Science.gov

Sample records for metal fluoridesindium fluoride-based

  1. Evaluation of shielding parameters for heavy metal fluoride based tellurite-rich glasses for gamma ray shielding applications

    NASA Astrophysics Data System (ADS)

    Sayyed, M. I.; Lakshminarayana, G.; Kityk, I. V.; Mahdi, M. A.

    2017-10-01

    In this work, we have evaluated the γ-ray shielding parameters such as mass attenuation coefficient (μ/ρ), effective atomic number (Zeff), half value layer (HVL), mean free path (MFP) and exposure buildup factors (EBF) for heavy metal fluoride (PbF2) based tellurite-rich glasses. In addition, neutron total macroscopic cross sections (∑R) for these glasses were also calculated. The maximum value for μ/ρ, Zeff and ∑R was found for heavy metal (Bi2O3) oxide introduced glass. The results of the selected glasses have been compared, in terms of MFP with different glass systems. The shielding effectiveness of the selected glasses is found comparable or better than of common ones, which indicates that these glasses with suitable oxides could be developed for gamma ray shielding applications.

  2. Major role of process conditions in tuning the percolation behavior of polyvinylidene fluoride based polymer/metal composites

    NASA Astrophysics Data System (ADS)

    Panda, Maheswar

    2017-08-01

    The percolation behaviour of a polymer/metal composite (PMC), comprising polyvinylidene fluoride (PVDF)/nanocrystalline nickel (n-Ni) prepared by cold press and hot press methods, has been compared. Higher effective dielectric constants (ɛeff) with lower loss tangent (Tan δ) were observed for the cold pressed samples as compared to the hot pressed samples, which is attributed to better homogeneity and uniform distribution of n-Ni in the PVDF matrix. The percolation parameters [percolation threshold (fc) and critical exponents (s and s')] are largely tuned due to the difference in process conditions. The non-universal fc, s, and s' have been explained with the help of the percolation theory. PMC prepared though cold pressing would be a better candidate for static and low frequency dielectric applications.

  3. Tuning the surface properties of novel ternary iron(III) fluoride-based catalysts using the template effect of the matrix.

    PubMed

    Guo, Ying; Lippitz, Andreas; Saftien, Paul; Unger, Wolfgang E S; Kemnitz, Erhard

    2015-03-21

    Sol-gel prepared ternary FeF3-MgF2 materials have become promising heterogeneous catalysts due to their porosity and surface Lewis/Brønsted acidity (bi-acidity). Despite the good catalytic performance, nanoscopic characterisations of this type of material are still missing and the key factors controlling the surface properties have not yet been identified, impeding both a better understanding and further development of ternary fluoride catalysts. In this study, we characterised the interaction between the bi-acidic component (FeF3) and the matrix (MgF2) on the nano-scale. For the first time, the formation pathway of FeF3-MgF2 was profiled and the template effect of MgF2 during the synthesis process was discovered. Based on these new insights two novel materials, FeF3-CaF2 and FeF3-SrF2, were established, revealing that with decreasing the atomic numbers (from Sr to Mg), the ternary fluorides exhibited increasing surface acidity and surface area but decreasing pore size. These systematic changes gave rise to a panel of catalysts with tuneable surface and bulk properties either by changing the matrix alkaline earth metal fluoride or by adjusting their ratios to Fe or both. The template effect of the alkaline earth metal fluoride matrix was identified as the most probable key factor determining the surface properties and further influencing the catalytic performance in ternary fluoride based catalysts, and paves the way to targeted design of next-generation catalysts with tunable properties.

  4. New routes to polymetallic clusters: fluoride-based tri-, deca-, and hexaicosametallic MnIII clusters and their magnetic properties.

    PubMed

    Jones, Leigh F; Rajaraman, Gopalan; Brockman, Jonathon; Murugesu, Muralee; Sanudo, E Carolina; Raftery, Jim; Teat, Simon J; Wernsdorfer, Wolfgang; Christou, George; Brechin, Euan K; Collison, David

    2004-10-11

    The syntheses, structures and magnetic properties of three new MnIII clusters, [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1), [Mn(0O6(OH)2(bta)8(py)8F8] (2) and [NHEt3]2[Mn3O(bta)6F3] (3), are reported (bta=anion of benzotriazole), thereby demonstrating the utility of MnF3 as a new synthon in Mn cluster chemistry. The "melt" reaction (100 degrees C) between MnF(3) and benzotriazole (btaH, C6H5N3) under an inert atmosphere, followed by dissolution in MeOH produces the cluster [Mn26O17(OH)8(OMe)4F10(bta)22(MeOH)14(H2O)2] (1) after two weeks. Complex 1 crystallizes in the triclinic space group P1, and consists of a complicated array of metal tetrahedra linked by mu3-O2- ions, mu3- and mu2-OH- ions, mu2-MeO- ions and mu2-bta- ligands. The "simpler" reaction between MnF3 and btaH in boiling MeOH (50 degrees C) also produces complex 1. If this reaction is repeated in the presence of pyridine, the decametallic complex [Mn10O6(OH)2(bta)8(py)8F8] (2) is produced. Complex 2 crystallizes in the triclinic space group P1 and consists of a "supertetrahedral" [Mn(III)10] core bridged by six mu3-O2- ions, two mu3-OH- ions, four mu2-F- ions and eight mu2-bta- ions. The replacement of pyridine by triethylamine in the same reaction scheme produces the trimetallic species [NHEt3]2[Mn3O(bta)6F3] (3). Complex 3 crystallises in the monoclinic space group P2(1)/c and has a structure analogous to that of the basic metal carboxylates of general formula [M3O(RCO2)6L3]0/+, which consists of an oxo-centred metal triangle with mu2-bta- ligands bridging each edge of the triangle and the fluoride ions acting as the terminal ligands. DC magnetic susceptibility measurements in the 300-1.8 K and 0.1-7 T ranges were investigated for all three complexes. For each, the value of chi(M)T decreases with decreasing temperatures; this indicates the presence of dominant antiferromagnetic exchange interactions in 1-3. For complex 1, the low-temperature value of chi(M)T is 10 cm(3) K mol(-1) and fitting of

  5. The effect of core and lanthanide ion dopants in sodium fluoride-based nanocrystals on phagocytic activity of human blood leukocytes

    NASA Astrophysics Data System (ADS)

    Sojka, Bartlomiej; Liskova, Aurelia; Kuricova, Miroslava; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2017-02-01

    Sodium fluoride-based β-NaLnF4 nanoparticles (NPs) doped with lanthanide ions are promising materials for application as luminescent markers in bio-imaging. In this work, the effect of NPs doped with yttrium (Y), gadolinium (Gd), europium (Eu), thulium (Tm), ytterbium (Yb) and terbium (Tb) ions on phagocytic activity of monocytes and granulocytes and the respiratory burst was examined. The surface functionalization of <10-nm NPs was performed according to our variation of patent pending ligand exchange method that resulted in meso-2,3-dimercaptosuccinic acid (DMSA) molecules on their surface. Y-core-based NCs were doped with Eu ions, which enabled them to be excited with UV light wavelengths. Cultures of human peripheral blood ( n = 8) were in vitro treated with five different concentrations of eight NPs for 24 h. In summary, neither type of nanoparticles is found toxic with respect to conducted test; however, some cause toxic effects (they have statistically significant deviations compared to reference) in some selected doses tested. Both core types of NPs (Y-core and Gd-core) impaired the phagocytic activity of monocytes the strongest, having minimal or none whatsoever influence on granulocytes and respiratory burst of phagocytic cells. The lowest toxicity was observed in Gd-core, Yb, Tm dopants and near-infrared nanoparticles. Clear dose-dependent effect of NPs on phagocytic activity of leukocytes and respiratory burst of cells was observed for limited number of samples.

  6. Formation of lithium fluoride/metal nanocomposites for energy storage through solid state reduction of metal fluorides

    SciTech Connect

    Amatucci, GG; Pereira, N; Badway, F; Sina, M; Cosandey, F; Ruotolo, M; Cao, C

    2011-12-01

    In order to utilize high energy metal fluoride electrode materials as direct replacement electrode materials for lithium ion batteries in the future, a methodology to prelithiate the cathode or anode must be developed. Herein, we introduce the use of a solid state Li(3)N route to achieve the lithiation and mechanoreduction of metal fluoride based nanocomposites. The resulting prelithiation was found to be effective with the formation of xLiF:Me structures of very fine nanodimensions analogous to what is found by electrochemical lithiation. Physical and electrochemical properties of these nanocomposites for the bismuth and iron lithium fluoride systems are reported. (C) 2011 Elsevier B.V. All rights reserved.

  7. Hydrophobic sodium fluoride-based nanocrystals doped with lanthanide ions: assessment of in vitro toxicity to human blood lymphocytes and phagocytes.

    PubMed

    Sojka, Bartlomiej; Kuricova, Miroslava; Liskova, Aurelia; Bartusova, Maria; Banski, Mateusz; Misiewicz, Jan; Dusinska, Maria; Horvathova, Mira; Jahnova, Eva; Ilavska, Silvia; Szabova, Michaela; Rollerova, Eva; Podhorodecki, Artur; Tulinska, Jana

    2014-11-01

    In vitro immunotoxicity of hydrophobic sodium fluoride-based nanocrystals (NCs) doped with lanthanide ions was examined in this study. Although there is already a significant amount of optical and structural data on NaYF4 NCs, data on safety assessment are missing. Therefore, peripheral whole blood from human volunteers was used to evaluate the effect of 25 and 30 nm hydrophobic NaYF4 NCs dissolved in cyclohexane (CH) on lymphocytes, and of 10 nm NaYF4 NCs on phagocytes. In the concentration range 0.12-75 µg cm(-2) (0.17-106 µg ml(-1) ), both 25 and 30nm NaYF4 NCs did not induce cytotoxicity when measured as incorporation of [(3) H]-thymidine into DNA. Assessment of lymphocyte function showed significant suppression of the proliferative activity of T-lymphocytes and T-dependent B-cell response in peripheral blood cultures (n = 7) stimulated in vitro with mitogens phytohemagglutinin (PHA) and pokeweed (PWM) (PHA > PWM). No clear dose-response effect was observed. Phagocytic activity and respiratory burst of leukocytes (n = 5-8) were generally less affected. A dose-dependent suppression of phagocytic activity of granulocytes in cultures treated with 25 nm NCs was observed (vs. medium control). A decrease in phagocytic activity of monocytes was found in cells exposed to higher doses of 10 and 30 nm NCs. The respiratory burst of phagocytes was significantly decreased by exposure to the middle dose of 30 nm NCs only. In conclusion, our results demonstrate immunotoxic effects of hydrophobic NaYF4 NCs doped with lanthanide ions to lymphocytes and to lesser extent to phagocytes. Further research needs to be done, particularly faze transfer of hydrophobic NCs to hydrophilic ones, to eliminate the solvent effect.

  8. The effects of fluoride based fire-fighting foams on soil microbiota activity and plant growth during natural attenuation of perfluorinated compounds.

    PubMed

    Montagnolli, Renato Nallin; Matos Lopes, Paulo Renato; Matos Cruz, Jaqueline; Marina Turini Claro, Elis; Quiterio, Gabriela Mercuri; Bidoia, Ederio Dino

    2017-03-01

    The use of fluoride based foams increases the effectiveness of fire-fighting operations, but they are also accompanied by major drawbacks regarding environmental safety of perfluorinated compounds (PFCs). The main concern with PFCs release is due to their well-known persistence and bioaccumulative potential, as they have been detected in many environmental samples. There is a significant knowledge gap on PFC toxicity to plants, even though such data could be useful towards bioremediation procedures. It is consensus that a realistic assessment of fire-fighting foam toxicity should cover as many test organisms as possible, however, few studies combine the performance of ecotoxicological tests with a detailed study of microbial communities in soil contaminated with firefighting foams. Our research evaluated the effects of natural attenuation of PFCs on the development of arugula and lettuce seeds. The effects of variable PFCs amounts were also observed in soil microbiota using the 2,6 dichlorophenol-indophenol redox dye as microbial metabolism indicator. We aimed to determine whether aqueous film forming foams toxicity increased or decreased over time in a simulated contamination scenario. We argued that the long-term biotransformation of fire-fighting foams should be taken in to account when evaluating toxicity, focusing on a time-based monitoring analysis, since potentially toxic intermediates may be formed though biodegradation. The phyto-toxicity of PFCs to lettuce and arugula was high, increasing as a function of the concentration and decreasing as a function of exposure time to the environment. However, very specific concentrations throughout biodegradation result in the formation of non-inhibiting intermediates. Therefore, variable biodegradation-dependent germination rates may be misleading on non-time-based monitoring approaches. Also, the low phyto-toxicity after 240days does not exclude the potential for PFC bioaccumulation in plants. We also proposed that

  9. Different corrosive effects on hydroxyapatite nanocrystals and amine fluoride-based mouthwashes on dental titanium brackets: a comparative in vitro study.

    PubMed

    Lelli, Marco; Marchisio, Olivia; Foltran, Ismaela; Genovesi, Annamaria; Montebugnoli, Giulia; Marcaccio, Massimo; Covani, Ugo; Roveri, Norberto

    2013-01-01

    Titanium plates treated in vitro with a mouthwash containing amine fluoride (100 ppm F-) and another containing zinc-substituted carbonate-hydroxyapatite have been analyzed by scanning electron microscopy and atomic force microscopy to evaluate the modification of the surface roughness induced by treatment with these two different mouthwashes. The treatment with F--based mouthwash produces a roughness characterized by higher peaks and deeper valleys in the streaks on the titanium bracket surface compared with those observed in the reference polished titanium plates. This effect causes a mechanical weakness in the metallic dental implant causing bacterial growth and therefore promotes infection and prosthesis contamination. However, the in vitro treatment with a mouthwash containing zinc-substituted carbonate-hydroxyapatite reduced the surface roughness by filling the streaks with an apatitic phase. This treatment counteracts the surface oxidative process that can affect the mechanical behavior of the titanium dental implant, which inhibits the bacterial growth contaminating prostheses.

  10. Metal Preferences and Metallation*

    PubMed Central

    Foster, Andrew W.; Osman, Deenah; Robinson, Nigel J.

    2014-01-01

    The metal binding preferences of most metalloproteins do not match their metal requirements. Thus, metallation of an estimated 30% of metalloenzymes is aided by metal delivery systems, with ∼25% acquiring preassembled metal cofactors. The remaining ∼70% are presumed to compete for metals from buffered metal pools. Metallation is further aided by maintaining the relative concentrations of these pools as an inverse function of the stabilities of the respective metal complexes. For example, magnesium enzymes always prefer to bind zinc, and these metals dominate the metalloenzymes without metal delivery systems. Therefore, the buffered concentration of zinc is held at least a million-fold below magnesium inside most cells. PMID:25160626

  11. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-08-22

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  12. Metallated metal-organic frameworks

    DOEpatents

    Bury, Wojciech; Farha, Omar K.; Hupp, Joseph T.; Mondloch, Joseph E.

    2017-02-07

    Porous metal-organic frameworks (MOFs) and metallated porous MOFs are provided. Also provided are methods of metallating porous MOFs using atomic layer deposition and methods of using the metallated MOFs as catalysts and in remediation applications.

  13. Metals Sector

    EPA Pesticide Factsheets

    Find environmental regulatory information about the metals sector (NAICS 331 & 332), including NESHAPs for metal coatings, effluent guidelines for metal products, combustion compliance assistance, and information about foundry sand recycling.

  14. Metal aminoboranes

    DOEpatents

    Burrell, Anthony K.; Davis, Benjamin J.; Thorn, David L.; Gordon, John C.; Baker, R. Thomas; Semelsberger, Troy Allen; Tumas, William; Diyabalanage, Himashinie Vichalya Kaviraj; Shrestha, Roshan P.

    2010-05-11

    Metal aminoboranes of the formula M(NH.sub.2BH.sub.3).sub.n have been synthesized. Metal aminoboranes are hydrogen storage materials. Metal aminoboranes are also precursors for synthesizing other metal aminoboranes. Metal aminoboranes can be dehydrogenated to form hydrogen and a reaction product. The reaction product can react with hydrogen to form a hydrogen storage material. Metal aminoboranes can be included in a kit.

  15. Metal inks

    DOEpatents

    Ginley, David S; Curtis, Calvin J; Miedaner, Alex; van Hest, Marinus Franciscus Antonius Maria; Kaydanova, Tatiana

    2014-02-04

    Self-reducing metal inks and systems and methods for producing and using the same are disclosed. In an exemplary embodiment, a method may comprise selecting metal-organic (MO) precursor, selecting a reducing agent, and dissolving the MO precursor and the reducing agent in an organic solvent to produce a metal ink that remains in a liquid phase at room temperature. Metal inks, including self-reducing and fire-through metal inks, are also disclosed, as are various applications of the metal inks.

  16. Metallization failures

    NASA Technical Reports Server (NTRS)

    Beatty, R.

    1971-01-01

    Metallization-related failure mechanisms were shown to be a major cause of integrated circuit failures under accelerated stress conditions, as well as in actual use under field operation. The integrated circuit industry is aware of the problem and is attempting to solve it in one of two ways: (1) better understanding of the aluminum system, which is the most widely used metallization material for silicon integrated circuits both as a single level and multilevel metallization, or (2) evaluating alternative metal systems. Aluminum metallization offers many advantages, but also has limitations particularly at elevated temperatures and high current densities. As an alternative, multilayer systems of the general form, silicon device-metal-inorganic insulator-metal, are being considered to produce large scale integrated arrays. The merits and restrictions of metallization systems in current usage and systems under development are defined.

  17. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  18. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  19. Silicone metalization

    SciTech Connect

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2006-12-05

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  20. Silicone metalization

    DOEpatents

    Maghribi, Mariam N.; Krulevitch, Peter; Hamilton, Julie

    2008-12-09

    A system for providing metal features on silicone comprising providing a silicone layer on a matrix and providing a metal layer on the silicone layer. An electronic apparatus can be produced by the system. The electronic apparatus comprises a silicone body and metal features on the silicone body that provide an electronic device.

  1. Metal Detectors.

    ERIC Educational Resources Information Center

    Harrington-Lueker, Donna

    1992-01-01

    Schools that count on metal detectors to stem the flow of weapons into the schools create a false sense of security. Recommendations include investing in personnel rather than hardware, cultivating the confidence of law-abiding students, and enforcing discipline. Metal detectors can be quite effective at afterschool events. (MLF)

  2. Metal oxide films on metal

    DOEpatents

    Wu, Xin D.; Tiwari, Prabhat

    1995-01-01

    A structure including a thin film of a conductive alkaline earth metal oxide selected from the group consisting of strontium ruthenium trioxide, calcium ruthenium trioxide, barium ruthenium trioxide, lanthanum-strontium cobalt oxide or mixed alkaline earth ruthenium trioxides thereof upon a thin film of a noble metal such as platinum is provided.

  3. Metal Coatings

    NASA Technical Reports Server (NTRS)

    1994-01-01

    During the Apollo Program, General Magnaplate Corporation developed process techniques for bonding dry lubricant coatings to space metals. The coatings were not susceptible to outgassing and offered enhanced surface hardness and superior resistance to corrosion and wear. This development was necessary because conventional lubrication processes were inadequate for lightweight materials used in Apollo components. General Magnaplate built on the original technology and became a leader in development of high performance metallurgical surface enhancement coatings - "synergistic" coatings, - which are used in applications from pizza making to laser manufacture. Each of the coatings is designed to protect a specific metal or group of metals to solve problems encountered under operating conditions.

  4. Metals 2000

    SciTech Connect

    Allison, S.W.; Rogers, L.C.; Slaughter, G.; Boensch, F.D.; Claus, R.O.; de Vries, M.

    1993-05-01

    This strategic planning exercise identified and characterized new and emerging advanced metallic technologies in the context of the drastic changes in global politics and decreasing fiscal resources. In consideration of a hierarchy of technology thrusts stated by various Department of Defense (DOD) spokesmen, and the need to find new and creative ways to acquire and organize programs within an evolving Wright Laboratory, five major candidate programs identified are: C-17 Flap, Transport Fuselage, Mach 5 Aircraft, 4.Fighter Structures, and 5. Missile Structures. These results were formed by extensive discussion with selected major contractors and other experts, and a survey of advanced metallic structure materials. Candidate structural applications with detailed metal structure descriptions bracket a wide variety of uses which warrant consideration for the suggested programs. An analysis on implementing smart skins and structures concepts is given from a metal structures perspective.

  5. Fluoride-based, low temperature solid electrolyte fuel cell

    NASA Astrophysics Data System (ADS)

    Oh, Seajin; Otagawa, T.; Madou, M.

    Lanthanum fluoride electrolytes were tested to determine whether fluoride electrolytes can be used as fuel cell electrolytes at low temperatures. The planar-type fuel cell were operated in oxygen/hydrogen gases with nickel oxide/nickel as the anode and a perovskite structure oxide (La(0.6)Sr(0.4)CoO3) as the cathode. In order to reduce the fuel cell operating temperature while maintaining the highest possible current, various thin and thick film techniques were assessed. They include e-beam evaporation and dc plasma spray methods. Fuel cells incorporating plasma-sprayed LaF3 films yielded a short-circuit current density on the order of 0.4 mA/sq cm at 450 C, and the current density under an overpotential of 0.2V showed no sign of decay over 17 hours. In the co-ionic (fluoride and oxide ion) conduction mode, the lanthanum fluoride electrolyte based fuel cells could sustain current in oxygen/hydrogen gases.

  6. Sodium yttrium fluoride based upconversion nano phosphors for biosensing

    NASA Astrophysics Data System (ADS)

    Parameswaran Nampi, Padmaja; Varma, Harikrishna; Biju, P. R.; Kakkar, Tarun; Jose, Gin; Saha, Sikha; Millner, Paul

    2015-06-01

    In the present study, NaYF4-Yb3+/Er3+ having the composition NaYF4-18%Yb3+/2%Er3+ and NaYF4-20%Yb3+/2%Er3+ with and without the addition of PVP (polyvinyl pyrolidone) have been synthesised by a solution method using NaF, yttrium nitrate, ytterbium nitrate and erbium nitrate as precursors. Upconversion spectra of prepared nanomaterial under 980 nm laser excitation have been studied. The variation in upconversion spectra with new born calf serum and myoglobin has been studied. Myoglobin (Mb) may be helpful when used in conjunction with other cardiac markers for rapid determination of acute myocardial ischemia, especially in patients with a typical chest pain or nonspecific ECG changes. The variation of UC fluorescence with addition of Mb indicates the suitability of using NaYF4 based UC nanoparticles in cardiac marker detection. The detailed study is currently under progress.

  7. Calcium fluoride based multifunctional nanoparticles for multimodal imaging

    PubMed Central

    Dembski, Sofia; Haddad, Daniel; Ahrens, Bernd; Schweizer, Stefan; Christ, Bastian; Cubukova, Alevtina; Metzger, Marco; Walles, Heike; Jakob, Peter M; Sextl, Gerhard

    2017-01-01

    New multifunctional nanoparticles (NPs) that can be used as contrast agents (CA) in different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+) NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5–10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T 1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg−1·s−1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL−1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+) NPs are suitable for medical imaging. PMID:28900602

  8. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  9. Metals--Endangered Resources.

    ERIC Educational Resources Information Center

    Crowder, William W.

    1979-01-01

    Suggests activities for elementary teachers to use in teaching about metals and their use. Specific areas addressed include: history of metals, metal use, consumption statistics, beauty of metals, sources of metals, conservation, and other projects. (JMB)

  10. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac; Zaghoo, Mohamed; Salamat, Ashkan

    2015-03-01

    Hydrogen is the simplest and most abundant element in the Universe. At high pressure it is predicted to transform to a metal with remarkable properties: room temperature superconductivity, a metastable metal at ambient conditions, and a revolutionary rocket propellant. Both theory and experiment have been challenged for almost 80 years to determine its condensed matter phase diagram, in particular the insulator-metal transition. Hydrogen is predicted to dissociate to a liquid atomic metal at multi-megabar pressures and T =0 K, or at megabar pressures and very high temperatures. Thus, its predicted phase diagram has a broad field of liquid metallic hydrogen at high pressure, with temperatures ranging from thousands of degrees to zero Kelvin. In a bench top experiment using static compression in a diamond anvil cell and pulsed laser heating, we have conducted measurements on dense hydrogen in the region of 1.1-1.7 Mbar and up to 2200 K. We observe a first-order phase transition in the liquid phase, as well as sharp changes in optical transmission and reflectivity when this phase is entered. The optical signature is that of a metal. The mapping of the phase line of this transition is in excellent agreement with recent theoretical predictions for the long-sought plasma phase transition to metallic hydrogen. Research supported by the NSF, Grant DMR-1308641, the DOE Stockpile Stewardship Academic Alliance Program, Grant DE-FG52-10NA29656, and NASA Earth and Space Science Fellowship Program, Award NNX14AP17H.

  11. Metallized Products

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Since the early 1960's, virtually all NASA spacecraft have used metallized films for a variety of purposes, principally thermal radiation insulation. King Seeley manufactures a broad line of industrial and consumer oriented metallized film, fabric, paper and foam in single layer sheets and multi-layer laminates. A few examples, commercialized by MPI Outdoor Safety Products, are the three ounce Thermos Emergency Blanket which reflects and retains up to 80 percent of the user's body heat helping prevent post accident shock or keeping a person warm for hours under emergency cold weather conditions.

  12. Metallic Hydrogen

    NASA Astrophysics Data System (ADS)

    Silvera, Isaac F.; Dias, Ranga; Noked, Ori; Salamat, Ashkan; Zaghoo, Mohamed

    2017-04-01

    One of the great challenges in condensed matter physics has been to produce metallic hydrogen (MH) in the laboratory. There are two approaches: solid molecular hydrogen can be compressed to high density at extreme pressures of order 5-6 megabars. The transition to MH should take place at low temperatures and is expected to occur as a structural first-order phase transition with dissociation of molecules into atoms, rather than the closing of a gap. A second approach is to produce dense molecular hydrogen at pressures of order 1-2 megabars and heat the sample. With increasing temperature, it was predicted that molecular hydrogen first melts and then dissociates to atomic metallic liquid hydrogen as a first-order phase transition. We have observed this liquid-liquid phase transition to metallic hydrogen, also called the plasma phase transition. In low-temperature studies, we have pressurized HD to over 3 megabars and observed two new phases. Molecular hydrogen has been pressurized to 4.2 megabars. A new phase transition has been observed at 3.55 megabars, but it is not yet metallic.

  13. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  14. METAL COMPOSITIONS

    DOEpatents

    Seybolt, A.U.

    1959-02-01

    Alloys of uranium which are strong, hard, and machinable are presented, These alloys of uranium contain bctween 0.1 to 5.0% by weight of at least one noble metal such as rhodium, palladium, and gold. The alloys may be heat treated to obtain a product with iniproved tensile and compression strengths,

  15. Heavy Metal.

    ERIC Educational Resources Information Center

    Shoemaker, W. Lee

    1998-01-01

    Discusses the advantages, both functional and economic, of using a standing-seam metal roof in both new roof installations and reroofing projects of educational facilities. Structural versus non-structural standing-seam roofs are described as are the types of insulation that can be added and roof finishes used. (GR)

  16. Composite metal membrane

    DOEpatents

    Peachey, N.M.; Dye, R.C.; Snow, R.C.; Birdsell, S.A.

    1998-04-14

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  17. Composite metal membrane

    DOEpatents

    Peachey, Nathaniel M.; Dye, Robert C.; Snow, Ronny C.; Birdsell, Stephan A.

    1998-01-01

    A composite metal membrane including a first metal layer of Group IVB met or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof is provided together with a process for the recovery of hydrogen from a gaseous mixture including contacting a hydrogen-containing gaseous mixture with a first side of a nonporous composite metal membrane including a first metal of Group IVB metals or Group VB metals, the first metal layer sandwiched between two layers of an oriented metal of palladium, platinum or alloys thereof, and, separating hydrogen from a second side of the nonporous composite metal membrane.

  18. Clad metal joint closure

    SciTech Connect

    Siebert, O.W.

    1985-04-09

    A plasma arc spray overlay of cladding metals is used over joints between clad metal pieces to provide a continuous cladding metal surface. The technique permits applying an overlay of a high melting point cladding metal to a cladding metal surface without excessive heating of the backing metal.

  19. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  20. Metal filled porous carbon

    DOEpatents

    Gross, Adam F.; Vajo, John J.; Cumberland, Robert W.; Liu, Ping; Salguero, Tina T.

    2011-03-22

    A porous carbon scaffold with a surface and pores, the porous carbon scaffold containing a primary metal and a secondary metal, where the primary metal is a metal that does not wet the surface of the pores of the carbon scaffold but wets the surface of the secondary metal, and the secondary metal is interspersed between the surface of the pores of the carbon scaffold and the primary metal.

  1. Extracting metals directly from metal oxides

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Phelps, Cindy

    1997-01-01

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of .beta.-diketones, halogenated .beta.-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process.

  2. Extracting metals directly from metal oxides

    DOEpatents

    Wai, C.M.; Smart, N.G.; Phelps, C.

    1997-02-25

    A method of extracting metals directly from metal oxides by exposing the oxide to a supercritical fluid solvent containing a chelating agent is described. Preferably, the metal is an actinide or a lanthanide. More preferably, the metal is uranium, thorium or plutonium. The chelating agent forms chelates that are soluble in the supercritical fluid, thereby allowing direct removal of the metal from the metal oxide. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is selected from the group consisting of {beta}-diketones, halogenated {beta}-diketones, phosphinic acids, halogenated phosphinic acids, carboxylic acids, halogenated carboxylic acids, and mixtures thereof. In especially preferred embodiments, at least one of the chelating agents is fluorinated. The method provides an environmentally benign process for removing metals from metal oxides without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the metal recovered, to provide an economic, efficient process. 4 figs.

  3. Neurotoxicity of metals.

    PubMed

    Caito, Samuel; Aschner, Michael

    2015-01-01

    Metals are frequently used in industry and represent a major source of toxin exposure for workers. For this reason governmental agencies regulate the amount of metal exposure permissible for worker safety. While essential metals serve physiologic roles, metals pose significant health risks upon acute and chronic exposure to high levels. The central nervous system is particularly vulnerable to metals. The brain readily accumulates metals, which under physiologic conditions are incorporated into essential metalloproteins required for neuronal health and energy homeostasis. Severe consequences can arise from circumstances of excess essential metals or exposure to toxic nonessential metal. Herein, we discuss sources of occupational metal exposure, metal homeostasis in the human body, susceptibility of the nervous system to metals, detoxification, detection of metals in biologic samples, and chelation therapeutic strategies. The neurologic pathology and physiology following aluminum, arsenic, lead, manganese, mercury, and trimethyltin exposures are highlighted as classic examples of metal-induced neurotoxicity.

  4. Metals production

    NASA Technical Reports Server (NTRS)

    Beck, Theodore S.

    1992-01-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  5. Metals production

    NASA Astrophysics Data System (ADS)

    Beck, Theodore S.

    1992-02-01

    Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.

  6. Metal-phosphate binders

    DOEpatents

    Howe, Beth Ann [Lewistown, IL; Chaps-Cabrera, Jesus Guadalupe [Coahuila, MX

    2009-05-12

    A metal-phosphate binder is provided. The binder may include an aqueous phosphoric acid solution, a metal-cation donor including a metal other than aluminum, an aluminum-cation donor, and a non-carbohydrate electron donor.

  7. Memory Metals

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Under contract to NASA during preparations for the space station, Memry Technologies Inc. investigated shape memory effect (SME). SME is a characteristic of certain metal alloys that can change shape in response to temperature variations. In the late 1980s and early 1990s, Memry used its NASA-acquired expertise to produce a line of home and industrial safety products, and refined the technology in the mid-1990s. Among the new products they developed are three MemrySafe units which prevent scalding from faucets. Each system contains a small valve that reacts to temperature, not pressure. When the water reaches dangerous temperatures, the unit reduces the flow to a trickle; when the scalding temperature subsides, the unit restores normal flow. Other products are the FIRECHEK 2 and 4, heat-activated shutoff valves for industrial process lines, which sense excessive heat and cut off pneumatic pressure. The newest of these products is Memry's Demand Management Water Heater which shifts the electricity requirement from peak to off-peak demands, conserving energy and money.

  8. Light metals 1989

    SciTech Connect

    Campbell, P.G.

    1989-01-01

    This volume contains a cross section of the most important developments in the light metals field. The papers detail the latest solutions to problems in alumina and bauxite; carbon technology; cast shop technology; reduction technology; and reactive metals. Nearly every important company and research facility in the aluminum industry is represented. Light Metals 1989 is a reference for anyone in light metals technology.

  9. Ceramic to metal seal

    DOEpatents

    Snow, Gary S.; Wilcox, Paul D.

    1976-01-01

    Providing a high strength, hermetic ceramic to metal seal by essentially heating a wire-like metal gasket and a ceramic member, which have been chemically cleaned, while simultaneously deforming from about 50 to 95 percent the metal gasket against the ceramic member at a temperature of about 30 to 75 percent of the melting temperature of the metal gasket.

  10. Metalloproteins and metal sensing.

    PubMed

    Waldron, Kevin J; Rutherford, Julian C; Ford, Dianne; Robinson, Nigel J

    2009-08-13

    Almost half of all enzymes must associate with a particular metal to function. An ambition is to understand why each metal-protein partnership arose and how it is maintained. Metal availability provides part of the explanation, and has changed over geological time and varies between habitats but is held within vital limits in cells. Such homeostasis needs metal sensors, and there is an ongoing search to discover the metal-sensing mechanisms. For metalloproteins to acquire the right metals, metal sensors must correctly distinguish between the inorganic elements.

  11. Fabrication of metal nanoshells

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Choi, Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, Jr., James R. (Inventor)

    2012-01-01

    Metal nanoshells are fabricated by admixing an aqueous solution of metal ions with an aqueous solution of apoferritin protein molecules, followed by admixing an aqueous solution containing an excess of an oxidizing agent for the metal ions. The apoferritin molecules serve as bio-templates for the formation of metal nanoshells, which form on and are bonded to the inside walls of the hollow cores of the individual apoferritin molecules. Control of the number of metal atoms which enter the hollow core of each individual apoferritin molecule provides a hollow metal nonparticle, or nanoshell, instead of a solid spherical metal nanoparticle.

  12. Metals and metal derivatives in medicine.

    PubMed

    Colotti, Gianni; Ilari, Andrea; Boffi, Alberto; Morea, Veronica

    2013-02-01

    Several chemical elements are required by living organisms in addition to the four elements carbon, hydrogen, nitrogen and oxygen usually present in common organic molecules. Many metals (e.g. sodium, potassium, magnesium, calcium, iron, zinc, copper, manganese, chromium, molybdenum and selenium) are known to be required for normal biological functions in humans. Disorders of metal homeostasis and of metal bioavailability, or toxicity caused by metal excess, are responsible for a large number of human diseases. Metals are also extensively used in medicine as therapeutic and/or diagnostic agents. In the past 5000 years, metals such as arsenic, gold and iron have been used to treat a variety of human diseases. Nowadays, an ever-increasing number of metal-based drugs is available. These contain a broad spectrum of metals, many of which are not among those essential for humans, able to target proteins and/or DNA. This mini-review describes metal-containing compounds targeting DNA or proteins currently in use, or designed to be used, as therapeutics against cancer, arthritis, parasitic and other diseases, with a special focus on the available information, often provided by X-ray studies, about their mechanism of action at a molecular level. In addition, an overview of metal complexes used for diagnosing diseases is presented.

  13. Metal phthalocyanine polymers

    NASA Technical Reports Server (NTRS)

    Achar, B. N.; Fohlen, G. M.; Parker, J. A. (Inventor)

    1984-01-01

    Metal 4, 4', 4", 4"'=tetracarboxylic phthalocyanines (MPTC) are prepared by reaction of trimellitic anhydride, a salt or hydroxide of the desired metal (or the metal in powdered form), urea and a catalyst. A purer form of MPTC is prepared than heretofore. These tetracarboxylic acids are then polymerized by heat to sheet polymers which have superior heat and oxidation resistance. The metal is preferably a divalent metal having an atomic radius close to 1.35A.

  14. Amorphous metal composites

    DOEpatents

    Byrne, Martin A.; Lupinski, John H.

    1984-01-01

    An improved amorphous metal composite and process of making the composite. The amorphous metal composite comprises amorphous metal (e.g. iron) and a low molecular weight thermosetting polymer binder. The process comprises placing an amorphous metal in particulate form and a thermosetting polymer binder powder into a container, mixing these materials, and applying heat and pressure to convert the mixture into an amorphous metal composite.

  15. Interfacing liquid metals with stretchable metal conductors.

    PubMed

    Kim, Bongsoo; Jang, Jaehyeok; You, Insang; Park, Jaeyoon; Shin, SangBaie; Jeon, Gumhye; Kim, Jin Kon; Jeong, Unyong

    2015-04-22

    Highly stretchable conductors are essential components in deformable electronics. Owing to their high stretchability and conductivity, liquid metals have attracted significant attention for use as circuits and interconnections. However, their poor wettability to stretchable metal electrodes prevents the formation of stable electrical connections. This study examined two approaches for creating a stable interface between a liquid metal (EGaIn) and stretchable metal electrodes via: (i) the use of honeycomb-structured stretchable metal electrodes and (ii) the addition of a conducting polymer interlayer. The line width of the honeycomb had a significant influence on the formation of a stable interface. The liquid metal formed a stable film layer on honeycomb metal electrodes, which have line widths of less than 50 μm. Coating PSS with a nonionic surfactant lowered the interfacial energy of EGaIn with flat stretchable metal surfaces; hence EGaIn was coated uniformly on the stretchable metal surfaces. Strain sensors were fabricated as a demonstrative example of an application that utilizes the stable interface.

  16. Predicting dietborne metal toxicity from metal influxes

    USGS Publications Warehouse

    Croteau, M.-N.; Luoma, S.N.

    2009-01-01

    Dietborne metal uptake prevails for many species in nature. However, the links between dietary metal exposure and toxicity are not well understood. Sources of uncertainty include the lack of suitable tracers to quantify exposure for metals such as copper, the difficulty to assess dietary processes such as food ingestion rate, and the complexity to link metal bioaccumulation and effects. We characterized dietborne copper, nickel, and cadmium influxes in a freshwater gastropod exposed to diatoms labeled with enriched stable metal isotopes. Metal influxes in Lymnaea stagnalis correlated linearly with dietborne metal concentrations over a range encompassing most environmental exposures. Dietary Cd and Ni uptake rate constants (kuf) were, respectively, 3.3 and 2.3 times higher than that for Cu. Detoxification rate constants (k detox) were similar among metals and appeared 100 times higher than efflux rate constants (ke). Extremely high Cu concentrations reduced feeding rates, causing the relationship between exposure and influx to deviate from linearity; i.e., Cu uptake rates leveled off between 1500 and 1800 nmol g-1 day-1. L. stagnalis rapidly takes up Cu, Cd, and Ni from food but detoxifies the accumulated metals, instead of reducing uptake or intensifying excretion. Above a threshold uptake rate, however, the detoxification capabilities of L. stagnalis are overwhelmed.

  17. Alkali metal nitrate purification

    DOEpatents

    Fiorucci, Louis C.; Morgan, Michael J.

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  18. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  19. The metal-non-metal transition in compressed metal vapours

    NASA Astrophysics Data System (ADS)

    Hensel, F.; Marceca, E.; Pilgrim, W. C.

    1998-12-01

    Knowledge of the properties of hydrogen and helium and their mixtures, at temperatures and pressures prevailing in the giant planets is of considerable interest for planetary modelling. In the light of the unfavourable outlook for reliable measurements under these extreme conditions effort has been spent investigating the high-temperature high-pressure properties of fluid metals which are experimentally accessible in the laboratory and which might serve as models for compressed fluid hydrogen. The main emphasis of the paper is on the density dependence of the dynamic structure factor 0953-8984/10/49/026/img1 of liquid rubidium which reveals that a monoatomic-molecular transition occurs in the metal-non-metal transition region of the expanded liquid analogous to that suggested to occur in shock compressed hydrogen. Additional emphasis is on new results of the phase behaviour of dilute mixtures of helium in the near critical metal mercury.

  20. Metal-on-metal hip joint tribology.

    PubMed

    Dowson, D; Jin, Z M

    2006-02-01

    The basic tribological features of metal-on-metal total hip replacements have been reviewed to facilitate an understanding of the engineering science underpinning the renaissance of these hard-on-hard joints. Metal-on-polymer hip replacements operate in the boundary lubrication regime, thus leading to the design guidance to reduce the femoral head diameter as much as is feasible to minimize frictional torque and volumetric wear. This explains why the gold-standard implant of this form from the past half-century had a diameter of only 22.225 mm (7/8 in). Metal-on-metal implants can operate in the mild mixed lubrication regime in which much of the applied load is supported by elastohydrodynamic films. Correct tribological design leads to remarkably low steady state wear rates. Promotion of the most effective elastohydrodynamic films calls for the largest possible head diameters and the smallest clearances that can reasonably be adopted, consistent with fine surface finishes, good sphericity and minimal structural elastic deformation of the cup on its foundations. This guidance, which is opposite in form to that developed for metal-on-polymer joints, is equally valid for solid (monolithic) metallic heads on metallic femoral stems and surface replacement femoral shells. Laboratory measurements of friction and wear in metal-on-metal joints have confirmed their potential to achieve a very mild form of mixed lubrication. The key lies in the generation of effective elastohydrodynamic lubricating films of adequate thickness compared with the composite roughness of the head and cup. The calculation of the film thickness is by no means easy, but the full procedure is outlined and the use of an empirical formula that displays good agreement with calculations based upon the full numerical solutions is explained. The representation of the lambda ratio, lambda, embracing both film thickness and composite roughness, is described.

  1. Metal finishing and processing

    SciTech Connect

    Enzminger, J.D. )

    1990-06-01

    This article reviews the finishing and processing of metal wastes for land disposal. Topics of discussion include regulatory aspects, heavy metal treatment, cyanide treatment, waste minimization programs and techniques, and sludge treatment.

  2. Metal cleaner poisoning

    MedlinePlus

    Metal cleaners are very strong chemical products that contain acids. This article discusses poisoning from swallowing or ... Metal cleaners contain organic compounds called hydrocarbons, including: 1,2-butylene oxide Boric acid Cocoyl sarcosine Dicarboxylic ...

  3. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, Jr., Paul E.; Lyons, James E.

    1994-01-01

    As a new composition of matter, alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  4. The Low Metallicity ISM

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2013-04-01

    We present the results from our cosmological simulations of the low metallicity ISM. The first generation of stars in the universe synthesized the first metal during their stellar evolution. Later, the newly forged metal was dispersed to the primordial gas through supernova explosions and formed into the low metallicity ISM. We use cosmological simulations considering the relevant physical processes of early universe to study the formation of low metallicity ISM. For better modeling the physical and chemical properties of the low metallicity ISM, we apply the realistic stellar feedback by using updated stellar models of the first stars and supernovae in our cosmological simulations. Our simulations take the initial conditions from the WMAP data, evolve through the birth of the first ever star and its supernova, until the low metallicity ISM formed. We will discuss the chemical enrichment inside the low metallicity environment and its relation to the later star formation.

  5. Economic Geology (Metals)

    ERIC Educational Resources Information Center

    Gair, Jacob E.

    1972-01-01

    Reviews metalliferous ore-deposit research reported in 1971. Research was dominated by isotopic studies, and worldwide metals exploration was marked by announcements of important new discoveries of base metals, iron ore, nickel, titanium, and uranium. (Author/PR)

  6. Economic Geology (Metals)

    ERIC Educational Resources Information Center

    Gair, Jacob E.

    1972-01-01

    Reviews metalliferous ore-deposit research reported in 1971. Research was dominated by isotopic studies, and worldwide metals exploration was marked by announcements of important new discoveries of base metals, iron ore, nickel, titanium, and uranium. (Author/PR)

  7. Metal phthalocyanine catalysts

    DOEpatents

    Ellis, P.E. Jr.; Lyons, J.E.

    1994-10-11

    A new composition of matter is described which is an alkali metal or ammonium or tetraalkylammonium diazidoperfluorophthalocyanatoferrate. Other embodiments of the invention comprise compositions wherein the metal of the coordination complex is cobalt, manganese and chromium.

  8. Nanochemistry of metals

    NASA Astrophysics Data System (ADS)

    Sergeev, Gleb B.

    2001-10-01

    The results of studies on the nanochemistry of metals published in recent years are generalised. Primary attention is centred on the methods for the synthesis of nanoparticles and their chemical reactions. The means of stabilisation of nanoparticles which involve individual metals and incorporate atoms of several metals are considered as well as their physicochemical properties. Self-assembling processes of nanoparticles are described. The prospects of using metal nanoparticles in semiconductor devices, catalysis, biology and medicine are discussed. The bibliography includes 165 references.

  9. Metal Sensing by DNA.

    PubMed

    Zhou, Wenhu; Saran, Runjhun; Liu, Juewen

    2017-06-28

    Metal ions are essential to many chemical, biological, and environmental processes. In the past two decades, many DNA-based metal sensors have emerged. While the main biological role of DNA is to store genetic information, its chemical structure is ideal for metal binding via both the phosphate backbone and nucleobases. DNA is highly stable, cost-effective, easy to modify, and amenable to combinatorial selection. Two main classes of functional DNA were developed for metal sensing: aptamers and DNAzymes. While a few metal binding aptamers are known, it is generally quite difficult to isolate such aptamers. On the other hand, DNAzymes are powerful tools for metal sensing since they are selected based on catalytic activity, thus bypassing the need for metal immobilization. In the last five years, a new surge of development has been made on isolating new metal-sensing DNA sequences. To date, many important metals can be selectively detected by DNA often down to the low parts-per-billion level. Herein, each metal ion and the known DNA sequences for its sensing are reviewed. We focus on the fundamental aspect of metal binding, emphasizing the distinct chemical property of each metal. Instead of reviewing each published sensor, a high-level summary of signaling methods is made as a separate section. In principle, each signaling strategy can be applied to many DNA sequences for designing sensors. Finally, a few specific applications are highlighted, and future research opportunities are discussed.

  10. Double metalization for VLSI

    NASA Technical Reports Server (NTRS)

    Trotter, J. D.; Wade, T. E.

    1980-01-01

    Postsintering process increases yield of double-layer metal conductors to almost 100 percent. When wafers containing double-metalized chips are sintered, metal layers react with oxide film remaining in insulation layer holes, breaking it up so that it no longer impedes electric current. Cooling also mechanically disrupts oxide film.

  11. Durable metallized polymer mirror

    DOEpatents

    Schissel, Paul O.; Kennedy, Cheryl E.; Jorgensen, Gary J.; Shinton, Yvonne D.; Goggin, Rita M.

    1994-01-01

    A metallized polymer mirror construction having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate.

  12. Durable metallized polymer mirror

    DOEpatents

    Schissel, P.O.; Kennedy, C.E.; Jorgensen, G.J.; Shinton, Y.D.; Goggin, R.M.

    1994-11-01

    A metallized polymer mirror construction is disclosed having improved durability against delamination and tunneling, comprising: an outer layer of polymeric material; a metal oxide layer underlying the outer layer of polymeric material; a silver reflective layer underneath the metal oxide layer; and a layer of adhesive attaching the silver layer to a substrate. 6 figs.

  13. Metal etching composition

    NASA Technical Reports Server (NTRS)

    Otousa, Joseph E. (Inventor); Thomas, Clark S. (Inventor); Foster, Robert E. (Inventor)

    1991-01-01

    The present invention is directed to a chemical etching composition for etching metals or metallic alloys. The composition includes a solution of hydrochloric acid, phosphoric acid, ethylene glycol, and an oxidizing agent. The etching composition is particularly useful for etching metal surfaces in preparation for subsequent fluorescent penetrant inspection.

  14. PRODUCTION OF METALS

    DOEpatents

    Spedding, F.H.; Wilhelm, H.A.; Keller, W.H.

    1961-09-19

    A process is described producing metallic thorium, titanium, zirconium, or hafnium from the fluoride. In the process, the fluoride is reduced with alkali or alkaline earth metal and a booster compound (e.g. iodine or a decomposable oxysalt) in a sealed bomb at superatmospheric pressure and a temperature above the melting point of the metal to be produced.

  15. Liquid metal cold trap

    DOEpatents

    Hundal, Rolv

    1976-01-01

    A cold trap assembly for removing impurities from a liquid metal being provided with a hole between the incoming impure liquid metal and purified outgoing liquid metal which acts as a continuous bleed means and thus prevents the accumulation of cover gases within the cold trap assembly.

  16. Electrolytic purification of metals

    DOEpatents

    Bowman, Kenneth A.

    1980-01-01

    A method of electrolytically separating metal from impurities comprises providing the metal and impurities in a molten state in a container having a porous membrane therein, the membrane having a thickness in the range of about 0.01 to 0.1 inch, being capable of containing the molten metal in the container, and being permeable by a molten electrolyte. The metal is electrolytically transferred through the membrane to a cathode in the presence of the electrolyte for purposes of separating or removing impurities from the metal.

  17. Silica Embedded Metal Hydrides

    SciTech Connect

    Heung, L.K.; Wicks, G.G.

    1998-08-01

    A method to produce silica embedded metal hydride was developed. The product is a composite in which metal hydride particles are embedded in a matrix of silica. The silica matrix is highly porous. Hydrogen gas can easily reach the embedded metal hydride particles. The pores are small so that the metal hydride particles cannot leave the matrix. The porous matrix also protects the metal hydride particles from larger and reactive molecules such as oxygen, since the larger gas molecules cannot pass through the small pores easily. Tests show that granules of this composite can absorb hydrogen readily and withstand many cycles without making fines.

  18. Metals and Breast Cancer

    PubMed Central

    Byrne, Celia; Divekar, Shailaja D.; Storchan, Geoffrey B.; Parodi, Daniela A.; Martin, Mary Beth

    2014-01-01

    Metalloestrogens are metals that activate the estrogen receptor in the absence of estradiol. The metalloestrogens fall into two subclasses: metal/metalloid anions and bivalent cationic metals. The metal/metalloid anions include compounds such as arsenite, nitrite, selenite, and vanadate while the bivalent cations include metals such as cadmium, calcium, cobalt, copper, nickel, chromium, lead, mercury, and tin. The best studied metalloestrogen is cadmium. It is a heavy metal and a prevalent environmental contaminant with no known physiological function. This review addresses our current understanding of the mechanism by which cadmium and the bivalent cationic metals activate estrogen receptor-α. The review also summarizes the in vitro and in vivo evidence that cadmium functions as an estrogen and the potential role of cadmium in breast cancer. PMID:23338949

  19. Metal pad instabilities in liquid metal batteries

    NASA Astrophysics Data System (ADS)

    Zikanov, Oleg

    2016-11-01

    Strong variations between the electrical conductivities of electrolyte and metal layers in a liquid metal battery indicate the possibility of 'metal pad' instabilities. Deformations of the electrolyte-metal interfaces cause strong perturbations of electric currents, which, hypothetically, can generate Lorentz forces enhancing the deformations. We investigate this possibility using two models: a mechanical analogy and a two-dimensional linearized approximation. It is found that the battery is prone to instabilities of two types. One is similar to the sloshing-wave instability observed in the Hall-Héroult aluminum reduction cells. Another is new and related to the interactions of current perturbations with the azimuthal magnetic field induced by the base current. Financial support was provided by the U.S. National Science Foundation (Grant CBET 1435269).

  20. Molecularly doped metals.

    PubMed

    Avnir, David

    2014-02-18

    The many millions of organic, inorganic, and bioorganic molecules represent a very rich library of chemical, biological, and physical properties that do not show up among the approximately 100 metals. The ability to imbue metals with any of these molecular properties would open up tremendous potential for the development of new materials. In addition to their traditional features and their traditional applications, metals would have new traits, which would merge their classical virtues such as conductivity and catalytic activity with the diverse properties of these molecules. In this Account, we describe a new materials methodology, which enables, for the first time, the incorporation and entrapment of small organic molecules, polymers, and biomolecules within metals. These new materials are denoted dopant@metal. The creation of dopant@metal yields new properties that are more than or different from the sum of the individual properties of the two components. So far we have developed methods for the doping of silver, copper, gold, iron, palladium, platinum, and some of their alloys, as well as Hg-Ag amalgams. We have successfully altered classical metal properties (such as conductivity), induced unorthodox properties (such as rendering a metal acidic or basic), used metals as heterogeneous matrices for homogeneous catalysts, and formed new metallic catalysts such as metals doped with organometallic complexes. In addition, we have created materials that straddle the border between polymers and metals, we have entrapped enzymes to form bioactive metals, we have induced chirality within metals, we have made corrosion-resistant iron, we formed efficient biocidal materials, and we demonstrated a new concept for batteries. We have developed a variety of methods for synthesizing dopant@metals including aqueous homogeneous and heterogeneous reductions of the metal cations, reductions in DMF, electrochemical entrapments, thermal decompositions of zerovalent metal carbonyls

  1. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, L.T.

    1987-03-20

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  2. Extraction process for removing metallic impurities from alkalide metals

    DOEpatents

    Royer, Lamar T.

    1988-01-01

    A development is described for removing metallic impurities from alkali metals by employing an extraction process wherein the metallic impurities are extracted from a molten alkali metal into molten lithium metal due to the immiscibility of the alkali metals in lithium and the miscibility of the metallic contaminants or impurities in the lithium. The purified alkali metal may be readily separated from the contaminant-containing lithium metal by simple decanting due to the differences in densities and melting temperatures of the alkali metals as compared to lithium.

  3. Circular Metal/Semiconductor/Metal Photodetectors

    NASA Technical Reports Server (NTRS)

    Mcadoo, James A.; Towe, Elias; Bishop, William L.; Wang, Liang-Guo

    1995-01-01

    Metal/semiconductor/metal (MSM) photodetectors with multiple concentric circular electrodes developed. Some electrical characteristics expected superior to those of older MSM photodetectors containing interdigitated straight electrodes. Response times smaller and shorter, and breakdown voltages larger. Decrease in capacitance allows greater signal-detection bandwidth. Important advantage in fiber-optic telecommunication systems, in which photodectors central components in receiver circuits. Increasing bandwidth of such photodetector enables receiver to handle larger number of channels or increased information rate in each channel.

  4. FORMING PROTECTIVE FILMS ON METAL

    DOEpatents

    Gurinsky, D.H.; Kammerer, O.F.; Sadofsky, J.; Weeks, J.R.

    1958-12-16

    Methods are described of inhibiting the corrosion of ferrous metal by contact with heavy liquid metals such as bismuth and gallium at temperatures above 500 icient laborato C generally by bringing nltrogen and either the metal zirconium, hafnium, or titanium into reactlve contact with the ferrous metal to form a thin adherent layer of the nitride of the metal and thereafter maintaining a fractional percentage of the metal absorbed in the heavy liquid metal in contact with the ferrous metal container. The general purpose for uslng such high boiling liquid metals in ferrous contalners would be as heat transfer agents in liquid-metal-fueled nuclear reactors.

  5. Closed cell metal foam method

    DOEpatents

    Patten, James W.

    1978-01-01

    Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.

  6. Metal and cofactor insertion.

    PubMed

    Mendel, Ralf R; Smith, Alison G; Marquet, Andree; Warren, Martin J

    2007-10-01

    Cells require metal ions as cofactors for the assembly of metalloproteins. Principally one has to distinguish between metal ions that are directly incorporated into their cognate sites on proteins and those metal ions that have to become part of prosthetic groups, cofactors or complexes prior to insertion of theses moieties into target proteins. Molybdenum is only active as part of the molybdenum cofactor, iron can be part of diverse Fe-S clusters or of the heme group, while copper ions are directly delivered to their targets. We will focus in greater detail on molybdenum metabolism because molybdenum metabolism is a good example for demonstrating the role and the network of metals in metabolism: each of the three steps in the pathway of molybdenum cofactor formation depends on a different metal (iron, copper, molybdenum) and also the enzymes finally harbouring the molybdenum cofactor need additional metal-containing groups to function (iron sulfur-clusters, heme-iron).

  7. Light metal production

    DOEpatents

    Fan, Qinbai

    2016-04-19

    An electrochemical process for the production of light metals, particularly aluminum. Such a process involves contacting a light metal source material with an inorganic acid to form a solution containing the light metal ions in high concentration. The solution is fed to an electrochemical reactor assembly having an anode side containing an anode and a cathode side containing a cathode, with anode side and the cathode side separated by a bipolar membrane, with the solution being fed to the anode side. Light metal ions are electrochemically transferred through the bipolar membrane to the cathode side. The process further involves reducing the light metal ions to light metal powder. An associated processing system is also provided.

  8. Metal Foam Shields

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2006-01-01

    This paper compares the ballistic performance of metallic foam sandwich structures with honeycomb structures. Honeycomb sandwich structures, consisting of metallic or composite facesheets and honeycomb cores, are often used in spacecraft construction due to their light-weight and structural stiffness. Honeycomb panels, however, are considered rather poor candidates for protection from micrometeoroid orbital debris (MMOD) particles because the honeycomb channels the debris cloud from MMOD impacts on outer facesheet causing a concentrated load on the second facesheet. Sandwich structures with light-weight, open-cell metallic cores and metal or composite facesheets provide improved MMOD protection because channeling does not occur and because the core is more effective at disrupting hypervelocity impacts then honeycomb. This paper describes hypervelocity impact tests on metallic foam sandwich structures (aluminum and titanium) with metallic facesheets, compare them to equivalent mass and thickness honeycomb panels, based on the results of hypervelocity impact tests.

  9. Metal atomization spray nozzle

    DOEpatents

    Huxford, Theodore J.

    1993-01-01

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal.

  10. Supported metal alloy catalysts

    DOEpatents

    Barrera, Joseph; Smith, David C.

    2000-01-01

    A process of preparing a Group IV, V, or VI metal carbonitride including reacting a Group IV, V, or VI metal amide complex with ammonia to obtain an intermediate product; and, heating the intermediate product to temperatures and for times sufficient to form a Group IV, V, or VI metal carbonitride is provided together with the product of the process and a process of reforming an n-alkane by use of the product.

  11. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides. (auth)

  12. Metal atom oxidation laser

    DOEpatents

    Jensen, R.J.; Rice, W.W.; Beattie, W.H.

    1975-10-28

    A chemical laser which operates by formation of metal or carbon atoms and reaction of such atoms with a gaseous oxidizer in an optical resonant cavity is described. The lasing species are diatomic or polyatomic in nature and are readily produced by exchange or other abstraction reactions between the metal or carbon atoms and the oxidizer. The lasing molecules may be metal or carbon monohalides or monoxides.

  13. Metal atomization spray nozzle

    DOEpatents

    Huxford, T.J.

    1993-11-16

    A spray nozzle for a magnetohydrodynamic atomization apparatus has a feed passage for molten metal and a pair of spray electrodes mounted in the feed passage. The electrodes, diverging surfaces which define a nozzle throat and diverge at an acute angle from the throat. Current passes through molten metal when fed through the throat which creates the Lorentz force necessary to provide atomization of the molten metal. 6 figures.

  14. Method of producing homogeneous mixed metal oxides and metal-metal oxide mixtures

    DOEpatents

    Quinby, Thomas C.

    1978-01-01

    Metal powders, metal oxide powders, and mixtures thereof of controlled particle size are provided by reacting an aqueous solution containing dissolved metal values with excess urea. Upon heating, urea reacts with water from the solution leaving a molten urea solution containing the metal values. The molten urea solution is heated to above about 180.degree. C. whereupon metal values precipitate homogeneously as a powder. The powder is reduced to metal or calcined to form oxide particles. One or more metal oxides in a mixture can be selectively reduced to produce metal particles or a mixture of metal and metal oxide particles.

  15. Metallic fuel safety assessment

    SciTech Connect

    Bauer, T. H.; Cahalan, J. E.; Dunn, F. E.; Fenske, G. R.; Gabor, J. D.; Gruber, E. E.; Hughes, T. H.; Kalimullah, none; Kramer, J. M.; Miles, K. J.; Pedersen, D. R.; Spencer, B. W.; Tentner, A. M.; Tilbrook, R. W.; Wright, A. E.

    1989-02-01

    A survey of experimental and analytical results from the Integral Fast Reactor (IFR) safety program are presented, with a focus on metallic fuel safety performance. Experimental results from laboratory and in-pile tests are reviewed. Models of metallic fuel behavior for prediction of performance in reactor transients and accidents are summarized. Analyses of metallic fuel response in design basis accidents and anticipated transients without scram are presented. The experimental and analytical databases demonstrate the superior safety performance of metallic fuel in IFR design concepts.

  16. Light metals 1996

    SciTech Connect

    Hale, W.

    1996-10-01

    Light Metals 1996 presents the proceedings of the technical sessions of the TMS Light Metals Committee at the 125th TMS Annual Meeting held in Anaheim, California, February 4--8, 1996. Developments and innovation in the aluminum and reactive metals industries were covered including basic studies as well as their use and fabrication. The topics encompassed ore and its processing, aluminum reduction, carbon technology, casting technology, recycling, reactive metals, separation processes and waste processing. A number of papers involved mathematical modeling while others were about equipment and applications. One hundred and seventy nine papers were processed separately for inclusion on the data base.

  17. Virus templated metallic nanoparticles.

    PubMed

    Aljabali, Alaa A A; Barclay, J Elaine; Lomonossoff, George P; Evans, David J

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. ≤35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.

  18. Metal Contacts on Semiconductors.

    DTIC Science & Technology

    1987-04-01

    alkali metal Na. The transition metals are all highly reactive with clean InP, and give a range of Schottky barriers between ohmic and 0.4 eV. We have...also investigated Schottky barriers for thick films of these metals deposited on clean cleaved (110) InP, surfaces, by I-V and C-V technLqueSg) This...interesting case. When deposited on clean GaAs (110) surfaces it yields a Schottky barrier height comparable with those for metals such as A, Ni, Ap and Au

  19. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides

    NASA Astrophysics Data System (ADS)

    Das, Raja; Pachfule, Pradip; Banerjee, Rahul; Poddar, Pankaj

    2012-01-01

    Herein, for the first time, we report a generalized strategy for the successful synthesis of highly crystalline metal and metal oxide nanoparticles embedded in a carbon matrix by the controlled thermolysis of metal organic frameworks (MOFs). The rationalized synthesis strategy of a broad range of metal and metal oxides nanoparticles, such as Cu/CuO, Co/Co3O4, ZnO, Mn2O3, MgO and CdS/CdO, by thermolysis of MOFs demonstrates for the first time that metal ions with a reduction potential of -0.27 volts or higher present in MOFs always form pure metal nanoparticles during thermolysis in N2, whereas metal ions with a reduction potential lower than -0.27 volts form metal oxide nanoparticles during thermolysis in N2. Another point of interest is the fact that we have found a unique relationship between the nanoparticle size and the distance between the secondary building units inside the MOF precursors. Interestingly, the crystallinity of the carbon matrix was also found to be greatly influenced by the environment (N2 and air) during thermolysis. Moreover, these nanoparticles dispersed in a carbon matrix showed promising H2 and CO2 adsorption properties depending on the environment used for the thermolysis of MOFs.Herein, for the first time, we report a generalized strategy for the successful synthesis of highly crystalline metal and metal oxide nanoparticles embedded in a carbon matrix by the controlled thermolysis of metal organic frameworks (MOFs). The rationalized synthesis strategy of a broad range of metal and metal oxides nanoparticles, such as Cu/CuO, Co/Co3O4, ZnO, Mn2O3, MgO and CdS/CdO, by thermolysis of MOFs demonstrates for the first time that metal ions with a reduction potential of -0.27 volts or higher present in MOFs always form pure metal nanoparticles during thermolysis in N2, whereas metal ions with a reduction potential lower than -0.27 volts form metal oxide nanoparticles during thermolysis in N2. Another point of interest is the fact that we have

  20. Metal-on-Metal Hip Resurfacing Arthroplasty

    PubMed Central

    Sehatzadeh, S; Kaulback, K; Levin, L

    2012-01-01

    Background Metal-on-metal (MOM) hip resurfacing arthroplasty (HRA) is in clinical use as an appropriate alternative to total hip arthroplasty in young patients. In this technique, a metal cap is placed on the femoral head to cover the damaged surface of the bone and a metal cup is placed in the acetabulum. Objectives The primary objective of this analysis was to compare the revision rates of MOM HRA using different implants with the benchmark set by the National Institute of Clinical Excellence (NICE). The secondary objective of this analysis was to review the literature regarding adverse biological effects associated with implant material. Review Methods A literature search was performed on February 13, 2012, to identify studies published from January 1, 2009, to February 13, 2012. Results The revision rates for MOM HRA using 6 different implants were reviewed. The revision rates for MOM HRA with 3 implants met the NICE criteria, i.e., a revision rate of 10% or less at 10 years. Two implants had short-term follow-ups and MOM HRA with one of the implants failed to meet the NICE criteria. Adverse tissue reactions resulting in failure of the implants have been reported by several studies. With a better understanding of the factors that influence the wear rate of the implants, adverse tissue reactions and subsequent implant failure can be minimized. Many authors have suggested that patient selection and surgical technique affect the wear rate and the risk of tissue reactions. The biological effects of high metal ion levels in the blood and urine of patients with MOM HRA implants are not known. Studies have shown an increase in chromosomal aberrations in patients with MOM articulations, but the clinical implications and long-term consequences of this increase are still unknown. Epidemiological studies have shown that patients with MOM HRA implants did not have an overall increase in mortality or risk of cancer. There is insufficient clinical data to confirm the

  1. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  2. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  3. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  4. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  5. 21 CFR 888.3640 - Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Shoulder joint metal/metal or metal/polymer... § 888.3640 Shoulder joint metal/metal or metal/polymer constrained cemented prosthesis. (a) Identification. A shoulder joint metal/metal or metal/polymer constrained cemented prosthesis is a...

  6. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  7. Porous metallic bodies

    DOEpatents

    Landingham, R.L.

    1984-03-13

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides a

  8. Triad ''Metal - Enamel - Glass''

    NASA Astrophysics Data System (ADS)

    Mukhina, T.; Petrova, S.; Toporova, V.; Fedyaeva, T.

    2014-10-01

    This article shows how to change the color of metal and glass. Both these materials are self-sufficient, but sometimes used together. For example, enameling. In this case, the adhesion between metal substrate and stekloobraznae enamel layer, which was conducted on a stretching and a bend, was tested.

  9. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  10. Metallized polymeric foam material

    NASA Technical Reports Server (NTRS)

    Birnbaum, B. A.; Bilow, N.

    1974-01-01

    Open-celled polyurethane foams can be coated uniformly with thin film of metal by vapor deposition of aluminum or by sensitization of foam followed by electroless deposition of nickel or copper. Foam can be further processed to increase thickness of metal overcoat to impart rigidity or to provide inert surface with only modest increase in weight.

  11. METAL SURFACE TREATMENT

    DOEpatents

    Eubank, L.D.

    1958-08-12

    Improved flux baths are described for use in conjunction with hot dipped coatings for uranium. The flux bath consists of molten alkali metal, or alkaline earth metal halides. One preferred embodiment comprises a bath containing molten KCl, NaCl, and LiCl in proportions approximating the triple eutectic.

  12. Thermodynamics of liquid metal

    SciTech Connect

    Kushnirenko, A.N.

    1988-01-01

    The thermodynamics of a liquid metal based on quantum-mechanical models of the crystal, electronic, and nuclear structures of the metal are derived in this paper. The models are based on such formulations as the Bohr radius, the Boltzmann constant, the Planck Law, the Fermi surface, and the Pauli principle.

  13. Metals Fact Sheet: Yttrium

    SciTech Connect

    1992-09-01

    Yttrium is a metallic element usually included among the rare earth metals, which it resembles chemically and with which it usually occurs in minerals. Yttrium was named after the village of Ytterby in Sweden---the element was discovered in a quarry near the village. This article discusses sources of the element, the world market for the element, and various applications of the material.

  14. Metals fact sheet: Ruthenium

    SciTech Connect

    1996-06-01

    Ruthenium, named after Ruthenia, a province in Western Russia, was discovered in 1827 by Osann in placer ores from Russia`s Ural mountains. A minor platinum group metal (PGM), Ruthenium was the last of the PGMs to be isolated. In 1844, Klaus prepared the first 6 grams of pure ruthenium metal.

  15. Metal-dielectric interactions

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1979-01-01

    Metal direlectric surface interactions and dielectric films on metal substrates were investigated. Since interfacial interaction depends so heavily on the nature of the surfaces, analytical surface tools such as Auger emission spectroscopy, X-ray photoelectron spectroscopy and field ion microscopy were used to assist in surface and interfacial characterization. The results indicate that with metals contacting certain glasses in the clean state interfacial, bonding produces fractures in the glasses while when a film such as water is present, fractures occur in the metal near the interface. Friction forces were used to measure the interfacial bond strengths. Studies with metals contacting polymers using field ion microscopy revealed that strong bonding forces could develop being between a metal and polymer surface with polymer transferring to the metal surface in various ways depending upon the forces applied to the surface in contact. With the deposition of refractory carbides, silicides and borides onto metal and alloy substrates the presence of oxides at the interface or active gases in the deposition plasma were shown to alter interfacial properties and chemistry. Auger ion depth profile analysis indicated the chemical composition at the interface and this could be related to the mechanical, friction, and wear behavior of the coating.

  16. Brazing Dissimilar Metals

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Wisner, Daniel L.

    1996-01-01

    Brazing effective technique for joining ordinary structural metals to brittle, low-thermal-expansion refractory metals. Specifically, brazing process established for joining copper or nickel flanges to ends of vacuum-plasma-sprayed tungsten tubes and for joining stainless-steel flanges to ends of tubes made of alloy of molybdenum with 40 percent of rhenium.

  17. Biosorption of heavy metals

    SciTech Connect

    Volesky, B. |; Holan, Z.R.

    1995-05-01

    Only within the past decade has the potential of metal biosorption by biomass materials been well established. For economic reasons, of particular interest are abundant biomass types generated as a waste byproduct of large-scale industrial fermentations or certain metal-binding algae found in large quantities in the sea. These biomass types serve as a basis for newly developed metal biosorption processes foreseen particularly as a very competitive means for the detoxification of metal-bearing industrial effluents. The assessment of the metal-building capacity of some new biosorbents is discussed. Lead and cadmium, for instance, have been effectively removed from very dilute solutions by the dried biomass of some ubiquitous species of brown marine algae such as Ascophyllum and Sargassum, which accumulate more than 30% of biomass dry weight in the metal. Mycelia of the industrial steroid-transforming fungi Rhizopus and Absidia are excellent biosorbents for lead, cadmium, copper, zinc, and uranium and also bind other heavy metals up to 25% of the biomass dry weight. Biosorption isotherm curves, derived from equilibrium batch sorption experiments, are used in the evaluation of metal uptake by different biosorbents. Further studies are focusing on the assessment of biosorbent performance in dynamic continuous-flow sorption systems. In the course of this work, new methodologies are being developed that are aimed at mathematical modeling of biosorption systems and their effective optimization. 115 refs., 7 figs., 3 tabs.

  18. Brazing Dissimilar Metals

    NASA Technical Reports Server (NTRS)

    Krotz, Phillip D.; Davis, William M.; Wisner, Daniel L.

    1996-01-01

    Brazing effective technique for joining ordinary structural metals to brittle, low-thermal-expansion refractory metals. Specifically, brazing process established for joining copper or nickel flanges to ends of vacuum-plasma-sprayed tungsten tubes and for joining stainless-steel flanges to ends of tubes made of alloy of molybdenum with 40 percent of rhenium.

  19. Four Versatile Metal Reactions.

    ERIC Educational Resources Information Center

    Hearn, Barbara C.

    1988-01-01

    Presents several strategies to teach the reactivity of metal elements. Stresses the safety aspects of these demonstrations using an overhead projector and a plexiglass safety shield. Lists some of the essential learnings desired in these activities. Includes a chart of the activity series of metals. (CW)

  20. Virus templated metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Lomonossoff, George P.; Evans, David J.

    2010-12-01

    Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron.Plant viruses are considered as nanobuilding blocks that can be used as synthons or templates for novel materials. Cowpea mosaic virus (CPMV) particles have been shown to template the fabrication of metallic nanoparticles by an electroless deposition metallization process. Palladium ions were electrostatically bound to the virus capsid and, when reduced, acted as nucleation sites for the subsequent metal deposition from solution. The method, although simple, produced highly monodisperse metallic nanoparticles with a diameter of ca. <=35 nm. CPMV-templated particles were prepared with cobalt, nickel, iron, platinum, cobalt-platinum and nickel-iron. Electronic supplementary information (ESI) available: Additional experimental detail, agarose gel electrophoresis results, energy dispersive X-ray spectra, ζ-potential measurements, dynamic light scattering data, nanoparticle tracking analysis and an atomic force microscopy image of Ni-CPMV. See DOI: 10.1039/c0nr00525h

  1. Liquid metal hydrogen barriers

    DOEpatents

    Grover, George M.; Frank, Thurman G.; Keddy, Edward S.

    1976-01-01

    Hydrogen barriers which comprise liquid metals in which the solubility of hydrogen is low and which have good thermal conductivities at operating temperatures of interest. Such barriers are useful in nuclear fuel elements containing a metal hydride moderator which has a substantial hydrogen dissociation pressure at reactor operating temperatures.

  2. Metals and Neurodegeneration

    PubMed Central

    Chen, Pan; Miah, Mahfuzur Rahman; Aschner, Michael

    2016-01-01

    Metals play important roles in the human body, maintaining cell structure and regulating gene expression, neurotransmission, and antioxidant response, to name a few. However, excessive metal accumulation in the nervous system may be toxic, inducing oxidative stress, disrupting mitochondrial function, and impairing the activity of numerous enzymes. Damage caused by metal accumulation may result in permanent injuries, including severe neurological disorders. Epidemiological and clinical studies have shown a strong correlation between aberrant metal exposure and a number of neurological diseases, including Alzheimer’s disease, amyotrophic lateral sclerosis, autism spectrum disorders, Guillain–Barré disease, Gulf War syndrome, Huntington’s disease, multiple sclerosis, Parkinson’s disease, and Wilson’s disease. Here, we briefly survey the literature relating to the role of metals in neurodegeneration. PMID:27006759

  3. Chelation in Metal Intoxication

    PubMed Central

    Flora, Swaran J.S.; Pachauri, Vidhu

    2010-01-01

    Chelation therapy is the preferred medical treatment for reducing the toxic effects of metals. Chelating agents are capable of binding to toxic metal ions to form complex structures which are easily excreted from the body removing them from intracellular or extracellular spaces. 2,3-Dimercaprol has long been the mainstay of chelation therapy for lead or arsenic poisoning, however its serious side effects have led researchers to develop less toxic analogues. Hydrophilic chelators like meso-2,3-dimercaptosuccinic acid effectively promote renal metal excretion, but their ability to access intracellular metals is weak. Newer strategies to address these drawbacks like combination therapy (use of structurally different chelating agents) or co-administration of antioxidants have been reported recently. In this review we provide an update of the existing chelating agents and the various strategies available for the treatment of heavy metals and metalloid intoxications. PMID:20717537

  4. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2010-02-23

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention further relates to a process for production of magnesium metal or a magnesium compound where an external source of carbon dioxide is not used in any of the reactions of the process. The invention also relates to the magnesium metal produced by the processes described herein.

  5. Metallic field effect transistors

    NASA Astrophysics Data System (ADS)

    Farooq, Hassan

    This thesis investigates the principle of operation behind metallic-field effect transistors (METFETs) through a systematic study of atomistic simulations performed on metallic bulk, nanowire and transistor structures. In particular, density functional theory (DFT) and non-equilibrium green's function (NEGF) based models were used to study the effect on the bandstructure and density of states of highly scaled metallic nanowires with varying parameters such as crystal orientation, cross-sectional area, and applied external bias. Similarly, the effect of varying similar parameters on the transfer and output characteristics of highly scaled metallic transistors was studied. Furthermore, oxide interfaces with metallic channels were investigated. The simulation results show that a gold METFET in the [100] crystal orientation has an I ON /IOFF ratio of 41, ION of 29.5microA and fT of 6.7THz, outperforming similarly sized MOSFETs as a promising alternative for use in high-frequency circuits.

  6. The hard metal diseases

    SciTech Connect

    Cugell, D.W. )

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure.66 references.

  7. The hard metal diseases.

    PubMed

    Cugell, D W

    1992-06-01

    Hard metal is a mixture of tungsten carbide and cobalt, to which small amounts of other metals may be added. It is widely used for industrial purposes whenever extreme hardness and high temperature resistance are needed, such as for cutting tools, oil well drilling bits, and jet engine exhaust ports. Cobalt is the component of hard metal that can be a health hazard. Respiratory diseases occur in workers exposed to cobalt--either in the production of hard metal, from machining hard metal parts, or from other sources. Adverse pulmonary reactions include asthma, hypersensitivity pneumonitis, and interstitial fibrosis. A peculiar, almost unique form of lung fibrosis, giant cell interstitial pneumonia, is closely linked with cobalt exposure.

  8. Metastable solid metallic hydrogen

    SciTech Connect

    Nellis, W. J.

    1999-04-01

    Hydrogen reaches the mimimum electrical conductivity of a metal at 140 GPa (1.4 Mbar), 0.6 g/cm3 (ninefold compression of initial liquid-H2 density), and 3000 K in the fluid phase. The quest for metallic hydrogen over the past 100 years is reviewed briefly. Possible scientific and technological uses of metastable solid metallic hydrogen (MSMH) are speculated upon in the unlikely event that the metallic fluid can be quenched to MSMH at ambient pressure and temperature: a quantum, metallic solid with novel physical properties, including room-temperature superconductivity; a very light-weight structural material; a fuel, propellant, and explosive, depending on the rate of release of stored energy; a dense fuel for higher energy yields in inertial confinement fusion; and an aid in the synthesis of novel hard materials. Some of the formidable difficulties to synthesize MSMH are discussed.

  9. Preparation of metallic californium

    SciTech Connect

    Radchenko, V.M.; Seleznev, A.G.; Droznik, R.R.; Iebedeva, L.S.; Ryabinin, M.A.; Shushakov, V.D.; Vasil'ev, V.Ya.; Ermishev, V.T.

    1987-03-01

    A sample of metallic californium-249 with a mass of 710 ..mu..g was obtained in the form of a layer with a thickness of 2.4 +/- 0.3 ..mu..m on a quartz support. The overall yield of the vaporized metal was 84% of the starting amount of californium, and the yield of the metal on the support was 46%. It was established that metallic californium has a double hexagonal close-packed (hcp) structure of the ..cap alpha..-La type with the following parameters: a = 0.3380 +/- 0.0002, c = 1.1025 +/- 0.0002, c/2a = 1.631 +/- 0.001 nm, metallic radius 0.1689 +/- 0.0002 nm, and x-ray density 15.18 +/- 0.02 g/cm/sup 3/.

  10. Metallization of electronic insulators

    DOEpatents

    Gottesfeld, Shimshon; Uribe, Francisco A.

    1994-01-01

    An electroplated element is formed to include an insulating substrate, a conducting polymer polymerized in situ on the substrate, and a metal layer deposited on the conducting polymer. In one application a circuit board is formed by polymerizing pyrrole on an epoxy-fiberglass substrate in a single step process and then electrodepositing a metal over the resulting polypyrrole polymer. No chemical deposition of the metal is required prior to electroplating and the resulting layer of substrate-polymer-metal has excellent adhesion characteristics. The metal deposition is surprisingly smooth and uniform over the relatively high resistance film of polypyrrole. A continuous manufacturing process is obtained by filtering the solution between successive substrates to remove polymer formed in the solution, by maintaining the solution oxidizing potential within selected limits, and by adding a strong oxidant, such as KMnO.sub.4 at periodic intervals to maintain a low sheet resistivity in the resulting conducting polymer film.

  11. Metal Alkoxides - Models for Metal Oxides.

    DTIC Science & Technology

    1982-07-29

    metal bonded adaptations of the well known hollandite structure and closely -elated to the cluster found for CsNbCi1 1 . Triangulo Mo3 and W3 units are... triangulo complex- es as is shown in Figure 2. In both cases, the molybdenum atoms are surrounded by six oxygen ligands in a distorted octahedral manner

  12. Metals and metal compounds in cancer treatment.

    PubMed

    Desoize, Bernard

    2004-01-01

    Metals and metal compounds have been used in medicine for several thousands of years. In this review we summarized the anti-cancer activities of the ten most active metals: arsenic, antimony, bismuth, gold, vanadium, iron, rhodium, titanium, gallium and platinum. The first reviewed metal, arsenic, presents the anomaly of displaying anti-cancer and oncogenic properties simultaneously. Some antimony derivatives, such as Sb2O3, salt (tartrate) and organic compounds, show interesting results. Bismuth directly affects Helicobacter pylori and gastric lymphoma; the effects of bismuth complexes of 6-mercaptopurine are promising. Gold(I) and (III) compounds show anti-tumour activities, although toxicity remains high. Research into the potential use of gold derivatives is still ongoing. Several derivatives of vanadium show anti-proliferative activity, but their toxicity must be overcome. Several pieces of evidence indicate that iron deprivation could be an excellent therapeutic approach; furthermore, it is synergistic with classic anti-cancer drugs. Rhodium belongs to the same group as platinum and it also presents interesting activity, but with the same nephrotoxicity. Several rhodium compounds have entered phase I clinical trials. In contrast to the platinum complexes, titanium derivatives showed no evidence of nephrotoxicity or myelotoxicity; titanocene dichloride is undergoing clinical trial. The anti-proliferative effect of gallium could be related to its competition with the iron atom; in addition a derivative appears to reverse the multidrug resistance. The last metal reviewed, platinum, has given some of the very best anti-cancer drugs. Four derivatives are used today in the clinic; their mechanism of action and of resistance are described.

  13. Tests on Double Layer Metalization

    NASA Technical Reports Server (NTRS)

    Woo, D. S.

    1983-01-01

    28 page report describes experiments in fabrication of integrated circuits with double-layer metalization. Double-layer metalization requires much less silicon "real estate" and allows more flexibility in placement of circuit elements than does single-layer metalization.

  14. Framework for Metals Risk Assessment

    EPA Pesticide Factsheets

    The Framework for Metals Risk Assessment is a science-based document that addresses the special attributes and behaviors of metals and metal compounds to be considered when assessing their human health and ecological risks.

  15. Superconductivity in Metals and Alloys.

    DTIC Science & Technology

    LEAD(METAL), LIQUEFIED GASES, LOW TEMPERATURE RESEARCH, METAL FILMS, METALLIC SOAPS, NIOBIUM ALLOYS, PHASE STUDIES, RESISTANCE (ELECTRICAL), SAMARIUM...SYNTHESIS, TANTALUM ALLOYS, TIN, TIN ALLOYS, TRANSITION TEMPERATURE, VANADIUM ALLOYS

  16. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): finding the border of metal and metal oxides.

    PubMed

    Das, Raja; Pachfule, Pradip; Banerjee, Rahul; Poddar, Pankaj

    2012-01-21

    Herein, for the first time, we report a generalized strategy for the successful synthesis of highly crystalline metal and metal oxide nanoparticles embedded in a carbon matrix by the controlled thermolysis of metal organic frameworks (MOFs). The rationalized synthesis strategy of a broad range of metal and metal oxides nanoparticles, such as Cu/CuO, Co/Co(3)O(4), ZnO, Mn(2)O(3), MgO and CdS/CdO, by thermolysis of MOFs demonstrates for the first time that metal ions with a reduction potential of -0.27 volts or higher present in MOFs always form pure metal nanoparticles during thermolysis in N(2), whereas metal ions with a reduction potential lower than -0.27 volts form metal oxide nanoparticles during thermolysis in N(2). Another point of interest is the fact that we have found a unique relationship between the nanoparticle size and the distance between the secondary building units inside the MOF precursors. Interestingly, the crystallinity of the carbon matrix was also found to be greatly influenced by the environment (N(2) and air) during thermolysis. Moreover, these nanoparticles dispersed in a carbon matrix showed promising H(2) and CO(2) adsorption properties depending on the environment used for the thermolysis of MOFs.

  17. Method for producing metallic nanoparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-02-10

    Method for producing metallic nanoparticles. The method includes generating an aerosol of solid metallic microparticles, generating non-oxidizing plasma with a plasma hot zone at a temperature sufficiently high to vaporize the microparticles into metal vapor, and directing the aerosol into the hot zone of the plasma. The microparticles vaporize in the hot zone to metal vapor. The metal vapor is directed away from the hot zone and to the plasma afterglow where it cools and condenses to form solid metallic nanoparticles.

  18. Method for producing metallic microparticles

    DOEpatents

    Phillips, Jonathan; Perry, William L.; Kroenke, William J.

    2004-06-29

    Method for producing metallic particles. The method converts metallic nanoparticles into larger, spherical metallic particles. An aerosol of solid metallic nanoparticles and a non-oxidizing plasma having a portion sufficiently hot to melt the nanoparticles are generated. The aerosol is directed into the plasma where the metallic nanoparticles melt, collide, join, and spheroidize. The molten spherical metallic particles are directed away from the plasma and enter the afterglow where they cool and solidify.

  19. Metal nanodisks using bicellar templates

    SciTech Connect

    Song, Yujiang; Shelnutt, John A

    2013-12-03

    Metallic nanodisks and a method of making them. The metallic nanodisks are wheel-shaped structures that that provide large surface areas for catalytic applications. The metallic nanodisks are grown within bicelles (disk-like micelles) that template the growth of the metal in the form of approximately circular dendritic sheets. The zero-valent metal forming the nanodisks is formed by reduction of a metal ion using a suitable electron donor species.

  20. Method of recovering volatile metals from material containing metal oxides

    SciTech Connect

    Santen, S.

    1984-12-18

    A method of reducing and recovering volatile metal from metal oxides comprising the steps of injecting metal oxide-containing material into a shaft reactor, simultaneously injecting reducing agent into said reactor, continuously maintaining said reactor substantially filled with coke, supplying thermal energy to the reactor, preferably by means of a plasma burner, such that at least some of the metal oxides are reduced to metal and melted or volatilized depending upon whether the metal is volatile. The melted metal is removed from the bottom of the reactor while the volatilized metal is permitted to flow upwardly through the shaft reactor in the form of metal vapor together with a gas flow. The coke in the shaft reactor through which the volatilized metal passes is maintained at a temperature in excess of 1000/sup 0/ C., thus screening the upper portion of the shaft reactor and the reactor top by means of the coke so as to prevent condensation of the volatilized metal.

  1. Hydrogen interactions with metals

    NASA Technical Reports Server (NTRS)

    Mclellan, R. B.; Harkins, C. G.

    1975-01-01

    Review of the literature on the nature and extent of hydrogen interactions with metals and the role of hydrogen in metal failure. The classification of hydrogen-containing systems is discussed, including such categories as covalent hydrides, volatile hydrides, polymeric hydrides, and transition metal hydride complexes. The use of electronegativity as a correlating parameter in determining hydride type is evaluated. A detailed study is made of the thermodynamics of metal-hydrogen systems, touching upon such aspects as hydrogen solubility, the positions occupied by hydrogen atoms within the solvent metal lattice, the derivation of thermodynamic functions of solid solutions from solubility data, and the construction of statistical models for hydrogen-metal solutions. A number of theories of hydrogen-metal bonding are reviewed, including the rigid-band model, the screened-proton model, and an approach employing the augmented plane wave method to solve the one-electron energy band problem. Finally, the mechanism of hydrogen embrittlement is investigated on the basis of literature data concerning stress effects and the kinetics of hydrogen transport to critical sites.

  2. Generation of metal, metal oxide and metal-metal oxide powders by spray pyrolysis for microelectronic thick film applications

    NASA Astrophysics Data System (ADS)

    Majumdar, Diptarka

    Materials in powdered form have wide ranging applications. In thick film microelectronics, powders are dispersed in organic liquids to form pastes which are screen printed on ceramic substrates and fired to fabricate active and passive electronic devices. The functional phase is a metal powder in conductive pastes, a metal or conductive metal oxide powder in resistive pastes and a ceramic powder in dielectric pastes. Particulate additives such as glasses and metal oxides in pastes promote adhesion of conductor lines to the substrate, minimize shrinkage mismatch during cofiring of conductors and dielectrics and facilitate densification of the functional phase during firing. This dissertation focuses on the generation of metal, metal oxide and metal-metal oxide powders by spray pyrolysis for microelectronic applications. The important results of this work are outlined below. (1) This work has demonstrated the ability to synthesize phase-pure, micron-sized, spherical, unagglomerated metal (gold) and metal oxide (copper (I) oxide) particles by spray pyrolysis. (2) It has extended the versatility of spray pyrolysis as a powdermaking technique to include the synthesis of metal-metal oxide composite particles. Such particles have been generated for both wetting (silver-copper (II) oxide) and poorly wetting (silver-silica) metal-metal oxide pairs. (3) The sintering of thick films of the metal-metal oxide particles has indicated the possibility of retarding the sintering kinetics of silver by using composite particles of the metal with relatively refractory metal oxides.

  3. Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys

    DOEpatents

    Woodfield, Brian F.; Liu, Shengfeng; Boerio-Goates, Juliana; Liu, Qingyuan; Smith, Stacey Janel

    2012-07-03

    In preferred embodiments, metal nanoparticles, mixed-metal (alloy) nanoparticles, metal oxide nanoparticles and mixed-metal oxide nanoparticles are provided. According to embodiments, the nanoparticles may possess narrow size distributions and high purities. In certain preferred embodiments, methods of preparing metal nanoparticles, mixed-metal nanoparticles, metal oxide nanoparticles and mixed-metal nanoparticles are provided. These methods may provide tight control of particle size, size distribution, and oxidation state. Other preferred embodiments relate to a precursor material that may be used to form nanoparticles. In addition, products prepared from such nanoparticles are disclosed.

  4. Liquid metal drop ejection

    NASA Technical Reports Server (NTRS)

    Khuri-Yakub, B. T.

    1993-01-01

    The aim of this project was to demonstrate the possibility of ejecting liquid metals using drop on demand printing technology. The plan was to make transducers for operation in the 100 MHz frequency range and to use these transducers to demonstrate the ability to eject drops of liquid metals such as gallium. Two transducers were made by indium bonding piezoelectric lithium niobate to quartz buffer rods. The lithium niobate plates were thinned by mechanical polishing to a thickness of 37 microns for operation at 100 MHz. Hemispherical lenses were polished in the opposite ends of the buffer rods. The lenses, which focus the sound waves in the liquid metal, had an F-number equals 1. A mechanical housing was made to hold the transducers and to allow precise control over the liquid level above the lens. We started by demonstrating the ability to eject drops of water on demand. The drops of water had a diameter of 15 microns which corresponds to the wavelength of the sound wave in the water. A videotape of this ejection was made. We then used a mixture of Gallium and Indium (used to lower the melting temperature of the Gallium) to demonstrate the ejection of liquid metal drops. This proved to be difficult because of the oxide skin which forms on the surface of the liquid. In some instances, we were able to eject metal drops, however, this was not consistent and reproducible. An experiment was set up at NASA-Lewis to stabilize the process of drop on demand liquid metal ejection. The object was to place the transducer and liquid metal in a vacuum station so that no oxide would form on the surface. We were successful in demonstrating that liquid metals could be ejected on demand and that this technology could be used for making sheet metal in space.

  5. Dyeing fabrics with metals

    NASA Astrophysics Data System (ADS)

    Kalivas, Georgia

    2002-06-01

    Traditionally, in textile dyeing, metals have been used as mordants or to improve the color produced by a natural or synthetic dye. In biomedical research and clinical diagnostics gold colloids are used as sensitive signals to detect the presence of pathogens. It has been observed that when metals are finely divided, a distinct color may result that is different from the color of the metal in bulk. For example, when gold is finely divided it may appear black, ruby or purple. This can be seen in biomedical research when gold colloids are reduced to micro-particles. Bright color signals are produced by few nanometer-sized particles. Dr. William Todd, a researcher in the Department of Veterinary Science at the Louisiana State University, developed a method of dyeing fabrics with metals. By using a reagent to bond the metal particles deep into the textile fibers and actually making the metal a part of the chemistry of the fiber. The chemicals of the fabric influence the resulting color. The combination of the element itself, the size of the particle, the chemical nature of the particle and the interaction of the metal with the chemistry of the fabric determine the actual hue. By using different elements, reagents, textiles and solvents a broad range of reproducible colors and tones can be created. Metals can also be combined into alloys, which will produce a variety of colors. The students of the ISCC chapter at the Fashion Institute of Technology dyed fabric using Dr. Todd's method and created a presentation of the results. They also did a demonstration of dyeing fabrics with metals.

  6. Liquid metal electric pump

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1992-01-01

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other.

  7. Transition Metal Switchable Mirror

    SciTech Connect

    2009-01-01

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  8. Transition Metal Switchable Mirror

    SciTech Connect

    2009-08-21

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  9. Metal matrix composite structures

    SciTech Connect

    Krivov, G.A.; Beletsky, V.M.; Gribkov, A.N.

    1993-12-31

    High strength-weight properties, stiffness and fatigue resistance characteristics together with low sensitivity to stress concentration make metal matrix composites (MMC) rather promising for their use in structures. Metal matrix composites consist of a matrix (aluminum, magnesium, titanium and their alloys are the most frequently used) and reinforcers (carbon and boron fibers, high-strength steel wire, silicon carbide whiskers, etc.). This work considers various types of MMC and their applications in structures. The methods of structure production from metal matrix CM of aluminum-boron system with the help of machining, deformation, part joining by welding and riveting are given.

  10. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft.

  11. Transition Metal Switchable Mirror

    ScienceCinema

    None

    2016-07-12

    The switchable-mirrors technology was developed by Tom Richardson and Jonathan Slack of Berkeley Lab's Environmental Energy Technologies Division. By using transition metals rather than the rare earth metals used in the first metal-hydride switchable mirrors, Richardson and Slack were able to lower the cost and simplify the manufacturing process. Energy performance is improved as well, because the new windows can reflect or transmit both visible and infrared light. Besides windows for offices and homes, possible applications include automobile sunroofs, signs and displays, aircraft windows, and spacecraft. More information at: http://windows.lbl.gov/materials/chromogenics/default.htm

  12. Metallized gelled monopropellants

    NASA Technical Reports Server (NTRS)

    Nieder, Erin G.; Harrod, Charles E.; Rodgers, Frederick C.; Rapp, Douglas C.; Palaszewski, Bryan A.

    1992-01-01

    Thermochemical calculations of seven metallized monopropellants were conducted to quantify theoretical specific impulse and density specific impulse performance. On the basis of theoretical performance, commercial availability of formulation constituents, and anticipated viscometric behavior, two metallized monopropellants were selected for formulation characterization: triethylene glycol dinitrate, ammonium perchlorate, aluminum and hydrogen peroxide, aluminum. Formulation goals were established, and monopropellant formulation compatibility and hazard sensitivity were experimentally determined. These experimental results indicate that the friction sensitivity, detonation susceptibility, and material handling difficulties of the elevated monopropellant formulations and their constituents pose formidable barriers to their future application as metallized monopropellants.

  13. Liquid metal electric pump

    DOEpatents

    Abbin, J.P.; Andraka, C.E.; Lukens, L.L.; Moreno, J.B.

    1992-01-14

    An electrical pump for pumping liquid metals to high pressures in high temperature environments without the use of magnets or moving mechanical parts. The pump employs a non-porous solid electrolyte membrane, typically ceramic, specific to the liquid metal to be pumped. A DC voltage is applied across the thickness of the membrane causing ions to form and enter the membrane on the electrically positive surface, with the ions being neutralized on the opposite surface. This action provides pumping of the liquid metal from one side of the non-porous solid electrolyte membrane to the other. 3 figs.

  14. Laminates and reinforced metals

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.

    1980-01-01

    A selective review is presented of the state of the art of metallic laminates and fiber reinforced metals called metallic matrix laminates (MMLs). Design and analysis procedures that are used for, and typical structural components that have been made from MMLs are emphasized. Selected MMLs, constituent materials, typical material properties and fabrication procedures are briefly described, including hybrids and superhybrids. Advantages, disadvantages, and special considerations required during design, analysis, and fabrication of MMLs are examined. Tabular and graphical data are included to illustrate key aspects of MMLs. Appropriate references are cited to provide a selective bibliography of a rapidly expanding and very promising research and development field.

  15. Actinide metal processing

    DOEpatents

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  16. Actinide metal processing

    DOEpatents

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  17. Fabrication of Metallic Hollow Nanoparticles

    NASA Technical Reports Server (NTRS)

    Kim, Jae-Woo (Inventor); Choi, Sr., Sang H. (Inventor); Lillehei, Peter T. (Inventor); Chu, Sang-Hyon (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2016-01-01

    Metal and semiconductor nanoshells, particularly transition metal nanoshells, are fabricated using dendrimer molecules. Metallic colloids, metallic ions or semiconductors are attached to amine groups on the dendrimer surface in stabilized solution for the surface seeding method and the surface seedless method, respectively. Subsequently, the process is repeated with additional metallic ions or semiconductor, a stabilizer, and NaBH.sub.4 to increase the wall thickness of the metallic or semiconductor lining on the dendrimer surface. Metallic or semiconductor ions are automatically reduced on the metallic or semiconductor nanoparticles causing the formation of hollow metallic or semiconductor nanoparticles. The void size of the formed hollow nanoparticles depends on the dendrimer generation. The thickness of the metallic or semiconductor thin film around the dendrimer depends on the repetition times and the size of initial metallic or semiconductor seeds.

  18. Metal Transfer in Gas Metal Arc Welding

    DTIC Science & Technology

    1989-09-30

    detaching drops can have significant effects on the consequent weld quality and production rate. In naval ship construction a greater percentage of the...Appendix A of present report (part)) explored the effects of welding p~rameters on metal transfer phonom"a in GMkW. Droplet sizes were measured by...time scales estimates showed that viscous effects are expected to be unimportant unless Marangoni (thermocapillary) convention is significant. As shown

  19. HAZARD ASSESSMENT OF METALS AND METAL COMPOUNDS IN TERRESTRIAL SYSTEMS

    EPA Science Inventory

    Metal accumulation in soil can result in adverse effects on soil biota, and may concentrate metals in food chains to levels detrimental to humans and wildlife. A SETAC Pellston Workshop entitled " Hazard Identification Approach For Metals And Inorganic Metal Substances" examined...

  20. HAZARD ASSESSMENT OF METALS AND METAL COMPOUNDS IN TERRESTRIAL SYSTEMS

    EPA Science Inventory

    Metal accumulation in soil can result in adverse effects on soil biota, and may concentrate metals in food chains to levels detrimental to humans and wildlife. A SETAC Pellston Workshop entitled " Hazard Identification Approach For Metals And Inorganic Metal Substances" examined...

  1. Prosthetic metal implants and airport metal detectors.

    PubMed

    Ismail, A; Dancey, A; Titley, O G

    2013-04-01

    Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination.

  2. Prosthetic metal implants and airport metal detectors

    PubMed Central

    Dancey, A; Titley, OG

    2013-01-01

    Introduction Metal detectors have been present in airports and points of departure for some time. With the introduction of heightened security measures in response to fears of an increased threat of terrorism, they may become more prevalent in other public locations. The aim of this study was to ascertain which prosthetic devices activated metal detector devices used for security purposes. Methods A range of prosthetic devices used commonly in orthopaedic and plastic surgery procedures were passed through an arch metal detector at Birmingham Airport in the UK. Additionally, each item was passed under a wand detector. Items tested included expandable breast prostheses, plates used in wrist and hand surgery, screws, K-wires, Autosuture™ ligation clips and staples. Results No prostheses were detected by the arch detector. The expandable implants and wrist plates were the only devices detected by passing the wand directly over them. No device was detected by the wand when it was under cover of the axillary soft tissue. Screws, K-wires, Autosuture™ clips and staples were not detected under any of the study conditions. Conclusions Although unlikely to trigger a detector, it is possible that an expandable breast prosthesis or larger plate may do so. It is therefore best to warn patients of this so they can anticipate detection and further examination. PMID:23827294

  3. Oligocyclopentadienyl transition metal complexes

    SciTech Connect

    de Azevedo, Cristina G.; Vollhardt, K. Peter C.

    2002-01-18

    Synthesis, characterization, and reactivity studies of oligocyclopentadienyl transition metal complexes, namely those of fulvalene, tercyclopentadienyl, quatercyclopentadienyl, and pentacyclopentadienyl(cyclopentadienyl) are the subject of this account. Thermal-, photo-, and redox chemistries of homo- and heteropolynuclear complexes are described.

  4. Production of magnesium metal

    DOEpatents

    Blencoe, James G [Harriman, TN; Anovitz, Lawrence M [Knoxville, TN; Palmer, Donald A [Oliver Springs, TN; Beard, James S [Martinsville, VA

    2012-04-10

    A process of producing magnesium metal includes providing magnesium carbonate, and reacting the magnesium carbonate to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The carbon dioxide is used as a reactant in a second process. In another embodiment of the process, a magnesium silicate is reacted with a caustic material to produce magnesium hydroxide. The magnesium hydroxide is reacted with a source of carbon dioxide to produce magnesium carbonate. The magnesium carbonate is reacted to produce a magnesium-containing compound and carbon dioxide. The magnesium-containing compound is reacted to produce magnesium metal. The invention also relates to the magnesium metal produced by the processes described herein.

  5. Reactivity of Metal Clusters.

    PubMed

    Luo, Zhixun; Castleman, A W; Khanna, Shiv N

    2016-12-14

    We summarize here the research advances on the reactivity of metal clusters. After a simple introduction of apparatuses used for gas-phase cluster reactions, we focus on the reactivity of metal clusters with various polar and nonpolar molecules in the gas phase and illustrate how elementary reactions of metal clusters proceed one-step at a time under a combination of geometric and electronic reorganization. The topics discussed in this study include chemical adsorption, addition reaction, cleavage of chemical bonds, etching effect, spin effect, the harpoon mechanism, and the complementary active sites (CAS) mechanism, among others. Insights into the reactivity of metal clusters not only facilitate a better understanding of the fundamentals in condensed-phase chemistry but also provide a way to dissect the stability and reactivity of monolayer-protected clusters synthesized via wet chemistry.

  6. Metal stocks and sustainability

    PubMed Central

    Gordon, R. B.; Bertram, M.; Graedel, T. E.

    2006-01-01

    The relative proportions of metal residing in ore in the lithosphere, in use in products providing services, and in waste deposits measure our progress from exclusive use of virgin ore toward full dependence on sustained use of recycled metal. In the U.S. at present, the copper contents of these three repositories are roughly equivalent, but metal in service continues to increase. Providing today's developed-country level of services for copper worldwide (as well as for zinc and, perhaps, platinum) would appear to require conversion of essentially all of the ore in the lithosphere to stock-in-use plus near-complete recycling of the metals from that point forward. PMID:16432205

  7. Development of metallization process

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1984-01-01

    Pastes are evaluated that contain additives to aid in the silicon to metallization contact. None are completely successful. Pastes are evaluated using a heated stage scanning electron microscope (SEM). This equipment shows promise for future evaluations.

  8. Improving Metal Casting Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  9. Liquid metal enabled pump.

    PubMed

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O'Mullane, Anthony P; Abbott, Derek; Mitchell, Arnan; Kalantar-Zadeh, Kourosh

    2014-03-04

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics.

  10. All-Metal Tires

    NASA Technical Reports Server (NTRS)

    Bickler, Donald B.; Sword, Lee F.; Lindemann, Randel A.

    1994-01-01

    Tires used where elastomeric and pneumatic tires would not function. Metal tires withstand extreme temperatures. Used on Earth for vehicles and robots that fight fires or clean up dangerous chemicals.

  11. Making metallic berkelium

    SciTech Connect

    Radchenko, V.M.; Seleznev, A.G.; Ryabinin, M.A.; Lebedeva, L.S.; Droznik, R.R.; Shushakov, V.D.; Stupin, V.A.; Vasil'ev, V.Ya.

    1988-05-01

    Metallic /sup 249/Bk, mass 740 /mu/g, has been made as a film on a tantalum substrate by reducing the oxide with thorium. The evaporated-metal yield was 85%, while the yield on the substrate was 72%. The metal has a double hexagonal close-packed structure of /alpha/-La type, parameters a = (0.3412 /plus minus/ 0.0002) nm, c = (1.1060 /plus minus/ 0.0006) nm, c/2a = 1.621 /plus minus/ 0.002. The metallic radius is 0.1702 /plus minus/ 0.0001 nm, x-ray density 14.86 /plus minus/ 0.03 g/cm/sup 3/. The oxidation under various conditions has been examined.

  12. Improving Metal Casting Process

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Don Sirois, an Auburn University research associate, and Bruce Strom, a mechanical engineering Co-Op Student, are evaluating the dimensional characteristics of an aluminum automobile engine casting. More accurate metal casting processes may reduce the weight of some cast metal products used in automobiles, such as engines. Research in low gravity has taken an important first step toward making metal products used in homes, automobiles, and aircraft less expensive, safer, and more durable. Auburn University and industry are partnering with NASA to develop one of the first accurate computer model predictions of molten metals and molding materials used in a manufacturing process called casting. Ford Motor Company's casting plant in Cleveland, Ohio is using NASA-sponsored computer modeling information to improve the casting process of automobile and light-truck engine blocks.

  13. Metals and Alzheimer's disease.

    PubMed

    Adlard, Paul A; Bush, Ashley I

    2006-11-01

    There is increasing evidence to support a role for both the amyloid beta-protein precursor (AbetaPP) and its proteolytic fragment, amyloid beta (Abeta), in metal ion homeostasis. Furthermore, metal ions such as zinc and copper can interact with both AbetaPP and Abeta to potentiate Alzheimer's disease by participating in the aggregation of these normal cellular proteins and in the generation of reactive oxygen species. In addition, metal ions may interact on several other AD-related pathways, including those involved in neurofibrillary tangle formation, secretase cleavage of AbetaPP and proteolytic degradation of Abeta. As such, a dysregulation of metal ion homeostasis, as occurs with both aging and in AD, may foster an environment that can both precipitate and accelerate degenerative conditions such as AD. This offers a broad biochemical front for novel therapeutic interventions.

  14. Liquid metal enabled pump

    PubMed Central

    Tang, Shi-Yang; Khoshmanesh, Khashayar; Sivan, Vijay; Petersen, Phred; O’Mullane, Anthony P.; Abbott, Derek; Mitchell, Arnan; Kalantar-zadeh, Kourosh

    2014-01-01

    Small-scale pumps will be the heartbeat of many future micro/nanoscale platforms. However, the integration of small-scale pumps is presently hampered by limited flow rate with respect to the input power, and their rather complicated fabrication processes. These issues arise as many conventional pumping effects require intricate moving elements. Here, we demonstrate a system that we call the liquid metal enabled pump, for driving a range of liquids without mechanical moving parts, upon the application of modest electric field. This pump incorporates a droplet of liquid metal, which induces liquid flow at high flow rates, yet with exceptionally low power consumption by electrowetting/deelectrowetting at the metal surface. We present theory explaining this pumping mechanism and show that the operation is fundamentally different from other existing pumps. The presented liquid metal enabled pump is both efficient and simple, and thus has the potential to fundamentally advance the field of microfluidics. PMID:24550485

  15. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  16. Metallic glass composition

    DOEpatents

    Kroeger, Donald M.; Koch, Carl C.

    1986-01-01

    A metallic glass alloy that is either iron-based or nickel-based or based on a mixture of iron and nickel, containing lesser amounts of elements selected from the group boron, silicon carbon and phosphorous to which is added an amount of a ductility enhancing element selected from the group cerium, lanthanum, praseodymium and neodymium sufficient to increase ductility of the metallic glass upon annealing.

  17. PRODUCTION OF HAFNIUM METAL

    DOEpatents

    Elger, G.W.; Boubel, R.W.

    1963-01-01

    This patent deals with a process of producing pure Hf metal from oxygen- contaminated gaseous Hf chloride. The oxygen compounds in the chioride gas are halogenated by contacting the gas at elevated temperature with Cl/sub 2/ in the presence of C. The Hf chloride, still in gaseous form, is contacted with molten Mg whereby Hf metal is formed and condensed on the Mg. (AEC)

  18. Molten metal reactors

    SciTech Connect

    Bingham, Dennis N; Klingler, Kerry M; Turner, Terry D; Wilding, Bruce M

    2013-11-05

    A molten metal reactor for converting a carbon material and steam into a gas comprising hydrogen, carbon monoxide, and carbon dioxide is disclosed. The reactor includes an interior crucible having a portion contained within an exterior crucible. The interior crucible includes an inlet and an outlet; the outlet leads to the exterior crucible and may comprise a diffuser. The exterior crucible may contain a molten alkaline metal compound. Contained between the exterior crucible and the interior crucible is at least one baffle.

  19. Beryllium Metal Supply Options

    DTIC Science & Technology

    1989-01-01

    given to the National Academy of Sciences by its congressional charter to be an advisor to the federal government ard, upon its own initiative , to...instrumental in initiating the request for an independent assessment by the National Research Council of the current domestic beryllium metal supply...future environ- mental requirements i. examined. In view of the small quantity of metal needed, the size of the total market, and the present status of

  20. Metal Building Systems

    DTIC Science & Technology

    1988-06-01

    Longitudinal forces are created by the movement and braking of the crane bridge parallel to the rails. 3.2.6 Load Combinations Generally, metal...198 1. 52 Lynn, Brian A., and Theodore Stathopoulos , "Wind-Induced Fatigue on Low Metal Buildings". The journal of Structural naineerin. American...dcuments, such way brackets.asrne d ateontriact hadcns ms Bridge Crane-A load lifting system con-as cranes and material handling systems. sisting of a

  1. SINTERING METAL OXIDES

    DOEpatents

    Roake, W.E.

    1960-09-13

    A process is given for producing uranium dioxide material of great density by preparing a compacted mixture of uranium dioxide and from 1 to 3 wt.% of calcium hydride, heating the mixture to at least 675 deg C for decomposition of the hydride and then for sintering, preferably in a vacuum, at from 1550 to 2000 deg C. Calcium metal is formed, some uranium is reduced by the calcium to the metal and a product of high density is obtained.

  2. Peel testing metalized films

    NASA Technical Reports Server (NTRS)

    Bivins, L.; Smith, T.

    1980-01-01

    Flimsy ultrathin sheets are mounted on glass for peel-strength measurements. Technique makes it easier to perform peel tests on metalized plastic films. Technique was developed for determining peel strength of thin (1,000 A) layers of aluminum on Kapton film. Previously, material has been difficult to test because it is flimsy and tends to curl up and blow away at slightest disturbance. Procedure can be used to measure effects on metalization bond strength of handling, humidity, sunlight, and heat.

  3. Groin pain after metal-on-metal hip resurfacing prosthesis

    PubMed Central

    Delgado-Sevillano, Ramon; de la Flor-García, Maria Rodríguez

    2014-01-01

    Total hip replacement continues to be a widely successful operation, but persistent groin pain following a metal-on-metal hip resurfacing remains a problem for some patients. The concern regarding the safety and efficacy of metal-on-metal total hip replacements has been rising. We present the case of a 47-year-old man with groin pain after metal-on-metal hip resurfacing. We observed high metal ion levels detected in blood analytical studies and a pseudotumor in magnetic resonance imaging. Our patient was treated with a revision surgery. The progressive elevation of blood and urine metal levels in the presence of periarticular cysts and/or groin pain is a complication of metal-on-metal hip arthroplasty and needs revision surgery. PMID:27489648

  4. Liquid metal enabled microfluidics.

    PubMed

    Khoshmanesh, Khashayar; Tang, Shi-Yang; Zhu, Jiu Yang; Schaefer, Samira; Mitchell, Arnan; Kalantar-Zadeh, Kourosh; Dickey, Michael D

    2017-03-14

    Several gallium-based liquid metal alloys are liquid at room temperature. As 'liquid', such alloys have a low viscosity and a high surface tension while as 'metal', they have high thermal and electrical conductivities, similar to mercury. However, unlike mercury, these liquid metal alloys have low toxicity and a negligible vapor pressure, rendering them much safer. In comparison to mercury, the distinguishing feature of these alloys is the rapid formation of a self-limiting atomically thin layer of gallium oxide over their surface when exposed to oxygen. This oxide layer changes many physical and chemical properties of gallium alloys, including their interfacial and rheological properties, which can be employed and modulated for various applications in microfluidics. Injecting liquid metal into microfluidic structures has been extensively used to pattern and encapsulate highly deformable and reconfigurable electronic devices including electrodes, sensors, antennas, and interconnects. Likewise, the unique features of liquid metals have been employed for fabricating miniaturized microfluidic components including pumps, valves, heaters, and electrodes. In this review, we discuss liquid metal enabled microfluidic components, and highlight their desirable attributes including simple fabrication, facile integration, stretchability, reconfigurability, and low power consumption, with promising applications for highly integrated microfluidic systems.

  5. Porous metallic bodies

    DOEpatents

    Landingham, Richard L.

    1985-01-01

    Porous metallic bodies having a substantially uniform pore size of less than about 200 microns and a density of less than about 25 percent theoretical, as well as the method for making them, are disclosed. Group IIA, IIIB, IVB, VB, and rare earth metal hydrides are heated in a confining container at a controlled rate to a temperature of about greater than the temperature at which the hydride decomposes. Hydrogen is removed from the container and the remaining metal is heated during a second stage to a temperature greater than the temperature at which it was previously heated but not greater than the temperature of 1/2 to 2/3 the temperature at which the metal melts at a controlled rate. The resulting porous metallic body produced has a density less than about 25 percent theoretical and a pore size of less than about 200 microns. The metallic particles of the present invention have high inner surface area and possess minimum resistance to gas flow.

  6. Heavy Metal - Exploring a magnetised metallic asteroid

    NASA Astrophysics Data System (ADS)

    Wahlund, Jan-Erik; Andrews, David; Futaana, Yoshifumi; Masters, Adam; Thomas, Nicolas; De Sanctis, Maria Cristina; Herique, Alain; Retherford, Kurt; Tortora, Paolo; Trigo-Rodriguez, Joseph; Ivchenko, Nickolay; Simon, Sven

    2017-04-01

    We propose a spacecraft mission (Heavy Metal) to orbit and explore (16) Psyche - the largest M-class metallic asteroid in the main belt. Recent estimates of the shape, 279×232×189 km and mass, 2.7×10(19) kg make it one of the largest and densest of asteroids, and together with the high surface radar reflectivity and the spectral data measured from Earth it is consistent with a bulk composition rich in iron-nickel. The M5 mission Heavy Metal will investigate if (16) Psyche is the exposed metallic core of a planetesimal, formed early enough to melt and differentiate. High-resolution mapping of the surface in optical, IR, UV and radar wavebands, along with the determination of the shape and gravity field will be used to address the formation and subsequent evolution of (16) Psyche, determining the origin of metallic asteroids. It is conceivable that a cataclysmic collision with a second body led to the ejection of all or part of the differentiated core of the parent body. Measurements at (16) Psyche therefore provide a possibility to directly examine an iron-rich planetary core, similar to that expected at the center of all the major planets including Earth. A short-lived dynamo producing a magnetic field early in the life of (16) Psyche could have led to a remnant field (of tens of micro Tesla) being preserved in the body today. (16) Psyche is embedded in the variable flow of the solar wind. Whereas planetary magnetospheres and induced magnetospheres are the result of intense dynamo fields and dense conductive ionospheres presenting obstacles to the solar wind, (16) Psyche may show an entirely new 'class' of interaction as a consequence of its lack of a significant atmosphere, the extremely high bulk electrical conductivity of the asteroid, and the possible presence of intense magnetic fields retained in iron-rich material. The small characteristic scale of (16) Psyche ( 200 km) firmly places any solar wind interaction in the "sub-MHD" scale, in which kinetic

  7. Metastable metallic hydrogen glass

    SciTech Connect

    Nellis, W J

    2001-02-06

    The quest for metallic hydrogen has been going on for over one hundred years. Before hydrogen was first condensed into a liquid in 1898, it was commonly thought that condensed hydrogen would be a metal, like the monatomic alkali metals below hydrogen in the first column of the Periodic Table. Instead, condensed hydrogen turned out to be transparent, like the diatomic insulating halogens in the seventh column of the Periodic Table. Wigner and Huntington predicted in 1935 that solid hydrogen at 0 K would undergo a first-order phase transition from a diatomic to a monatomic crystallographically ordered solid at {approx}25 GPa. This first-order transition would be accompanied by an insulator-metal transition. Though searched for extensively, a first-order transition from an ordered diatomic insulator to a monatomic metal is yet to be observed at pressures up to 120 and 340 GPa using x-ray diffraction and visual inspection, respectively. On the other hand, hydrogen reaches the minimum electrical conductivity of a metal at 140 GPa, 0.6 g/cm{sup 3}, and 3000 K. These conditions were achieved using a shock wave reverberating between two stiff sapphire anvils. The shock wave was generated with a two-stage light-gas gun. This temperature exceeds the calculated melting temperature at 140 GPa by a factor of {approx}2, indicating that this metal is in the disordered fluid phase. The disorder permits hydrogen to become metallic via a Mott transition in the liquid at a much smaller pressure than in the solid, which has an electronic bandgap to the highest pressures reached to date. Thus, by using the finite temperature achieved with shock compression to achieve a disordered melt, metallic hydrogen can be achieved at a much lower pressure in a fluid than in a solid. It is not known how, nor even whether, metallic hydrogen can be quenched from a fluid at high pressures to a disordered solid metallic glass at ambient pressure and temperature. Because metallization occurs by simply

  8. Electrochemical nitridation of metal surfaces

    DOEpatents

    Wang, Heli; Turner, John A.

    2015-06-30

    Electrochemical nitridation of metals and the produced metals are disclosed. An exemplary method of electrochemical nitridation of metals comprises providing an electrochemical solution at low temperature. The method also comprises providing a three-electrode potentiostat system. The method also comprises stabilizing the three-electrode potentiostat system at open circuit potential. The method also comprises applying a cathodic potential to a metal.

  9. Adhesion to porcelain and metal.

    PubMed

    Bertolotti, Raymond L

    2007-04-01

    Some compelling clinical benefits of porcelain and metal adhesion are presented. Current concepts for metal adhesion are reviewed, including modifications of metal surface and resin chemistry. Porcelain adhesion is reviewed, including little-known methods that use silane but no hydrofluoric acid etching. Clinical protocols for use of metal and porcelain adhesives are presented.

  10. Standardized Curriculum for Metal Trades.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for the metal trades was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all metal trades programs in the state. The guide contains objectives for Metal Trades I and II courses. Units in Metal Trades I cover the…

  11. Standardized Curriculum for Metal Trades.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    This curriculum guide for the metal trades was developed by the state of Mississippi to standardize vocational education course titles and core contents. The objectives contained in this document are common to all metal trades programs in the state. The guide contains objectives for Metal Trades I and II courses. Units in Metal Trades I cover the…

  12. PROCESS OF PRODUCING ACTINIDE METALS

    DOEpatents

    Magel, T.T.

    1959-07-14

    The preparation of actinide metals in workable, coherent form is described. In general, the objects of the invention are achieved by heating a mixture of an oxide and a halide of an actinide metal such as uranium with an alkali metal on alkaline earth metal reducing agent in the presence of iodine.

  13. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  14. Metal Ions in Unusual Valency States.

    ERIC Educational Resources Information Center

    Sellers, Robin M.

    1981-01-01

    Discusses reactivity of metal ions with the primary products of water radiolysis, hyper-reduced metal ions, zero-valent metal ions, unstable divalent ions from the reduction of bivalent ions, hyper-oxidized metal ions, and metal complexes. (CS)

  15. Metal radii in surface science

    NASA Astrophysics Data System (ADS)

    Campbell, Charles T.

    1986-03-01

    The saturation monolayer coverage of an adsorbed metal overlayer on a smooth metal surface is largely determined by the adsorbed metal's radius. Experimental maximum packing densities in two-dimensional metal overlayers are compared with predictions based on several different definitions of metal atom radii: atomic radii, covalent radii, minimum bulk interatomic distance (:2) and the Zachariasen [J. Inorg. Nucl. Chem. 35 (1973) 3487] metal radii. Best agreement is found with the last, which is obtained by assuming that the bulk, pure metal density is obtained from an ideal, hexagonal close-packed structure of spheres of that radius.

  16. Metal radii in surface science

    NASA Astrophysics Data System (ADS)

    Campbell, Charles T.

    The saturation monolayer coverage of an adsorbed metal overlayer on a smooth metal surface is largely determined by the adsorbed metal's radius. Experimental maximum packing densities in two-dimensional metal overlayers are compared with predictions based on several different definitions of metal atom radii: atomic radii, covalent radii, minimum bulk interatomic distance (: 2) and the Zachariasen [J. Inorg. Nucl. Chem. 35 (1973) 3487] metal radii. Best agreement is found with the last, which is obtained by assuming that the bulk, pure metal density is obtained from an ideal, hexagonal close-packed structure of spheres of that radius.

  17. Thermally tolerant multilayer metal membrane

    DOEpatents

    Dye, Robert C.; Snow, Ronny C.

    2001-01-01

    A composite metal membrane including a first metal layer of a Group IVB or Group VB metal sandwiched between two layers of a Group VIIIB metal selected from the group consisting of palladium, platinum, nickel, rhodium, iridium, cobalt, and alloys thereof, and a non-continuous layer of a metal chalcogenide upon one layer of the Group VIIIB metal is disclosed together with a process for the recovery of hydrogen from a gaseous mixture using such a composite membrane and a process for forming such a composite metal membrane.

  18. The Metal-Rich Universe

    NASA Astrophysics Data System (ADS)

    Israelian, Garik; Meynet, Georges

    2012-10-01

    Preface; Part I. Abundances in the Galaxy: Field Stars: 1. Metal-rich stars and stellar populations: A brief history and new results; 2. The metal-rich nature of stars with planets; 3. Solar chemical peculiarities; 4. Kinematics of metal-rich stars with and without planets; 5. Elemental abundance trends in the metal-rich thin and thick disks; 6. Metal-rich massive stars - how metal-rich are they?; 7. Hercules stream stars and the metal-rich thick disk; 8. Abundance survey of the galactic thick disk; Part II. Abundances in the Galaxy: Galactic Stars in Clusters, Bulges and Centre: 9. Galactic open clusters with super solar metallicities; 10. Old and very metal-rich open clusters in the BOCCE project; 11. Massive stars vs. nebular abundances in the Orion nebula; 12. Abundance surveys of metal-rich bulge stars; 13. Metal abundances in the galactic center; 14. Light elements in the galactic bulge; 15. Metallicity and ages of selected G-K giants; Part III. Observations - Abundances in Extragalactic Contexts: 16. Stellar abundances of early-type galaxies and galactic spheroids: Evidence for metal-rich stars; 17. Measuring chemical abundances in extragalactic metal-rich HII regions; 18. On the maximum oxygen abundance in metal-rich spiral galaxies; 19. Starbursts and their contribution to metal enrichment; 20. High metallicities at high redshifts; 21. Evolution of dust and elemental abundances in quasar DLAs and GRB afterglows as a function of cosmic time; 22. Dust, metals and diffuse interstellar bands in damped Lyman Alpha systems; 23. Tracing metallicities in the Universe with the James Webb Space Telescope; Part IV. Stellar Populations and Mass Functions: 24. The stellar initial mass function of metal-rich populations; 25. IMF effects on the metallicity and colour evolution of disk galaxies; 26. The metallicity of circumnuclear star forming regions; 27. The stellar population of bulges; 28. The metallicity distribution of the stars in elliptical galaxies; 29. Wolf

  19. Toxic metals and autophagy.

    PubMed

    Chatterjee, Sarmishtha; Sarkar, Shuvasree; Bhattacharya, Shelley

    2014-11-17

    The earth's resources are finite, and it can no longer be considered a source of inexhaustible bounty for the human population. However, this realization has not been able to contain the human desire for rapid industrialization. The collateral to overusing environmental resources is the high-level contamination of undesirable toxic metals, leading to bioaccumulation and cellular damage. Cytopathological features of biological systems represent a key variable in several diseases. A review of the literature revealed that autophagy (PCDII), a high-capacity process, may consist of selective elimination of vital organelles and/or proteins that intiate mechanisms of cytoprotection and homeostasis in different biological systems under normal physiological and stress conditions. However, the biological system does survive under various environmental stressors. Currently, there is no consensus that specifies a particular response as being a dependable biomarker of toxicology. Autophagy has been recorded as the initial response of a cell to a toxic metal in a concentration- and time-dependent manner. Various signaling pathways are triggered through cellular proteins and/or protein kinases that can lead to autophagy, apoptosis (or necroptosis), and necrosis. Although the role of autophagy in tumorigenesis is associated with promoting tumor cell survival and/or acting as a tumor suppressive mechanism, PCDII in metal-induced toxicity has not been extensively studied. The aim of this review is to analyze the comparative cytotoxicity of metals/metalloids and nanoparticles (As, Cd, Cr, Hg, Fe, and metal-NP) in cells enduring autophagy. It is noted that metals/metalloids and nanoparticles prefer ATG8/LC3 as a potent inducer of autophagy in several cell lines or animal cells. MAP kinases, death protein kinases, PI3K, AKT, mTOR, and AMP kinase have been found to be the major components of autophagy induction or inhibition in the context of cellular responses to metals/metalloids and

  20. Aluminum Metal Matrix Composites

    SciTech Connect

    Hunt, Warren; Herling, Darrell R.

    2004-02-01

    Metal matrix composites comprise a relatively wide range of materials defined by the metal matrix, reinforcement type, and reinforcement geometry. In the area of the matrix, most metallic systems have been explored for use in metal matrix composites, including Al, Be, Mg, Ti, Fe, Ni, Co, and Ag. By far, the largest usage is in aluminum matrix composites. From a reinforcement perspective, the materials used are typically ceramics since they provide a very desirable combination of stiffness, strength, and relatively low density. Candidate reinforcement materials include SiC, Al2O3, B4C, TiC, TiB2, graphite, and a number of other ceramics. In addition, there has been work on metallic materials as reinforcements, notably W and steel fibers. The morphology of the reinforcement material is another variable of importance in metal matrix composites. The three major classes of reinforcement morphology are continuous fiber, chopped fiber or whisker, and particulate. Typically, the selection of the reinforcement morphology is determined by the desired property/cost combination. Generally, continuous fiber reinforced MMCs provide the highest properties in the direction of the fiber orientation but are the most expensive. Chopped fiber and whisker reinforced materials can produce significant property improvements in the plane or direction of their orientation, at somewhat lower cost. Particulates provide a comparatively more moderate but isotropic increase in properties and are typically available at the lowest cost. By adding to the three variables of metallic matrix, reinforcement material, and reinforcement morphology the further options of reinforcement volume fraction, orientation, and matrix alloy composition and heat treatment, it is apparent that there is a very wide range of available material combinations and resultant properties. This paper will focus on how MMCs have been applied in specific application areas.

  1. Method for forming metal contacts

    DOEpatents

    Reddington, Erik; Sutter, Thomas C; Bu, Lujia; Cannon, Alexandra; Habas, Susan E; Curtis, Calvin J; Miedaner, Alexander; Ginley, David S; Van Hest, Marinus Franciscus Antonius Maria

    2013-09-17

    Methods of forming metal contacts with metal inks in the manufacture of photovoltaic devices are disclosed. The metal inks are selectively deposited on semiconductor coatings by inkjet and aerosol apparatus. The composite is heated to selective temperatures where the metal inks burn through the coating to form an electrical contact with the semiconductor. Metal layers are then deposited on the electrical contacts by light induced or light assisted plating.

  2. Liquid metal thermal electric converter

    DOEpatents

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  3. Peroxotitanates for biodelivery of metals.

    PubMed

    Wataha, John C; Hobbs, David T; Lockwood, Petra E; Davis, Ryan R; Elvington, Mark C; Lewis, Jill B; Messer, Regina L W

    2009-11-01

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion-exchange materials with high affinity for several heavy metal ions and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APTs are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro and then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials versus metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that "biodelivery" by metal-APT materials may be cell type-specific. Therefore, it appears that APTs are plausible solid-phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  4. Peroxotitanates for Biodelivery of Metals

    SciTech Connect

    Hobbs, David; Elvington, M.

    2009-02-11

    Metal-based drugs are largely undeveloped in pharmacology. One limiting factor is the systemic toxicity of metal-based compounds. A solid-phase, sequestratable delivery agent for local delivery of metals could reduce systemic toxicity, facilitating new drug development in this nascent area. Amorphous peroxotitanates (APT) are ion exchange materials with high affinity for several heavy metal ions, and have been proposed to deliver or sequester metal ions in biological contexts. In the current study, we tested a hypothesis that APT are able to deliver metals or metal compounds to cells. We exposed fibroblasts (L929) or monocytes (THP1) to metal-APT materials for 72 h in vitro, then measured cellular mitochondrial activity (SDH-MTT method) to assess the biological impact of the metal-APT materials vs. metals or APT alone. APT alone did not significantly affect cellular mitochondrial activity, but all metal-APT materials suppressed the mitochondrial activity of fibroblasts (by 30-65% of controls). The concentration of metal-APT materials required to suppress cellular mitochondrial activity was below that required for metals alone, suggesting that simple extracellular release of the metals from the metal-APT materials was not the primary mechanism of mitochondrial suppression. In contrast to fibroblasts, no metal-APT material had a measurable effect on THP1 monocyte mitochondrial activity, despite potent suppression by metals alone. This latter result suggested that 'biodelivery' by metal-APT materials may be cell type-specific. Therefore, it appears that APT are plausible solid phase delivery agents of metals or metal compounds to some types of cells for potential therapeutic effect.

  5. Separations chemistry of toxic metals

    SciTech Connect

    Smith, P.; Barr, M.; Barrans, R.

    1996-04-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects.

  6. Ultralight metal foams

    PubMed Central

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-01-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory. PMID:26349002

  7. Alkali metal ionization detector

    DOEpatents

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  8. METALLICITY AND QUASAR OUTFLOWS

    SciTech Connect

    Wang, Huiyuan; Zhou, Hongyan; Wang, Tinggui; Yuan, Weimin

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  9. Dissimilar metals joint evaluation

    NASA Technical Reports Server (NTRS)

    Wakefield, M. E.; Apodaca, L. E.

    1974-01-01

    Dissimilar metals tubular joints between 2219-T851 aluminum alloy and 304L stainless steel were fabricated and tested to evaluate bonding processes. Joints were fabricated by four processes: (1) inertia (friction) weldings, where the metals are spun and forced together to create the weld; (2) explosive welding, where the metals are impacted together at high velocity; (3) co-extrusion, where the metals are extruded in contact at high temperature to promote diffusion; and (4) swaging, where residual stresses in the metals after a stretching operation maintain forced contact in mutual shear areas. Fifteen joints of each type were prepared and evaluated in a 6.35 cm (2.50 in.) O.D. size, with 0.32 cm (0.13 in.) wall thickness, and 7.6 cm (3.0 in) total length. The joints were tested to evaluate their ability to withstand pressure cycle, thermal cycle, galvanic corrosion and burst tests. Leakage tests and other non-destructive test techniques were used to evaluate the behavior of the joints, and the microstructure of the bond areas was analyzed.

  10. Ultralight metal foams

    NASA Astrophysics Data System (ADS)

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-01

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain ɛD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  11. Metal Matrix Composites

    NASA Astrophysics Data System (ADS)

    Mortensen, Andreas; Llorca, Javier

    2010-08-01

    In metal matrix composites, a metal is combined with another, often nonmetallic, phase to produce a novel material having attractive engineering attributes of its own. A subject of much research in the 1980s and 1990s, this class of materials has, in the past decade, increased significantly in variety. Copper matrix composites, layered composites, high-conductivity composites, nanoscale composites, microcellular metals, and bio-derived composites have been added to a palette that, ten years ago, mostly comprised ceramic fiber- or particle-reinforced light metals together with some well-established engineering materials, such as WC-Co cermets. At the same time, research on composites such as particle-reinforced aluminum, aided by novel techniques such as large-cell 3-D finite element simulation or computed X-ray microtomography, has served as a potent vehicle for the elucidation of the mechanics of high-contrast two-phase elastoplastic materials, with implications that range well beyond metal matrix composites.

  12. Polyamorphism in metalic glass.

    SciTech Connect

    Sheng, H. W.; Liu, H. Z.; Cheng, Y. Q.; Wen, J.; Lee, P.L.; Luo, W.K.; Shastri, S.D.; Ma, E.; X-Ray Science Division; Johns Hopkins Univ.; Chinese Academy of Sciences

    2007-03-01

    A metal, or an alloy, can often exist in more than one crystal structure. The face-centered-cubic and body-centered-cubic forms of iron (or steel) are a familiar example of such polymorphism. When metallic materials are made in the amorphous form, is a parallel 'polyamorphism' possible? So far, polyamorphic phase transitions in the glassy state have been observed only in glasses involving directional and open (such as tetrahedral) coordination environments. Here, we report an in situ X-ray diffraction observation of a pressure-induced transition between two distinct amorphous polymorphs in a Ce{sub 55}Al{sub 45} metallic glass. The large density difference observed between the two polyamorphs is attributed to their different electronic and atomic structures, in particular the bond shortening revealed by ab initio modeling of the effects of f-electron delocalization. This discovery offers a new perspective of the amorphous state of metals, and has implications for understanding the structure, evolution and properties of metallic glasses and related liquids. Our work also opens a new avenue towards technologically useful amorphous alloys that are compositionally identical but with different thermodynamic, functional and rheological properties due to different bonding and structural characteristics.

  13. Metals in edible seaweed.

    PubMed

    Rubio, C; Napoleone, G; Luis-González, G; Gutiérrez, A J; González-Weller, D; Hardisson, A; Revert, C

    2017-04-01

    The concentration levels of 20 metals were analyzed by ICP-OES in edible seaweed (Chondrus, Eisenia, Gelidium, Himanthalia, Laminaria, Palmaria, Porphyra, Undaria), from two origins (Asia vs EU) according to their cultivation practices (conventional vs organic). Red seaweed showed higher concentrations of trace and toxic elements. Porphyra may be used as a potential bioindicator for metals. Significant differences were found between the Asian vs European mean contents. The mean Cd level from the conventional cultivation (0.28 mg/kg) was two points higher than the organic cultivation (0.13 mg/kg). A daily consumption of seaweed (4 g/day) contributes to the dietary intake of metals, mainly Mg and Cr. The average intakes of Al, Cd and Pb were 0.064, 0.001 and 0.0003 mg/day, respectively. Based on obtained results, this study suggests that exposure to the toxic metals analyzed (Al, Cd and Pb) through seaweed consumption does not raise serious health concerns, but other toxic metals should be monitored. Copyright © 2017. Published by Elsevier Ltd.

  14. Metal-nanocarbon contacts

    NASA Astrophysics Data System (ADS)

    Wilhite, Patrick; Vyas, Anshul A.; Tan, Jason; Tan, Jasper; Yamada, Toshishige; Wang, Phillip; Park, Jeongwon; Yang, Cary Y.

    2014-05-01

    To realize nanocarbons in general and carbon nanotube (CNT) in particular as on-chip interconnect materials, the contact resistance stemming from the metal-CNT interface must be well understood and minimized. Understanding the complex mechanisms at the interface can lead to effective contact resistance reduction. In this study, we compile existing published results and understanding for two metal-CNT contact geometries, sidewall or side contact and end contact, and address key performance characteristics which lead to low contact resistance. Side contacts typically result in contact resistances >1 kΩ, whereas end contacts, such as that for as-grown vertically aligned CNTs on a metal underlayer, can be substantially lower. The lower contact resistance for the latter is due largely to strong bonding between edge carbon atoms with atoms on the metal surface, while carrier transport across a side-contacted interface via tunneling is generally associated with high contact resistance. Analyses of high-resolution images of interface nanostructures for various metal-CNT structures, along with their measured electrical characteristics, provide the necessary knowledge for continuous improvements of techniques to reduce contact resistance. Such contact engineering approach is described for both side and end-contacted structures.

  15. Ultralight metal foams.

    PubMed

    Jiang, Bin; He, Chunnian; Zhao, Naiqin; Nash, Philip; Shi, Chunsheng; Wang, Zejun

    2015-09-08

    Ultralight (<10 mg/cm3) cellular materials are desirable for thermal insulation; battery electrodes; catalyst supports; and acoustic, vibration, or shock energy damping. However, most of these ultralight materials, especially ultralight metal foams, are fabricated using either expensive materials or complicated procedures, which greatly limit their large-scale production and practical applications. Here we report a simple and versatile method to obtain ultralight monolithic metal foams. These materials are fabricated with a low-cost polymeric template and the method is based on the traditional silver mirror reaction and electroless plating. We have produced ultralight monolithic metal foams, such as silver, nickel, cobalt, and copper via this method. The resultant ultralight monolithic metal foams have remarkably low densities down to 7.4 mg/cm3 or 99.9% porosity. The metal foams have a long flat stress-train curve in compression tests and the densification strain εD of the Ni/Ag foam with a porosity of 99.8% can reach 82%. The plateau stress σpl was measured and found to be in agreement with the value predicted by the cellular solids theory.

  16. Metallicity and Quasar Outflows

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Zhou, Hongyan; Yuan, Weimin; Wang, Tinggui

    2012-06-01

    Correlations of the outflow strength of quasars, as measured by the blueshift and asymmetry index (BAI) of the C IV line, with intensities and ratios of broad emission lines, based on composite quasar spectra built from the Sloan Digital Sky Survey, are investigated. We find that most of the line ratios of other ions to C IV increase prominently with BAI. These behaviors can be well understood in the context of increasing metallicity with BAI. The strength of the dominant coolant, C IV line, decreases, and weak collisionally excited lines increase with gas metallicity as a result of the competition between different line coolants. Using Si IV+O IV]/C IV as an indicator of gas metallicity, we present, for the first time, a strong correlation between the metallicity and the outflow strength of quasars over a wide range of 1.7-6.9 times solar abundance. Our result implies that metallicity plays an important role in the formation of quasar outflows, likely by affecting outflow acceleration. This effect may have a profound impact on galaxy evolution via momentum feedback and chemical enrichment.

  17. Size control of noble metal clusters and metallic heterostructures through the reduction kinetics of metal precursors

    NASA Astrophysics Data System (ADS)

    Sevonkaev, Igor V.; Herein, Daniel; Jeske, Gerald; Goia, Dan V.

    2014-07-01

    Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties.Eight precious metal salts/complexes were reduced in propylene glycol at temperatures ranging between 110 and 170 °C. We found that the reduction temperature and the size of precipitated metallic nanoparticles formed were significantly affected by the structure and reactivity of the metal precursors. The choice of noble metal precursor offers flexibility for designing, fabricating and controlling the size of metallic heterostructures with tunable properties. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03045a

  18. Method for locating metallic nitride inclusions in metallic alloy ingots

    DOEpatents

    White, Jack C.; Traut, Davis E.; Oden, Laurance L.; Schmitt, Roman A.

    1992-01-01

    A method of determining the location and history of metallic nitride and/or oxynitride inclusions in metallic melts. The method includes the steps of labeling metallic nitride and/or oxynitride inclusions by making a coreduced metallic-hafnium sponge from a mixture of hafnium chloride and the chloride of a metal, reducing the mixed chlorides with magnesium, nitriding the hafnium-labeled metallic-hafnium sponge, and seeding the sponge to be melted with hafnium-labeled nitride inclusions. The ingots are neutron activated and the hafnium is located by radiometric means. Hafnium possesses exactly the proper metallurgical and radiochemical properties for this use.

  19. Millimeter Wave Metal-Insulator-Metal Detector/Mixer Diode.

    DTIC Science & Technology

    1983-12-01

    AO-A138 391 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER 1/1 DIODE(VI NORTH CAROLIN A AGRICULTURAL A NO TECHNI CA L STATE UNIV GREENSRO. C TV...163-A I V AFWAL-TR-83-1179 MILLIMETER WAVE METAL-INSULATOR- METAL DETECTOR /MIXER DIODE CHUNG YU NORTH CAROLINA A&T STATE UNIVERSITY GREENSBORO, NORTH...TITLE (ad subsorle.I S. TYPE CrjflT&PEO OER MILLIMETER WAVE May, 1981--July, 1983 METAL-INSULATOR- METAL DETECTOR /MIXER G. PERFORMING ORG. REPORT

  20. Light confinement and absorption in metal-semiconductor-metal nanostructures

    NASA Astrophysics Data System (ADS)

    Collin, Stephane; Pardo, Fabrice; Teissier, Roland; Bardou, Nathalie; Dupuis, Christophe; Mahe, Ronan; Ferlazzo, Laurence; Cambril, Edmond; Thierry-Mieg, Veronique; Lemaitre, Aristide; Pelouard, Jean-Luc

    2005-04-01

    New concepts for efficient light absorption in nanoscale metal-semiconductor-metal photodetectors are analyzed from both theoretical and experimental point of view. They are based on sub-wavelength metallic gratings which allows light confinement in tiny volumes (< 100 nm) close to electrodes (< 100 nm). Two photodetector structures are proposed: (i) a resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector, and (ii) a nanoscale metal-semiconductor grating photodetector. External quantum efficiency as high as 9 % has been obtained in 40 x 100 nm2 cross-section GaAs wires, limited by fabrication technology. These results show promising features for highly efficient and ultrafast photodetectors.

  1. LEVELING METAL COATINGS

    DOEpatents

    Gage, H.A.

    1959-02-10

    A method is described for applying metallic coatings to a cylinder of uranium. An aluminum-silicon coat is applied by a process consisting of first cleaning the article by immersion for 5 minutes in 50% nitric acid at 65 C. The article then is dipped through a flux, prepared by adding 10% sodium fluoride to 90% of a flux comprising 53% potassium chloride, 42% lithium chloride, and 5% sodium chloride at 560 for 2 minutes and then directly into a molten metal bath comprising 99% aluminun and 12% silicon at 620 C for 3 minutes. While the coating is yet molten the article is transferred to a pair of steel rollers and rolled until the coating solidifies. By varying the composition of the flux other metals such as zinc, lead or the like may be coated on uranium in a similar manner.

  2. Metal hyperaccumulation in plants.

    PubMed

    Krämer, Ute

    2010-01-01

    During the history of life on Earth, tectonic and climatic change repeatedly generated large territories that were virtually devoid of life and exhibited harsh environmental conditions. The ability of a few specialist pioneer plants to colonize such hostile environments was thus of paramount ecological importance for the continuous maintenance of primary production over time. Yet, we know very little about how extreme traits evolve and function in plants. Recent breakthroughs have given first insights into the molecular basis underlying the complex extreme model trait of metal hyperaccumulation and associated metal hypertolerance. This review gives an introduction into the hyperaccumulator research field and its history; provides an overview of hyperaccumulator germplasm; describes the state of the art of our understanding of the physiological, molecular, and genetic basis underlying metal hyperaccumulation and its evolution; and highlights future research needs and opportunities.

  3. Solidification of undercooled metals

    NASA Technical Reports Server (NTRS)

    Flemings, M. C.; Shiohara, Y.

    1984-01-01

    The present investigation is concerned with the subject of undercooling (i.e., supercooling) in the case of metal alloys, taking into account the effects of undercooling on microstructure and microsegregation in alloys which solidify in a crystalline manner. Techniques for obtaining a large degree of undercooling are discussed. These techniques make it possible to eliminate heterogeneous nucleants from the melt and to remove container nucleation effects. The nucleation behavior of small metal droplets is considered along with the formation of a dispersion of fine droplets in a suitable inert medium, the mixing of fine metal powders with glass powder, and the levitation melting technique. Attention is given to solidification with rapid interface velocity, aspects of dendritic morphology, and thermal measurements during solidification of undercooled droplets.

  4. Metal Resistivity Measuring Device

    DOEpatents

    Renken, Jr, C. J.; Myers, R. G.

    1960-12-20

    An eddy current device is designed for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The lorg pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities with the sample, and the short pulses give a resultant signal responsive only to probe-to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probeto-sample spacing contained in the detected signals from the long pulses. Thus a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  5. METAL RESISTIVITY MEASURING DEVICE

    DOEpatents

    Renken, J. Jr.; Myers, R.G.

    1960-12-20

    An eddy current device is offered for detecting discontinuities in metal samples. Alternate short and long duration pulses are inductively applied to a metal sample via the outer coil of a probe. The long pulses give a resultant signal from the metal sample responsive to probe-tosample spacing and discontinuities within the sample and the shont pulses give a resultant signal responsive only to probe -to-sample spacing. The inner coil of the probe detects the two resultant signals and transmits them to a separation network where the two signals are separated. The two separated signals are then transmitted to a compensation network where the detected signals due to the short pulses are used to compensate for variations due to probe-to-sample spacing contained in the detected signals from the long pulses. Thus, a resultant signal is obtained responsive to discontinuities within the sample and independent of probe-to- sample spacing.

  6. Metallization of fluid hydrogen

    SciTech Connect

    Nellis, W.J.; Louis, A.A.; Ashcroft, N.W.

    1997-05-14

    The electrical activity of liquid hydrogen has been measured at the high dynamic pressures, and temperatures that can be achieved with a reverberating shock wave. The resulting data are most naturally interpreted in terms of a continuous transition from a semiconducting to a metallic, largely diatomic fluid, the latter at 140 CPa, (ninefold compression) and 3000 K. While the fluid at these conditions resembles common liquid metals by the scale of its resistivity of 500 micro-ohm-cm, it differs by retaining a strong pairing character, and the precise mechanism by which a metallic state might be attained is still a matter of debate. Some evident possibilities include (i) physics of a largely one-body character, such as a band-overlap transition, (ii) physics of a strong-coupling or many-body character,such as a Mott-Hubbard transition, and (iii) process in which structural changes are paramount.

  7. Nutrient metal elements in plants.

    PubMed

    DalCorso, Giovanni; Manara, Anna; Piasentin, Silvia; Furini, Antonella

    2014-10-01

    Plants need many different metal elements for growth, development and reproduction, which must be mobilized from the soil matrix and absorbed by the roots as metal ions. Once taken up by the roots, metal ions are allocated to different parts of the plant by the vascular tissues. Metals are naturally present in the soil, but human activities, ranging from mining and agriculture to sewage processing and heavy industry, have increased the amount of metal pollution in the environment. Plants are challenged by environmental metal ion concentrations that fluctuate from low to high toxic levels, and have therefore evolved mechanisms to cope with such phenomena. In this review, we focus on recent data that provide insight into the molecular mechanisms of metal absorption and transport by plants, also considering the effect of metal deficiency and toxicity. We also highlight the positive effects of some non-essential metals on plant fitness.

  8. [Microbial interactions with heavy metals].

    PubMed

    Cervantes, C; Espino-Saldaña, A E; Acevedo-Aguilar, F; León-Rodriguez, I L; Rivera-Cano, M E; Avila-Rodríguez, M; Wróbel-Kaczmarczyk, K; Wróbel-Zasada, K; Gutiérrez-Corona, J F; Rodríguez-Zavala, J S; Moreno-Sánchez, R

    2006-01-01

    Living organisms are exposed in nature to heavy metals, commonly present in their ionized species. These ions exert diverse toxic effects on microorganisms. Metal exposure both selects and maintains microbial variants able to tolerate their harmful effects. Varied and efficient metal resistance mechanisms have been identified in diverse species of bacteria, fungi and protists. The study of the interactions between microorganisms and metals may be helpful to understand the relations of toxic metals with higher organisms such as mammals and plants. Some microbial systems of metal tolerance have the potential to be used in biotechnological processes, such as the bioremediation of environmental metal pollution or the recovery of valuable metals. In this work we analyze several examples of the interactions of different types of microbes with heavy metals; these cases are related either with basic research or with possible practical applications.

  9. Heavy Metal Pumps in Plants

    SciTech Connect

    Harper, J.F.

    2000-10-01

    The long term goal of the funded research is to understand how heavy metals are taken up from the soil and translocated throughout the plant. The potential application of this research is to create plants with better heavy metal uptake systems and thereby improve the ability of these plants to help clean up toxic metals from soils. A rate limiting step is using plant for bioremediation is the normally poor capacity of plants to concentrate toxic metals. Our interest in metal ion transport systems includes those for essential mineral nutrients such as molybdenum, copper, iron, manganese, as well as toxic metals such as cerium, mercury, cesium, cadmium, arsenic and selenium. Understanding the pathways by which toxic metals accumulate in plants will enable the engineering of plants to exclude toxic metals and create healthier food sources, or to extract toxic metals from the soil as a strategy to clean up polluted lands and water.

  10. Metal resistance in Candida biofilms.

    PubMed

    Harrison, Joe J; Rabiei, Maryam; Turner, Raymond J; Badry, Erin A; Sproule, Kimberley M; Ceri, Howard

    2006-03-01

    Yeasts are often successful in metal-polluted environments; therefore, the ability of biofilm and planktonic cell Candida tropicalis to endure metal toxicity was investigated. Fifteen water-soluble metal ions, chosen to represent groups 6A to 6B of the periodic table, were tested against this organism. With in vitro exposures as long as 24 h, biofilms were up to 65 times more tolerant to killing by metals than corresponding planktonic cultures. Of the most toxic heavy metals tested, only very high concentrations of Hg2+, CrO4 (2-) or Cu2+ killed surface-adherent Candida. Metal-chelator precipitates could be formed in biofilms following exposure to the heavy metals Cu2+ and Ni2+. This suggests that Candida biofilms may adsorb metal cations from their surroundings and that sequestration in the extracellular matrix may contribute to resistance. We concluded that biofilm formation may be a strategy for metal resistance and/or tolerance in yeasts.

  11. Nitrided Metallic Bipolar Plates

    SciTech Connect

    Brady, Michael P; Tortorelli, Peter F; Pihl, Josh A; Toops, Todd J; More, Karren Leslie; Meyer III, Harry M; Vitek, John Michael; Wang, Heli; Turner, John; Wilson, Mahlon; Garzon, Fernando; Rockward, Tommy; Connors, Dan; Rakowski, Jim; Gervasio, Don

    2008-01-01

    The objectives are: (1) Develop and optimize stainless steel alloys amenable to formation of a protective Cr-nitride surface by gas nitridation, at a sufficiently low cost to meet DOE targets and with sufficient ductility to permit manufacture by stamping. (2) Demonstrate capability of nitridation to yield high-quality stainless steel bipolar plates from thin stamped alloy foils (no significant stamped foil warping or embrittlement). (3) Demonstrate single-cell fuel cell performance of stamped and nitrided alloy foils equivalent to that of machined graphite plates of the same flow-field design ({approx}750-1,000 h, cyclic conditions, to include quantification of metal ion contamination of the membrane electrode assembly [MEA] and contact resistance increase attributable to the bipolar plates). (4) Demonstrate potential for adoption in automotive fuel cell stacks. Thin stamped metallic bipolar plates offer the potential for (1) significantly lower cost than currently-used machined graphite bipolar plates, (2) reduced weight/volume, and (3) better performance and amenability to high volume manufacture than developmental polymer/carbon fiber and graphite composite bipolar plates. However, most metals exhibit inadequate corrosion resistance in proton exchange membrane fuel cell (PEMFC) environments. This behavior leads to high electrical resistance due to the formation of surface oxides and/or contamination of the MEA by metallic ions, both of which can significantly degrade fuel cell performance. Metal nitrides offer electrical conductivities up to an order of magnitude greater than that of graphite and are highly corrosion resistant. Unfortunately, most conventional coating methods (for metal nitrides) are too expensive for PEMFC stack commercialization or tend to leave pinhole defects, which result in accelerated local corrosion and unacceptable performance.

  12. Metallic carbon materials

    DOEpatents

    Cohen, Marvin Lou; Crespi, Vincent Henry; Louie, Steven Gwon Sheng; Zettl, Alexander Karlwalter

    1999-01-01

    Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

  13. Heavy Metal Factory

    NASA Astrophysics Data System (ADS)

    Löbling, Lisa

    2017-07-01

    The metal enrichment in the cosmic circuit of matter is dominated by the yields of asymptotic giant branch (AGB) nucleosynthesis, that are blown back into the interstellar medium just before these stars die as white dwarfs. To establish constraints on AGB processes, spectral analyses of hot post-AGB stars are mandatory. These show that such stars are heavy metal factories due to the AGB s-process. The Virtual Observatory service TheoSSA offers access to synthetic stellar spectra calculated with our Tübingen non-local thermodynamic equilibrium model-atmosphere package that are suitable for the analysis of hot post-AGB stars.

  14. Metal alloy identifier

    DOEpatents

    Riley, William D.; Brown, Jr., Robert D.

    1987-01-01

    To identify the composition of a metal alloy, sparks generated from the alloy are optically observed and spectrographically analyzed. The spectrographic data, in the form of a full-spectrum plot of intensity versus wavelength, provide the "signature" of the metal alloy. This signature can be compared with similar plots for alloys of known composition to establish the unknown composition by a positive match with a known alloy. An alternative method is to form intensity ratios for pairs of predetermined wavelengths within the observed spectrum and to then compare the values of such ratios with similar values for known alloy compositions, thereby to positively identify the unknown alloy composition.

  15. Hard metal composition

    DOEpatents

    Sheinberg, Haskell

    1986-01-01

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 weight percent boron carbide and the remainder a metal mixture comprising from 70 to 90 percent tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 to 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  16. Hard metal composition

    DOEpatents

    Sheinberg, H.

    1983-07-26

    A composition of matter having a Rockwell A hardness of at least 85 is formed from a precursor mixture comprising between 3 and 10 wt % boron carbide and the remainder a metal mixture comprising from 70 to 90% tungsten or molybdenum, with the remainder of the metal mixture comprising nickel and iron or a mixture thereof. The composition has a relatively low density of between 7 and 14 g/cc. The precursor is preferably hot pressed to yield a composition having greater than 100% of theoretical density.

  17. Metals fact sheet - lanthanum

    SciTech Connect

    1995-04-01

    Mosander was the first to extract the elusive rare earth, lanthanum, from unrefined cerium nitrate in 1839. The name was derived from the Greek word lanthanein, meaning {open_quotes}to escape notice.{close_quotes} Lanthanum is the lightest rare earth and a very malleable metal-soft enough to be cut with a knife. Used primarily as an additive in steels and non-ferrous metals, lanthanum is the lightest rare earth element and one of four rare earths from which mischmetal is made. Additional applications include advanced batteries, optical fibers, and phosphors.

  18. Metallic coating of microspheres

    SciTech Connect

    Meyer, S.F.

    1980-08-15

    Extremely smooth, uniform metal coatings of micrometer thicknesses on microscopic glass spheres (microspheres) are often needed as targets for inertial confinement fusion (ICF) experiments. The first part of this paper reviews those methods used successfully to provide metal coated microspheres for ICF targets, including magnetron sputtering, electro- and electroless plating, and chemical vapor pyrolysis. The second part of this paper discusses some of the critical aspects of magnetron sputter coating of microspheres, including substrate requirements, the sticking of microspheres during coating (preventing a uniform coating), and the difficulties in growing the desired dense, smooth, uniform microstructure on continuously moving spherical substrates.

  19. Liquid metal pump

    DOEpatents

    Pennell, William E.

    1982-01-01

    The liquid metal pump comprises floating seal rings and attachment of the pump diffuser to the pump bowl for isolating structural deflections from the pump shaft bearings. The seal rings also eliminate precision machining on large assemblies by eliminating the need for a close tolerance fit between the mounting surfaces of the pump and the seals. The liquid metal pump also comprises a shaft support structure that is isolated from the pump housing for better preservation of alignment of shaft bearings. The shaft support structure also allows for complete removal of pump internals for inspection and repair.

  20. Challenges in metal recycling.

    PubMed

    Reck, Barbara K; Graedel, T E

    2012-08-10

    Metals are infinitely recyclable in principle, but in practice, recycling is often inefficient or essentially nonexistent because of limits imposed by social behavior, product design, recycling technologies, and the thermodynamics of separation. We review these topics, distinguishing among common, specialty, and precious metals. The most beneficial actions that could improve recycling rates are increased collection rates of discarded products, improved design for recycling, and the enhanced deployment of modern recycling methodology. As a global society, we are currently far away from a closed-loop material system. Much improvement is possible, but limitations of many kinds--not all of them technological--will preclude complete closure of the materials cycle.

  1. Metallic Adhesion and Bonding

    NASA Technical Reports Server (NTRS)

    Ferrante, J.; Smith, J. R.; Rose, J. H.

    1984-01-01

    Although metallic adhesion has played a central part in much tribological speculation, few quantitative theoretical calculations are available. This is in part because of the difficulties involved in such calculations and in part because the theoretical physics community is not particularly involved with tribology. The calculations currently involved in metallic adhesion are summarized and shown that these can be generalized into a scaled universal relationship. Relationships exist to other types of covalent bonding, such as cohesive, chemisorptive, and molecular bonding. A simple relationship between surface energy and cohesive energy is offered.

  2. Metals in Metal Salts: A Copper Mirror Demonstration

    ERIC Educational Resources Information Center

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  3. Metals in Metal Salts: A Copper Mirror Demonstration

    ERIC Educational Resources Information Center

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  4. Amorphous metallic films in silicon metallization systems

    NASA Astrophysics Data System (ADS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-06-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  5. Amorphous metallic films in silicon metallization systems

    NASA Technical Reports Server (NTRS)

    So, F.; Kolawa, E.; Nicolet, M. A.

    1985-01-01

    Diffusion barrier research was focussed on lowering the chemical reactivity of amorphous thin films on silicon. An additional area of concern is the reaction with metal overlays such as aluminum, silver, and gold. Gold was included to allow for technology transfer to gallium arsenide PV cells. Amorphous tungsten nitride films have shown much promise. Stability to annealing temperatures of 700, 800, and 550 C were achieved for overlays of silver, gold, and aluminum, respectively. The lower results for aluminum were not surprising because there is an eutectic that can form at a lower temperature. It seems that titanium and zirconium will remove the nitrogen from a tungsten nitride amorphous film and render it unstable. Other variables of research interest were substrate bias and base pressure during sputtering.

  6. The Exploding Metals.

    ERIC Educational Resources Information Center

    John, Gareth D.

    1980-01-01

    Describes the use and handling of alkali metals in school laboratories and seeks to reexamine precautions which one may reasonably take before executing routine procedures since their use, even by skillful teachers, occasionally results in accidents in the form of violent explosions. (Author/SK)

  7. STRIPPING METAL COATINGS

    DOEpatents

    Siefen, H.T.; Campbell, J.M.

    1959-02-01

    A method is described for removing aluminumuranium-silicon alloy bonded to metallic U comprising subjecting the Al-U -Si alloy to treatment with hot concentrated HNO/sun 3/ to partially dissolve and embrittle the alloy and shot- blasting the embrittled alloy to loosen it from the U.

  8. Metal optics and superconductivity

    SciTech Connect

    Golovashkin, A.L.

    1989-01-01

    The articles contained in this collection are dedicated to the study of the electron structure of transition metals and superconducting alloys and compounds based on them. The study of the electron structure of materials is one of the central problems of solid-state physics and defines the solution of a number of problems. One of them is the problem of high-temperature superconductivity which has attracted exceptional attention from physicists in connection with the discovery of new classes of ceramic oxides which are superconducting at liquid-nitrogen temperature. The electron structure is one of the three whales on which all of superconductivity rests. It is frequently our ignorance of the electronic properties of a metal, alloy or compound in its normal state which makes it impossible to predict superconductivity in the material, preventing use from calculating the parameters of the superconducting state. There are now a number of effective methods for investigation of the electron structure of the metals and allows. This collection discusses metal optics, tunneling and magnetic measurements in superconductors. These methods are quite informative and allow us to obtain many important electron characteristics and temperature relations. Various characteristics of the superconducting compounds Nb{sub 3}Ge, Nb{sub 3}Al, nb{sub 3}Sn and Nb{sub 3}Ga with A15 structure and NbN with B1 structure, having rather high critical temperatures, are experimentally studied.

  9. Metal detector system

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1970-01-01

    Signal voltage resulting from the disturbance of an electromagnetic field within the volume of a sensitive area is compared with a reference ac voltage for polarity information, which identifies the material. System output amplitude and polarity indicate approximate size and type of metal, respectively.

  10. Memory Metals (Marchon Eyewear)

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Another commercial application of memory metal technology is found in a "smart" eyeglass frame that remembers its shape and its wearer's fit. A patented "memory encoding process" makes this possible. Heat is not required to return the glasses to shape. A large commercial market is anticipated.

  11. Metal analysis of cotton

    USDA-ARS?s Scientific Manuscript database

    Seven varieties of cotton were investigated for 8 metal ions (K, Na, Mg, Ca, Fe, Cu, Zn, and Mn) using Inductively Coupled Plasma-Optical Emission Spectroscopy. All of the varieties were grown at the same location. Half of the samples were dry (rain fed only) and the other were well-watered (irrigat...

  12. Production of pure metals

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E. (Inventor)

    1974-01-01

    A process for depositing elements by irradiating liquids is reported. Ultra pure elements are precipitated from aqueous solutions or suspensions of compounds. A solution of a salt of a metal to be prepared is irradiated, and the insoluble reaction product settles out. Some chemical compounds may also be prepared in this manner.

  13. The Exploding Metals.

    ERIC Educational Resources Information Center

    John, Gareth D.

    1980-01-01

    Describes the use and handling of alkali metals in school laboratories and seeks to reexamine precautions which one may reasonably take before executing routine procedures since their use, even by skillful teachers, occasionally results in accidents in the form of violent explosions. (Author/SK)

  14. Metal Trades Technology Curriculum.

    ERIC Educational Resources Information Center

    EASTCONN Regional Educational Services Center, North Windham, CT.

    This curriculum guide provides materials for a metal trades technology course of study at the high school level. Its stated purpose is to help students acquire the trade knowledge necessary to function effectively in the shipfitting, welding, and piping trades. Contents include: a course description, a list of general objectives; lists of…

  15. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  16. Corrosion: ASM metals handbook

    SciTech Connect

    Not Available

    1987-01-01

    The handbook covers forms of corrosion, testing and evaluation, corrosion-resistant design, and various protection methods. 20 sections covering specific metals and alloys, heat treatments, protective coatings, anodic and cathodic protection, and design considerations. A final section discusses corrosion problems in 20 major industries, as well as the prevention and protection methods used.

  17. Metals Design Handbook

    SciTech Connect

    Betts, W. S.

    1988-07-01

    This report gives an approved set of material properties over a range of environmental conditions which are sufficient to design the metallic components in the reactor system and hot duct assembly. Table 1-1 list these metallic components together with the reference design material chosen for each component. Table 1-2 summarizes the structural criteria of each metallic component taken from the component specifications. In all cases, the criteria references the ASME B&PV Code. The ASME-Code includes the material properties of Coded material. The Code does not, however, include environmental effects (such as irradiation, corrosion, or thermal aging), and for some components the material maximum allowable temperature is below that of the design and/or postulated ``safety-related`` accident conditions. Table 1-3 gives the Code limits for the portions of the Code given in Table 1-2. This document includes the effects of the radiation environment, chemical impurity effects (in the primary coolant), and the effects of thermal aging and corrosion on the metallic properties. The design information introduced in this document includes that available from the ASME B&PV Code High-Temperature Code Cases plus material information from General Atomics (GA) and Oak Ridge National Laboratories (ORNL) that is published.

  18. Curriculum Guide for Metals.

    ERIC Educational Resources Information Center

    Oregon State Board of Education, Salem. Div. of Community Colleges and Career Education.

    Developed through a cooperative effort by industry and education, this curriculum guide outlines the basic skills and knowledge necessary for entry-level competencies in the broad field of metals, or for entrance into an apprenticeship, post-high school, or university program. This guide is one of several developed for Oregon's new approach to…

  19. Silicon Carbide Metallization

    NASA Astrophysics Data System (ADS)

    Lescoat, F.; Tanguy, F.; Durand, P.

    2016-05-01

    A study has been done to assess the feasibility of metallization of Silicon Carbide (SiC) in order to simplify design and mounting of one or more ground reference rail needed to provide an electrical reference for electronics mounted on an SiC structure.

  20. Metals technology development plan

    SciTech Connect

    Betts, W.S.

    1987-03-01

    This document presents the plan for the metals technology development required to support the design of the MHTGR within the US National Gas-Cooled Reactor Program. Besides descriptions of the required technology development, cost estimates, and schedules, the plan also includes the associated design functions and design requirements.

  1. Wings of Stretched Metal

    ERIC Educational Resources Information Center

    Nelken, Miranda

    2010-01-01

    This article presents a lesson that allows students to make bird ornaments using a metal tooling as it can be textured, cut, and colored. In this lesson, students choose a bird and sketch it on a piece of paper. Once the sketches are complete, students copy their pictures on a second piece of paper by taping the sketch over a sheet of blank paper…

  2. Memories in Metal

    ERIC Educational Resources Information Center

    Knepper, Claire A.

    2008-01-01

    In this article, the author shares a classroom project that she introduced to her students. The project involved decorating photographs with some metal materials. The project was inspired by "The Frame," a painting by the artist Frida Kahlo. This project aims to make students think critically and connect art to their lives.

  3. Ductile transplutonium metal alloys

    DOEpatents

    Conner, William V.

    1983-01-01

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  4. Ductile transplutonium metal alloys

    DOEpatents

    Conner, W.V.

    1981-10-09

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as souces of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  5. Wings of Stretched Metal

    ERIC Educational Resources Information Center

    Nelken, Miranda

    2010-01-01

    This article presents a lesson that allows students to make bird ornaments using a metal tooling as it can be textured, cut, and colored. In this lesson, students choose a bird and sketch it on a piece of paper. Once the sketches are complete, students copy their pictures on a second piece of paper by taping the sketch over a sheet of blank paper…

  6. Ductile transplutonium metal alloys

    SciTech Connect

    Conner, W.V.

    1983-04-19

    Alloys of Ce with transplutonium metals such as Am, Cm, Bk and Cf have properties making them highly suitable as sources of the transplutonium element, e.g., for use in radiation detector technology or as radiation sources. The alloys are ductile, homogeneous, easy to prepare and have a fairly high density.

  7. Hysteresis in Metal Hydrides.

    ERIC Educational Resources Information Center

    Flanagan, Ted B., And Others

    1987-01-01

    This paper describes a reproducible process where the irreversibility can be readily evaluated and provides a thermodynamic description of the important phenomenon of hysteresis. A metal hydride is used because hysteresis is observed during the formation and decomposition of the hydride phase. (RH)

  8. Memories in Metal

    ERIC Educational Resources Information Center

    Knepper, Claire A.

    2008-01-01

    In this article, the author shares a classroom project that she introduced to her students. The project involved decorating photographs with some metal materials. The project was inspired by "The Frame," a painting by the artist Frida Kahlo. This project aims to make students think critically and connect art to their lives.

  9. Dissimilatory metal reduction.

    PubMed

    Lovley, D R

    1993-01-01

    Microorganisms can enzymatically reduce a variety of metals in metabolic processes that are not related to metal assimilation. Some microorganisms can conserve energy to support growth by coupling the oxidation of simple organic acids and alcohols, H2, or aromatic compounds to the reduction of Fe(III) or Mn(IV). This dissimilatory Fe(III) and Mn(IV) reduction influences the organic as well as the inorganic geochemistry of anaerobic aquatic sediments and ground water. Microorganisms that use U(VI) as a terminal electron acceptor play an important role in uranium geochemistry and may be a useful tool for removing uranium from contaminated environments. Se(VI) serves as a terminal electron acceptor to support anaerobic growth of some microorganisms. Reduction of Se(VI) to Se(O) is an important mechanism for the precipitation of selenium from contaminated waters. Enzymatic reduction of Cr(VI) to the less mobile and less toxic Cr(III), and reduction of soluble Hg(II) to volatile Hg(O) may affect the fate of these compounds in the environment and might be used as a remediation strategy. Microorganisms can also enzymatically reduce other metals such as technetium, vanadium, molybdenum, gold, silver, and copper, but reduction of these metals has not been studied extensively.

  10. Serpentine metal gasket

    DOEpatents

    Rothgeb, Timothy Moore [Norfolk, VA; Reece, Charles Edwin [Yorktown, VA

    2009-06-02

    A metallic seal or gasket for use in the joining of cryogenic fluid conduits, the seal or gasket having a generally planar and serpentine periphery defining a central aperture. According to a preferred embodiment, the periphery has at least two opposing elongated serpentine sides and two opposing arcuate ends joining the opposing elongated serpentine sides and is of a hexagonal cross-section.

  11. Development of metallization process

    NASA Technical Reports Server (NTRS)

    Garcia, A., III

    1983-01-01

    A non lead frit paste is evaluated. A two step process is discussed where the bulk of the metallization is Mo/Sn but a small ohmic pad is silver. A new matrix of paste formulations is developed. A variety of tests are performed on paste samples to determine electrical, thermal and structural properties.

  12. Metal allergy in Singapore.

    PubMed

    Goon, Anthony T J; Goh, C L

    2005-03-01

    This is a clinical epidemiologic study to determine the frequency of metal allergy among patch-tested patients in the years 2001-2003. The results are compared with those of previous studies. All patients diagnosed as having allergic contact dermatitis in the National Skin Centre, Singapore, from January 2001 to December 2003 were studied retrospectively. The frequency of positive patch tests to the following metals were nickel 19.9%, chromate 5.6%, cobalt 8.2% and gold 8.3%. The frequency of nickel allergy has been steadily rising over the last 20 years. The most common sources of nickel allergy are costume jewelry, belt buckles, wrist watches and spectacle frames. After declining from 1984 to 1990, chromate and cobalt allergies have also been steadily increasing subsequently. The most common sources of chromate allergy were cement, leather and metal objects. Most positive patch tests to cobalt are regarded as co-sensitization due to primary nickel or chromate allergies. There has been a steep increase in positive patch tests to gold from 2001 to 2003, which is difficult to explain because the relevance and sources of such positive patch tests can rarely be determined with certainty. There has been an overall rise in the frequency of metal allergy in the last 20 years.

  13. Metal-Ceramic Seals.

    DTIC Science & Technology

    1979-10-01

    reliability and very low thermal barriers and rf losses when compared to the classical Mo-Mn metallization. Three types of rf windows were fabricated...found to be excellent if cusil is used as brazing alloy, and extremely low thermal barriers have been measured. The use of Au/Cu brazing alloys

  14. Metallic fuels handbook

    SciTech Connect

    Hofman, G. L.; Leibowitz, L.; Kramer, J. M.; Billone, M. C.; Koenig, J. F.

    1985-11-01

    This compilation of Thermophysical and Mechanical Properties of certain metallic fuels is meant to be used as a common source of data in work related to the Integral Fast Reactor. This handbook focuses on the two fuel compositions chosen for the IFR; namely, Uranium-Zirconium and Uranium-Plutonium-Zirconium.

  15. Optimizing Misch-Metal Compositions In Metal Hydride Anodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Halpert, Gerald

    1995-01-01

    Electrochemical cells based on metal hydride anodes investigated experimentally in effort to find anode compositions maximizing charge/discharge-cycle performances. Experimental anodes contained misch metal alloyed with various proportions of Ni, Co, Mn, and Al, and experiments directed toward optimization of composition of misch metal.

  16. Direct metal laser sintering: a digitised metal casting technology.

    PubMed

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  17. Optimizing Misch-Metal Compositions In Metal Hydride Anodes

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.; Halpert, Gerald

    1995-01-01

    Electrochemical cells based on metal hydride anodes investigated experimentally in effort to find anode compositions maximizing charge/discharge-cycle performances. Experimental anodes contained misch metal alloyed with various proportions of Ni, Co, Mn, and Al, and experiments directed toward optimization of composition of misch metal.

  18. 14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. VIEW OF METAL ROLLING OPERATION. THE METALS ARE BEING PREPARED TO BE ROLLED INTO SHEETS OF SPECIFIC THICKNESS. COMPONENT PARTS WERE FABRICATED FROM THE METAL SHEETS. (11/82) - Rocky Flats Plant, Uranium Rolling & Forming Operations, Southeast section of plant, southeast quadrant of intersection of Central Avenue & Eighth Street, Golden, Jefferson County, CO

  19. Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations.

    PubMed

    Sharma, Maya; Singh, Mahander Pratap; Srivastava, Chandan; Madras, Giridhar; Bose, Suryasarathi

    2014-12-10

    Two unique materials were developed, like graphene oxide (GO) sheets covalently grafted on to barium titanate (BT) nanoparticles and cobalt nanowires (Co-NWs), to attenuate the electromagnetic (EM) radiations in poly(vinylidene fluoride) (PVDF)-based composites. The rationale behind using either a ferroelectric or a ferromagnetic material in combination with intrinsically conducting nanoparticles (multiwall carbon nanotubes, CNTs), is to induce both electrical and magnetic dipoles in the system. Two key properties, namely, enhanced dielectric constant and magnetic permeability, were determined. PVDF/BT-GO composites exhibited higher dielectric constant compared to PVDF/BT and PVDF/GO composites. Co-NWs, which were synthesized by electrodeposition, exhibited saturation magnetization (Ms) of 40 emu/g and coercivity (Hc) of 300 G. Three phase hybrid composites were prepared by mixing CNTs with either BT-GO or Co-NWs in PVDF by solution blending. These nanoparticles showed high electrical conductivity and significant attenuation of EM radiations both in the X-band and in the Ku-band frequency. In addition, BT-GO/CNT and Co-NWs/CNT particles also enhanced the thermal conductivity of PVDF by ca. 8.7- and 9.3-fold in striking contrast to neat PVDF. This study open new avenues to design flexible and lightweight electromagnetic interference shielding materials by careful selection of functional nanoparticles.

  20. Instability of Polyvinylidene Fluoride-Based Polymeric Binder in Lithium-Ion Cells: Final Report

    SciTech Connect

    Garcia, M.; Nagasubramanian, G.; Tallant, D.R.; Roth, E.P.

    1999-05-01

    Thermal instabilities were identified in SONY-type lithium-ion cells and correlated with interactions of cell constituents and reaction products. Three temperature regions of interaction were identified and associated with the state of charge (degree of Li intercalation) of the cell. Anodes were shown to undergo exothermic reactions as low as 100 degree C involving the solid electrolyte interface (SEI) layer and the LiPF(6) salt in the electrolyte (EC-PC:DEC/IM LiPF(6)). These reactions could account for the thermal runaway observed in these cells beginning at 100 degree C. Exothermic reactions were also observed in the 200 degree C to 300 degree C region between the intercalated lithium anodes, the LiPF(6) salt, and the PVDF. These reactions were followed by a high-temperature reaction region, 300 degree C to 400 degree C, also involving the PVDF binder and the intercalated lithium anodes. The solvent was not directly involved in these reactions but served as a moderator and transport medium. Cathode exothermic reactions with the PVDF binder were observed above 200 degree C and increased with the state of charge (decreasing Li content). The stability of the PVDF binder as a function of electrochemical cycling was studied using FTIR. The infrared spectra from the extracts of both electrodes indicate that PVDF is chemically modified by exposure to the lithium cell electrolyte (as well as electrochemical cycling) in conjunction with NMP extraction. Preconditioning of PVDF to dehydrohalogenation, which may be occurring by reaction with LiPf(6), makes the PVDF susceptible to attack by a range of nucleophiles.

  1. Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study.

    PubMed

    Łukomska-Szymańska, Monika; Zarzycka, Beata; Grzegorczyk, Janina; Sokołowski, Krzysztof; Półtorak, Konrad; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p < 0.001) bacteria growth compared to commercially available composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans.

  2. Organic dopant added polyvinylidene fluoride based solid polymer electrolytes for dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Senthil, R. A.; Theerthagiri, J.; Madhavan, J.

    2016-02-01

    The effect of phenothiazine (PTZ) as dopant on PVDF/KI/I2 electrolyte was studied for the fabrication of efficient dye-sensitized solar cell (DSSC). The different weight percentage (wt%) ratios (0, 20, 30, 40 and 50%) of PTZ doped PVDF/KI/I2 electrolyte films were prepared by solution casting method using DMF as a solvent. The following techniques such as Fourier transform infrared (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometer (XRD) and AC-impedance analysis have been employed to characterize the prepared polymer electrolyte films. The FT-IR studies revealed the complex formation between PVDF/KI/I2 and PTZ. The crystalline and amorphous nature of polymer electrolytes were confirmed by DSC and XRD analysis respectively. The ionic conductivities of polymer electrolyte films were calculated from the AC-impedance analysis. The undoped PVDF/KI/I2 electrolyte exhibited the ionic conductivity of 4.68×10-6 S cm-1 and this value was increased to 7.43×10-5 S cm-1 when PTZ was added to PVDF/KI/I2 electrolyte. On comparison with different wt% ratios, the maximum ionic conductivity was observed for 20% PTZ-PVDF/KI/I2 electrolyte. A DSSC assembled with the optimized wt % of PTZ doped PVDF/KI/I2 electrolyte exhibited a power conversion efficiency of 2.92%, than the undoped PVDF/KI/I2 electrolyte (1.41%) at similar conditions. Hence, the 20% PTZ-PVDF/KI/I2 electrolyte was found to be optimal for DSSC applications.

  3. Temperature Measurement Using Silica And Fluoride Based Optical Fibers For Biological Applications

    NASA Astrophysics Data System (ADS)

    Sinofsky, Edward; Dumont, Michael G.

    1988-06-01

    We analyze the potential of an optical fiber based remote thermography system. Achievable accuracy, resolution, range, and response time are examined. Experimental results concerning each of these parameters will be presented and compared with theoretical predictions. Results obtained utilizing both silica and fluoride fibers are compared and the benefits and limitations of each are discussed. Two main application areas of this measurement technique are addressed. The use of this technique in the invitro and invivo study of laser induced temperature rise in biological tissue will lead to a better understanding of laser-tissue interaction. Tissue temperature information can be used as a feedback element in a medical laser energy delivery system. Simultaneous laser energy delivery and thernographic sensing through a single fiber will provide "automatic dosing" in many laser coagulative treatments.

  4. Polarization effects and phase equilibria in high-energy-density polyvinylidene-fluoride-based polymers.

    PubMed

    Ranjan, V; Yu, L; Nakhmanson, Serge; Bernholc, Jerry; Nardelli, M Buongiorno

    2010-09-01

    Using first-principles calculations, the phase diagrams of polyvinylidene fluoride (PVDF) and its copolymers under an applied electric field are studied and phase transitions between their nonpolar alpha and polar beta phases are discussed. The results show that the degree of copolymerization is a crucial parameter controlling the structural phase transition. In particular, for tetrafluoroethylene (TeFE) concentration above 12%, PVDF-TeFE is stabilized in the beta phase, whereas the alpha phase is stable for lower concentrations. As larger electric fields are applied, domains with smaller concentrations (< or = 12%) undergo a transition from the alpha to the beta phase until a breakdown field of approximately 600 MV m(-1) is reached. These structural phase transitions can be exploited for efficient storage of electrical energy.

  5. A near-Infrared Fluorescent Chemodosimeter for Ratiometric Detecting Fluoride Based on Desilylation Reaction.

    PubMed

    Xie, Puhui; Guo, Fengqi; Gao, Guangqin; Fan, Wei; Yang, Guoyu; Xie, Lixia

    2016-09-01

    A new chemodosimeter based on dicyanomethylene-4H-chromene chromophore (probe 1) was developed as a ratiometric fluorescent probe in near-infrared range for F(-) with good selectivity in acetonitrile. Probe 1 could be used to directly visualize F(-) by the naked eye and showed more than 621-fold fluorescence enhancement at 715 nm upon reaction with F(-) upon excitation at 625 nm. The recognition of probe 1 to fluoride was featured by F(-)-induced red-shifts of both absorption (185 nm) and fluorescence peaks (132 nm) based on internal charge transfer (ICT) in acetonitrile. The desilylation reaction of 1 by F(-) was proposed for its dual absorption and emission ratiometric detection of fluoride.

  6. Novel electroactive poly(vinylidene fluoride)-based polymer systems and their applications

    NASA Astrophysics Data System (ADS)

    Li, Zhimin

    Electroactive polymers (EAPs) are widely used in many areas, such as actuators, sensors and transducers. This research focused on developing new electroactive polymer systems and exploiting applications of EAPs in biosensors. Research objectives were: (1) studying the recrystallization of irradiated P(VDF-TrFE) copolymer to deepen our understanding of EAPs; (2) developing a series of novel high performance and inexpensive EAP systems---P(VDF-TrFE)-based copolymer blends; and (3) exploring new EAP in biosensor applications. The structure and morphology of recrystallized P(VDF-TrFE) with 65/35 mol% copolymer samples that had previously been irradiated were studied using X-ray, FTIR and DSC techniques. The crystalline structure and morphology, as well as the conformation of the polymer chains, were determined by X-ray and FTIR. Their thermal behaviors, including phase transition, were characterized by DSC. It was found that in samples irradiated with doses of less than 60 Mrad, the recrystallized copolymers exhibited similar behaviors to unirradiated samples except for having a lower level of crystallinity. However, for samples irradiated with higher doses, such as 60, 85 and 100 Mrad, the X-ray diffraction results indicated that the crystalline structure of the recrystallized copolymers were completely different than unirradiated samples. A systematic study of the crystalline structure and phase transition behavior of these recrystallized P(VDF-TrFE) 65/35 mol% samples is reported here. In order to create inexpensive EAPs, a blending between P(VDF-TrFE) and P(VDF-CTFE) copolymers was developed, both of which are commercially available in their semi-crystalline form is reported. First, the composition effects on miscibility, crystalline structure, and phase transition behavior were evaluated with DSC, X-ray and hysteresis loop measurements. The experimental results showed that stretching the polymer before annealing increases the polarization response. This improved treatment made the VDF segments of both copolymers in the blend co-crystallize and generate rich TrFE and CTFE regions. These regions served as boundary layers located near the VDF crystalline regions. The ordering degree of these boundary layers may be changed by an electric field, which results in a high polarization response. Finally, the feasibility study of microelectronic mechanical diaphragm (MEMD) using polymers is presented. First, diaphragms with diameters in the mm scale and thickness in the mum scale were fabricated using conventional methods. Their resonance frequencies and quality merit factors (Q value) in liquid were then demonstrated. The Q values in liquid medium were found to be the same or better than that measured in air. A microfabrication process flow chart based on current silicon technology has been designed and established. While using the current microelectronic fabrication processes, which are stressful to many materials, the polymer film showed great resilience and remained unchanged, flat and affixed to the Si wafer. (Abstract shortened by UMI.)

  7. "Self-Peel-Off" Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices.

    PubMed

    Tai, Yanlong; Lubineau, Gilles

    2017-04-01

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  8. Antibacterial Properties of Calcium Fluoride-Based Composite Materials: In Vitro Study

    PubMed Central

    Zarzycka, Beata; Grzegorczyk, Janina; Sokołowski, Krzysztof; Półtorak, Konrad; Sokołowski, Jerzy

    2016-01-01

    The aim of the study was to evaluate antibacterial activity of composite materials modified with calcium fluoride against cariogenic bacteria S. mutans and L. acidophilus. One commercially available conventional light-curing composite material containing fluoride ions (F2) and two commercially available flowable light-curing composite materials (Flow Art and X-Flow) modified with 1.5, 2.5, and 5.0 wt% anhydrous calcium fluoride addition were used in the study. Composite material samples were incubated in 0.95% NaCl at 35°C for 3 days; then dilution series of S. mutans and L. acidophilus strains were made from the eluates. Bacteria dilutions were cultivated on media afterwards. Colony-forming unit per 1 mL of solution (CFU/mL) was calculated. Composite materials modified with calcium fluoride highly reduced (p < 0.001) bacteria growth compared to commercially available composite materials containing fluoride compounds. The greatest reduction in bacteria growth was observed for composite materials modified with 1.5% wt. CaF2. All three tested composite materials showed statistically greater antibacterial activity against L. acidophilus than against S. mutans. PMID:28053976

  9. Playing with defects in metals

    NASA Astrophysics Data System (ADS)

    Li, Xiuyan; Lu, K.

    2017-07-01

    Xiuyan Li and K. Lu discuss a strategy, alternative to alloying, to tailor the mechanical properties of metals. By engineering defects, metals with bespoke performance might be obtained while reducing the materials' compositional complexity.

  10. Purification of alkali metal nitrates

    DOEpatents

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  11. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  12. Optical absorption enhancement of hybrid-plasmonic-based metal-semiconductor-metal photodetector incorporating metal nanogratings and embedded metal nanoparticles.

    PubMed

    Tan, Chee Leong; Karar, Ayman; Alameh, Kamal; Lee, Yong Tak

    2013-01-28

    We propose and numerically demonstrate a high absorption hybrid-plasmonic-based metal semiconductor metal photodetector (MSM-PD) comprising metal nanogratings, a subwavelength slit and amorphous silicon or germanium embedded metal nanoparticles (NPs). Simulation results show that by optimizing the metal nanograting parameters, the subwavelength slit and the embedded metal NPs, a 1.3 order of magnitude increase in electric field is attained, leading to 28-fold absorption enhancement, in comparison with conventional MSM-PD structures. This is 3.5 times better than the absorption of surface plasmon polariton (SPP) based MSM-PD structures employing metal nanogratings and a subwavelength slit. This absorption enhancement is due to the ability of the embedded metal NPs to enhance their optical absorption and scattering properties through light-stimulated resonance aided by the conduction electrons of the NPs.

  13. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  14. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in...

  15. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented...

  16. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in...

  17. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented...

  18. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented...

  19. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in...

  20. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in...

  1. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented...

  2. 21 CFR 888.3200 - Finger joint metal/metal constrained uncemented prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Finger joint metal/metal constrained uncemented... metal/metal constrained uncemented prosthesis. (a) Identification. A finger joint metal/metal... Administration on or before December 26, 1996 for any finger joint metal/metal constrained uncemented...

  3. 21 CFR 888.3210 - Finger joint metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Finger joint metal/metal constrained cemented... metal/metal constrained cemented prosthesis. (a) Identification. A finger joint metal/metal constrained..., 1996 for any finger joint metal/metal constrained cemented prosthesis that was in...

  4. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  5. Metal-binding proteins as metal pollution indicators.

    PubMed Central

    Hennig, H F

    1986-01-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass. PMID:3709437

  6. SURFACE TREATMENT OF METALLIC URANIUM

    DOEpatents

    Gray, A.G.; Schweikher, E.W.

    1958-05-27

    The treatment of metallic uranium to provide a surface to which adherent electroplates can be applied is described. Metallic uranium is subjected to an etchant treatment in aqueous concentrated hydrochloric acid, and the etched metal is then treated to dissolve the resulting black oxide and/or chloride film without destroying the etched metal surface. The oxide or chloride removal is effected by means of moderately concentrated nitric acid in 3 to 20 seconds.

  7. Upgrading platform using alkali metals

    DOEpatents

    Gordon, John Howard

    2017-01-17

    A method for removing sulfur, nitrogen or metals from an oil feedstock. The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  8. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1994-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  9. Metal oxide-polymer composites

    NASA Technical Reports Server (NTRS)

    Wellinghoff, Stephen T. (Inventor)

    1997-01-01

    A method of making metal oxide clusters in a single stage by reacting a metal oxide with a substoichiometric amount of an acid in the presence of an oxide particle growth terminator and solubilizer. A method of making a ceramer is also disclosed in which the metal oxide clusters are reacted with a functionalized polymer. The resultant metal oxide clusters and ceramers are also disclosed.

  10. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  11. Electroless metal plating of plastics

    DOEpatents

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  12. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  13. Upgrading platform using alkali metals

    SciTech Connect

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  14. Methods of recovering alkali metals

    DOEpatents

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  15. Neurotoxicity of Metal Mixtures.

    PubMed

    Andrade, V M; Aschner, M; Marreilha Dos Santos, A P

    2017-01-01

    Metals are the oldest toxins known to humans. Metals differ from other toxic substances in that they are neither created nor destroyed by humans (Casarett and Doull's, Toxicology: the basic science of poisons, 8th edn. McGraw-Hill, London, 2013). Metals are of great importance in our daily life and their frequent use makes their omnipresence and a constant source of human exposure. Metals such as arsenic [As], lead [Pb], mercury [Hg], aluminum [Al] and cadmium [Cd] do not have any specific role in an organism and can be toxic even at low levels. The Substance Priority List of Agency for Toxic Substances and Disease Registry (ATSDR) ranked substances based on a combination of their frequency, toxicity, and potential for human exposure. In this list, As, Pb, Hg, and Cd occupy the first, second, third, and seventh positions, respectively (ATSDR, Priority list of hazardous substances. U.S. Department of Health and Human Services, Public Health Service, Atlanta, 2016). Besides existing individually, these metals are also (or mainly) found as mixtures in various parts of the ecosystem (Cobbina SJ, Chen Y, Zhou Z, Wub X, Feng W, Wang W, Mao G, Xu H, Zhang Z, Wua X, Yang L, Chemosphere 132:79-86, 2015). Interactions among components of a mixture may change toxicokinetics and toxicodynamics (Spurgeon DJ, Jones OAH, Dorne J-L, Svendsen C, Swain S, Stürzenbaum SR, Sci Total Environ 408:3725-3734, 2010) and may result in greater (synergistic) toxicity (Lister LJ, Svendsen C, Wright J, Hooper HL, Spurgeon DJ, Environ Int 37:663-670, 2011). This is particularly worrisome when the components of the mixture individually attack the same organs. On the other hand, metals such as manganese [Mn], iron [Fe], copper [Cu], and zinc [Zn] are essential metals, and their presence in the body below or above homeostatic levels can also lead to disease states (Annangi B, Bonassi S, Marcos R, Hernández A, Mutat Res 770(Pt A):140-161, 2016). Pb, As, Cd, and Hg can induce Fe, Cu, and Zn

  16. Metals processing control by counting molten metal droplets

    DOEpatents

    Schlienger, Eric; Robertson, Joanna M.; Melgaard, David; Shelmidine, Gregory J.; Van Den Avyle, James A.

    2000-01-01

    Apparatus and method for controlling metals processing (e.g., ESR) by melting a metal ingot and counting molten metal droplets during melting. An approximate amount of metal in each droplet is determined, and a melt rate is computed therefrom. Impedance of the melting circuit is monitored, such as by calculating by root mean square a voltage and current of the circuit and dividing the calculated current into the calculated voltage. Analysis of the impedance signal is performed to look for a trace characteristic of formation of a molten metal droplet, such as by examining skew rate, curvature, or a higher moment.

  17. Photochemistry of Metal-Metal Bonded Transition Element Complexes

    DTIC Science & Technology

    1980-12-12

    CONTRACT NO0014-75-C-0880 Task No. NR 051-579 TECHNICAL REPORT NO. 25 PHOTOCHEMISTRY OF METAL-METAL BONDED TRANSITION ELEMENT COMPLEXES by Mark S . Wrighton...unlimited. 17, Di:- t. Ii t I / Avolil:J, ; Codc’s ! Photochemistry of Metal-Metal Bonded Transition Element Complexes Mark S . Wrighton, James L. Graff...publication in the ACS Symposium Series, "Reactivity of MetalrMetal Bonds", M. H. Chisholm, ed.) IA c*Addre~ s orrespondence to this author, ; r[ I . - - 1

  18. Simultaneous removal of nitrate and heavy metals by iron metal.

    PubMed

    Hao, Zhi-Wei; Xu, Xin-Hua; Jin, Jian; He, Ping; Liu, Yong; Wang, Da-Hui

    2005-05-01

    Great attention should be paid now to simultaneously removing common pollutants, especially inorganic pollutants such as nitrate and heavy metals, as individual removal has been investigated extensively. Removing common pollutants simultaneously by iron metal is a very effective alternative method. Near neutral pH, heavy metals, such as copper and nickel, can be removed rapidly by iron metal, while nitrate removal very much slower than that of copper and nickel, and copper can accelerate nitrate removal when both are removed simultaneously. Even a little amount of copper can enhance nitrate removal efficiently. Different mechanisms of these contaminants removal by iron metal were also discussed.

  19. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2000-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  20. Inert electrode containing metal oxides, copper and noble metal

    DOEpatents

    Ray, Siba P.; Woods, Robert W.; Dawless, Robert K.; Hosler, Robert B.

    2001-01-01

    A cermet composite material is made by treating at an elevated temperature a mixture comprising a compound of iron and a compound of at least one other metal, together with an alloy or mixture of copper and a noble metal. The alloy or mixture preferably comprises particles having an interior portion containing more copper than noble metal and an exterior portion containing more noble metal than copper. The noble metal is preferably silver. The cermet composite material preferably includes alloy phase portions and a ceramic phase portion. At least part of the ceramic phase portion preferably has a spinel structure.

  1. Metal Fabricating Specialist (AFSC 55252).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This seven-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for metal fabricating specialists. Covered in the individual volumes are general subjects (career progression, management of activities and resources, shop mathematics, and characteristics of metals); sheet metal tools and equipment…

  2. Integrated decontamination process for metals

    DOEpatents

    Snyder, Thomas S.; Whitlow, Graham A.

    1991-01-01

    An integrated process for decontamination of metals, particularly metals that are used in the nuclear energy industry contaminated with radioactive material. The process combines the processes of electrorefining and melt refining to purify metals that can be decontaminated using either electrorefining or melt refining processes.

  3. Fabrication of metallic glass structures

    DOEpatents

    Cline, Carl F.

    1986-01-01

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature range.

  4. Fabrication of metallic glass structures

    DOEpatents

    Cline, C.F.

    1983-10-20

    Amorphous metal powders or ribbons are fabricated into solid shapes of appreciable thickness by the application of compaction energy. The temperature regime wherein the amorphous metal deforms by viscous flow is measured. The metal powders or ribbons are compacted within the temperature regime.

  5. Bonding Elastomers To Metal Substrates

    NASA Technical Reports Server (NTRS)

    Dickerson, George E.; Kelley, Henry L.

    1990-01-01

    Improved, economical method for bonding elastomers to metals prevents failures caused by debonding. In new technique, vulcanization and curing occur simultaneously in specially designed mold that acts as form for desired shape of elastomer and as container that positions and supports metal parts. Increases interface adhesion between metal, adhesive, and elastomer.

  6. Bonding Elastomers To Metal Substrates

    NASA Technical Reports Server (NTRS)

    Dickerson, George E.; Kelley, Henry L.

    1990-01-01

    Improved, economical method for bonding elastomers to metals prevents failures caused by debonding. In new technique, vulcanization and curing occur simultaneously in specially designed mold that acts as form for desired shape of elastomer and as container that positions and supports metal parts. Increases interface adhesion between metal, adhesive, and elastomer.

  7. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  8. Electrical Conductivity in Transition Metals

    ERIC Educational Resources Information Center

    Talbot, Christopher; Vickneson, Kishanda

    2013-01-01

    The aim of this "Science Note" is to describe how to test the electron-sea model to determine whether it accurately predicts relative electrical conductivity for first-row transition metals. In the electron-sea model, a metal crystal is viewed as a three-dimensional array of metal cations immersed in a sea of delocalised valence…

  9. METHOD OF PURIFYING URANIUM METAL

    DOEpatents

    Blanco, R.E.; Morrison, B.H.

    1958-12-23

    The removal of lmpurities from uranlum metal can be done by a process conslstlng of contacting the metal with liquid mercury at 300 icient laborato C, separating the impunitycontalnlng slag formed, cooling the slag-free liquld substantlally below the point at which uranlum mercurlde sollds form, removlng the mercury from the solids, and recovering metallic uranium by heating the solids.

  10. Metal species involved in long distance metal transport in plants

    PubMed Central

    Álvarez-Fernández, Ana; Díaz-Benito, Pablo; Abadía, Anunciación; López-Millán, Ana-Flor; Abadía, Javier

    2014-01-01

    The mechanisms plants use to transport metals from roots to shoots are not completely understood. It has long been proposed that organic molecules participate in metal translocation within the plant. However, until recently the identity of the complexes involved in the long-distance transport of metals could only be inferred by using indirect methods, such as analyzing separately the concentrations of metals and putative ligands and then using in silico chemical speciation software to predict metal species. Molecular biology approaches also have provided a breadth of information about putative metal ligands and metal complexes occurring in plant fluids. The new advances in analytical techniques based on mass spectrometry and the increased use of synchrotron X-ray spectroscopy have allowed for the identification of some metal-ligand species in plant fluids such as the xylem and phloem saps. Also, some proteins present in plant fluids can bind metals and a few studies have explored this possibility. This study reviews the analytical challenges researchers have to face to understand long-distance metal transport in plants as well as the recent advances in the identification of the ligand and metal-ligand complexes in plant fluids. PMID:24723928

  11. FLUIDIC: Metal Air Recharged

    SciTech Connect

    Friesen, Cody

    2014-03-07

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  12. Antibacterial Metallic Touch Surfaces

    PubMed Central

    Villapún, Victor M.; Dover, Lynn G.; Cross, Andrew; González, Sergio

    2016-01-01

    Our aim is to present a comprehensive review of the development of modern antibacterial metallic materials as touch surfaces in healthcare settings. Initially we compare Japanese, European and US standards for the assessment of antimicrobial activity. The variations in methodologies defined in these standards are highlighted. Our review will also cover the most relevant factors that define the antimicrobial performance of metals, namely, the effect of humidity, material geometry, chemistry, physical properties and oxidation of the material. The state of the art in contact-killing materials will be described. Finally, the effect of cleaning products, including disinfectants, on the antimicrobial performance, either by direct contact or by altering the touch surface chemistry on which the microbes attach, will be discussed. We offer our outlook, identifying research areas that require further development and an overview of potential future directions of this exciting field. PMID:28773856

  13. Invisible metallic mesh

    PubMed Central

    Ye, Dexin; Lu, Ling; Joannopoulos, John D.; Soljačić, Marin; Ran, Lixin

    2016-01-01

    A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies. PMID:26884208

  14. Invisible metallic mesh.

    PubMed

    Ye, Dexin; Lu, Ling; Joannopoulos, John D; Soljačić, Marin; Ran, Lixin

    2016-03-08

    A solid material possessing identical electromagnetic properties as air has yet to be found in nature. Such a medium of arbitrary shape would neither reflect nor refract light at any angle of incidence in free space. Here, we introduce nonscattering corrugated metallic wires to construct such a medium. This was accomplished by aligning the dark-state frequencies in multiple scattering channels of a single wire. Analytical solutions, full-wave simulations, and microwave measurement results on 3D printed samples show omnidirectional invisibility in any configuration. This invisible metallic mesh can improve mechanical stability, electrical conduction, and heat dissipation of a system, without disturbing the electromagnetic design. Our approach is simple, robust, and scalable to higher frequencies.

  15. Metals handbook, desk edition

    SciTech Connect

    Not Available

    1985-01-01

    In this book covered are all the topics in metals and metals production processes. The first three sections include a glossary of 3000 terms, frequently used engineering tables giving data on the physical properties of the elements and standard industrial ferrous and nonferrous alloys; conversion tables; articles on crystal structure, physical and mechanical properties, and phase diagrams; and criteria used in selecting alloys for design purposes. The next major part is on properties and selection and offers explanations of the metallurgy, typical uses and service characteristics of industrial alloys. The chemical compositions and mechanical properties of thousands of standard ferrous and nonferrous alloys are given. Practical information is provided on failure analysis, nondestructive testing, mechanical testing, metallography, fractography and quality control.

  16. Fragmentation properties of metals

    SciTech Connect

    Grady, D.E.; Kipp, M.E.

    1996-06-01

    In the present study we are developing an experimental fracture material property test method specific to dynamic fragmentation. Spherical test samples of the metals of interest are subjected to controlled impulsive stress loads by acceleration to high velocities with a light-gas launcher facility and subsequent normal impact on thin plates. Motion, deformation and fragmentation of the test samples are diagnosed with multiple flash radiography methods. The impact plate materials are selected to be transparent to the x-ray method so that only test metal material is imaged. Through a systematic series of such tests, both strain-to-failure and fragmentation resistance properties are determined through this experimental method. Fragmentation property data for several steels, copper, aluminum, tantalum and titanium have been obtained to date. Aspects of the dynamic data have been analyzed with computational methods to achieve a better understanding of the processes leading to failure and fragmentation, and to test an existing computational fragmentation model.

  17. FLUIDIC: Metal Air Recharged

    ScienceCinema

    Friesen, Cody

    2016-07-12

    Fluidic, with the help of ARPA-E funding, has developed and deployed the world's first proven high cycle life metal air battery. Metal air technology, often used in smaller scale devices like hearing aids, has the lowest cost per electron of any rechargeable battery storage in existence. Deploying these batteries for grid reliability is competitive with pumped hydro installations while having the advantages of a small footprint. Fluidic's battery technology allows utilities and other end users to store intermittent energy generated from solar and wind, as well as maintain reliable electrical delivery during power outages. The batteries are manufactured in the US and currently deployed to customers in emerging markets for cell tower reliability. As they continue to add customers, they've gained experience and real world data that will soon be leveraged for US grid reliability.

  18. Superconductivity in transition metals.

    PubMed

    Slocombe, Daniel R; Kuznetsov, Vladimir L; Grochala, Wojciech; Williams, Robert J P; Edwards, Peter P

    2015-03-13

    A qualitative account of the occurrence and magnitude of superconductivity in the transition metals is presented, with a primary emphasis on elements of the first row. Correlations of the important parameters of the Bardeen-Cooper-Schrieffer theory of superconductivity are highlighted with respect to the number of d-shell electrons per atom of the transition elements. The relation between the systematics of superconductivity in the transition metals and the periodic table high-lights the importance of short-range or chemical bonding on the remarkable natural phenomenon of superconductivity in the chemical elements. A relationship between superconductivity and lattice instability appears naturally as a balance and competition between localized covalent bonding and so-called broken covalency, which favours d-electron delocalization and superconductivity. In this manner, the systematics of superconductivity and various other physical properties of the transition elements are related and unified. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. Noble metals in oncology

    PubMed Central

    Markowska, Anna; Jaszczyńska-Nowinka, Karolina; Lubin, Jolanta; Markowska, Janina

    2015-01-01

    Worldwide research groups are searching for anticancer compounds, many of them are organometalic complexes having platinum group metals as their active centers. Most commonly used cytostatics from this group are cisplatin, carboplatin and oxaliplatin. Cisplatin was used fot the first time in 1978, from this time many platinum derivatives were created. In this review we present biological properties and probable future clinical use of platinum, gold, silver, iridium and ruthenium derivatives. Gold derivative Auranofin has been studied extensively. Action of silver nanoparticles on different cell lines was analysed. Iridium isotopes are commonly used in brachyterapy. Ruthenium compound new anti-tumour metastasis inhibitor (NAMI-A) is used in managing lung cancer metastases. Electroporation of another ruthenium based compound KP1339 was also studied. Most of described complexes have antiproliferative and proapoptotic properties. Further studies need to be made. Nevertheless noble metal based chemotherapheutics and compounds seem to be an interesting direction of research. PMID:26557773

  20. Environmental epigenetics in metal exposure

    PubMed Central

    Martinez-Zamudio, Ricardo

    2011-01-01

    Although it is widely accepted that chronic exposure to arsenite, nickel, chromium and cadmium increases cancer incidence in individuals, the molecular mechanisms underlying their ability to transform cells remain largely unknown. Carcinogenic metals are typically weak mutagens, suggesting that genetic-based mechanisms may not be primarily responsible for metal-induced carcinogenesis. Growing evidence shows that environmental metal exposure involves changes in epigenetic marks, which may lead to a possible link between heritable changes in gene expression and disease susceptibility and development. Here, we review recent advances in the understanding of metal exposure affecting epigenetic marks and discuss establishment of heritable gene expression in metal-induced carcinogenesis. PMID:21610324

  1. Selective reduction of heavy metals

    SciTech Connect

    Bjorling, G.

    1984-12-11

    The present invention relates to selective reduction of heavy metals out of finey grained, substantially oxidic material by blowing the oxidic material into a furnace together with an amount of reducing agent required for obtaining desired selectivity while simultaneously heat energy is supplied by a gas heated in a plasma generator, the temperature being adjusted to such a level as to correspond to the oxygen potential at which the desired metals are transformed into a particular, isolatable phase as metal melt, metal vapor, speiss or matte and at which the remaining metals enter into a slag phase and can be isolated as slag melt.

  2. PRODUCTION OF ACTINIDE METAL

    DOEpatents

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  3. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  4. Metal Contacts in Semiconductors.

    DTIC Science & Technology

    1983-11-01

    surfaces, Pnotoelectron spe troscopy, Auger electron spectro- I scopy, Schottky barriers, ohmic contacts, Defects in semiconductors, Cadmium * telluride...Indium phosphide, Gallium arsenide, Gallium Selenide . j 20. ABSTR ACT (roothat ow rees esh " neceay and td..ity by block -. b*w) SThe application of...angstroms. Also, provided one eliminates the systems where cadmium outdiffusion into high work function metals occurs then good agreement between the

  5. Metal Halide Optical Glasses.

    DTIC Science & Technology

    1988-01-01

    HEAVY METAL FLUORIDE GLASSES C. T. Moynihan, R. Mossadegh and S. N. Crichton Materials Engineering Department, Rensselaer Polytechnic Institute Troy...and Tesar, A. A., J. Am. Ceram. Soc., 67, p. C-164 (1984). 11. Crichton , S. N., Mossadegh, R., Schroeder, J., and Moynihan, C. T., unpublished data. 12...FLUORIDE GLASSES C. T. Moynihan, S. M. Opalka, R. Mossadegh, S. N. Crichton and A. J. Bruce Center for Glass Science and Technology Materials Engineering

  6. METAL COATING BATHS

    DOEpatents

    Robinson, J.W.

    1958-08-26

    A method is presented for restoring the effectiveness of bronze coating baths used for hot dip coating of uranium. Such baths, containing a high proportion of copper, lose their ability to wet uranium surfaces after a period of use. The ability of such a bath to wet uranium can be restored by adding a small amount of metallic aluminum to the bath, and skimming the resultant hard alloy from the surface.

  7. Glycosylated Metal Phthalocyanines.

    PubMed

    Hanack, Michael

    2015-11-10

    In the first part; the syntheses of mono-; di-; and tetra-glycosylated phthalonitriles is described; which are the most used starting materials for the preparation of the corresponding glycosylated metal (mostly zinc) phthalocyanines. In the second section; the preparation of symmetric and unsymmetric mono-; tetra-; and octa- glycosylated zinc phthalocyanines are reviewed; in which the sugar is attached to the phthalocyanine macrocycle; either anomerically or via another one of its OH-groups.

  8. Metals fact sheet - uranium

    SciTech Connect

    1996-04-01

    About 147 million pounds of this radioactive element are consumed annually by the worldwide nuclear power and weapons industries, as well as in the manufacture of ceramics and metal products. The heaviest naturally occurring element, uranium is typically found in intrusive granites, igneous and metamorphic veins, tabular sedimentary deposits, and unconformity-related structures. This article discusses the geology, exploitation, market, and applications of uranium and uranium ores.

  9. Metals and kidney autoimmunity.

    PubMed Central

    Bigazzi, P E

    1999-01-01

    The causes of autoimmune responses leading to human kidney pathology remain unknown. However, environmental agents such as microorganisms and/or xenobiotics are good candidates for that role. Metals, either present in the environment or administered for therapeutic reasons, are prototypical xenobiotics that cause decreases or enhancements of immune responses. In particular, exposure to gold and mercury may result in autoimmune responses to various self-antigens as well as autoimmune disease of the kidney and other tissues. Gold compounds, currently used in the treatment of patients with progressive polyarticular rheumatoid arthritis, can cause a nephrotic syndrome. Similarly, an immune-mediated membranous nephropathy frequently occurred when drugs containing mercury were commonly used. Recent epidemiologic studies have shown that occupational exposure to mercury does not usually result in autoimmunity. However, mercury induces antinuclear antibodies, sclerodermalike disease, lichen planus, or membranous nephropathy in some individuals. Laboratory investigations have confirmed that the administration of gold or mercury to experimental animals leads to autoimmune disease quite similar to that observed in human subjects exposed to these metals. In addition, studies of inbred mice and rats have revealed that a few strains are susceptible to the autoimmune effects of gold and mercury, whereas the majority of inbred strains are resistant. These findings have emphasized the importance of genetic (immunogenetic and pharmacogenetic) factors in the induction of metal-associated autoimmunity. (italic)In vitro(/italic) and (italic)in vivo(/italic) research of autoimmune disease caused by mercury and gold has already yielded valuable information and answered a number of important questions. At the same time it has raised new issues about possible immunostimulatory or immunosuppressive mechanisms of xenobiotic activity. Thus it is evident that investigations of metal

  10. Amorphous metal alloy

    DOEpatents

    Wang, R.; Merz, M.D.

    1980-04-09

    Amorphous metal alloys of the iron-chromium and nickel-chromium type have excellent corrosion resistance and high temperature stability and are suitable for use as a protective coating on less corrosion resistant substrates. The alloys are stabilized in the amorphous state by one or more elements of titanium, zirconium, hafnium, niobium, tantalum, molybdenum, and tungsten. The alloy is preferably prepared by sputter deposition.

  11. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  12. Electron energies in metals

    SciTech Connect

    Mahan, G.D. Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy)

    1991-07-10

    The modern era of electron-electron interactions began a decade ago. Plummer's group initiated a program of using angular resolved photoemission to examine the band structure of the simple metals. Beginning with aluminum, and carrying on to sodium and potassium, they always found that the occupied energy bands were much narrower than expected. For example, the compressed energy bands for metallic potassium suggest a band effective mass of m* = 1.33m{sub e}. This should be compared to the band mass found from optical conductivity m*/m{sub e} = 1.01 {plus minus} 0.01. The discrepancy between these results is startling. It was this great difference which started my group doing calculations. Our program was two-fold. On one hand, we reanalyzed the experimental data, in order to see if Plummer's result was an experimental artifact. On the other hand, we completely redid the electron-electron self-energy calculations for simple metals, using the most modern choices of local-field corrections and vertex corrections. Our results will be reported in these lectures. They can be summarized as following: Our calculations give the same effective masses as the older calculations, so the theory is relatively unchanged; Our analysis of the experiments suggests that the recent measurements of band narrowing are an experimental artifact. 38 refs., 9 figs.

  13. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  14. Metal Nanoparticle Aerogel Composites

    NASA Technical Reports Server (NTRS)

    Smith, David D.; Sibille, Laurent; Ignont, Erica; Snow, Lanee; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    We have fabricated sol-gels containing gold and silver nanoparticles. Formation of an aerogel produces a blue shift in the surface plasmon resonance as a result of the decrease in the dielectric constant of the matrix upon supercritical extraction of the solvent. However, as a result of chemical interface damping this blue shift does not obey effective medium theories. Annealing the samples in a reducing atmosphere at 400 C eliminates this discrepancy and results in narrowing and further blue shifting of the plasmon resonance. Metal particle aggregation also results in a deviation from the predictions of effective medium theories, but can be controlled through careful handling and by avoiding the use of alcohol. By applying effective medium theories to the heterogeneous interlayer surrounding each metal particle, we extend the technique of immersion spectroscopy to inhomogeneous materials characterized by spatially dependent dielectric constants, such as aerogels. We demonstrate that the shift in the surface plasmon wavelength provides the average fractional composition of each component (air and silica) in this inhomogeneous layer, i.e. the porosity of the aerogel or equivalently, for these materials, the catalytic dispersion. Additionally, the kinetics suggest that collective particle interactions in coagulated metal clusters are perturbed during silica gelation resulting in a change in the aggregate geometry.

  15. PREFACE: Half Metallic Ferromagnets

    NASA Astrophysics Data System (ADS)

    Dowben, Peter

    2007-08-01

    Since its introduction by de Groot and colleagues in the early 1980s [1], the concept of half metallic ferromagnetism has attracted great interest. Idealized, half-metals have only one spin channel for conduction: the spin-polarized band structure exhibits metallic behavior for one spin channel, while the other spin band structure exhibits a gap at the Fermi level. Due to the gap for one spin direction, the density of states at the Fermi level has, theoretically, 100 & spin polarization. This gap in the density of states in one spin at the Fermi level, for example ↓ so N↓ (EF) = 0, also causes the resistance of that channel to go to infinity. At zero or low temperatures, the nonquasiparticle density of states (electron correlation effects), magnons and spin disorder reduce the polarization from the idealized 100 & polarization. At higher temperatures magnon-phonon coupling and irreversible compositional changes affect polarization further. Strategies for assessing and reducing the effects of finite temperatures on the polarization are now gaining attention. The controversies surrounding the polarization stability of half metallic ferromagnets are not, however, limited to the consideration of finite temperature effects alone. While many novel half metallic materials have been predicted, materials fabrication can be challenging. Defects, surface and interface segregation, and structural stability can lead to profound decreases in polarization, but can also suppress long period magnons. There is a 'delicate balance of energies required to obtain half metallic behaviour: to avoid spin flip scattering, tiny adjustments in atomic positions might occur so that a gap opens up in the other spin channel' [2]. When considering 'spintronics' devices, a common alibi for the study of half metallic systems, surfaces and interfaces become important. Free enthalpy differences between the surface and the bulk will lead to spin minority surface and interface states, as well as

  16. Hard Metal Disease

    PubMed Central

    Bech, A. O.; Kipling, M. D.; Heather, J. C.

    1962-01-01

    In Great Britain there have been no published reports of respiratory disease occurring amongst workers in the hard metal (tungsten carbide) industry. In this paper the clinical and radiological findings in six cases and the pathological findings in one are described. In two cases physiological studies indicated mild alveolar diffusion defects. Histological examination in a fatal case revealed diffuse pulmonary interstitial fibrosis with marked peribronchial and perivascular fibrosis and bronchial epithelial hyperplasia and metaplasia. Radiological surveys revealed the sporadic occurrence and low incidence of the disease. The alterations in respiratory mechanics which occurred in two workers following a day's exposure to dust are described. Airborne dust concentrations are given. The industrial process is outlined and the literature is reviewed. The toxicity of the metals is discussed, and our findings are compared with those reported from Europe and the United States. We are of the opinion that the changes which we would describe as hard metal disease are caused by the inhalation of dust at work and that the component responsible may be cobalt. Images PMID:13970036

  17. Mesoporous metallic rhodium nanoparticles

    NASA Astrophysics Data System (ADS)

    Jiang, Bo; Li, Cuiling; Dag, Ömer; Abe, Hideki; Takei, Toshiaki; Imai, Tsubasa; Hossain, Md. Shahriar A.; Islam, Md. Tofazzal; Wood, Kathleen; Henzie, Joel; Yamauchi, Yusuke

    2017-05-01

    Mesoporous noble metals are an emerging class of cutting-edge nanostructured catalysts due to their abundant exposed active sites and highly accessible surfaces. Although various noble metal (e.g. Pt, Pd and Au) structures have been synthesized by hard- and soft-templating methods, mesoporous rhodium (Rh) nanoparticles have never been generated via chemical reduction, in part due to the relatively high surface energy of rhodium (Rh) metal. Here we describe a simple, scalable route to generate mesoporous Rh by chemical reduction on polymeric micelle templates [poly(ethylene oxide)-b-poly(methyl methacrylate) (PEO-b-PMMA)]. The mesoporous Rh nanoparticles exhibited a ~2.6 times enhancement for the electrocatalytic oxidation of methanol compared to commercially available Rh catalyst. Surprisingly, the high surface area mesoporous structure of the Rh catalyst was thermally stable up to 400 °C. The combination of high surface area and thermal stability also enables superior catalytic activity for the remediation of nitric oxide (NO) in lean-burn exhaust containing high concentrations of O2.

  18. Metallic fuel development

    SciTech Connect

    Walters, L.C.

    1987-01-01

    Metallic fuels are capable of achieving high burnup as a result of design modifications instituted in the late 1960's. The gap between the fuel slug and the cladding is fixed such that by the time the fuel swells to the cladding the fission gas bubbles interconnect and release the fission gas to an appropriately sized plenum volume. Interconnected porosity thus provides room for the fuel to deform from further swelling rather than stress the cladding. In addition, the interconnected porosity allows the fuel pin to be tolerant to transient events because as stresses are generated during a transient event the fuel flows rather than applying significant stress to the cladding. Until 1969 a number of metallic fuel alloys were under development in the US. At that time the metallic fuel development program in the US was discontinued in favor of ceramic fuels. However, development had proceeded to the point where it was clear that the zirconium addition to uranium-plutonium fuel would yield a ternary fuel with an adequately high solidus temperature and good compatibility with austenitic stainless steel cladding. Furthermore, several U-Pu-Zr fuel pins had achieved about 6 at.% bu by the late 1960's, without failure, and thus the prospect for high burnup was promising.

  19. Critical points of metal vapors

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-09-15

    A new method is proposed for calculating the parameters of critical points and binodals for the vapor–liquid (insulator–metal) phase transition in vapors of metals with multielectron valence shells. The method is based on a model developed earlier for the vapors of alkali metals, atomic hydrogen, and exciton gas, proceeding from the assumption that the cohesion determining the basic characteristics of metals under normal conditions is also responsible for their properties in the vicinity of the critical point. It is proposed to calculate the cohesion of multielectron atoms using well-known scaling relations for the binding energy, which are constructed for most metals in the periodic table by processing the results of many numerical calculations. The adopted model allows the parameters of critical points and binodals for the vapor–liquid phase transition in metal vapors to be calculated using published data on the properties of metals under normal conditions. The parameters of critical points have been calculated for a large number of metals and show satisfactory agreement with experimental data for alkali metals and with available estimates for all other metals. Binodals of metals have been calculated for the first time.

  20. Metallic copper in ordinary chondrites

    NASA Technical Reports Server (NTRS)

    Rubin, Alan E.

    1994-01-01

    Metallic Cu of moderately high purity (approximately 985 mg/g Cu, approximately 15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically less than or equal to 20 micrometers) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 x 10(exp -4) vol%, corresponding to only 4 - 5 % of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/sq mm have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilte; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.

  1. Metallic copper in ordinary chondrites

    NASA Astrophysics Data System (ADS)

    Rubin, A. E.

    1994-01-01

    Metallic Cu of moderately high purity (approximately 985 mg/g Cu, approximately 15 mg/g Ni) occurs in at least 66% of ordinary chondrites (OC) as heterogeneously distributed, small (typically less than or equal to 20 micrometers) rounded to irregular grains. The mean modal abundance of metallic Cu in H, L and LL chondrites is low: 1.0 to 1.4 x 10-4 vol%, corresponding to only 4 - 5 % of the total Cu in OC whole rocks. In more than 75% of the metallic-Cu-bearing OC, at least some metallic Cu occurs at metallic-Fe-Ni-troilite grain boundaries. In some cases it also occurs within troilite, within metallic Fe-Ni, or at the boundaries these phases form with silicates or chromite. Ordinary chondrites that contain a relatively large number of occurrences of metallic Cu/sq mm have a tendency to have experienced moderately high degrees of shock. Shock processes can cause local melting and transportation of metallic Fe-Ni and troilte; because metallic Cu is mainly associated with these phases, it also gets redistributed during shock events. In the most common petrographic assemblage containing metallic Cu, the Cu is adjacent to small irregular troilite grains surrounded by taenite plus tetrataenite; this assemblage resembles fizzed troilite and may have formed by localized shock melting or remelting of a metal-troilite assemblage.

  2. Hydrothermal alkali metal recovery process

    DOEpatents

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  3. Dimensionally stable metallic hydride composition

    DOEpatents

    Heung, Leung K.

    1994-01-01

    A stable, metallic hydride composition and a process for making such a composition. The composition comprises a uniformly blended mixture of a metal hydride, kieselguhr, and a ballast metal, all in the form of particles. The composition is made by subjecting a metal hydride to one or more hydrogen absorption/desorption cycles to disintegrate the hydride particles to less than approximately 100 microns in size. The particles are partly oxidized, then blended with the ballast metal and the kieselguhr to form a uniform mixture. The mixture is compressed into pellets and calcined. Preferably, the mixture includes approximately 10 vol. % or more kieselguhr and approximately 50 vol. % or more ballast. Metal hydrides that can be used in the composition include Zr, Ti, V, Nb, Pd, as well as binary, tertiary, and more complex alloys of La, Al, Cu, Ti, Co, Ni, Fe, Zr, Mg, Ca, Mn, and mixtures and other combinations thereof. Ballast metals include Al, Cu and Ni.

  4. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, Rudolph G.; Martinez, Michael A.

    1998-01-01

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds.

  5. Corrosion protective coating for metallic materials

    DOEpatents

    Buchheit, R.G.; Martinez, M.A.

    1998-05-26

    Corrosion protective coatings for metallic materials, particularly aluminum and aluminum alloys, produced with simple, low-cost equipment and materials other than toxic metals or metal salts, or metal cyanides is disclosed. The metallic material is cleaned, degreased, and deoxidized, the surface is converted to a substantially alkaline condition, and the surface is chemically sealed with inorganic metal compounds. 1 fig.

  6. Reduction of Metal Oxide to Metal using Ionic Liquids

    SciTech Connect

    Dr. Ramana Reddy

    2012-04-12

    A novel pathway for the high efficiency production of metal from metal oxide means of electrolysis in ionic liquids at low temperature was investigated. The main emphasis was to eliminate the use of carbon and high temperature application in the reduction of metal oxides to metals. The emphasis of this research was to produce metals such as Zn, and Pb that are normally produced by the application of very high temperatures. The reduction of zinc oxide to zinc and lead oxide to lead were investigated. This study involved three steps in accomplishing the final goal of reduction of metal oxide to metal using ionic liquids: 1) Dissolution of metal oxide in an ionic liquid, 2) Determination of reduction potential using cyclic voltammetry (CV) and 3) Reduction of the dissolved metal oxide. Ionic liquids provide additional advantage by offering a wide potential range for the deposition. In each and every step of the process, more than one process variable has been examined. Experimental results for electrochemical extraction of Zn from ZnO and Pb from PbO using eutectic mixtures of Urea ((NH2)2CO) and Choline chloride (HOC2H4N(CH3)3+Cl-) or (ChCl) in a molar ratio 2:1, varying voltage and temperatures were carried out. Fourier Transform Infra-Red (FTIR) spectroscopy studies of ionic liquids with and without metal oxide additions were conducted. FTIR and induction coupled plasma spectroscopy (ICPS) was used in the characterization of the metal oxide dissolved ionic liquid. Electrochemical experiments were conducted using EG&G potentiostat/galvanostat with three electrode cell systems. Cyclic voltammetry was used in the determination of reduction potentials for the deposition of metals. Chronoamperometric experiments were carried out in the potential range of -0.6V to -1.9V for lead and -1.4V to -1.9V for zinc. The deposits were characterized using XRD and SEM-EDS for phase, morphological and elemental analysis. The results showed that pure metal was deposited on the cathode

  7. Mechanical failure of metal-polyethylene sandwich liner in metal-on-metal total hip replacement.

    PubMed

    Oshima, Yasushi; Fetto, Joseph F

    2015-01-01

    Metal-on-metal had been proposed as an optimal articulation in THRs, however, many monoblock prostheses have been recalled in the USA because of significant high rates of early failure. Metal-on-metal prostheses had been implanted in our institution, and this is a case history of a single patient, in whom metal-on-metal THRs with different femoral sizes of heads were implanted. A 57-year-old female patient underwent bilateral total hip replacements with metal-on-metal prostheses using metal-polyethylene "sandwich" liners 9 years ago on the right side and 7 years ago on the left side respectively. The only difference in both sides was the femoral head diameter of 28 mm in right and 34 mm in left. Seven years after the left surgery, the acetabular liner was dissociated, however, metallosis was not detected. Although the larger femoral head was thought to increase hip joint stability, it dictated a reduction in polyethylene thickness in this prosthesis design, and it was 4 mm in the left hip. Recently, metal-on-metal articulations are thought not to be optimal for hip joint bearing surface, however, this clinical failure was due to the polyethylene thickness and quality.

  8. [Dissociation of the acetabular metallic inlay of a metal-on-metal total hip arthroplasty].

    PubMed

    Cazenave, A

    2008-06-01

    Total hip arthroplasty was performed in November 2001 in a 30-year-old active patient with degenerative hip disease. A metal-on-metal bearing was used. Follow-up was considered excellent until the development of pain and squeaking at hip mobilization, leading to revision in March 2006. The acetabular metallic inlay of the metal-on-metal insert was found detached from the polyethylene insert; half of the diameter of the neck of the femoral stem was sectioned. Complete revision was performed with an acetabular graft. At one year follow-up, anatomic and functional outcome has been excellent. To our knowledge, this is the first report of this kind of mechanical failure of a metal-on-metal total hip arthroplasty.

  9. Alkali metal-refractory metal biphase electrode for AMTEC

    NASA Technical Reports Server (NTRS)

    Williams, Roger M. (Inventor); Bankston, Clyde P. (Inventor); Cole, Terry (Inventor); Khanna, Satish K. (Inventor); Jeffries-Nakamura, Barbara (Inventor); Wheeler, Bob L. (Inventor)

    1989-01-01

    An electrode having increased output with slower degradation is formed of a film applied to a beta-alumina solid electrolyte (BASE). The film comprises a refractory first metal M.sup.1 such as a platinum group metal, suitably platinum or rhodium, capable of forming a liquid or a strong surface adsorption phase with sodium at the operating temperature of an alkali metal thermoelectric converter (AMTEC) and a second refractory metal insoluble in sodium or the NaM.sup.1 liquid phase such as a Group IVB, VB or VIB metal, suitably tungsten, molybdenum, tantalum or niobium. The liquid phase or surface film provides fast transport through the electrode while the insoluble refractory metal provides a structural matrix for the electrode during operation. A trilayer structure that is stable and not subject to deadhesion comprises a first, thin layer of tungsten, an intermediate co-deposited layer of tungsten-platinum and a thin surface layer of platinum.

  10. The interaction of a metal deactivator with metal surfaces

    SciTech Connect

    Schreifels, J.A. ); Morris, R.E.; Turner, N.H.; Mowery, R.L. )

    1990-01-01

    In modern aircraft fuel systems, the fuel is used as a heat transfer medium to dissipate heat from the avionics and hydraulic systems. Under these conditions, the fuel can undergo autooxidations. Autooxidations of net fuel can result in the formation of insoluble gum and sediment which can impair operation of the jet engine. Metal deactivator additives (MDA) were developed to counteract the catalytic activity of dissolved metals. The authors have directed their efforts at ascertaining the various mechanisms by which MDA can act, particularly in accelerated stability testing. One objective of this study was to determine to what extent interactions with metal surfaces of the test apparent govern the effectiveness of metal deactivators. This paper describes an examination of metal surfaces exposed to MDA solutions to determine under what, if any, conditions metal passivation can occur.

  11. Bacterial metal resistance genes and metal bioavailability in contaminated sediments.

    PubMed

    Roosa, Stéphanie; Wattiez, Ruddy; Prygiel, Emilie; Lesven, Ludovic; Billon, Gabriel; Gillan, David C

    2014-06-01

    In bacteria a metal may be defined as bioavailable if it crosses the cytoplasmic membrane to reach the cytoplasm. Once inside the cell, specific metal resistance systems may be triggered. In this research, specific metal resistance genes were used to estimate metal bioavailability in sediment microbial communities. Gene levels were measured by quantitative PCR and correlated to metals in sediments using five different protocols to estimate dissolved, particle-adsorbed and occluded metals. The best correlations were obtained with czcA (a Cd/Zn/Co efflux pump) and Cd/Zn adsorbed or occluded in particles. Only adsorbed Co was correlated to czcA levels. We concluded that the measurement of czcA gene levels by quantitative PCR is a promising tool which may complement the classical approaches used to estimate Cd/Zn/Co bioavailability in sediment compartments. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. The tribology of metal-on-metal total hip replacements.

    PubMed

    Scholes, S C; Unsworth, A

    2006-02-01

    Total hip surgery is an effective way of alleviating the pain and discomfort caused by diseased or damaged joints. However, in the majority of cases, these joints have a finite life. The main reason for failure is osteolysis (bone resorption). It is well documented that an important cause of osteolysis, and therefore the subsequent loosening and failure of conventional metal- or ceramic-on-ultra-high molecular weight polyethylene joints, is the body's immunological response to the polyethylene wear particles. To avoid this, interest has been renewed in metal-on-metal joints. The intention of this paper is to review the studies that have taken place within different laboratories to determine the tribological performance of new-generation metal-on-metal total hip replacements. These types of joint offer a potential solution to enhance the longevity of prosthetic hip systems; however, problems may arise owing to the effects of metal ion release, which are, as yet, not fully understood.

  13. Plastic Deformation and Perforation of Metal using Metallic Jet

    NASA Astrophysics Data System (ADS)

    Sarkar, Partha; Chaturvedi, Shashank; Shyam, Anurag; Kumar, Rajesh; Lathi, Deepak; Chaudhari, Vilas; Verma, Rishi; Sonara, Jaswant; Shah, Kunal; Adhikary, Biswajit

    2002-12-01

    Pulsed underwater electrical discharges have been used in the past to generate pressures of the order of several tens of kilobars, for applications such as rock fragmentation and metallic jet production. Preliminary results for a metallic jet system have been reported earlier. A modified design for a metallic jet production system is reported here. With this arrangement, we are able to perforate 11 mm thick aluminium sheet. Such a system, at higher energy levels, could be used for oil and gas well perforation.

  14. High temperature, oxidation resistant noble metal-Al alloy thermocouple

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor); Gedwill, Michael G. (Inventor)

    1994-01-01

    A thermocouple is disclosed. The thermocouple is comprised of an electropositive leg formed of a noble metal-Al alloy and an electronegative leg electrically joined to form a thermocouple junction. The thermocouple provides for accurate and reproducible measurement of high temperatures (600 - 1300 C) in inert, oxidizing or reducing environments, gases, or vacuum. Furthermore, the thermocouple circumvents the need for expensive, strategic precious metals such as rhodium as a constituent component. Selective oxidation of rhodium is also thereby precluded.

  15. Metal-semiconductor-metal transition in zigzag carbon nanoscrolls

    NASA Astrophysics Data System (ADS)

    Dong, Haixia; Zhang, Yang; Fang, Dangqi; Gong, Baihua; Zhang, Erhu; Zhang, Shengli

    2016-01-01

    Similar to rolling up paper, carbon nanoscrolls (CNSs) can be rolled from graphene nanoribbons (GNRs) using physical approaches. Owing to their peculiar one-dimensional nanostructures, CNSs have attracted great attention over the past few years. In this study, we have investigated the effects of bending deformation on the electronic properties of zigzag CNSs (ZCNSs) during the rolling process from zigzag GNRs (ZGNRs) by means of first-principles calculations. It is found that a metal-semiconductor-metal transition is observed. By analyzing charge density and density of states, the origin of this electronic property transition is discussed. Furthermore, we find that the metal-semiconductor-metal transition in ZCNSs is independent of ribbon width as well as spin-orbit interaction. Our results of the metal-semiconductor-metal transition in the ZCNSs are robust and may open potential applications in nano-electromechanical devices based on the ZCNSs.Similar to rolling up paper, carbon nanoscrolls (CNSs) can be rolled from graphene nanoribbons (GNRs) using physical approaches. Owing to their peculiar one-dimensional nanostructures, CNSs have attracted great attention over the past few years. In this study, we have investigated the effects of bending deformation on the electronic properties of zigzag CNSs (ZCNSs) during the rolling process from zigzag GNRs (ZGNRs) by means of first-principles calculations. It is found that a metal-semiconductor-metal transition is observed. By analyzing charge density and density of states, the origin of this electronic property transition is discussed. Furthermore, we find that the metal-semiconductor-metal transition in ZCNSs is independent of ribbon width as well as spin-orbit interaction. Our results of the metal-semiconductor-metal transition in the ZCNSs are robust and may open potential applications in nano-electromechanical devices based on the ZCNSs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07628

  16. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments

    USGS Publications Warehouse

    Lovley, D.R.

    1993-01-01

    Within the last decade, a novel form of microbial metabolism of major environmental significance has been elucidated. In this process, known as dissimilatory metal reduction, specialized microorganisms, living in anoxic aquatic sediments and ground water, oxidize organic compounds to carbon dioxide with metals serving as the oxidant. Recent studies have demonstrated that this metabolism explains a number of important geochemical phenomena in ancient and modern sedimentary environments, affecting not only the cycling of metals but also the fate of organic matter. Furthermore, this metabolism may have practical application in remediation of environments contaminated with toxic metals and/or organics.

  17. Protein tyrosine phosphatase inhibition by metals and metal complexes.

    PubMed

    Lu, Liping; Zhu, Miaoli

    2014-05-10

    Protein tyrosine phosphatases (PTPs) play essential roles in controlling cell proliferation, differentiation, communication, and adhesion. The dysregulated activities of PTPs are involved in the pathogenesis of a number of human diseases such as cancer, diabetes, and autoimmune diseases. Many PTPs have emerged as potential new targets for novel drug discovery. PTP inhibitors have attracted much attention. Many PTP inhibitors have been developed. Some of them have been proven to be efficient in lowering blood glucose levels in vivo or inhibiting tumor xenograft growth. Some metal ions and metal complexes potently inhibit PTPs. The metal atoms within metal complexes play an important role in PTP binding, while ligand structures influence the inhibitory potency and selectivity. Some metal complexes can penetrate the cell membrane and selectively bind to their targeting PTPs, enhancing the phosphorylation of the related substrates and influencing cellular metabolism. PTP inhibition is potentially involved in the pathophysiological and toxicological processes of metals and some PTPs may be cellular targets of certain metal-based therapeutic agents. Investigating the structural basis of the interactions between metal complexes and PTPs would facilitate a comprehensive understanding of the structure-activity relationship and accelerate the development of promising metal-based drugs targeting specific PTPs.

  18. Alkali metal adsorbates on W(110): Ionic, covalent, or metallic

    SciTech Connect

    Riffe, D.M.; Wertheim, G.K.; Citrin, P.H. )

    1990-01-29

    The photoemission signal from the first atomic layer of W(110) is used to assess the nature of the interaction between the surface atoms of the metal substrate and the adsorbates Na, K, and Cs for coverages up to 1 atomic layer. Our results indicate that there is little or no charge transfer from the alkali metal to the W surface, even in the limit of low coverage. The satellite structure of the photoemission lines of the outermost {ital p} shell of the alkali metals confirms this conclusion. While contrary to the conventional picture of alkali-metal-charge donation, these findings fully support recent theoretical calculations.

  19. Antimicrobial activity of the metals and metal oxide nanoparticles.

    PubMed

    Dizaj, Solmaz Maleki; Lotfipour, Farzaneh; Barzegar-Jalali, Mohammad; Zarrintan, Mohammad Hossein; Adibkia, Khosro

    2014-11-01

    The ever increasing resistance of pathogens towards antibiotics has caused serious health problems in the recent years. It has been shown that by combining modern technologies such as nanotechnology and material science with intrinsic antimicrobial activity of the metals, novel applications for these substances could be identified. According to the reports, metal and metal oxide nanoparticles represent a group of materials which were investigated in respect to their antimicrobial effects. In the present review, we focused on the recent research works concerning antimicrobial activity of metal and metal oxide nanoparticles together with their mechanism of action. Reviewed literature indicated that the particle size was the essential parameter which determined the antimicrobial effectiveness of the metal nanoparticles. Combination therapy with the metal nanoparticles might be one of the possible strategies to overcome the current bacterial resistance to the antibacterial agents. However, further studies should be performed to minimize the toxicity of metal and metal oxide nanoparticles to apply as proper alternatives for antibiotics and disinfectants especially in biomedical applications.

  20. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  1. Metal nanoparticle inks

    SciTech Connect

    Lewis, Jennifer A.; Ahn, Bok Yeop; Duoss, Eric B.

    2011-04-12

    Stabilized silver particles comprise particles comprising silver, a short-chain capping agent adsorbed on the particles, and a long-chain capping agent adsorbed on the particles. The short-chain capping agent is a first anionic polyelectrolyte having a molecular weight (Mw) of at most 10,000, and the long-chain capping agent is a second anionic polyelectrolyte having a molecular weight (Mw) of at least 25,000. The stabilized silver particles have a solid loading of metallic silver of at least 50 wt %.

  2. Cold fusion in metals.

    PubMed

    Parmenter, R H; Lamb, W E

    1989-11-01

    A simple model of a metal containing deuterons is considered. The example of palladium is treated in detail. It is shown that the effect of screening of Coulomb fields by conduction electrons is sufficient to allow deuteron pairs to fuse at rates of 10(-30) sec(-1), seven orders of magnitude smaller than those reported by Jones et al. [Jones, S. E., Palmer, E. P., Czirr, J. B., Decker, D. L., Jensen, G. L., Thorne, J. M., Taylor, S. F. & Rafelski, J. (1989) Nature (London) 388, 737-740].

  3. Cold fusion in metals

    PubMed Central

    Parmenter, R. H.; Lamb, Willis E.

    1989-01-01

    A simple model of a metal containing deuterons is considered. The example of palladium is treated in detail. It is shown that the effect of screening of Coulomb fields by conduction electrons is sufficient to allow deuteron pairs to fuse at rates of 10-30 sec-1, seven orders of magnitude smaller than those reported by Jones et al. [Jones, S. E., Palmer, E. P., Czirr, J. B., Decker, D. L., Jensen, G. L., Thorne, J. M., Taylor, S. F. & Rafelski, J. (1989) Nature (London) 388, 737-740]. PMID:16594083

  4. Adhesion at metal interfaces

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1991-01-01

    A basic adhesion process is defined, the theory of the properties influencing metallic adhesion is outlined, and theoretical approaches to the interface problem are presented, with emphasis on first-principle calculations as well as jellium-model calculations. The computation of the energies of adhesion as a function of the interfacial separation is performed; fully three-dimensional calculations are presented, and universality in the shapes of the binding energy curves is considered. An embedded-atom method and equivalent-crystal theory are covered in the framework of issues involved in practical adhesion.

  5. Advances in metals processing

    NASA Technical Reports Server (NTRS)

    Bales, T. T.; Royster, D. M.

    1982-01-01

    Research on metals processing being conducted to develop improved forming and joining methods with the potential of reducing the weight and cost of future aerospace structures is discussed. The approach followed is to assess the state of the art for fabricating a given structural system, define candidate methods for improving processing, evaluate the merits of each, fabricate and test subelement components, and then scale up the process to demonstrate validity. The development and the state of the art of weldbrazing, superplastic forming (SPF), superplastic forming and codiffusion bonding and superplastic forming and weldbrazing for titanium and the SPF of aluminum is discussed.

  6. Metallic magnetic nanoparticles.

    PubMed

    Hernando, A; Crespo, P; García, M A

    2005-12-22

    In this paper, we reviewed some relevant aspects of the magnetic properties of metallic nanoparticles with small size (below 4 nm), covering the size effects in nanoparticles of magnetic materials, as well as the appearance of magnetism at the nanoscale in materials that are nonferromagnetic in bulk. These results are distributed along the text that has been organized around three important items: fundamental magnetic properties, different fabrication procedures, and characterization techniques. A general introduction and some experimental results recently obtained in Pd and Au nanoparticles have also been included. Finally, the more promising applications of magnetic nanoparticles in biomedicine are indicated. Special care was taken to complete the literature available on the subject.

  7. Perforating Thin Metal Sheets

    NASA Technical Reports Server (NTRS)

    Davidson, M. E.

    1985-01-01

    Sheets only few mils thick bonded together, punched, then debonded. Three-step process yields perforated sheets of metal. (1): Individual sheets bonded together to form laminate. (2): laminate perforated in desired geometric pattern. (3): After baking, laminate separates into individual sheets. Developed for fabricating conductive layer on blankets that collect and remove ions; however, perforated foils have other applications - as conductive surfaces on insulating materials; stiffeners and conductors in plastic laminates; reflectors in antenna dishes; supports for thermal blankets; lightweight grille cover materials; and material for mockup of components.

  8. Novel Photocatalytic Metal Oxides

    SciTech Connect

    Smith, Robert W.; Mei, Wai-Ning; Sabirianov, Renat; Wang, Lu

    2012-08-31

    The principal short-term objective is to develop improved solid-state photocatalysts for the decomposition of water into hydrogen gas using ultraviolet and visible solar radiation. We will pursue our objective by modeling candidate metal oxides through computer simulations followed by synthesis of promising candidates. We will characterize samples through standard experimental techniques. The long-term objective is to provide a more efficient source of hydrogen gas for fixed-site hydrogen fuel cells, particularly for energy users in remote locations.

  9. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    PubMed

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  10. Supported molten-metal catalysts

    DOEpatents

    Datta, Ravindra; Singh, Ajeet; Halasz, Istvan; Serban, Manuela

    2001-01-01

    An entirely new class of catalysts called supported molten-metal catalysts, SMMC, which can replace some of the existing precious metal catalysts used in the production of fuels, commodity chemicals, and fine chemicals, as well as in combating pollution. SMMC are based on supporting ultra-thin films or micro-droplets of the relatively low-melting (<600.degree. C.), inexpensive, and abundant metals and semimetals from groups 1, 12, 13, 14, 15 and 16, of the periodic table, or their alloys and intermetallic compounds, on porous refractory supports, much like supported microcrystallites of the traditional solid metal catalysts. It thus provides orders of magnitude higher surface area than is obtainable in conventional reactors containing molten metals in pool form and also avoids corrosion. These have so far been the chief stumbling blocks in the application of molten metal catalysts.

  11. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, John V.; Novak, Robert F.; McBride, James R.

    1991-01-01

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system.

  12. Metal to ceramic sealed joint

    DOEpatents

    Lasecki, J.V.; Novak, R.F.; McBride, J.R.

    1991-08-27

    A metal to ceramic sealed joint which can withstand wide variations in temperature and maintain a good seal is provided for use in a device adapted to withstand thermal cycling from about 20 to about 1000 degrees C. The sealed joint includes a metal member, a ceramic member having an end portion, and an active metal braze forming a joint to seal the metal member to the ceramic member. The joint is positioned remote from the end portion of the ceramic member to avoid stresses at the ends or edges of the ceramic member. The sealed joint is particularly suited for use to form sealed metal to ceramic joints in a thermoelectric generator such as a sodium heat engine where a solid ceramic electrolyte is joined to metal parts in the system. 11 figures.

  13. Metal speciation by Donnan dialysis

    SciTech Connect

    Cox, J.A.; Slonawska, K.; Gatchell, D.K.; Hiebert, A.G.

    1984-04-01

    In Donnan dialysis aqueous samples are separated from receiver electrolytes by an ion exchange membrane. The present work demonstrates that the dialysis of metals into salt solutions occurs in proportion to the sum of the concentrations of the free metal and the metal held in the form of labile complexes; however, with strongly acidic or chelating receivers, the dialysis occurs in proportion to the total soluble metal. Hence, Donnan dialysis provides the basis for a rapid estimation of the total soluble (i.e., free plus labile complexed) metal and nonlabile-complexed metal. The method is demonstrated with Pb, Zn, Cu, and Cd complexes of glycine, humic acid, and nitrilotriacetic acid and is applied to a lake water sample. The results are compared to values obtained from an established approach that utilizes stripping voltammetry and separations with a chelating ion exchange resin.

  14. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  15. International Recycling of LLW Metals

    SciTech Connect

    Eshleman, T.; Jansen, J.; Shinya, Sawada

    2008-07-01

    Melting of radioactive scrap metal has been successfully practiced for more than 15 years, with approximately 60,000 tons of steel being processed into beneficial reuse applications. This process has converted radioactive scrap metal at a licensed facility into useful products such as shield blocks, security barriers and shield containers. These products are used within the nuclear industry, such as nuclear power plants, waste disposal facilities and high-energy physics research facilities. Recycling provides the following benefits by comparison with direct disposal: - Preserving metal resources. - Conserving valuable Low Level Waste (LLW) disposal site resources, thereby extending disposal site life. - Reducing the cost of metal products to end users by using materials less expensive than virgin metals. This paper outlines international metal recycling practices implemented at EnergySolutions' Bear Creek Facility in Oak Ridge, Tennessee. (authors)

  16. Degenerate doping of metallic anodes

    DOEpatents

    Friesen, Cody A; Zeller, Robert A; Johnson, Paul B; Switzer, Elise E

    2015-05-12

    Embodiments of the invention relate to an electrochemical cell comprising: (i) a fuel electrode comprising a metal fuel, (ii) a positive electrode, (iii) an ionically conductive medium, and (iv) a dopant; the electrodes being operable in a discharge mode wherein the metal fuel is oxidized at the fuel electrode and the dopant increases the conductivity of the metal fuel oxidation product. In an embodiment, the oxidation product comprises an oxide of the metal fuel which is doped degenerately. In an embodiment, the positive electrode is an air electrode that absorbs gaseous oxygen, wherein during discharge mode, oxygen is reduced at the air electrode. Embodiments of the invention also relate to methods of producing an electrode comprising a metal and a doped metal oxidation product.

  17. A red metallic oxide photocatalyst

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoxiang; Randorn, Chamnan; Efstathiou, Paraskevi; Irvine, John T. S.

    2012-07-01

    Light absorption across the bandgap in semiconductors is exploited in many important applications such as photovoltaics, light emitting diodes and photocatalytic conversion. Metals differ from semiconductors in that there is no energy gap separating occupied and unoccupied levels; however, it is still possible to excite electrons between bands. This is evidenced by materials with metallic properties that are also strongly coloured. An important question is whether such coloured metals could be used in light harvesting or similar applications. The high conductivity of a metal would preclude sufficient electric field being available to separate photocarriers; however, the high carrier mobility in a metal might also facilitate kinetic charge separation. Here we clearly demonstrate for the first time the use of a red metallic oxide, Sr1-xNbO3 as an effective photocatalyst. The material has been used under visible light to photocatalyse the oxidation of methylene blue and both the oxidation and reduction of water assisted by appropriate sacrificial elements.

  18. Metal-metal interactions among dietary toxic and essential trace metals in the rat

    SciTech Connect

    Elsenhans, B.; Schmolke, G.; Kolb, K.; Stokes, J.; Forth, W.

    1987-12-01

    Exposure to toxic and essential metals is thought to be reflected by corresponding metal concentrations in tissues. However, toxic and essential metals may influence each other in regard to their retention in the body. Therefore, a basic diet containing four toxic metals (As 7, Cd 9, Ni 13, and Pb 20 ppm) and adequate amounts of essential metals was fed to rats for 2 weeks. Test groups received the basic diet with increasing concentrations of one of the toxic metals (up to 90 ppm As, 180 ppm Cd, 365 ppm Ni, and 394 ppm Pb). As, Cd, Ni, Pb, Cu, Fe, Mn, and Zn were determined by atomic emission spectroscopy in liver, kidney, intestine, brain, muscle, bone, skin, hair, and blood. A linear relationship between diet and tissue concentration is observed for As and Ni in the kidney, for Cd in the liver, and for Pb in the bone. In other tissues saturation was observed. While Cd-Fe interactions were common to most of the tissues, other interactions were detected only in specific tissues, e.g., As-Cu in the kidney, Cd-Zn in the liver, and As-Mn, Cd-Mn, or Ni-Cu in the intestine. Increases of renal Pb and intestinal Cd by dietary Ni, and a decrease in bone As by dietary Pb were the most pronounced interactions between the toxic metals. The results demonstrate that potential target organs for the evaluation of metal exposure need to be carefully analyzed for interfering metal-metal interactions.

  19. Advances in Nanocarbon Metals: Process

    DTIC Science & Technology

    2015-03-01

    distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT The addition of nanoscale carbon (C) to a variety of metals was developed by Third...covetics, carbon , copper, oxidation, mechanical properties, local heating 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18...than 6-wt% nanoscale carbon (C) to a broad variety of metals. The resulting materials, developed by Third Millennium Metals, LLC, are known as

  20. Corrosion-resistant metal surfaces

    DOEpatents

    Sugama, Toshifumi

    2009-03-24

    The present invention relates to metal surfaces having thereon an ultrathin (e.g., less than ten nanometer thickness) corrosion-resistant film, thereby rendering the metal surfaces corrosion-resistant. The corrosion-resistant film includes an at least partially crosslinked amido-functionalized silanol component in combination with rare-earth metal oxide nanoparticles. The invention also relates to methods for producing such corrosion-resistant films.

  1. Metal-ceramic joint assembly

    DOEpatents

    Li, Jian

    2002-01-01

    A metal-ceramic joint assembly in which a brazing alloy is situated between metallic and ceramic members. The metallic member is either an aluminum-containing stainless steel, a high chromium-content ferritic stainless steel or an iron nickel alloy with a corrosion protection coating. The brazing alloy, in turn, is either an Au-based or Ni-based alloy with a brazing temperature in the range of 9500 to 1200.degree. C.

  2. Potential use of metal hyperaccumulators

    SciTech Connect

    Chaney, R.; Li, Yin-Ming; Green, C.

    1996-12-31

    Experiments involving biological accumulation of metal contaminants are summarized in the article. The focus is on identification of hyperaccumulating plant species for cadmium and zinc. Two of the studies examined Thlaspi caerulescens (alpine pennycress) as a bioadsorbent; the third study compared different species of Thlaspi. The T. caerulescens accumulated both metals, but with low yields. Other plant species were identified which adsorbed cadmium or zinc, but not both metals.

  3. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-07-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analyzed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01--0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3% of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation. At three operation condition (nominal output, 70% and 40% respectively) emission factors of heavy metals have been estimated for 35 MW stoker-fired boiler. Ba, Pb, Sb and Zn increased their emission factors and Cr and Mn decreased when output was decreased. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal, other possibilities (metals extraction from the coal, changes of condition in the flame) are rather limited.

  4. Metal silicides with energetic pulses

    NASA Astrophysics Data System (ADS)

    D'Anna, E.; Leggieri, G.; Luches, A.; Majni, G.; Nava, F.; Ottaviani, G.

    1986-07-01

    Samples formed of a thin metal film deposited on silicon single crystal were annealed with electron and laser (ruby and excimer) pulses over a wide range of fluences. From a comparison of the experimental results with the temperature profiles of the irradiated samples, it turns out that suicide formation starts when the metal/silicon interface reaches the lowest eutectic temperature of the binary metal/silicon system. The growth rate of reacted layers is of the order of 1 m/s.

  5. Composite and Nanocomposite Metal Foams

    PubMed Central

    Duarte, Isabel; Ferreira, José M. F.

    2016-01-01

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams. PMID:28787880

  6. Composite and Nanocomposite Metal Foams.

    PubMed

    Duarte, Isabel; Ferreira, José M F

    2016-01-28

    Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams.

  7. Alkali metal ion battery with bimetallic electrode

    DOEpatents

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  8. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, Moshe; Gruen, Dieter M.; Mendelsohn, Marshall H.; Sheft, Irving

    1981-01-01

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  9. Method for preparing porous metal hydride compacts

    DOEpatents

    Ron, M.; Gruen, D.M.; Mendelsohn, M.H.; Sheft, I.

    1980-01-21

    A method for preparing porous metallic-matrix hydride compacts which can be repeatedly hydrided and dehydrided without disintegration. A mixture of a finely divided metal hydride and a finely divided matrix metal is contacted with a poison which prevents the metal hydride from dehydriding at room temperature and atmospheric pressure. The mixture of matrix metal and poisoned metal hydride is then compacted under pressure at room temperature to form porous metallic-matrix hydride compacts.

  10. Clean Metal Casting

    SciTech Connect

    Makhlouf M. Makhlouf; Diran Apelian

    2002-02-05

    The objective of this project is to develop a technology for clean metal processing that is capable of consistently providing a metal cleanliness level that is fit for a given application. The program has five tasks: Development of melt cleanliness assessment technology, development of melt contamination avoidance technology, development of high temperature phase separation technology, establishment of a correlation between the level of melt cleanliness and as cast mechanical properties, and transfer of technology to the industrial sector. Within the context of the first task, WPI has developed a standardized Reduced Pressure Test that has been endorsed by AFS as a recommended practice. In addition, within the context of task1, WPI has developed a melt cleanliness sensor based on the principles of electromagnetic separation. An industrial partner is commercializing the sensor. Within the context of the second task, WPI has developed environmentally friendly fluxes that do not contain fluorine. Within the context of the third task, WPI modeled the process of rotary degassing and verified the model predictions with experimental data. This model may be used to optimize the performance of industrial rotary degassers. Within the context of the fourth task, WPI has correlated the level of melt cleanliness at various foundries, including a sand casting foundry, a permanent mold casting foundry, and a die casting foundry, to the casting process and the resultant mechanical properties. This is useful in tailoring the melt cleansing operations at foundries to the particular casting process and the desired properties of cast components.

  11. Sinuous flow in metals

    PubMed Central

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-01-01

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick “chip.” This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode—sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect. PMID:26216980

  12. Magnetic metallic multilayers

    SciTech Connect

    Hood, Randolph Quentin

    1994-04-01

    Utilizing self-consistent Hartree-Fock calculations, several aspects of multilayers and interfaces are explored: enhancement and reduction of the local magnetic moments, magnetic coupling at the interfaces, magnetic arrangements within each film and among non-neighboring films, global symmetry of the systems, frustration, orientation of the various moments with respect to an outside applied field, and magnetic-field induced transitions. Magnetoresistance of ferromagnetic-normal-metal multilayers is found by solving the Boltzmann equation. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by an external magnetic field. The calculation depends on (1) geometric parameters (thicknesses of layers), (2) intrinsic metal parameters (number of conduction electrons, magnetization, and effective masses in layers), (3) bulk sample properties (conductivity relaxation times), (4) interface scattering properties (diffuse scattering versus potential scattering at the interfaces, and (5) outer surface scattering properties (specular versus diffuse surface scattering). It is found that a large negative magnetoresistance requires considerable asymmetry in interface scattering for the two spin orientations. Features of the interfaces that may produce an asymmetrical spin-dependent scattering are studied: varying interfacial geometric random roughness with no lateral coherence, correlated (quasi-periodic) roughness, and varying chemical composition of the interfaces. The interplay between these aspects of the interfaces may enhance or suppress the magnetoresistance, depending on whether it increases or decreases the asymmetry in the spin-dependent scattering of the conduction electrons.

  13. Multifunctional periodic cellular metals.

    PubMed

    Wadley, Haydn N G

    2006-01-15

    Periodic cellular metals with honeycomb and corrugated topologies are widely used for the cores of light weight sandwich panel structures. Honeycombs have closed cell pores and are well suited for thermal protection while also providing efficient load support. Corrugated core structures provide less efficient and highly anisotropic load support, but enable cross flow heat exchange opportunities because their pores are continuous in one direction. Recent advances in topology design and fabrication have led to the emergence of lattice truss structures with open cell structures. These three classes of periodic cellular metals can now be fabricated from a wide variety of structural alloys. Many topologies are found to provide adequate stiffness and strength for structural load support when configured as the cores of sandwich panels. Sandwich panels with core relative densities of 2-10% and cell sizes in the millimetre range are being assessed for use as multifunctional structures. The open, three-dimensional interconnected pore networks of lattice truss topologies provide opportunities for simultaneously supporting high stresses while also enabling cross flow heat exchange. These highly compressible structures also provide opportunities for the mitigation of high intensity dynamic loads created by impacts and shock waves in air or water. By filling the voids with polymers and hard ceramics, these structures have also been found to offer significant resistance to penetration by projectiles.

  14. ``Towards Strange Metallic Holography'

    SciTech Connect

    Hartnoll, Sean A.; Polchinski, Joseph; Silverstein, Eva; Tong, David; /Cambridge U., DAMTP /Santa Barbara, KITP /UC, Santa Barbara

    2010-08-26

    We initiate a holographic model building approach to 'strange metallic' phenomenology. Our model couples a neutral Lifshitz-invariant quantum critical theory, dual to a bulk gravitational background, to a finite density of gapped probe charge carriers, dually described by D-branes. In the physical regime of temperature much lower than the charge density and gap, we exhibit anomalous scalings of the temperature and frequency dependent conductivity. Choosing the dynamical critical exponent z appropriately we can match the non-Fermi liquid scalings, such as linear resistivity, observed in strange metal regimes. As part of our investigation we outline three distinct string theory realizations of Lifshitz geometries: from F theory, from polarized branes, and from a gravitating charged Fermi gas. We also identify general features of renormalization group flow in Lifshitz theories, such as the appearance of relevant charge-charge interactions when z {ge} 2. We outline a program to extend this model building approach to other anomalous observables of interest such as the Hall conductivity.

  15. Metal silicide nanowires

    NASA Astrophysics Data System (ADS)

    Chen, Lih-Juann; Wu, Wen-Wei

    2015-07-01

    The growth, properties and applications of metal silicide nanowires (NWs) have been extensively investigated. The investigations have led to significant advance in the understanding of one-dimensional (1D) metal silicide systems. For example, CoSi is paramagnetic in bulk form, but ferromagnetic in NW geometry. In addition, the helimagnetic phase and skyrmion state in MnSi are stabilized by NW morphology. The influencing factors on the growth of silicide phase have been elucidated for Ni-Si, Pt-Si, and Mn-Si systems. Promising results were obtained for spintronics, non-volatile memories, field emitter, magnetoresistive sensor, thermoelectric generator and solar cells. However, the main thrust has been in microelectronic devices and integrated circuits. Transistors of world-record small size have been fabricated. Reconfigurable Si NW transistors, dually active Si NW transistors and circuits with equal electron and hole transport have been demonstrated. Furthermore, multifunctional devices and logic gates with undoped Si NWs were reported. It is foreseen that practical applications will be realized in the near future.

  16. Metallic threaded composite fastener

    NASA Technical Reports Server (NTRS)

    Dunn, Thomas J. (Inventor)

    1992-01-01

    A metallic threaded composite fastener, particularly suited for high temperature applications, has a body member made of high temperature resistant composite material with a ceramic coating. The body member has a head portion configured to be installed in a countersunk hole and a shank portion which is noncircular and tapered. One part of the shank may be noncircular and the other part tapered, or the two types of surface could be combined into a frustum of a noncircular cone. A split collar member made of high strength, high temperature tolerant metal alloy is split into two halves and the interior of the halves are configured to engage the shank. The exterior of the collar has a circumferential groove which receives a lock ring to secure the collar halves to the shank. In the assembled condition torque may be transmitted from the body to the split collar by the engaged noncircular portions to install and remove the fastener assembly into or from a threaded aperture and shear loads in the collar threads are transferred to the shank tapered portion as a combination of radial compression and axial tension loads. Thus, tension loads may be applied to the fastener shank without damaging the ceramic coating.

  17. Evaporating metal nanocrystal arrays

    NASA Astrophysics Data System (ADS)

    Zhang, Xue; Joy, James C.; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J. M.; Valles, James M., Jr.

    2017-03-01

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  18. Lanthanides: New life metals?

    PubMed

    Chistoserdova, Ludmila

    2016-08-01

    Lanthanides (Ln(3+)) that are Rare Earth Elements, until recently thought to be biologically inert, have recently emerged as essential metals for activity and expression of a special type of methanol dehydrogenase, XoxF. As XoxF enzyme homologs are encoded in a wide variety of microbes, including microbes active in important environmental processes such as methane and methanol metabolism, Ln(3+) may represent some of the key biogeochemical drivers in cycling of carbon and other elements. However, significant gaps in understanding the role of Ln(3+) in biological systems remain as the functions of most of the proteins potentially dependent of Ln(3+) and their roles in specific metabolic networks/respective biogeochemical cycles remain unknown. Moreover, enzymes dependent on Ln(3+) but not related to XoxF enzymes may exist, and these so far have not been recognized. Through connecting the recently uncovered genetic divergence and phylogenetic distribution of XoxF-like enzymes and through elucidation of their activities, metal and substrate specificities, along with the biological contexts of respective biochemical pathways, most parsimonious scenarios for their evolution could be uncovered. Generation of such data will firmly establish the role of Ln(3+) in the biochemistry of Life inhabiting this planet.

  19. Nodal-chain metals

    NASA Astrophysics Data System (ADS)

    Bzdušek, Tomáš; Wu, Quansheng; Rüegg, Andreas; Sigrist, Manfred; Soluyanov, Alexey A.

    2016-10-01

    The band theory of solids is arguably the most successful theory of condensed-matter physics, providing a description of the electronic energy levels in various materials. Electronic wavefunctions obtained from the band theory enable a topological characterization of metals for which the electronic spectrum may host robust, topologically protected, fermionic quasiparticles. Many of these quasiparticles are analogues of the elementary particles of the Standard Model, but others do not have a counterpart in relativistic high-energy theories. A complete list of possible quasiparticles in solids is lacking, even in the non-interacting case. Here we describe the possible existence of a hitherto unrecognized type of fermionic excitation in metals. This excitation forms a nodal chain—a chain of connected loops in momentum space—along which conduction and valence bands touch. We prove that the nodal chain is topologically distinct from previously reported excitations. We discuss the symmetry requirements for the appearance of this excitation and predict that it is realized in an existing material, iridium tetrafluoride (IrF4), as well as in other compounds of this class of materials. Using IrF4 as an example, we provide a discussion of the topological surface states associated with the nodal chain. We argue that the presence of the nodal-chain fermions will result in anomalous magnetotransport properties, distinct from those of materials exhibiting previously known excitations.

  20. Evaporating metal nanocrystal arrays.

    PubMed

    Zhang, Xue; Joy, James C; Zhao, Chenwei; Kim, Jin Ho; Fernandes, Gustavo; Xu, J M; Valles, James M

    2017-03-10

    Anodic aluminum oxide (AAO) substrates with a self-ordered triangular array of nanopores provide the means to fabricate multiple forms of nano materials, such as nanowires and nanoparticles. This study focuses on nanostructures that emerge in thin films of metals thermally evaporated onto the surface of AAO. Previous work showed that films of different evaporated metals assume dramatically different structures, e.g. an ordered triangular array of nearly monodisperse nanoparticles forms for lead (Pb) while a polycrystalline nanohoneycomb structure forms for silver (Ag). Here, we present investigations of the effects of substrate temperature and deposition angle that reveal the processes controlling the nano particle array formation. Our findings indicate that arrays form provided the grain nucleation density exceeds the pore density and the atomic mobility is high enough to promote grain coalescence. They introduce a method for producing films with anisotropic grain array structure. The results provide insight into the influence of substrate nano-morphology on thin film growth energetics and kinetics that can be harnessed for creating films with other novel nano-structures.

  1. Metallic induction reaction engine

    NASA Astrophysics Data System (ADS)

    Hart, Douglas; Mongeau, Peter P.; Kolm, Henry H.

    1985-11-01

    Metal rings placed close to a pulsed field coil have been accelerated at 200 million gee to 5 km/s in a 2 cm length by Bandoletov in the USSR Bandoletov, 1977. We have studied the basic phenomena and ultimate limitations of the pulsed induction process both theoretically and experimentally to determine its usefulness as a reaction engine. It is possible in principle to accelerate metal rings at high efficiency, and impart sufficient energy to ensure melting and evaporation, so that the reaction mass is ultimately ejected in the form of plasma. In practice the process is limited by electrical, mechanical and thermal failure of the induction coil. Over a hundred shots were fired including several in which 12 gram rings were accelerated to over 700 m/s at efficiencies above 30 percent. This is equivalent to the performance of a high power rifle with a one inch long barrel. An unexpected result of these studies is the discovery that to achieve maximum velocity, the mutual inductance gradient between induction coil and projectile ring in the firing position must be reduced to minimize the initial acceleration. This reduces the back voltage and increases the interaction time, resulting in maximum energy transfer.

  2. Sinuous flow in metals.

    PubMed

    Yeung, Ho; Viswanathan, Koushik; Compton, Walter Dale; Chandrasekar, Srinivasan

    2015-08-11

    Annealed metals are surprisingly difficult to cut, involving high forces and an unusually thick "chip." This anomaly has long been explained, based on ex situ observations, using a model of smooth plastic flow with uniform shear to describe material removal by chip formation. Here we show that this phenomenon is actually the result of a fundamentally different collective deformation mode--sinuous flow. Using in situ imaging, we find that chip formation occurs via large-amplitude folding, triggered by surface undulations of a characteristic size. The resulting fold patterns resemble those observed in geophysics and complex fluids. Our observations establish sinuous flow as another mesoscopic deformation mode, alongside mechanisms such as kinking and shear banding. Additionally, by suppressing the triggering surface undulations, sinuous flow can be eliminated, resulting in a drastic reduction of cutting forces. We demonstrate this suppression quite simply by the application of common marking ink on the free surface of the workpiece material before the cutting. Alternatively, prehardening a thin surface layer of the workpiece material shows similar results. Besides obvious implications to industrial machining and surface generation processes, our results also help unify a number of disparate observations in the cutting of metals, including the so-called Rehbinder effect.

  3. Magnetically actuated metallic microgripper

    NASA Astrophysics Data System (ADS)

    Caraffini, Simone; Boyd, James G.

    1998-10-01

    The design and the fabrication of a magnetically actuated microgripper are described. The device is designed to have an out-of-plane motion; a novel concept among the microfabricated grippers. The gripper consists of three metallic fingers, radially directed and equally spaced on a circle; each finger composed by two beams, whose motion is driven by a magnetic field. The microgripper is modeled as an elastic system of two rectilinear beams, using Euler- Bernoulli theory for small deflections. The boundary value problem is solved and the deflection of the structure is calculated as a function of the magnetic force. The microgripper is fabricated using a UV-lithography based 3D electroforming technique. Each layer of the structure is made by metal electrodeposition into a polyimide mold. Several layers are stacked by repeated deposition and the final structure is obtained by dissolving the mold. Details about the fabrication techniques are presented and discussed. Properties and problems related to the photosensitive polyimide used (such as moisture absorption, loss of adhesion, etc.) are addressed. Electroforming of nickel, copper and permalloy are performed and optimized. In particular, a nickel activating solution is applied successfully for electroforming of microstructures. A shadow mask technique for seed-layer patterning is presented and discussed. A planar electromagnetic coil is fabricated by micromolding of thick photoresist and copper electroforming into the mold. The magnetic circuit is made by electrodeposition of permalloy.

  4. Metal-ion recycle technology for metal electroplating waste waters

    SciTech Connect

    Sauer, N.N.; Smith, B.F.

    1993-06-01

    As a result of a collaboration with Boeing Aerospace, the authors have begun a program to identify suitable treatments or to develop new treatments for electroplating baths. The target baths are mixed-metal or alloy baths that are being integrated into the Boeing electroplating complex. These baths, which are designed to replace highly toxic chromium and cadmium baths, contain mixtures of two metals, either nickel-tungsten, nickel-zinc, or zinc-tin. This report reviews the literature and details currently available on emerging technologies that could affect recovery of metals from electroplating baths under development by Boeing Aerospace. This literature survey summarizes technologies relevant to the recovery of metals from electroplating processes. The authors expanded the scope to investigate single metal ion recovery technologies that could be applied to metal ion recovery from alloy baths. This review clearly showed that the electroplating industry has traditionally relied on precipitation and more recently on electrowinning as its waste treatment methods. Despite the almost ubiquitous use of precipitation to remove contaminant metal ions from waste electroplating baths and rinse waters, this technology is clearly no longer feasible for the electroplating industry for several reasons. First, disposal of unstabilized sludge is no longer allowed by law. Second, these methods are no longer adequate as metal-removal techniques because they cannot meet stringent new metal discharge limits. Third, precious resources are being wasted or discarded because these methods do not readily permit recovery of the target metal ions. As a result, emerging technologies for metal recovery are beginning to see application to electroplating waste recycle. This report summarizes current research in these areas. Included are descriptions of various membrane technologies, such as reverse osmosis and ultrafiltration, ion exchange and chelating polymer technology, and electrodialysis.

  5. Effluent minimization: Metal finishing shop

    SciTech Connect

    1988-12-31

    A metal finishing job shop reduced rinsewater volume and ensured compliance with discharge regulations by installing a staged rinse system, segregating waste streams, and modifying processing solutions.

  6. Antimicrobial Polymers with Metal Nanoparticles

    PubMed Central

    Palza, Humberto

    2015-01-01

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms. PMID:25607734

  7. SOLDERING OF ALUMINUM BASE METALS

    DOEpatents

    Erickson, G.F.

    1958-02-25

    This patent deals with the soldering of aluminum to metals of different types, such as copper, brass, and iron. This is accomplished by heating the aluminum metal to be soldered to slightly above 30 deg C, rubbing a small amount of metallic gallium into the part of the surface to be soldered, whereby an aluminum--gallium alloy forms on the surface, and then heating the aluminum piece to the melting point of lead--tin soft solder, applying lead--tin soft solder to this alloyed surface, and combining the aluminum with the other metal to which it is to be soldered.

  8. The biogeochemistry of metal cycling

    NASA Technical Reports Server (NTRS)

    Nealson, Kenneth H. (Editor); Nealson, Molly (Editor); Dutcher, F. Ronald (Editor)

    1990-01-01

    The results of the Planetary Biology and Microbial Ecology's summer 1987 program are summarized. The purpose of the interdisciplinary PBME program is to integrate, via lectures and laboratory work, the contributions of university and NASA scientists and student interns. The 1987 program examined various aspects of the biogeochemistry of metal cycling, and included such areas as limnology, metal chemistry, metal geochemistry, microbial ecology, and interactions with metals. A particular area of focus was the use of remote sensing in the study of biogeochemistry. Abstracts and bibliographies of the lectures and reports of the laboratory projects are presented.

  9. Heavy metals and coal combustion

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Noskievic, P.; Seidlerova, J.

    1998-04-01

    Combustion of coal may be an important source of heavy metals pollution. The distribution of heavy metals during combustion process has been studied in six power plants, where fuel, bottom ash, fly ash and emissions have been analysed and the relative concentrations of heavy metals have been estimated. For the most volatile metals (arsenic, antimony, lead, and zinc), the redistribution process involving condensation on surface is probable. Some metals like manganese or chromium are concentrated rather in coarse particles. In such cases, no clear conclusion can be made and probably several mechanisms are involved, including mineral form of metal. Typical results of low chlorine coal (0.01-0.03% Cl) exhibit increasing concentration of volatile metals in the magnitude of around one order when going from bottom ash to emissions. Different results have been found in similar operation conditions in the case of high content of chlorine in coal (0.3 % of Cl in coal). In this case, the concentration of metals in emissions is significantly higher and also nickel, copper and manganese concentrations increase. It seems to be probable that chlorine in the coal increases the redistribution of metals by volatile chlorides formation.

  10. Antimicrobial polymers with metal nanoparticles.

    PubMed

    Palza, Humberto

    2015-01-19

    Metals, such as copper and silver, can be extremely toxic to bacteria at exceptionally low concentrations. Because of this biocidal activity, metals have been widely used as antimicrobial agents in a multitude of applications related with agriculture, healthcare, and the industry in general. Unlike other antimicrobial agents, metals are stable under conditions currently found in the industry allowing their use as additives. Today these metal based additives are found as: particles, ions absorbed/exchanged in different carriers, salts, hybrid structures, etc. One recent route to further extend the antimicrobial applications of these metals is by their incorporation as nanoparticles into polymer matrices. These polymer/metal nanocomposites can be prepared by several routes such as in situ synthesis of the nanoparticle within a hydrogel or direct addition of the metal nanofiller into a thermoplastic matrix. The objective of the present review is to show examples of polymer/metal composites designed to have antimicrobial activities, with a special focus on copper and silver metal nanoparticles and their mechanisms.

  11. Properties of aged metal tritides

    SciTech Connect

    McConville, G.T,; Menke, D.A.; West, D.S.; Woods, C.M.

    1994-06-22

    The interaction of tritium with metals is made complex by two phenomena. The first is that the beta decay in the metal produces {sup 3}He. The helium moves to form bubbles. This report shows that growth of the bubbles produces a two-stage swelling of the metal that comes first from the appearance of the helium and second from the relaxation of the lattice disorder. The second phenomena is the steady state ion and free radical concentration in the tritium over gas that interacts with impurities on the metal surface. This report shows that the reaction rates are much faster than for normal hydrogen cleaning.

  12. Metal deposition using seed layers

    DOEpatents

    Feng, Hsein-Ping; Chen, Gang; Bo, Yu; Ren, Zhifeng; Chen, Shuo; Poudel, Bed

    2013-11-12

    Methods of forming a conductive metal layers on substrates are disclosed which employ a seed layer to enhance bonding, especially to smooth, low-roughness or hydrophobic substrates. In one aspect of the invention, the seed layer can be formed by applying nanoparticles onto a surface of the substrate; and the metallization is achieved by electroplating an electrically conducting metal onto the seed layer, whereby the nanoparticles serve as nucleation sites for metal deposition. In another approach, the seed layer can be formed by a self-assembling linker material, such as a sulfur-containing silane material.

  13. Predictivity and fate of metal ion release from metal-on-metal total hip prostheses.

    PubMed

    Nicolli, Annamaria; Bisinella, Gianluca; Padovani, Giovanni; Vitella, Antonio; Chiara, Federica; Trevisan, Andrea

    2014-09-01

    Blood metal ion levels in 72 patients with large head metal-on-metal hip arthroplasty were studied to determine the correlation between the values measured in whole blood and urine. Urinary cobalt and chromium levels of 30μg and 21μg, respectively, adjusted to creatinine were found to correspond to the 7μg/l cut-off value that has been accepted in whole blood. Cobalt and chromium levels in whole blood and urine both significantly correlated with increased acetabular component inclination angle over 50 degrees and pain scores. There was no correlation with socket anteversion angle or femoral head diameter. The data support the use of urinary measurement of metal ions adjusted to creatinine to monitor patients with large head metal-on-metal total hip arthroplasty. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Metal decontamination for waste minimization using liquid metal refining technology

    SciTech Connect

    Joyce, E.L. Jr.; Lally, B.; Ozturk, B.; Fruehan, R.J.

    1993-09-01

    The current Department of Energy Mixed Waste Treatment Project flowsheet indicates that no conventional technology, other than surface decontamination, exists for metal processing. Current Department of Energy guidelines require retrievable storage of all metallic wastes containing transuranic elements above a certain concentration. This project is in support of the National Mixed Low Level Waste Treatment Program. Because of the high cost of disposal, it is important to develop an effective decontamination and volume reduction method for low-level contaminated metals. It is important to be able to decontaminate complex shapes where surfaces are hidden or inaccessible to surface decontamination processes and destruction of organic contamination. These goals can be achieved by adapting commercial metal refining processes to handle radioactive and organic contaminated metal. The radioactive components are concentrated in the slag, which is subsequently vitrified; hazardous organics are destroyed by the intense heat of the bath. The metal, after having been melted and purified, could be recycled for use within the DOE complex. In this project, we evaluated current state-of-the-art technologies for metal refining, with special reference to the removal of radioactive contaminants and the destruction of hazardous organics. This evaluation was based on literature reports, industrial experience, plant visits, thermodynamic calculations, and engineering aspects of the various processes. The key issues addressed included radioactive partitioning between the metal and slag phases, minimization of secondary wastes, operability of the process subject to widely varying feed chemistry, and the ability to seal the candidate process to prevent the release of hazardous species.

  15. Thermoelectric metal comparator determines composition of alloys and metals

    NASA Technical Reports Server (NTRS)

    Stone, C. C.; Walker, D. E.

    1967-01-01

    Emf comparing device nondestructively inspects metals and alloys for conformance to a chemical specification. It uses the Seebeck effect to measure the difference in emf produced by the junction of a hot probe and the junction of a cold contact on the surface of an unknown metal.

  16. Metal-insulator-metal capacitor using electrosprayed nanoparticles

    NASA Astrophysics Data System (ADS)

    Véliz, Bremnen; Bermejo, Sandra; Coll, Arnau; Castañer, Luis

    2014-07-01

    An electrospray technique has been used to deposit SiO2 nanoparticles as insulator layer of a metal-insulator-metal device. Impedance spectroscopy measurements show that a 4.4 factor increase in capacitance is achieved compared to a continuous dielectric layer of the same permittivity and dimensions.

  17. Multilevel metallization method for fabricating a metal oxide semiconductor device

    NASA Technical Reports Server (NTRS)

    Hollis, B. R., Jr.; Feltner, W. R.; Bouldin, D. L.; Routh, D. E. (Inventor)

    1978-01-01

    An improved method is described of constructing a metal oxide semiconductor device having multiple layers of metal deposited by dc magnetron sputtering at low dc voltages and low substrate temperatures. The method provides multilevel interconnections and cross over between individual circuit elements in integrated circuits without significantly reducing the reliability or seriously affecting the yield.

  18. Students' Visualization of Metallic Bonding and the Malleability of Metals

    ERIC Educational Resources Information Center

    Cheng, Maurice M. W.; Gilbert, John K.

    2014-01-01

    This study investigated the mental representations of metallic bonding and the malleability of metals held by three male students aged 14-15 (Year 10) who were attending a Hong Kong school. One student was selected by their chemistry teacher as representing each of the highest, the medium, and the lowest level of attainment in chemistry in a…

  19. Students' Visualization of Metallic Bonding and the Malleability of Metals

    ERIC Educational Resources Information Center

    Cheng, Maurice M. W.; Gilbert, John K.

    2014-01-01

    This study investigated the mental representations of metallic bonding and the malleability of metals held by three male students aged 14-15 (Year 10) who were attending a Hong Kong school. One student was selected by their chemistry teacher as representing each of the highest, the medium, and the lowest level of attainment in chemistry in a…

  20. Development of techniques for processing metal-metal oxide systems

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1976-01-01

    Techniques for producing model metal-metal oxide systems for the purpose of evaluating the results of processing such systems in the low-gravity environment afforded by a drop tower facility are described. Because of the lack of success in producing suitable materials samples and techniques for processing in the 3.5 seconds available, the program was discontinued.

  1. Making A Noble-Metal-On-Metal-Oxide Catalyst

    NASA Technical Reports Server (NTRS)

    Miller, Irvin M.; Davis, Patricia P.; Upchurch, Billy T.

    1989-01-01

    Catalyst exhibits superior performance in oxidation of CO in CO2 lasers. Two-step process developed for preparing platinum- or palladium-on-tin-oxide catalyst for recombination of CO and O2, decomposition products that occur in high-voltage discharge region of closed-cycle CO2 laser. Process also applicable to other noble-metal/metal-oxide combinations.

  2. Corrosion of refractory metals in liquid metal and gaseous environments

    SciTech Connect

    DiStefano, J.R.

    1991-01-01

    In general, refractory metals and alloys are very compatible with liquid or boiling alkali metals. However, corrosion resistance of niobium and tantalum requires maintaining low oxygen in the system. When the refractory metal contains a strong oxide former (Zr, Hf), additional oxygen in the solid metal can be tolerated if it is tied up as a stable oxide (ZrO{sub 2}, HfO{sub 2}). In sodium or potassium systems, oxygen in either the liquid metal or refractory metal can contribute to reduced corrosion resistance. The mechanical properties of refractory metals are very sensitive to interstitial elements such as oxygen, nitrogen, hydrogen, and carbon. Oxidation in air or other oxidizing environments is rapid above 300 to 400{degree}C, and some type of protection must be provided (vacuum, inert gas, coating) if refractory metals are to be used at high temperatures. Oxidation of niobium and tantalum alloys is more complex than for molybdenum and tungsten due to the formation of different oxide phases that exhibit differing degrees of protectiveness. At low to intermediate temperatures niobium and tantalum also react with hydrogen environments, and embrittlement has been reported both from hydride formation as well as from solid solution effects. At high temperatures niobium and tantalum react with nitrogen or carbon to form very stable compounds while the nitrides and carbides of molybdenum and tungsten are considerably less stable. 10 refs., 10 figs.

  3. Liquid metal embrittlement. [crack propagation in metals with liquid metal in crack space

    NASA Technical Reports Server (NTRS)

    Tiller, W. A.

    1973-01-01

    Crack propagation is discussed for metals with liquid metal in the crack space. The change in electrochemical potential of an electron in a metal due to changes in stress level along the crack surface was investigated along with the change in local chemistry, and interfacial energy due to atomic redistribution in the liquid. Coupled elastic-elastrostatic equations, stress effects on electron energy states, and crack propagation via surface roughening are discussed.

  4. Interplay of metal-allyl and metal-metal bonding in dimolybdenum allyl complexes

    SciTech Connect

    John, Kevin D; Martin, Richard L; Obrey, Steven J; Scott, Brian L

    2008-01-01

    Addition of PMe{sub 3} to Mo{sub 2}(allyl){sub 4} afforded Mo{sub 2}(allyl){sub 4}(PMe{sub 3}){sub 2}, in which two of the allyl groups adopt an unprecedented {mu}{sub 2{sup -}}{eta}{sup 1}, {eta}{sup 3} bonding mode; theoretical studies elucidate the role sof the {sigma}- and {pi}-donor ligands in the interplay of metal-allyl and metal-metal bonding.

  5. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    2001-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  6. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, Brian S.; Gupta, Raghubir P.

    1999-01-01

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream.

  7. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; Foran, M.T.

    1984-01-06

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150 to 260/sup 0/C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO/sub 4/ and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect. 3 tables.

  8. Catalytic production of metal carbonyls from metal oxides

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; Foran, Michael T.

    1984-01-01

    This invention relates to the formation of metal carbonyls from metal oxides and specially the formation of molybdenum carbonyl and iron carbonyl from their respective oxides. Copper is used here in admixed form or used in chemically combined form as copper molybdate. The copper/metal oxide combination or combined copper is utilized with a solvent, such as toluene and subjected to carbon monoxide pressure of 25 atmospheres or greater at about 150.degree.-260.degree. C. The reducing metal copper is employed in catalytic concentrations or combined concentrations as CuMoO.sub.4 and both hydrogen and water present serve as promoters. It has been found that the yields by this process have been salutary and that additionally the catalytic metal may be reused in the process to good effect.

  9. Metal sulfide initiators for metal oxide sorbent regeneration

    DOEpatents

    Turk, B.S.; Gupta, R.P.

    1999-06-22

    A process of regenerating a sulfided sorbent is provided. According to the process of the invention, a substantial portion of the energy necessary to initiate the regeneration reaction is provided by the combustion of a particulate metal sulfide additive. In using the particulate metal sulfide additive, the oxygen-containing gas used to regenerate the sulfided sorbent can be fed to the regeneration zone without heating or at a lower temperature than used in conventional processes wherein the regeneration reaction is initiated only by heating the oxygen-containing gas. The particulate metal sulfide additive is preferably an inexpensive mineral ore such as iron pyrite which does not adversely affect the regeneration or corresponding desulfurization reactions. The invention further includes a sorbent composition comprising the particulate metal sulfide additive in admixture with an active metal oxide sorbent capable of removing one or more sulfur compounds from a sulfur-containing gas stream. 1 fig.

  10. Shape-Controlled Metal-Metal and Metal-Polymer Janus Structures by Thermoplastic Embossing.

    PubMed

    Hasan, Molla; Kahler, Niloofar; Kumar, Golden

    2016-05-04

    We report the fabrication of metal-metal and metal-polymer Janus structures by embossing of thermoplastic metallic glasses and polymers. Hybrid structures with controllable shapes and interfaces are synthesized by template-assisted embossing. Different manufacturing strategies such as co-embossing and additive embossing are demonstrated for joining the materials with diverse compositions and functionalities. Structures with distinct combinations of properties such as hydrophobic-hydrophilic, opaque-transparent, insulator-conductor, and nonmagnetic-ferromagnetic are produced using this approach. These anisotropic properties are further utilized for selective functionalization of Janus structures.

  11. Radiochemical synthesis of pure anhydrous metal halides

    NASA Technical Reports Server (NTRS)

    Philipp, W. H.; Marsik, S. J.; May, C. E.

    1973-01-01

    Method uses radiation chemistry as practical tool for inorganic preparations and in particular deposition of metals by irradiation of their aqueous metal salt solutions with high energy electrons. Higher valence metal halide is dissolved in organic liquid and exposed to high energy electrons. This causes metal halide to be reduced to a lower valence metal halide.

  12. Method of foaming a liquid metal

    DOEpatents

    Fischer, Albert K.; Johnson, Carl E.

    1980-01-01

    The addition of a small quantity of barium to liquid metal NaK or sodium has been found to promote foam formation and improve bubble retention in the liquid metal. A stable liquid metal foam will provide a more homogeneous liquid metal flow through the channel of a two-phase liquid metal MHD power generator to improve operating efficiency.

  13. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  14. RECOVERY OF METAL USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  15. RECOVERY OF METAL USING ALUMINUM DISPLACEMENT

    EPA Science Inventory

    The removal of typical metals (Cu, Pb, Sn, Ni) from printed circuit and metal finishing waste streams was evaluated using displacement with aluminum. he metal is recovered as non-hazardous metal particles and can be recycled by smelting. n acceptable aluminum metal configuration ...

  16. Machinability Data Bases for Metal Cutting.

    DTIC Science & Technology

    1985-09-01

    Metallurgy on Machinability," published by the American Society of Metals , Metals park, Ohio, 1975. Pg. 2. 9. Frederick W. Taylor, On the Art of...Drosda, and Charles Wick, ibid. 18. Metals Handbook, Volume 3: Machining, published by the American Society of Metals , Metals Park, Ohio, 1967. 19. Doyle

  17. Expanding hollow metal rings

    DOEpatents

    Peacock, Harold B [Evans, GA; Imrich, Kenneth J [Grovetown, GA

    2009-03-17

    A sealing device that may expand more planar dimensions due to internal thermal expansion of a filler material. The sealing material is of a composition such that when desired environment temperatures and internal actuating pressures are reached, the sealing materials undergoes a permanent deformation. For metallic compounds, this permanent deformation occurs when the material enters the plastic deformation phase. Polymers, and other materials, may be using a sealing mechanism depending on the temperatures and corrosivity of the use. Internal pressures are generated by either rapid thermal expansion or material phase change and may include either liquid or solid to gas phase change, or in the gaseous state with significant pressure generation in accordance with the gas laws. Sealing material thickness and material composition may be used to selectively control geometric expansion of the seal such that expansion is limited to a specific facing and or geometric plane.

  18. Amorphous metallic foam

    NASA Astrophysics Data System (ADS)

    Schroers, Jan; Veazey, Chris; Johnson, William L.

    2003-01-01

    The bulk glass forming alloy Pd43Ni10Cu27P20 is processed into a low-density amorphous metallic foam. Pd43Ni10Cu27P20 is mixed with hydrated B2O3, which releases gas at elevated temperature and/or low pressure. Very homogeneous foams are achieved due to the high viscosity of the alloy even at its liquidus temperature. By processing at the liquidus temperature and decreasing the pressure to 10-2 mbar, well-distributed bubbles expand to foam the material. Foam densities as low as 1.4×103 kg/m3 were obtained, corresponding to a bubble volume fraction of 84%. The bubble diameter ranges between 2×10-4 and 1×10-3 m. Thermal analysis by differential scanning calorimetry confirms the amorphous nature of the foam. Furthermore, it reveals that the foam's thermal stability is comparable to the bulk material.

  19. Metal-carbon nanostructures

    SciTech Connect

    Puretzky, A.A.; Hettich, R.L.; Jin, Changming; Haufler, R.E.; Compton, R.N.; Tuinman, A.A.

    1993-12-31

    Ultrafine particles formed by XeCl laser photolysis of M(CO){sub 6}, M = V, Cr, Mo, and W, have been analyzed by Fourier transform mass spectrometry and other techniques. Novel metal carbide clusters, (MoC{sub 4}){sub n}, n = 1 {minus} 4 and (WC{sub 4}){sub m}, m = 1 {minus} 8, were detected and studied. The material produced by photolysis of V(CO){sub 6} shows a series of vanadium-oxygen clusters, V{sub x}O{sub 2x+2}, x = 2 {minus} 10. No clusters of any type were detected in the photolysis product of Cr(CO){sub 6}. Structures based on the experimental evidence are proposed and discussed in light of their chemical reactivity.

  20. Multiscale metallic metamaterials

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaoyu; Smith, William; Jackson, Julie; Moran, Bryan; Cui, Huachen; Chen, Da; Ye, Jianchao; Fang, Nicholas; Rodriguez, Nicholas; Weisgraber, Todd; Spadaccini, Christopher M.

    2016-10-01

    Materials with three-dimensional micro- and nanoarchitectures exhibit many beneficial mechanical, energy conversion and optical properties. However, these three-dimensional microarchitectures are significantly limited by their scalability. Efforts have only been successful only in demonstrating overall structure sizes of hundreds of micrometres, or contain size-scale gaps of several orders of magnitude. This results in degraded mechanical properties at the macroscale. Here we demonstrate hierarchical metamaterials with disparate three-dimensional features spanning seven orders of magnitude, from nanometres to centimetres. At the macroscale they achieve high tensile elasticity (>20%) not found in their brittle-like metallic constituents, and a near-constant specific strength. Creation of these materials is enabled by a high-resolution, large-area additive manufacturing technique with scalability not achievable by two-photon polymerization or traditional stereolithography. With overall part sizes approaching tens of centimetres, these unique nanostructured metamaterials might find use in a broad array of applications.

  1. Liquid Metal Dynamo Measurements

    NASA Astrophysics Data System (ADS)

    Luh, W. J.; Choi, Y. H.; Hardy, B. S.; Brown, M. R.

    1997-11-01

    Detection of convected magnetic fields in a small-scale liquid metal dynamo is attempted. Initial experiments will focus on the conversion of toroidal to poloidal flux (a version of the ω effect). A precision vector magnetometer will be used to measure the effect of a rotating magnetofluid on a static magnetic field. Water will be used as a control medium and effects will be compared with a conducting medium (liquid sodium or NaK). A small spherical flask (0.16 m diameter) houses 2 liters of fluid, a teflon stirrer creates an asymmetrical flow pattern, and Helmholtz coils generate a constant magnetic field on the order of 10 gauss. The Reynold's number will be of order unity.

  2. Disorders of heavy metals.

    PubMed

    Woimant, France; Trocello, Jean-Marc

    2014-01-01

    Heavy metals and trace elements play an important role in relation to the physiology and pathology of the nervous system. Neurologic diseases related to disorders of metabolism of copper and iron are reviewed. Copper disorders are divided into two classes: ATP7A- or ATP7B-related inherited copper transport disorders (Menkes disease, occipital horn syndrome, ATP7A-related distal motor neuropathy, and Wilson disease) and acquired diseases associated with copper deficiency or copper excess. Iron brain disorders are divided into genetic neurodegeneration with brain iron accumulation (NBIA, neuroferritinopathy, and aceruloplasminemia), genetic systemic iron accumulation with neurologic features (hemochromatosis), and acquired diseases associated with iron excess (superficial siderosis) or iron deficiency (restless leg syndrome). The main features of cadmium, lead, aluminum, mercury, and manganese toxicity are summarized.

  3. Dry etching of metallization

    NASA Technical Reports Server (NTRS)

    Bollinger, D.

    1983-01-01

    The production dry etch processes are reviewed from the perspective of microelectronic fabrication applications. The major dry etch processes used in the fabrication of microelectronic devices can be divided into two categories - plasma processes in which samples are directly exposed to an electrical discharge, and ion beam processes in which samples are etched by a beam of ions extracted from a discharge. The plasma etch processes can be distinguished by the degree to which ion bombardment contributes to the etch process. This, in turn is related to capability for anisotropic etching. Reactive Ion Etching (RIE) and Ion Beam Etching are of most interest for etching of thin film metals. RIE is generally considered the best process for large volume, anisotropic aluminum etching.

  4. Advanced multilevel metallization technology

    NASA Astrophysics Data System (ADS)

    Ohba, Takayuki

    1995-10-01

    In order for ULSI manufacturing to minimize the COO (cost of ownership) aspect in the wiring process and realize fabricating over 256M bits DRAM, several wiring technologies have been proposed. The evidential criteria in choosing the most probable one are physical or material limitations (e.g. step-coverage and resistivity) and requirements from manufacturing (e.g. process complexity, reliability, throughput, and total cost). Therefore, a combination of metallurgy using chemical vapor deposition (CVD) with simplified multilevel interconnects has a high potential in overcoming those difficulties. In this paper, an integrated multilevel metallization (IMM) by considering the above criteria is discussed. Alternatives of improved W-CVD, TiN-CVD using diborane (B 2H 6) and methylhydrazine (MH) reduction, selective W-CVD, and Cu wiring are described from our recent studies.

  5. METAL EXTRACTION PROCESS

    DOEpatents

    Lewis, G.W. Jr.; Rhodes, D.E.

    1957-11-01

    An improved method for extracting uranium from aqueous solutions by solvent extraction is presented. A difficulty encountered in solvent extraction operations using an organic extractant (e.g., tributyl phosphate dissolved in kerosene or carbon tetrachloride) is that emulsions sometimes form, and phase separation is difficult or impossible. This difficulty is overcome by dissolving the organic extractant in a molten wax which is a solid at operating temperatures. After cooling, the wax which now contains the extractant, is broken into small particles (preferably flakes) and this wax complex'' is used to contact the uranium bearing solutions and extract the metal therefrom. Microcrystalline petroleum wax and certain ethylene polymers have been found suitable for this purpose.

  6. [Chronic occupational metallic mercurialism].

    PubMed

    Faria, Marcília de Araújo Medrado

    2003-02-01

    This is a review on current knowledge of chronic occupational mercurialism syndrome. Major scientific studies and reviews on clinical manifestation and physiopathology of mercury poisoning were evaluated. The search was complemented using Medline and Lilacs data. Erethism or neuropsychological syndrome, characterized by irritability, personality change, loss of self-confidence, depression, delirium, insomnia, apathy, loss of memory, headaches, general pain, and tremors, is seen after exposure to metallic mercury. Hypertension, renal disturbances, allergies and immunological conditions are also common. Mercury is found in many different work processes: industries, gold mining, and dentistry. As prevention measures are not often adopted there is an increasing risk of mercury poisoning. The disease has been under diagnosed even though 16 clinical forms of mercury poisoning are described by Brazilian regulations. Clinical diagnosis is important, especially because abnormalities in the central nervous, renal and immunological systems can be detected using current medical technology, helping to develop the knowledge and control measures for mercurialism.

  7. Evolution of Metals

    NASA Astrophysics Data System (ADS)

    Shull, J. M.

    1998-05-01

    This review will cover a mystery story. Actually, two mysteries of the Structure and Evolution of the Universe involving the history of the baryons and the chemical elements synthesized in the first stars. When did the gas and metals first form? How did they evolve to their current distribution? The original crime scene is unknown, but evidence has been collected in the diffuse intergalactic medium and in hot intracluster gas. In these scattered locales, large amounts of gas has accumulated, contaminated by heavy elements from the first stars. Unfortunately, some of the evidence has been destroyed by gravity. Also, the earliest quasars, massive stars, and supernovae altered the physical state of the gas and transported the elements far from the original scene. I will briefly review current observations and theories relevant to these processes and suggest ways in which future NASA missions could constrain the many speculative ideas on this subject.

  8. Metallic nanoparticles meet metadynamics.

    PubMed

    Pavan, L; Rossi, K; Baletto, F

    2015-11-14

    Metadynamics coupled with classical molecular dynamics has been successfully applied to sample the configuration space of metallic and bimetallic nanoclusters. We implement a new set of collective variables related to the pair distance distribution function of the nanoparticle to achieve an exhaustive isomer sampling. As paradigmatic examples, we apply our methodology to Ag147, Pt147, and their alloy Ag(shell)Pt(core) at 2:1 and 1:1 chemical compositions. The proposed scheme is able to reproduce the known solid-solid structural transformation pathways, based on the Lipscomb's diamond-square-diamond mechanisms, both in mono and bimetallic nanoparticles. A discussion of the free energy barriers involved in these processes is provided.

  9. Metallic nanoparticles meet metadynamics

    NASA Astrophysics Data System (ADS)

    Pavan, L.; Rossi, K.; Baletto, F.

    2015-11-01

    Metadynamics coupled with classical molecular dynamics has been successfully applied to sample the configuration space of metallic and bimetallic nanoclusters. We implement a new set of collective variables related to the pair distance distribution function of the nanoparticle to achieve an exhaustive isomer sampling. As paradigmatic examples, we apply our methodology to Ag147, Pt147, and their alloy AgshellPtcore at 2:1 and 1:1 chemical compositions. The proposed scheme is able to reproduce the known solid-solid structural transformation pathways, based on the Lipscomb's diamond-square-diamond mechanisms, both in mono and bimetallic nanoparticles. A discussion of the free energy barriers involved in these processes is provided.

  10. Creating bulk nanocrystalline metal.

    SciTech Connect

    Fredenburg, D. Anthony; Saldana, Christopher J.; Gill, David D.; Hall, Aaron Christopher; Roemer, Timothy John; Vogler, Tracy John; Yang, Pin

    2008-10-01

    Nanocrystalline and nanostructured materials offer unique microstructure-dependent properties that are superior to coarse-grained materials. These materials have been shown to have very high hardness, strength, and wear resistance. However, most current methods of producing nanostructured materials in weapons-relevant materials create powdered metal that must be consolidated into bulk form to be useful. Conventional consolidation methods are not appropriate due to the need to maintain the nanocrystalline structure. This research investigated new ways of creating nanocrystalline material, new methods of consolidating nanocrystalline material, and an analysis of these different methods of creation and consolidation to evaluate their applicability to mesoscale weapons applications where part features are often under 100 {micro}m wide and the material's microstructure must be very small to give homogeneous properties across the feature.

  11. Liquid metal thermoacoustic engine

    SciTech Connect

    Swift, G.W.; Migliori, A.; Wheatley, J.C.

    1986-01-01

    We are studying a liquid metal thermoacoustic engine both theoretically and experimentally. This type of engine promises to produce large quantities of electrical energy from heat at modest efficiency with no moving parts. A sound wave is usually thought of as consisting of pressure oscillations, but always attendant to the pressure oscillation are temperature oscillations. The combination produces a rich variety of ''thermoacoustic'' effects. These effects are usually so small that they are never noticed in everyday life; nevertheless under the right circumstances they can be harnessed to produce powerful heat engines, heat pumps, and refrigerators. In our liquid metal thermoacoustic engine, heat flow from a high temperature source to a low temperature sink generates a high-amplitude standing acoustic wave in liquid sodium. This acoustic power is converted to electric power by a simple magnetohydrodynamic effect at the acoustic oscillation frequency. We have developed a detailed thermoacoustic theory applicable to this engine, and find that a reasonably designed liquid sodium engine operating between 700/sup 0/C and 100/sup 0/C should generate about 60 W/cm/sup 2/ of acoustic power at about 1/3 of Carnot's efficiency. Construction of a 3000 W-thermal laboratory model engine has just been completed, and we have exciting preliminary experimental results as of the time of preparation of this manuscript showing, basically, that the engine works. We have also designed and built a 1 kHz liquid sodium magnetohydrodynamic generator and have extensive measurements on it. It is now very well characterized both experimentally and theoretically. The first generator of its kind, it already converts acoustic power to electric power with 40% efficiency. 16 refs., 5 figs.

  12. Synthesis metal nanoparticle

    DOEpatents

    Bunge, Scott D.; Boyle, Timothy J.

    2005-08-16

    A method for providing an anhydrous route for the synthesis of amine capped coinage-metal (copper, silver, and gold) nanoparticles (NPs) using the coinage-metal mesityl (mesityl=C.sub.6 H.sub.2 (CH.sub.3).sub.3 -2,4,6) derivatives. In this method, a solution of (Cu(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5, (Ag(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.4, or (Au(C.sub.6 H.sub.2 (CH.sub.3).sub.3).sub.5 is dissolved in a coordinating solvent, such as a primary, secondary, or tertiary amine; primary, secondary, or tertiary phosphine, or alkyl thiol, to produce a mesityl precursor solution. This solution is subsequently injected into an organic solvent that is heated to a temperature greater than approximately 100.degree. C. After washing with an organic solvent, such as an alcohol (including methanol, ethanol, propanol, and higher molecular-weight alcohols), oxide free coinage NP are prepared that could be extracted with a solvent, such as an aromatic solvent (including, for example, toluene, benzene, and pyridine) or an alkane (including, for example, pentane, hexane, and heptane). Characterization by UV-Vis spectroscopy and transmission electron microscopy showed that the NPs were approximately 9.2.+-.2.3 nm in size for Cu.degree., (no surface oxide present), approximately 8.5.+-.1.1 nm Ag.degree. spheres, and approximately 8-80 nm for Au.degree..

  13. Dynamic hardness of metals

    NASA Astrophysics Data System (ADS)

    Liang, Xuecheng

    Dynamic hardness (Pd) of 22 different pure metals and alloys having a wide range of elastic modulus, static hardness, and crystal structure were measured in a gas pulse system. The indentation contact diameter with an indenting sphere and the radius (r2) of curvature of the indentation were determined by the curve fitting of the indentation profile data. r 2 measured by the profilometer was compared with that calculated from Hertz equation in both dynamic and static conditions. The results indicated that the curvature change due to elastic recovery after unloading is approximately proportional to the parameters predicted by Hertz equation. However, r 2 is less than the radius of indenting sphere in many cases which is contradictory to Hertz analysis. This discrepancy is believed due to the difference between Hertzian and actual stress distributions underneath the indentation. Factors which influence indentation elastic recovery were also discussed. It was found that Tabor dynamic hardness formula always gives a lower value than that directly from dynamic hardness definition DeltaE/V because of errors mainly from Tabor's rebound equation and the assumption that dynamic hardness at the beginning of rebound process (Pr) is equal to kinetic energy change of an impact sphere over the formed crater volume (Pd) in the derivation process for Tabor's dynamic hardness formula. Experimental results also suggested that dynamic to static hardness ratio of a material is primarily determined by its crystal structure and static hardness. The effects of strain rate and temperature rise on this ratio were discussed. A vacuum rotating arm apparatus was built to measure Pd at 70, 127, and 381 mum sphere sizes, these results exhibited that Pd is highly depended on the sphere size due to the strain rate effects. P d was also used to substitute for static hardness to correlate with abrasion and erosion resistance of metals and alloys. The particle size effects observed in erosion were

  14. Radioprotection by metals: Selenium

    NASA Astrophysics Data System (ADS)

    Weiss, J. F.; Srinivasan, V.; Kumar, K. S.; Landauer, M. R.

    The need exists for compounds that will protect individuals from high-dose acute radiation exposure in space and for agents that might be less protective but less toxic and longer acting. Metals and metal derivatives provide a small degree of radioprotection (dose reduction factor <= 1.2 for animal survival after whole-body irradiation). Emphasis is placed here on the radioprotective potential of selenium (Se). Both the inorganic salt, sodium selenite, and the organic Se compound, selenomethionine, enhance the survival of irradiated mice (60Co, 0.2 Gy/min) when injected IP either before (-24 hr and -1 hr) or shortly after (+15 min) radiation exposure. When administered at equitoxic doses (one-fourth LD10; selenomethionine = 4.0 mg/kg Se, sodium selenite = 0.8 mg/kg Se), both drugs enhanced the 30-day survival of mice irradiated at 9 Gy. Survival after 10-Gy exposure was significantly increased only after selenomethionine treatment. An advantage of selenomethionine is lower lethal and behavioral toxicity (locomotor activity depression) compared to sodium selenite, when they are administered at equivalent doses of Se. Sodium selenite administered in combination with WR-2721, S-2-(3-aminopropylamino)ethylphosphorothioic acid, enhances the radioprotective effect and reduces the lethal toxicity, but not the behavioral toxicity, of WR-2721. Other studies on radioprotection and protection against chemical carcinogens by different forms of Se are reviewed. As additional animal data and results from human chemoprevention trials become available, consideration also can be given to prolonged administration of Se compounds for protection against long-term radiation effects in space.

  15. Half-metallic carbon nanotubes.

    PubMed

    Lee, Kyu Won; Lee, Cheol Eui

    2012-04-17

    Half-metallicity in carbon nanotubes is achieved and controlled by hydrogen adsorption patterns. The edge states in carbon nanotubes are unstable under an electric field due to the spin-conserving electron transfer between the edges, but a large enough transfer barrier between the edge states, obtained by controlling the adsorption patterns, renders the CNTs half-metallic.

  16. MOD silver metallization for photovoltaics

    NASA Technical Reports Server (NTRS)

    Vest, G. M.; Vest, R. W.

    1984-01-01

    Photovoltaic cells require back side metallization and a collector grid system on the front surface. Both front and back surface metallizations should have good adhesion, low contact resistance, low sheet resistance, long term stability, and their deposition methods should not degrade the n-p junction. Advantages and disadvantages of different deposition methods are discussed.

  17. Metal recovery from porous materials

    DOEpatents

    Sturcken, E.F.

    1991-01-01

    The present invention relates to recovery of metals. More specifically, the present invention relates to the recovery of plutonium and other metals from porous materials using microwaves. The United States Government has rights in this invention pursuant to Contract No. DE-AC09-89SR18035 between the US Department of Energy and Westinghouse Savannah River Company.

  18. Behavior of Metals in Soils

    EPA Pesticide Factsheets

    One of the major issues of concern to the Forum is the mobility of metals in soils as related to subsurface remediation. For the purposes of this Issue Paper, those metals most commonly found at Superfund sites will be discussed in terms of the processes..

  19. PROCESS OF RECOVERING ALKALI METALS

    DOEpatents

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  20. Metal ions as enzyme effectors

    NASA Astrophysics Data System (ADS)

    Medyantseva, El'vina P.; Vertlib, Margarita G.; Budnikov, German K.

    1998-03-01

    The role of metal ions as enzyme effectors is considered. Data on inhibitory and activating effects of metal ions are summarised. The dual character of action of the effectors depending on their concentration and the nature of the enzyme is highlighted. The analytical applications of these effects are discussed. The bibliography includes 66 references.

  1. Agriculture Education. Agricultural Metal Working.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agricultural metal working. The guide presents units of study in the following areas: (1) oxyacetylene welding, (2) arc welding, (3) sheet metal, (4) blueprint reading for welders and (5) job…

  2. Radioactive materials in recycled metals

    SciTech Connect

    Lubenau, J.O.; Yusko, J.G.

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap-radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  3. Radioactive materials in recycled metals.

    PubMed

    Lubenau, J O; Yusko, J G

    1995-04-01

    In recent years, the metal recycling industry has become increasingly aware of an unwanted component in metal scrap--radioactive material. Worldwide, there have been 35 instances where radioactive sources were unintentionally smelted in the course of recycling metal scrap. In some cases contaminated metal consumer products were distributed internationally. In at least one case, serious radiation exposures of workers and the public occurred. Radioactive material appearing in metal scrap includes sources subject to licensing under the Atomic Energy Act and also naturally occurring radioactive material. U.S. mills that have smelted a radioactive source face costs resulting from decontamination, waste disposal, and lost profits that range from 7 to 23 million U.S. dollars for each event. To solve the problem, industry and the government have jointly undertaken initiatives to increase awareness of the problem within the metal recycling industry. Radiation monitoring of recycled metal scrap is being performed increasingly by mills and, to a lesser extent, by scrap processors. The monitoring does not, however, provide 100% protection. Improvements in regulatory oversight by the government could stimulate improved accounting and control of licensed sources. However, additional government effort in this area must be reconciled with competing priorities in radiation safety and budgetary constraints. The threat of radioactive material in recycled metal scrap will continue for the foreseeable future and, thus, poses regulatory policy challenges for both developed and developing nations.

  4. Preparation of alkali metal dispersions

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Landel, R. F. (Inventor)

    1968-01-01

    A method is described for producing alkali metal dispersions of high purity. The dispersions are prepared by varying the equilibrium solubility of the alkali metal in a suitable organic solvent in the presence of aromatic hydrocarbons. The equilibrium variation is produced by temperature change. The size of the particles is controlled by controlling the rate of temperature change.

  5. Nanostructured metal-polyaniline composites

    DOEpatents

    Wang, Hsing-Lin; Li, Wenguang; Bailey, James A.; Gao, Yuan

    2010-08-31

    Metal-polyaniline (PANI) composites are provided together with a process of preparing such composites by an electrodeless process. The metal of the composite can have nanoscale structural features and the composites can be used in applications such as catalysis for hydrogenation reactions and for analytical detection methods employing SERS.

  6. Agriculture Education. Agricultural Metal Working.

    ERIC Educational Resources Information Center

    Stuttgart Public Schools, AR.

    This curriculum guide is designed for group instruction of secondary agricultural education students enrolled in one or two semester-long courses in agricultural metal working. The guide presents units of study in the following areas: (1) oxyacetylene welding, (2) arc welding, (3) sheet metal, (4) blueprint reading for welders and (5) job…

  7. Metal Working and Welding Operations.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by metal workers and welders. Addressed in the six individual units of the course are the following topics: weldable metals and their alloys, arc welding, gas welding,…

  8. Metal imaging in neurodegenerative diseases

    PubMed Central

    Bourassa, Megan W.

    2014-01-01

    Metal ions are known to play an important role in many neurodegenerative diseases including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and prion diseases. In these diseases, aberrant metal binding or improper regulation of redox active metal ions can induce oxidative stress by producing cytotoxic reactive oxygen species (ROS). Altered metal homeostasis is also frequently seen in the diseased state. As a result, the imaging of metals in intact biological cells and tissues has been very important for understanding the role of metals in neurodegenerative diseases. A wide range of imaging techniques have been utilized, including X-ray fluorescence microscopy (XFM), particle induced X-ray emission (PIXE), energy dispersive X-ray spectroscopy (EDS), laser ablation inductively coupled mass spectrometry (LA-ICP-MS), and secondary ion mass spectrometry (SIMS), all of which allow for the imaging of metals in biological specimens with high spatial resolution and detection sensitivity. These techniques represent unique tools for advancing the understanding of the disease mechanisms and for identifying possible targets for developing treatments. In this review, we will highlight the advances in neurodegenerative disease research facilitated by metal imaging techniques. PMID:22797194

  9. Avant-garde metalating agents: structural basis of alkali-metal-mediated metalation.

    PubMed

    Mulvey, Robert E

    2009-06-16

    Metalation, one of the most useful and widely used synthetic methodologies, transforms a relatively inert carbon-hydrogen bond to a more labile carbon-metal bond. Until recently, most organometallic reagents that facilitate this process have combined strongly electropositive metals, such as lithium, with organic reagents to form highly polar and, by implication, highly reactive carbon-metal bonds. For example, the alkyllithium reagents and bulky lithium amides that are commonly employed for this purpose can suffer from low functional group tolerance. Lithio-products of these reactions generally have low kinetic stabilities. More recently, several groups around the world have pioneered alternative metalation reagents, complex metalators, which can be interpreted as composite molecules or mixtures made up of two or more distinct compound types. Several examples include magnesiate complexes, Lochmann-Schlosser superbases, Kondo and Uchiyama's 2,2,6,6-tetramethylpiperidide (TMP)-zincate complexes, and Knochel's turbo-Grignard and related salt-supported reagents. This Account describes our rational development of novel complex metalators based on existing structural templates and designed to execute alkali-metal-mediated metalations (AMMMs). By changing the nonalkali metal in these structures, we have produced tailor-made dianionic-dicationic structures such as [(TMEDA).Na(mu-TMP)(mu-(n)Bu)Mg(TMP)], [(TMEDA).Na(mu-TMP)(mu-(t)Bu)Zn((t)Bu)], and [(TMEDA).Li(mu-TMP)Mn(CH(2)SiMe(3))(2)] (TMEDA = N,N,N',N'-tetramethylethylenediamine). These compounds can perform unprecedented magnesiations, zincations, or manganations on aromatic substrates that are generally inert toward conventional Mg, Zn, or Mn(II) reagents. Although the alkali metal is an essential component of these new complex metalators, interestingly, the less electropositive, less polar nonalkali metal [Mg, Zn, or Mn(II)] actually carries out the deprotonation. We view this unique behavior as a mixed-metal synergic

  10. Metallic surfaces with special wettability

    NASA Astrophysics Data System (ADS)

    Liu, Kesong; Jiang, Lei

    2011-03-01

    Metals are important and irreplaceable engineered materials in our society. Nature is a school for scientists and engineers, which has long served as a source of inspiration for humans. Inspired by nature, a variety of metallic surfaces with special wettability have been fabricated in recent years through the combination of surface micro- and nanostructures and chemical composition. These metallic surfaces with special wettability exhibit important applications in anti-corrosion, microfluidic systems, oil-water separation, liquid transportation, and other fields. Recent achievements in the fabrication and application of metallic surfaces with special wettability are presented in this review. The research prospects and directions of this field are also briefly addressed. We hope this review will be beneficial to expand the practical applications of metals and offer some inspirations to the researchers in the fields of engineering, biomedicine, and materials science.

  11. Transparent metal oxide nanowire transistors

    NASA Astrophysics Data System (ADS)

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-01

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  12. Transparent metal oxide nanowire transistors.

    PubMed

    Chen, Di; Liu, Zhe; Liang, Bo; Wang, Xianfu; Shen, Guozhen

    2012-05-21

    With the features of high mobility, a high electric on/off ratio and excellent transparency, metal oxide nanowires are excellent candidates for transparent thin-film transistors, which is one of the key technologies to realize transparent electronics. This article provides a comprehensive review of the state-of-the-art research activities that focus on transparent metal oxide nanowire transistors. It begins with the brief introduction to the synthetic methods for high quality metal oxide nanowires, and the typical nanowire transfer and printing techniques with emphasis on the simple contact printing methodology. High performance transparent transistors built on both single nanowires and nanowire thin films are then highlighted. The final section deals with the applications of transparent metal oxide nanowire transistors in the field of transparent displays and concludes with an outlook on the current perspectives and future directions of transparent metal oxide nanowire transistors.

  13. [Detection of metal ions in hair after metal-metal hip arthroplasty].

    PubMed

    Hernandez-Vaquero, D; Rodríguez de la Flor, M; Fernandez-Carreira, J M; Sariego-Muñiz, C

    2014-01-01

    There is an increase in the levels of metals in the serum and urine after the implantation of some models of metal-metal hip prosthesis. It has recently been demonstrated that there is an association between these levels and the levels found in hair. The aim of this study is to determine the presence of metals in hair, and to find out whether these change over time or with the removal of the implant. The levels of chromium, cobalt and molybdenum were determined in the hair of 45 patients at 3, 4, 5, and 6 years after a hip surface replacement. The mean age was 57.5 years, and two were female. Further surgery was required to remove the replacement and implant a new model with metal-polyethylene friction in 11 patients, 5 of them due to metallosis and a periarticular cyst. The mean levels of metals in hair were chromium 163.27 ppm, cobalt 61.98 ppm, and molybdenum 31.36 ppm, much higher than the levels found in the general population. A decrease in the levels of chromium (43.8%), molybdenum (51.1%), and cobalt (91.1%) was observed at one year in the patients who had further surgery to remove the prosthesis. High concentrations of metals in the hair are observed in hip replacements with metal-metal friction, which decrease when that implant is removed. The determination of metal ions in hair could be a good marker of the metal poisoning that occurs in these arthroplasty models. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.

  14. Durability of metals from archaeological objects, metal meteorites, and native metals

    SciTech Connect

    Johnson, A.B. Jr.; Francis, B.

    1980-01-01

    Metal durability is an important consideration in the multi-barrier nuclear waste storage concept. This study summarizes the ancient metals, the environments, and factors which appear to have contributed to metal longevity. Archaeological and radiochemical dating suggest that human use of metals began in the period 6000 to 7000 BC. Gold is clearly the most durable, but many objects fashioned from silver, copper, bronze, iron, lead, and tin have survived for several thousand years. Dry environments, such as tombs, appear to be optimum for metal preservation, but some metals have survived in shipwrecks for over a thousand years. The metal meteorites are Fe-base alloys with 5 to 60 wt% Ni and minor amounts of Co, I, and S. Some meteoritic masses with ages estimated to be 5,000 to 20,000 years have weathered very little, while other masses from the same meteorites are in advanced stages of weathering. Native metals are natural metallic ores. Approximately five million tonnes were mined from native copper deposits in Michigan. Copper masses from the Michigan deposits were transported by the Pleistocene glaciers. Areas on the copper surfaces which appear to represent glacial abrasion show minimal corrosion. Dry cooling tower technology has demonstrated that in pollution-free moist environments, metals fare better at temperatures above than below the dewpoint. Thus, in moderate temperature regimes, elevated temperatures may be useful rather than detrimental for exposures of metal to air. In liquid environments, relatively complex radiolysis reactions can occur, particularly where multiple species are present. A dry environment largely obviates radiolysis effects.

  15. Metal reduction kinetics in Shewanella.

    PubMed

    Lall, Raman; Mitchell, Julie

    2007-10-15

    Metal reduction kinetics have been studied in cultures of dissimilatory metal reducing bacteria which include the Shewanella oneidensis strain MR-1. Estimation of system parameters from time-series data faces obstructions in the implementation depending on the choice of the mathematical model that captures the observed dynamics. The modeling of metal reduction is often based on Michaelis-Menten equations. These models are often developed using initial in vitro reaction rates and seldom match with in vivo reduction profiles. For metal reduction studies, we propose a model that is based on the power law representation that is effectively applied to the kinetics of metal reduction. The method yields reasonable parameter estimates and is illustrated with the analysis of time-series data that describes the dynamics of metal reduction in S.oneidensis strain MR-1. In addition, mixed metal studies involving the reduction of Uranyl (U(VI)) to the relatively insoluble tetravalent form (U(IV)) by S. alga strain (BR-Y) were studied in the presence of environmentally relevant iron hydrous oxides. For mixed metals, parameter estimation and curve fitting are accomplished with a generalized least squares formulation that handles systems of ordinary differential equations and is implemented in Matlab. It consists of an optimization algorithm (Levenberg-Marquardt, LSQCURVEFIT) and a numerical ODE solver. Simulation with the estimated parameters indicates that the model captures the experimental data quite well. The model uses the estimated parameters to predict the reduction rates of metals and mixed metals at varying concentrations. Supplementary data are available at Bioinformatics online.

  16. Systems view of optimizing metal on metal bearings.

    PubMed

    Schey, J A

    1996-08-01

    Metal on metal hip prostheses are critically reviewed as examples of a tribologic system. Because the inputs (load, velocity, fluid) are given, the designer has relatively few options, which can be exploited only if operative lubrication and wear mechanisms are known. Nothing can he done about the fluid, but film thickness can he influenced by macrogeometry (diameter and clearance) and by provision of film enhancing features. Microgeometry (surface topography, including asperity geometry and spacing) is a powerful contributor, but has not been sufficiently characterized or controlled. Compared with metal/polymer bearings, the total knowledge is small, and extensive research is called for. The high cost and long duration of hip joint simulation tests makes them more suitable to evaluate devices and to validate findings from bench tests. A particularly important task is to establish which experimental fluid adequately simulates the fluid formed around an all metal prosthesis. Much basic work can he conducted in bench tests, particularly in a form of oscillating twist compression test with cyclic loading, which induces squeeze film and mixed film lubrication. There is need for friction and wear studies with different metals and coatings, with controlled surface topography, and with lubricants specially formulated to clarify the roles played by various constituents of the fluid formed in metal on metal joints.

  17. CoCrMo metal-on-metal hip replacements.

    PubMed

    Liao, Yifeng; Hoffman, Emily; Wimmer, Markus; Fischer, Alfons; Jacobs, Joshua; Marks, Laurence

    2013-01-21

    After the rapid growth in the use of CoCrMo metal-on-metal hip replacements since the second generation was introduced circa 1990, metal-on-metal hip replacements have experienced a sharp decline in the last two years due to biocompatibility issues related to wear and corrosion products. Despite some excellent clinical results, the release of wear and corrosion debris and the adverse response of local tissues have been of great concern. There are many unknowns regarding how CoCrMo metal bearings interact with the human body. This perspective article is intended to outline some recent progresses in understanding wear and corrosion of metal-on-metal hip replacement both in vivo and in vitro. The materials, mechanical deformation, corrosion, wear-assisted corrosion, and wear products will be discussed. Possible adverse health effects caused by wear products will be briefly addressed, as well as some of the many open questions such as the detailed chemistry of corrosion, tribochemical reactions and the formation of graphitic layers. Nowadays we design almost routinely for high performance materials and lubricants for automobiles; humans are at least as important. It is worth remembering that a hip implant is often the difference between walking and leading a relatively normal life, and a wheelchair.

  18. CoCrMo Metal-on-Metal Hip Replacements

    PubMed Central

    Liao, Yifeng; Hoffman, Emily; Wimmer, Markus; Fischer, Alfons; Jacobs, Joshua; Marks, Laurence

    2012-01-01

    After the rapid growth in the use of CoCrMo metal-on-metal hip replacements since the second generation was introduced circa 1990, metal-on-metal hip replacements have experienced a sharp decline in the last two years due to biocompatibility issues related to wear and corrosion products. Despite some excellent clinical results, the release of wear and corrosion debris and the adverse response of local tissues have been of great concern. There are many unknowns regarding how CoCrMo metal bearings interact with the human body. This perspective article is intended to outline some recent progresses in understanding wear and corrosion of metal-on-metal hip replacement both in-vivo and in-vitro. The materials, mechanical deformation, corrosion, wear-assisted corrosion, and wear products will be discussed. Possible adverse health effects caused by wear products will be briefly addressed, as well as some of the many open questions such as the detailed chemistry of corrosion, tribochemical reactions and the formation of graphitic layers. Nowadays we design almost routinely for high performance materials and lubricants for automobiles; humans are at least as important. It is worth remembering that a hip implant is often the difference between walking and leading a relatively normal life, and a wheelchair. PMID:23196425

  19. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...

  20. 21 CFR 888.3550 - Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Knee joint patellofemorotibial polymer/metal/metal... § 888.3550 Knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis. (a) Identification. A knee joint patellofemorotibial polymer/metal/metal constrained cemented prosthesis is a...