 0.5 IU/100 mg while vitamin B1 (thiamine) and vitamin B2 (riboflavin) were 4.87 mg/kg and 0.86 mg/kg respectively. The calcium content was 1828 mg/100 g higher than other minerals. The heavy metal content examined in this study were lower than the limit of the quality criteria applied to edible seaweeds sold in Indonesia. Based on the results of this study show that U. lactuca has potential to be developed as an alternative source of a healthy food for human in the future.

  6. Effect of the behavior and availability of heavy metals on the characteristics of the coastal soils developed from alluvial deposits.

    PubMed

    Li, Jinling; He, Ming; Sun, Shouqin; Han, Wei; Zhang, Youchi; Mao, Xiaohui; Gu, Yifan

    2009-09-01

    An investigation of the behavior and availability of heavy metals (HMs), i.e., Cu, Zn, Ni, Pb, Cr, and Cd, based on the analysis of correlation between HMs and physical and chemical properties of coastal soils developed from alluvial deposits in Shanghai, China, has been conducted, in order to reveal the effect of the soil formation and development and the unsuited human activities on the activities and mobility of HMs in agricultural soils. The results showed that (1) the soils still meet the needs of plant growth due to the moderate fertility with a soil texture of silty loam although the content of organic matters is lower, (2) total heavy metal content had a increase trend from the inland area to the coastal area, indicating the impact of alluvial deposits related to the soil formation on the distribution of HMs; (3) a significant positive correlation was found between HMs and some soil properties (i.e., clay content, cation exchange capacity, organic matters, total Phosphorous content, etc.), indicating that the regulation of these properties could give some great effect on the behavior and availability of HMs; (4) the positive correlation among Cu, Zn, Ni, and Cd, and between Pb and Cr is very significant, suggesting the most similar, if not the same, origins of HMs; These findings are helpful to the soil remediation, fertility adjustment, and plant cultivation.

  7. Influence of rare earth content on Mm-based AB 5 metal hydride alloys for Ni-MH batteries-An X-ray fluorescence study

    NASA Astrophysics Data System (ADS)

    Ananth, M. V.; Raju, M.; Manimaran, K.; Balachandran, G.; Nair, Lekshmi M.

    AB 5-type MH alloys with Mm (Misch metal) as the A part (with varied rare earth contents in Mm) were investigated for rare earth by XRF analysis and battery performance by life cycle tests with an objective of understanding the influence of rare earth content on electrochemical hydrogen storage. The La/Ce ratio was found to vary from 0.51 to 18.73. The capacity output varied between 179 and 266 mAh g -1. The results show that the La/Ce ratio has a strong influence on the performance, with the best performance realized with samples having an La/Ce ratio of around 12. La enhancement facilitates easy activation due to refinement in grain size and interstitial dimensions. Also, an orderly influence on crystalline structure could be seen. The study demonstrates that the rare earth content is an essential factor in determining the maximum capacity output because of its influence on crystal orientation as well as an increase in the radius of the interstitials, lattice constants and cell volumes.

  8. Metal retention in human transferrin: consequences of solvent composition in analytical sample preparation methods.

    PubMed

    Quarles, C Derrick; Randunu, K Manoj; Brumaghim, Julia L; Marcus, R Kenneth

    2011-10-01

    The analysis of metal-binding proteins requires careful sample manipulation to ensure that the metal-protein complex remains in its native state and the metal retention is preserved during sample preparation or analysis. Chemical analysis for the metal content in proteins typically involves some type of liquid chromatography/electrophoresis separation step coupled with an atomic (i.e., inductively coupled plasma-optical emission spectroscopy or -mass spectrometry) or molecular (i.e., electrospray ionization-mass spectrometry) analysis step that requires altered-solvent introduction techniques. UV-VIS absorbance is employed here to monitor the iron content in human holo-transferrin (Tf) under various solvent conditions, changing polarity, pH, ionic strength, and the ionic and hydrophobic environment of the protein. Iron loading percentages (i.e. 100% loading equates to 2 Fe(3+):1 Tf) were quantitatively determined to evaluate the effect of solvent composition on the retention of Fe(3+) in Tf. Maximum retention of Fe(3+) was found in buffered (20 mM Tris) solutions (96 ± 1%). Exposure to organic solvents and deionized H(2)O caused release of ~23-36% of the Fe(3+) from the binding pocket(s) at physiological pH (7.4). Salt concentrations similar to separation conditions used for ion exchange had little to no effect on Fe(3+) retention in holo-Tf. Unsurprisingly, changes in ionic strength caused by additions of guanidine HCl (0-10 M) to holo-Tf resulted in unfolding of the protein and loss of Fe(3+) from Tf; however, denaturing and metal loss was found not to be an instantaneous process for additions of 1-5 M guanidinium to Tf. In contrast, complete denaturing and loss of Fe(3+) was instantaneous with ≥6 M additions of guanidinium, and denaturing and loss of iron from Tf occurred in parallel proportions. Changes to the hydrophobicity of Tf (via addition of 0-14 M urea) had less effect on denaturing and release of Fe(3+) from the Tf binding pocket compared to changes in ionic strength. This journal is © The Royal Society of Chemistry 2011

  9. Influence of the submarine volcanic eruption off El Hierro (Canary Islands) on the mesopelagic cephalopod's metal content.

    PubMed

    Lozano-Bilbao, Enrique; Gutiérrez, Ángel José; Hardisson, Arturo; Rubio, Carmen; González-Weller, Dailos; Aguilar, Natacha; Escánez, Alejandro; Espinosa, José María; Canales, Paula; Lozano, Gonzalo

    2018-04-01

    This work investigates whether a submarine volcanic eruption off El Hierro (Canary Islands) in October 2011 influenced the metal contents of two deep water cephalopod species: Abraliopsis morisii and Pyroteuthis margaritifera. This was assessed by comparing metal contents in specimens collected off the island of El Hierro and in the neighbouring islands of La Palma and Tenerife during an experimental deep water fishing trip. The concentration of 20 heavy metals was analyzed in 180 specimens of A. morisii and P. margaritifera collected around the three islands to test for inter-island differences for each species and metal. While both species showed geographical differences in metal concentrations, the main finding was that A. morisii could be a bioindicator species for metals such as Li, Sr and Ca. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Toxic metal and nicotine content of cigarettes sold in China, 2009 and 2012

    PubMed Central

    O’Connor, Richard J.; Schneller, Liane M.; Caruso, Rosalie V.; Stephens, W. Edryd; Li, Qiang; Yuan, Jiang; Fong, Geoffrey T.

    2015-01-01

    BACKGROUND Metals of primary health concern can accumulate in the tobacco plant and contribute to smokers’ exposures to carcinogens, a significant cause of the millions of smoking-related deaths in China each year. These exposures are due to the smoker’s addiction to nicotine. OBJECTIVE This study sought to explore toxic heavy metal and nicotine concentrations in the tobacco of Chinese cigarette brands purchased in 2009 and 2012, as well as its regional variation. METHODS Cigarette packs for this study were purchased from seven Chinese cities in 2009 and 2012, and 91 pairs of cigarettes were matched based on UPC for comparison. Ten cigarette sticks were randomly selected from each pack and tested using polarized energy dispersive x-ray fluorescence (XRF) for arsenic (As), cadmium (Cd), chromium (Cr), nickel (Ni) and lead (Pb) concentrations. Nicotine analysis was conducted following Coresta Recommended Method N°62. Data analysis was conducted using SPSS, encompassing descriptive statistics, correlations and generalized estimating equations to observe changes in brand varieties over time. FINDINGS On average, from 2009 to 2012 As, Cd, Cr, and Pb concentrations have decreased in Chinese tobacco. Of the seven cities where the cigarette brands were purchased, only four cities showed significant differences of the selected metals from 2009 to 2012. However, there was no significant change in tobacco nicotine content from 2009 to 2012. CONCLUSION Tobacco in Chinese cigarettes purchased in seven geographically disbursed cities contains consistently high levels of metals, including carcinogens like Cd. One source may be the improper use of fertilizers. These numbers should be monitored more carefully and regulated by health officials. PMID:25335903

  11. Understanding Substance Use and Addiction Through the Lyrics of Black Sabbath: A Content Analysis.

    PubMed

    Conway, Kevin P; McGrain, Patrick

    2016-10-14

    Heavy metal music is distinguished for its deep sound and lyrical fixation with dark themes including war, destruction, doom, and misery. Such subjects permeate the music of Black Sabbath, the band generally considered the pioneers of heavy metal. One theme-substance use-is recurrent in Black Sabbath's songs and personal lives of its members. This study explored the band's relationship with substance use though a content analysis of all songs containing lyrics written and recorded in studio by Black Sabbath. The analysis included 156 songs across 19 albums recorded from 1970 to 2013. Three key findings emerged. First, a minority of songs (13%) contained substance references. Second, the songs with substance references were overwhelmingly (60%) negative, a pattern that increased over time. Third, despite many line-up changes over the band's 43-year period, every song referencing substance use except one featured vocalist Ozzy Osbourne and lyricist Geezer Butler. Contrary to the notion that heavy metal music glorifies or encourages substance use (Record Labeling, United States Senate, 1985), Black Sabbath's lyrics as a whole weave a cautionary tale of how persistent substance use can hijack free will, become the dominant focus of the affected individual, and produce myriad forms of human misery. The insidiousness of chronic substance use depicted by the lyrics mirrors findings from natural-history studies of individuals with substance use disorders and aligns with neurobiological heuristics of addiction.

  12. Bioavailability assessment of essential and toxic metals in edible nuts and seeds.

    PubMed

    Moreda-Piñeiro, Jorge; Herbello-Hermelo, Paloma; Domínguez-González, Raquel; Bermejo-Barrera, Pilar; Moreda-Piñeiro, Antonio

    2016-08-15

    Bioavailability of essential and toxic metals in edible nuts and seeds has been assessed by using an in vitro dialyzability approach. The samples studied included walnuts, Brazil nuts, Macadamia nuts, pecans, hazelnuts, chestnuts, cashews, peanuts, pistachios and seeds (almond, pine, pumpkin and sunflower). Metals were measured by inductively coupled plasma-mass spectrometry in dialyzates and also in samples after a microwave assisted acid digestion pre-treatment. Low dialyzability percentages were found for Al, Fe and Hg; moderate percentages were found for Ba, Ca, Cd, Co, Cu, K, Li, Mg, Mn, Mo, P, Pb, Se, Sr, Tl and Zn; and high dialyzability ratios were found for As, Cr and Ni. The highest dialyzability percentages were found in raw chestnuts and raw hazelnuts. Metal dialyzability was found to be negatively affected by fat content. Positive correlation was found between carbohydrate content and metal dialyzability ratios. Protein and dietary fibre content did not influence metal bioavailability. Predicted dialyzability for some metals based on fat and protein content could also be established. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. [Heavy metals: soil characteristics and methods of evaluating parameters for defining "contaminated soils"].

    PubMed

    Gagliano-Candela, R; Cammarota, R

    2000-01-01

    The excessive content of toxic elements in the human environment is associated with the etiology of a number of diseases. Soils' pollutants decontamination regards the main industrialised countries. Heavy metals represent the main problem for soil pollution characterisation. The first approach for pollution evaluation is the determination of total metal concentration; the evaluation of their bioavailability is required for a correct knowledge of the environmental risk. In the present work is shown the procedure to evaluate the sites, which require decontamination and which need the following data: knowledge of the threshold for each metal in the soil and its range, chemical analysis of the components, determination of bioavailability and soil destination. The bioavailability is easily calculated by the procedure of aimed extractions.

  14. Effect of heavy metals on soil enzyme activity at different field conditions in Middle Spis mining area (Slovakia).

    PubMed

    Angelovičová, Lenka; Lodenius, Martin; Tulisalo, Esa; Fazekašová, Danica

    2014-12-01

    Heavy metals concentrations were measured in the former mining area located in Hornad river valley (Slovakia). Soil samples were taken in 2012 from 20 sites at two field types (grasslands, heaps of waste material) and two different areas. Total content of heavy metals (Cu, Pb, Zn, Hg), urease (URE), acid phosphatase (ACP), alkaline phosphatase (ALP), soil reaction (pH) were changing depending on the field/area type. The tailing pond and processing plants have been found as the biggest sources of pollution. URE, ACP and ALP activities significantly decreased while the heavy metal contents increased. Significant differences were found among area types in the heavy metal contents and activity of URE. No statistical differences in the content of heavy metals but significant statistical differences for soil pH were found for field types (grassland and heaps). Significant negative correlation was found for URE-Pb, URE-Zn and also between soil reaction and ACP and ALP.

  15. Pristine moon rocks - A 'large' felsite and a metal-rich ferroan anorthosite

    NASA Technical Reports Server (NTRS)

    Warren, Paul H.; Jerde, Eric A.; Kallemeyn, Gregory W.

    1987-01-01

    Results of elemental analyses, performed either by instrumental neutron activation analysis (NAA) or radiochemical NAA, of 19 lunar rock samples obtained by the Apollo 15, 17, and 12 missions are presented. Two of the samples are most extraordinary: 'large' (1 g) felsite from Apollo 12 and a pristine ferroan anorthosite from Apollo 15. The felsite is mainly a graphic intergrowth of K-feldspar and a silica phase, with about 6 pct plagioclase and 1 pct each of ferroaugite, ilmenite, and fayalitic olivine. The Fe-metal content of ferroan anorthosite is 1.2 wt pct in the thin section studied (but, based on mass balance for Co and Ni, must have been lower in the chip used for bulk-rock analysis); the measured bulk-rock concentrations of siderophile elements Re, Os, and Ir are far higher than previously observed among pristine lunar anorthosites. These results underscore the uncertainty associated with any attempt to estimate the overall siderophile element contents of the moon's crust.

  16. [Multivariate geostatistics and GIS-based approach to study the spatial distribution and sources of heavy metals in agricultural soil in the Pearl River Delta, China].

    PubMed

    Cai, Li-mei; Ma, Jin; Zhou, Yong-zhang; Huang, Lan-chun; Dou, Lei; Zhang, Cheng-bo; Fu, Shan-ming

    2008-12-01

    One hundred and eighteen surface soil samples were collected from the Dongguan City, and analyzed for concentration of Cu, Zn, Ni, Cr, Pb, Cd, As, Hg, pH and OM. The spatial distribution and sources of soil heavy metals were studied using multivariate geostatistical methods and GIS technique. The results indicated concentrations of Cu, Zn, Ni, Pb, Cd and Hg were beyond the soil background content in Guangdong province, and especially concentrations of Pb, Cd and Hg were greatly beyond the content. The results of factor analysis group Cu, Zn, Ni, Cr and As in Factor 1, Pb and Hg in Factor 2 and Cd in Factor 3. The spatial maps based on geostatistical analysis show definite association of Factor 1 with the soil parent material, Factor 2 was mainly affected by industries. The spatial distribution of Factor 3 was attributed to anthropogenic influence.

  17. Determination of theoretical capacity of metal ion-doped LiMn 2O 4 as the positive electrode in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Todorov, Yanko M.; Hideshima, Yasufumi; Noguchi, Hideyuki; Yoshio, Masaki

    The theoretical capacity and cation vacancy of metal ion (M)-doped LiMn 2- xM xO 4 spinel compounds serving as positive electrodes in a 4-V lithium ion batteries are calculated. The capacity depends strongly on the mole fraction of doped metal ion and vacancies. The theoretical capacity increases with increasing oxidation number of the doped metal ion in the 16d site of LiMn 2O 4 at the same doping fraction. The validity of the proposed equation for calculation of the capacity has been initially confirmed using a metal ion with well-known valence, such as the Al ion. The oxidation state of Co, Ni and Cr ions in the spinel structure is found to be trivalent, divalent and trivalent, respectively. Analysis shows that metal ion-doped spinel compounds with low vacancy content promote high capacity.

  18. In-vivo analysis of the uptake process of heavy metals through maize roots by using synchrotron X-ray fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Hwang, Bae Geun; Lee, Sang Joon; Gil, Kyehwan

    2016-12-01

    The uptake of heavy metals by plants has been receiving much attention for crop contamination and phytoremediation. We employed synchrotron X-ray fluorescence (XRF) spectroscopy for an in-vivo analysis of heavy-metal uptake through a strand of maize root. A focused X-ray beam of 2.5 × 2.5 μm2 in physical dimensions was scanned along horizontal lines of the maize root at intervals of 3 μm at the 4B X-ray micro-diffraction beamline of the Pohang Accelerator Laboratory (PAL). Time-resolved mapping of the fluorescence intensities from multiple metallic elements in the root tissues provided information about the radial distributions of heavy-metal elements and their temporal variations. The concentrated core stream of heavy-metal elements spread radially up to roughly 500 μm, corresponding to 40 % of the root diameter. The absorption characteristics of three heavy metals, Cr, Mn and Ni, and their physiological features were analyzed. The absolute concentrations and the contents of the heavy-metal elements in the tested maize roots were quantitatively evaluated by using the calibration curve obtained from reference samples with preset concentrations. The uptake quantities of the tested heavy-metal elements are noticeably different, although their molecular weights are similar. This study should be helpful for understanding plant physiology related with heavy-metal uptake.

  19. Heavy metal contents of play dough, face and finger paint samples sold in turkish markets.

    PubMed

    Erbas, Zeliha; Karatepe, Aslihan; Soylak, Mustafa

    2017-08-01

    Lead, cadmium, nickel, manganese, cobalt and copper contents of some play dough, face and finger paint samples were determined by using a new solid phase extraction method which has been developed by using multi-walled carbon nanotube with patent blue (V) sodium salt to selectively separate and preconcentrate these metal ions. Flame atomic absorption spectrometry was used to determine the metal ions. Analytical parameters affecting the complex formation and solid phase extraction performance such as pH, the amount of ligand and volume of sample solution were investigated. The recoveries of the studied metal ions were not affected by the foreign ions. Analytes were recovered quantitatively at pH 5.5 and with a nitric acid of 2molL -1 as eluent. Analysis of a certified reference material was performed to validate the method before applying it to determine the metal ions in the real samples. Detection limits were found to be as Pb(II): 7.71μgL -1 , Cu(II): 1.43μgL -1 , Cd(III): 0.21μgL -1 , Mn(II): 0.47μgL -1 , Ni(II): 3.52μgL -1 and Co(II): 1.96μgL -1 . Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Preliminary study of heavy metal pollution from Fe-Al oxides in Peihuang Creek, North Taiwan

    NASA Astrophysics Data System (ADS)

    Lai, B.

    2012-12-01

    Tatun Volcano Group (TVG) is not active since late Pleistocene but the post-volcanic activities, such as hot spring and sulfur gas, still widespread around the volcano province. Peihuang Creek is the main watershed system in TVG. The creek water is characterized by higher temperature, low pH values (3.0-4.5) and high SO4 content (60-400 ppm) due to the mixing of hotspring. This would promote the geochemical interaction between water and andesitic rocks and results in waters with highly enriched iron, aluminum and silica. These elements prefer to form suspended colloidal particles in water and adsorb heavy metals. Once the pH of water increases under oxidation condition, the colloid would precipitate in the form of ochre colored powder on the riverbed. The previous study reports that the arsenic content can reach as high as hundreds ppm. It is very important to evaluate the desorption behavior of heavy metals, especially for the study area with highly developed agriculture. For the preliminary analysis, five samples of ochre colored powder were sampled along the creek. The results of XRF demonstrate that the powder is mainly composed of iron, aluminum and silica, which is Fe-Al hydroxide. The iron content of Fe-Al hydroxide decreases from 63% to 25% while the aluminum and silica contents gradually increase from 5% to 20% and from 9% to 30%, respectively. To evaluate the desorption of heavy metals, the sequential extraction procedure was conducted. In the first step for determining leachable metals, the Fe-Al oxides were extracted with deionized water in the room temperature for one week. All of the metals are in ppb level except copper. For determining reducible phase, Step 2 used reagent solution of 0.5 mol/L hydroxylamine hydrochloride, which was adjusted to pH=2 with ultrapure nitric acid, for one week. The extracted chromium, arsenic, lead and copper are in the dangerous level of tens to hundreds ppm. It is believed that only very small amounts of heavy metals were extracted due to extraordinary high content of Fe oxide in the powder. These metals would be expected to be released under reducing conditions. And, more extraction methods simulating different natural and anthropogenic environment will be performed in the future research. Rare earth elements (REE) are an excellent indicator of adsorption/desorption geochemistry and were also determined in this study. The results demonstrate a light REE enriched pattern, which reveals that the Fe-Al oxides prefer to bind metals with low ionic potential. In addition, a positive cerium anomaly indicates an oxidation condition during the precipitation of Fe-Al oxides.

  1. Changes in amino acid profile and metal content in seeds of Cicer arietinum L. (chickpea) grown under various fly-ash amendments.

    PubMed

    Gupta, D K; Tripathi, R D; Rai, U N; Dwivedi, S; Mishra, Seema; Srivastava, S; Inouhe, M

    2006-11-01

    Seeds of Cicer arietinum L. plants are edible and a valuable source of protein. Accumulation of toxic metals in the edible part of the plant, grown in fields close to fly-ash (FA) landfills, may pose a threat to human health. In the present study, the effects of FA and its amendments with different ameliorants viz., garden soil (GS), press mud (PM) and saw dust (SD), on total soluble protein contents, amino acid composition and metal accumulation in seeds were investigated in var. CSG-8962 and var. C-235 of C. arietinum. Plants accumulated adequate amounts of essential metals viz. Fe, Cu, Zn in seeds, while the toxic metals such as Cd and Cr were taken up in smaller quantities. The accumulation of Cr and Cd was less in var. C-235 than var. CSG-8962. Amendment of FA with PM enhanced the amount of soluble protein and amino acids in both varieties and was found to be superior among all tested ameliorants. Both quantitative and qualitative analysis of amino acids showed better response in var. C-235 as compared to var. CSG-8962. Thus var. C-235 seems to be suitable for cultivation in FA contaminated areas due to more accumulation of essential metals and less accumulation of toxic metals in seeds. Application of PM may further improve the growth of plants and nutritional quality of seeds.

  2. 78 FR 63517 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-24

    ...The U.S. Nuclear Regulatory Commission (NRC) is issuing a revision to Regulatory Guide (RG) 1.31, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide (Revision 4) describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. It updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.

  3. The suitability of the simplified method of the analysis of coffee infusions on the content of Ca, Cu, Fe, Mg, Mn and Zn and the study of the effect of preparation conditions on the leachability of elements into the coffee brew.

    PubMed

    Stelmach, Ewelina; Pohl, Pawel; Szymczycha-Madeja, Anna

    2013-12-01

    A fast and straightforward method of the analysis of coffee infusions was developed for measurements of total concentrations of Ca, Cu, Fe, Mg, Mn and Zn by flame atomic absorption spectrometry. Its validity was proved by the analysis of spiked samples; recoveries of added metals were found to be within 98-104% while the precision was better than 4%. The method devised was used for the analysis of re-distilled water infusions of six popular ground coffees available in the Polish market. Using the mud coffee preparation it was established that percentages of metals leached in these conditions varied a lot among analysed coffees, especially for Ca (14-42%), Mg (6-25%) and Zn (1-24%). For remaining metals, the highest extractabilities were assessed for Mn (30-52%) while the lowest for Fe (4-16%) and Cu (2-12%). In addition, it was found that the water type and the coffee brewing preparation method influence the concentration of studied metals in coffee infusions the most. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Comparison of inversion accuracy of soil copper content from vegetation indices under different spectral resolution

    NASA Astrophysics Data System (ADS)

    Sun, Zhongqing; Shang, Kun; Jia, Lingjun

    2018-03-01

    Remote sensing inversion of heavy metal in vegetation leaves is generally based on the physiological characteristics of vegetation spectrum under heavy metal stress, and empirical models with vegetation indices are established to inverse the heavy metal content of vegetation leaves. However, the research of inversion of heavy metal content in vegetation-covered soil is still rare. In this study, Pulang is chosen as study area. The regression model of a typical heavy metal element, copper (Cu), is established with vegetation indices. We mainly investigate the inversion accuracies of Cu element in vegetation-covered soil by different vegetation indices according to specific spectral resolutions of ASD (Analytical Spectral Device) and Hyperion data. The inversion results of soil copper content in the vegetation-covered area shows a good accuracy, and the vegetation indices under ASD spectral resolution correspond to better results.

  5. Pt-based Bi-metallic Monolith Catalysts for Partial Upgrading of Microalgae Oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawal, Adeniyi; Manganaro, James; Goodall, Brian

    Valicor’s proprietary wet extraction process in conjunction with thermochemical pre-treatment was performed on algal biomass from two different algae strains, Nannochloropsis Salina (N.S.) and Chlorella to produce algae oils. Polar lipids such as phospholipids were hydrolyzed, and metals and metalloids, known catalyst poisons, were separated into the aqueous phase, creating an attractive “pre-refined” oil for hydrodeoxygenation (HDO) upgrading by Stevens. Oil content and oil extraction efficiency of approximately 30 and 90% respectively were achieved. At Stevens, we formulated a Pt-based bi-metallic catalyst which was demonstrated to be effective in the hydro-treating of the algae oils to produce ‘green’ diesel. Themore » bi-metallic catalyst was wash-coated on a monolith, and in conjunction with a high throughput high pressure (pilot plant) reactor system, was used in hydrotreating algae oils from N.S. and Chlorella. Mixtures of these algae oils and refinery light atmospheric gas oil (LAGO) supplied by our petroleum refiner partner, Marathon Petroleum Corporation, were co-processed in the pilot plant reactor system using the Pt-based bi-metallic monolith catalyst. A 26 wt% N.S. algae oil/74 wt % LAGO mixture hydrotreated in the reactor system was subjected to the ASTM D975 Diesel Fuel Specification Test and it met all the important requirements, including a cetane index of 50.5. An elemental oxygen analysis performed by an independent and reputable lab reported an oxygen content of trace to none found. The successful co-processing of a mixture of algae oil and LAGO will enable integration of algae oil as a refinery feedstock which is one of the goals of DOE-BETO. We have presented experimental data that show that our precious metal-based catalysts consume less hydrogen than the conventional hydrotreating catalyst NiMo Precious metal catalysts favor the hydrodecarbonylation/hydrodecarboxylation route of HDO over the dehydration route preferred by base metal catalysts, and consumes less hydrogen, if methanation can be mitigated. Our methanation data on Pt and Rh indicate effective suppression of methanation. Our data also show that our catalysts are less susceptible to coking; and unlike NiMo and CoMo, precious metal catalysts are not deactivated by water, a by-product of HDO of algae oil. Finally, our catalysts do not need to be sulfided to be active. A rigorous techno-economic analysis of our process for commercial scale production of 10,000 barrels per day of hydrotreated algae oil, with nutraceuticals co-product claiming only 0.05% of the raw algae oil, indicates an estimated plant gate price of ~$10/gal. Sensitivity analysis shows that critical parameters affecting sale price include (1) algae doubling time (2) biomass oil content (3) CAPEX, and (4) moisture content of post extracted algae residue. Modest improvements in these areas will result in enhanced and competitive economics. Based on a life cycle assessment for greenhouse gas emission, we found that if algae oil replaced 10% of the US consumption, this would result in a CO2e reduction of 210,000 tons per day. Improving the drying process for animal feed by 50% would result in further significant reduction in CO2e.« less

  6. Heavy metals in Parmelia sulcata collected in the neighborhood of a coal-fired power station.

    PubMed

    Freitas, M C

    1994-01-01

    The epiphytic lichen Parmelia sulcata was collected in the neighborhood of a Portuguese coal-fired power station (Sines coal power station) as monitor for heavy metal air pollution. A study of the metal contents variability along 1991 and 1992 was performed. The heavy metals Ag, As, Br, Co, Cr, Fe, Hg, Sb, Se, and Zn were determined by k0-based instrumental neutron activation analysis. The concentrations found in 1991 and 1992 show an accumulating process of Co and Fe (approximately 5%/mo) and of Cr and Sb (approximately 7%/mo). Low accumulation is observed for Ag, Se, and Zn (approximately 2%/mo), and no concentration variation is observed for As, Br, and Hg. It is concluded that the metal accumulation observed is the result of the nearby ash and coal deposits.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gordon, John Howard

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  8. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence

    DOE PAGES

    Colvin, Robert A.; Jin, Qiaoling; Lai, Barry; ...

    2016-07-19

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Also, comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganesemore » were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.« less

  9. Visualizing Metal Content and Intracellular Distribution in Primary Hippocampal Neurons with Synchrotron X-Ray Fluorescence

    PubMed Central

    2016-01-01

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganese were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2–3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region. PMID:27434052

  10. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content

    PubMed Central

    2012-01-01

    Background The main aim of this study is to evaluate the antioxidant and anti-inflammatory properties of forty four traditional Chinese medicinal herbal extracts and to examine these activities in relation to their antioxidant content. Methods The antioxidant activities were investigated using DPPH radical scavenging method and yeast model. The anti-inflammatory properties of the herbal extracts were evaluated by measuring their ability to inhibit the production of nitric oxide and TNF-α in RAW 264.7 macrophages activated by LPS and IFN- γ, respectively. The cytotoxic effects of the herbal extracts were determined by Alomar Blue assay by measuring cell viability. In order to understand the variation of antioxidant activities of herbal extracts with their antioxidant contents, the total phenolics, total flavonoids and trace metal (Mg, Mn, Cu, Zn, Se and Mo) quantities were estimated and a correlation analysis was carried out. Results Results of this study show that significant levels of phenolics, flavonoids and trace metal contents were found in Ligustrum lucidum, Paeonia suffuticosa, Salvia miltiorrhiza, Sanguisorba officinalis, Spatholobus suberectus, Tussilago farfara and Uncaria rhyncophylla, which correlated well with their antioxidant and anti-inflammatory activities. Some of the plants displayed high antioxidant and anti-inflammatory activities but contained low levels of phenolics and flavonoids. Interestingly, these plants contained significant levels of trace metals (such as Zn, Mg and Se) which are likely to be responsible for their activities. Conclusions The results indicate that the phenolics, flavonoids and trace metals play an important role in the antioxidant activities of medicinal plants. Many of the plants studied here have been identified as potential sources of new antioxidant compounds. PMID:23038995

  11. Variation in whole DNA methylation in red maple (Acer rubrum) populations from a mining region: association with metal contamination and cation exchange capacity (CEC) in podzolic soils.

    PubMed

    Kalubi, K N; Mehes-Smith, M; Spiers, G; Omri, A

    2017-04-01

    Although a number of publications have provided convincing evidence that abiotic stresses such as drought and high salinity are involved in DNA methylation reports on the effects of metal contamination, pH, and cation exchange on DNA modifications are limited. The main objective of the present study is to determine the relationship between metal contamination and Cation exchange capacity (CEC) on whole DNA modifications. Metal analysis confirms that nickel and copper are the main contaminants in sampled sites within the Greater Sudbury Region (Ontario, Canada) and liming has increased soil pH significantly even after 30 years following dolomitic limestone applications. The estimated CEC values varied significantly among sites, ranging between 1.8 and 10.5 cmol(+) kg -1 , with a strong relationship being observed between CEC and pH (r = 0.96**). Cation exchange capacity, significantly lower in highly metal contaminated sites compared to both reference and less contaminated sites, was higher in the higher organic matter limed compared to unlimed sites. There was a significant variation in the level of cytosine methylation among the metal-contaminated sites. Significant and strong negative correlations between [5mdC]/[dG] and bioavailable nickel (r = -0.71**) or copper (r = -0.72**) contents were observed. The analysis of genomic DNA for adenine methylation in this study showed a very low level of [6N-mdA]/dT] in Acer rubrum plants analyzed ranging from 0 to 0.08%. Significant and very strong positive correlation was observed between [6N-mdA]/dT] and soil bioavailable nickel (r = 0.78**) and copper (r = 0.88**) content. This suggests that the increased bioavailable metal levels associated with contamination by nickel and copper particulates are associated with cytosine and adenine methylation.

  12. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    PubMed

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  13. Amino Acids Aided Sintering for the Formation of Highly Porous FeAl Intermetallic Alloys

    PubMed Central

    Karczewski, Krzysztof; Stepniowski, Wojciech J.

    2017-01-01

    Fabrication of metallic foams by sintering metal powders mixed with thermally degradable compounds is of interest for numerous applications. Compounds releasing gaseous nitrogen, minimizing interactions between the formed gases and metallic foam by diluting other combustion products, were applied. Cysteine and phenylalanine, were used as gas releasing agents during the sintering of elemental Fe and Al powders in order to obtain metallic foams. Characterization was carried out by optical microscopy with image analysis, scanning electron microscopy with energy dispersive spectroscopy, and gas permeability tests. Porosity of the foams was up to 42 ± 3% and 46 ± 2% for sintering conducted with 5 wt % cysteine and phenylalanine, respectively. Chemical analyses of the formed foams revealed that the oxygen content was below 0.14 wt % and the carbon content was below 0.3 wt %. Therefore, no brittle phases could be formed that would spoil the mechanical stability of the FeAl intermetallic foams. The gas permeability tests revealed that only the foams formed in the presence of cysteine have enough interconnections between the pores, thanks to the improved air flow through the porous materials. The foams formed with cysteine can be applied as filters and industrial catalysts. PMID:28773106

  14. The influence of different types of pesticides on elemental profiles of some fruit trees: Apple and plum

    NASA Astrophysics Data System (ADS)

    Gheboianu, Anca Irina; Setnescu, Tanta; Setnescu, Radu; Culicov, Otilia; Zinicovscaia, Inga

    2017-12-01

    The aim of this study is to evaluate the elemental content of various samples from apple and plum orchard - located in Dambovita and Arges Counties - (soil, bark and leaves) and to characterize the influence of different types of pesticides commonly used in orchards. For this purpose, the effect of pesticide/ natural fertilizer couples was studied by characterization of treated and untreated soil composition. Heavy metals were also used as tracers for pesticides concentration monitoring, aiming to get information about their overall concentration and eventually, their critical accumulation into some parts of the studied plants (which shall not exceed the limits regulated by Romanian law and UE directives for pesticides use in fruit-grower). Solid samples were analyzed by wavelength dispersion X-ray fluorescence (WDXRF) and instrumental nuclear activation methods (INAA). Moreover, soil properties (pH and electrical conductivity) were determined in order to characterize agricultural soils and to analyze relationships between heavy metal contents and soil properties. Multivariate data analysis was performed to identify a common source for heavy metals. Correlations between the concentrations of heavy metals in the analyzed samples and pesticides used in these areas were found.

  15. Treatment of Waste Lubricating Oil by Chemical and Adsorption Process Using Butanol and Kaolin

    NASA Astrophysics Data System (ADS)

    Riyanto; Ramadhan, B.; Wiyanti, D.

    2018-04-01

    Treatment of waste lubricating oil by chemical and adsorption process using butanol and kaolin has been done. Quality of lubricating oil after treatment was analysis using Atomic Absorption Spectrophotometer (AAS) and Gas Chromatography-Mass Spectrometry (GC-MS). The effects of the treatment of butanol, KOH, and kaolin to metals contain in waste lubricating oil treatment have been evaluated. Treatment of waste lubricating oil has been done using various kaolin weight, butanol, and KOH solution. The result of this research show metal content of Ca, Mg, Pb, Fe and Cr in waste lubricating oil before treatment are 1020.49, 367.02, 16.40, 36.76 and 1,80 ppm, respectively. The metal content of Ca, Mg, Pb, Fe and Cr in the waste lubricating oil after treatment are 0.17, 9.85, 34.07, 78.22 and 1.20 ppm, respectively. The optimum condition for treatment of waste lubricating oil using butanol, KOH, and kaolin is 30 mL, 3.0 g and 1.5 g, respectively. Chemical and adsorption method using butanol and kaolin can be used for decrease of metals contain in waste lubricating oil.

  16. [Content of selected metals in forest fruits depending on the harvest site].

    PubMed

    Rusinek, Elzbieta; Sembratowicz, Iwona; Ognik, Katarzyna

    2008-01-01

    Contents of selected metals (Pb, Cd, Cu, Zn, Fe, Mn) were determined in samples of forest fruits: blueberry, raspberry and wild strawberry harvested in Lublin region from areas considered as potentially not exposed to pollution (Skierbieszów Landscape Park) and potentially polluted areas (Cement Factory Rejowiec S.A.). Analyzed fruits originating from stands more exposed to pollution were characterized by higher lead (except from raspberry) as well as other metals contents than those from Krasiczyn commune. Among studied fruits, blueberry was distinguished by the lowest contents of Pb, Zn, Fe, Mn, wild strawberry contained the highest levels of Pb, Zn and Mn. Cadmium content in analyzed plant materials was high.

  17. Profiling metals in Cordyceps sinensis by using inductively coupled plasma mass spectrometry.

    PubMed

    Wei, Xin; Hu, Hankun; Zheng, Baogeng; Arslan, Zikri; Huang, Hung-Chung; Mao, Weidong; Liu, Yi-Ming

    2017-01-28

    Cordyceps sinensis ( C. sinensis ) is a natural product that has diverse nutritional and medicinal values. Since the availability of natural C. sinensis becomes limited its authentication and quality control is of high significance. Herein we report on profiling of metals in C. sinensis by using inductively coupled plasma mass spectrometry (ICP-MS). The analysis reveals that C. sinensis contains a wide array of essential elements, including P, Mg, Zn, Cu, Fe, etc. Toxic metals detected are Cd, Pb, and As. In all five samples analyzed Pb contents are below 2.0 ppm. Arsenic level in C. sinensis caterpillar is significantly higher than that in its mycelium and varies from 3.0 to 32 ppm likely due to soil contamination. It's for the first time demonstrated in this work that clustering analysis on the proposed metal profiles consisting of 24 elements is very useful to identify "abnormal" C. sinensis samples, thus adding another dimension to the effective means for authentication and quality assessment of this highly demanded previous natural product.

  18. The use of mosses as environmental metal pollution indicators.

    PubMed

    Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado

    2003-01-01

    The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.

  19. 77 FR 60478 - Control of Ferrite Content in Stainless Steel Weld Metal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-03

    ...The U.S. Nuclear Regulatory Commission (NRC or the Commission) is issuing for public comment draft regulatory guide (DG), DG-1279, ``Control of Ferrite Content in Stainless Steel Weld Metal.'' This guide describes a method that the NRC staff considers acceptable for controlling ferrite content in stainless steel weld metal. Revision 4 updates the guide to remove references to outdated standards and to remove an appendix that has been incorporated into relevant specifications.

  20. Defect Control of the WC Hardmetal by Mixing Recycled WC Nano Powder and Tungsten Powder

    NASA Astrophysics Data System (ADS)

    Hur, Man Gyu; Shin, Mi Kyung; Kim, Deug Joong; Yoon, Dae Ho

    2018-03-01

    Tungsten metal powder was added to recycled WC nano powder to control the macro and micro defects of WC hardmetal. The macro and micro defects caused by the excess carbon in the recycled WC powder were markedly removed after the addition of tungsten metal powder ranging from 2 to 6 wt%. The density and hardness of the WC hardmetals also increased due to the removal of defects after adding the tungsten metal powder. The density and hardness of WC hardmetals with the addition of W metal powder ranged from 8 to 12 wt% increased linearly as the W metal powder content increased due to the formation of a new (Co- and W-rich WC) composition. The surface morphology of the WC hardmetals was observed via field emission scanning electron microscopy, and a quantitative elemental analysis was conducted via X-ray fluorescence spectrometry and energy dispersive X-ray analysis. The density and hardness of the WC hardmetals were respectively measured using an analytical balance and a Vikers hardness tester. The effect on the defects in the recycled WC hardmetals through the addition of the tungsten metal powder was discussed in detail.

  1. Heavy metal assessment using geochemical and statistical tools in the surface sediments of Vembanad Lake, Southwest Coast of India.

    PubMed

    Selvam, A Paneer; Priya, S Laxmi; Banerjee, Kakolee; Hariharan, G; Purvaja, R; Ramesh, R

    2012-10-01

    The geochemical distribution and enrichment of ten heavy metals in the surface sediments of Vembanad Lake, southwest coast of India was evaluated. Sediment samples from 47 stations in the Lake were collected during dry and wet seasons in 2008 and examined for heavy metal content (Al, Fe, Mn, Cr, Zn, Ni, Pb, Cu, Co, Cd), organic carbon, and sediment texture. Statistically significant spatial variation was observed among all sediment variables, but negligible significant seasonal variation was observed. Correlation analysis showed that the metal content of sediments was mainly regulated by organic carbon, Fe oxy-hydroxides, and grain size. Principal component analysis was used to reduce the 14 sediment variables into three factors that reveal distinct origins or accumulation mechanisms controlling the chemical composition in the study area. Pollution intensity of the Vembanad Lake was measured using the enrichment factor and the pollution load index. Severe and moderately severe enrichment of Cd and Zn in the north estuary with minor enrichment of Pb and Cr were observed, which reflects the intensity of the anthropogenic inputs related to industrial discharge into this system. The results of pollution load index reveal that the sediment was heavily polluted in northern arm and moderately polluted in the extreme end and port region of the southern arm of the lake. A comparison with sediment quality guideline quotient was also made, indicating that there may be some ecotoxicological risk to benthic organisms in these sediments.

  2. Phytoextraction of metals by Erigeron canadensis L. from fly ash landfill of power plant "Kolubara".

    PubMed

    Krgović, Rada; Trifković, Jelena; Milojković-Opsenica, Dušanka; Manojlović, Dragan; Marković, Marijana; Mutić, Jelena

    2015-07-01

    The objectives of this study were to determine the concentrations of Pb, Cd, As, Cr, Cu, Co, Ni, Zn, Ba, Fe, Al and Ag in Erigeron canadensis L. growing on fly ash landfill of power plant "Kolubara", Serbia. The content of each element was determined in every part of plant separately (root, stalk and inflorescence) and correlated with the content of elements in each phase of sequential extraction of fly ash. In order to ambiguously select the factors that are able to decidedly characterize the particular part of plant, principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) were performed. The bioconcentration factors and translocation factors for each metal were calculated in order to determine the feasibility of the use of plant E. canadensis L. for phytoremediation purpose. There were strong positive correlations between metals in every part of plant samples, and metals from pseudo total form of sequential extraction indicate that the bioavailability of elements in fly ash is similarly correlated with total form. Retained Al, Fe, Cr and Co in the root indicate its suitability for phytostabilization. This plant takes up Cd and Zn from the soil (bioconcentration factors (BCFs) greater than 1), transporting them through the stalk into the inflorescence (translocation factors (TFs) higher than 1). Regarding its dominance in vegetation cover and abundance, E. canadensis L. can be considered adequate for phytoextraction of Cd and Zn from coal ash landfills at Kolubara.

  3. Vitrified metal finishing wastes I. Composition, density and chemical durability.

    PubMed

    Bingham, P A; Hand, R J

    2005-03-17

    Durable phosphate glasses were formed by vitrifying waste filter cakes from two metal finishing operations. Some melts formed crystalline components during cooling. Compositional analysis of dried, heat treated and vitrified samples was made using energy-dispersive X-ray spectroscopy, X-ray fluorescence spectroscopy, inductively-coupled plasma spectroscopy and Leco induction furnace combustion analysis. Hydrolytic dissolution, measured by an adapted product consistency test, was reduced by up to 3 orders of magnitude upon heat treatment or vitrification, surpassing the performance of borosilicate glass in some cases. This was attributed to the high levels of iron and zinc in the wastes, which greatly improve the durability of phosphate glasses. One of the wastes arose from a metal phosphating process and was particularly suitable for vitrification due to its high P2O5 content and favourable melting behaviour. The other waste, which arose from a number of processes, was less suitable as it had a low P2O5 content and during heating it emitted harmful corrosive gases and underwent violent reactions. Substantial volume reductions were obtained by heat treatment and vitrification of both wastes. Compositions and performances of some vitrified wastes were comparable with those of glasses which are under consideration for the immobilisation of toxic and nuclear wastes.

  4. Effect of vermicomposting on calcium, sulphur and some heavy metal content of different biodegradable organic wastes under liming and microbial inoculation.

    PubMed

    Das, Debabrata; Bhattacharyya, Pradip; Ghosh, B C; Banik, Pabitra

    2012-01-01

    A study was conducted to evaluate the changes in total calcium and sulphur and some heavy metal (Zn, Cu, and Pb) concentration of different organic wastes affected by liming and microorganism inoculation. Vermicomposting was an effective technology for disposal of organic substrates like municipal solid wastes (MSW), possessing comparatively higher concentration of heavy metals. The addition of lime in initial organic substrates significantly (P ≤ 0.05) increased total calcium and total sulphur content of vermicomposts. Inoculation of microorganisms significantly (P ≤ 0.05) reduced the heavy metal content of final products as compared to control. Fungal strains were comparatively more effective in detoxification of heavy metals than B. polymyxa.

  5. Studies on metal content in the brown seaweed, Fucus vesiculosus, from the Archipelago of Stockholm.

    PubMed

    Forsberg, A; Söderlund, S; Frank, A; Petersson, L R; Pedersén, M

    1988-01-01

    Concentrations of eleven metals (Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, V and Zn) were determined in the brown seaweed Fucus vesiculosus collected from the Archipelago of Stockholm. Several factors which influence the metal content in the seaweed have been studied, including errors caused by epiphytes, sea exposure and differences depending on which part of the seaweed is analysed. It is concluded that, if all these factors are considered, Fucus vesiculosus plants are excellent bio-indicators of metal pollution. This is also demonstrated by a significant increase in metal content in transplanted Fucus vesiculosus near the city of Stockholm. The results from this investigation also indicate increasing metal concentrations, especially Cd, in samples from the northern parts of the Archipelago and the reason for this is discussed.

  6. Metal ion complex formation in small lakes of the Western Siberian Arctic zone

    NASA Astrophysics Data System (ADS)

    Kremleva, Tatiana; Dinu, Marina

    2017-04-01

    The paper is based on joint investigation of the Tyumen State University (Russia, Tyumen) and the Geochemistry and Analytical Chemistry Vernadsky Institute of Russian Academy of Sciences (Moscow, Russia) during 2012-2014 period. It presents the results of research of chemical composition of about 70 small lakes located in the area of tundra and northern taiga of West Siberia (Russia, Yamal-Nenets and Khanty-Mansi Autonomous Districts of the Tyumen region). The investigation includes determination of different parameters of natural water samples: • content of trace elements (Al, Fe, Mn, Cr, Cu, Ni, Zn, Cd, Co, Pb, etc., total more than 60 elements) by emission method with an inductively coupled plasma (ICP-MS) using mass spektrometrometre Element 2 equipment; • content of inorganic and total carbon (TIC and TC) by elemental analysis and the difference between the total and inorganic carbon gives the organic carbon content (TOC); • pH value by potentiometric method; • content of basic ions (Na+, Ca2+, K+, Mg2+, NH4+, Cl-, SO42-, NO3-, PO43-) by ion chromatography. Determination of the chemical composition of samples was conducted in the accredited laboratory according to standard procedures with regular quality control of results. Heavy metals in natural waters can exist in various forms: free (hydrated) ions bound in complexes with organic or inorganic ligands, as well as in the form of suspensions. The form of metal existence has a significant influence on their availability to transport in aquatic organisms. Metal ions associated in stable complexes with organic substances are considered less toxic. From the previous investigations state that the most stable complexes are ligands with organic ions Fe3+, Al3+. The main conclusion of the present research states that if the total content of aluminum, iron and manganese ions (meq/dm3) is equal to or greater than the concentration of dissolved organic carbon (TOC, mg/dm3) in lakes water other heavy metals will be predominantly in free, ionic or bound form with inorganic ligands. This state means paradox consequence that the increase of dissolved Fe content will lead to toxicity rise of other elements having less affinity to organic material. For surface waters of Western Siberian Arctic zone this situation is quite common. The total concentration of iron and aluminum ions in most lakes of tundra and northern taiga zones is approximately equal to water complexing ability. From the other side humic substances participation in inactivation of other more toxic metals (Cu, Pb, Cd, Cr, Ni et al.) will be poor. Arctic part of Western Siberia undergoes significant anthropogenic load due to extensive oil and gas recovery in this zone. Surface waters of Western Siberia are characterized by high natural content of iron, aluminum and copper ions and anthropogenic load of heavy metals makes the situation more serious.

  7. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  8. Ecosystem and human health assessment in relation to aquatic environment pollution by heavy metals: case study of the Murmansk region, northwest of the Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Moiseenko, T. I.; Morgunov, B. A.; Gashkina, N. A.; Megorskiy, V. V.; Pesiakova, A. A.

    2018-06-01

    Throughout the Euro-Arctic region of Russia (Murmansk region), there is a substantial increase of metal concentrations in water, which are related to local discharges from the metallurgical and mining industry, transboundary pollution, as well as indirect leaching of elements by acid precipitation. This study collates data to investigate the relationship between surface water contamination by metals, and fish and human health. Fish are used as a biological indicator to show the impact of water pollution by metals on the ecosystem’s health. The etiology of fish and human diseases are related to the water pollution and accumulation of metals in organisms. High concentrations of Ni and Cd in water drives an accumulation of these elements in organs and tissues of fish, especially in kidneys. The relation between the accumulation of Ni in kidneys and the development of fish nephrocalcinosis and fibroelastosis was established. Statistical analysis demonstrated that human populations in cities close in proximity to smelters show the highest incidence of disease. The results of histological, clinical, and post-mortem examination of patients shows the highest content of toxic metals, especially Cd, in livers and kidneys. Our complex investigation of a set of disorders observed in fish and human populations indicates that there is a high probability that the negative impact on human health is caused by prolonged water contamination by heavy metals. As a novel finding, this paper shows that based on the similarity of pathological processes and bioaccumulation of metals in fish and humans, examining the content of heavy metals in fish can be used to confirm etiology and evaluate the potential risk to human health by pollution of surface waters.

  9. Effects of coal spoil amendment on heavy metal accumulation and physiological aspects of ryegrass (Lolium perenne L.) growing in copper mine tailings.

    PubMed

    Chu, Zhaoxia; Wang, Xingming; Wang, Yunmin; Liu, Guijian; Dong, Zhongbing; Lu, Xianwen; Chen, Guangzhou; Zha, Fugeng

    2017-12-21

    Copper mine tailings pose many threats to the surrounding environment and human health, and thus, their remediation is fundamental. Coal spoil is the waste by-product of coal mining and characterized by low levels of metals, high content of organic matter, and many essential microelements. This study was designed to evaluate the role of coal spoil on heavy uptake and physiological responses of Lolium perenne L. grown in copper mine tailings amended with coal spoil at rates of 0, 0.5, 1, 5, 10, and 20%. The results showed that applying coal spoil to copper mine tailings decreased the diethylenetriaminepentaacetic acid (DTPA)-extractable Cd, Cu, Pb, and Zn contents in tailings and reduced those metal contents in both roots and shoots of the plant. However, application of coal spoil increased the DTPA-extractable Cr concentration in tailings and also increased Cr uptake and accumulation by Lolium perenne L. The statistical analysis of physiological parameters indicated that chlorophyll and carotenoid increased at the lower amendments of coal spoil followed by a decrease compared to their respective controls. Protein content was enhanced at all the coal spoil amendments. When treated with coal spoil, the activities of superoxide dismutases (SOD), peroxidase (POD), and catalase (CAT) responded differently. CAT activity was inhibited, but POD activity was increased with increasing amendment ratio of coal spoil. SOD activity increased up to 1% coal spoil followed by a decrease. Overall, the addition of coal spoil decreased the oxidative stress in Lolium perenne L., reflected by the reduction in malondialdehyde (MDA) contents in the plant. It is concluded that coal spoil has the potential to stabilize most metals studied in copper mine tailings and ameliorate the harmful effects in Lolium perenne L. through changing the physiological attributes of the plant grown in copper mine tailings.

  10. Impact of vineyard abandonment and natural recolonization on metal content and availability in Mediterranean soils.

    PubMed

    de Santiago-Martín, Ana; Vaquero-Perea, Cristina; Valverde-Asenjo, Inmaculada; Quintana Nieto, Jose R; González-Huecas, Concepción; Lafuente, Antonio L; Vázquez de la Cueva, Antonio

    2016-05-01

    Abandonment of vineyards after uprooting has dramatically increased in last decades in Mediterranean countries, often followed by vegetation expansion processes. Inadequate management strategies can have negative consequences on soil quality. We studied how the age and type of vegetation cover and several environmental characteristics (lithology, soil properties, vineyard slope and so on) after vineyard uprooting and abandonment contribute to the variation patterns in total, HAc (acetic acid-method, HAc) and EDTA-extractable (ethylenediaminetetraacetic acid-method) concentrations of Cd, Cu, Pb and Zn in soils. We sampled 141 points from vineyards and abandoned vineyard Mediterranean soils recolonized by natural vegetation in recent decades. The contribution of several environmental variables (e.g. age and type of vegetation cover, lithology, soil properties and vineyard slope) to the total and extractable concentrations of metals was evaluated by canonical ordination based on redundancy analysis, considering the interaction between both environmental and response variables. The ranges of total metal contents were: 0.01-0.15 (Cd), 2.6-34 (Cu), 6.6-30 (Pb), and 29-92mgkg(-1) (Zn). Cadmium (11-100%) had the highest relative extractability with both extractants, and Zn and Pb the lowest. The total and EDTA-extractable of Cd, Pb and Zn were positively related to the age of abandonment, to the presence of Agrostis castellana and Retama sphaerocarpa, and to the contents of Fe-oxides, clay and organic matter (OM). A different pattern was noted for Cu, positively related to vineyard soils. Soil properties successfully explained HAc-extractable Cd, Cu, Pb and Zn but the age and type of vegetation cover lost significance. Clay content was negatively related to HAc-extractable Cu and Pb; and OM was positively related to HAc-Cd and Zn. In conclusion, the time elapsed after vineyard uprooting, and subsequent land abandonment, affects the soil content and availability of metals, and this impact depended on the colonizing plant species and soil properties. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Distributions and contamination assessment of heavy metals in the surface sediments of western Laizhou Bay: Implications for the sources and influencing factors.

    PubMed

    Zhang, Pan; Hu, Rijun; Zhu, Longhai; Wang, Peng; Yin, Dongxiao; Zhang, Lianjie

    2017-06-15

    Heavy metals (Cu, Pb, Cr, Cd and As) contents in surface sediments from western Laizhou Bay were analysed to evaluate the spatial distribution pattern and their contamination level. As was mainly concentrated in the coastal area near the estuaries and the other metals were mainly concentrated in the central part of the study area. The heavy metals were present at unpolluted levels overall evaluated by the sediment quality guidelines and geoaccumulation index. Principal component analysis suggest that Cu, Pb and Cd were mainly sourced from natural processes and As was mainly derived from anthropogenic inputs. Meanwhile, Cr originated from both natural processes and anthropogenic contributions. Tidal currents, sediments and human activities were important factors affecting the distribution of heavy metals. The heavy metal environment was divided into four subareas to provide a reference for understanding the distribution and pollution of heavy metals in the estuary-bay system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Exploring metal detoxification and accumulation potential during vermicomposting of Tea factory coal ash: sequential extraction and fluorescence probe analysis

    PubMed Central

    Goswami, Linee; Pratihar, Sanjay; Dasgupta, Suman; Bhattacharyya, Pradip; Mudoi, Pronab; Bora, Jayanta; Bhattacharya, Satya Sundar; Kim, Ki Hyun

    2016-01-01

    Metal contamination from coal ashes (CAs) is widely recognized as a significant environmental concern. To learn more about metal detoxification and accumulation potential of earthworm species, metal-rich tea factory coal ashes (TFCA) were fed to Eisenia fetida and Lampito mauritii by employing a fluorescent tag detection method. Fascinatingly, on feeding fluorescence probed Zn and Cd along with cow dung to Eisenia fetida, the detection of the gut-proteins with a molecular mass higher than 100 kDa was a distinct evidence of metal binding. Significant increases were observed in the content of humified organic C [humic acid (HAC) and fulvic acid C (FAC)] and degree of humification during vermicomposting. Concurrently, considerably large amount of toxic metals (Cr, Cd, Pb, and Zn) was transformed from exchangeable to recalcitrant (organic matter and mineral bound) fractions. Moreover, total metal concentrations were reduced with high removal efficiency upon vermicomposting. PMID:27456167

  13. Structure of AA5056 after friction drilling

    NASA Astrophysics Data System (ADS)

    Eliseev, A. A.; Kalashnikova, T. A.; Fortuna, S. V.

    2017-12-01

    Here we present data on the structure of AA5056 alloy after friction drilling to unveil potentials of the process for use in model experiments on friction stir welding. Our analysis of the average size and volume content of precipitates shows that their content decreases immediately beneath the friction surface and that the structure of this zone is the same as the structure of stirring zones formed in friction stir welding. The data suggest that both processes provide similar metal structures.

  14. Determination of silver in irons and steels by atomic-absorption spectrometry with an induction furnace: Direct analysis of solid samples.

    PubMed

    Aziz-Alrahman, A M; Headridge, J B

    1978-07-01

    The silver contents of 17 irons and steels have been determined by dropping 0.5-20mg of millings or turnings of the metals into an induction furnace situated within an atomic-absorption spectrophotometer. The limit of detection was 0.005 mug/g and the relative standard deviations were 12% or better for silver contents of not less than 0.05 mug/g. Samples are added to the furnace at 4-5 min intervals.

  15. Inter- and intra-specific competition of duckweed under multiple heavy metal contaminated water.

    PubMed

    Zhao, Zhao; Shi, Huijuan; Kang, Xianjiang; Liu, Cunqi; Chen, Lingci; Liang, Xiaofei; Jin, Lei

    2017-11-01

    The influences of intra- and inter-species competition on ecosystems are poorly understood. Lemna aequinoctialis and Spirodela polyrhiza were used to assess the effects of exposure to different concentrations of multiple heavy metals (copper-cadmium-zinc), when the plants were grown in mixed- or mono-culture. Parameters assessed included relative growth rate (RGR), content of chlorophyll, glutathione (GSH), malondialdehyde (MDA), as well as the activity of catalase (CAT), superoxide dismutase (SOD) and peroxidase (POD). Inter-specific competition was affected by metal concentration, with results indicating that inter-specific competition significantly affected duckweed growth and metal uptake in different heavy metal exposure conditions. Inter-specific competition increased growth rate of duckweed under high metal concentrations, although when compared with intra-specific competition, it caused no obvious differences under low metal concentrations. The growth of L. aequinoctialis was further increased in mixed culture when exposed to high metal concentrations, with inter-specific competition increasing the content of cadmium and zinc, while decreasing copper content of L. aequinoctialis compared with under intra-specific conditions. Conversely, inter-specific competition increased the content of copper and cadmium of S. polyrhiza, without causing obvious differences in zinc accumulation under high ambient concentrations. Under high metal conditions, inter-specific competition increased antioxidant enzyme activities in duckweed species, increasing resistance to heavy metals. Results show that inter-specific competition makes duckweed develop mechanisms to increase fitness and survival, such as enhancement of antioxidant enzyme activities, rather than limiting metal uptake when exposed to high concentrations of multiple metals. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Soil pollution associated to the El Borracho Pb-Ag mine (Badajoz Province, Spain). Metal transfer to biota: oak-tree and moss.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Fernández-Calderón, Sergio; Naharro, Elena; García-Noguero, Eva Maria; Higueras, Pablo

    2014-05-01

    El Borracho mine was active since Roman times, but with its higher production period on 19th Century. Mine closure occured without restoration works and nowadays the mining area is dedicated to deer hunting activities. In order to evaluate heavy metals distribution on mining tailings and surrounding soils of the studied area, 40 samples of dumps, soils and sediments were taken. Samples from the mine tailings were collected with an Eijkelkamp soil core sampler for undisturbed samples, with a vertical constant spacing of 25 cm. With this procedure, a total of 21 samples were taken in two points at main dump. Samples of Oak-tree leaves and moss were taken to evaluate metal transfer to biota. Analytical determinations have included soil parameters (pH, conductivity, organic matter content), and total metal contents in geological and biological samples by EDXRF. Analytical determinations shows higher metal contents in dumps, especially in surficial samples, 17,700 mg kg-1 and 470 mg kg-1 in average of Pb and Zn respectively, and lower contents in soils, 5,200 mg kg-1 and 300 mg kg-1, and sediments, 3,500 mg kg-1 and 120 mg kg-1. Metal contents in tailings profiles shows higher levels of Pb, Zn and Cu at 3.5 meters depth, a zone with lower grainsize and higher moisture. Differences in efficiency of extraction techniques and metal remobilization inside the dump can be an explanation for this enrichment level. Metal contents in agricultural soils exceeded maximum allowed levels by European Community (300 mg kg-1 for Pb and Zn and 140 mg kg-1 for Cu). Metal contents in biota evidence that Oak-tree bioaccumulates some metals, especially those with higher mobility in acidic conditions like Zn and Sb, with averages Bioaccumulation factor (BAF = plant concentration/soil concentration) of 0.48 and 0.85 respectively. Moss reaches high concentrations of Pb and Zn (3,000 mg kg-1 and 175 mg kg-1 in average respectively). Uptake pattern of Pb and Zn by plants leaves and mosses seems to be similar and can be characterized by logistic curves, with higher affinity of mosses to uptake metals from soils.

  17. Study of copper (Cu) contents in blood cockles (Anadara sp.) at Surabaya coastal waters

    NASA Astrophysics Data System (ADS)

    Alfionita, S.; Pursetyo, K. T.; Sahidu, A. M.

    2018-04-01

    Heavy metal pollution categorized as harmful effect on the environment. This study aims to determine the content and the rate of accumulation of heavy metals copper (Cu) in the mussel of cockles (Anadara sp.) This study uses observation method with descriptive analysis. The test results Cu in sea water was <0.0223 mg/L. The results have exceeded the water quality standard according to state environmental ministerial decree number 51 2004 on marine water quality standards for marine biota maximum limit of Cu in sea water is 0.008 mg/L. Copper concentration in the sediment of 6.16 mg/kg at the Wonokromo station and at the Dadapan station is 4.03 mg/kg. According to the US-EPA in 2004 on the instructions of sediment pollution classification 49.98 mg Cu/kg. The results of shells fur Cu on Wonokromo was 1.833 mg/kg and Dadapan was 1.352 mg/kg. According to the MOH Decree No.0375/B/SK/1989 about Quality Standard Biota Consumption of Metals to the maximum limit of the existing Cu concentrations in marine biota was 20 ppm or 20 mg / kg so that the content of Cu in shellfish feathers still below the limit of existing quality standards.

  18. The Influence of Sulfur on Dephosphorization Kinetics Between Bloated Metal Droplets and Slag Containing FeO

    NASA Astrophysics Data System (ADS)

    Gu, Kezhuan; Dogan, Neslihan; Coley, Kenneth S.

    2017-10-01

    The bloating behavior of metal droplets and the dephosphorization behavior of bloated droplets at 1853 K (1580 °C) were investigated using X-ray fluoroscopy coupled with constant volume pressure change measurements and chemical analysis of quenched samples. The effect of sulfur content on dephosphorization kinetics was studied during the decarburization period. The slag foamed during the reaction forming a foamy layer over a dense layer. After a short incubation period, the droplets became bloated due to internal decarburization. The bloated droplets floated from the dense slag into the foamy slag. The behavioral changes are directly related to the effect of sulfur on the incubation time for swelling. The dephosphorization reaction was very fast; droplets with low sulfur contents experienced phosphorus reversion shortly after entering the foamy slag, while those with higher sulfur content took a longer time to swell and went through reversion before they entered the foam. The dephosphorization rate and maximum phosphorus partition were higher at lower CO evolution rates because the dynamic interfacial oxygen potential increased with the decreasing oxygen consumption rate. The rate controlling step for dephosphorization was initially a combination of mass transport in both the metal and the slag. As the iron oxide in the slag was depleted, the rate control shifted to mass transport in slag.

  19. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution.

    PubMed

    Mazurek, Ryszard; Kowalska, Joanna; Gąsiorek, Michał; Zadrożny, Paweł; Józefowska, Agnieszka; Zaleski, Tomasz; Kępka, Wojciech; Tymczuk, Maryla; Orłowska, Kalina

    2017-02-01

    In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (I geo ), Nemerow Pollution Index (PI Nemerow ) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Water characterization and seasonal heavy metal distribution in the Odiel River (Huelva, Spain) by means of principal component analysis.

    PubMed

    Montes-Botella, C; Tenorio, M D

    2003-11-01

    The Iberian Pyrite Belt is the largest mass of sulfide and manganese ores in Western Europe. Its sulfide oxidation is the origin of a heavily acidic drainage that affects the Odiel River in southwestern Huelva (Spain). To assess physicochemical, contamination parameters, heavy metal distribution and its seasonal variation in the upper Odiel River and in El Lomero mines, three water samplings were undertaken and analyzed between July 1998 and November 1999. Water from the Odiel River in the polluted zone showed low pH values (2.76-3.51), high heavy metal content, and high values of conductivity (1410-3648 microS/cm) and dissolved solids (1484-5602 mg/L). Principal Component Analysis (PCA) showed that variables related with the products of the pyrite oxidation and the salts that are solubilized by the high acidity generated in the oxidation of sulfides, grouped in the first component, accounted for 40.88% of total variance, and were the main influential factor in physicochemical water sample properties. The second influential factor was minority metals (nickel, cobalt, cadmium). Heavy metals showed three different seasonal patterns, closely related with saline efflorescences formed next to the river bed: majority metals (iron, copper, manganese, zinc); minority metals (lead, nickel, cobalt, cadmium); and chromium, which had a distinctive behavior.

  1. Determination of the Content of Heavy Metals in Pyrite Contaminated Soil and Plants

    PubMed Central

    Antonijević, Milan M.; Marić, Miroslava

    2008-01-01

    Determination of a pyrite contaminated soil texture, content of heavy metals in the soil and soil pH, was the aim in the investigation. Acidification of damaged soil was corrected by calcium carbonate. Mineral nutrients and organic matter (NPK, dung, earthworm cast, straw and coal dust) were added to damaged soil. Afterwards, the soil was used for oat production. Determination of total heavy metal contents (Cu, Pb, Zn, Fe) in soil was performed by atomic absorption spectrofotometry. Plant material (stems, seeds) was analysed, too. Total concentration of the heavy metals in the plant material were greater than in crop obtained in unaffected soil. PMID:27873845

  2. Fate of heavy metals during municipal solid waste incineration.

    PubMed

    Abanades, S; Flamant, G; Gagnepain, B; Gauthier, D

    2002-02-01

    A thermodynamic analysis was performed to determine whether it is suitable to predict the heavy metal (HM) speciation during the Municipal Solid Waste Incineration process. The fate of several selected metals (Cd, Pb, Zn, Cr, Hg, As, Cu, Co, Ni) during incineration was theoretically investigated. The equilibrium analysis predicted the metal partitioning during incineration and determined the impact of operating conditions (temperature and gas composition) on their speciation. The study of the gas composition influence was based on the effects of the contents of oxygen (reducing or oxidising conditions) and chlorine on the HM partitioning. The theoretical HM speciation which was calculated in a complex system representing a burning sample of Municipal Solid Waste can explain the real partitioning (obtained from literature results) of all metals among the various ashes except for Pb. Then, the results of the thermodynamic study were compared with those of characterisation of real incinerator residues, using complementary techniques (chemical extraction series and X-ray micro-analyses). These analysis were performed to determine experimentally the speciation of the three representative metals Cr, Pb, and Zn. The agreement is good for Cr and Zn but not for Pb again, which mainly shows unleachable chemical speciations in the residues. Pb tends to remain in the bottom ash whereas thermodynamics often predicts its complete volatilisation under chlorides, and thus its presence exclusively in fly ash.

  3. Chemical analysis of extracting transition metal oxides from polymetallic ore by sulphate process

    NASA Astrophysics Data System (ADS)

    Enkh-Uyanga, Otgon-Uul; Munkhtsetseg, Baatar; Urangoo, Urtnasan; Tserendulam, Enkhtur; Agiimaa, Davaadorj

    2017-06-01

    In this research work we attempt to improve the purity of polymetallic ores in Mongolia whilst developing practical applications of its refinement processes and this paper presents the results of chemical research of extracting transition metal titanium oxides, ferrous oxide and rare earth oxides from polymetallic ore. Thereby, chemical and mineral analysis of polymetallic ore is carried out basis of responses to the support process at various degrees of water whereas transition metal sulphates solubility differ. As a result of sulphate and resulphurization process we have extracted anatase with 62.5 percent titanium dioxide and brookite mineral with 89.6 percent of titanium dioxide as well as mineral with 83.8 percent of ferrous oxide hematite and rare earth oxides with 57.6 percent of cerium oxide. These oxides are identified under various conditions in the thermal processing. The morphology structure and chemical content compound of the mineral has been verified as a result of the XRF, XRD, SEM-EDX analysis.

  4. Survey of mercury, cadmium and lead content of household batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146more » different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.« less

  5. Content of Heavy Metal in the Dust of Leisure Squares and Its Health Risk Assessment-A Case Study of Yanta District in Xi'an.

    PubMed

    Shao, Tianjie; Pan, Lihuan; Chen, Zhiqing; Wang, Ruiyuan; Li, Wenjing; Qin, Qing; He, Yuran

    2018-02-25

    Taking Yanta District in Xi'an as the research object, the present study measures the contents of Cadmium (Cd), Lead (Pb), Copper (Cu), Nickel (Ni), and Chromium (Cr) in dust samples and further assesses the health risk of heavy metals intake through dust based on the assessment method of human exposure risk proposed by U.S. EPA, with an aim to investigate the content of heavy metal in the dust of leisure squares and its exposure risk. As the results indicate, the average contents of five heavy metals are obviously higher than the soil background value in Shaanxi Province. Therefore, Cd, Ni, Cu, Pb, and Cr are obviously enriched in urban surface dust in Shaanxi Province, due to the influence of human activities. In addition, it can also be found that the non-carcinogen exposure risk in children is significantly higher than that in adults with the risk values of these five heavy metals all one order of magnitude higher than those of adults. Irrespective of whether addressing the results for children or adults, the non-carcinogen exposure doses of five heavy metals are sorted as Cr > Pb > Cu > Ni > Cd. According to the present situation, for a child, the total non-carcinogenic risk values of five heavy metals have exceeded the safety limit in 11 of the 20 leisure squares in Yanta District of Xi'an. That means the leisure squares are no longer suitable for physical and recreational activities. For the five heavy metals, the average non-carcinogenic risk value of Cr is largest, and causes the largest threat to health in Yanta District, Xi'an. The carcinogenic exposure doses of the heavy metals Cr, Cd, and Ni are very low in respiratory pathways and there is no carcinogenic health risk. In general, the Cr content in dust in domestic cities is higher than that of foreign cities; however, the Pb content is much lower.

  6. Effect of Mo contents on corrosion behaviors of welded duplex stainless steel

    NASA Astrophysics Data System (ADS)

    Bae, Seong Han; Lee, Hae Woo

    2013-05-01

    The corrosion behaviour and change of the phase fraction in welded 24Cr Duplex stainless steel was investigated for different chemical composition ranges of Mo contents. Filler metal was produced by fixing the contents of Cr, Ni, N, and Mn while adjusting the Mo content to 0.5, 1.4, 2.5, 3.5 wt%. The δ-ferrite fraction was observed to increase as the content of Mo increased. A polarisation test conducted in a salt solution, indicated the pitting corrosion potential increased continuously to 3.5 wt% Mo, while the corrosion potential changed most between 0.5 and 1.41 wt% Mo. The location of the pitting corrosion in 0.5 wt% Mo steel was randomly distributed, but it occurred selectively at the grain boundary between the γ- and δ-ferrite phases in 1.4, 2.5 and 3.5 wt% Mo steel. Energy dispersive X-ray spectroscopy mapping analysis showed that areas deficient in Cr, Mo, and Ni occurred around the grain boundary of the γ- and δ-ferrite phases. Non-metallic inclusions are thought to act as initiation points for the pitting corrosion that occurs in the salt solution initially as a result of the potential difference between the matrix structure and the incoherent inclusions.

  7. The influence of physical activity on hair toxic and essential trace element content in male and female students.

    PubMed

    Zaitseva, Irina P; Skalny, Andrey A; Tinkov, Alexey A; Berezkina, Elena S; Grabeklis, Andrei R; Skalny, Anatoly V

    2015-02-01

    The primary aim of the current study is to estimate the effect of different physical activity levels on hair trace element content in male and female students. A total of 113 students (59 women and 54 men) of P. G. Demidov Yaroslavl State University (Yaroslavl, Russia) took part in the current investigation. According to the level of the physical activity, all students were divided into three groups: high, medium, and low physical activity. Essential and toxic metal content (μg/g) in hair samples was assessed by inductively coupled plasma mass spectrometry using NexION 300D + NWR213 (Perkin-Elmer, USA). The obtained data show that hair iodine, zinc, arsenic, nickel, and tin levels are not related to physical activity in male and female students. At the same time, increased physical activity is associated with decreased hair copper, vanadium, bismuth, and mercury content in comparison to the low physical activity groups. Students with higher physical activity are also characterized by significantly higher hair cobalt, iron, manganese, selenium, cadmium, lithium, and lead concentrations. Finally, statistical analysis has revealed maximal gender differences in hair trace element content in the high physical activity groups, whereas in the low activity groups, the hair metal concentrations were nearly similar in females and males.

  8. Solid waste from Swine wastewater as a fuel source for heat production.

    PubMed

    Park, Myung-Ho; Kumar, Sanjay; Ra, ChangSix

    2012-11-01

    This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg) and low moisture (15.38%) content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98%) with varied temperatures. Thermogravimetry (TG) and differential thermal analysis (DTA) showed five thermal effects (four exothermic and one endothermic), and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer.

  9. Silicon Materials Task of the Low Cost Solar Array Project, Phase 3. Effect of Impurities and Processing on Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.

    1979-01-01

    The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.

  10. Hand dismantling and shredding of Japanese automobiles to determine material contents and metal recoveries. Report of investigations/1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterner, J.W.; Steele, D.K.; Shirts, M.B.

    The Bureau of Mines conducted studies on four makes of Japanese automobiles, three 1981 and one 1982 model years, received from three manufacturers to determine if their materials composition would present problems to the current technology used to process junk automobiles for metal recovery. One of each make of automobile was hand-dismantled to determine the materials composition. In addition, two nearly identical automobiles of each make were shredded at a commercial operation where all metal products and rejects were collected for analysis to determine metal and nonmetal distribution. The average weight of the four automobiles to be dismantled, less batteries,more » tools, and fluids, was 1,938.3 lb. There were no materials used in the manufacture of the late model Japanese automobiles that should present handling or processing problems to the steelmaking or secondary metal recyclers.« less

  11. Interactions and accumulation differences of metal(loid)s in three sea cucumber species collected from the Northern Mediterranean Sea.

    PubMed

    Tunca, Evren; Aydın, Mehmet; Şahin, ÜlküAlver

    2016-10-01

    This study was conducted on Holothuria polii, Holothuria tubulosa, and Holothuria mammata collected from five stations with different depths in the Northern Mediterranean Sea. The body walls and guts of these holothurians were examined in terms of interactions of 10 metals (iron (Fe), copper (Cu), manganese (Mn), zinc (Zn), chromium (Cr), cobalt (Co), vanadium (V), nickel (Ni), cadmium (Cd), and lead (Pb)) and one metalloid (arsenic (As)) using a multivariate analysis, and interspecies differences were determined. The multivariate analysis of variance (MANOVA) revealed significant differences between the species in terms of metal(loid) accumulations. The principal component analysis (PCA) showed a more association between H. tubulosa and H. polii with regard to the accumulation. The cluster analysis (CA) located Pb concentrations of the guts to the farthest place from all elements regardless of the species. A correlation analysis displayed that the element concentrations of the guts were more closely related to each other compared with those of the walls. The most inconsistent element in terms of correlations was the gut Fe contents. Accordingly, while Fe concentrations of H. mammata and H. tubulosa were correlated with all elements (except Pb) in divalent metal transporter 1 (DMT1) (divalent cation transporter 1 (DCT1) or natural resistance-associated macrophage protein 2 (NRAMP2)) belonging to the NRAM protein family, this was not the case in H. polii. Consequently, significant relationships between accumulated metal(loid)s that changed by tissues and sea cucumber species were observed.

  12. Laser-induced breakdown spectroscopy for detection of heavy metals in environmental samples

    NASA Astrophysics Data System (ADS)

    Wisbrun, Richard W.; Schechter, Israel; Niessner, Reinhard; Schroeder, Hartmut

    1993-03-01

    The application of LIBS technology as a sensor for heavy metals in solid environmental samples has been studied. This specific application introduces some new problems in the LIBS analysis. Some of them are related to the particular distribution of contaminants in the grained samples. Other problems are related to mechanical properties of the samples and to general matrix effects, like the water and organic fibers content of the sample. An attempt has been made to optimize the experimental set-up for the various involved parameters. The understanding of these factors has enabled the adjustment of the technique to the substrates of interest. The special importance of the grain size and of the laser-induced aerosol production is pointed out. Calibration plots for the analysis of heavy metals in diverse sand and soil samples have been carried out. The detection limits are shown to be usually below the recent regulation restricted concentrations.

  13. An investigation of trends in precious metal and copper content of RAM modules in WEEE: Implications for long term recycling potential.

    PubMed

    Charles, Rhys Gareth; Douglas, Peter; Hallin, Ingrid Liv; Matthews, Ian; Liversage, Gareth

    2017-02-01

    Precious metal (PM) and copper content of dynamic-RAM modules placed on the market during 1991-2008 has been analysed by AAS following comminution and acid digestion. Linear regression analysis of compositional data ordered according to sample chronology was used to identify historic temporal trends in module composition resulting from changes in manufacturing practices, and to project future trends for use in more accurate assessment of future recycling potential. DRAM was found to be 'high grade' waste with: stable levels of gold and silver over time; 80% reduction in palladium content during 1991-2008; and 0.23g/module/year increase in copper content with a 75% projected increase from 2008 by 2020. The accuracy of future recycling potential projections for WEEE using current methods based on static compositional data from current devices is questionable due to likely changes in future device composition. The impact on recycling potential projections of waste laptops, smart phones, cell phones and tablets arising in Europe in 2020 resulting from a 75% increase in copper content is considered against existing projections using static compositional data. The results highlight that failing to consider temporal variations in PM content may result in significant discrepancies between projections and future recycling potential. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields.

    PubMed

    Rafique, Nazia; Tariq, Saadia R

    2016-05-01

    Heavy metals enriched agricultural soils have been the subject of great concern because these metals have potential to be transferred to the soil solution and afterward accumulated in food chain. To study the trace metal persistence in crop soil, 90 representative soil samples were collected and analyzed for heavy metal (As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn) and anions (chloride, nitrates, phosphates and sulfates). Cluster and factor analysis techniques were used for the source identification of these excessive heavy metal levels and ecological risk was determined with potential ecological risk assessment. The degree of enrichment of eight studied heavy metals in comparison with the corresponding background levels decreased in order: Cd > Pb > Fe > Ni > Mn > As > Cu ~ Zn. Arsenic and cadmium exhibited 1.30- and 1.64-fold exceeded levels than threshold limits set by National environment quality standards, respectively. Cd in cotton field's soil may lead to higher potential risk than other heavy metals. On overall basis, the cumulative mean potential ecological risk for the district (207.75) corresponded to moderate risk level with higher contributions from As and Pb especially from Cd. Cadmium formed strong positive correlation with phosphate content of soil at p < 0.01. Cluster analysis indicated that Cluster 1 (extremely polluted) probably originated from anthropogenic inputs of phosphate fertilizer and past usage of arsenical pesticides.

  15. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  16. Trends of metals enrichment in deposited particulate matter at semi-arid area of Iran.

    PubMed

    Fouladi Fard, Reza; Naddafi, Kazem; Hassanvand, Mohammad Sadegh; Khazaei, Mohammad; Rahmani, Farah

    2018-04-30

    The presence and enrichment of heavy metals in dust depositions have been recognized as an emerging environmental health issues in the urban and industrial areas. In this study, the deposition of some metals was found in Qom, a city located in a semi-desert area in Iran that is surrounded by industrial areas. Dust deposition samples were collected using five sampling stations during a year. Dust samples were digested applying acidic condition and then, the metal content was analyzed using inductively coupled plasma technology (ICP-OES). Comparative results showed the following order, from the maximum to the minimum concentration (mg/kg dust) of elements: Ca > Al > Fe > Mg > Ti > Si > K > B > Sr > Mn > P > Ba > Cr > Zn > Ni > Sn > Pb > V > Na > Cu > Co > U > Li > Ce > Ag. The differences among the average concentrations of metals in the five stations were not significant (p value > 0.05). The average concentration of some metals increased significantly during cold seasons. In this study, the cluster analysis (CA) and princicipal component analysis (PCA) were applied, and relationships among some elements in different clusters were found. In addition, the geo-accumulation and enrichment analysis revealed that the following metals had been enriched more than the average values: boron, silver, tin, uranium, lead, zinc, cobalt, chromium, lithium, nickel, strontium, and coper. The presence of thermal power plant, pesticide manufacturing plants, publishing centers, traffic jam, and some industrial areas around the city has resulted in the enrichment of some metals (particularly in cold seasons with atmospheric stable conditions) in dust deposition.

  17. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in areas surrounding mines. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Influence of compositions on thermal stability and thermodynamic parameter in Ca-Mg-Cu bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Deshmukh, A. A.; Khond, A. A.; Palikundwar, U. A.

    2018-05-01

    In the present manuscript, influence of compositions on thermal stability (ΔTx) and thermodynamic parameter PHSS of Ca-Mg-Cu bulk metallic glasses (BMGs) is evaluated. The statistical approach of regression analysis is adopted to investigate the compositional variation with ΔTx and PHSS. It is found that calcium (Ca) and copper (Cu) content has goodlinear relationship with ΔTx and PHSS. It is observed that with increase in Ca content, ΔTx and PHSS decreases. On the other hand, increase in Cu content, both ΔTx and PHSS increases. Correlation fit of magnesium (Mg) content with both ΔTx and PHSS is very poor. A graph is also plotted to understand the relationship between ΔTx and PHSS. Result of the relationship between ΔTx and PHSS reveals that the alloy composition having more negative value of PHSS will have more stability. Therefore, compositions with more negative value of PHSS will lead to ease of BMGs formation in Ca-Mg-Cu alloy system and hence more stable it will be. It is expected that these results will be supportive in identifying the compositions having these elements for making BMGs.

  19. Cold spraying SiC/Al metal matrix composites: effects of SiC contents and heat treatment on microstructure, thermophysical and flexural properties

    NASA Astrophysics Data System (ADS)

    Gyansah, L.; Tariq, N. H.; Tang, J. R.; Qiu, X.; Feng, B.; Huang, J.; Du, H.; Wang, J. Q.; Xiong, T. Y.

    2018-02-01

    In this paper, cold spray was used as an additive manufacturing method to fabricate 5 mm thick SiC/Al metal matrix composites with various SiC contents. The effects of SiC contents and heat treatment on the microstructure, thermophysical and flexural properties were investigated. Additionally, the composites were characterized for retention of SiC particulates, splat size, surface roughness and the progressive understanding of strengthening, toughening and cracking mechanisms. Mechanical properties were investigated via three-point bending test, thermophysical analysis, and hardness test. In the as-sprayed state, flexural strength increased from 95.3 MPa to 133.5 MPa, an appreciation of 40% as the SiC contents increased, and the main toughening and strengthening mechanisms were zigzag crack propagation and high retention of SiC particulates respectively. In the heat treatment conditions, flexural strength appreciated significantly compared to the as-sprayed condition and this was as a result of coarsening of pure Al splat. Crack branching, crack deflection and interface delamination were considered as the main toughening mechanisms at the heat treatment conditions. Experimental results were consistent with the measured CTE, hardness, porosity and flexural modulus.

  20. Effects of POE-g-MAH on properties of PP-based binder in metal injection molding

    NASA Astrophysics Data System (ADS)

    Li, Duxin; Zhang, Chenming; Ding, Chuxiong; Pan, Donghua; Lu, Renwei; Yang, Zhongchen

    2018-06-01

    The objective of this study is to explore the effects of maleic anhydride-grafted polyolefin elastomer (POE-g-MAH) on properties of polypropylene (PP)-based binder. The viscosity of feedstocks as well as properties of green parts, brown parts and sintered parts were investigated. Through the analysis of viscosity, the feedstock containing 8 vol% POE-g-MAH in binder was supposed to be more suitable for the injection molding. The impact absorbed energy at break increased with increasing POE-g-MAH content in binder while the bending strength decreased first and then increased. The introduction of POE-g-MAH improve the density distribution and increased the density of green parts. After debinding, most binder components were removed regardless of the POE-g-MAH content in binder. As for the parts after sintering, the carbon content decreased with an increase in POE-g-MAH content. The results suggest that POE-g-MAH act as a toughening agent as well as compatibilizer for PP-based binder/metal powder system. The mechanical properties of the green parts could be enhanced even after multiple injection and in addition the powder-binder separation trend could be decreased.

  1. Bioavailability of metals in soils and sedimentes affected by old mining actitvities. The study case of the Portman bay (SE, Spain)

    NASA Astrophysics Data System (ADS)

    Martinez-Sanchez, Maria Jose; Agudo, Ines; Banegas, Ascension; Garcia-Lorenzo, Maria Luz; Gonzalez-Ciudad, Eva; Perez-Espinosa, Victor; Martinez-Lopez, Salvadora; Martinez, Lucia; Perz-Sirvent, Carmen

    2010-05-01

    A study on metal (Zn, Pb, Cd, Cu and As) mobilization and analysis of the health risk represented by ingestion from contaminated sediments in Portman Bay (SE Spain) was carried out. This zone has suffered a great impact from mining activity, since million tons of mine tailings were dumped into the bay for a long period, giving as a result the filling of the bay with them. The long-term deposition of metals in soils and sediments can lead to their accumulation and transport, while their toxicity depends on the mobility and bioavailability of a significant fraction of the metals. The ingestion of contaminated soil particles by grazing animals or young children may well represent a special exposure pathway for Pb, Cd and other hazardous metals. The aim of this study was to determine the bioaccessibility of Zn, Pb, Cd, Cu and As ,and the extent to which bioaccessibility is influenced by mineralogy in materials from this mining site as an indicator of the potential risk that metals pose to both environmental and human health. General analytical determinations (pH, particle size, organic matter, equivalent calcium carbonate content and mineralogical composition) were carried out to characterize the samples. The mineralogical composition was studied by X-ray diffraction (XRD), using a Philips PW3040 diffractometer with Cu-Kα. To determine the total metal content, the samples were digested in a Milestone ETHOS PLUS microwave, Zn, Pb, Cu and Cd contents were determined by electrothermal atomization atomic absorption spectrometry, while As was analysed by HG- AFS using an automated continuous flow hydride generation spectrometer. To assess bioaccessibility, the gastric solution was prepared according to the Standard Operating Procedure (SOP) developed by the Solubility/Bioavailability Research Consortium (SBRC). The mineralogical composition, corresponds to materials which have suffered a supergenic oxidation process which has been influenced by the presence of sea water. Unaltered minerals (phylosilicates, quartz, sulphides and magnetite) as well as those resulting of oxidation and carbonatation processes (iron oxihydroxides, hematite, siderite and jarosite) are identified. The results showed that the fraction of metals dissolved by the in vitro procedure is less than 100% in the gastric solution. The solubility of each metal under synthetic fluids depends on its chemical speciation and binding capacity to different soil and sediment materials The data here obtained can be incorporated to the general protocol of risk analysis by ingestion applied to contaminated sites. This could be of interest since when risk assessments are adjusted to account for lower site-specific bioavailability, the resulting increase in cleanup levels can substantially reduce the cost of remediation in some cases

  2. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  3. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  4. 16 CFR 23.4 - Misrepresentation as to gold content.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... JEWELRY, PRECIOUS METALS, AND PEWTER INDUSTRIES § 23.4 Misrepresentation as to gold content. (a) It is... covered with a base metal (such as nickel), which is covered with a thin wash of gold, unless there is a disclosure that the primary gold coating is covered with a base metal, which is gold washed. (7) Use of the...

  5. Sol–gel synthesis of SnO{sub 2}–MgO nanoparticles and their photocatalytic activity towards methylene blue degradation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bayal, Nisha; Jeevanandam, P., E-mail: jeevafcy@iitr.ernet.in

    2013-10-15

    Graphical abstract: - Highlights: • A simple sol–gel method for the synthesis of SnO{sub 2}–MgO nanoparticles is reported. • Band gap of SnO{sub 2} can be tuned by varying the magnesium content in SnO{sub 2}–MgO. • SnO{sub 2}–MgO shows good photocatalytic activity towards degradation of methylene blue. - Abstract: SnO{sub 2}–MgO mixed metal oxide nanoparticles were prepared by a simple sol–gel method. The nanoparticles were characterized by power X-ray diffraction, scanning electron microscopy coupled with energy dispersive X-ray analysis, transmission electron microscopy and UV–vis diffuse reflectance spectroscopy. The XRD results indicate the formation of mixed metal oxide nanoparticles and alsomore » a decrease of SnO{sub 2} crystallite size in the mixed metal oxide nanoparticles with increasing magnesium oxide content. The reflectance spectroscopy results show a blue shift of the band gap of SnO{sub 2} in the mixed metal oxide nanoparticles. The photocatalytic activity of the SnO{sub 2}–MgO nanoparticles was tested using the photodegradation of aqueous methylene blue in the presence of sunlight. The results indicate that the mixed metal oxide nanoparticles possess higher efficiency for the photodegradation of methylene blue compared to pure SnO{sub 2} nanoparticles.« less

  6. The effectiveness of spent coffee grounds and its biochar on the amelioration of heavy metals-contaminated water and soil using chemical and biological assessments.

    PubMed

    Kim, Min-Suk; Min, Hyun-Gi; Koo, Namin; Park, Jeongsik; Lee, Sang-Hwan; Bak, Gwan-In; Kim, Jeong-Gyu

    2014-12-15

    Spent coffee grounds (SCG) and charred spent coffee grounds (SCG-char) have been widely used to adsorb or to amend heavy metals that contaminate water or soil and their success is usually assessed by chemical analysis. In this work, the effects of SCG and SCG-char on metal-contaminated water and soil were evaluated using chemical and biological assessments; a phytotoxicity test using bok choy (Brassica campestris L. ssp. chinensis Jusl.) was conducted for the biological assessment. When SCG and SCG-char were applied to acid mine drainage, the heavy metal concentrations were decreased and the pH was increased. However, for SCG, the phytotoxicity increased because a massive amount of dissolved organic carbon was released from SCG. In contrast, SCG-char did not exhibit this phenomenon because any easily released organic matter was removed during pyrolysis. While the bioavailable heavy metal content decreased in soils treated with SCG or SCG-char, the phytotoxicity only rose after SCG treatment. According to our statistical methodology, bioavailable Pb, Cu and As, as well as the electrical conductivity representing an increase in organic content, affected the phytotoxicity of soil. Therefore, applying SCG during environment remediation requires careful biological assessments and evaluations of the efficiency of this remediation technology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Assessment of heavy metal contamination in the sediments of Nansihu Lake Catchment, China.

    PubMed

    Liu, Enfeng; Shen, Ji; Yang, Liyuan; Zhang, Enlou; Meng, Xianghua; Wang, Jianjun

    2010-02-01

    At present, anthropogenic contribution of heavy metals far exceeds natural input in some aquatic sediment, but the proportions are difficult to differentiate due to the changes in sediment characters. In this paper, the metal (Al, Fe, K, Mg, Ca, Cr, Cu, Ni, and Zn) concentrations, grain size, and total organic carbon (TOC) content in the surface and core sediments of Nansihu Lake Catchment (the open lake and six inflow rivers) were determined. The chemical speciations of the metals (Al, Fe, Cr, Cu, Ni, and Zn) in the surface sediments were also analyzed. Approaches of factor analysis, normalized enrichment factor (EF) and the new non-residual fractions enrichment factor (K(NRF)) were used to differentiate the sources of the metals in the sediments, from detrital clastic debris or anthropogenic input, and to quantify the anthropogenic contamination. The results indicate that natural processes were more dominant in concentrating the metals in the surface and core sediments of the open lake. High concentration of Ca and deficiency of other metals in the upper layers of the sediment core were attributed to the input of carbonate minerals in the catchment with increasing human activities since 1980s. High TOC content magnified the deficiency of the metals. Nevertheless, the EF and K(NRF) both reveal moderate to significant anthropogenic contamination of Cr, Cu, Ni, and Zn in the surface sediments of Laoyun River and the estuary and Cr in the surface sediments of Baima River. The proportion of non-residual fractions (acid soluble, reducible, and oxidizable fractions) of Cr, Cu, Ni, and Zn in the contaminated sediments increased to 37-99% from the background levels less than 30%.

  8. [Leaching characteristics of heavy metals and utilization of filter media in BAF].

    PubMed

    Zou, Jin-long; Dai, Ying

    2007-10-01

    A series of leaching tests were conducted to study the solidification of heavy metals in biological filter media made with dried sludge as an additive. The maximum leaching contents of Cd, Cr, Cu and Pb are obtained when pH is 1; leaching contents of heavy metals have an obvious decrease as pH is greater than or equal to 3; and it can be concluded from the results that pH has a significant influence on the leaching characteristic of heavy metals at leaching time of either 24 h or 30 d. X-ray diffraction analysis performed on filter media reveal the main compounds of the 4 heavy metals are Pb2O(CrO4), CdSiO3 and CuO, and the heavy metals are solidified in the mesh structure of Si--O. Heavy metals (such as Cd, Cr, Cu and Pb) can be solidified in filter media through a series of crystalline phase changes and chemical reaction after high temperature sintering. The new filter media (obtained in test) were used in biological aerated filter (BAF) to treat wastewater (C/N about 11.5 and 25.5) in a simultaneous nitrification and denitrification (SND) system. Based on the mechanism of SND, the average removal efficienciesof NH4(+)-N and TN filled with the new filter media (obtained in test) are about 85.5%, 90.3%, 46.6% and 49.6%, respectively, and it is higher than those of other 3 medias (Jiangxi ceramsite, Guangzhou ceramsite and Shanxi activated carbon). The results provide a better understanding of factors that may affect the immobilization and leaching characteristics of heavy metals in ceramsite, which promotes the extensive use of filter media in BAF.

  9. Assessment of bioavailability of heavy metal pollutants using soil isolates of Chlorella sp.

    PubMed

    Krishnamurti, Gummuluru S R; Subashchandrabose, Suresh R; Megharaj, Mallavarapu; Naidu, Ravi

    2015-06-01

    Biotests conducted with plants are presently used to estimate metal bioavailability in contaminated soils. But when plants are grown in soils, especially the plants with fine roots, root collection is easily biased and tedious. Indeed, at harvest, small amounts of soil can adhere to roots, resulting in overestimation of root metal content, and the finest roots are often discarded from the analysis because of their difficult and almost impossible recovery. This report presents a novel method for assessing the bioavailability of heavy metals in soils using microalgae. Two species of green unicellular microalgae were isolated from two highly contaminated soils and identified by phylogenetic and molecular evolutionary analyses as Chlorella sp. RBM and Chlorella sp. RHM. These two cultures were used to determine the metal uptake from metal-contaminated soils of South Australia as a novel, cost-effective, simple and rapid method for assessing the bioavailability of heavy metals in soils. The suggested method is an attempt to achieve a realistic estimate of bioavailability which overcomes the inherent drawback of root metal contamination in the bioavailability indices so far reported.

  10. Correlation between some selected trace metal concentrations in six species of fish from the Arabian Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashraf, M.; Jaffar, M.

    1988-07-01

    The role of trace metals in marine ecosystems has been keenly investigated during recent years. It is known that abundance of essential trace metals regulates the metal content in the organisms by homeostatic control mechanisms, which when cease to function cause essential trace metals to act in an either acutely or chronically toxic manner. Therefore, a correlation study based on essential and non-essential trace metal concentrations is imperative for extending the existing knowledge of bioaccumulation of trace metals in marine organisms. An attempt has been made in the present investigation to bring out quantitative correlations between the concentrations of iron,more » copper, lead and zinc in the edible muscle tissue of six species of marine fish: Salmon (salmon sole); tuna (thunnus thynnus); pomfret silver (pampus argenteus); Pomfret black (formioniger); long tail tuna (thynnus tonggel) and Indian oil sardine (sardinella longiceps). These fish are abundantly available in Pakistan along the coastal line of the Arabian Sea and have great commercial value. The computational analysis on the trace metal correlation was conducted using an MSTAT statistical package.« less

  11. Production and characterization of pyrolytic oils by pyrolysis of waste machinery oil.

    PubMed

    Sinağ, Ali; Gülbay, Selen; Uskan, Burçin; Uçar, Suat; Ozgürler, Sara Bilge

    2010-01-15

    The main objective of this work is to propose an alternative method for evaluation of the waste machinery oil which is an environmental problem in Turkey. For this purpose, pyrolysis of waste machinery oil was conducted in a tubular reactor. Effect of the experimental conditions (various temperatures, catalyst type) on the formation of pyrolytic oil, gas, and char was investigated. Nickel supported on silica and zeolite (HZSM-5) were used as catalysts. Properties of the pyrolytic oils were characterized by gas chromatograph equipped with a mass selective detector (GC-MS), gas chromatography with flame ionization detector (GC-FID for boiling point range distribution), nuclear magnetic resonance ((1)H NMR) spectroscopy, higher heating value measurement, and elemental analysis. The behavior of the metals in the waste machinery oil and the pyrolytic oil samples was also quantitatively detected by inductively coupled plasma (ICP) analysis. As, Cd and Cr contents of the all pyrolytic oils were found as <0.05 ppm, while Cu content of the pyrolytic oils varied between 0.3 ppm and 0.61 ppm. Only Vanadium contents of the pyrolytic oils obtained at 800 degrees C (0.342 ppm) and in the presence of HZSM5 (0.57 ppm) increased compared to that obtained by waste machinery oil (0.1 ppm). Lower metal contents of the pyrolytic oils reveal that pyrolysis of the waste machinery oils leads to the formation of environmental friendly pyrolytic oils with higher heating values.

  12. Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linum usitatissimum in association with Glomus intraradices.

    PubMed

    Amna; Ali, Naeem; Masood, Sajid; Mukhtar, Tehmeena; Kamran, Muhammad Aqeel; Rafique, Mazhar; Munis, M Farooq Hussain; Chaudhary, Hassan Javed

    2015-06-01

    The current study was aimed at analyzing the differential effects of heavy metals (cadmium and chromium) and mycorrhizal fungus; Glomus intraradices on growth, chlorophyll content, proline production, and metal accumulation in flax plant (Linum usitatissimum L.). Heavy metal accumulation rate in flax varied from 90 to 95 % for Cd and 61-84 % for Cr at a concentration range of 250 to 500 ppm for both metals in 24 days of experiment. Growth and photosynthetic activity of flax reduced to an average of 21 and 45 %, respectively. However, inoculation of G. intraradices significantly increased the plant biomass even under metal stressed conditions. Additionally, mycorrhizal association also assists the Cd and Cr increased uptake by 23 and 33 %, respectively. Due to metal stress, chlorophyll contents were decreased by 27 and 45 %, while 84 and 71 % increased proline content was observed under Cd and Cr stress, respectively. The present results clearly signify the differential response and potential of flax plant towards heavy metal tolerance and accumulation that can further increase with mycorrhizal fungus.

  13. Distributions of Heavy Metals and Benzo[ a]pyrene in Oligotrophic Peat Soils and Peat Gleyzems of Northeastern Sakhalin

    NASA Astrophysics Data System (ADS)

    Lipatov, D. N.; Shcheglov, A. I.; Manakhov, D. V.; Karpukhin, M. M.; Zavgorodnyaya, Yu. A.; Tsvetnova, O. B.

    2018-05-01

    The contents and profile distributions of Cr, Ni, Cu, Zn, Cd, Hg, Pb, and benzo[a]pyrene in oligotrophic peat soils, oligotrophic peat gley soils (Dystric Fibric Histosols), humus-impregnated peat gleyzems (Dystric Histic Gleysols), and mucky gleyzems (Dystric Gleysols) have been analyzed with consideration for their degree of oligotrophicity and anthropogenic loads. Horizons with the accumulation (O, Tpyr, TT) and removal (Ghi,e) of heavy metals have been revealed. The increase in the content of heavy metals and benzo[ a]pyrene in the upper layer of oligotrophic peat soils under technogenic fallouts in the impact zone of flare and motor transport has been considered. Statistical parameters of the spatial variation of parameters in organic and gley horizons have been calculated. The variation coefficients of pollutant elements (Pb and Zn) in the surface horizons of soils increase to 100-125%. Positive correlations revealed between the content of some heavy metals in litter indicate their bioaccumulation and possible joint input with aerotechnogenic fallouts. No correlations are found between the contents of benzo[ a]pyrene and heavy metals, but a reliable negative correlation with the ash content is noted in the peat horizon.

  14. Study of heavy metal concentration and partitioning in the Estrela River: implications for the pollution in Guanabara Bay – SE Brazil.

    PubMed

    Rangel, Carlos M A; Neto, José A Baptista; Fonseca, Estefan M; McAlister, John; Smith, Bernard J

    2011-09-01

    In this study, the geochemical analysis of ten sediment samples collected along the fluvial system of the Estrela River, which flows into the northern portion of Guanabara Bay, shows the presence of anthropogenic impacts in this area. Concentrations of Fe, Mn, Zn, Cu, Pb, Cr and Ni obtained were slightly higher, when compared with values found in natural environments. The particle size and organic matter content in most of the analyzed stations showed features not conducive to the accumulation of pollutants due to the low organic matter content and the strong presence of sand fraction. There was also the fractionation of heavy metals in sediments and it was found the prominence of residual and reducible phase, besides the significant occurrence of organic fractions in some analyzed stations. These factors, thus, highlight the potential risks of contamination, where the metals associated with the organic phase can become bioavailable in processes of dissolution, provided by physico-chemical changes that can occur in this aquatic environment.

  15. Heavy Metal Content in Terraced Rice Fields at Sruwen Tengaran Semarang - Indonesia

    NASA Astrophysics Data System (ADS)

    Hindarwati, Yulis; Soeprobowati, Tri Retnaningsih; Sudarno

    2018-02-01

    The presence of heavy metal on agricultural soils can be caused not only natural factors but also due to human intervention. Differences in management and lack of understanding of farmers in the production input of fertilizers and pesticides ensued in land ravaged. Periodic testing of paddy fields is necessary to minimize the contaminants from being absorbed by plants that will have an impact on health decline. The purpose of the assessment was to identify the heavy metal content in the terraced rice field in Sruwen Village, Tengaran District, Semarang Regency. Survey was conducted in February 2017. Sampling on terraced rice fields of different heights consisted of upper, middle, and upper down. Taken as many as eight single points and composed at a depth of 0-20 cm and 20-40 cm. The identification results showed that heavy metal content of Pb, Cd, and Cu were present at all altitudes. Heavy Metals Pb and Cd at a depth of 0-20 cm were higher from 20-40 cm in the upper and lower rice fields but lower in the middle rice field. Cu heavy metal at a depth of 0-20 cm was higher than 20-40 cm in all altitude land. The heavy metal content of Pb, Cd, and Cu was still below the heavy metal standard set by the European Union and India.

  16. Black water sludge reuse in agriculture: are heavy metals a problem?

    PubMed

    Tervahauta, Taina; Rani, Sonia; Hernández Leal, Lucía; Buisman, Cees J N; Zeeman, Grietje

    2014-06-15

    Heavy metal content of sewage sludge is currently the most significant factor limiting its reuse in agriculture within the European Union. In the Netherlands most of the produced sewage sludge is incinerated, mineralizing the organic carbon into the atmosphere rather than returning it back to the soil. Source-separation of black water (toilet water) excludes external heavy metal inputs, such as industrial effluents and surface run-offs, producing sludge with reduced heavy metal content that is a more favorable source for resource recovery. The results presented in this paper show that feces is the main contributor to the heavy metal loading of vacuum collected black water (52-84%), while in sewage the contribution of feces is less than 10%. To distinguish black water from sewage in the sludge reuse regulation, a control parameter should be implemented, such as the Hg and Pb content that is significantly higher in sewage sludge compared to black water sludge (from 50- to 200-fold). The heavy metals in feces and urine are primarily from dietary sources, and promotion of the soil application of black water sludge over livestock manure and artificial fertilizers could further reduce the heavy metal content in the soil/food cycle. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils.

    PubMed

    Saraswat, Shweta; Rai, J P N

    2011-03-01

    The study deals with phytoextraction of Zn and Cd by Leucaena leucocephala grown on effluent fed and low nitrogen soils collected from S1, S2, and S3 sites, representing decreasing metal content with increasing distance from the effluent drain. Plant nitrogen fixation potential and soil micro-biochemical attributes against metal stress were also assessed. Increasing soil metal content and plant growth enhanced metal accumulation. Relatively greater amount of Zn than Cd was accumulated by L. leucocephala, which exceeded in roots with that of other parts. Remediation factor for Cd was maximum (3.6%) in S2 grown plant. Nodule numbers, their biomass, nitrogenase activity, and leghaemoglobin content were maximum in plants grown in S3 and minimum in S1 soil having maximum metals. Maximum soil organic C, total N, C(mic), and N(mic), respiration rate, ATP content, and enzymatic activities in response to phytoremediation was recorded in S3 followed by S2 and S1. Phytoremediation for a year enhanced extractable Zn and Cd by 36% and 45%, and their total removal by 20% and 30%, respectively from S2, which suggests the possible application of L. leucocephala for the remediation of metal contaminated sites and their fertility restoration by improving microbial functionalities and N-pool.

  18. Accumulation of alkaline earth metals by the green macroalga Bryopsis maxima.

    PubMed

    Takahashi, Shigekazu; Aizawa, Kyoko; Nakamura, Saki; Nakayama, Katsumi; Fujisaki, Shingo; Watanabe, Soichiro; Satoh, Hiroyuki

    2015-04-01

    Twenty-five days after the disaster at the Fukushima Daiichi nuclear power plant in 2011, we collected samples of the green macroalga Bryopsis maxima from the Pacific coast of Japan. Bryopsis maxima is a unicellular, multinuclear, siphonous green macroalga. Radiation analysis revealed that B. maxima emitted remarkably high gamma radiation of (131)I, (134)Cs, (137)Cs, and (140)Ba as fission products of (235)U. Interestingly, B. maxima contained naturally occurring radionuclides derived from (226)Ra and (228)Ra. Analysis of element content revealed that B. maxima accumulates many ocean elements, especially high quantities of the alkaline earth metals Sr (15.9 g per dry-kg) and Ba (3.79 g per dry-kg), whereas Ca content (12.5 g per dry-kg) was lower than that of Sr and only 61 % of the mean content of 70 Japanese seaweed species. Time-course analysis determined the rate of radioactive (85)Sr incorporation into thalli to be approximately 0.13 g Sr per dry-kg of thallus per day. Subcellular fractionation of B. maxima cells showed that most of the (85)Sr was localized in the soluble fraction, predominantly in the vacuole or cytosol. Given that (85)Sr radioactivity was permeable through a dialysis membrane, the (85)Sr was considered to be a form of inorganic ion and/or bound with a small molecule. Precipitation analysis with sodium sulfate showed that more than 70% of the Sr did not precipitate as SrSO4, indicating that a proportion of the Sr may bind with small molecules in B. maxima.

  19. Diffusion Behavior of Mn and Si Between Liquid Oxide Inclusions and Solid Iron-Based Alloy at 1473 K

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Joong; Tago, Hanae; Kim, Kyung-Ho; Kitamura, Shin-ya; Shibata, Hiroyuki

    2018-06-01

    In order to clarify the changes in the composition of oxide inclusions in steel, the effect of the metal and oxide composition on the reaction between solid Fe-based alloys and liquid multi-component oxides was investigated using the diffusion couple method at 1473 K. The measured concentration gradients of Mn and Si in the metal indicated that Mn diffused into the metal from the oxide, while the diffusion of Si occurred in the opposite direction. In addition, the MnO content in the oxide decreased with heat treatment time, while the SiO2 content increased. The compositional changes in both phases indicated that the Mn content in the metal near the interface increased with heat treatment with decreasing MnO content in the oxide. Assuming local equilibrium at the interface, the calculated [Mn]2/[Si] ratio at the interface in equilibrium with the oxide increased with increases in the MnO/SiO2 ratio in the oxide. The difference in the [Mn]2/[Si] ratios between the interface and the metal matrix increased, which caused the diffusion of Mn and Si between the multi-component oxide and metal. By measuring the diffusion lengths of Mn and Si in the metal, the chemical diffusion coefficients of Mn and Si were obtained to calculate the composition changes in Mn and Si in the metal. The calculated changes in Mn and Si in the metal agreed with the experimental results.

  20. What shapes stellar metallicity gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2017-03-01

    We investigate the differential impact of physical mechanisms, mergers and internal energetic phenomena, on the evolution of stellar metallicity gradients in massive, present-day galaxies employing sets of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic, stellar-driven winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity gradients in agreement with observations. In contrast, the gradients of the models without winds are inconsistent with observations. Moreover, we discuss the impact of additional AGN feedback. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (e.g. MaNGA, CALIFA).

  1. Trace metal pollution assessment in the surface sediments of nearshore area, off Calicut, southwest coast of India.

    PubMed

    Srinivas, Reji; Shynu, R; Sreeraj, M K; Ramachandran, K K

    2017-07-15

    Metal concentrations (Al, Cr, Ni, Cu, Zn, and Pb), grain size, and total organic carbon content in 29 surface sediment samples from the nearshore area off Calicut were analyzed to determine their distribution and pollution status. Surface sediments were dominantly silts with low percentage of clay and sand at nearshore and offshore areas. The mean metal concentrations were in the following order: Cr>Ni>Zn>Pb>Cu. The enrichment factor and geo-accumulation index of metals suggest that the surface sediments were not polluted by Zn and moderately polluted by Cu and Ni. By contrast, Cr and Pb showed significant enrichment levels. Results from a multivariate statistical analysis suggested that the spatial enrichment of these heavy metals was related to sediment type. Thus, the sediment distribution and their metal enrichment were mainly controlled by local hydrodynamic conditions that caused the winnowing of fine-grained sediments. Copyright © 2017. Published by Elsevier Ltd.

  2. Influence of metals on essential oil content and composition of lemongrass (Cymbopogon citratus (D.C.) Stapf.) grown under different levels of red mud in sewage sludge amended soil.

    PubMed

    Gautam, Meenu; Agrawal, Madhoolika

    2017-05-01

    Lemongrass is a commercially important perennial herb with medicinal value and ability to tolerate high alkaline and saline conditions. Essential oil bearing plants can grow safely in soil contaminated with heavy metals without severe effects on morphology and oil yield. The present study was aimed to assess the essential oil content and composition in lemongrass in response to elevated metals in above-ground plant parts. Pot experiment was conducted for six months using sewage sludge as soil amendment (soil: sludge: 2:1 w/w) followed by red mud treatments (0, 5, 10 and 15% w/w). Garden soil without sludge and red mud was control and there were ten replicates of each treatment. Oil content in leaves was differently affected due to presence of metals in soil under different treatments. Oil content under S RM5 (5% red mud) treatment was raised by 42.9 and 11.5% compared to the control and S RM0 treatment, respectively. Among identified compounds in oil under red mud treatments, 17 compounds contributed more than 90% of total volatiles (citral contributing approximately 70%). Under S RM10 treatment, essential oil showed maximum citral content (75.3%). Contents of Fe, Zn, Cu, Cd, Ni and Pb in above-ground plant parts exceeded, whereas Mn was detected within WHO permissible limits for medicinal plants. However, metal contents in essential oil were well within FSSAI limits for food. The study suggests utilization of 5 and 10% red mud in sludge amended soil for lemongrass cultivation to have better oil yield and quality, without metal contamination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Concentrations of lead, cadmium, mercury and other elements in seeds of Lupinus mutabilis and of other legumes.

    PubMed

    Gross, R; Auslitz, J; Schramel, P; Payer, H D

    1987-01-01

    Several species of legumes and varieties of lupins were examined for their heavy metal content in the seeds. Atomic absorption spectrometry was the main analytical tool. Validity and reproducibility of the results was checked by analyzing the same materials at two different laboratories performing the same technique. Additionally, inductively coupled plasma emission spectroscopy was applied. In grains of Lupinus mutabilis which constitute a traditional food in Andean populations, the following contents of heavy metals were determined: 0.10-0.25 microgram/g Cd; 0.5-1.6 microgram/g Pb; 0.10-0.15 microgram/g Hg. Seeds of other legumes contained 0.05-0.35 microgram/g Cd; 0.1-0.2 microgram/g Pb; 0.01-0.04 microgram/g Hg. The high lead content of lupins is easily reduced to one tenth by traditional extraction with boiling water. The mercury content, too, is decreased by this technique. The high manganese content of 1 300-1,400 micrograms/g of Lupinus albus compared to other legumes (25-37 micrograms/g) seems to be characteristic for this species and may be of nutritional significance. The comparison of the heavy metal contents of legume seeds of different origin and variety indicates a complex pattern of environmental and genetic factors that contribute to the specific metal contents of individual harvests. On the level of varieties the environmental factors (climate, soil, geology, agricultural techniques) seem to exhibit more important influences on the specific accumulation of heavy metals than genetic factors. In contrast, on the level of species or genera, the accumulation of heavy metals seems to be dominated by genetic factors rather than by environmental influences.

  4. Photosynthetic Pigments in Hypogymnia Physodes with Different Metal Contents

    NASA Astrophysics Data System (ADS)

    Meysurova, A. F.; Notov, A. A.; Pungin, A. V.

    2018-01-01

    Chlorophyll a and b contents in Hypogymnia physodes specimens collected from various economic areas and natural complexes of Tver Region were found to differ substantially using a spectrophotometric method, showing that the lichen photosynthetic system is highly adaptable. The chlorophyll b content was linked primarily to adaptation to specific environmental features in various plant communities. The chlorophyll a content changed to provide the necessary compensatory responses under technogenic stress. A total of 15 metals (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Ti, V, and Zn) were detected in H. physodes samples using inductively coupled plasma atomicemission spectroscopy (ICP AES). The most widespread of them were Fe, Al, and Ti. Significant correlations among the concentrations of these metals and the chlorophyll a content were revealed.

  5. Nondestructive Determination of Cu Residue in Orange Peel by Laser Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hu, Huiqin; Huang, Lin; Liu, Muhua; Chen, Tianbing; Yang, Ping; Yao, Mingyin

    2015-08-01

    Laser induced breakdown spectroscopy (LIBS) is an emerging tool with rapid, nondestructive, green characteristics in qualitative or quantitative analyses of composition in materials. But LIBS has its shortcomings in detect limit and sensitivity. In this work, heavy metal Cu in Gannan Navel Orange, which is one of famous fruits from Jiangxi of China, was analyzed. In view of LIBS's limit, it is difficult to determinate heavy metals in natural fruits. In this work, nine orange samples were pretreated in 50-500 μg/mL Cu solution, respectively. Another one orange sample was chosen as a control group without any pollution treatment. Previous researchers observed that the content of heavy metals is much higher in peel than in pulp. So, the content in pulp can be reflected by detecting peel. The real concentrations of Cu in peels were acquired by atomic absorption spectrophotometer (AAS). A calibration model of Cu I 324.7 and Cu I 327.4 was constructed between LIBS intensity and AAS concentration by six samples. The correlation coefficient of the two models is also 0.95. All of the samples were used to verify the accuracy of the model. The results show that the relative error (RE) between predicted and real concentration is less than 6.5%, and Cu I 324.7 line has smaller RE than Cu I 327.4. The analysis demonstrated that different characteristic lines decided different accuracy. The results prove the feasibility of detecting heavy metals in fruits by LIBS. But the results are limited in treated samples. The next work will focus on direct analysis of heavy metals in natural fruits without any pretreatment. This work is helpful to explore the distribution of heavy metals between pulp and peel. supported by National Natural Science Foundation of China (No. 31460419) and Major Project of Science and Technology of Jiangxi, China (No. 20143ACB21013)

  6. Leaching characteristics of rare metal elements and chlorine in fly ash from ash melting plants for metal recovery.

    PubMed

    Jung, Chang-Hwan; Osako, Masahiro

    2009-05-01

    In terms of resource recovery and environmental impact, melting furnace fly ash (MFA) is attracting much attention in Japan due to its high metal content. The study aims to obtain fundamental information on using a water extraction method not only to concentrate valuable rare metals but also to remove undesirable substances such as chlorine for their recovery from MFA. The composition and leaching characteristics of MFA was investigated. The results revealed that the metal content in MFA is nearly equal to raw ore quality. The content of Ag, In, Pd, Pb, and Zn is, in fact, higher than the content of raw ore. As for leaching behavior, Ag, Bi, In, Ga, Ge, Sb, Sn, and Te showed the lowest release at a neutral pH range. Pd was leached constantly regardless of pH, but its concentration was quite low. On the other hand, most of the Tl was easily leached, revealing that water extraction is not appropriate for Tl recovery from MFA. Major elements Cl, Ca, Na, and K, occupying about 70% of MFA, were mostly leached regardless of pH. Base metal elements Cu, Pb, and Zn showed minimum solubility at a neutral pH. The leaching ratio of target rare metal elements and base metal elements suggests that the optimal pH for water extraction is 8-10, at which the leaching concentration is minimized. The water extraction process removed most of the Cl, Ca, Na, and K, and the concentration of rare metals and base metals increased by four or five times.

  7. PROCEEDINGS OF THE WORKSHOP ON SAMPLING GEOTHERMAL EFFLUENTS (2ND) HELD AT LAS VEGAS, NEVADA ON FEBRUARY 15-17, 1977

    EPA Science Inventory

    A partial listing of contents includes: The use of gas sampling bags for the collection and storage of hydrothermal gases; Heavy metal emissions from geothermal power plants; The dynamic measurement of ambient airborne gases near geothermal areas; Analysis of radon in geothermal ...

  8. Classification of commercial wines from the Canary Islands (Spain) by chemometric techniques using metallic contents.

    PubMed

    Frías, Sergio; Conde, José E; Rodríguez-Bencomo, Juan J; García-Montelongo, Francisco; Pérez-Trujillo, Juan P

    2003-02-06

    Eleven elements, K, Na, Ca, Mg, Fe, Cu, Zn, Mn, Sr, Li and Rb, were determined in dry and sweet wines bearing the denominations of origin of El Hierro, La Palma and Lanzarote islands (Canary Islands, Spain). Analyses were performed by flame atomic absorption spectrophotometry, with the exceptions of lithium and rubidium for which flame atomic emission spectrophotometry was used. Sweet wines from La Palma were elaborated as naturally sweet with over-ripe grapes and significant differences were found in all the analysed elements with the exceptions of sodium, iron and rubidium with regard to dry wines from the same island. Contrarily, sweet wines from Lanzarote elaborated with grapes in a similar ripening state to dry wines did not present significant differences between them with the exception of strontium, the content of which was greater in dry wines. Among the three islands, significant differences in mean content were found with the exceptions of iron and copper. Cluster analysis and principal component analysis show differences in wines according to the island of origin and the ripening state of the grapes. Linear discriminant analysis using rubidium, sodium, manganese and strontium, the four most discriminant elements, gave 100% recognition ability and 95.6% prediction ability. The sensitivity and specificity obtained using soft independent modelling of class analogy (SIMCA) as a modelling multivariate technique were both 100% for El Hierro and Lanzarote, and 100 and 95%, respectively, for La Palma. The modelling and discriminant capacities of the different metals were also studied.

  9. Ancient Uses of Meteoritic Metals as Precedent for Modern In-Situ Asteroid Mining

    NASA Astrophysics Data System (ADS)

    Mardon, Austin A.; Fawcett, Brett; Krispin, Daniel

    2016-05-01

    Given the strain on earth's supply of metal and the meteoritic content of meteorites, a prudent course would be to pursue in-situ asteroid mining of meteors for metal. There is a precedent for this going back to ancient Egypt; humans have always used the meteoritic content of meteorites to fashion everything from weapons to cosmetics.

  10. Optical diffusion property of cerumen from ear canal and correlation to metal content measured by synchrotron x-ray absorption

    NASA Astrophysics Data System (ADS)

    Holden, Todd; Dehipawala, Sumudu; Cheung, E.; Golebiewska, U.; Schneider, P.; Tremberger, G., Jr.; Kokkinos, D.; Lieberman, D.; Dehipawala, Sunil; Cheung, T.

    2012-03-01

    Human (and other mammals) would secrete cerumen (ear wax) to protect the skin of the ear canal against pathogens and insects. The studies of biodiversity of pathogen in human include intestine microbe colony, belly button microbe colony, etc. Metals such as zinc and iron are essentials to bio-molecular pathways and would be related to the underlying pathogen vitality. This project studies the biodiversity of cerumen via its metal content and aims to develop an optical probe for metal content characterization. The optical diffusion mean free path and absorption of human cerumen samples dissolved in solvent have been measured in standard transmission measurements. EXFAS and XANES have been measured at Brookhaven Synchrotron Light Source for the determination of metal contents, presumably embedded within microbes/insects/skin cells. The results show that a calibration procedure can be used to correlate the optical diffusion parameters to the metal content, thus expanding the diagnostic of cerumen in the study of human pathogen biodiversity without the regular use of a synchrotron light source. Although biodiversity measurements would not be seriously affected by dead microbes and absorption based method would do well, the scattering mean free path method would have potential to further study the cell based scattering centers (dead or live) via the information embedded in the speckle pattern in the deep-Fresnel zone.

  11. Changes in fatty acid content and composition between wild type and CsHMA3 overexpressing Camelina sativa under heavy-metal stress.

    PubMed

    Park, Won; Feng, Yufeng; Kim, Hyojin; Suh, Mi Chung; Ahn, Sung-Ju

    2015-09-01

    Under heavy-metal stress, CsHMA3 overexpressing transgenic Camelina plants displayed not only a better quality, but also a higher quantity of unsaturated fatty acids in their seeds compared with wild type. Camelina sativa L. belongs to the Brassicaceae family and is frequently used as a natural vegetable oil source, as its seeds contain a high content of fatty acids. In this study, we observed that, when subjected to heavy metals (Cd, Co, Zn and Pb), the seeds of CsHMA3 (Heavy-Metal P1B-ATPase 3) transgenic lines retained their original golden yellow color and smooth outline, unlike wild-type seeds. Furthermore, we investigated the fatty acids content and composition of wild type and CsHMA3 transgenic lines after heavy metal treatments compared to the control. The results showed higher total fatty acid amounts in seeds of CsHMA3 transgenic lines compared with those in wild-type seeds under heavy-metal stresses. In addition, the compositions of unsaturated fatty acids-especially 18:1 (oleic acid), 18:2 (linoleic acid; only in case of Co treatment), 18:3 (linolenic acid) and 20:1 (eicosenoic acid)-in CsHMA3 overexpressing transgenic lines treated with heavy metals were higher than those of wild-type seeds under the same conditions. Furthermore, reactive oxygen species (ROS) contents in wild-type leaves and roots when treated with heavy metal were higher than in CsHMA3 overexpressing transgenic lines. These results indicate that overexpression of CsHMA3 affects fatty acid composition and content-factors that are responsible for the fuel properties of biodiesel-and can alleviate ROS accumulation caused by heavy-metal stresses in Camelina. Due to these factors, we propose that CsHMA3 transgenic Camelina can be used for phytoremediation of metal-contaminated soil as well as for oil production.

  12. Rapid Analysis of the Size Distribution of Metal-Containing Aerosol

    PubMed Central

    Park, Jae Hong; Mudunkotuwa, Imali A.; Crawford, Kathryn J.; Anthony, T. Renée; Grassian, Vicki H.; Peters, Thomas M.

    2017-01-01

    Conventional methods to measure the metallic content of particles by size are time consuming and expensive, requiring collection of particles with a cascade impactor and subsequent metals analysis by inductively coupled plasma mass spectrometry (ICP-MS). In this work, we describe a rapid way to measure the size distribution of metal-containing particles from 10 nm to 20 μm, using a nano micro-orifice uniform-deposit impactor (nano-MOUDI) to size-selective and collect particles that are then analyzed with a field portable X-ray fluorescence (FP-XRF) to determine metal composition and concentration. The nano-MOUDI was used to sample a stainless-steel aerosol produced by a spark discharge system. The particle-laden substrates were then analyzed directly with FP-XRF and then with ICP-MS. Results from FP-XRF were linearly correlated with results from ICP-MS (R2 = 0.91 for Fe and R2 = 0.84 for Cr). Although the FP-XRF was unable to detect Fe particles at mass per substrate loadings less than 2.5 μg effectively, it produced results similar to those using the ICP-MS at a mass per substrate loading greater than 2.5 μg. PMID:28871214

  13. Monitoring heavy metal Cr in soil based on hyperspectral data using regression analysis

    NASA Astrophysics Data System (ADS)

    Zhang, Ningyu; Xu, Fuyun; Zhuang, Shidong; He, Changwei

    2016-10-01

    Heavy metal pollution in soils is one of the most critical problems in the global ecology and environment safety nowadays. Hyperspectral remote sensing and its application is capable of high speed, low cost, less risk and less damage, and provides a good method for detecting heavy metals in soil. This paper proposed a new idea of applying regression analysis of stepwise multiple regression between the spectral data and monitoring the amount of heavy metal Cr by sample points in soil for environmental protection. In the measurement, a FieldSpec HandHeld spectroradiometer is used to collect reflectance spectra of sample points over the wavelength range of 325-1075 nm. Then the spectral data measured by the spectroradiometer is preprocessed to reduced the influence of the external factors, and the preprocessed methods include first-order differential equation, second-order differential equation and continuum removal method. The algorithms of stepwise multiple regression are established accordingly, and the accuracy of each equation is tested. The results showed that the accuracy of first-order differential equation works best, which makes it feasible to predict the content of heavy metal Cr by using stepwise multiple regression.

  14. Concentrations and speciation of heavy metals in sludge from nine textile dyeing plants.

    PubMed

    Liang, Xin; Ning, Xun-an; Chen, Guoxin; Lin, Meiqing; Liu, Jingyong; Wang, Yujie

    2013-12-01

    The safe disposal of sludge from textile dyeing industry requires research on bioavailability and concentration of heavy metals. In this study, concentrations and chemical speciation of heavy metals (Cd, Cr, Cu, Ni, Zn, Pb) in sludge from nine different textile dyeing plants were examined. Some physiochemical features of sludge from textile dyeing industry were determined, and a sequential extraction procedure recommended by the Community Bureau of Reference (BCR) was used to study the metal speciation. Cluster analysis (CA) and principal component analysis (PCA) were applied to provide additional information regarding differences in sludge composition. The results showed that Zn and Cu contents were the highest, followed by Ni, Cr, Cd and Pb. The concentration of Cd and Ni in some sludge samples exceeded the standard suggested for acidic soils in China (GB18918-2002). In sludge from textile dyeing plants, Pb, Cd and Cr were principally distributed in the oxidizable and residual fraction, Cu in the oxidizable fraction, Ni in all four fractions and Zn in the acid soluble/exchangeable and reducible fractions. The pH and heat-drying method affected the fractionation of heavy metals in sludge. © 2013 Elsevier Inc. All rights reserved.

  15. Current trends and challenges in sample preparation for metallic nanoparticles analysis in daily products and environmental samples: A review

    NASA Astrophysics Data System (ADS)

    De la Calle, Inmaculada; Menta, Mathieu; Séby, Fabienne

    2016-11-01

    Due to the increasing use of nanoparticles (NPs) in consumer products, it becomes necessary to develop different strategies for their detection, identification, characterization and quantification in a wide variety of samples. Since the analysis of NPs in consumer products and environmental samples is particularly troublesome, a detailed description of challenges and limitations is given here. This review mainly focuses on sample preparation procedures applied for the mostly used techniques for metallic and metal oxide NPs characterization in consumer products and most outstanding publications of biological and environmental samples (from 2006 to 2015). We summarize the procedures applied for total metal content, extraction/separation and/or preconcentration of NPs from the matrix, separation of metallic NPs from their ions or from larger particles and NPs' size fractionation. Sample preparation procedures specifically for microscopy are also described. Selected applications in cosmetics, food, other consumer products, biological tissues and environmental samples are presented. Advantages and inconveniences of those procedures are considered. Moreover, selected simplified schemes for NPs sample preparation, as well as usual techniques applied are included. Finally, promising directions for further investigations are discussed.

  16. Quantitative analysis and reduction of the eco-toxicity risk of heavy metals for the fine fraction of automobile shredder residue (ASR) using H2O2.

    PubMed

    Singh, Jiwan; Yang, Jae-Kyu; Chang, Yoon-Young

    2016-02-01

    Automobile shredder residue (ASR) fraction (size <0.25mm) can be considered as hazardous due to presence of high concentrations of heavy metals. Hydrogen peroxide combined with nitric acid has been used for the recovery of heavy metals (Zn, Cu, Mn, Fe, Ni, Pb, Cd and Cr) from the fine fraction of ASR. A sequential extraction procedure has also been used to determine the heavy metal speciation in the fine fraction of ASR before and after treatment. A risk analysis of the fine fraction of ASR before and after treatment was conducted to assess the bioavailability and eco-toxicity of heavy metals. These results showed that the recovery of heavy metals from ASR increased with an increase in the hydrogen peroxide concentration. A high concentration of heavy metals was found to be present in Cbio fractions (the sum of the exchangeable and carbonate fractions) in the fine fraction of ASR, indicating high toxicity risk. The Cbio rate of all selected heavy metals was found to range from 8.6% to 33.4% of the total metal content in the fine fraction of ASR. After treatment, Cbio was reduced to 0.3-3.3% of total metal upon a treatment with 2.0% hydrogen peroxide. On the basis of the risk assessment code (RAC), the environmental risk values for heavy metals in the fine fraction of ASR reflect high risk/medium risk. However, after treatment, the heavy metals would be categorized as low risk/no risk. The present study concludes that hydrogen peroxide combined with nitric acid is a promising treatment for the recovery and reduction of the eco-toxicity risk of heavy metals in ASR. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Ti-Si-C thin films produced by magnetron sputtering: correlation between physical properties, mechanical properties and tribological behavior.

    PubMed

    Cunha, L; Vaz, F; Moura, C; Munteanu, D; Ionescu, C; Rivière, J P; Le Bourhis, E

    2010-04-01

    Ti-Si-C thin films were deposited onto silicon, stainless steel and high-speed steel substrates by magnetron sputtering, using different chamber configurations. The composition of the produced films was obtained by Electron Probe Micro-Analysis (EPMA) and the structure by X-ray diffraction (XRD). The hardness and residual stresses were obtained by depth-sensing indentation and substrate deflection measurements (using Stoney's equation), respectively. The tribological behavior of the produced films was studied by pin-on-disc. The increase of the concentration of non-metallic elements (carbon and silicon) caused significant changes in their properties. Structural analysis revealed the possibility of the coexistence of different phases in the prepared films, namely Ti metallic phase (alpha-Ti or beta-Ti) in the films with higher Ti content. The coatings with highest carbon contents, exhibited mainly a sub-stoichiometric fcc NaCI TiC-type structure. These structural changes were also confirmed by resistivity measurements, whose values ranged from 10(3) omega/sq for low non-metal concentration, up to 10(6) omega/sq for the highest metalloid concentration. A strong increase of hardness and residual stresses was observed with the increase of the non-metal concentration in the films. The hardness (H) values ranged between 11 and 27 GPa, with a clear dependence on both crystalline structure and composition features. Following the mechanical behavior, the tribological results showed similar trends, with both friction coefficients and wear revealing also a straight correlation with the composition and crystalline structure of the coatings.

  18. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    PubMed Central

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream. PMID:26366176

  19. Physico-chemical treatment of liquid waste on an industrial plant for electrocoagulation.

    PubMed

    Mlakar, Matej; Levstek, Marjetka; Stražar, Marjeta

    2017-10-01

    Wastewater from washing, oil separators, the metal processing and detergent industries, was tested and treated for treatment of different types of liquid waste at industrial level at Domžale-Kamnik Wastewater Treatment Plant (WWTP). The effect of implementing the electrocoagulation (EC) and flotation processes, respectively, is analysed and includes the duration of the EC implementation, voltage, number of electrodes, and chemical addition, as well as the pH effect and conductivity. The tests were performed not only on various types of liquid waste, but also on different mixtures of liquid waste. Laboratory analysis of the samples before and after EC have shown an effective reduction not only in organic loads in accordance with the COD (chemical oxygen demand) parameter, but also in mineral oil content, toxic metal concentration, and surfactants. The COD in liquid waste from the detergent industry was reduced by 73% and the content of surfactants by 64%. In liquid waste from the metal processing industry, the COD decreased by up to 95%, while the content of toxic metals decreased from 59 to 99%. Similar phenomena were shown in liquid waste from oil separators, where the COD was reduced to 33% and the concentration of mineral oils by 99%. Some of the liquid wastes were mixed together in the ratio 1:1, thus allowing testing of the operation of EC technology in heterogeneous liquid waste, where the final result proved to be effective cleaning as well. After treatment in the process of EC, the limit values of the treated water proved appropriate for discharge into the sewerage system.

  20. Assessment of nanoparticles and metal exposure of airport workers using exhaled breath condensate.

    PubMed

    Marie-Desvergne, Caroline; Dubosson, Muriel; Touri, Léa; Zimmermann, Eric; Gaude-Môme, Marcelline; Leclerc, Lara; Durand, Catherine; Klerlein, Michel; Molinari, Nicolas; Vachier, Isabelle; Chanez, Pascal; Mossuz, Véronique Chamel

    2016-07-13

    Aircraft engine exhaust increases the number concentration of nanoparticles (NP) in the surrounding environment. Health concerns related to NP raise the question of the exposure and health monitoring of airport workers. No biological monitoring study on this profession has been reported to date. The aim was to evaluate the NP and metal exposure of airport workers using exhaled breath condensate (EBC) as a non-invasive biological matrix representative of the respiratory tract. EBC was collected from 458 French airport workers working either on the apron or in the offices. NP exposure was characterized using particle number concentration (PNC) and size distribution. EBC particles were analyzed using dynamic light scattering (DLS) and scanning electron microscopy coupled to x-ray spectroscopy (SEM-EDS). Multi-elemental analysis was performed for aluminum (Al), cadmium (Cd) and chromium (Cr) EBC contents. Apron workers were exposed to higher PNC than administrative workers (p  <  0.001). Workers were exposed to very low particle sizes, the apron group being exposed to even smaller NP than the administrative group (p  <  0.001). The particulate content of EBC was brought out by DLS and confirmed with SEM-EDS, although no difference was found between the two study groups. Cd concentrations were higher in the apron workers (p  <  0.001), but still remained very low and close to the detection limit. Our study reported the particulate and metal content of airport workers airways. EBC is a potential useful tool for the non-invasive monitoring of workers exposed to NP and metals.

  1. Influences of thermal decontamination on mercury removal, soil properties, and repartitioning of coexisting heavy metals.

    PubMed

    Huang, Yu-Tuan; Hseu, Zeng-Yei; Hsi, Hsing-Cheng

    2011-08-01

    Thermal treatment is a useful tool to remove Hg from contaminated soils. However, thermal treatment may greatly alter the soil properties and cause the coexisting contaminants, especially trace metals, to transform and repartition. The metal repartitioning may increase the difficulty in the subsequent process of a treatment train approach. In this study, three Hg-contaminated soils were thermally treated to evaluate the effects of treating temperature and duration on Hg removal. Thermogravimetric analysis was performed to project the suitable heating parameters for subsequent bench-scale fixed-bed operation. Results showed that thermal decontamination at temperature>400°C successfully lowered the Hg content to<20 mg kg(-1). The organic carbon content decreased by 0.06-0.11% and the change in soil particle size was less significant, even when the soils were thermally treated to 550°C. Soil clay minerals such as kaolinite were shown to be decomposed. Aggregates were observed on the surface of soil particles after the treatment. The heavy metals tended to transform into acid-extractable, organic-matter bound, and residual forms from the Fe/Mn oxide bound form. These results suggest that thermal treatment may markedly influence the effectiveness of subsequent decontamination methods, such as acid washing or solvent extraction. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Toxic and essential mineral elements content of black tea leaves and their tea infusions consumed in Iran.

    PubMed

    Salahinejad, Maryam; Aflaki, Fereydoon

    2010-04-01

    The metal contents of eleven black tea samples, four cultivated in Iran and seven imported, and their tea infusions were determined. Twelve elements consisting toxic metals (Al, As, Pb, Cr, Cd, and Ni) and essential mineral elements (Fe, Zn, Cu, Mn, Ca, and Mg) were analyzed using inductively coupled plasma atomic emission spectroscopy (ICP-AES). Al, Ca, Mg, and Mn ranged in black tea leaves at mg g(-1) levels, while Cr, Fe, Ni, Cu, Zn were at microg g(-1) levels. Analysis of variance showed no statistically significant differences among most elements determined in cultivated and imported black teas in Iran except for Ni and Cu. The extraction efficiency of each element into tea infusions was evaluated. The solubility of measured metals in infusion extracts varied widely and ranged from 0 to 59.3%. Among the studied elements, Cr, Pb, and Cd showed the lowest rates of solubility and Ni had the highest rates of solubility. The amount of toxic metals and essential mineral elements that one may take up through consumption of black tea infusion was estimated. The amount of realizing each element into tea infusions and acceptable daily intake, for safety consumption of black tea, was compared.

  3. Metal content of earthworms in sludge-amended soils: uptake and loss

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neuhauser, E.F.; Malecki, M.R.; Cukic, Z.V.

    1985-11-01

    The widespread practice of landspreading of sludge has raised concern about increasing concentrations of potentially toxic metals in soils, with the possibility of these metals adversely impacting terrestrial and aquatic ecosystems. Earthworms, as one of the largest components of the soil biota, are useful indicators of potentially toxic soil metal concentrations. The study describes the metal content of five metals (Cd, Cu, Ni, Pb, and Zn) in one earthworm species, Allolobophora tuberculata, as a function of varying soil metal concentrations in the same soil type and the ability of the earthworms to bioconcentrate the five metals. The rate of uptakemore » of the five metals in earthworms with initially low concentrations of metals placed in a soil with high metal concentrations was evaluated for a 112 day period. The rate of loss of the five metals in earthworms with initially high metal concentrations placed in soil with low metal concentrations was also examined.« less

  4. Characterization of shredded television scrap and implications for materials recovery.

    PubMed

    Cui, Jirang; Forssberg, Eric

    2007-01-01

    Characterization of TV scrap was carried out by using a variety of methods, such as chemical analysis, particle size and shape analysis, liberation degree analysis, thermogravimetric analysis, sink-float test, and IR spectrometry. A comparison of TV scrap, personal computer scrap, and printed circuit board scrap shows that the content of non-ferrous metals and precious metals in TV scrap is much lower than that in personal computer scrap or printed circuit board scrap. It is expected that recycling of TV scrap will not be cost-effective by utilizing conventional manual disassembly. The result of particle shape analysis indicates that the non-ferrous metal particles in TV scrap formed as a variety of shapes; it is much more heterogeneous than that of plastics and printed circuit boards. Furthermore, the separability of TV scrap using density-based techniques was evaluated by the sink-float test. The result demonstrates that a high recovery of copper could be obtained by using an effective gravity separation process. Identification of plastics shows that the major plastic in TV scrap is high impact polystyrene. Gravity separation of plastics may encounter some challenges in separation of plastics from TV scrap because of specific density variations.

  5. The effect of low-temperature transformation of mixtures of sewage sludge and plant materials on content, leachability and toxicity of heavy metals.

    PubMed

    Gondek, Krzysztof; Baran, Agnieszka; Kopeć, Michał

    2014-12-01

    The aim of the study was to determine the influence of the process of low-temperature transformation and the addition of plant material to sewage sludge diversifying the content of mobile forms of heavy metals and their ecotoxicity. The experimental design included: sewage sludge+rape straw, sewage sludge+wheat straw, sewage sludge+sawdust, sewage sludge+bark and sewage sludge with no addition. The mixtures were subjected to thermal transformation in a chamber furnace, under conditions without air. The procedure consisted of two stages: the first stage (130°C for 40 min) focused on drying the material, whereas in the second stage (200°C for 30 min) proper thermal transformation of materials took place. Thermal transformation of the materials, caused an increase in total contents of heavy metals in comparison to the material before transformation. From among elements, the cadmium content changed the most in materials after thermal transformation. As a result of thermal transformation, the content of water soluble form of the heavy metals decreased significantly in all the prepared mixtures. Low toxicity of the extracts from materials for Vibrio fischeri and Lepidium sativum was found in the research, regardless of transformation process. L. sativum showed higher sensitivity to heavy metals occurring in the studied extracts from materials than V. fischeri, evidence of which are the positive significant correlations between the content of metals and the inhibition of root growth of L. sativum. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Elemental characterization of Mt. Sinabung volcanic ash, Indonesia by Neutron Activation Analysis

    NASA Astrophysics Data System (ADS)

    Kusmartini, I.; Syahfitri, W. Y. N.; Kurniawati, S.; Lestiani, D. D.; Santoso, M.

    2017-06-01

    Mount Sinabung is a volcano located in North Sumatera, Indonesia which has been recorded not erupted since 1600. However in 2013 it has been erupted and cause of black thick smog, rain sand and volcanic ash. Volcanic ash containing trace elements material that can be utilized in various applications but still has potential danger of heavy metals. In order to obtain an elemental composition data of volcanic ash, the characterization of volcanic ash were carried out using Neutron Activation Analysis. The volcanic ash was taken from Mt. Sinabung eruption. Samples were irradiated at the rabbit system in the reactor G.A Siwabessy facilities with neutron flux ˜ 1013 n.cm-2.s-1 and then counted using HPGe detector. Method validation was carried out by SRM NIST Coal Fly Ash 1633b and NIST 2711a Montana II Soil with recovery values were in the range of 96-108% and 95-106% respectively. The results showed that major elements; Al, Na, Ca and Fe, concentrations were 8.7, 1.05, 2.98 and 7.44 %, respectively, minor elements K, Mg, Mn, Ti, V and Zn were 0.87%, 0.78%, 0.18%, 0.62%, 197.13 ppm and 109.35 ppm, respectively, heavy metals; As, Cr, Co and Sb, contents were 4.48, 11.75, 17.13 and 0.35 ppm, respectively while rare earth elements such as Ce, Eu, La, Nd, Sm, Yb were 45.33, 1.22, 19.63, 20.34, 3.86, and 2.57 ppm respectively. The results of the elemental contents of volcanic ash that has been obtained can be used as the scientific based data for volcanic material utilization by considering the economic potential of elements contained and also the danger of the heavy metals content.

  7. [Element distribution analysis of welded fusion zone by laser-induced breakdown spectroscopy].

    PubMed

    Yang, Chun; Zhang, Yong; Jia, Yun-Hai; Wang, Hai-Zhou

    2014-04-01

    Over the past decade there has been intense activity in the study and development of laser-induced breakdown spectroscopy (LIBS). As a new tool for surface microanalysis, it caused widespread in materials science because of the advantage of rapid and high sensitivity. In the present paper, the distribution of Ni, Mn, C and Si near weld fusion line was analyzed on two kinds of weld sample. Line scanning mode analysis was carried out by three different kinds of methods, namely laser-induced breakdown spectroscopy (LIBS), scanning electron microscope/energy dispersive spectrometer (SEM/EDS) and electron probe X-ray microanalyser (EPMA). The concentration variation trend of Ni and Mn acquired by LIBS is coincident with SEM/EDS and EPMA. The result shows that the content of Ni and Mn was significantly different between weld seam and base metal on both the samples. The content of Ni and Mn was much higher in weld seam than in base metal, and a sharp concentration gradient was analyzed in the fusion zone. According to the distribution of Ni and Mn, all the three methods got a similar value of welded fusion zone width. The concentration variation trend of C and Si acquired by LIBS is not coincident with SEM/EDS and EPMA. The concentration difference between weld seam and base metal was analyzed by LIBS, but had not by SEM/EDS and EPMA, because of the low concentration and slight difference. The concentration gradient of C and Si in fusion zone was shows clearly by LIBS. For higher sensitivity performance, LIBS is much more adapted to analyze low content element than SEM/EDS and EPMA.

  8. [Source identification and potential ecological hazards assessment of trace metalloid/heavy metals in the soil of Tianshan Mountains, Xinjiang, China].

    PubMed

    Zhang, Zhao-Yong; Jilili, Abuduwailil; Jiang, Feng-Qing

    2014-11-01

    In this study, the contents of ten metalloid/heavy metals (As, Pb, Ni, Cd, Co, Hg, Cu, Mn, Zn and Cr) in soil samples collected from three sections including the central Urumqi-Akesu, eastern Blikun-Yiwu and western Zhaosu-Tekesi in Tianshan Mountains were determined, and their sources were identified by using typical statistical and multivariate statistical methods. The potential ecological risks of these heavy metals were assessed by employing pollution index method, potential ecological risk index and the background values of Tianshan Mountains, and Xinjiang, and also the Second National Standard of the Soil Qualities of China. The results showed that the contents of the heavy metals (Pb, Ni, Cd, Co, Hg, Cu, Mn Zn and Cr) and metalloid As were all higher than the soil background values of the Tianshan Mountain or Xinjiang, and their variation co- efficients belonged to the medium variation. In general, the contents of the ten metalloid/heavy metals in the soil of Tianshan Mountains were low. Principal component analysis showed that the ten metalloid/heavy metals could be identified as two principal components, among which PC1 (Cd, Pb, Hg, Mn and Zn) could be seen as 'human influence sources factor', PC2 (Cu, Ni, Cr, Co and As) as 'natural sources factor'. Mn and As had larger loads both in PC1 and PC2, and they could be co-influenced by human and natural sources. The pollution assessment showed that Hg and Cd in central Urumuqi-Akesu section and As in western Zhaosu-Tekesi section were all at alert level, while the other heavy metals in other sections were all at security level. From the comprehensive pollution indices (P(z)) of heavy metals, it was found that the ten metalloid/heavy metals in the soils of central Urumqi-Akesu section were at low pollution level, but those in the other two sections were at clean level. The potential ecological risk assessment showed that the potential ecological risk coefficient (E(i)r) and the ecological damage index (RI) of Hg and Cd in central Urumqi-Akesu section and that of As in western Zhaosu-Tekesi section were relatively high.

  9. Comparison between cachaça and rum using pattern recognition methods.

    PubMed

    Cardoso, Daniel R; Andrade-Sobrinho, Luiz G; Leite-Neto, Alexandre F; Reche, Roni V; Isique, William D; Ferreira, Marcia M C; Lima-Neto, Benedito S; Franco, Douglas W

    2004-06-02

    The differentiation between cachaça and rum using analytical data referred to alcohols (methanol, propanol, isobutanol, and isopentanol), acetaldehyde, ethyl acetate, organic acids (octanoic acid, decanoic acid, and dodecanoic acid), metals (Al, Ca, Co, Cu, Cr, Fe, Mg, Mn, Ni, Na, and Zn), and polyphenols (protocatechuic acid, sinapaldehyde, syringaldehyde, ellagic acid, syringic acid, gallic acid, (-)-epicatechin, vanillic acid, vanillin, p-coumaric acid, coniferaldehyde, coniferyl alcohol, kaempferol, and quercetin) is described. The organic and metal analyte contents were determined in 18 cachaça and 21 rum samples using chromatographic methods (GC-MS, GC-FID, and HPLC-UV-vis) and inductively coupled plasma atomic emission spectrometry, respectively. The analytical data of the above compounds, when treated by principal component analysis, hierarchical cluster analysis, discriminant analysis, and K-nearest neighbor analysis, provide a very good discrimination between the two classes of beverages.

  10. Use of lichens in detecting environmental risk and in geochemical prospecting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dongarra, G.; Sabatino, G.; Triscari, M.

    1995-10-01

    This paper provides data on variations in the contents of As, Sb, Ni, V, Pb, Cu, Au, Zn, Sc, and Al, measured in the thalli of a saxicolous lichen species, X anthoria calcicola Ochsner s.l., collected in northeastern Sicily, near an industrial zone and along a belt crossing areas of known ores containing sulfides of heavy metals. A total of 91 lichen samples were collected on roof tiles (39) and on rocks (52). In the industrial zone, analysis of lichen thalli revealed high contents of nickel and vanadium, decreasing at increasing distances from the source of contamination. The results havemore » also revealed the versatility of Xanthoria calcicola in geochemical prospecting for heavy metals such as Pb, Zn, As, Au, Sb, Ni, V, and Cu. The contents of these elements in the analyzed lichens highlight the same geochemical associations observed in prospecting surveys on samples of river sediments and identify similar anomalies. Interpretation of data in terms of enrichment factors (EFs) turned out to be particularly useful. 31 refs., 7 figs., 2 tabs.« less

  11. Thermodynamic analysis of the selective chlorination of electric arc furnace dust.

    PubMed

    Pickles, C A

    2009-07-30

    The remelting of automobile scrap in an electric arc furnace (EAF) results in the production of a dust, which contains high concentrations of the oxides of zinc, iron, calcium and other metals. Typically, the lead and zinc are of commercial value, while the other metals are not worth recovering. At the present time, EAF dusts are treated in high temperature Waelz rotary kiln-type processes, where the lead and zinc oxides are selectively reduced and simultaneously reoxidized and a crude zinc oxide is produced. Another alternative processing route is selective chlorination, in which the non-ferrous metals are preferentially chlorinated to their gaseous chlorides and in this manner separated from the iron. In the present research, a detailed thermodynamic analysis of this chlorination process has been performed and the following factors were investigated; temperature, amount of chlorine, lime content, silica content, presence of an inert gas and the oxygen potential. High lead and zinc recoveries as gaseous chlorides could be achieved but some of the iron oxide was also chlorinated. Additionally, the calcium oxide in the dust consumes chlorine, but this can be minimized by adding silica, which results in the formation of stable calcium silicates. The optimum conditions were determined for a typical dust composition. The selectivities achieved with chlorination were lower than those for reduction, as reported in the literature, but there are other advantages such as the potential recovery of copper.

  12. Basic failure mechanisms in advanced composites

    NASA Technical Reports Server (NTRS)

    Mullin, J. V.; Mazzio, V. F.; Mehan, R. L.

    1972-01-01

    Failure mechanisms in carbon-epoxy composites are identified as a basis for more reliable prediction of the performance of these materials. The approach involves both the study of local fracture events in model specimens containing small groups of filaments and fractographic examination of high fiber content engineering composites. Emphasis is placed on the correlation of model specimen observations with gross fracture modes. The effects of fiber surface treatment, resin modification and fiber content are studied and acoustic emission methods are applied. Some effort is devoted to analysis of the failure process in composite/metal specimens.

  13. Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L.

    PubMed

    Sinha, Sarita; Saxena, Rohit

    2006-03-01

    The effect of Fe was investigated in medicinally important plant, Bacopa monnieri L. and the response on malondialdehyde (MDA) content, superoxide dismutase (SOD), peroxidase (POD) and ascorbate peroxidase (APX) was found different in roots and leaves of the metal treated plants. Iron induced stress was observed as indicated by high level of lipid peroxidation, being more steep increase in leaves than roots. In roots, SOD activity was found to increase in metal treated plants except 80 and 160 microM at 72 h, whereas, it decreased in leaves except 10 and 40 microM after 48 h as compared to their respective controls. Among H2O2 eliminating enzymes, POD activity increased in roots, however, it decreased in leaves except at 10 and 40 microM Fe after 48 h as compared to control. At 24 and 48 h, APX activity and ascorbic acid content followed the similar trend and were found to increase in both parts of the metal treated plants as compared to their respective controls. The level of cysteine content in the roots increased at initial period of exposure; however, no marked change in its content was noticed in leaves. In both roots and leaves, non-protein thiol content was found to increase except at higher metal concentrations at 72 h. The data of proline content have shown significant (p<0.01) increase at 40 microM onwards in both part of the plants after 48 and 72 h. Correlation coefficient was evaluated between metal accumulations with various parameters and also between different antioxidant parameters with MDA. Since the level of bacoside-A (active constituent) content in metal treated plants increases, therefore, it is advisable to assess the biological activity of the plants before using for medicinal purposes, particularly in developing countries.

  14. Combustion of horse manure for heat production.

    PubMed

    Lundgren, J; Pettersson, E

    2009-06-01

    The main objectives of this paper have been to evaluate the use of horse manure and wood-shavings as a fuel for heat production and to provide sets of data on the chemical composition, ash characteristics and ash forming elements of the fuel. Another objective has been to investigate the possibility to use the ash as fertiliser by analysing the heavy metal and nutrient contents. The results showed that the fuel is well suited for combustion for heat production causing low emissions of products of incomplete combustion. The emissions of NO(x) were however high due to the high content of fuel bound nitrogen. Emissions of CO and NO(x) were typically in the range of 30-150 mg/Nm(3) and 280-350 mg/Nm(3) at 10 vol% O(2), respectively. The analysis of the ash showed on sufficiently low concentration of heavy metals to allow recycling.

  15. [Study on distribution of five heavy metal elements in different parts of Cordyceps sinensis by microwave digestion ICP-MS].

    PubMed

    Zhou, Li; Hao, Qing-Xiu; Wang, Sheng; Yang, Quan; Kang, Chuan-Zhi; Yang, Wan-Zhen; Guo, Lan-Ping

    2017-08-01

    The contents of five heavy metals (Cu, Pb, As, Cd, Hg) in 17 batches of Cordyceps sinensis were determined by microwave digestion-ICP-MS, and their distribution in C. sinensis were analyzed. The results showed that the contents of Cu, Pb, Cd and Hg in all batches were in accordance with the international standards of Chinese Medicine-Chinese Herbal Medicine Heavy Metal Limit, with their contents in the stroma higher than that in the caterpillar body, and the excess rate of As, which mainly concentrated in the caterpillar body part of C. sinensis, was 88.24%, as the content of As in the caterpillar body was 7 to 12 fold of that in the stroma. In this study, the distribution of five heavy metals in C. sinensis was clarified, and the existing problems of arsenic limit of heavy metal in C. sinensis were analyzed, and some suggestions were put forward. It is hoped that the reference standard can be provided for the limited standard of arsenic in C. sinensis. Copyright© by the Chinese Pharmaceutical Association.

  16. Determination of Heavy Metals in Alpinia oxyphylla Miq. Collected from Different Cultivation Regions

    PubMed Central

    Fu, Yurong; Lai, Weiyong; Zhang, Junqing

    2016-01-01

    20 batches of Alpinia oxyphylla Miq. were collected from Yunnan, Guangdong, Guangxi, and Hainan province in China. The contents of heavy metals of As, Hg, Pb, Cd, and Cu were determined and compared. The results indicated that geographical source might be a major factor to influence the contents of heavy metals of arsenic (As), mercury (Hg), lead (Pb), cadmium (Cd), and copper (Cu) in Alpinia oxyphylla Miq. Compared to the criteria of heavy metals, the contents of As, Hg, Pb, and Cd in almost all the samples were in accordance with The Green Trade Standards. The contents of Cu were higher than the criteria for heavy metals except the samples from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. The best cultivation regions of Alpinia oxyphylla Miq. were from Changxing town, Qiongzhong county, Maoyang town, Qiongzhong county, Wupo town, Tunchang county, and Nanlv town, Tunchang county, in Hainan province. This research would provide the scientific basis for quality control and standardization of Alpinia oxyphylla Miq. PMID:27293963

  17. Toxicity of cadmium and lead in Gallus gallus domesticus assessment of body weight and metal content in tissues after metal dietary supplements.

    PubMed

    Abduljaleel, Salwa A; Shuhaimi-Othman, M

    2013-11-15

    The influence of dietary cadmium on the accumulation and effects of dietary lead, examined in chicken. This experiment was conducted to investigate the toxic effects of dietary Cd and Pb on chick's body weight and organ, content of the tissues of these two metals was also detected. One day age chicks of Gallus gallus domesticus fed diet supplemented with 25, 50, 100 ppm of Cd, second group exposure to 300, 500, 1000 ppm of Pb in feed daily during 4 weeks. The control groups were fed without supplementation of metals. The concentrations of Cd and Pb resulted in increased of Cd and Pb content in liver, gizzard and muscle. While Cd 100 ppm and Pb 1000 ppm were increased metals content in feather. Body weight of chicks was not influenced by Cd treatment. In contrary Pb treatment was significantly (p < 0.05) decreased body weight of chicks after dietary treatment. On the other hand, Liver weigh in chicks was significantly (p < 0.05) decreased after Cd and Pb treatments.

  18. Interactive analysis of waste recycling and energy recovery program in a small-scale incinerator.

    PubMed

    Chen, Jeng-Chung; Chen, Wei-Hsin; Chang, Ni-Bin; Davila, Eric; Tsai, Cheng-Hsien

    2005-09-01

    Conflicting goals affecting solid waste management are explored in this paper to find the best implementation of resource recovery with a small-scale waste-to-energy process. Recycling paper and plastic material often leaves a shortage of thermal energy to support incineration that forces operators to supplement the process with auxiliary fuels. Although there are considerable profits to be made from material recovery, the increase of fuel usage causes conflict given that it is cost prohibitive. A series of trials performed on a small-scale 1.5-t/day incineration plant with a cyclone heat recovery system found that material recycling can impede performance. Experimental results are expressed as empirical regression formulas with regard to combustion temperature, energy transfer, and heat recovery. Process optimization is possible if the waste moisture content remains <30%. To test the robustness of the optimization analysis, a series of sensitivity analyses clarify the extent of material recycling needed with regard to plastic, paper, and metal. The experiments also test whether the moisture in the waste would decrease when recycling paper because of its exceptional capacity to absorb moisture. Results show that recycling paper is strongly recommended when the moisture content is >20%, whereas plastic recycling is not necessary at that moisture condition. Notably, plastic recovery reduces the heat needed to vaporize the water content of the solid waste, thus it is recommended only when the moisture content is <10%. For above-normal incineration temperatures, plastic recycling is encouraged, because it removes excess energy. Metal is confirmed as an overall priority in material recycling regardless of the moisture content of the incoming waste.

  19. Assessing heavy metal sources in sugarcane Brazilian soils: an approach using multivariate analysis.

    PubMed

    da Silva, Fernando Bruno Vieira; do Nascimento, Clístenes Williams Araújo; Araújo, Paula Renata Muniz; da Silva, Luiz Henrique Vieira; da Silva, Roberto Felipe

    2016-08-01

    Brazil is the world's largest sugarcane producer and soils in the northeastern part of the country have been cultivated with the crop for over 450 years. However, so far, there has been no study on the status of heavy metal accumulation in these long-history cultivated soils. To fill the gap, we collect soil samples from 60 sugarcane fields in order to determine the contents of Cd, Cr, Cu, Ni, Pb, and Zn. We used multivariate analysis to distinguish between natural and anthropogenic sources of these metals in soils. Analytical determinations were performed in ICP-OES after microwave acid solution digestion. Mean concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 1.9, 18.8, 6.4, 4.9, 11.2, and 16.2 mg kg(-1), respectively. The principal component one was associated with lithogenic origin and comprised the metals Cr, Cu, Ni, and Zn. Cluster analysis confirmed that 68 % of the evaluated sites have soil heavy metal concentrations close to the natural background. The Cd concentration (principal component two) was clearly associated with anthropogenic sources with P fertilization being the most likely source of Cd to soils. On the other hand, the third component (Pb concentration) indicates a mixed origin for this metal (natural and anthropogenic); hence, Pb concentrations are probably related not only to the soil parent material but also to industrial emissions and urbanization in the vicinity of the agricultural areas.

  20. Response of spontaneous plants from an ex-mining site of Elba island (Tuscany, Italy) to metal(loid) contamination.

    PubMed

    Pistelli, Laura; D'Angiolillo, Francesca; Morelli, Elisabetta; Basso, Barbara; Rosellini, Irene; Posarelli, Mauro; Barbafieri, Meri

    2017-03-01

    The release of large amounts of toxic metals in the neighboring sites of abandoned mine areas represents an important environmental risk for the ecosystem, because it adversely affects soil, water, and plant growth. The aim of the present study was to investigate the metal(loid) (As, Cr, Cu, Ni, Pb, and Zn) contents of native Mediterranean plants grown on the ex-mining area of Elba island (Italy), with the prospective of its recovery by further phytoremediation technology. Soil samples were collected and characterized for metal(loid) content in total and potentially available (EDTA-extractable) fractions. Arsenic was particularly high, being 338 and 2.1 mg kg -1 as total and available fractions, respectively. Predominant native species, namely Dittrichia viscosa L. Greuter, Cistus salviifolius L., Lavandula stoechas L., and Bituminaria bituminosa L., were analyzed for metal content in the different plant organs. D. viscosa exhibited the highest metal(loid) content in the leaves and the singular behavior of translocating arsenic to the leaves (transfer factor about 2.06 and mean bioconcentration factor about 12.48). To assess the healthy status of D. viscosa plants, the leaves were investigated further. The activities of the main antioxidant enzymes and the levels of secondary metabolites linked to oxidative stress in plants from the ex-mining area were not significantly different from those of control plants, except for a lower content of carotenoids, indicating that native plants were adapted to grow in these polluted soils. These results indicate that D. viscosa can be suitable for the revegetation of highly metal-contaminated areas.

  1. Changes in the Degree of Contamination of Organic Horizons of Al-Fe-Humus Podzols upon a Decrease in Aerotechnogenic Loads, the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Barkan, V. Sh.; Lyanguzova, I. V.

    2018-03-01

    Contamination levels of the organic horizon of Al-Fe-humus podzols (Albic Rustic Podzols) in the zone affected by atmospheric emissions of the Severonikel smelter (Murmansk oblast) within a 20-yearlong period are compared. The spatiotemporal changes in the total content of heavy metals in the soils in response to a decrease in aerotechnogenic loads have a complicated pattern. As the content of heavy metals in the soils varies widely, the correlation between their amount in the organic soil horizon and the distance from the contamination source is absent. In response to the ninefold decrease in the amount of atmospheric emission of Ni compounds, the bulk content of Ni in the organic horizons of podzols reliably decreased by 2.5 times. The threefold decrease in the emission of Cu compounds proved to be insufficient for a significant decrease in the Cu content in the soils. In 2016, the content of heavy metals in some sampling points even increased in comparison with the earlier periods. The Ni-to-Cu ratio in the soil samples changed significantly. In 1989-1994, bulk forms of heavy metals in the soil samples formed the sequence Ni > Cu > Co; in 2016, it changed to Cu > Ni > Co, which corresponds to the proportions of these metals in the aerial emissions. Under conditions of the continuous input of heavy metals from the atmosphere, the contamination of the organic horizons of podzols with heavy metals remains at the high or very high levels.

  2. From the Soil to the Seed. Metal Transport in Arabidopsis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guerinot, Mary Lou

    2015-02-27

    Deficiencies of micronutrients such as Fe, Mn, and Zn commonly limit plant growth and crop yields. The long-term goals of our program are to understand how plants acquire metal micronutrients from the soil and distribute them while protecting themselves from the potential redox damage metals can cause to living tissues. Metals serve as important co-factors for photosynthesis and respiration, yet we still know very little about metal transport. Our approach combines experimental and computational tools from the physical sciences with biochemistry and molecular biology. Specifically, we combine mutant analysis with synchrotron X-ray fluorescence (SXRF) spectroscopy, a technique that allows usmore » to image the elemental composition of living plant material in 3-D. By analyzing the phenotypes of lines carrying mutations in various metal transporters, we have identified the genes responsible for uptake of zinc from the soil as well as genes involved in loading the seeds with metal micronutrients. Several of these transporters affect the localization of metals in the seed without affecting the overall metal content. Understanding how seeds obtain and store nutrients is key to developing crops with higher agronomic and nutritional value.« less

  3. [Differential study of the bonding characterization of dental porcelain to Ni-Cr alloys].

    PubMed

    Wei, Fang; Zhan, De-song; Wang, Yan-yan

    2008-10-01

    To study the bonding capability when Ni-Cr porcelain alloy was added with Ti, compound rare earth metals and removed the element of Be. Ni-Cr-Ti porcelain alloys manufactured by Institute of Metal Research of Chinese Academy of Sciences were tested. The test alloys were divided into three groups according to whether containing Be and compound rare earth metals or not. And HI BOND Ni-Cr base-metal alloy was chosen as control. The metal-ceramic specimens were prepared for shear test, scanning electron microscope (SEM) and energy spectrum analysis. The shear bond strength of the four groups were analyzed. No significant difference were observed among them (P > 0.05). No crackle was found and they were contacted tightly between the porcelain and metal. The composition and contents of the four groups' interfaces were closed. The shear bond strength of the self-made Ni-Cr-Ti porcelain alloys all can satisfy the clinical requirements. Experimental groups containing Ti, compound rare earth metals and removing the element of Be can be used as better recommendation for clinical practice.

  4. Heavy Metals in Soil&Plant System Under Conditions of the South of Tyumen Region

    NASA Astrophysics Data System (ADS)

    Oznobihina, A. O.; Gayevaya, E. V.

    2017-11-01

    The article considers the problems of pollution with heavy metals (zinc, copper, cadmium and lead) of topsoil and plant products. The article contains the results analysis for laboratory trials of the researched components of the natural environment in the territory of the reference plots of the south of the Tyumen region. The authors assessed soil pollution and the samples of natural as well as perennial grasses, rape, oats, wheat, barley with heavy metals. A correlation between the content of zinc, copper, cadmium, lead in the soil and plants growing in it was determined. The article identifies the regions where the agrotechnical procedures directed to the decrease of toxicants’ negative influence on the life form should be considered.

  5. Core-level binding energy shifts in Pt Ru nanoparticles: A puzzle resolved

    NASA Astrophysics Data System (ADS)

    Lewera, Adam; Zhou, Wei Ping; Hunger, Ralf; Jaegermann, Wolfram; Wieckowski, Andrzej; Yockel, Scott; Bagus, Paul S.

    2007-10-01

    Synchrotron measurements of Pt and Ru core-level binding energies, BE's, in Pt-Ru nanoparticles, as a function of Pt content, quantify earlier indications that the Pt 4f BE shift is much larger than the Ru 3d BE shift. A complementary theoretical analysis relates the BE shifts to changes in the metal-metal distances as the composition of the nanoparticle changes. We establish that the large Pt and small Ru BE shifts arise from the different response of these metals to changes in the bond distances, an unexpected result. Our results give evidence that the magnitudes of the BE shifts depend on whether the d band is open, as for Ru, or essentially filled, as for Pt.

  6. Analysis of Level of Technogenic Impact on Water Area of Uglovoy Bay

    NASA Astrophysics Data System (ADS)

    Petukhov, V. I.; Petrova, E. A.; Losev, O. V.

    2017-11-01

    Industrial effluent discharge and man-induced soil fills play a decisive role in increased pollutant concentrations. Several areas which are unfavorable in terms of the heavy metal and oil product content have been identified by the environmental monitoring results in the Uglovoy Bay in February 2015. Maximum permissible concentrations (MPC) of heavy metals and oil products were exceeded in the northeastern part of the Uglovoy Bay in locations where the Peschanka River and the Aerodromnaya River drain into the sea. Integral heavy-metal index calculations showed that this area is the most polluted in the Uglovoy Bay. Other significantly polluted areas were identified off the Zima Yuzhnaya settlement in the mouth of the bay and in vicinity of the low-level bridge.

  7. Environmental monitoring and assessment of heavy metals in surface sediments at Coleroon River Estuary in Tamil Nadu, India.

    PubMed

    Venkatramanan, S; Chung, S Y; Ramkumar, T; Selvam, S

    2015-08-01

    The combined studies on grain size distribution, organic matter contents of sediments, sequential extraction and bulk concentration of heavy metals, statistical analysis, and ecological risk assessments were carried out to investigate the contamination sources and ecological risks of surface sediments at Coleroon River Estuary in Tamil Nadu, India. The sequential extraction of metals showed that a larger portion of the metals was associated with the residual phase and also in other fractions. The low concentrations of heavy metals were found in exchangeable and carbonate bounds (bioavailable phases). It revealed that sediments of Coleroon River Estuary were relatively unpolluted and were influenced mainly by natural sources. The observed order of bulk concentrations of heavy metals in the sediments was as follows: Fe > Mn > Zn > Cu > Pb > Cr > Ni > Co. Factor analyses represented that the enrichment of heavy metals was mostly resulted from lithogenic origins associated with anthropogenic sources. These sources were reconfirmed by cluster analysis. Risk assessment code (RAC) suggested that all metals were not harmful in monsoon season. However, Fe was in medium risk, and Mn and Cu were in low risk in summer. According to pollution load index (PLI) of sediments, all heavy metals were toxic. Cu might be related with adverse biological effects on the basis of sediment quality guidelines (SQG) in both seasons. These integrated approaches were very useful to identify the contamination sources and ecological risks of sediments in estuarine environment. It is expected that this research can give a useful information for the remediation of heavy metals in sediments.

  8. Spatial distribution and sources of heavy metals in natural pasture soil around copper-molybdenum mine in Northeast China.

    PubMed

    Wang, Zhiqiang; Hong, Chen; Xing, Yi; Wang, Kang; Li, Yifei; Feng, Lihui; Ma, Silu

    2018-06-15

    The characterization of the content and source of heavy metals are essential to assess the potential threat of metals to human health. The present study collected 140 topsoil samples around a Cu-Mo mine (Wunugetushan, China) and investigated the concentrations and spatial distribution pattern of Cr, Ni, Zn, Cu, Mo and Cd in soil using multivariate and geostatistical analytical methods. Results indicated that the average concentrations of six heavy metals, especially Cu and Mo, were obviously higher than the local background values. Correlation analysis and principal component analysis divided these metals into three groups, including Cr and Ni, Cu and Mo, Zn and Cd. Meanwhile, the spatial distribution maps of heavy metals indicated that Cr and Ni in soil were no notable anthropogenic inputs and mainly controlled by natural factors because their spatial maps exhibited non-point source contamination. The concentrations of Cu and Mo gradually decreased with distance away from the mine area, suggesting that human mining activities may be crucial in the spreading of contaminants. Soil contamination of Zn were associated with livestock manure produced from grazing. In addition, the environmental risk of heavy metal pollution was assessed by geo-accumulation index. All the results revealed that the spatial distribution of heavy metals in soil were in agreement with the local human activities. Investigating and identifying the origin of heavy metals in pasture soil will lay the foundation for taking effective measures to preserve soil from the long-term accumulation of heavy metals. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. The Study of Soil Protection in the System of the Cultivated Lands of Kemerovo Region

    NASA Astrophysics Data System (ADS)

    Yakovchenko, M. A.; Konstantinova, O. B.; Kosolapova, A. A.

    2015-09-01

    The heavy metal content in the surface soils is characterized with their ingress for the given period of time. The sources of heavy metals in the soil are precipitation, seeds, dust, organic and mineral fertilizers, and others. The paper studies the heavy metal content in the soils of the waste dumps of the open-pit coal mines.

  10. The effect of melt refining upon inclusions in aluminum

    NASA Astrophysics Data System (ADS)

    Simensen, C. J.

    1982-03-01

    A series of aluminum melts has been refined with respect to inclusions by use of ALCOA 469, FILD, or SNIF. The content and size distribution of inclusions in the original-and the refined melts-have been measured by use of neutron activation (oxygen content), gas chromatography (carbide content), sedimentation analysis, and dissolution of metal in hydrochloric acid and subsequent analysis of oxides by means of a Coulter Counter. All the units tested have a beneficial effect and decrease the inclusion content, but the number of analyses are too few to make general conclusions. However, for melts cleaned by use of SNIF, it was found that oxides larger than 50 μm in cross section and borides larger than 20 μm in diameter were removed, while the smaller borides were agglomerated only. The effect of FILD and ALCOA 469 upon the melt tested was removal of borides larger than 5-10 μ m and oxides larger than 15μm in diameter, respectively.

  11. Effect of Post-weld Heat Treatment on the Mechanical Properties of Supermartensitic Stainless Steel Deposit

    NASA Astrophysics Data System (ADS)

    Zappa, Sebastián; Svoboda, Hernán; Surian, Estela

    2017-02-01

    Supermartensitic stainless steels have good weldability and adequate tensile property, toughness and corrosion resistance. They have been developed as an alternative technology, mainly for oil and gas industries. The final properties of a supermartensitic stainless steel deposit depend on its chemical composition and microstructure: martensite, tempered martensite, ferrite, retained austenite and carbides and/or nitrides. In these steels, the post-weld heat treatments (PWHTs) are usually double tempering ones, to ensure both complete tempering of martensite and high austenite content, to increase toughness and decrease hardness. The aim of this work was to study the effect of post-weld heat treatments (solution treatment with single and double tempering) on the mechanical properties of a supermartensitic stainless steel deposit. An all-weld metal test coupon was welded according to standard ANSI/AWS A5.22-95 using a GMAW supermartensitic stainless steel metal cored wire, under gas shielding. PWHTs were carried out varying the temperature of the first tempering treatment with and without a second tempering one, after solution treatment. All-weld metal chemical composition analysis, metallurgical characterization, hardness and tensile property measurements and Charpy-V tests were carried out. There are several factors which can be affected by the PWHTs, among them austenite content is a significant one. Different austenite contents (0-42%) were found. Microhardness, tensile property and toughness were affected with up to 15% of austenite content, by martensite tempering and carbide precipitation. The second tempering treatment seemed not to have had an important effect on the mechanical properties measured in this work.

  12. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    PubMed

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  13. Magnesium stearine production via direct reaction of palm stearine and magnesium hydroxide

    NASA Astrophysics Data System (ADS)

    Pratiwi, M.; Ylitervo, P.; Pettersson, A.; Prakoso, T.; Soerawidjaja, T. H.

    2017-06-01

    The fossil oil production could not compensate with the increase of its consumption, because of this reason the renewable alternative energy source is needed to meet this requirement of this fuel. One of the methods to produce hydrocarbon is by decarboxylation of fatty acids. Vegetable oil and fats are the greatest source of fatty acids, so these can be used as raw material for biohydrocarbon production. From other researchers on their past researchs, by heating base soap from divalent metal, those metal salts will decarboxylate and produce hydrocarbon. This study investigate the process and characterization of magnesium soaps from palm stearine by Blachford method. The metal soaps are synthesized by direct reaction of palm stearine and magnesium hydroxide to produce magnesium stearine and magnesium stearine base soaps at 140-180°C and 6-10 bar for 3-6 hours. The operation process which succeed to gain metal soaps is 180°C, 10 bar, for 3-6 hours. These metal soaps are then compared with commercial magnesium stearate. Based on Thermogravimetry Analysis (TGA) results, the decomposition temperature of all the metal soaps were 250°C. Scanning Electron Microscope with Energy Dispersive X-ray (SEM-EDX) analysis have shown the traces of sodium sulphate for magnesium stearate commercial and magnesium hydroxide for both type of magnesium stearine soaps. The analysis results from Microwave Plasma-Atomic Emission Spectrometry (MP-AES) have shown that the magnesium content of magnesium stearine approximate with magnesium stearate commercial and lower compare with magnesium stearine base soaps. These experiments suggest that the presented saponification process method could produced metal soaps comparable with the commercial metal soaps.

  14. Assessment of heavy metals in loose deposits in drinking water distribution system.

    PubMed

    Liu, Quanli; Han, Weiqiang; Han, Bingjun; Shu, Min; Shi, Baoyou

    2018-06-09

    Heavy metal accumulation and potential releases from loose deposits in drinking water distribution system (DWDS) can have critical impacts on drinking water safety, but the associated risks have not been sufficiently evaluated. In this work, the potential biological toxicity of heavy metals in loose deposits was calculated based on consensus-based sediment quality guidelines, and the effects of some of the main water quality parameters, such as the pH and bicarbonate and phosphate content, on the release behaviors of pre-accumulated heavy metals were investigated. The results showed that heavy metals (Cu, As, Cr, Pb, and Cd) significantly accumulated in all the samples, but the contents of the heavy metals were multiple magnitudes lower than the Fe and Mn contents. The potential biotoxicity of As and Cu was relatively high, but the biotoxicity of Cd was negligible. The water quality can significantly influence the release of heavy metals from loose deposits. As the pH increased from 7.0 to 9.0, the release of As and Cr obviously increased. The release of As, Cu, Pb, and Cr also accelerated with the addition of phosphate (from 1 to 5 mg/L). In contrast to the trends for the pH and phosphate, variations in the bicarbonate content did not have a significant influence on the release of As and Cr. The release ratios of heavy metals in the samples were very low, and there was not a correlation between the release rate of the heavy metals in the loose deposits and their potential biotoxicity.

  15. Soil-plant abstract of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain)

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel; Higueras, Pablo; Esbrí, Jose Maria; González-Corrochano, Beatríz; García-Noguero, Eva Mª; Martínez-Coronado, Alba; Fernandez-Calderón, Sergio; García-Noguero, Carolina

    2013-04-01

    Soil-plant transfer of heavy metals in Pb-Zn mining sites from Alcudia Valley (South Spain). Authors: Miguel A. López-Berdonces¹; Pablo Higueras¹; Jose María Esbrí¹; Beatriz González-Corrochano¹; Eva Mª García- Noguero¹; Alba Martínez Coronado¹; Sergio Fernández-Calderón¹; Carolina García-Noguero¹ ¹Instituto de Geología Aplicada, Universidad Castilla la Mancha, Pza. Manuel Meca, 1. 13400 Almadén, Spain. Alcudia Valley is a vast territory recently declared Natural Park, located in South of Spain. It is an area rich in mineral deposits of Zn and Pb and mining exists since the first millennium BC., having its highest ore production between mid-nineteenth century and the middle of the twentieth. This area has been selected because has more than 120 abandoned mines without remediation actions, with dumps and tailings with high contents of zinc and lead sulfides, and Cu, Ag, Cd, As, Sb in minor concentrations. In this study we determinate the transfer rate of these metals from soils to plants represented by oak leaves (Quercus ilex), because this specie is common within the selected area. To evaluate the soil-plant transfer were studied the correlation of contents, total and extractable, in soil-leaves. Extractable fraction was done by for different methods in water, EPA 1312 sulfuric acid: nitric acid 60:40 v., Ammonium Acetate and EDTA. To establish the correlation between heavy metals from soils to plants is necessary to know the contents of these and bioavailable content in soil. Three areas (S. Quintín, Romanilla, Bombita) were selected, taking 24 samples of soils and leaves. Analyzed leaves by XRF showed that Mn, Pb, Zn and Mo in S.Quintin and Romanilla, Mn, Pb in Bombita, exceeded the toxicity threshold. The same samples analyzed by ICP show us the toxicity threshold is exceeded Pb, Zn and Hg in S.Quintin, and Pb in Romanilla. The heavy metal content in leaves compared between two techniques analytical gives an acceptable correlation Zn - Pb with R²= 95. Total metal contents in soils were analyzed by EDXRF (Energy Dispersion X Ray Fluorescence). We obtained RRL (Regional Reference Level), from La Bienvenida soil samples with values 20 Ni; 53 Cr; 38 Cu; 125 Zn; 128 Pb; 26 As, all in mg kg¯¹. Taking into account the values obtained in S.Quintin Pb 10127; Zn 2861; As 183; Cd 138; Cu 331; Ni 60 and Hg 893 mg kg¯¹, we can say that S.Quintin is a highly contaminated area; Bombita and Romanilla we would consider polluted areas where only Ni, As have values below RRL. We found differences in uptake patterns on the three areas due to heterogeneity in soil parameters and acid drainage, especially in S.Quintín mine where only measured uptake of Sb by plant has a good linear correlation with metal content extract with Ammonium Acetate. Romanilla has more homogeneous soil condition where we found an high soil-plant correlation Ag, As, Cd, Zn using EDTA and Acetate. Bombita has a similar characteristics, with high correlations between plants contents and soil in Cd, Cu, Pb, Zn with EDTA and Acetate. Total contents of heavy metal in a soil is not enough to evaluate the Toxicity Potential, it is necessary to know the bioavailable fraction present in the soil and the extractable fraction which proved to be the decisive factor in the content of heavy metal in plant of studied areas; the correlation in metals content soil-plant is higher in extractable content metals than in total content.

  16. Effect of carbon and manganese on the microstructure and mechanical properties of 9Cr2WVTa deposited metals

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Rong, Lijian; Li, Dianzhong; Lu, Shanping

    2017-03-01

    Six 9Cr2WVTa deposited metals with different carbon and manganese contents have been studied to reveal the role of major elements, which guide for the design of welding consumables for reduced activation ferritic/martensitic steel and meet for the requirements of accelerator driven systems-lead fusion reactors. The typical microstructure for the 9Cr2WVTa deposited metals is the lath martensite along with the fine stripe δ-ferrite. The chemical compositions influence the solidification sequence and therefore, change the δ-ferrite content in the deposited metal. The impact toughness for the 9Cr2WVTa deposited metals decreases remarkably when the δ-ferrite content is more than 5.2 vol%, also the impact toughness decreases owing to the high quenching martensite formation. Increasing the level of manganese addition, α phase of each alloy shifts to the bottom right according to the CCT diagram.

  17. Can the origin of some metals in the seagrass Posidonia oceanica be determined by the indexes of metals pollutions?

    PubMed

    Stanković, Slavka; Jović, Mihajlo; Tanaskovski, Bojan; Mihajlović, Marija L; Joksimović, Danijela; Pezo, Lato

    2015-06-01

    To assess metal pollution, Fe, Mn, Cu, Zn, Pb, Ni, Co, As, Cd, and Hg contents in samples of the seagrass Posidonia oceanica and surface sediment, collected at eight locations along the Montenegrin coast, were determined. The metal pollution index (MPI) and metal enrichment factor (EF) were then calculated. MPI and EF were lower in sediment than in P. oceanica at the same locations. This was very evident for EF values of Hg and Cd. Based on the Pearson's correlations and EF values, it was possible to conclude that the last two metals' content in the seagrass did not originate from the crustal sources or natural weathering processes.

  18. Quantitative analysis of the extent of heavy-metal contamination in soils near Picher, Oklahoma, within the Tar Creek Superfund Site.

    PubMed

    Beattie, Rachelle E; Henke, Wyatt; Davis, Conor; Mottaleb, M Abdul; Campbell, James H; McAliley, L Rex

    2017-04-01

    The Tri-State Mining District of Missouri, Kansas and Oklahoma was the site of large-scale mining operations primarily for lead and zinc until the mid-1950s. Although mining across the area has ceased, high concentrations of heavy metals remain in the region's soil and water systems. The town of Picher, Ottawa County, OK, lies within this district and was included in the Tar Creek Superfund Site by the U.S. Environmental Protection Agency in 1980 due to extensive contamination. To elucidate the extent of heavy-metal contamination, a soil-chemistry survey of the town of Picher was conducted. Samples (n = 111) were collected from mine tailings, locally known as chat, in Picher and along cardinal-direction transects within an 8.05-km radius of the town in August 2015. Samples were analyzed for soil pH, moisture, and metal content. Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) analyses of 20 metals showed high concentrations of lead (>1000 ppm), cadmium (>40 ppm) and zinc (>4000 ppm) throughout the sampled region. Soil moisture content ranged from 0.30 to 35.9%, and pH values ranged from 5.14 to 7.42. MANOVA of metal profiles determined that soils collected from the north transect and chat were significantly different (p < 0.01) than other sampled directions. Lead, cadmium and zinc were correlated with one another. These data show an unequal distribution of contamination surrounding the Picher mining site. Mapping heavy-metal contamination in these soils represents the first step in understanding the distribution of these contaminants at the Picher mining site. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Element distributions in metallic fractions of ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Kong, P.; Ebihara, M.; Endo, K.

    1994-07-01

    Kamacite and taenite are the major metallic phases in ordinary chondrite, in individual grains of pure alloy. Wood interpreted the concentration gradients of Ni found in two metal phases as a result of exsolution of kamacite from taenite followed by sluggish diffusion of Ni into the taenite crystals upon cooling through approximately 500 C. A selective chemical dissolution method was developed to separated taenite from kamacite and this method was applied to several ordinary chondrites. Based on Instrumental Neutron Activation Analysis (INAA) data and Mossbauer spectra for the metal separates, we evaluated the distribution of various elements between taenite and kamacite. The magnetic fraction separated from ALH 77231 (L6) was boiled in HF for 2 min and named M-1. The M-1 fraction was further treated for 5, 10, and 15 min and the remaining fractions were designed as M-2, M-3, and M-4 respectively. Mossbauer spectrum showed that M-1 was composed almost of alpha-phase kamacite. Mossbauer spectra of the M-2, M-3, and M-4 showed each having similar intensities of kamacite, taenite, and tetrataenite. On the basis of different leaching rate with concentrated HF acid between kamacite and taenite, we can determine element distributions in these different fractions. INAA analyses show that the M-1 is composed of 10% Ni. Contents of Ni in the M-2, M-3, and M-4 show that these three metal fractions are mainly composed of Ni-rich metals with a mean value of 36% Ni. Based on different proportions of kamacite and taenite in these metal fractions, we calculated siderophile-element contents in taenite and kamacite.

  20. Comprehensive investigation of the metal in drums of boilers at thermal power stations

    NASA Astrophysics Data System (ADS)

    Ozhigov, L. S.; Mitrofanov, A. S.; Tolstolutskaya, G. D.; Vasilenko, R. L.; Rudenko, A. G.; Ruzhytskyi, V. V.; Ribalchenko, N. D.; Shramchenko, S. V.

    2017-05-01

    A comparative investigation of the metal of drums of two TP-100 boilers at the Starobeshevskaya and the Lugansk thermal power stations (TPS) was performed. Their operation time was approximately 300000 hours; the shell of one drum was ruptured during a hydraulic test, and the other drum is in operation. According to the results of the technical diagnostics and a strength analysis, both drums comply with the applicable regulatory requirements. The objects of the investigation were fragments of the ruptured drum and a "plug" cut out of the shell during a scheduled inspection. The investigation was carried out by microscopic metallography methods and the scanning electron microscopy technique. Mechanical tests of metal specimens were performed, and the hydrogen content in these specimens was measured. Prior to the material research, the metal was examined using a magnetic memory method. The investigation yielded specifics of the metal microstructure, mechanical properties, and fracture patterns of the metal specimens at various temperatures. An investigation performed by the method of thermal-desorption mass spectrometry revealed no considerable difference in the hydrogen content in the metal of both drums, thereby excluding the effect of hydrogenation in analyzing the rupture causes. It was established that the drum at the Starobeshevskaya TPS had been damaged due to its low impact strength at room temperature and high brittle-ductile transition point. Comparison of the metallographic study data with the results obtained using the magnetic memory method suggests that the fracture was caused by local formation of the Widmannstatten pattern at points where accessories are welded to the shell. The prospects are demonstrated of the comprehensive approach to nondestructive examination (NDE) of TPS drums using the magnetic memory technique and metallographic methods.

  1. High-content analysis of single cells directly assembled on CMOS sensor based on color imaging.

    PubMed

    Tanaka, Tsuyoshi; Saeki, Tatsuya; Sunaga, Yoshihiko; Matsunaga, Tadashi

    2010-12-15

    A complementary metal oxide semiconductor (CMOS) image sensor was applied to high-content analysis of single cells which were assembled closely or directly onto the CMOS sensor surface. The direct assembling of cell groups on CMOS sensor surface allows large-field (6.66 mm×5.32 mm in entire active area of CMOS sensor) imaging within a second. Trypan blue-stained and non-stained cells in the same field area on the CMOS sensor were successfully distinguished as white- and blue-colored images under white LED light irradiation. Furthermore, the chemiluminescent signals of each cell were successfully visualized as blue-colored images on CMOS sensor only when HeLa cells were placed directly on the micro-lens array of the CMOS sensor. Our proposed approach will be a promising technique for real-time and high-content analysis of single cells in a large-field area based on color imaging. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Predicting the solubility and lability of Zn, Cd, and Pb in soils from a minespoil-contaminated catchment by stable isotopic exchange

    NASA Astrophysics Data System (ADS)

    Marzouk, E. R.; Chenery, S. R.; Young, S. D.

    2013-12-01

    The Rookhope catchment of Weardale, England, has a diverse legacy of contaminated soils due to extensive lead mining activity over four centuries. We measured the isotopically exchangeable content of Pb, Cd and Zn (E-values) in a large representative subset of the catchment soils (n = 246) using stable isotope dilution. All three metals displayed a wide range of %E-values (c. 1-100%) but relative lability followed the sequence Cd > Pb > Zn. A refinement of the stable isotope dilution approach also enabled detection of non-reactive metal contained within suspended sub-micron (<0.22 μm) colloidal particles (SCP-metal). For most soils, the presence of non-labile SCP-metal caused only minor over-estimation of E-values (<2%) but the effect was greater for soils with particularly large humus or carbonate contents. Approximately 80%, 53% and 66% of the variability in Zn, Cd and Pb %E-values (respectively) could be explained by pH, loss on ignition and total metal content. E-values were affected by the presence of ore minerals at high metal contents leading to an inconsistent trend in the relationship between %E-value and soil metal concentration. Metal solubility, in the soil suspensions used to measure E-values, was predicted using the WHAM geochemical speciation model (versions VI and VII). The use of total and isotopically exchangeable metal as alternative input variables was compared; the latter provided significantly better predictions of solubility, especially in the case of Zn. Lead solubility was less well predicted by either version of WHAM, with over-prediction at low pH and under-prediction at high soil pH values. Quantify the isotopically exchangeable fractions of Zn, Cd and Pb (E-values), and assess their local and regional variability, using multi-element stable isotope dilution, in a diverse range of soil ecosystems within the catchment of an old Pb/Zn mining area. Assess the controlling influences of soil properties on metal lability and develop predictive algorithms for metal lability in the contaminated catchment based on simple soil properties (such as pH, organic matter (LOI), and total metal content). Examine the incidence of non-isotopically-exchangeable metal held within suspended colloidal particles (SCP-metal) in filtered soil solutions (<0.22 μm) by comparing E-values from isotopic abundance in solutions equilibrated with soil and in a resin phase equilibrated with the separated solution. Assess the ability of a geochemical speciation model, WHAM(VII), to predict metal solubility using isotopically exchangeable metal as an input variable.

  3. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  4. Nanopatterning dynamics on Si(100) during oblique 40-keV Ar+ erosion with metal codeposition: Morphological and compositional correlation

    NASA Astrophysics Data System (ADS)

    Redondo-Cubero, A.; Gago, R.; Palomares, F. J.; Mücklich, A.; Vinnichenko, M.; Vázquez, L.

    2012-08-01

    The formation and dynamics of nanopatterns produced on Si(100) surfaces by 40-keV Ar+ oblique (α = 60°) bombardment with concurrent Fe codeposition have been studied. Morphological and chemical analysis has been performed by ex situ atomic force microscopy, Rutherford backscattering spectrometry, x-ray photoelectron spectroscopy, and scanning and transmission electron microscopies. During irradiation, Fe atoms incorporated into the target surface react with Si to form silicides, a process enhanced at this medium-ion energy range. The silicides segregate at the nanoscale from the early irradiation stages. As the irradiation proceeds, a ripple pattern is formed without any correlation with silicide segregation. From the comparison with the pattern dynamics reported previously for metal-free conditions, it is demonstrated that the metal incorporation alters both the pattern dynamics and the morphology. Although the pattern formation and dynamics are delayed for decreasing metal content, once ripples emerge, the same qualitative pattern of morphological evolution is observed for different metal content, resulting in an asymptotic saw-tooth-like facetted surface pattern. Despite the medium ion energy employed, the nanopatterning process with concurrent Fe deposition can be explained by those mechanisms proposed for low-ion energy irradiations such as shadowing, height fluctuations, silicide formation and segregation, ensuing composition dependent sputter rate, and ion sculpting effects. In particular, the interplay between the ion irradiation and metal flux geometries, differences in sputtering rates, and the surface pattern morphology produces a dynamic compositional patterning correlated with the evolving morphological one.

  5. Microstructure and Mechanical Properties of Stainless Steel/Brass Joints Brazed by Sn-Electroplated Ag Brazing Filler Metals

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Peng, Jin; Cui, Datian

    2018-05-01

    To develop a high-Sn-content AgCuZnSn brazing filler metal, the BAg50CuZn was used as the base filler metal and a Sn layer was electroplated upon it. Then, the 304 stainless steel and the H62 brass were induction-brazed with the Sn-plated brazing filler metals. The microstructures of the joints were examined with an optical microscope, a scanning electron microscope and an x-ray diffractometer. The corresponding mechanical properties were obtained with a universal tensile testing machine. The results indicated that the induction brazed joints consisted of the Ag phase, the Cu phase and the CuZn phase. When the content of Sn in the Sn-plated Ag brazing filler metal was 6.0 or 7.2 wt.%, the Cu5Zn8, the Cu41Sn11 and the Ag3Sn phases appeared in the brazed joint. The tensile strength of the joints brazed with the Sn-plated filler metal was higher compared to the joints with the base filler metal. When the content of Sn was 6.0 wt.%, the highest tensile strength of the joint reached to 395 MPa. The joint fractures presented a brittle mode, mixed with a low amount of ductile fracture, when the content of Sn exceeded 6.0 wt.%.

  6. Heavy metal pollution status and ecological risks of sediments under the influence of water transfers in Taihu Lake, China.

    PubMed

    Liu, Jiajia; Wang, Peifang; Wang, Chao; Qian, Jin; Hou, Jun

    2017-01-01

    The effects of water transfer projects on water channels and the receiving water involved need to be understood. In this research, the compositions and particle size distributions of surface sediment and the Cd, Cr, Cu, Ni, Pb, and Zn contents and distributions in the sediment along a water transfer route from the Wangyu River to Taihu Lake, China, were studied. The correlative relationship between the grain size trend and heavy metal content distribution suggested that heavy metals in Wangyu River sediment have affected the heavy metal contents of Taihu Lake sediment through silt and clay migrating in the transferred water. Enrichment factors and potential ecological risk values were calculated. Low levels of potential ecological risks are posed at 20 sampling sites in Taihu Lake, but higher-to-serious risks (potential ecological risk values >275) are posed at all Wangyu River sites. Toxicity of heavy metals (Cd, Cu, Zn, and Ni) in the Wangyu River sediments is more serious than those in the Taihu Lake, but is similar to the entrance of Gonghu Bay. Multivariate statistical analyses (Pearson correlation, cluster, and factor analyses) suggested heavy metals in the study area have many sources, and the relationships between particle migration and heavy metal contents indicated transferring water are likely to lead to adverse ecological risks being posed in Taihu Lake.

  7. Fate and transport of heavy metals and radioelements in groundwater aquifers of Al-Qunfudhah and Wadi Haliy quadrangles, southwest of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Bajabaa, S. A.; Abd El-Naby, H.; Dawood, Y.

    2009-12-01

    The fate and transport of heavy metals and radioelements in groundwater aquifers in five wadis located in the Al Qunfudhah and Wadi Haliy quadrangles were investigated. These wadis are an important source of water to the Red Sea coastal plain. Copper, zinc and other base-metals mineralization occur at eastern parts of these quadrangles that dominates the water catchments area of these wadis. Water, rock and soil samples were collected from all wadis and they were analyzed for major, trace elements, heavy metals and stable isotopes. The chemical and isotopic results showed active water/rock interaction. The preliminary investigation of the data analyses showed some samples with high heavy metals and uranium contents. Generally, the uranium and heavy metal contents are higher in samples collected from the upstream area of each wadi where the crystalline rocks are exposed and direct contact with the runoff. The uranium contents were as high as 120 ppb in some water samples. These elevated values are mainly due to two factors water rock interaction and concentration through evaporation. It was also observed to have elevated heavy metal contents near mining activates, which suggests that these mining activates are playing an important role in mobilizing the heavy elements and in turn affecting the water quality in these wadis.

  8. The Interstellar Medium of Blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Thuan, Trinh Xuan

    Blue compact dwarf (BCD) galaxies are metal-deficient and thus constitute excellent nearby laboratories for studying how the properties of the interstellar medium (ISM) in galaxies change with metallicity. Our sample consists of 4 BCDs chosen to span the metallicity range from 15 to 12 of the solar metallicity. This sample will extend the metallicity range covered by our Cycle 1 observations (141 to 110 solar). The proposed FUSE observations will allow us to investigate the 1) H_2 content of BCDs as a function of metallicity. No H_2 line has been detected in the 2 very metal-deficient BCDs which have been observed by FUSE so far. Will diffuse H_2 be present in more metal-rich BCDs and with less UV radiation density? 2) the structure of the ISM in BCDs. Analysis of 2 BCDs observed by FUSE in Cycle 1 (IZw18 and Mrk 59) show that in the first, the ISM appears to be relatively homogeneous while in the second, it is very clumpy. What are the factors which determine the gas clumpiness in BCDs 3) the abundances in the ISM. Analysis of the FUSE spectrum of Mrk 59 showed C, N, O, Si, Fe and S absorption lines which allow to derive abundances in the ISM using photoinization models. How do these abundances compare with the abundances derived from the emission-line optical spectra? 4) the evolutionary history and stellar winds in BCDs by detecting the P Cygni profiles of high ionization S VI and O VI lines.

  9. [Spatial distribution and ecological risk assessment of heavy metals in the estuaries surface sediments from the Haihe River Basin].

    PubMed

    Lü, Shu-Cong; Zhang, Hong; Shan, Bao-Qing; Li, Li-Qing

    2013-11-01

    It is well known that the rivers in the Haihe River Basin have been seriously polluted. However, what is the present condition of the estuary pollution and how the polluted inland rivers affect the estuary areas are not clear. 10 main estuaries of the Haihe River Basin were selected to measure the contents of typical heavy metals (Pb, Cu, Zn, Cd, Cr and Ni) in the surface sediments and to analyze the spatial distribution of these heavy metals. The potential ecological risk index was used to assess the ecological risk of the six heavy metals in the estuaries. The results showed that the contents of Pb, Cu, Zn, Cd, Cr and Ni in the surface sediments of the 10 estuaries were all higher than their background values in the main local soil types and the contents of Cu, Ni and Pb were 2.3-2.6 times as high as their background values, which indicated that the estuaries were contaminated by the six heavy metals. The results also indicated that the contents of the six heavy metals in surface sediment varied from one estuary to another. The four heavy metals of Cr, Cu, Ni and Zn had bigger spatial differences than Pb and Cd in the contents in sediment from different estuaries. The contents of Cr, Cu, Ni and Zn in sediment were higher in the estuaries of the Yongdingxin River, Ziyaxin River and Beipai River than those in the other estuaries, and there were significant correlations between each other (R(Cu-Zn) = 0.891, R(Cu-Cr) = 0.927, R(Cu-Ni) = 0.964, R(Zn-Cr) = 0.842, R(Zn-Ni) = 0.939, and R(Cr-Ni) = 0.879, P < 0.01), which indicated that they possibly came from the same sources. Moreover, the contents of Cr, Cu, Ni and Zn in sediment also had significant correlations with the populations of sub-river basins with correlation coefficients of 0.855, 0.806, 0.867 and 0.855 (P < 0.01), respectively. The contents of Cd and Pb had smaller spatial differences in sediment from different estuaries than the other heavy metals, with the values ranged 23.3-95.8 mg x kg(-1) and 0.051-0.200 mg x kg(-1). Contents of the two heavy metals had no significant correlation with the other heavy metals or with the populations of sub-river basins, indicating that Cd and Pb had little connection with the in-land polluted sources. The results of ecological risk assessment showed that estuaries of the Haihe River Basin had the potential ecological risk at lower levels (RI were 33.7-116) and the most important contaminating element was Cd with a middle-level potential ecological risk (Er(i) were 18.0-48.9).

  10. Stress induced by heavy metals on breeding of magpie (Pica pica) from central Iran.

    PubMed

    Zarrintab, Mohammad; Mirzaei, Rouhollah

    2017-09-01

    The aim of this study was to address the impacts of some heavy metals (Cd, Pb, Zn, Ni and Cu) contamination on laying behavior, egg quality and breeding performance of Pica pica in north of Isfahan Province, Iran. During the breeding season of 2013, magpie's egg content and eggshell as well as nestling excrements and feathers were collected and total concentrations of heavy metals were measured by ICP-OES. Except for Zn in nestling feathers, the significantly higher concentrations of heavy metals were observed in nestling excrements than other samples. Also, comparison of heavy metals concentrations in egg content and eggshell showed that egg content had significantly higher concentrations of Zn and Pb, instead eggshell had significantly higher amount of Cu and Cd. Except for Cu, all heavy metals concentrations in eggshell had a negative relationship with morphological characters; and also concentration of Cu in egg content showed a significantly negative correlation with egg weight and volume. The most of heavy metals in nestling feathers and excrements had strongly positive correlations with each other. Also all heavy metals levels in eggshell and egg content had significantly positive correlations (except for Cu). Unhatched eggs had significantly lower weight but also greater levels of Zn, Cd, and Pb, than randomly collected eggs. No significant differences were observed for morphometric measurements of eggs between different sites, however, a decreased gradient was observed in egg volume toward the brick kiln site. Samples collected in brick kiln site accumulated higher concentrations of heavy metals than other sites. Although numbers of clutch size in brick kiln site were significantly higher than other sites, however, other breeding variable were lower than other sites. It can be suggested that ecosystem contamination may be caused to decrease the reproduction rate of Pica pica in brick kiln, probably by laying more poor quality eggs per clutch and nestling mortality. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    PubMed

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P < 0.01) positively correlated with the contents of Fe2O3, Ni, Cu, As and V in the industrial top soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  12. Supercritical water treatment of heavy metal and arsenic metalloid-bioaccumulating-biomass.

    PubMed

    Li, Jianxin; Chen, Jinbo; Chen, Shan

    2018-08-15

    Hyperaccumulator biomass, as a promising resource for renewable energy that can be converted into valuable fuel productions with high conversion efficiency, must be considered as hazardous materials and be carefully treated before further reuse due to the high contents of heavy metals. In this study, Pteris vittata L., an As-hyperaccumulator biomass was treated by an effective and environmental friendly method-supercritical water gasification (SCWG) using a bench-scale batch reactor. The contents of heavy metals (Cd, Pb and Zn) and arsenic metalloid in solid, liquid and gaseous products during SCWG process were thoroughly investigated. The speciation fractions including exchangeable, reducible, oxidizable and residual fractions of each heavy metal as the proportion of the total contents in solid residue were presented and the transformations trend of these heavy metals during the SCWG process was especially demonstrated. The significant operating parameters, including reaction temperature (395-445 °C), pressure (21-27 MPa) and residence time (0-40 min) were varied to explore their effects on the contents and forms. Moreover, the environmental risks of heavy metals in solid residues were evaluated based on risk assessment code, taking into consideration the speciation fractions and bioavailability. It was highlighted that although heavy metals particularly Pb and Zn tended to accumulate in solid residues with a maximum increment of about 50% in the total content, they were mostly converted to more stable oxidizable and residual fractions, and thus the ecotoxicity and bioavailability were greatly mitigated with no obvious increase in direct toxicity fractions. Each tested heavy metal presented no or low risk to the environments after SCWG treatments, meaning that the environmental pollution levels were markedly reduced with no or low risk to the environment. This study highlights the remarkable ability of SCWG for the heavy metal stabilization. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. A comprehensive analysis of the content of heavy rare-earth elements and platinum in snow samples to assess the ecological hazard of air pollution in urban areas

    NASA Astrophysics Data System (ADS)

    Vinokurov, S. F.; Tarasova, N. P.; Trunova, A. N.; Sychkova, V. A.

    2017-07-01

    Snow samples from the territory of the Setun River Valley Wildlife Sanctuary are analyzed for the content of rare-earth elements, heavy metals, and other hazardous elements by the inductively coupled plasma mass-spectrometry method. The changes in the concentrations of rare-earth elements, Pt, Pd, and indicator ratios of elements in the solid fractions of snow are revealed. A trend toward a decrease in the content of several elements northeastward of the Moscow Ring Road (MRR) is established. The level of seasonal atmospheric contamination of the area under study is assessed, and a possible source is identified.

  14. Study on Hyperspectral Characteristics and Estimation Model of Soil Mercury Content

    NASA Astrophysics Data System (ADS)

    Liu, Jinbao; Dong, Zhenyu; Sun, Zenghui; Ma, Hongchao; Shi, Lei

    2017-12-01

    In this study, the mercury content of 44 soil samples in Guan Zhong area of Shaanxi Province was used as the data source, and the reflectance spectrum of soil was obtained by ASD Field Spec HR (350-2500 nm) Comparing the reflection characteristics of different contents and the effect of different pre-treatment methods on the establishment of soil heavy metal spectral inversion model. The first order differential, second order differential and reflectance logarithmic transformations were carried out after the pre-treatment of NOR, MSC and SNV, and the sensitive bands of reflectance and mercury content in different mathematical transformations were selected. A hyperspectral estimation model is established by regression method. The results of chemical analysis show that there is a serious Hg pollution in the study area. The results show that: (1) the reflectivity decreases with the increase of mercury content, and the sensitive regions of mercury are located at 392 ~ 455nm, 923nm ~ 1040nm and 1806nm ~ 1969nm. (2) The combination of NOR, MSC and SNV transformations combined with differential transformations can improve the information of heavy metal elements in the soil, and the combination of high correlation band can improve the stability and prediction ability of the model. (3) The partial least squares regression model based on the logarithm of the original reflectance is better and the precision is higher, Rc2 = 0.9912, RMSEC = 0.665; Rv2 = 0.9506, RMSEP = 1.93, which can achieve the mercury content in this region Quick forecast.

  15. Streptomyces communities in soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Grishko, V. N.; Syshchikova, O. V.

    2009-02-01

    The contents of differently mobile heavy metal compounds and their influence on the formation of microbial cenoses (particularly, streptomyces communities) in technogenically disturbed soils are considered. Elevated concentrations of mobile Cu, Zn, Ni, Cd, and Fe compounds are shown to determine structural-functional changes in microbial cenoses that are displayed in a decreasing number of microorganisms and a narrower spectrum of the streptomyces species. Some specific features of the formation of streptomyces communities in technogenic soils were revealed on the basis of the analysis of their species structure with the use of the Margalef, Berger-Parker, and Sorensen indices of biodiversity.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Habuer,, E-mail: habuer@env.t.u-tokyo.ac.jp; Nakatani, Jun; Moriguchi, Yuichi

    Highlights: • We estimate the possession and obsolescence of household appliances (HAs) in China. • Over 4.8–5.1 billion units of major HAs will be discarded in the next 20 years. • We calculate the amounts of substances contained in end-of-life (EoL) TV sets. • Less common metals will tend to decrease in content in generation of EoL TV sets. • Precious metals will tend to increase in content in EoL TV sets in 2015–2030. - Abstract: Given the amounts of end-of-life electrical and electronic equipment (EoL-EEE) being generated and their contents of both harmful and valuable materials, the EoL-EEE issuemore » should be regarded not only as an emerging environmental problem but also as a resource management strategy in China. At present, in order to provide the basis for managing EoL-EEE at both product and substance levels in China, it is necessary to carry out a quantitative analysis on EoL-EEE and to determine how much of it will be generated and how much materials and substances it contains. In this study, the possession and obsolescence amounts of five types of household appliance (HA) including television (TV) sets and the amounts of substances contained in EoL TV sets were estimated using time-series product flow analysis (PFA) and substance flow analysis (SFA). The results of PFA indicated that the total possession amounts of those five types of HAs will exceed 3.1 billion units in 2030, which will be two times higher than those in 2010. In addition, it was estimated that cumulatively over 4.8–5.1 billion units of these five types of EoL HA would be obsoleted between 2010–2030. The results of SFA on TV sets indicated that the generated amounts of most of the less common metals and a part of common metals such as copper (Cu) would tend to decrease, whereas those of other common metals such as iron (Fe) as well as precious metals would tend to increase in EoL TV sets in 2015–2030. The results of this study provide a quantitative basis for helping decision makers develop strategic policies for the management of EoL-EEE considering both environmental and resource aspects. Moreover, a calculation scheme of obsolete HAs presented in this study can be applied to estimate other types of EoL durable good. Meanwhile, the frameworks of this study will help not only the policy decision makers in the Chinese government but also those in developing countries that are facing similar problems.« less

  17. Distribution of metals during digestion by cutthroat trout fed benthic invertebrates contaminated in the Clark Fork River, Montana and the Coeur d'Alene River, Idaho, U.S.A., and fed artificially contaminated Artemia

    USGS Publications Warehouse

    Farag, A.M.; Suedkamp, M.J.; Meyer, J.S.; Barrows, R.; Woodward, D.F.

    2000-01-01

    The concentrations of essential amino acids in three, undigested invertebrate diets collected from the Clark Fork River (CFR) for cutthroat trout were similar to each other, but were c. 25–75% less than Artemia that were exposed to a mixture of arsenic, copper, cadmium, lead and zinc in the laboratory. The Artemia diet appeared less palatable and the texture, quantity and appearance of the intestinal contents differed between fish fed the Artemia and CFR diets. The Pb% in the fluid fraction of the intestinal contents was greater for the Artemia (29%) than for the CFR diets (10–17%), and the Cu% in the amino acid plus metal fraction of the intestinal contents was greater for the Artemia (78%) than for two of the three CFR diets (67% and 70%). Intestinal contents of fish fed invertebrate diets collected from various sites on the Coeur d'Alene River (CDA), Idaho, were similar in texture, quantity, and appearance. For fish fed the CDA diets, differences in the distribution of metals among fractions of the digestive fluids appeared to be related to concentrations of metals in the invertebrate diets. Pb% was lowest of all metals in the fluid portion of the intestinal contents. However, >80% of all metals in the hind gut were associated with the particulate fraction where they may still be available for uptake through pinocytosis.

  18. Impact of highway traffic and the acoustic screen on the content and spatial distribution of heavy metals in soils.

    PubMed

    Różański, Szymon; Jaworska, Hanna; Matuszczak, Katarzyna; Nowak, Joanna; Hardy, Amber

    2017-05-01

    Recent years have witnessed intensification of road traffic and, with it, the amount of substances emitted by vehicles. Such emissions need to be monitored for public health purposes. The aim of this study was to evaluate the impact of the highway traffic on the total content and bioavailability of Zn, Cu, Ni, Cd, Cr and Pb in nearby soils as well as influence of an acoustic screen on spatial distribution of the metals. The material included 40 soil samples collected from 15 research points located 5, 10, 25 and 50 m away from the road acoustic screen and from 4 points between the screen and the highway. Additionally, 5 research points were located next to the metal barrier. Selected physicochemical properties of soils were determined: soil texture, soil pH, TOC and CaCO 3 content. The total content of heavy metals in the soils was determined by AAS after digestion in aqua regia and bioavailable forms in 1 M diethylenetriaminepentaacetic acid. The research found low impact of the highway traffic on the content of heavy metals in soils; however, due to a very short period of this potential impact (5 years), the moderately polluted category of geo-accumulation index of cadmium and high bioavailability of lead indicate the need of repeating the research within the next several years. Furthermore, the road acoustic screen significantly influenced spatial distribution of the metals in soils.

  19. Granulometric selectivity in Liza ramado and potential contamination resulting from heavy metal load in feeding areas

    NASA Astrophysics Data System (ADS)

    Pedro, Sílvia; Canastreiro, Vera; Caçador, Isabel; Pereira, Eduarda; Duarte, Armando C.; Raposo de Almeida, Pedro

    2008-11-01

    The stomach contents of thin-lipped grey mullets Liza ramado were analysed in terms of granulometric composition and compared to the sediment of potential feeding areas in the Tagus estuary. Total organic matter (TOM) content and heavy metal content were determined in the surface sediment of three areas and eight trace elements were quantified: Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. The three sampled areas did not differ in TOM; and the heavy metal content was below Effects Range-Low level for most elements. The mean observed concentrations were present in the following sequence: Zn > Pb > Cr > Cu ≈ Ni > Co > Cd > Hg. Stomach contents granulometric composition provided information about the feeding selectivity of the mullets. Sediment fractions with particle size between 20 and 50 μm are preferred, independently of the fishes' length. Smaller standard length (SL) fishes have a higher positive selection of fine grained sediments than those with a larger SL. Finer fractions usually have higher concentration of heavy metals, which makes younger specimens of the thin-lipped grey mullet potentially more exposed to heavy metal load in the estuary. Metal concentration was not independent from the sampling point, presenting higher values near the margins and the estuary tidal drainage system. This means that during the first period of each tidal cycle, the mullets will feed first on the most contaminated areas, as a consequence of their movement following the rising tide to feed on previously exposed areas.

  20. Analysis of Copper-Bearing Rocks and Minerals for Their Metal Content Using Visible Spectroscopy: A First Year Chemistry Laboratory Exploration

    ERIC Educational Resources Information Center

    Bopegedera, A. M. R. P.

    2016-01-01

    General chemistry and introductory chemistry students were presented with a laboratory exploration for the determination of the mass percent of copper in rock and mineral samples. They worked independently in the laboratory, which involved multiple lab (pipetting, preparing standard solutions by quantitative dilution, recording visible spectra…

  1. Analysis of chlorophyll fluorescence spectra for the monitoring of Cd toxicity in a bio-energy crop (Jatropha curcas).

    PubMed

    Marques, Marise Conceição; do Nascimento, Clístenes Williams Araújo

    2013-10-05

    The vegetation of metal-contaminated soils using non-edible crops can be a safe and economical technique for Cd immobilization and the remediation of contaminated sites. Jatropha (Jatropha curcas L.) exhibits a relative tolerance to heavy metals and potential for biofuel production. The study was performed to monitor the Cd-induced alterations in jatropha plants by X-ray chlorophyll fluorescence. The Cd effects on photosynthetic pigments, the mineral composition of plants, defense enzyme activity and soluble proteins were also studied. Plants were grown for 20days in a nutrient solution with five Cd contents: 5, 10, 20, 30 and 40μmolL(-1); a control with no Cd addition was also monitored. The analysis of the chlorophyll fluorescence spectra allowed detecting alterations caused by Cd toxicity in the jatropha plants. The mineral composition of the plants was affected by the Cd doses; however, the Fe and Mg contents were not significantly reduced, which most likely improved the effects on the contents of the photosynthetic pigments. Because of its relative tolerance to Cd, Jatropha curcas may be a promising species to revegetate Cd-contaminated sites. Considering the long period needed to phytoremediate soils, the combination of remediation with bioenergy production could be an attractive option. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Interfacial reactions and compound formation of Sn-Ag-Cu solders by mechanical alloying on electroless Ni-P/Cu under bump metallization

    NASA Astrophysics Data System (ADS)

    Kao, Szu-Tsung; Duh, Jenq-Gong

    2005-08-01

    Electroless Ni-P under bump metallization (UBM) has been widely used in electronic interconnections due to the good diffusion barrier between Cu and solder. In this study, the mechanical alloying (MA) process was applied to produce the SnAgCu lead-free solder pastes. Solder joints after annealing at 240°C for 15 min were employed to investigate the evolution of interfacial reaction between electroless Ni-P/Cu UBM and SnAgCu solder with various Cu concentrations ranging from 0.2 to 1.0 wt.%. After detailed quantitative analysis with an electron probe microanalyzer, the effect of Cu content on the formation of intermetallic compounds (IMCs) at SnAgCu solder/electroless Ni-P interface was evaluated. When the Cu concentration in the solder was 0.2 wt.%, only one (Ni, Cu)3Sn4 layer was observed at the solder/electroless Ni-P interface. As the Cu content increased to 0.5 wt.%, (Cu, Ni)6Sn5 formed along with (Ni, Cu)3Sn4. However, only one (Cu, Ni)6Sn5 layer was revealed, if the Cu content was up to 1 wt.%. With the aid of microstructure evolution, quantitative analysis, and elemental distribution by x-ray color mapping, the presence of the Ni-Sn-P phase and P-rich layer was evidenced.

  3. HEAVY METAL CONTENT OF AYURVEDIC HERBAL MEDICINE PRODUCTS

    EPA Science Inventory

    Case reports of individuals taking Ayurvedic herbal medicine products (HMPs) suggest that they may contain lead, mercury, and/or arsenic. We analyzed the heavy metal content of Ayurvedic HMPs manufactured in India and Pakistan, available in South Asian grocery stores in the Bost...

  4. Amelioration of iron mine soils with biosolids: Effects on plant tissue metal content and earthworms.

    PubMed

    Cele, Emmanuel Nkosinathi; Maboeta, Mark

    2016-11-01

    The achievement of environmentally sound and economically feasible disposal strategies for biosolids is a major issue in the wastewater treatment industry around the world, including Swaziland. Currently, an iron ore mine site, which is located within a wildlife sanctuary, is being considered as a suitable place where controlled disposal of biosolids may be practiced. Therefore, this study was conducted to investigate the effects of urban biosolids on iron mine soils with regard to plant metal content and ecotoxicological effects on earthworms. This was done through chemical analysis of plants grown in biosolid-amended mine soil. Earthworm behaviour, reproduction and bioaccumulation tests were also conducted on biosolid-amended mine soil. According to the results obtained, the use of biosolids led to creation of soil conditions that were generally favourable to earthworms. However, plants were found to have accumulated Zn up to 346 mg kg -1 (in shoots) and 462 mg kg -1 (in roots). This was more than double the normal Zn content of plants. It was concluded that while biosolids can be beneficial to mine soils and earthworms, they can also lead to elevated metal content in plant tissues, which might be a concern to plant-dependant wildlife species. Nonetheless, it was not possible to satisfactorily estimate risks to forage quality since animal feeding tests with hyperaccumulator plants have not been reported. Quite possibly, there may be no cause for alarm since the uptake of metals from soil is greater in plants grown in pots in the greenhouse than from the same soil in the field since pot studies fail to mimic field conditions where the soil is heterogeneous and where the root system possesses a complex topology. It was thought that further field trials might assist in arriving at more satisfactory conclusions.

  5. Preparation and characterization of a novel adsorbent from Moringa oleifera leaf

    NASA Astrophysics Data System (ADS)

    Bello, Olugbenga Solomon; Adegoke, Kayode Adesina; Akinyunni, Opeyemi Omowumi

    2017-06-01

    A new and novel adsorbent was obtained by impregnation of Moringa oleifera leaf in H2SO4 and NaOH, respectively. Prepared adsorbents were characterized using elemental analysis, FT-IR, SEM, TGA and EDX analyses, respectively. The effects of operational parameters, such as pH, moisture content, ash content, porosity and iodine number on these adsorbents were investigated and compared with those of commercial activated carbon (CAC). EDX results of acid activated M. oleifera leaf have the highest percentage of carbon by weight (69.40 %) and (76.11 %) by atom, respectively. Proximate analysis showed that the fixed carbon content of acid activated M. oleifera leaf (69.14 ± 0.01) was the highest of all adsorbents studied. Conclusively, the present investigation shows that acid activated M. oleifera leaf is a good alternative adsorbent that could be used in lieu of CAC for recovery of dyes and heavy metal from aqueous solutions and other separation techniques.

  6. Extending FEAST-METAL for analysis of low content minor actinide bearing and zirconium rich metallic fuels for sodium fast reactors

    NASA Astrophysics Data System (ADS)

    Karahan, Aydın

    2011-07-01

    Computational models in FEAST-METAL fuel behaviour code have been upgraded to simulate minor actinide bearing zirconium rich metallic fuels for use in sodium fast reactors. Increasing the zirconium content to 20-40 wt.% causes significant changes in fuel slug microstructure affecting thermal, mechanical, chemical, and fission gas behaviour. Inclusion of zirconium rich phase reduces the fission gas swelling rate significantly in early irradiation. Above the threshold fission gas swelling, formation of micro-cracks, and open pores increase material compliancy enhance diffusivity, leading to rapid fuel gas swelling, interconnected porosity development and release of the fission gases and helium. Production and release of helium was modelled empirically as a function of americium content and fission gas production, consistent with previous Idaho National Laboratory studies. Predicted fuel constituent redistribution is much smaller compared to typical U-Pu-10Zr fuel operated at EBR-II. Material properties such as fuel thermal conductivity, modulus of elasticity, and thermal expansion coefficient have been approximated using the available database. Creep rate and fission gas diffusivity of high zirconium fuel is lowered by an order of magnitude with respect to the reference low zirconium fuel based on limited database and in order to match experimental observations. The new code is benchmarked against the AFC-1F fuel assembly post irradiation examination results. Satisfactory match was obtained for fission gas release and swelling behaviour. Finally, the study considers a comparison of fuel behaviour between high zirconium content minor actinide bearing fuel and typical U-15Pu-6Zr fuel pins with 75% smear density. The new fuel has much higher fissile content, allowing for operating at lower neutron flux level compared to fuel with lower fissile density. This feature allows the designer to reach a much higher burnup before reaching the cladding dose limit. On the other hand, in order to accommodate solid fission product swelling and to control fuel clad mechanical interaction of the stiffer fuel, the fuel smear density is reduced to 70%. In addition, plenum height is increased to accommodate for fission gases.

  7. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  8. One-century sedimentary record of heavy metal pollution in western Taihu Lake, China.

    PubMed

    Li, Yan; Zhou, Shenglu; Zhu, Qing; Li, Baojie; Wang, Junxiao; Wang, Chunhui; Chen, Lian; Wu, Shaohua

    2018-05-16

    Long-term trends of sediment compositions are important for assessing the impact of human activities on the sediment and protecting the sediment environment. In this study, based on the contents of heavy metals and the Pb isotope ratios in lake sediments, atmospheric dustfall and soil in Yixing, China, the representative heavy metals (Zn, Pb, Cr and Cd) in lake sediments from western Taihu Lake were studied. The evolution history of heavy metals in the local environment was constructed for the past 100 years. From 1892 to the 1990s, the anthropogenic fluxes of the representative heavy metals were negligible, indicating minimal anthropogenic emissions of heavy metals. Since the 1990s, anthropogenic fluxes of the representative heavy metals began to increase, concurrent with the economic growth and development in the western Taihu Lake Basin after the Chinese economic reform. The maximum flux percentage of the heavy metals in the sediments, caused by human activities, is 23.0% for Zn, 31.6% for Pb, 39.5% for Cr and 85.3% for Cd, indicating that most of the Cd comes from human activities. The Cd content in the western Taihu Lake Basin was significantly higher than that in the other areas, and the rapid development of the industry in the western Taihu Lake Basin and ceramics in Yixing led to the enrichment of heavy metals in local sediments. Since the 21st century, measures have been taken to control the pollution of heavy metals, including the increase in local government attention and the deployment of environmental monitoring technology. However, heavy metal content remains high, and the Pb content is still increasing. The ratios of Pb isotopes show that the main sources of heavy metals in the western Taihu Lake sediments, the local soil of Yixing and the atmospheric dustfall are coal combustion, leaded gasoline combustion, industrial wastewater and domestic sewage. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Molecular analysis of red maple (Acer rubrum) populations from a reclaimed mining region in Northern Ontario (Canada): soil metal accumulation and translocation in plants.

    PubMed

    Kalubi, K N; Mehes-Smith, M; Narendrula, R; Michael, P; Omri, A

    2015-04-01

    Red maple (Acer rubrum) species is one of the most widespread deciduous (hardwood) trees of eastern North America. It is among the dominant tree species in the Northern Ontario after land reclamation. To date, the effects of heavy metal contamination from the mining activities on terrestrial ecosystems are not well understood. The main objectives of the present study are (1) to determine the level of phytoavailable metal in soil and accumulation in A. rubrum, and (2) to compare the levels of genetic variation among and within A. rubrum populations from areas with different metal contents in a Northern Ontario region. The total heavy metal levels were found to be high but the availability of these metals were much lower. We found that red maple does not accumulate heavy metals in their leaves as other hardwood species. The translocation factors were 0.05, 0.21, 0.38, 0.90, and 2.8 for Cu, Ni, Fe, Zn, and Mg, respectively. The levels of genetic variation in red maple populations from reclaimed lands in Northern Ontario were moderate to high since the percentage of polymorphic loci varied between 51 and 67%. The mean values for observed number of alleles (Na), effective number of alleles (Ne), Nei's gene diversity (h), and Shannon's information index (I) were 1.60, 1.24, 0.15 and 0.24, respectively. The population differentiation (GST) among the fragmented populations was high (0.28) despite a high level of gene flow (Nm = 1.28). Nevertheless, all the populations within the targeted region were genetically closely related. A specific ISSR marker that was identified in all the samples from the reference sites was absent in most samples from metal contaminated. This specific band was cloned and sequenced. Overall, the present study confirms that red maple populations in Northern Ontario are genetically sustainable despite the high level of total metal content in soil.

  10. Informal e-waste recycling: environmental risk assessment of heavy metal contamination in Mandoli industrial area, Delhi, India.

    PubMed

    Pradhan, Jatindra Kumar; Kumar, Sudhir

    2014-01-01

    Nowadays, e-waste is a major source of environmental problems and opportunities due to presence of hazardous elements and precious metals. This study was aimed to evaluate the pollution risk of heavy metal contamination by informal recycling of e-waste. Environmental risk assessment was determined using multivariate statistical analysis, index of geoaccumulation, enrichment factor, contamination factor, degree of contamination and pollution load index by analysing heavy metals in surface soils, plants and groundwater samples collected from and around informal recycling workshops in Mandoli industrial area, Delhi, India. Concentrations of heavy metals like As (17.08 mg/kg), Cd (1.29 mg/kg), Cu (115.50 mg/kg), Pb (2,645.31 mg/kg), Se (12.67 mg/kg) and Zn (776.84 mg/kg) were higher in surface soils of e-waste recycling areas compared to those in reference site. Level exceeded the values suggested by the US Environmental Protection Agency (EPA). High accumulations of heavy metals were also observed in the native plant samples (Cynodon dactylon) of e-waste recycling areas. The groundwater samples collected form recycling area had high heavy metal concentrations as compared to permissible limit of Indian Standards and maximum allowable limit of WHO guidelines for drinking water. Multivariate analysis and risk assessment studies based on total metal content explains the clear-cut differences among sampling sites and a strong evidence of heavy metal pollution because of informal recycling of e-waste. This study put forward that prolonged informal recycling of e-waste may accumulate high concentration of heavy metals in surface soils, plants and groundwater, which will be a matter of concern for both environmental and occupational hazards. This warrants an immediate need of remedial measures to reduce the heavy metal contamination of e-waste recycling sites.

  11. [Heavy metals in environmental media around drinking water conservation area of Shanghai].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Zhang, Cui; Bi, Chun-Juan; Cheng, Chen; Teng, Ji-Yan; Shen, Jun; Wang, Dong-Qi; Xu, Shi-Yuan

    2008-07-01

    The levels of heavy metals in Shanghai drinking water conservation area were determined, and the spatial distributions and main sources of heavy metals were investigated. Moreover, the ecological risk assessment of heavy metals was conducted. Some conclusions can be drawn as follows: (1) The average concentrations of Cd, Hg, Pb, Cu, Zn, Ni, Cr and As in road dust were 0.80, 0.23, 148.45, 127.52, 380.57, 63.17, 250.38 and 10.37 mg x kg(-1) respectively. In terms of the pollution level, the values of soils were relatively lower, with the mean contents of 0.16 (Cd), 0.33 (Hg), 30.14 (Pb), 30.66 (Cu), 103.79 (Zn), 24.04 (Ni), 65.75 (Cr) and 6.31 mg x kg(-1) (As) severally; meanwhile the average levels of heavy metals in vegetables were 0.010 (Cd), 0.016 (Hg), 0.36 (Pb), 12.80 (Cu), 61.69 (Zn), 2.04 (Ni), 2.41 (Cr) and 0.039 mg x kg(-1) (As) respectively. (2) Semivariogram and multivariate analysis indicated that heavy metals pollution of soils was induced by anthropogenic activities mostly, and the pollutants produced by traffic were the major source of heavy metals in road dust. (3) The order for heavy metal enrichment coefficients of vegetables was as following: Zn (0.589) > Cu (0.412) > 0.102 (Ni) > Cd (0.059) > Cr (0.061) > Hg (0.056) > Pb (0.012) > As (0.007), and the results indicated that Cd and Zn in vegetables were mainly from the soils, and the other metals were probably from the pollutants in the atmosphere. (4) Sediments in drinking water conservation area were probably derived from soils around; however, there was no significant relationship between heavy metals contents of them. (5) The results of ecological risk assessment of heavy metals showed that heavy metals in soils were in no-warning to warning situation, and warning to light-warning situation for road dust and vegetables. The fuzzy synthesis judgment for all the environmental media around drinking water conservation area was warning to light-warning.

  12. The enhancing of Au-Ag-Te content in tellurium-bearing ore mineral by bio-oxidation-leaching

    NASA Astrophysics Data System (ADS)

    Kim, PyeongMan; Kim, HyunSoo; Myung, EunJi; Kim, YoonJung; Lee, YongBum; Park*, CheonYoung

    2015-04-01

    The purpose of this study is to enhance the content of valuable metals such as Au-Ag-Te in tellurium-bearing minerals by bio-oxidation-leaching. It was confirmed that pyrite, chalcopyrite, sphalerite and galena were produced together with tellurium-bearing minerals including hessite, sylvanite and tellurobismuthite from ore minerals and concentrates through microscopic observation and SEM/EDS analysis. In a bio-oxidation-leaching experiment, with regard to Au, Ag, Te, Cu and Fe, the changes in the amount of leaching and the content of leaching residues were compared and analyzed with each other depending on the adaptation of an indigenous microbe identified as Acidithiobacillus ferrooxidans. As a result of the experiment, the Au-Ag-Te content in tellurium-bearing ore mineral was enhanced in the order of physical oxidation leaching, physical/non-adaptive bio-oxidation-leaching and physical/adaptive biological leaching. It suggests that the bio-oxidation-leaching using microbes adapted in tellurium-bearing ore mineral can be used as a pre-treatment and a main process in a recovery process of valuable metals. "This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(NRF-2013R1A1A2004898)"

  13. Primordial helium abundance determination using sulphur as metallicity tracer

    NASA Astrophysics Data System (ADS)

    Fernández, Vital; Terlevich, Elena; Díaz, Angeles I.; Terlevich, Roberto; Rosales-Ortega, F. F.

    2018-05-01

    The primordial helium abundance YP is calculated using sulphur as metallicity tracer in the classical methodology (with YP as an extrapolation of Y to zero metals). The calculated value, YP, S = 0.244 ± 0.006, is in good agreement with the estimate from the Planck experiment, as well as, determinations in the literature using oxygen as the metallicity tracer. The chemical analysis includes the sustraction of the nebular continuum and of the stellar continuum computed from simple stellar population synthesis grids. The S+2 content is measured from the near infrared [SIII]λλ9069Å, 9532Å lines, while an ICF(S3 +) is proposed based on the Ar3 +/Ar2 + fraction. Finally, we apply a multivariable linear regression using simultaneously oxygen, nitrogen and sulphur abundances for the same sample to determine the primordial helium abundance resulting in YP - O, N, S = 0.245 ± 0.007.

  14. Bioaccumulation of Copper (Cu) and Chromium (Cr) on export comodity vanamei shrimp from Karawang, West Java

    NASA Astrophysics Data System (ADS)

    Rahman, A.; Takarina, N. D.; Siswantining, T.; Pin, T. G.; Soedjiarti, T.

    2018-05-01

    Karawang is one of regencies in West Java which has great potential for vannamei culture. The farm here was modern farm and using Citarum River as water source. Human activities like household and industry around the river cause its quality decrease and give negative impact to shrimp farm. This research was aimed to investigate the bioaccumulation of copper (Cu) and chromium (Cr) on vannamei shrimp from Karawang, West Java. Amount of shrimp’s meat and carapace were used for heavy metal measurement using Atomic Absorption Specthrophotometry. Result showed that contents of copper both in meat and carapace were higher than content of chromium. Moreover, the content of both metals was higher on carapace compared to meat. Since the content of meat were below threshold, so it is safe for consumption. There is no significant difference content of both metals in carapace.

  15. Factorial Kriging analysis and sources of heavy metals in soils of different land-use types in the Yangtze River Delta of Eastern China.

    PubMed

    Zhou, Jie; Feng, Ke; Li, Yinju; Zhou, Yang

    2016-08-01

    The objectives of this study are to analyse the pollution status and spatial correlation of soil heavy metals and identify natural and anthropogenic sources of these heavy metals at different spatial scales. Two hundred and twenty-four soil samples (0-20 cm) were collected and analysed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn and Ni) in soils of different land-use types in the Yangtze River Delta of Eastern China. The multivariate methods and factorial Kriging analysis were used to achieve the research objectives. The results indicated that the human and natural effects of different land-use types on the contents of soil heavy metals were different. The Cd, Hg, Cu, Pb and Zn in soils of industrial area were affected by human activities, and the pollution level of these heavy metals in this area was moderate. The Pb in soils of traffic area was affected by human activities, and eight heavy metals in soils of residential area and farmland area were affected by natural factor. The ecological risk status of eight heavy metals in soils of the whole study area was light. The heavy metals in soils showed three spatial scales (nugget effect, short range and long range). At the nugget effect and short range scales, the Cd, Hg, Cu, Pb and Zn in soils were affected by human and natural factors. At three spatial scales, the As, Cr and Ni in soils were affected by soil parent materials.

  16. Evaluation of the mobility and pollution index of selected essential/toxic metals in paddy soil by sequential extraction method.

    PubMed

    Hasan, Maria; Kausar, Dilshad; Akhter, Gulraiz; Shah, Munir H

    2018-01-01

    Comparative distribution and mobility of selected essential and toxic metals in the paddy soil from district Sargodha, Pakistan was evaluated by the modified Community Bureau of Reference (mBCR) sequential extraction procedure. Most of the soil samples showed slightly alkaline nature while the soil texture was predominantly silty loam in nature. The metal contents were quantified in the exchangeable, reducible, oxidisable and residual fractions of the soil by flame atomic absorption spectrophotometry and the metal data were subjected to the statistical analyses in order to evaluate the mutual relationships among the metals in each fraction. Among the metals, Ca, Sr and Mn were found to be more mobile in the soil. A number of significant correlations between different metal pairs were noted in various fractions. Contamination factor, geoaccumulation index and enrichment factor revealed extremely severe enrichment/contamination for Cd; moderate to significant enrichment/contamination for Ni, Zn, Co and Pb while Cr, Sr, Cu and Mn revealed minimal to moderate contamination and accumulation in the soil. Multivariate cluster analysis showed significant anthropogenic intrusions of the metals in various fractions. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Determination of metallic traces in kidneys, livers, lungs and spleens of rats with metallic implants after a long implantation time.

    PubMed

    Rubio, Juan Carlos; Garcia-Alonso, Maria Cristina; Alonso, Concepcion; Alobera, Miguel Angel; Clemente, Celia; Munuera, Luis; Escudero, Maria Lorenza

    2008-01-01

    Metallic transfer from implants does not stop at surrounding tissues, and metallic elements may be transferred by proteins to become lodged in organs far from the implant. This work presents an in vivo study of metallic implant corrosion to measure metallic element accumulation in organs located far from the implant, such as kidneys, livers, lungs and spleens. The studied metallic implant materials were CoCr alloy, Ti, and the experimental alloy MA956 coated with alpha-alumina. The implants were inserted in the hind legs of Wistar rats. Analysis for Co, Cr, Ti and Al metallic traces was performed after a long exposure time of 12 months by Inductively Coupled Plasma (ICP) with Mass Spectrometry (MS). According to the results, the highest Cr and Ti concentrations were detected in spleens. Co is mainly found in kidneys, since this element is eliminated via urine. Cr and Ti traces increased significantly in rat organs after the long implantation time. The organs of rats implanted with the alpha-alumina coated experimental MA956 did not present any variation in Al content after 12 months, which means there was no degradation of the alumina layer surface.

  18. [Survey and evaluation of heavy metal in the major vegetables in Shaanxi Province].

    PubMed

    Nie, Xiaoling; Cheng, Guoxia; Wang, Minjuan; Wang, Caixia; Du, Kejun

    2015-09-01

    To evaluate the contamination condition of the Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province. The Pb and Cd contents were determined by inductively coupled plasma mass spectrometry, and the As contents were determined by hydride generation-atomic fluorescence spectrometry, and the Hg contents were determined by mercury vapourmeter. One factor contamination index was employed to evaluate the metal pollution situation of different types of vegetables. Moreover, the health risk after intake of those heavy metals through vegetables were described. In ten kinds of vegetables of Shaanxi Province, the Pb contents in cowpea reached the alertness level, while the contents of Cd, Hg and As were below the safety level. What' s more, the contents of the Pb, Cd, Hg and As were below the safety level in other nine vegetables, and the over standard rate of were Hg > Pb > Cd > As. The contamination extents of Pb, Cd, Hg and As in ten kinds of vegetables in Shaanxi Province were low.

  19. Source identification of eight heavy metals in grassland soils by multivariate analysis from the Baicheng-Songyuan area, Jilin Province, Northeast China.

    PubMed

    Chai, Yuan; Guo, Jia; Chai, Sheli; Cai, Jing; Xue, Linfu; Zhang, Qingwei

    2015-09-01

    The characterization of the concentration, chemical speciation and source of heavy metals in soils is an imperative for pollution monitoring and the potential risk assessment of the metals to animal and human health. A total of 154 surface horizons and 53 underlying horizons of grassland soil were collected from the Baicheng-Songyuan area in Jilin Province, Northeast China, in which the concentrations and chemical fractionations of As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn were investigated. The mean concentrations of heavy metals in grassland topsoil were 7.2, 0.072, 35, 16.7, 0.014, 15.2, 18.3 and 35 mg kg(-)(1) for As, Cd, Cr, Cu, Hg, Ni, Pb and Zn, respectively, and those averaged contents were lower than their China Environmental Quality Standard values for the Soils, implying that heavy metal concentrations in the studied soils were of the safety levels. The mobility sequence of the heavy metals based on the sum of the soluble, exchangeable, carbonate-bound and humic acid-bound fractions among the seven fractions decreased in the order of Cd 50.4%)>Hg (39.8%)>Cu (26.5%)>As (19.9%)>Zn (19.1%)>Ni (15.9%)>Pb (14.1%)>Cr (4.3%), suggesting Cd and Hg may pose more potential risk of soil contamination than other metals. Multivariate statistical analysis suggested that As, Cr, Cu, Ni, Pb, Zn, Cd and Hg had the similar lithogenic sources, however, Cd and Hg were more relevant to organic matter than other heavy metals, which was confirmed by the chemical speciation analysis of the metals. The study provides a base for local authority in the studied area to monitor the long term accession of heavy metals into grassland soil. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Homeostasis of metals in the progression of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  1. Automatic Recognition of Underground Targets Using Time-Frequency Analysis and Optimization Techniques

    NASA Astrophysics Data System (ADS)

    Gaunaurd, Guillermo C.; Strifors, Hans C.

    Landmines have been laid in conflicts around the world, and they cause enormous humanitarian problems in more than 60 countries, killing, mutilating, or maiming the innocent every day. They do not differentiate between elderly, men, women, children, or animals, and they are triggered off by the victims themselves. Detection and clearance of landmines, however, have turned out to be an immensely challenging problem. A traditional means for detecting mines is the metal detector. The detector head is slowly moved over the suspicious terrain, and it gives out audible alerts when metal in the ground disturbs the magnetic field the detector generates. In general, the number of false alarms caused by various (man-made) metal objects in the ground is a great deal larger than the number of mines. This makes mine clearance a tiring task that demands the highest level of concentration. Moreover, a hazard involved is that the metal detector could be too insensitive to mines of low-metal content.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crawford, Andrew M.; Kurecka, Patrick; Yim, Tsz Kwan

    An X-ray fluorescence flow cytometer that can determine the total metal content of single cells has been developed. Capillary action or pressure was used to load cells into hydrophilic or hydrophobic capillaries, respectively. Once loaded, the cells were transported at a fixed vertical velocity past a focused X-ray beam. X-ray fluorescence was then used to determine the mass of metal in each cell. By making single-cell measurements, the population heterogeneity for metals in the µ M to m M concentration range on fL sample volumes can be directly measured, a measurement that is difficult using most analytical methods. This approachmore » has been used to determine the metal composition of 936 individual bovine red blood cells (bRBC), 31 individual 3T3 mouse fibroblasts (NIH3T3) and 18 Saccharomyces cerevisiae (yeast) cells with an average measurement frequency of ~4 cells min –1. These data show evidence for surprisingly broad metal distributions. Lastly, details of the device design, data analysis and opportunities for further sensitivity improvement are described.« less

  3. The cadmium and lead content of the grain produced by leading Chinese rice cultivars.

    PubMed

    Xie, L H; Tang, S Q; Wei, X J; Shao, G N; Jiao, G A; Sheng, Z H; Luo, J; Hu, P S

    2017-02-15

    The cadmium (Cd) and lead (Pb) content in both white and wholemeal flour milled from 110 leading rice cultivars was assessed. The white flour Cd content ranged from <0.0025 to 0.2530mg/kg (geometric mean (GM)=0.0150mg/kg), while its Pb content ranged from <0.0250 to 0.3830mg/kg (GM=0.0210mg/kg). The indica types took up higher amounts of Cd and Pb than did the japonica types. Although the heavy metal content of wholemeal flour tended to higher than that of white flour, nevertheless 84.5% (Cd) and 95.4% (Pb) of the entries were compliant with the national maximum allowable concentration of 0.2000mg/kg of each contaminant. An analysis of the Cd content in the white flour of three indica type cultivars grown in two consecutive years at two locations indicated that Cd content may be significantly affected by the conditions prevailing in the growing season. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Determination of trace metals and analysis of arsenic species in tropical marine fishes from Spratly islands.

    PubMed

    Li, Jingxi; Sun, Chengjun; Zheng, Li; Jiang, Fenghua; Wang, Shuai; Zhuang, Zhixia; Wang, Xiaoru

    2017-09-15

    Trace metal contents in 38 species of tropical marine fishes harvested from the Spratly islands of China were determined by microwave digestion and inductively coupled plasma mass spectrometry analysis. Arsenic species were determined by high-performance liquid chromatography and inductively coupled plasma mass spectrometry analysis. The average levels of Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Mo, Cd, Pb, and U in the fish samples were 1.683, 0.350, 0.367, 2.954, 36.615, 0.087, 0.319, 1.566, 21.946, 20.845, 2.526, 3.583, 0.225, 0.140, and 0.061mg·kg -1 , respectively; Fe, Zn, and As were found at high concentrations. The trace metals exhibited significant positive correlation between each other, with r value of 0.610-0.852. Further analysis indicated that AsB (8.560-31.020mg·kg -1 ) was the dominant arsenic species in the fish samples and accounted for 31.48% to 47.24% of the total arsenic. As(III) and As(V) were detected at low concentrations, indicating minimal arsenic toxicity. Copyright © 2017. Published by Elsevier Ltd.

  5. Evaluation of metal content in perch of the Ob River basin

    NASA Astrophysics Data System (ADS)

    Osipova, N. A.; Stepanova, K. D.; Matveenko, I. A.

    2015-11-01

    The geochemical features of river perch in the River Ob basin have been studied (the upper and middle reaches of the Ob River and the lower reach of the Tom River). The contents of Ag, Bi, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Sn, W, Zn, Hg in perch's soft tissue are defined by the methods of ICP AES and stripping voltammetry, that of mercury in bones - by the atomic absorption method using mercury analyzer PA-915+. The distribution series of metal absolute concentrations in perch's soft tissue from the Ob River basin are plotted: Fe > Zn > Cu > Mn, typical for uncontaminated or slightly metal contaminated water bodies. In soft tissue of the studied samples the metal content does not exceed the permissible values. The mercury content in bones of studied samples is in the range 0,036-0,556 mg/kg. The mercury concentration is higher in bones in comparison with soft tissue in all samples.

  6. Adsorption of acid-extractable organics from oil sands process-affected water onto biomass-based biochar: Metal content matters.

    PubMed

    Bhuiyan, Tazul I; Tak, Jin K; Sessarego, Sebastian; Harfield, Don; Hill, Josephine M

    2017-02-01

    The impact of biochar properties on acid-extractable organics (AEO) adsorption from oil sands process-affected water (OSPW) was studied. Biochar from wheat straw with the highest ash content (14%) had the highest adsorption capacity (0.59 mg/g) followed by biochar from pulp mill sludge, switchgrass, mountain pine, hemp shives, and aspen wood. The adsorption capacity had no obvious trend with surface area, total pore volume, bulk polarity and aromaticity. The large impact of metal content was consistent with the carboxylates (i.e., naphthenate species) in the OSPW binding to the metals (mainly Al and Fe) on the carbon substrate. Although the capacity of biochar is still approximately two orders of magnitude lower than that of a commercial activated carbon, confirming the property (i.e., metal content) that most influenced AEO adsorption, may allow biochar to become competitive with activated carbon after normalizing for cost, especially if this cost includes environmental impacts. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. [Evaluation and cumulative characteristics of heavy metals in soil-Uncaria rhynchophylla system of different functional areas].

    PubMed

    Zhang, Jia-Chun; Zeng, Xian-Ping; Zhang, Zhen-Ming; Lin, Shao-Xia; Zhang, Qing-Hai; Lin, Chang-Hu

    2016-10-01

    Soil and Uncaria rhynchophylla in different functional areas were selected for the study,the content of heavy metals such as As, Cd, Cu, Cr, Pb, and Hg in soil and U. rhynchophylla was discussed, the characteristics of their accumulation in the U.rhynchophylla was analyzed, the contamination levels of heavy metals in soil in different functional areas was evaluated. The results showed that content of Cu, As, Pb and Cr in soil was being cropland>woodland>wasteland, content of Cd was being woodland>cropland>wasteland, content of Hg was being cropland>woodland>wasteland. According to quality standard of soil environment, soil Cd in woodland, cropland and wasteland all exceeded the state-level standards, soil Cd in woodland exceeded the secondary standard, soil Hg in cropland and wasteland all exceeded the state-level standards. According to technical conditions of green food producing area, soil Cd in woodland exceeded the limit value of standard. According to Green Trade Standards of Importing Exporting Medicinal Plants Preparations,the content of heavy metals of U.rhynchophylla in cropland,woodland and wasteland were correspond to the specification. From the single factor pollution index, the soil in woodland was polluted by Cd. From the comprehensive pollution index, the soils in different functional areas were not contaminated by heavy metals. The enrichment coefficient of heavy metals such as As, Cu, Cr, and Pb in hook of U.rhynchophylla was being wasteland>woodland>cropland, the enrichment coefficient of Cu in hook of U. rhynchophylla in wasteland was more than 1. Except Cu, the enrichment coefficient of other heavy metals was low. Copyright© by the Chinese Pharmaceutical Association.

  8. Application of portable X-ray fluorescence spectrometry in environmental investigation of heavy metal-contaminated sites and comparison with laboratory analysis

    NASA Astrophysics Data System (ADS)

    Ding, Liang; Wang, Shui; Cai, Bingjie; Zhang, Mancheng; Qu, Changsheng

    2018-02-01

    In this study, portable X-ray fluorescence spectrometry (pXRF) was used to measure the heavy metal contents of As, Cu, Cr, Ni, Pb and Zn in the soils of heavy metal-contaminated sites. The precision, accuracy and system errors of pXRF were evaluated and compared with traditional laboratory methods to examine the suitability of in situ pXRF. The results show that the pXRF analysis achieved satisfactory accuracy and precision in measuring As, Cr, Cu, Ni, Pb, and Zn in soils, and meets the requirements of the relevant detection technology specifications. For the certified reference soil samples, the pXRF results of As, Cr, Cu, Ni, Pb, and Zn show good linear relationships and coefficients of determination with the values measured using the reference analysis methods; with the exception of Ni, all the measured values were within the 95% confidence level. In the soil samples, the coefficients of determination between Cu, Zn, Pb, and Ni concentrations measured laboratory pXRF and the values measured with laboratory analysis all reach 0.9, showing a good linear relationship; however, there were large deviations between methods for Cr and As. This study provides reference data and scientific support for rapid detection of heavy metals in soils using pXRF in site investigation, which can better guide the practical application of pXRF.

  9. The importance of organic matter distribution and extract soil:solution ratio on the desorption of heavy metals from soils.

    PubMed

    Yin, Yujun; Impellitteri, Christopher A; You, Sun-Jae; Allen, Herbert E

    2002-03-15

    The lability (mobility and bioavailability) of metals varies significantly with soil properties for similar total soil metal concentrations. We studied desorption of Cu, Ni and Zn, from 15 diverse, unamended soils. These studies included evaluation of the effects of soil:solution extraction ratio and the roles of soil properties on metal desorption. Dcsorption was examined for each metal by computing distribution coefficients (Kd) for each metal in each soil where Kd = [M]soil/[M]solution, Results from soil:solution ratio studies demonstrated that Kd values for the metals tended to increase with increasing soil:solution ratio. This result also held true for distribution of soil organic matter (SOM). Because the soil:solution ratio has a significant effect on measured metal distributions, we selected a high soil:solution ratio to more closely approach natural soil conditions. Copper showed strong affinity to operationally defined dissolved organic matter (DOM). In this study, DOM was operationally defined based on the total organic carbon (TOC) content in 0.45-microm or 0.22-microm filtrates of the extracts. The Kd of Cu correlated linearly (r2 = 0.91) with the Kd of organic matter (Kd-om) where the Kd-om is equal to SOM as measured by Walkley-Black wet combustion and converted to total carbon (TC) by a factor of 0.59. These values representing solid phase TC were then divided by soluble organic carbon as measured by TOC analysis (DOM). The conversion factor of 0.59 was employed in order to construct Kd-om values based on solid phase carbon and solution phase carbon. SOM plays a significant role in the fate of Cu in soil systems. Soil-solution distribution of Ni and Zn, as well as the activity of free Cu2+, were closely related to SOM, but not to DOM. Kd values for Ni, Zn and free Cu2+ in a particular soil were divided by the SOM content in the same soil. This normalization of the Kd values for Ni, Zn, and free Cu2+ to the SOM content resulted in significant improvements in the linear relationships between non-normalized Kd values and soil pH. The semi-empirical normalized regression equations can be used to predict the solubility of Ni and Zn and the activity of free Cu2+ as a function of pH.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Starska, Katarzyna, E-mail: katarzyna.starska@umed.lodz.pl; Bryś, Magdalena; Forma, Ewa

    Metallothioneins (MTs) are intracellular thiol-rich heavy metal-binding proteins which join trace metal ions protecting cells against heavy metal toxicity and regulate metal distribution and donation to various enzymes and transcription factors. The goal of this study was to identify the − 5 A/G (rs28366003) single-nucleotide polymorphism (SNP) in the core promoter region of the MT2A gene, and to investigate its effect on allele-specific gene expression and Cd, Zn, Cu and Ni content in sinonasal inverted papilloma tissue (IP), with non-cancerous sinonasal mucosa (NCM) as a control. The MT2A promoter region − 5 A/G SNP was identified by restriction fragment lengthmore » polymorphism using 117 IP and 132 NCM. MT2A gene analysis was performed by quantitative real-time PCR. Metal levels were analyzed by flame atomic absorption spectrometry. The frequency of A allele carriage was 99.2% and 100% in IP and NCM, respectively. The G allele carriage was detected in 23.9% of IP and in 12.1% of the NCM samples. As a result, a significant association of − 5 A/G SNP in MT2A gene with mRNA expression in both groups was determined. A significant association was identified between the − 5 A/G SNP in the MT2A gene with mRNA expression in both groups. A highly significant association was detected between the rs28366003 genotype and Cd and Zn content in IP. Furthermore, significant differences were identified between A/A and A/G genotype with regard to the type of metal contaminant. The Spearman rank correlation results showed the MT2A gene expression and both Cd and Cu levels were negatively correlated. The results obtained in this study suggest that the − 5 A/G SNP in the MT2A gene may have an effect on allele-specific gene expression and toxic metal accumulation in sinonasal inverted papilloma. - Highlights: • MT2A gene expression and metal content in sinonasal inverted papilloma tissues • Association between SNP (rs28366003) and expression of MT2A • Significant associations between the SNP and Cd and Zn levels • Negative correlation between MT2A gene expression and Cd and Cu levels.« less

  11. Analysis of Metal Contents in Portland Type V and MTA-Based Cements

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Bandeca, Matheus Coelho; Pedro, Fábio Luis Miranda; Volpato, Luiz Evaristo Ricci; Guedes, Orlando Aguirre; Villa, Ricardo Dalla; Tonetto, Mateus Rodrigues; Borges, Alvaro Henrique

    2014-01-01

    The aim of this study was to determine, by Atomic Absorption Spectrometry (AAS), the concentration levels of 11 metals in Type V gray and structural white PC, ProRoot MTA, and MTA Bio. Samples, containing one gram of each tested cement, were prepared and transferred to a 100 mL Teflon tube with a mixture of 7.0 mL of nitric acid and 21 mL of hydrochloric acid. After the reaction, the mixture was filtered and then volumed to 50 mL of distilled water. For each metal, specific patterns were determined from universal standards. Arsenic quantification was performed by hydride generator. The analysis was performed five times and the data were statistically analyzed at 5% level of significance. Only the cadmium presented concentration levels of values lower than the quantification limit of the device. The AAS analysis showed increased levels of calcium, nickel, and zinc in structural white PC. Type V PC presented the greatest concentration levels of arsenic, chromium, copper, iron, lead, and manganese (P < 0.05). Bismuth was found in all cements, and the lowest concentration levels were observed in Portland cements, while the highest were observed in ProRoot MTA. Both PC and MTA-based cements showed evidence of metals inclusion. PMID:25436238

  12. [Distribution patterns and pollution assessments of heavy metals in the Spartina alterniflora salt-marsh wetland of Rudong, Jiangsu province].

    PubMed

    Zhang, Long-Hui; Du, Yong-Fen; Wang, Dan-Dan; Gao, Shu; Gao, Wen-Hua

    2014-06-01

    To understand the ecological impact of Spartina alterniflora on the coastal wetland environment, field survey was carried out in July, 2010, over the intertidal areas of Rudong coast, Jiangsu province; sediment samples were collected from a series of stations with different conditions of vegetation cover and S. alterniflora growth. The contents of eight heavy metals, together with sediment composition and total organic carbon were analyzed to reveal the distribution patterns of the heavy metals. Environmental quality status was evaluated using both the index of geoaccumulation (I(geo)) and the index of the Håkanson ecological risk. The analytical results showed that the average contents of Pb, Cd, As, Hg, Cr, Cu, Ni and Zn were below the standard for the Category I sediment quality, among which Cd, Hg, Ni and Zn exceeded the sediment background value of the region. On the whole, the contents of eight heavy metals in vegetation areas were higher than those associated with the adjacent bare flat areas. These data sets indicate a non-polluted condition in term of I(geo) estimation; however, a critical state of low to moderate degrees of pollution and a low level of risk were deduced according to the index of the Håkanson potential ecological risk. Both indices suggested that the pollution level of Hg and Cd were the highest among the eight metals measured. Along the transection from seaward to landward, the contents of As, Cu and Hg, their indices of I(geo) and Håkanson ecological risk all showed an increasing tread, in accordance with the condition of vegetation cover. Along the coastline with S. alterniflora being distributed in patchiness, all metal contents and their ecological risk level values for the marshes were higher than those for the unvegetated sediments nearby; moreover, except for Hg, other seven metals exhibited relatively low values than those in the shore-normal section with a better S. alterniflora growth. These findings indicate that S. alterniflora is one of important factors to enrich the heavy metal in tidal flat sediment. Thus, ecological risk of the heavy metal is reduced or blocked, due to the filtering effect of salt-marsh, which prevents metals from entering the open sea directly. The distribution of heavy metal is influenced by a combination of colonization time of vegetation, chemical form of metals and their origins.

  13. Analysis of the heat capacity of nanoclusters of FCC metals on the example of Al, Ni, Cu, Pd, and Au

    NASA Astrophysics Data System (ADS)

    Gafner, Yu. Ya.; Gafner, S. L.; Zamulin, I. S.; Redel, L. V.; Baidyshev, V. S.

    2015-06-01

    The heat capacity of ideal nickel, copper, gold, aluminum, and palladium fcc clusters with diameter of up to 6 nm has been studied in the temperature range of 150-800 K in terms of the molecular-dynamics theory using a tight-binding potential. The heat capacity of individual metallic nanoclusters has been found to exceed that characteristic of the bulk state, but by no more than 16-20%, even in the case of very small clusters. To explain the discrepancy between the simulated data and the experimental results on the compacted metals, aluminum and palladium samples with 80% theoretical density have also been investigated. Based on the simulation results and analysis of the experimental data, it has been established that the increased heat capacity of the compacted nanomaterials does not depend on the enhanced heat capacity of the individual clusters but rather, can be due to either the disordered state of the nanomaterial or a significant content of impurities (mainly, hydrogen).

  14. PAT-1 safety analysis report addendum.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.

    2010-09-01

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The purpose of this SAR Addendum is to incorporate plutonium (Pu) metal as a new payload for the PAT-1 package. The Pu metal is packed in an inner container (designated the T-Ampoule) that replaces the PC-1 inner container. The documentation and results from analysis contained in this addendum demonstrate that the replacement of the PC-1 and associated packaging material with the T-Ampoule and associated packaging withmore » the addition of the plutonium metal content are not significant with respect to the design, operating characteristics, or safe performance of the containment system and prevention of criticality when the package is subjected to the tests specified in 10 CFR 71.71, 71.73 and 71.74.« less

  15. [Determination of metal elements in Achyranthis bidentatae radix from various habitats].

    PubMed

    Tu, Wan-Qian; Zhang, Liu-Ji

    2011-12-01

    To establish an atomic absorption spectrometry method for determination of the contents of metal elements in Achyranthis Bidentatae Radix and analyze 21 batches of samples from different areas. Fe, Mn, Ca, Mg, K, Zn and Cu were detected by atomic absorption spectrometry with hydrogen flame detector, Pb, As and Cd were detected by graphite furnace atomic absorption, Hg was detected by cold atomic absorption. The heavy metal contents met the requirement of Chinese Pharmacopoeia. The contents of K, Mg, Cu and Mn in the samples of geo-authentic areas were higher,while the contents of Fe, Zn, Hg and Pb in the samples of non-authentic areas were higher. This method is sample, accurate, repeatable and could be used to evaluate the quality of Achyranthis Bidentatae Radix.

  16. Ways to Improve the Quality of Die Steel 5KhNM

    NASA Astrophysics Data System (ADS)

    Efimov, S. V.; Malykhina, O. Yu; Pavlova, A. G.; Milyuts, V. G.; Tsukanov, V. V.; Vikharev, V. V.

    2017-12-01

    There was performed an analysis of influence of the deoxidation technology, hydrogen content and high concentration of titanium in steel 5KhNM (Rus. “5XHM”) on quality of die blanks, evaluated based on the results of the ultrasonic test. The fractographic examinations of fractures and the X-ray microprobe analysis of chemical composition of non-metallic inclusions were conducted, the evaluation of macro- and micro-structure of a die blank with high titanium content was performed. It is demonstrated that defects of dies from steel 5KhNM (Rus. “5XHM”) are cracks from merged flakes and micro-flakes; in most cases large concentrations of sulphides appeared to be hydrogen collectors for formation of flakes and micro-flakes.

  17. Low Pt content direct methanol fuel cell anode catalyst: nanophase PtRuNiZr

    NASA Technical Reports Server (NTRS)

    Whitacre, Jay F. (Inventor); Narayanan, Sekharipuram R. (Inventor)

    2010-01-01

    A method for the preparation of a metallic material having catalytic activity that includes synthesizing a material composition comprising a metal content with a lower Pt content than a binary alloy containing Pt but that displays at least a comparable catalytic activity on a per mole Pt basis as the binary alloy containing Pt; and evaluating a representative sample of the material composition to ensure that the material composition displays a property of at least a comparable catalytic activity on a per mole Pt basis as a representative binary alloy containing Pt. Furthermore, metallic compositions are disclosed that possess substantial resistance to corrosive acids.

  18. Novel Approach for Welding Stainless Steel Using Cr-Free Welding Consumables

    DTIC Science & Technology

    2004-12-31

    Breakdown potential ERP Repassivation potential SS Stainless steel SMAW Shielded metal arc welding GTAW Gas tungsten arc welding PEL Permissible...0.1 M NaCl. 14 4. List of Tables Table 1. Details of GTAW procedure. 7 1 5. Acknowledgements The work in this report was...resistance, filler metals matching or exceeding the chromium (Cr) content of the base metal must be used. The Cr content of Types 304 and 308 stainless

  19. Distribution of Cd, Pb, Zn and Cu and their chemical speciations in soils from a peri-smelter area in northeast China

    NASA Astrophysics Data System (ADS)

    Du, Ping; Xue, Nandong; Liu, Li; Li, Fasheng

    2008-07-01

    An exploratory study on soil contamination of heavy metals was carried out surrounding Huludao zinc smelter in Liaoning province, China. The distribution of total heavy metals and their chemical speciations were investigated. The correlations between heavy metal speciations and soil pH values in corresponding sites were also analyzed. In general, Cd, Zn, Pb, Cu and As presented a significant contamination in the area near the smelter, comparied with Environmental Quality Standards for Soils in China. The geoaccumulation index showed the degree of contamination: Cd > Zn > Pb > Cu > As. There was no obvious pollution of Cr and Ni in the studied area. The speciation analysis showed that the dominant fraction of Cd and Zn was the acid soluble fraction, and the second was the residual fraction. Pb was mostly associated with the residual fraction, which constituted more than 50% of total concentration in all samples. Cu in residual fraction accounted for a high percentage (40-80%) of total concentration, and the proportion of Cu in the oxidizable fraction is higher than that of other metals. The distribution pattern of Pb and Zn was obviously affected by soil pH. It seemed that Pb and Zn content in acid solution fraction increased with increasing soil pH values, while Cd content in acid soluble fraction accounted for more proportion in neutral and alkaline groups than acidic one. The fraction distribution patterns of Cu in three pH groups were very similar and independent of soil pH values. And the residual fraction of Cu took a predominant part (50%) of the total content.

  20. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil.

    PubMed

    Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K

    2016-09-01

    To understand the metal accumulation in the environment and identify its sources, 29 different metal contents and lead (Pb) isotope ratios were determined for 40 urban dust samples, 36 surface soil samples, and one river sediment sample collected in the municipality of Beijing, China. Results showed that cadmium, copper (Cu), mercury, Pb, antimony (Sb), and zinc demonstrated to be the typical urban contaminants and mostly influenced by the adjacent human activities with higher content to background ratios and SD values. Among the 29 metal elements investigated, Cu and Sb were found to be the most distinct elements that were highly affected by the developing level and congestion status of the cities with much higher contents in dust in more developed and congested cities. There was a relatively wider range of Pb isotope ratios of country surface soil than those of urban dust. The results of source identification based on Pb isotope ratios showed that coal combustion was the first largest Pb source and vehicle exhaust was the second largest source. The sum of them accounted for 74.6% mass proportion of overall Pb pollution on average. The surface soil sample collected at an iron mine had the highest (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios indicating ore had much higher ratios than other sources. The fine particle subsamples had higher (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios than the coarse particle subsamples indicating more anthropogenic sources of coal combustion and vehicle exhaust for fine particles and more background influence for coarse particles. These results help with pinpointing the major Pb sources and applying suitable measures for the target sources. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. The adsorption kinetics of metal ions onto different microalgae and siliceous earth.

    PubMed

    Schmitt, D; Müller, A; Csögör, Z; Frimmel, F H; Posten, C

    2001-03-01

    In the present work the adsorption kinetics of the six metal ions aluminum, zinc, mercury, lead, copper, and cadmium onto living microalgae were measured. The freshwater green microalga Scenedesmus subspicatus, the brackish water diatom Cyclotella cryptica, the seawater diatom Phaeodactylum tricornutum, and the seawater red alga Porphyridium purpureum were the subject of investigation. In most cases the adsorption rate of the metals could be well described by using the equation of the Langmuir adsorption rate expression. Inverse parameter estimation allowed the determination of the rate constants of the adsorption process and the maximum metal content of the algae. The highest values for the rate constant were obtained for Porphyridium purpureum followed by Phaeodactylum tricornutum. High values for the maximum content were obtained for Cyclotella cryptica and Scenedesmus subspicatus. The maximum rate constant was 24.21 h-1 for the adsorption of Hg to Porphyridium purpureum whereas the maximum metal content (0.243 g g-1) was obtained for Zn on Cyclotella cryptica. A comparison of these values with those obtained for the mineral siliceous earth exhibiting low maximum content and high adsorption rates reveals that the mechanism of adsorption onto the algae is a mixture of adsorption and accumulation.

  2. Identification of Heavy Metal Pollution Derived From Traffic in Roadside Soil Using Magnetic Susceptibility.

    PubMed

    Yang, Pingguo; Ge, Jing; Yang, Miao

    2017-06-01

    The study integrates surface and vertical distribution of magnetic susceptibility and heavy metal contents (Pb, Cu, Zn and Fe) to characterize the signature of vehicle pollutants in roadside soils at Linfen city, China. Sites with reforestation and without vegetation cover were investigated. The results showed that magnetic susceptibility and heavy metal contents were higher at the roadside without trees than in the reforest belt. The variations of magnetic susceptibility and heavy metal contents decreased both with distance and with depth. The maximum value was observed at 5-10 m away from the roadside edge. The vertical distribution in soil revealed accumulation of pollutants in 0-5 cm topsoils. The average contents were higher than the background values and in the order Fe (107.21 g kg -1 ), Zn (99.72 mg kg -1 ), Pb (90.99 mg kg -1 ), Cu (36.14 mg kg -1 ). Coarse multi domain grains were identified as the dominating magnetic particles. Multivariate statistical and SEM/EDX analyses suggested that the heavy metals derived from traffic sources. Trees act as efficient receptors and green barrier, which can reduce vehicle derived pollution.

  3. Noble metals in mid-ocean ridge volcanism: A significant fractionation of gold with respect to platinum group metals

    NASA Technical Reports Server (NTRS)

    Crocket, James H.

    1988-01-01

    Hydrothermal precipitates, black smoker particulate, and massive sulphide dredge samples from the Explorer Ridge on the Juan de Fuca Plate and the TAG hydrothermal area on the Mid-Atlantic Ridge were analyzed for selected noble metals including Au, Ir and Pd by radiochemical neutron activation analysis. The preliminary results indicate that gold contents may reach the ppm range although values in the neighborhood of 100 to 200 ppb are more typical. The platinum group elements (PGE) represented by Ir and Pd are typically less than 0.02 ppb and less than 2 ppb respectively. These abundances represent a significant enrichment of gold relative to the PGE in comparison with average noble metal abundances in mid-ocean ridge basalts (MORB). A partial explanation of this distinctive fractionation can be found in the concepts of sulfur-saturation of basic magma in mid-ocean ridge (MOR) settings, and the origin of MOR hydrothermal fluids. Experimental and petrological data suggest that MORBs are sulfur-saturated at the time of magma generation and that an immiscible sulfide component remains in the mantle residue. Hence, MORBs are noble metal-poor, particularly with respect to PGE. Consequently, black smoker fluids can be expected to reflect the low Ir and Pd contents of the rock column. The average Au content of MORB is 1.3 ppb, and so the rock column is not significantly enriched in Au. The generation of fluids which precipitate solids with 200 ppb Au is apparently dependent on highly efficient fluid chemistry to mobilize Au from the rock column, high Au solubility in seawater hydrothermal fluids and efficient precipitation mechanisms to coprecipitate Au on Fe, Zn and Cu sulfides. Significant differences in these parameters appear to be the ultimate cause of the strong Au-PGE fractionation in the MOR setting. It does not appear from the current data base that MOR hydrothermal fluids are significant contributors to the Ir enrichment seen in Cretaceous-Tertiary boundary sediments.

  4. Speciation analysis and bioaccessibility evaluation of trace elements in goji berries (Lycium Barbarum, L.).

    PubMed

    Wojcieszek, Justyna; Kwiatkowski, Piotr; Ruzik, Lena

    2017-04-07

    Goji berries (Lycium Barbarum, L.) are known for their nutritional potential as a great source of trace metals (e.g., copper, zinc and manganese) which are present in the form of highly bioaccessible compounds. In order to assess the bioaccessibility of trace elements and to identify compounds responsible for better bioaccessibility of copper and zinc, an in vitro simulation of gastrointestinal digestion was used in this study. The total content of trace metals was evaluated using sample digestion followed by inductively coupled plasma mass spectrometry. Bioaccessibility of trace elements was estimated by size exclusion chromatography coupled to inductively coupled plasma mass spectrometry. These analytical methods were used to analyse samples of goji berries to determine the highest amount of elements. For total trace metal content in goji berries, Zn had the highest level of the three studied (10.6μgg -1 ), while the total content of manganese and copper was 9.9μgg -1 and 6.1μgg -1 , respectively. Additionally, the analysed metals were found to be highly bioaccessible to the human body (about 56% for Mn, 72% for Cu and 64% for Zn in the gastric extract and approximately 35% for Mn, 23% for Cu and 31% for Zn in the case of gastrointestinal extract). To obtain information about metal complexes present in goji berries, extraction treatment using different solutions (ionic liquid, HEPES, SDS, Tris-HCl, ammonium acetate, water) was performed. Enzymatic treatment using pectinase and hemicellulase was also checked. Extracts of berries were analysed by SEC-ICP-MS and μHPLC-ESI-MS/MS techniques. The ionic liquid and pectinase extraction helped efficiently extract copper (seven compounds) and zinc (four compounds) complexes. Compounds identified in goji berries are most likely to be responsible for better bioaccessibility of those elements to the human organism. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Metal Analysis in Citrus Sinensis Fruit Peel and Psidium Guajava Leaf

    PubMed Central

    Dhiman, Anju; Nanda, Arun; Ahmad, Sayeed

    2011-01-01

    The determination of metal traces is very important because they are involved in biological cycles and indicate high toxicity. The objective of the present study is to measure the levels of heavy metals and mineral ions in medicinally important plant species, Citrus sinensis and Psidium guajava. This study investigates the accumulation of Copper (Cu), Zinc (Zn), Cadmium (Cd), Aluminum (Al), Mercury (Hg), Arsenic (As), Selenium (Se) and inorganic minerals like Calcium (Ca) and Magnesium (Mg) in C. sinensis (sweet orange) fruit peel and P. guajava (guava) leaf, to measure the levels of heavy metal contamination. Dried powdered samples of the plants were digested using wet digestion method and elemental determination was done by atomic absorption spectrophotometer. Results are expressed as mean ± standard deviation and analysed by student's ‘t’ test. Values are considered significant at P < 0.05. The results were compared with suitable safety standards and the levels of Cu, Zn, Cd, Mg and Ca in C. sinensis fruit peel and P. guajava leaves were within the acceptable limits for human consumption. The order of concentration of elements in both the samples showed the following trend: Mg > Ca > Al > Zn > Cu > Cd > Hg = As = Se. The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was significantly low and below detection limit. The content of toxic metals in tested plant samples was found to be low when compared with the limits prescribed by various authorities (World Health Organization, WHO; International Centre for Materials Research, ICMR; American Public Health Association, APHA). The content of Hg, As and Se in C. sinensis fruit peel and P. guajava leaves was not detectable and met the appropriate safety standards. In conclusion, the tested plant parts taken in the present study were found to be safe. PMID:21976824

  6. Effects of environmental contaminants on snapping turtles of a tidal wetland

    USGS Publications Warehouse

    Albers, P.H.; Sileo, L.; Mulhern, B.M.

    1986-01-01

    Snapping turtles (Chelydra serpentina) were collected from a brackish-water and a nearly freshwater area in the contaminated Hackensack Meadowlands of New Jersey and an uncontaminated freshwater area in Maryland to determine the effects of environmental contaminants on a resident wetland species. No turtles were observed or caught in the Meadowlands at two trapping sites that were the most heavily contaminated by metals. Snapping turtles from the brackish-water area had an unusually low lipid content of body fat and reduced growth compared to turtles from the fresh-water areas in New Jersey and Maryland. Despite the serious metal contamination of the Hackensack Meadowlands, the metal content of kidneys and livers from New Jersey turtles was low and not greatly different from that of the Maryland turtles. Organochlorine pesticide concentrations in body fat were generally low at all three study areas. Polychlorinated biphenyls (PCBs) concentrations in fat were highest in male turtles from the New Jersey brackish-water area. Analysis of blood for amino-levulinic acid dehydratase, albumin, glucose, hemoglobin, osmolality, packed cell volume, total protein, triglycerides, and uric acid failed to reveal any differences among groups that would indicate physiological impairment related to contaminants.

  7. EXTINGUISHMENT OF ALKALI METAL FIRES

    DTIC Science & Technology

    Contents: Effect of inert gas nket and ow O2 partial pressures on alkali metal fires Extinguishment of small scale fires Extinguishment of alkali... metal fires using inorganic salt foam Alkali metal jet stream ignition at various pressure conditions

  8. Maximum Oxygen Content of Flowing Eutectic NaK in a Stainless Steel System.

    DTIC Science & Technology

    EUTECTICS, ALKALI METAL ALLOYS), (*LIQUID METALS, OXYGEN), (*POTASSIUM ALLOYS, SODIUM ALLOYS), LIQUID METAL PUMPS , FLUID FLOW, CONCENTRATION...CHEMISTRY), HIGH TEMPERATURE, FLOWMETERS, STAINLESS STEEL, ELECTROMAGNETIC PUMPS , TEMPERATURE, SAMPLING, LIQUID METAL COOLANTS, OXIDES, CRYSTALLIZATION.

  9. Quantitation of twelve metals in tequila and mezcal spirits as authenticity parameters.

    PubMed

    Ceballos-Magańa, Silvia Guillermina; Jurado, José Marcos; Martín, María Jesús; Pablos, Fernando

    2009-02-25

    In this paper the differentiation of silver, gold, aged and extra-aged tequila and mezcal has been carried out according to their metal content. Aluminum, barium, calcium, copper, iron, magnesium, manganese, potassium, sodium, strontium, zinc, and sulfur were determined by inductively coupled plasma optical emission spectrometry. The concentrations found for each element in the samples were used as chemical descriptors for characterization purposes. Principal component analysis, linear discriminant analysis and artificial neural networks were applied to differentiate types of tequila and mezcal. Using probabilistic neural networks 100% of success in the classification was obtained for silver, gold, extra-aged tequila and mezcal. In the case of aged tequila 90% of samples were successfully classified. Sodium, potassium, calcium, sulfur, magnesium, iron, strontium, copper and zinc were the most discriminant elements.

  10. Changes in the biological activity of heavy metal- and oil-polluted soils in urban recreation territories

    NASA Astrophysics Data System (ADS)

    Trifonova, T. A.; Zabelina, O. N.

    2017-04-01

    Urban recreation areas of different sizes were investigated in the city of Vladimir. The degree of their contamination with heavy metals and oil products was revealed. The content of heavy metals exceeded their maximum permissible concentrations by more than 2.5 times. The total content of heavy metals decreased in the sequence: Zn > Pb > Co > Mn > Cr > Ni. The mass fraction of oil products in the studied soils varied within the range of 0.016-0.28 mg/g. The reaction of soils in public gardens and a boulevard was neutral or close to neutral; in some soil samples, it was weakly alkaline. The top layer of all the soils significantly differed from the lower one by the higher alkalinity promoting the deposition of heavy metals there. As the content of Ni, Co, and Mn increased and exceeded the background concentrations, but did not reach the three-fold value of the maximum permissible concentrations, the activity of catalase was intensified. The stimulating effect of nickel on the catalase activity was mostly pronounced at the neutral soil reaction. The urease activity increased when heavy metals and oil products were present together in the concentrations above the background ones, but not higher than the three-fold maximal permissible concentrations for heavy metals and 0.3 mg/g for the content of oil products. The nitrifying activity was inhibited by oil hydrocarbons that were recorded in the soils in different amounts.

  11. Metal-ion interactions and the structural organization of Sepia eumelanin.

    PubMed

    Liu, Yan; Simon, John D

    2005-02-01

    The structural organization of melanin granules isolated from ink sacs of Sepia officinalis was examined as a function of metal ion content by scanning electron microscopy and atomic force microscopy. Exposing Sepia melanin granules to ethelenediaminetetraacetic acid (EDTA) solution or to metal salt solutions changed the metal content in the melanin, but did not alter granular morphology. Thus ionic forces between the organic components and metal ions in melanin are not required to sustain the natural morphology once the granule is assembled. However, when aqueous suspensions of Sepia melanin granules of varying metal content are ultra-sonicated, EDTA-washed and Fe-saturated melanin samples lose material to the solution more readily than the corresponding Ca(II) and Mg(II)-loaded samples. The solubilized components are found to be 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-rich constituents. Associated with different metal ions, Na(I), Ca(II) and Mg(II) or Fe(III), these DHICA-rich entities form distinct two-dimensional aggregation structures when dried on the flat surface of mica. The data suggest multiply-charged ions play an important role in assisting or templating the assembly of the metal-free organic components to form the three-dimensional substructure distributed along the protein scaffold within the granule.

  12. Analysis on the distribution characteristics and sources of soil heavy metals in suburban farmland in Xiangtan City

    NASA Astrophysics Data System (ADS)

    Zhang, Yong; Sun, Xinxin

    2018-01-01

    The rapid development of the economy will inevitably have an impact on the farmland soil environment. The content of heavy metal is increasing day by day, and the heavy metal can enter people's body through different channels and endanger people's health. Based on agricultural land and crop types in accordance with the regional land use classification, using the method of the Single Factor Index and Comprehensive Pollution Index, the pollution status of heavy metals in farmland soil in the suburbs of Xiangtan city was studied and evaluated. At the same time, we use SPSS software to analyze the four heavy metal elements (Cu, Zn, As and Pb) and analyze their possible sources. The results showed that the farmland soils in Erhuan Road and Zhubu Port were polluted, and the farmland soil in Shuangma (an old industrial district) was not polluted; for different crop lands, orchards and vegetable lands were not contaminated, but rape and rice lands were contaminated. Pearson correlation analysis showed that Cu, As and Pb might come from the same pollution source, while Zn might come from other sources. Waste water from a chemical plant, crop types, automobile exhaust and other human factors may be important sources of soil pollution in agricultural fields.

  13. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China

    PubMed Central

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  14. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    PubMed

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  15. Effects of biochar on availability and plant uptake of heavy metals - A meta-analysis.

    PubMed

    Chen, De; Liu, Xiaoyu; Bian, Rongjun; Cheng, Kun; Zhang, Xuhui; Zheng, Jufeng; Joseph, Stephen; Crowley, David; Pan, Genxing; Li, Lianqing

    2018-05-24

    Biochar can be an effective amendment for immobilizing heavy metals in contaminated soils but has variable effects depending on its chemical and physical properties and those of the treated soil. To investigate the range of biochar's effects on heavy metal accumulation in plants in responses to the variation of soil, biochar and plant, we carried out a meta-analysis of the literature that was published before March 2016. A total of 1298 independent observations were collected from 74 published papers. Results showed that across all studies, biochar addition to soils resulted in average decreases of 38, 39, 25 and 17%, respectively, in the accumulation of Cd, Pb, Cu and Zn in plant tissues. The effect of biochar on heavy metal concentrations in plants varied depending on soil properties, biochar type, plant species, and metal contaminants. The largest decreases in plant heavy metal concentrations occurred in coarse-textured soils amended with biochar. Biochar had a relatively small effect on plant tissue Pb concentrations, but a large effect on plant Cu concentrations when applied to alkaline soils. Plant uptake of Pb, Cu and Zn was less in soils with higher organic carbon contents. Manure-derived biochar was the most effective for reducing Cd and Pb concentrations in plants as compared to biochars derived from other feedstock. Biochar having a high pH and used at high application rates resulted in greater decreases in plant heavy metal uptake. The meta-analysis provides useful guidelines on the range of effects that can be anticipated for different biochar materials in different plant-soil systems. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Evaluation of environmental magnetic pollution screening in soils of basaltic origin: results from Nashik Thermal Power Station, Maharashtra, India.

    PubMed

    Basavaiah, N; Blaha, U; Das, P K; Deenadayalan, K; Sadashiv, M B; Schulz, H

    2011-08-01

    Soils of basaltic origin cause difficulties in environmental magnetic screening for heavy metal pollution due to their natural high background values. Magnetic parameters and heavy metal content of highly magnetic topsoils from the Deccan Trap basalts are investigated to assess their potential for use in environmental magnetic pollution screening. This work extends the fast and cost-effective magnetic pollution screening techniques into soils with high natural magnetic signals. Fifty-five topsoil samples from N-S and W-E transects were collected and subdivided according to grain size using wet sieving technique. Magnetic susceptibility, soft isothermal remanent magnetization (Soft IRM), thermomagnetic analysis, scanning electron microscopy (SEM), and heavy metal analysis were performed on the samples. Magnetic analyses reveal a significant input of anthropogenic magnetic particulate matter within 6 km of the power plant and the adjacent ash pond. Results depend strongly on the stage of soil development and vary spatially. While results in the W, E, and S directions are easily interpretable, in the N direction, the contribution of the anthropogenic magnetic matter is difficult to assess due to high magnetic background values, less developed soils, and a more limited contribution from the fly ash sources. Prevailing winds towards directions with more enhanced values seem to have a certain effect on particulate matter accumulation in the topsoil. Thermomagnetic measurements show Verwey transition and Hopkinson peak, thus proving the presence of ferrimagnetic mineral phases close to the pollution source. A quantitative decrease of the anthropogenic ferrimagnetic mineral concentration with increased distance is evident in Soft IRM measurements. SEM investigations of quantitatively extracted magnetic particles confirm the fly ash distribution pattern obtained from the magnetic and heavy metal analyses. Evaluation of magnetic and chemical data in concert with the Pollution Load IndiceS (PLIS) of Pb, Zn, and Cu reveals a good relationship between magnetic susceptibility and the metal content. Integrated approaches in data acquisition of magnetic and chemical parameters enable the application of magnetic screening methods in highly magnetic soils. Combined data evaluation allows identification of sampling sites that are affected by human activity, through the deviation of the magnetic and chemical data from the general trend. It is shown that integrative analysis of magnetic parameters and a limited metal concentration dataset can enhance the quality of the output of environmental magnetic pollution screening significantly.

  17. Rapid Detection of Transition Metals in Welding Fumes Using Paper-Based Analytical Devices

    PubMed Central

    Volckens, John

    2014-01-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments. PMID:24515892

  18. Rapid detection of transition metals in welding fumes using paper-based analytical devices.

    PubMed

    Cate, David M; Nanthasurasak, Pavisara; Riwkulkajorn, Pornpak; L'Orange, Christian; Henry, Charles S; Volckens, John

    2014-05-01

    Metals in particulate matter (PM) are considered a driving factor for many pathologies. Despite the hazards associated with particulate metals, personal exposures for at-risk workers are rarely assessed due to the cost and effort associated with monitoring. As a result, routine exposure assessments are performed for only a small fraction of the exposed workforce. The objective of this research was to evaluate a relatively new technology, microfluidic paper-based analytical devices (µPADs), for measuring the metals content in welding fumes. Fumes from three common welding techniques (shielded metal arc, metal inert gas, and tungsten inert gas welding) were sampled in two welding shops. Concentrations of acid-extractable Fe, Cu, Ni, and Cr were measured and independently verified using inductively coupled plasma-optical emission spectroscopy (ICP-OES). Results from the µPAD sensors agreed well with ICP-OES analysis; the two methods gave statistically similar results in >80% of the samples analyzed. Analytical costs for the µPAD technique were ~50 times lower than market-rate costs with ICP-OES. Further, the µPAD method was capable of providing same-day results (as opposed several weeks for ICP laboratory analysis). Results of this work suggest that µPAD sensors are a viable, yet inexpensive alternative to traditional analytic methods for transition metals in welding fume PM. These sensors have potential to enable substantially higher levels of hazard surveillance for a given resource cost, especially in resource-limited environments.

  19. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Isolation of As-tolerant bacteria and their potentials of reducing As and Cd accumulation of edible tissues of vegetables in metal(loid)-contaminated soils.

    PubMed

    Wang, Xiaohan; Nie, Zongwei; He, Linyan; Wang, Qi; Sheng, Xiafang

    2017-02-01

    In this study, three As-tolerant bacteria Ralstonia eutropha Q2-8, Rhizobium tropici Q2-13, and Exiguobacterium aurantiacum Q3-11 were isolated from the rhizosphere and bulk soils of Chinese cabbage. The strains were characterized for their production of indole-3-acetic acid (IAA) and siderophores, their effects on soil metal(loid) bioavailability and organic matter content, and their effects on the edible tissue growth and metal(loid) accumulation of Chinese cabbage and radish in the metal(loid)-contaminated soil. The strains produced IAA and siderophores and increased the edible tissue biomass (ranging from 74% to 124%) of the vegetables compared to the controls. Furthermore, strain Q2-8 reduced As contents (ranging from 22% to 50%), while strains Q2-13 and Q3-11 decreased Cd contents (ranging from 21% to 53%) of the edible tissues of the vegetables compared to the controls. Strains Q2-8, Q2-13, and Q3-11 decreased the DTPA-extractable Cd contents (ranging from 16% to 41%) and increased the organic matter contents of the rhizosphere soils compared to the controls. The results showed the effects of the strains on the increased edible tissue growth and reduced As and Cd uptake of the edible tissues and highlighted the possibility to develop a new bacterial-assisted technique for reduced metal(loid) uptake of vegetables in the metal(loid)-contaminated soils. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. PCDD/F catalysis by metal chlorides and oxides.

    PubMed

    Zhang, Mengmei; Yang, Jie; Buekens, Alfons; Olie, Kees; Li, Xiaodong

    2016-09-01

    Model fly ash (MFA) samples were composed of silica, sodium chloride, and activated carbon, and doped with metal (0.1 wt% Cu, Cr, Ni, Zn and Cd) chloride or oxide. Each sample was de novo tested at 350 °C for 1 h, in a flow of gas (N2, N2 + 10% O2, +21% O2 or +10% H2) to investigate the effect of metal catalyst and gas composition on PCDD/F formation. Total PCDD/F yield rises rapidly with oxygen content, while the addition of hydrogen inhibits the formation and chlorination of PCDD/F. The amount of PCDD on average rises linearly with the oxygen concentration, while that of PCDF follows a reaction order of about 1/2; thus the PCDF to PCDD ratio drops when more oxygen becomes available. Some samples do not follow this trend. Chlorides are much more active than oxides, yet there are marked differences between individual metals. Principal component analysis (PCA) was applied to study the signatures from all samples, showing their unique specificity and diversity. Each catalyst shows a different signature within its individual homologue groups, demonstrating that these signatures are not thermodynamically controlled. Average congener patterns do not vary considerably with oxygen content changing from oxidising (air) to reducing (nitrogen, hydrogen). Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. In vitro analysis of the properties of Beiqishen tea.

    PubMed

    Blázovics, A; Szentmihályi, K; Lugasi, A; Balázs, A; Hagymási, K; Bányai, E; Then, M; Rapavi, E; Héthelyi, E

    2003-10-01

    Chinese Beiqishen tea was studied in an in vitro test system. Phytochemical screening, trace element analysis, and the analysis of antioxidant properties were carried out. Characteristic constituents were determined by chromatographic (capillary gas chromatography and GCQ Ion Trap mass spectrometry) and spectrometric (ultraviolet and UV-VIS) methods. Element concentrations were determined by inductively coupled plasma optical emission spectrometry. Antioxidant capacity was studied by spectrophotometric and luminometric techniques using a Berthold Lumat 9501 luminometer. Hydrogen-donating activity, reducing power, and total scavenger capacity were measured. Total polyphenol content was 20.77 +/- 0.52 g/100 g of drug; total flavonoid content was 0.485 +/- 0.036 g/100 g of drug; and tannin content was 9.063 +/- 0.782 g/100 g of drug. Caffeine content was 1.08 mg/100 g of drug. Essential oils were identified by gas chromatography: (+)-limonene (21%), p-cymene (1.7%), estragol (3.2%), beta-ocimene (1.4%), and thymol (2.6%). Metallic ion analysis showed significantly high concentrations of Al, As, Ba, Cr, Cu, Fe, Mn, Ni, and Ti in the drug. Antioxidant and scavenger properties were identified as a function of concentration. The tea infusion contained some non-desirable trace elements and caffeine in addition to polyphenols and tannins in high concentrations. Therefore, the consumption of this tea may involve risks.

  3. Criticality safety strategy and analysis summary for the fuel cycle facility electrorefiner at Argonne National Laboratory West

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mariani, R.D.; Benedict, R.W.; Lell, R.M.

    1996-05-01

    As part of the termination activities of Experimental Breeder Reactor II (EBR-II) at Argonne National Laboratory (ANL) West, the spent metallic fuel from EBR-II will be treated in the fuel cycle facility (FCF). A key component of the spent-fuel treatment process in the FCF is the electrorefiner (ER) in which the actinide metals are separated from the active metal fission products and the reactive bond sodium. In the electrorefining process, the metal fuel is anodically dissolved into a high-temperature molten salt, and refined uranium or uranium/plutonium products are deposited at cathodes. The criticality safety strategy and analysis for the ANLmore » West FCF ER is summarized. The FCF ER operations and processes formed the basis for evaluating criticality safety and control during actinide metal fuel refining. To show criticality safety for the FCF ER, the reference operating conditions for the ER had to be defined. Normal operating envelopes (NOEs) were then defined to bracket the important operating conditions. To keep the operating conditions within their NOEs, process controls were identified that can be used to regulate the actinide forms and content within the ER. A series of operational checks were developed for each operation that will verify the extent or success of an operation. The criticality analysis considered the ER operating conditions at their NOE values as the point of departure for credible and incredible failure modes. As a result of the analysis, FCF ER operations were found to be safe with respect to criticality.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colvin, Robert A.; Jin, Qiaoling; Lai, Barry

    Increasing evidence suggests that metal dyshomeostasis plays an important role in human neurodegenerative diseases. Although distinctive metal distributions are described for mature hippocampus and cortex, much less is known about metal levels and intracellular distribution in individual hippocampal neuronal somata. To solve this problem, we conducted quantitative metal analyses utilizing synchrotron radiation X-Ray fluorescence on frozen hydrated primary cultured neurons derived from rat embryonic cortex (CTX) and two regions of the hippocampus: dentate gyrus (DG) and CA1. Also, comparing average metal contents showed that the most abundant metals were calcium, iron, and zinc, whereas metals such as copper and manganesemore » were less than 10% of zinc. Average metal contents were generally similar when compared across neurons cultured from CTX, DG, and CA1, except for manganese that was larger in CA1. However, each metal showed a characteristic spatial distribution in individual neuronal somata. Zinc was uniformly distributed throughout the cytosol, with no evidence for the existence of previously identified zinc-enriched organelles, zincosomes. Calcium showed a peri-nuclear distribution consistent with accumulation in endoplasmic reticulum and/or mitochondria. Iron showed 2-3 distinct highly concentrated puncta only in peri-nuclear locations. Notwithstanding the small sample size, these analyses demonstrate that primary cultured neurons show characteristic metal signatures. The iron puncta probably represent iron-accumulating organelles, siderosomes. Thus, the metal distributions observed in mature brain structures are likely the result of both intrinsic neuronal factors that control cellular metal content and extrinsic factors related to the synaptic organization, function, and contacts formed and maintained in each region.« less

  5. Heavy metal, pH, and total solid content of maple sap and syrup produced in eastern Canada.

    PubMed

    Robinson, A R; MacLean, K S; MacConnell, H M

    1989-01-01

    Maple sap and syrups in eastern Canada were analyzed for pH, total solids, and the heavy metals Cu, Fe, Pb, and Zn. The levels of heavy metals found were within the range normally contained in food and water samples except for Pb. The concentration factor found in reducing sap to syrup did not reflect the same concentration change for the measured parameters. This indicates removal or conversion of heavy metals and organic acids with the sugar sands. There was no statistical difference among provinces with respect to the heavy metal, pH, and total solids content of sap. The only significant difference in syrup occurred with Cu and this appeared to be the result of the processing procedure. As the season progressed, the Cu, Pb, pH, and total solids content of the sap decreased while Zn increased and Fe showed little change. Syrups reflected a similar change. Statistical differences occurred in sap composition among sites within each province.

  6. Toxic metals in ayurvedic preparations from a public health lead poisoning cluster investigation.

    PubMed

    Mikulski, Marek A; Wichman, Michael D; Simmons, Donald L; Pham, Anthony N; Clottey, Valentina; Fuortes, Laurence J

    2017-07-01

    Background Herbal formulations, traditional medicine, and complementary and alternative medicine are used by the majority of the world's population. Toxicity associated with use of Ayurvedic products due to metal content is an increasingly recognized potential public health problem. Objectives Report on toxic metals content of Ayurvedic products obtained during an investigation of lead poisoning among users of Ayurvedic medicine. Methods Samples of Ayurvedic formulations were analyzed for metals and metalloids following established US. Environmental Protection Agency methods. Results Lead was found in 65% of 252 Ayurvedic medicine samples with mercury and arsenic found in 38 and 32% of samples, respectively. Almost half of samples containing mercury, 36% of samples containing lead and 39% of samples containing arsenic had concentrations of those metals per pill that exceeded, up to several thousand times, the recommended daily intake values for pharmaceutical impurities. Conclusions Lack of regulations regarding manufacturing and content or purity of Ayurvedic and other herbal formulations poses a significant global public health problem.

  7. Study on the Control of Cleanliness for X90 Pipeline in the Secondary Refining Process

    NASA Astrophysics Data System (ADS)

    Chu, Ren Sheng; Liu, Jin Gang; Li, Zhan Jun

    X90 pipeline steel requires ultra low for sulfur content and gas content in the smelting process. The secondary refining process is very important for X90 pipeline in smelting process and the control of cleanliness is the key for the secondary refining process in the steelmaking process for Pretreatment of hot metal → LD → LF refining → RH refining → Calcium treatment → CC. In the current paper, the cleanliness control method of secondary refining was analyzed for the evolution of non-metallic inclusions in the secondary refining prcess and related changes for composition in steel. The size, composition and the type of the non-metallic inclusions were analyzed by aspex explorer automated scanning electron microscope in X90 pipeline samples for 20mm * 25mm * 25mm by the line cutting. The results show that the number of non-metallic inclusions in steel decrease from the beginning of the LF refining to the RH refining. In the composition of the Non-metallic inclusions, the initial non-metallic inclusions of alumina is converted to two comple-type non-metallic inclusions. Most of them, the non-metallic inclusions were composed by the calcium aluminate and CaS. The others are that the spinel is the core, peripheral parcels calcium aluminate nonmetallic inclusions for complex-type non-metallic inclusions. For the size of the non-metallic inclusions, the non-metallic inclusions for size larger than 100µm is converted to 5 20µm based small size non-metallic inclusions. While the S content of the steel decreased from 0.012% to 0.0012% or less, Al content is kept at between 0.025% to 0.035% and the quality for the casting slab satisfies the requirement of the steel. The ratings for various types of the non-metallic inclusions are 1.5 or less. The control strategy for the inclusions in 90 pipeline is small size, diffuse distribution and little amount of the deformation after rolling. On the contrary, the specific chemical composition of the inclusions is not important, single component in the inclusions is better.

  8. Evaluation of metal removal efficiency and its influence in the physicochemical parameters at two sewage treatment plants.

    PubMed

    Pipi, Angelo R F; Magdalena, Aroldo G; Giafferis, Giselda P; da Silva, Gustavo H R; Piacenti-Silva, Marina

    2018-04-03

    In sewage treatment plants, physicochemical parameters are highly controlled since treated sewage can be returned to water bodies or reused. In addition, pollutants such as heavy metals also deserve attention due to their potential toxicity. In general, these characteristics of sewage and treated water are evaluated independently, with the support of Brazilian legislation that does not require a routine for the analysis of metals as frequent as for the physicochemical parameters. In this work, 66 samples of raw sewage, treated sewage, and effluents from two treatment plants in the city of Bauru, São Paulo, Brazil, were evaluated to assess the efficiency of the treatment plants in the removal of metals. In addition, the influence of these pollutants on the quantification of physicochemical parameters was evaluated. The quantification of metals was performed using inductively coupled plasma optical spectroscopy (ICP-OES), and Spearman's test was applied to evaluate correlation between physicochemical parameters and metal content. The main metals found in the samples were Ba, Mn, Zn, Cu, Se, Fe, and Al. The results indicate that concentrations of metals in the aquatic environment can significantly affect the physicochemical parameters, since high concentrations of metals can interfere mainly in the pH, chemical oxygen demand, and dissolved oxygen.

  9. Ecological risk assessment on heavy metals in soils: Use of soil diffuse reflectance mid-infrared Fourier-transform spectroscopy

    PubMed Central

    Wang, Cheng; Li, Wei; Guo, Mingxing; Ji, Junfeng

    2017-01-01

    The bioavailability of heavy metals in soil is controlled by their concentrations and soil properties. Diffuse reflectance mid-infrared Fourier-transform spectroscopy (DRIFTS) is capable of detecting specific organic and inorganic bonds in metal complexes and minerals and therefore, has been employed to predict soil composition and heavy metal contents. The present study explored the potential of DRIFTS for estimating soil heavy metal bioavailability. Soil and corresponding wheat grain samples from the Yangtze River Delta region were analyzed by DRIFTS and chemical methods. Statistical regression analyses were conducted to correlate the soil spectral information to the concentrations of Cd, Cr, Cu, Zn, Pb, Ni, Hg and Fe in wheat grains. The principal components in the spectra influencing soil heavy metal bioavailability were identified and used in prediction model construction. The established soil DRIFTS-based prediction models were applied to estimate the heavy metal concentrations in wheat grains in the mid-Yangtze River Delta area. The predicted heavy metal concentrations of wheat grain were highly consistent with the measured levels by chemical analysis, showing a significant correlation (r2 > 0.72) with acceptable root mean square error RMSE. In conclusion, DRIFTS is a promising technique for assessing the bioavailability of soil heavy metals and related ecological risk. PMID:28198802

  10. Role of Y in the oxidation resistance of CrAlYN coatings

    NASA Astrophysics Data System (ADS)

    Domínguez-Meister, S.; El Mrabet, S.; Escobar-Galindo, R.; Mariscal, A.; Jiménez de Haro, M. C.; Justo, A.; Brizuela, M.; Rojas, T. C.; Sánchez-López, J. C.

    2015-10-01

    CrAlYN coatings with different aluminum (4-12 at.%) and yttrium (2-5 at.%) contents are deposited by d.c. reactive magnetron sputtering on silicon and M2 steel substrates using metallic targets and Ar/N2 mixtures. The influence of the nanostructure and chemical elemental distribution on the oxidation resistance after heating in air at 1000 °C is studied by means of cross-sectional scanning electron microscopy (X-SEM), energy dispersive X-ray analysis (EDX), X-ray diffraction (XRD) and glow discharge optical emission spectroscopy (GD-OES). The sequential exposure to the metallic targets during the synthesis leads to a multilayer structure where concentration of metallic elements (Cr, Al and Y) is changing periodically. A good oxidation resistance is observed when Al- and Y-rich regions are separated by well-defined CrN layers, maintaining crystalline coherence along the columnar structure. This protective behavior is independent of the type of substrate and corresponds to the formation of a thin mixed (Al, Cr)-oxide scale that protects the film underneath. The GD-OES and XRD analysis have demonstrated that Y acts as a reactive element, blocking the Fe and C atoms diffusion from the steel and favoring higher Al/Cr ratio in the passivation layer after heating. The coating with Y content around 4 at.% exhibited the best performance with a thinner oxide scale, a delay in the CrN decomposition and transformation to Cr2N, and a more effective Fe and C blocking.

  11. Evaluation of the potential of different high calorific waste fractions for the preparation of solid recovered fuels.

    PubMed

    Garcés, Diego; Díaz, Eva; Sastre, Herminio; Ordóñez, Salvador; González-LaFuente, José Manuel

    2016-01-01

    Solid recovered fuels constitute a valuable alternative for the management of those non-hazardous waste fractions that cannot be recycled. The main purpose of this research is to assess the suitability of three different wastes from the landfill of the local waste management company (COGERSA), to be used as solid recovered fuels in a cement kiln near their facilities. The wastes analyzed were: End of life vehicles waste, packaging and bulky wastes. The study was carried out in two different periods of the year: November 2013 and April 2014. In order to characterize and classify these wastes as solid recovered fuels, they were separated into homogeneous fractions in order to determine different element components, such as plastics, cellulosic materials, packagings or textile compounds, and the elemental analysis (including chlorine content), heavy metal content and the heating value of each fraction were determined. The lower heating value of the waste fractions on wet basis varies between 10 MJ kg(-1) and 42 MJ kg(-1). One of the packaging wastes presents a very high chlorine content (6.3 wt.%) due to the presence of polyvinylchloride from pipe fragments, being the other wastes below the established limits. Most of the wastes analyzed meet the heavy metals restrictions, except the fine fraction of the end of life vehicles waste. In addition, none of the wastes exceed the mercury limit content, which is one of the parameters considered for the solid recovered fuels classification. A comparison among the experimental higher heating values and empirical models that predict the heating value from the elemental analysis data was carried out. Finally, from the three wastes measured, the fine fraction of the end of life vehicles waste was discarded for its use as solid recovered fuels due to the lower heating value and its high heavy metals content. From the point of view of the heating value, the end of life vehicles waste was the most suitable residue with a lower heating value of 35.89 MJ kg(-1), followed by the packaging waste and the bulky waste, respectively. When mixing the wastes studied a global waste was obtained, whose classification as solid recovered fuels was NCV 1 Cl 3 Hg 3. From the empirical models used for calculating higher heating value from elemental content, Scheurer-Kestner was the model that best fit the experimental data corresponding to the wastes collected in November 2013, whereas Chang equation was the most approximate to the experimental heating values for April 2014 fractions. This difference is due to higher chlorine content of the second batch of wastes, since Chang equation is the only one that incorporates the chlorine content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influence of Co content on the biocompatibility and bio-corrosion of super ferritic stainless steels

    NASA Astrophysics Data System (ADS)

    Yoo, Y. R.; Jang, S. G.; Nam, H. S.; Shim, G. T.; Cho, H. H.; Kim, J. G.; Kim, Y. S.

    2008-12-01

    Bio-metals require high corrosion resistance, because their biocompatibility is closely related to this parameter. Bio-metals release metal ions into the human body, leading to deleterious effects. Allergies, dermatitis, and asthma are the predominant systemic effects resulting in the human body. In particular, Ni is one of the most common causes of allergic contact dermatitis. In the present work, we designed new ferritic stainless steels wherein Ni is replaced with Co under consideration of allergic respondes and microstructural stability. This work focuses on the effect of Co content on the biocompatibility and corrosion resistance of high PRE super ferritic stainless steels in bio-solution and acidic chloride solution. In the case of the acidic chloride solution, with increasing Co content in the ferritic stainless steels, passive current density increased and critical pitting temperature (CPT) decreased. Also, in the passive state, AC impedance and repassivation rate were reduced. These results are attributed to the thermodynamic stability of cobalt ions, as indicated in the EpH diagram for a Co-H2O system. However, in the case of bio-solutions, with increasing Co content of the alloys, the passive current density decreased. AC impedance and repassivation rate meanwhile increased in the passive state. This is due to the increased ratios of Cr2O3/Cr(OH)3 and [Metal Oxide]/Metal + Metal Oxide] of the passive film formed in bio-solution.

  13. Effects of ghost shrimp on zinc and cadmium in sediments from Tampa Bay, FL

    USGS Publications Warehouse

    Klerks, P.L.; Felder, D.L.; Strasser, K.; Swarzenski, P.W.

    2007-01-01

    This study investigated the effects that ghost shrimp have on the distribution of metals in sediment. We measured levels of HNO3-extractable zinc and cadmium in surface sediment, in ghost shrimp burrow walls and in sediment ejected by the ghost shrimp from their burrows, at five sandy intertidal sites in Tampa Bay. Ghost shrimp densities and their rate of sediment ejection were also quantified, as were sediment organic content and silt + clay content. Densities of ghost shrimp (Sergio trilobata and Lepidophthalmus louisianensis) averaged 33/m2 at our sites, and they ejected sediment at an average rate of 28 g/burrow/day. Levels of both Zn and Cd were significantly higher in burrow walls than in surface sediments. Sediment ejected by the shrimp from their burrows had elevated levels of Zn (relative to surface sediments) at one of the sites. Sediment organic content and silt + clay content were higher in burrow-wall sediments than in ejected sediment, which in turn tended to have values above those of surface sediments. Differences in levels of HNO3-extractable Zn and Cd among sediment types may be a consequence of these sediments differing in other physiochemical characteristics, though the differences in metal levels remained statistically significant for some sites after correcting for differences in organic content and silt + clay content. We conclude that the presence of ghost shrimp burrows contributes to spatial heterogeneity of sedimentary metal levels, while the ghost shrimp bioturbation results in a significant flux of metals to the sediment surface and is expected to decrease heterogeneity of metal levels in sedimentary depth profiles.

  14. The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination?

    PubMed

    Queiroz, Hermano M; Nóbrega, Gabriel N; Ferreira, Tiago O; Almeida, Leandro S; Romero, Thais B; Santaella, Sandra T; Bernardino, Angelo F; Otero, Xosé L

    2018-05-10

    In November 2015, the largest socio-environmental disaster in the history of Brazil occurred when approximately 50 million m 3 of mine tailings were released into the Doce River (SE Brazil), during the greatest failure of a tailings dam worldwide. The mine tailings passed through the Doce River basin, reaching the ecologically important estuary 17 days later. On the arrival of the mine wastes to the coastal area, contamination levels in the estuarine soils were measured to determine the baseline level of contamination and to enable an environmental risk assessment. Soil and tailings samples were collected and analyzed to determine the redox potential (Eh), pH, grain size and mineralogical composition, total metal contents (Fe, Mn, Cr, Zn, Ni, Cu, Pb and Co) and organic matter content. The metals were fractionated to elucidate the mechanisms governing the trace metal dynamics. The mine tailings are mostly composed of Fe (mean values for Fe: 45,200 ± 2850; Mn: 433 ± 110; Cr: 63.9 ± 15.1; Zn: 62.4 ± 28.4; Ni: 24.7 ± 10.4; Cu: 21.3 ± 4.6; Pb: 20.2 ± 4.6 and Co: 10.7 ± 4.8 mg kg -1 ), consisting of Fe-oxyhydroxides (goethite, hematite); kaolinite and quartz. The metal contents of the estuarine soils, especially the surface layers, indicate trace metal enrichment caused by the tailings. However, the metal contents were below threshold levels reported in Brazilian environmental legislation. Despite the fact that only a small fraction (<2%) of the metals identified are readily bioavailable (i.e. soluble and exchangeable fraction), trace metals associated with Fe oxyhydroxides contributed between 69.8 and 87.6% of the total contents. Control of the trace metal dynamics by Fe oxyhydroxides can be ephemeral, especially in wetland soils in which the redox conditions oscillate widely. Indeed, the physicochemical conditions (Eh < 100 mV and circumneutral pH) of estuarine soils favor Fe reduction microbial pathways, which will probably increase the trace metal bioavailability and contamination risk. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. [Distribution and pollution assessment of heavy metals in soil of relocation areas from the Danjiangkou Reservoir].

    PubMed

    Zhang, Lei; Qin, Yan-Wen; Zheng, Bing-Hui; Shi, Yao; Han, Chao-Nan

    2013-01-01

    The aim of this article is to explore the pollution level and potential ecological risk of heavy metals in soil of the relocation areas from the Danjiangkou Reservoir. The contents and spatial distribution of Cd, Pb, Cu, Zn, Cr and As in soil of the relocation areas from the Danjiangkou Reservoir were analyzed. The integrated pollution index and potential ecological risk index were used to evaluate the contamination degree and potential ecological risk of these elements. The results indicated that the average contents of Cd, Pb, Cu, Zn, Cr and As in the samples were 0.61, 23.11, 58.25, 22.65, 58.99 and 16.95 mg x kg(-1), respectively. Compared with the background value of soils from Henan province, all these 6 elements except Zn were enriched to some extent, especially Cd. Similar patterns were observed for the spatial distribution of Cu, Zn, and Pb. Compared with the contents of heavy metals in surface sediments of the typical domestic reservoirs, Cd and As in soil of the relocation areas from the Danjiangkou Reservoir were heavily accumulated. The correlation analysis showed that there were significant positive correlations among Pb, Cu, and Zn. And there was also significant positive correlation between Cr and Pb. In contrast, negative correlation was found between Cr and As. To sum up, the comprehensive assessment results showed that Cd was the primary element with high ecological risk.

  16. Determination of Heavy Metals in Almonds and Mistletoe as a Parasite Growing on the Almond Tree Using ICP-OES or ICP-MS.

    PubMed

    Kamar, Veysi; Dağalp, Rukiye; Taştekin, Mustafa

    2017-12-28

    In this study, the elements of Al, As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Mo, Ni, Sr, Pb, Ti, and Zn were determined in the leaves, fruits, and branches of mistletoe, (Viscum albüm L.), used as a medicinal plant, and in the leaves, branches and barks of almond tree which mistletoe grows on. The aim of the study is to investigate whether the mistletoe are more absorbent than the almond tree in terms of the heavy metal contents and the determination of the amount of the elements penetrated into the mistletoe from the almond tree. ICP-MS (inductively coupled plasma-mass spectrometry) was used for the analysis of As, Cd, Mo, and Pb, whereas ICP-OES (inductively coupled plasma optical emission spectrometry) was used for the other elements. The results obtained were statistically evaluated at 95% confidence level. Within the results obtained in this study, it was determined whether there is a significant difference between metal elements in almond tree and mistletoe, or not. As a result, it was observed that there were higher contents of B, Ba, K, Mg, and Zn in the mistletoe than in the almond tree. K was found much higher than other elements in the mistletoe. On the other hand, Al, As, Ca, Cd, Cr, Cu, Fe, Mo, Ni, Sr, Pb, and Ti contents were determined to be more in almond tree than mistletoe.

  17. Assessment of selected metals in the ambient air PM10 in urban sites of Bangkok (Thailand).

    PubMed

    Pongpiachan, Siwatt; Iijima, Akihiro

    2016-02-01

    Estimating the atmospheric concentrations of PM10-bounded selected metals in urban air is crucial for evaluating adverse health impacts. In the current study, a combination of measurements and multivariate statistical tools was used to investigate the influence of anthropogenic activities on variations in the contents of 18 metals (i.e., Al, Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Cd, Sb, Ba, La, Ce and Pb) in ambient air. The concentrations of PM10-bounded metals were measured simultaneously at eight air quality observatory sites during a half-year period at heavily trafficked roads and in urban residential zones in Bangkok, Thailand. Although the daily average concentrations of Al, V, Cr, Mn and Fe were almost equivalent to those of other urban cities around the world, the contents of the majority of the selected metals were much lower than the existing ambient air quality guidelines and standard limit values. The sequence of average values of selected metals followed the order of Al > Fe > Zn > Cu > Pb > Mn > Ba > V > Sb > Ni > As > Cr > Cd > Se > Ce > La > Co > Sc. The probability distribution function (PDF) plots showed sharp symmetrical bell-shaped curves in V and Cr, indicating that crustal emissions are the predominant sources of these two elements in PM10. The comparatively low coefficients of divergence (COD) that were found in the majority of samples highlight that site-specific effects are of minor importance. A principal component analysis (PCA) revealed that 37.74, 13.51 and 11.32 % of the total variances represent crustal emissions, vehicular exhausts and the wear and tear of brakes and tires, respectively.

  18. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  19. Levels and speciation of heavy metals in soils of industrial Southern Nigeria.

    PubMed

    Olajire, A A; Ayodele, E T; Oyedirdan, G O; Oluyemi, E A

    2003-06-01

    A knowledge of the total content of trace metals is not enough to fully assess the environmental impact of polluted soils. For this reason, the determination of metal species in solution is important to evaluate their behaviour in the environment and their mobilization capacity. Sequential extraction procedure was used to speciate five heavy metals (Cd, Pb, Cu, Ni and Zn) from four contaminated soils of Southern Nigeria into six operationally defined geochemical species: water soluble, enchangeable, carbonates, Fe-Mn oxide, organic and residual. Metal recoveries were within +/- 10% of the independently determined total Cd, Pb, Cu, Ni and Zn concentrations. The highest amount of Cd (avg. 30%) in the nonresidual fractions was found in the exchangeable fraction, while Cu and Zn were significantly associated with the organic fraction. The carbonate fraction contained on average 14, 18.6, 12.6, 13 and 11% and the residual fraction contained on average 47, 18, 33, 50 and 25% of Cd, Pb, Cu, Ni and Zn respectively. Assuming that mobility and bioavailability of these metals are related to the solubility of the geochemical form of the metals, and that they decrease in the order of extraction sequence, the apparent mobility and potential bioavailability for these five metals in the soil were: Pb > Zn > Cu > Ni > Cd. The mobility indexes of copper and nickel correlated positively and significantly with the total content of metals, while mobility indexes of cadmium and zinc correlated negatively and significantly with the total content of metals.

  20. Investigation on localized corrosion of 304 stainless steel joints brazed using Sn-plated Ag alloy filler in NaCl aqueous solution

    NASA Astrophysics Data System (ADS)

    Wang, Xingxing; Li, Shuai; Peng, Jin

    2018-03-01

    Novel AgCuZnSn filler metal with high Sn contents was prepared from BAg50CuZn filler metal by a process of electroplating and thermal diffusion, and the prepared filler metal was applied to induction brazing of 304 stainless steel. The corrosion behavior of the brazed joints was evaluated based on localized corrosion analysis, the morphology of the joints were analyzed by SEM after immersion in a 3.5 vol% NaCl aqueous solution. The results indicated that corrosion groove occurred near the interface between the stainless steel base metal and the brazing seam. A wide range of defects such as holes and cracks appeared on the surface of the base metal, while the brazing seam zone almost no corrosion defects occur. With the increase of corrosion time, the corrosion rates of both the brazing seam and the base metal first exhibited an increasing trend, followed by a decreasing trend, and the corrosion rate of the base metal was slightly greater than that of the brazing seam. The corrosion potential of the brazing seam and 304 stainless steel were -0.7758 V and -0.7863 V, respectively.

Top