Science.gov

Sample records for metal load affect

  1. Assessment of metal loads in watersheds affected by acid mine drainage by using tracer injection and synoptic sampling: Cement Creek, Colorado, USA

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.; Bencala, K.E.

    2002-01-01

    Watersheds in mineralized zones may contain many mines, each of which can contribute to acidity and the metal load of a stream. In this study the authors delineate hydrogeologic characteristics determining the transport of metals from the watershed to the stream in the watershed of Cement Creek, Colorado. Combining the injection of a chemical tracer, to determine a discharge, with synoptic sampling, to obtain chemistry of major ions and metals, spatially detailed load profiles are quantified. Using the discharge and load profiles, the authors (1) identified sampled inflow sources which emanate from undisturbed as well as previously mined areas; (2) demonstrate, based on simple hydrologic balance, that unsampled, likely dispersed subsurface, inflows are significant; and (3) estimate attenuation. For example, along the 12-km study reach, 108 kg per day of Zn were added to Cement Creek. Almost half of this load came from 10 well-defined areas that included both mined and non-mined parts of the watershed. However, the combined effect of many smaller inflows also contributed a substantial load that could limit the effectiveness of remediation. Of the total Zn load, 58.3 kg/day came from stream segments with no visible inflow, indicating the importance of contributions from dispersed subsurface inflow. The subsurface inflow mostly occurred in areas with substantial fracturing of the bedrock or in areas downstream from tributaries with large alluvial fans. Despite a pH generally less than 4.5, there was 58.4 kg/day of Zn attenuation that occurred in mixing zones downstream from inflows with high pH. Mixing zones can have local areas of pH that are high enough for sorption and precipitation reactions to have an effect. Principal component analysis classified inflows into 7 groups with distinct chemical signatures that represent water-rock interaction with different mineral-alteration suites in the watershed. The present approach provides a detailed snapshot of metal load

  2. An approach to quantify sources, seasonal change, and biogeochemical processes affecting metal loading in streams: Facilitating decisions for remediation of mine drainage

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.

    2010-01-01

    Historical mining has left complex problems in catchments throughout the world. Land managers are faced with making cost-effective plans to remediate mine influences. Remediation plans are facilitated by spatial mass-loading profiles that indicate the locations of metal mass-loading, seasonal changes, and the extent of biogeochemical processes. Field-scale experiments during both low- and high-flow conditions and time-series data over diel cycles illustrate how this can be accomplished. A low-flow experiment provided spatially detailed loading profiles to indicate where loading occurred. For example, SO42 - was principally derived from sources upstream from the study reach, but three principal locations also were important for SO42 - loading within the reach. During high-flow conditions, Lagrangian sampling provided data to interpret seasonal changes and indicated locations where snowmelt runoff flushed metals to the stream. Comparison of metal concentrations between the low- and high-flow experiments indicated substantial increases in metal loading at high flow, but little change in metal concentrations, showing that toxicity at the most downstream sampling site was not substantially greater during snowmelt runoff. During high-flow conditions, a detailed temporal sampling at fixed sites indicated that Zn concentration more than doubled during the diel cycle. Monitoring programs must account for diel variation to provide meaningful results. Mass-loading studies during different flow conditions and detailed time-series over diel cycles provide useful scientific support for stream management decisions.

  3. Radiopure metal-loaded liquid scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-08-17

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  4. Radiopure Metal-Loaded Liquid Scintillator

    SciTech Connect

    Rosero, Richard; Yeh, Minfang

    2015-03-18

    Metal-loaded liquid scintillator plays a key role in particle and nuclear physics experiments. The applications of metal ions in various neutrino experiments and the purification methods for different scintillator components are discussed in this paper.

  5. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, V.A.; Iton, L.E.; Pasterczyk, J.W.; Winterer, M.; Krause, T.R.

    1994-04-26

    A zeolite-based catalyst is described for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C[sub 2]+ hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  6. Transition metal sulfide loaded catalyst

    DOEpatents

    Maroni, Victor A.; Iton, Lennox E.; Pasterczyk, James W.; Winterer, Markus; Krause, Theodore R.

    1994-01-01

    A zeolite based catalyst for activation and conversion of methane. A zeolite support includes a transition metal (Mo, Cr or W) sulfide disposed within the micropores of the zeolite. The catalyst allows activation and conversion of methane to C.sub.2 + hydrocarbons in a reducing atmosphere, thereby avoiding formation of oxides of carbon.

  7. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions.

    PubMed

    Murphy, Gillian; Greene, Ciara M

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  8. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions

    PubMed Central

    Murphy, Gillian; Greene, Ciara M.

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals. PMID:27625628

  9. Perceptual Load Affects Eyewitness Accuracy and Susceptibility to Leading Questions

    PubMed Central

    Murphy, Gillian; Greene, Ciara M.

    2016-01-01

    Load Theory (Lavie, 1995, 2005) states that the level of perceptual load in a task (i.e., the amount of information involved in processing task-relevant stimuli) determines the efficiency of selective attention. There is evidence that perceptual load affects distractor processing, with increased inattentional blindness under high load. Given that high load can result in individuals failing to report seeing obvious objects, it is conceivable that load may also impair memory for the scene. The current study is the first to assess the effect of perceptual load on eyewitness memory. Across three experiments (two video-based and one in a driving simulator), the effect of perceptual load on eyewitness memory was assessed. The results showed that eyewitnesses were less accurate under high load, in particular for peripheral details. For example, memory for the central character in the video was not affected by load but memory for a witness who passed by the window at the edge of the scene was significantly worse under high load. High load memories were also more open to suggestion, showing increased susceptibility to leading questions. High visual perceptual load also affected recall for auditory information, illustrating a possible cross-modal perceptual load effect on memory accuracy. These results have implications for eyewitness memory researchers and forensic professionals.

  10. Evaluation of Metal Loading to Streams near Creede, Colorado, August and September 2000

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.; Walton-Day, K.; Stover, B.K.

    2006-01-01

    Decisions about remediation of mine drainage on the watershed scale require an understanding of metal contributions from all sources to be able to choose the best sites for remediation. A hydrologic framework to study metal loading in the Willow Creek watershed, a tributary to the Rio Grande River, was established by conducting a series of tracer-injection studies. Each study used the tracer-dilution method in conjunction with synoptic sampling to determine the spatial distribution of discharge and concentration. Discharge and concentration data were then used to develop mass-loading curves for the metals of interest. The discharge and load profiles (1) identify the principal sources of load to the streams; (2) demonstrate the scale of unsampled, dispersed subsurface inflows; and (3) estimate the amount of natural attenuation. The greatest source of metal loads was from the Nelson Tunnel on West Willow Creek, which contributed 158 kilograms per day of zinc to the stream. Additional loading from other dispersed, subsurface inflows along West Willow Creek added substantial loads, but these were small in comparison to the loads from the Nelson Tunnel. No significant contributions of metal load from potential sources occurred along East Willow Creek. The lack of measurable loading may be a result of previous remedial actions along that stream. The lower Willow Creek section had relatively small contributions of load compared to what had been contributed upstream. This watershed approach provides a detailed snapshot of metal load for the watershed to support remediation decisions and quantifies processes that affect metal transport.

  11. Cognitive load affects postural control in children.

    PubMed

    Schmid, Maurizio; Conforto, Silvia; Lopez, Luisa; D'Alessio, Tommaso

    2007-05-01

    Inferring relations between cognitive processes and postural control is a relatively topical challenge in developmental neurology. This study investigated the effect of a concurrent cognitive task on postural control in a sample of 50 nine-year-old children. Each subject completed two balance trials of 60 s, one with a concurrent cognitive task (cognitive load) and another with no cognitive load. The concurrent cognitive task consisted of mentally counting backwards in steps of 2. Twelve posturographic parameters (PPs) were extracted from the centre of pressure (CoP) trajectory obtained through a load cell force plate. Analysis of variance revealed significant differences in the majority of the extracted PPs. CoP was found to travel faster, farther, and with substantially different features demonstrating an overall broadening of the spectrum in the frequency domain. Nonlinear stability factors revealed significant differences when exposed to a concurrent cognitive task, showing an increase of instability in the intervention rate of the postural control system. By grouping children through selected items from Teachers Ratings and PANESS assessment, specific significant differences were also found both in time and frequency domain PPs, thus confirming the hypothesis of an interaction between cognitive processes (and their development), and postural control. PMID:17136524

  12. Femoral Neck Version Affects Medial Femorotibial Loading

    PubMed Central

    Papaioannou, T. A.; Digas, Georgios; Bikos, Ch.; Karamoulas, V.; Magnissalis, E. A.

    2013-01-01

    The aim of this study was to provide a preliminary evaluation of the possible effect that femoral version may have on the bearing equilibrium conditions developed on the medial tibiofemoral compartment. A digital 3D solid model of the left physiological adult femur was used to create morphological variations of different neck-shaft angles (varus 115, normal 125, and valgus 135 degrees) and version angles (−10, 0, and +10 degrees). By means of finite element modeling and analysis techniques (FEM-FEA), a virtual experiment was executed with the femoral models aligned in a neutral upright position, distally supported on a fully congruent tibial tray and proximally loaded with a vertical only hip joint load of 2800 N. Equivalent stresses and their distribution on the medial compartment were computed and comparatively evaluated. Within our context, the neck-shaft angle proved to be of rather indifferent influence. Reduction of femoral version, however, appeared as the most influencing parameter regarding the tendency of the medial compartment to establish its bearing equilibrium towards posteromedial directions, as a consequence of the corresponding anteroposterior changes of the hip centre over the horizontal tibiofemoral plane. We found a correlation between femoral anteversion and medial tibiofemoral compartment contact pressure. Our findings will be further elucidated by more sophisticated FEM-FEA and by clinical studies that are currently planned. PMID:24959355

  13. Metal ions affecting the neurological system.

    PubMed

    Pohl, Hana R; Roney, Nickolette; Abadin, Henry G

    2011-01-01

    Several individual metals including aluminum, arsenic, cadmium, lead, manganese, and mercury were demonstrated to affect the neurological system. Metals are ubiquitous in the environment. Environmental and occupational exposure to one metal is likely to be accompanied by exposure to other metals, as well. It is, therefore, expected that interactions or "joint toxic actions" may occur in populations exposed to mixtures of metals or to mixtures of metals with other chemicals. Some metals seem to have a protective role against neurotoxicity of other metals, yet other interactions may result in increased neurotoxicity. For example, zinc and copper provided a protective role in cases of lead-induced neurotoxicity. In contrast, arsenic and lead co-exposure resulted in synergistic effects. Similarly, information is available in the current literature on interactions of metals with some organic chemicals such as ethanol, polychlorinated biphenyls, and pesticides. In depth understanding of the toxicity and the mechanism of action (including toxicokinetics and toxicodynamics) of individual chemicals is important for predicting the outcomes of interactions in mixtures. Therefore, plausible mechanisms of action are also described.

  14. Metal-loaded organic scintillators for neutrino physics

    NASA Astrophysics Data System (ADS)

    Buck, Christian; Yeh, Minfang

    2016-09-01

    Organic liquid scintillators are used in many neutrino physics experiments of the past and present. In particular for low energy neutrinos when realtime and energy information are required, liquid scintillators have several advantages compared to other technologies. In many cases the organic liquid needs to be loaded with metal to enhance the neutrino signal over background events. Several metal loaded scintillators of the past suffered from chemical and optical instabilities, limiting the performance of these neutrino detectors. Different ways of metal loading are described in the article with a focus on recent techniques providing metal loaded scintillators that can be used under stable conditions for many years even in ton scale experiments. Applications of metal loaded scintillators in neutrino experiments are reviewed and the performance as well as the prospects of different scintillator types are compared.

  15. Crank inertial load affects freely chosen pedal rate during cycling.

    PubMed

    Hansen, Ernst Albin; Jørgensen, Lars Vincents; Jensen, Kurt; Fregly, Benjamin Jon; Sjøgaard, Gisela

    2002-02-01

    Cyclists seek to maximize performance during competition, and gross efficiency is an important factor affecting performance. Gross efficiency is itself affected by pedal rate. Thus, it is important to understand factors that affect freely chosen pedal rate. Crank inertial load varies greatly during road cycling based on the selected gear ratio. Nevertheless, the possible influence of crank inertial load on freely chosen pedal rate and gross efficiency has never been investigated. This study tested the hypotheses that during cycling with sub-maximal work rates, a considerable increase in crank inertial load would cause (1) freely chosen pedal rate to increase, and as a consequence, (2) gross efficiency to decrease. Furthermore, that it would cause (3) peak crank torque to increase if a constant pedal rate was maintained. Subjects cycled on a treadmill at 150 and 250W, with low and high crank inertial load, and with preset and freely chosen pedal rate. Freely chosen pedal rate was higher at high compared with low crank inertial load. Notably, the change in crank inertial load affected the freely chosen pedal rate as much as did the 100W increase in work rate. Along with freely chosen pedal rate being higher, gross efficiency at 250W was lower during cycling with high compared with low crank inertial load. Peak crank torque was higher during cycling at 90rpm with high compared with low crank inertial load. Possibly, the subjects increased the pedal rate to compensate for the higher peak crank torque accompanying cycling with high compared with low crank inertial load. PMID:11784546

  16. Spatially detailed quantification of metal loading for decision making: Metal mass loading to American fork and Mary Ellen Gulch, Utah

    USGS Publications Warehouse

    Kimball, B.A.; Runkel, R.L.

    2009-01-01

    Effective remediation requires an understanding of the relative contributions of metals from all sources in a catchment, and that understanding must be based on a spatially detailed quantification of metal loading. A traditional approach to quantifying metal loading has been to measure discharge and chemistry at a catchment outlet. This approach can quantify annual loading and the temporal changes in load, but does not provide the needed spatial detail to evaluate specific sources, which is needed to support remediation decisions. A catchment or massloading approach provides spatial detail by combining tracer-injection and synoptic-sampling methods to quantify loading. Examples of studies in American Fork, Utah, and its tributary Mary Ellen Gulch illustrate this different approach. The mass-loading study in American Fork treated Mary Ellen Gulch as a single inflow. From that point of view, Mary Ellen Gulch was one of the greatest sources of Fe, Mn, Zn, and colloidal Pb loads to American Fork. But when Mary Ellen Gulch was evaluated in a separate catchment study, the detailed locations of metal loading were identified, and the extent of metal attenuation upstream from the mouth of Mary Ellen Gulch was quantified. The net, instantaneous load measured at the mouth of Mary Ellen Gulch for remediation planning would greatly underestimate the contributions of principal sources within the catchment. Extending the detailed sampling downstream from Mary Ellen Gulch indicated the possibility of diffuse groundwater inflow from Mary Ellen Gulch to American Fork. Comparing loads for Mary Ellen Gulch in the two studies indicates that metal loads could be substantially underestimated for planning purposes without the detailed catchment approach for the low-flow conditions in these studies. A mass-loading approach provides both the needed quantification of metal loading and the spatial detail to guide remediation decisions that would be the most effective in the catchments

  17. Emotion-specific load disrupts concomitant affective processing.

    PubMed

    Vermeulen, Nicolas; Niedenthal, Paula M; Pleyers, Gordy; Bayot, Marie; Corneille, Olivier

    2014-01-01

    Findings in the neuroimaging literature suggest that separate brain circuitries are involved when individuals perform emotional compared to nonemotional working memory (WM) tasks. Here we test this hypothesis with behavioural measures. We predicted that the conceptual processing of affect would be disrupted more by concurrent affective than nonaffective load. Participants performed a conceptual task in which they verified affective versus sensory properties of concepts, and a second, concurrent, working memory (n-back) task in which the target stimuli were facial expressions. Results revealed that storing and updating affective (as compared with identity) features of facial expressions altered performance more for affective than for sensory properties of concepts. The findings are supportive of the ideas that affective resources exist and that these resources are specifically used during the processing and representation of affective properties of objects and events.

  18. Detail of metal canopy on north elevation of loading dock, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of metal canopy on north elevation of loading dock, looking west - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  19. Detail of metal canopy on south elevation of loading dock, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of metal canopy on south elevation of loading dock, looking west toward two story section of Railway Express Building - Southern Pacific Railroad Depot, Railroad Terminal Post Office & Express Building, Fifth & I Streets, Sacramento, Sacramento County, CA

  20. Loading metal nanostructures on cotton fabrics as recyclable catalysts.

    PubMed

    Yang, Baocheng; Zhao, Chunmei; Xiao, Manda; Wang, Feng; Li, Chuanhao; Wang, Jianfang; Yu, Jimmy C

    2013-04-01

    Noble metal nanostructures of varying compositions and shapes are loaded on cotton fabrics. The fabric-supported metal nanostructures can function as effective catalysts for different liquid-phase catalytic reactions. They exhibit superior recyclability, with the catalytic activities remaining nearly unchanged even after ten cycles of catalytic reactions for all of the three tested reactions.

  1. Molecular dynamics of shock loading of metals with defects

    SciTech Connect

    Belak, J.F.

    1997-12-31

    The finite rise time of shock waves in metals is commonly attributed to dissipative or viscous behavior of the metal. This viscous or plastic behavior is commonly attributed to the motion of defects such as dislocations. Despite this intuitive understanding, the experimental observation of defect motion or nucleation during shock loading has not been possible due to the short time scales involved. Molecular dynamics modeling with realistic interatomic potentials can provide some insight into defect motion during shock loading. However, until quite recently, the length scale required to accurately represent a metal with defects has been beyond the scope of even the most powerful supercomputers. Here, the author presents simulations of the shock response of single defects and indicate how simulation might provide some insight into the shock loading of metals.

  2. Is muscle coordination affected by loading condition in ballistic movements?

    PubMed

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: P<0.001; peak occurrence: P=0.02) illustrating the specific role of each muscle during the push-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump.

  3. Proximal arm kinematics affect grip force-load force coordination.

    PubMed

    Vermillion, Billy C; Lum, Peter S; Lee, Sang Wook

    2015-10-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  4. Proximal arm kinematics affect grip force-load force coordination

    PubMed Central

    Vermillion, Billy C.; Lum, Peter S.

    2015-01-01

    During object manipulation, grip force is coordinated with load force, which is primarily determined by object kinematics. Proximal arm kinematics may affect grip force control, as proximal segment motion could affect control of distal hand muscles via biomechanical and/or neural pathways. The aim of this study was to investigate the impact of proximal kinematics on grip force modulation during object manipulation. Fifteen subjects performed three vertical lifting tasks that involved distinct proximal kinematics (elbow/shoulder), but resulted in similar end-point (hand) trajectories. While temporal coordination of grip and load forces remained similar across the tasks, proximal kinematics significantly affected the grip force-to-load force ratio (P = 0.042), intrinsic finger muscle activation (P = 0.045), and flexor-extensor ratio (P < 0.001). Biomechanical coupling between extrinsic hand muscles and the elbow joint cannot fully explain the observed changes, as task-related changes in intrinsic hand muscle activation were greater than in extrinsic hand muscles. Rather, between-task variation in grip force (highest during task 3) appears to contrast to that in shoulder joint velocity/acceleration (lowest during task 3). These results suggest that complex neural coupling between the distal and proximal upper extremity musculature may affect grip force control during movements, also indicated by task-related changes in intermuscular coherence of muscle pairs, including intrinsic finger muscles. Furthermore, examination of the fingertip force showed that the human motor system may attempt to reduce variability in task-relevant motor output (grip force-to-load force ratio), while allowing larger fluctuations in output less relevant to task goal (shear force-to-grip force ratio). PMID:26289460

  5. Metal loading in Soda Butte Creek upstream of Yellowstone National Park, Montana and Wyoming; a retrospective analysis of previous research; and quantification of metal loading, August 1999

    USGS Publications Warehouse

    Boughton, G.K.

    2001-01-01

    Acid drainage from historic mining activities has affected the water quality and aquatic biota of Soda Butte Creek upstream of Yellowstone National Park. Numerous investigations focusing on metals contamination have been conducted in the Soda Butte Creek basin, but interpretations of how metals contamination is currently impacting Soda Butte Creek differ greatly. A retrospective analysis of previous research on metal loading in Soda Butte Creek was completed to provide summaries of studies pertinent to metal loading in Soda Butte Creek and to identify data gaps warranting further investigation. Identification and quantification of the sources of metal loading to Soda Butte Creek was recognized as a significant data gap. The McLaren Mine tailings impoundment and mill site has long been identified as a source of metals but its contribution relative to the total metal load entering Yellowstone National Park was unknown. A tracer-injection and synoptic-sampling study was designed to determine metal loads upstream of Yellowstone National Park.A tracer-injection and synoptic-sampling study was conducted on an 8,511-meter reach of Soda Butte Creek from upstream of the McLaren Mine tailings impoundment and mill site downstream to the Yellowstone National Park boundary in August 1999. Synoptic-sampling sites were selected to divide the creek into discrete segments. A lithium bromide tracer was injected continuously into Soda Butte Creek for 24.5 hours. Downstream dilution of the tracer and current-meter measurements were used to calculate the stream discharge. Stream discharge values, combined with constituent concentrations obtained by synoptic sampling, were used to quantify constituent loading in each segment of Soda Butte Creek.Loads were calculated for dissolved calcium, silica, and sulfate, as well as for dissolved and total-recoverable iron, aluminum, and manganese. Loads were not calculated for cadmium, copper, lead, and zinc because these elements were infrequently

  6. Quantification of changes in metal loading from storm runoff, Merse River (Tuscany, Italy)

    USGS Publications Warehouse

    Kimball, B.A.; Bianchi, F.; Walton-Day, K.; Runkel, R.L.; Nannucci, M.; Salvadori, A.

    2007-01-01

    The Merse River in Tuscany is affected by mine drainage and the weathering of mine wastes along several kilometres of its catchment. The metal loading to the stream was quantified by defining detailed profiles of discharge and concentration, using tracer-dilution and synoptic-sampling techniques. During the course of a field experiment to evaluate metal loading to the Merse, such data were obtained for both storm and pre-storm conditions, providing a unique opportunity for comparison. Iron, Cu, and Mn were chosen to illustrate changes resulting from the storm. The total-recoverable load of Fe increased 21-fold, while loads of Cu and Mn increased by 8- and 7-fold, respectively, during the storm runoff. The increases most likely resulted from flushing particulates from near the stream, resuspension of colloidal material from the streambed, and increased ground-water inflow to the stream. The increases in Cu and Mn loads results from their association with colloids. It is possible that in-stream colloids had relatively more Cu than Mn, while near-stream colloids had relatively more Mn. Each of the metals also increased as a result of increased ground-water discharge during the storm. Despite great increases in load, the filterable concentrations of these metals did not increase substantially, remaining below chronic levels of toxicity. ?? 2007 Springer-Verlag.

  7. 8. SANDSORTING BUILDING, VIEW OF LOADING AREA WITH METAL SPOUTS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. SAND-SORTING BUILDING, VIEW OF LOADING AREA WITH METAL SPOUTS AND WOODEN CONTROL LEVERS (THE TRACK OF THE RAILROAD SIDING RAN ALONG THE SIDE OF THE BUILDING) - Mill "C" Complex, Sand-Sorting Building, South of Dee Bennet Road, near Illinois River, Ottawa, La Salle County, IL

  8. Mine Waste Technology Program. Passive Treatment for Reducing Metal Loading

    EPA Science Inventory

    This report summarizes the results of Mine Waste Technology Program (MWTP) Activity III, Project 48, Passive Treatment Technology Evaluation for Reducing Metal Loading, funded by the U.S. Environmental Protection Agency (EPA) and jointly administered by EPA and the U.S. Departmen...

  9. Metals transport in the Sacramento River, California, 1996-1997; Volume 2, Interpretation of metal loads

    USGS Publications Warehouse

    Alpers, Charles N.; Antweiler, Ronald C.; Taylor, Howard E.; Dileanis, Peter D.; Domagalski, Joseph L.

    2000-01-01

    Metals transport in the Sacramento River, northern California, from July 1996 to June 1997 was evaluated in terms of metal loads from samples of water and suspended colloids that were collected on up to six occasions at 13 sites in the Sacramento River Basin. Four of the sampling periods (July, September, and November 1996; and May-June 1997) took place during relatively low-flow conditions and two sampling periods (December 1996 and January 1997) took place during high-flow and flooding conditions, respectively. This study focused primarily on loads of cadmium, copper, lead, and zinc, with secondary emphasis on loads of aluminum, iron, and mercury. Trace metals in acid mine drainage from abandoned and inactive base-metal mines, in the East and West Shasta mining districts, enter the Sacramento River system in predominantly dissolved form into both Shasta Lake and Keswick Reservoir. The proportion of trace metals that was dissolved (as opposed to colloidal) in samples collected at Shasta and Keswick dams decreased in the order zinc ? cadmium > copper > lead. At four sampling sites on the Sacramento River--71, 256, 360, and 412 kilometers downstream of Keswick Dam--trace-metal loads were predominantly colloidal during both high- and low-flow conditions. The proportion of total cadmium, copper, lead, and zinc loads transported to San Francisco Bay and the Sacramento-San Joaquin Delta estuary (referred to as the Bay-Delta) that is associated with mineralized areas was estimated by dividing loads at Keswick Dam by loads 412 kilometers downstream at Freeport and the Yolo Bypass. During moderately high flows in December 1996, mineralization-related total (dissolved + colloidal) trace-metal loads to the Bay-Delta (as a percentage of total loads measured downstream) were cadmium, 87 percent; copper, 35 percent; lead, 10 percent; and zinc, 51 percent. During flood conditions in January 1997 loads were cadmium, 22 percent; copper, 11 percent; lead, 2 percent; and zinc, 15

  10. Process for preparing metal-carbide-containing microspheres from metal-loaded resin beads

    DOEpatents

    Beatty, Ronald L.

    1977-01-01

    An improved process for producing porous spheroidal particles consisting of a metal carbide phase dispersed within a carbon matrix is described. According to the invention metal-loaded ion-exchange resin microspheres which have been carbonized are coated with a buffer carbon layer prior to conversion of the oxide to carbide in order to maintain porosity and avoid other adverse sintering effects.

  11. Process for preparing metal-carbide-containing microspheres from metal-loaded resin beads

    DOEpatents

    Beatty, Ronald L.

    1976-01-01

    An improved method for treating metal-loaded resin microspheres is described which comprises heating a metal-loaded resin charge in an inert atmosphere at a pre-carbide-forming temperature under such conditions as to produce a microsphere composition having sufficient carbon as to create a substantially continuous carbon matrix and a metal-carbide or an oxide-carbide mixture as a dispersed phase(s) during carbide-forming conditions, and then heating the thus treated charge to a carbide-forming temperature.

  12. Effect of swing phase load on metal-on-metal hip lubrication, friction and wear.

    PubMed

    Williams, Sophie; Jalali-Vahid, Davood; Brockett, Claire; Jin, Zhongmin; Stone, Martin H; Ingham, Eileen; Fisher, John

    2006-01-01

    There is renewed interest in metal-on-metal (MOM) total hip replacements (THRs), however, variable wear rates have been observed clinically. It is hypothesised that changes in soft tissue tensioning during surgery may alter loading of THRs during the swing phase of gait leading to changes in fluid film lubrication, friction and wear. This study aimed to assess the effect of swing phase load on the lubrication, friction and wear of MOM hip replacements. Theoretical lubrication modelling was carried out using elastohydrodynamic theory. All the governing equations were solved numerically for the lubricant film thickness between the articulating surfaces under the transient dynamic conditions with low and high swing phase loads. Friction testing was completed using a single axis pendulum simulator, simplified loading cycles were applied with low and high swing phase loads. MOM hip replacements were tested in a hip simulator, modified to provide different swing phase loading regimes; a low (100 N) and a high load (as per ISO 14242-1; 280 N). Results demonstrated that the performance of MOM bearings is highly dependent on swing phase load. Hence, changes in the tension of the tissues at surgery and variations in muscle forces may increase swing phase load, reduce lubrication, increase friction and accelerate wear. This may explain some of the variations that have been observed with clinical wear rates.

  13. Evaluation of approaches to calculate critical metal loads for forest ecosystems.

    PubMed

    de Vries, W; Groenenberg, J E

    2009-12-01

    This paper evaluates approaches to calculate acceptable loads for metal deposition to forest ecosystems, distinguishing between critical loads, stand-still loads and target loads. We also evaluated the influence of including the biochemical metal cycle on the calculated loads. Differences are illustrated by examples of Cd, Cu, Pb and Zn for a deciduous forest on five major soil types in the Netherlands. Stand-still loads are generally lower than critical loads, which in turn are lower than the target loads indicating that present levels are below critical levels. Uncertainties in the calculated critical loads are mainly determined by the uncertainty in the critical limits and the chemical speciation model. Including the metal cycle has a small effect on the calculated critical loads. Results are discussed in view of the applicability of the critical load concept for metals in future protocols on the reduction in metal emissions.

  14. How does ice sheet loading affect ocean flow around Antarctica?

    NASA Astrophysics Data System (ADS)

    Dijkstra, H. A.; Rugenstein, M. A.; Stocchi, P.; von der Heydt, A. S.

    2012-12-01

    Interactions and dynamical feedbacks between ocean circulation, heat and atmospheric moisture transport, ice sheet evolution, and Glacial Isostatic Adjustment (GIA) are overlooked issues in paleoclimatology. Here we will present first results on how ocean flows were possibly affected by the glaciation of Antarctica across the Eocene-Oligocene Transition (~ 34 Ma) through GIA and bathymetry variations. GIA-induced gravitationally self-consistent bathymetry variations are determined by solving the Sea Level Equation (SLE), which describes the time dependent shape of (i) the solid Earth and (ii) the equipotential surface of gravity. Since the ocean circulation equations are defined relative to the equipotential surface of gravity, only bathymetry variations can influence ocean flows, although the sea surface slope will also change through time due to gravitational attraction. We use the Hallberg Isopycnal Model under late Eocene conditions to calculate equilibrium ocean flows in a domain in which the bathymetry evolves under ice loading according to the SLE. The bathymetric effects of the glaciation of Antarctica lead to substantial spatial changes in ocean flows, and close to the coast, the flow even reverses direction. Volume transports through the Drake Passage and Tasman Seaway adjust to the new bathymetry. The results indicate that GIA-induced ocean flow variations alone may have had an impact on sedimentation and erosion patterns, the repositioning of fronts, ocean heat transport and grounding line and ice sheet stability.

  15. Organic Matter Loading Affects Lodgepole Pine Seedling Growth

    NASA Astrophysics Data System (ADS)

    Wei, Xiaohua; Li, Qinglin; Waterhouse, M. J.; Armleder, H. M.

    2012-06-01

    Organic matter plays important roles in returning nutrients to the soil, maintaining forest productivity and creating habitats in forest ecosystems. Forest biomass is in increasing demand for energy production, and organic matter has been considered as a potential supply. Thus, an important management question is how much organic matter should be retained after forest harvesting to maintain forest productivity. To address this question, an experimental trial was established in 1996 to evaluate the responses of lodgepole pine seedling growth to organic matter loading treatments. Four organic matter loading treatments were randomly assigned to each of four homogeneous pine sites: removal of all organic matter on the forest floor, organic matter loading quantity similar to whole-tree-harvesting residuals left on site, organic matter loading quantity similar to stem-only-harvesting residuals, and organic matter loading quantity more similar to what would be found in disease- or insect-killed stands. Our 10-year data showed that height and diameter had 29 and 35 % increase, respectively, comparing the treatment with the most organic matter loading to the treatment with the least organic matter loading. The positive response of seedling growth to organic matter loading may be associated with nutrients and/or microclimate change caused by organic matter, and requires further study. The dynamic response of seedling growth to organic matter loading treatments highlights the importance of long-term studies. Implications of those results on organic matter management are discussed in the context of forest productivity sustainability.

  16. Sources of metal loads to the Alamosa River and estimation of seasonal and annual metal loads for the Alamosa River basin, Colorado, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Edelmann, Patrick; Ferguson, Sheryl; Stogner, Robert

    2002-01-01

    Metal contamination in the upper Alamosa River Basin has occurred for decades from the Summitville Mine site, from other smaller mines, and from natural, metal-enriched acidic drainage in the basin. In 1995, the need to quantify contamination from various source areas in the basin and to quantify the spatial, seasonal, and annual metal loads in the basin was identified. Data collection occurred from 1995 through 1997 at numerous sites to address data gaps. Metal loads were calculated and the percentages of metal load contributions from tributaries to three risk exposure areas were determined. Additionally, a modified time-interval method was used to estimate seasonal and annual metal loads in the Alamosa River and Wightman Fork. Sources of dissolved and total-recoverable aluminum, copper, iron, and zinc loads were determined for Exposure Areas 3a, 3b, and 3c. Alum Creek is the predominant contributor of aluminum, copper, iron, and zinc loads to Exposure Area 3a. In general, Wightman Fork was the predominant source of metals to Exposure Area 3b, particularly during the snowmelt and summer-flow periods. During the base-flow period, however, aluminum and iron loads from Exposure Area 3a were the dominant source of these metals to Exposure Area 3b. Jasper and Burnt Creeks generally contributed less than 10 percent of the metal loads to Exposure Area 3b. On a few occasions, however, Jasper and Burnt Creeks contributed a substantial percentage of the loads to the Alamosa River. The metal loads calculated for Exposure Area 3c result from upstream sources; the primary upstream sources are Wightman Fork, Alum Creek, and Iron Creek. Tributaries in Exposure Area 3c did not contribute substantially to the metal load in the Alamosa River. In many instances, the percentage of dissolved and/or total-recoverable metal load contribution from a tributary or the combined percentage of metal load contribution was greater than 100 percent of the metal load at the nearest downstream

  17. The effect of metal loading on Cd adsorption onto Shewanella oneidensis bacterial cell envelopes: The role of sulfhydryl sites

    NASA Astrophysics Data System (ADS)

    Yu, Qiang; Fein, Jeremy B.

    2015-10-01

    The adsorption and desorption of Cd onto Shewanella oneidensis bacterial cells with and without blocking of sulfhydryl sites was measured in order to determine the effect of metal loading and to understand the role of sulfhydryl sites in the adsorption reactions. The observed adsorption/desorption behaviors display strong dependence on metal loading. Under a high loading of 40 μmol Cd/g bacterial cells, blocking the sulfhydryl sites within the cell envelope by exposure of the biomass to monobromo(trimethylammonio)bimane bromide (qBBr) does not significantly affect the extent of Cd adsorption, and we observed fully reversible adsorption under this condition. In contrast, under a low metal loading of 1.3 μmol Cd/g bacterial cells, the extent of Cd adsorption onto sulfhydryl-blocked S. oneidensis cells was significantly lower than that onto untreated cells, and only approximately 50-60% of the adsorbed Cd desorbed from the cells upon acidification. In conjunction with previous EXAFS results, our findings demonstrate that Cd adsorption onto S. oneidensis under low metal loading conditions is dominated by sulfhydryl binding, and thus is controlled by a distinct adsorption mechanism from the non-sulfhydryl site binding which controls Cd adsorption under high metal loading conditions. We use the data to develop a surface complexation model that constrains the values of the stability constants for individual Cd-sulfhydryl and Cd-non-sulfhydryl bacterial complexes, and we use this approach to account for the Cd adsorption behavior as a function of both pH and metal loading. This approach is crucial in order to predict metal adsorption onto bacteria under environmentally relevant metal loading conditions where sulfhydryl binding sites can dominate the adsorption reaction.

  18. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    NASA Astrophysics Data System (ADS)

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J.; Santamaría, Jesús

    2016-03-01

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography.A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading

  19. Does load uncertainty affect adaptation to catch training?

    PubMed

    Berg, William P; Richards, Brian J; Hannigan, Aaron M; Biller, Kelsey L; Hughes, Michael R

    2016-09-01

    Catching relies on anticipatory and compensatory control processes. Load uncertainty increases anticipatory and compensatory neuromotor effort in catching. This experiment tested the effect of load uncertainty in plyometric catch/throw training on elbow flexion reaction time (RT), movement time (MT) and peak torque, as well as the distribution of anticipatory and compensatory neuromotor effort in catching. We expected load uncertainty training to be superior to traditional training for improving elbow flexion MT and peak torque, as well as for reallocating neuromotor effort from compensatory to anticipatory control in catching. Three groups of men (mean age = 21), load knowledge training (K) (n = 14), load uncertainty training (U) (n = 13) and control (C) (n = 14), participated. Groups K and U trained three times/week for 6 weeks using single-arm catch/throw exercises with 0.45-4.08 kg balls. Sets involved 16 repetitions of four different ball masses presented randomly. Group K had knowledge of ball mass on every repetition, whereas group U never did. Change scores were analyzed using Kruskal-Wallis tests and follow-up Wilcoxon rank-sum tests. Group K improved both RT and MT (by 6.2 and 12 %, respectively), whereas group U did not. Both groups K and U improved peak eccentric elbow flexion torque. Group K reallocated neuromotor effort from compensatory to anticipatory processes in the biceps, triceps and the all muscle average, whereas group U did so in the triceps only. In sum, plyometric catch/throw training caused a reallocation of neuromotor effort from compensatory to anticipatory control in catching. However, load uncertainty training did not amplify this effect and in fact appeared to inhibit the reallocation of neuromotor effort from compensatory to anticipatory control.

  20. Generation of hydroxyl radicals from metal-loaded humic acids

    SciTech Connect

    Paciolla, M.D.; Jansen, S.A.; Davies, G.

    1999-06-01

    Humic acids (HAs) are naturally occurring biopolymers that are ubiquitous in the environment. They are most commonly found in the soil, drinking water, and a variety of plants. Pharmacological and therapeutic studies involving humic acids have been reported to some extent. However, when certain transition metals are bound to humic acids, e.g., iron and copper, they can be harmful to biological organisms. For this study, humic acids were extracted from German, Irish, and New Hampshire soils that were selectively chosen because of their reich abundance in humic material. Each sample was treated at room temperature with 0.1 M ferric and cupric solutions for 48 h. The amount of iron and copper adsorbed by humic acid was accurately quantitated using atomic absorption spectroscopy. The authors further demonstrate that these metal-loaded humic acids can produce deleterious oxidizing species such as the hydroxyl radical (HO*) through the metal-driven Fenton reaction. Electron paramagnetic resonance (EPR) employing spin trapping techniques with 5,5-dimethylpyrroline N-oxide (DMPO) is used to confirm the generation of hydroxyl radicals. The DMPO-OH adduct with hyperfine splitting constants A{sub N} = A{sub H} = 14.9 G is observed upon the addition of exogenous hydrogen peroxide. The concentration of hydroxyl radical was determined using 4-hydroxytempo (TEMPO-OH) as a spin standard. The presence of another oxidizing species, Fe{double_bond}O{sup 2+}, is also proposed in the absence of hydrogen peroxide.

  1. Factors Affecting Liquid-Metal Embrittlement in C-103

    NASA Technical Reports Server (NTRS)

    Mclemore, R.; Lampson, F. K.

    1982-01-01

    Results of a study of weld cracks on Space Shuttle control thrustors point toward better understanding of cracking problem in columbium metal, which has also plagued nonaerospace users. Although liquid-metal embrittlement is known to be cause of problem, factors affecting growth and severity of cracks are not well understood. New results tie crack growth to type of contaminants present, grain size and level of stress present while welding is done.

  2. Interaction of adhered metallic dust with transient plasma heat loads

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Bykov, I.; Rudakov, D.; De Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.

    2016-06-01

    The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m-2 and in the DIII-D divertor tokamak. The central role of the dust-substrate contact area in heat conduction is highlighted and confirmed by heat transfer simulations. The experiments provide evidence of the occurrence of wetting-induced coagulation, a novel growth mechanism where cluster melting accompanied by droplet wetting leads to the formation of larger grains. The physical processes behind this mechanism are elucidated. The remobilization activity of the newly formed dust and the survivability of tungsten dust on hot surfaces are documented and discussed in the light of implications for ITER.

  3. Superexchange Charge Transport in Loaded Metal Organic Frameworks.

    PubMed

    Neumann, Tobias; Liu, Jianxi; Wächter, Tobias; Friederich, Pascal; Symalla, Franz; Welle, Alexander; Mugnaini, Veronica; Meded, Velimir; Zharnikov, Michael; Wöll, Christof; Wenzel, Wolfgang

    2016-07-26

    In the past, nanoporous metal-organic frameworks (MOFs) have been mostly studied for their huge potential with regard to gas storage and separation. More recently, the discovery that the electrical conductivity of a widely studied, highly insulating MOF, HKUST-1, improves dramatically when loaded with guest molecules has triggered a huge interest in the charge carrier transport properties of MOFs. The observed high conductivity, however, is difficult to reconcile with conventional transport mechanisms: neither simple hopping nor band transport models are consistent with the available experimental data. Here, we combine theoretical results and new experimental data to demonstrate that the observed conductivity can be explained by an extended hopping transport model including virtual hops through localized MOF states or molecular superexchange. Predictions of this model agree well with precise conductivity measurements, where experimental artifacts and the influence of defects are largely avoided by using well-defined samples and the Hg-drop junction approach. PMID:27359160

  4. Interaction of adhered metallic dust with transient plasma heat loads

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Bykov, I.; Rudakov, D.; De Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.

    2016-06-01

    The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m‑2 and in the DIII-D divertor tokamak. The central role of the dust-substrate contact area in heat conduction is highlighted and confirmed by heat transfer simulations. The experiments provide evidence of the occurrence of wetting-induced coagulation, a novel growth mechanism where cluster melting accompanied by droplet wetting leads to the formation of larger grains. The physical processes behind this mechanism are elucidated. The remobilization activity of the newly formed dust and the survivability of tungsten dust on hot surfaces are documented and discussed in the light of implications for ITER.

  5. Cyclic Plasticity under Shock Loading in an HCP Metal

    SciTech Connect

    Prime, Michael B.; Hunter, Abigail; Canfield, Thomas R.; Adams, Chris D.

    2012-06-08

    Plate impact experiments with pressures from 2 to 20 GPa, including one shock-partial release-reshock experiment, were performed on vacuum hot-pressed S-200F Beryllium. This hexagonal close-packed (HCP) metal shows significant plasticity effects in such conditions. The experiments were modeled in a Lagrangian hydrocode using an experimentally calibrated Preston-Tonks-Wallace (PTW) constitutive model. By using the shock data to constrain a high rate portion of PTW, the model was able to generally match plasticity effects on the measured wave profile (surface velocity) during the shock loading, but not unloading. A backstress-based cyclic plasticity model to capture the quasi-elastic release (Bauschinger-type effect) was explored in order to match the unloading and reloading portions of the measured wave profiles. A comparison is made with other approaches in the literature to capture the cyclic plasticity in shock conditions.

  6. A 100-kW metal wind turbine blade basic data, loads and stress analysis

    NASA Technical Reports Server (NTRS)

    Cherritt, A. W.; Gaidelis, J. A.

    1975-01-01

    A rotor loads computer program was used to define the steady state and cyclic loads acting on 60 ft long metal blades designed for the ERDA/NASA 100 kW wind turbine. Blade load and stress analysis used to support the structural design are presented. For the loading conditions examined, the metal blades are structurally adequate for use, within the normal operating range, as part of the wind turbine system.

  7. Edge loading in metal-on-metal hips: low clearance is a new risk factor

    PubMed Central

    Zografos, Angelos; Sayles, Ritchie S; Hart, Alister; Cann, Philippa

    2012-01-01

    The revision rate of large head metal-on-metal and resurfacing hips are significantly higher than conventional total hip replacements. The revision of these components has been linked to high wear caused by edge loading; which occurs when the head–cup contact patch extends over the cup rim. There are two current explanations for this; first, there is loss of entrainment of synovial fluid resulting in breakdown of the lubricating film and second, edge loading results in a large local increase in contact pressure and consequent film thickness reduction at the cup rim, which causes an increase in wear. This paper develops a method to calculate the distance between the joint reaction force vector and the cup rim – the contact patch centre to rim (CPCR) distance. However, the critical distance for the risk of edge loading is the distance from the contact patch edge to rim (CPER) distance. An analysis of explanted hip components, divided into edge worn and non-edge-worn components showed that there was no statistical difference in CPCR values, but the CPER value was significantly lower for edge worn hips. Low clearance hips, which have a more conformal contact, have a larger diameter contact patch and thus are more at risk of edge loading for similarly positioned hips. PMID:22558836

  8. How Environment Affects Galaxy Metallicity: Lessons from the Illustris Simulation

    NASA Astrophysics Data System (ADS)

    Genel, S.

    2016-06-01

    Recent studies have found higher galaxy metallicities in richer environments. It is not yet clear, however, whether metallicity-environment dependencies are merely an indirect consequence of environmentally dependent formation histories, or of environment related processes directly affecting metallicity. Here, we present a detailed study of metallicity-environment correlations in a cosmological hydrodynamical simulation, in particular the Illustris simulation. Illustris galaxies display similar relations to those observed. Utilizing our knowledge of simulated formation histories, and leveraging the large simulation volume, we construct galaxy samples of satellites and centrals that are matched in formation histories. This allows us to find that ˜1/3 of the metallicity-environment correlation is due to different formation histories in different environments. This is a combined effect of satellites (in particular, in denser environments) having on average lower z=0 star formation rates (SFRs), and of their older stellar ages, even at a given z=0 SFR. Most of the difference, ˜2/3, however, is caused by the higher concentration of star-forming disks of satellite galaxies, as this biases their SFR-weighted metallicities toward their inner, more metal-rich parts. With a newly defined quantity, the `radially averaged' metallicity, which captures the metallicity profile but is independent of the SFR profile, the metallicities of satellites and centrals become environmentally independent once they are matched in formation history. This effect may also explain most of the differences between metallicities of galaxies in different large-scale environmental densities. A prediction for observations is that those differences become smaller as smaller apertures are considered.

  9. Sediment Metal Concentration Survey Along the Mine-Affected Molonglo River, NSW, Australia.

    PubMed

    Wadige, Chamani P M Marasinghe; Taylor, Anne M; Krikowa, Frank; Maher, William A

    2016-04-01

    Metal concentrations were measured in sediments of the mine-affected Molonglo River to determine current metal concentrations and distribution along the river. Compared with an uncontaminated site at 6.5 km upstream of the Captains Flat mine, sediments collected from the river at ≤12.5 km distance below the mine had a significantly higher percentage of finely divided silt and clay with higher concentrations of cadmium (Cd), copper (Cu), lead (Pb), and zinc (Zn). The measured metal concentrations in the mine affected sites of the river were in the following order: Zn = 697-6818 > Pb = 23-1796 > Cu = 10-628 > Cd = 0.13-8.7 µg/g dry mass. The highest recorded metal concentrations were Cd at 48, Cu at 45, Pb at 240, and Zn at 81 times higher than the background concentrations of these metals in the river sediments. A clear sediment metal-contamination gradient from the mine site to 63 km downstream was established for Cd, Cu, Pb, and Zn in the river sediments. Compared with sediment metal concentrations before a major flood in 2010, only Zn concentrations increased. For all of the mine-affected sites studied, Cd and Zn concentrations exceeded the (ANZECC/ARMCANZ, Australian and New Zealand guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council/Agriculture and Resource Management Council of Australia and New Zealand, 2000) interim sediment-quality guidelines low values for Cd (1.5 µg/g dry mass) and the high value for Zn (410 µg/g dry mass). Existing metal loads in the riverbed sediments may still be adversely affecting the river infauna. PMID:26795293

  10. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic. PMID:27011970

  11. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  12. 78 FR 28896 - Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-16

    ... COMMISSION Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components... Regulatory Commission (NRC) is issuing Revision 2 to Regulatory Guide (RG) 1.57, ``Design Limits and Loading Combinations for Metal Primary Reactor Containment System Components,'' in which there are no...

  13. Mechanical Properties of a Metal Powder-Loaded Polyurethane Foam

    SciTech Connect

    C. L. Neuschwanger; L. L. Whinnery; S. H. Goods

    1999-04-01

    Quasi-static compression tests have been performed on polyurethane foam specimens. The modulus of the foam exhibited a power-law dependence with respect to density of the form: E* {proportional_to} {rho}*{sup n}, where n = 1.7. The modulus data is well described by a simple geometric model (attributed to the work of Gibson and Ashby) for closed-cell foam in which the stiffness of the foam is governed by the flexure of the cell struts and cell walls. The compressive strength of the foam is also found to follow a power-law behavior with respect to foam density. In this instance, Euler buckling is used to rationalize the density dependence. The modulus of the polyurethane foam was modified by addition of a gas atomized, spherical aluminum powder. Additions of 30 and 50 weight percent of the powder significantly increased the foam modulus. However, there were only slight increases in modulus with 5 and 10 weight percent additions of the metal powder. Strength was also slightly increased at high loading fractions of powder. This increase in modulus and strength could be predicted by combining the above geometric model with a well-known model describing the effect on modulus of a rigid dispersoid in a compliant matrix.

  14. FACTORS AFFECTING SENSITIVITY OF CHEMICAL AND ECOLOGICAL RESPONSES OF MARINE EMBAYMEMTS TO NITROGEN LOADING

    EPA Science Inventory

    This paper summarizes an ongoing examination of the primary factors that affect sensitivity of marine embayment responses to nitrogen loading. Included is a discussion of two methods for using these factors: classification of embayments into discrete sensitivity classes and norma...

  15. Allostatic load in parents of children with developmental disorders: moderating influence of positive affect.

    PubMed

    Song, Jieun; Mailick, Marsha R; Ryff, Carol D; Coe, Christopher L; Greenberg, Jan S; Hong, Jinkuk

    2014-02-01

    This study examines whether parents of children with developmental disorders are at risk of elevated allostatic load relative to control parents and whether positive affect moderates difference in risk. In all, 38 parents of children with developmental disorders and 38 matched comparison parents were analyzed. Regression analyses revealed a significant interaction between parent status and positive affect: parents of children with developmental disorders had lower allostatic load when they had higher positive affect, whereas no such association was evident for comparison parents. The findings suggest that promoting greater positive affect may lower health risks among parents of children with developmental disorders.

  16. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment.

    PubMed

    Zou, Ji-Jun; Liu, Chang-Jun; Zhang, Yue-Ping

    2006-02-28

    NiO-loaded semiconductors have been extensively used as the photocatalysts for water splitting. The metal-support interface is an important factor affecting the efficiency. In the present work, the pretreatment methods were studied to produce a more desirable metal-support interface using Ta2O5 and ZrO2 as the support. The traditional method includes a thermal decomposition, reduction at 773 K, and oxidation at 473 K (R773-O473). The thermal decomposition of Ni(NO3)2 makes the Ni atoms migrate into the bulk of the supports, resulting in a diffused interfacial region. Alternatively, a cold plasma treatment was used to replace the thermal decomposition. Metal salts are quickly decomposed by glow discharge plasma treatment at room temperature, avoiding the thermal diffusion of Ni atoms. With the sequent R773-O473 treatment, a clean metal-support interface is produced. Moreover, the metal particles have optimal shapes with a larger surface. In photocatalysis, the clean metal-support interface is more favorable for the charge separation and transfer, and the increased metal surface provides more active sites. NiO/Ta2O5 and NiO/ZrO2 prepared with the plasma treatment exhibit higher activity for photocatalytic hydrogen generation from pure water and methanol solution, respectively. This work shows the potential of cold plasma treatment in the preparation of metal-loaded catalysts and nanostructured materials. PMID:16489826

  17. Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment.

    PubMed

    Zou, Ji-Jun; Liu, Chang-Jun; Zhang, Yue-Ping

    2006-02-28

    NiO-loaded semiconductors have been extensively used as the photocatalysts for water splitting. The metal-support interface is an important factor affecting the efficiency. In the present work, the pretreatment methods were studied to produce a more desirable metal-support interface using Ta2O5 and ZrO2 as the support. The traditional method includes a thermal decomposition, reduction at 773 K, and oxidation at 473 K (R773-O473). The thermal decomposition of Ni(NO3)2 makes the Ni atoms migrate into the bulk of the supports, resulting in a diffused interfacial region. Alternatively, a cold plasma treatment was used to replace the thermal decomposition. Metal salts are quickly decomposed by glow discharge plasma treatment at room temperature, avoiding the thermal diffusion of Ni atoms. With the sequent R773-O473 treatment, a clean metal-support interface is produced. Moreover, the metal particles have optimal shapes with a larger surface. In photocatalysis, the clean metal-support interface is more favorable for the charge separation and transfer, and the increased metal surface provides more active sites. NiO/Ta2O5 and NiO/ZrO2 prepared with the plasma treatment exhibit higher activity for photocatalytic hydrogen generation from pure water and methanol solution, respectively. This work shows the potential of cold plasma treatment in the preparation of metal-loaded catalysts and nanostructured materials.

  18. Heavy metals in potable groundwater of mining-affected river catchments, northwestern Romania.

    PubMed

    Bird, Graham; Macklin, Mark G; Brewer, Paul A; Zaharia, Sorin; Balteanu, Dan; Driga, Basarab; Serban, Mihaela

    2009-12-01

    Groundwater, accessed using wells and municipal springs, represents the major source of potable water for the human population outside of major urban areas in northwestern Romania, a region with a long history of metal mining and metallurgy. The magnitude and spatial distribution of metal contamination in private-supply groundwater was investigated in four mining-affected river catchments in Maramureş and Satu Mare Counties through the collection of 144 groundwater samples. Bedrock geology, pH and Eh were found to be important controls on the solubility of metals in groundwater. Peak metal concentrations were found to occur in the Lapuş catchment, where metal levels exceed Dutch target and intervention values in up to 49% and 14% of samples, respectively. A 700 m wide corridor in the Lapuş catchment on either side of the main river channel was identified in which peak Cd (31 μg l(-1)), Cu (50 μg l(-1)), Pb (50 μg l(-1)) and Zn (3,000 μg l(-1)) concentrations were found to occur. Given the generally similar bedrock geologies, lower metal levels in other catchments are believed to reflect differences in the magnitude of metal loading to the local environment from both metal mining and other industrial and municipal sources. Sampling of groundwater in northwestern Romania has indicated areas of potential concern for human health, where heavy metal concentrations exceed accepted environmental quality guidelines. The presence of elevated metal levels in groundwater also has implications for the implementation of the EU Water Framework Directive (WFD) and achieving 'good' status for groundwater in this part of the Danube River Basin District (RBD).

  19. [Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].

    PubMed

    Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao

    2015-12-01

    China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution. PMID:27011999

  20. [Mapping Critical Loads of Heavy Metals for Soil Based on Different Environmental Effects].

    PubMed

    Shi, Ya-xing; Wu, Shao-hua; Zhou, Sheng-lu; Wang, Chun-hui; Chen, Hao

    2015-12-01

    China's rapid development of industrialization and urbanization causes the growing problem of heavy metal pollution of soil, threatening environment and human health. Therefore, prevention and management of heavy metal pollution become particularly important. Critical loads of heavy metals are an important management tool that can be utilized to prevent the occurrence of heavy metal pollution. Our study was based on three cases: status balance, water environmental effects and health risks. We used the steady-state mass balance equation to calculate the critical loads of Cd, Cu, Pb, Zn at different effect levels and analyze the values and spatial variation of critical loads. In addition, we used the annual input fluxes of heavy metals of the agro-ecosystem in the Yangtze River delta and China to estimate the proportion of area with exceedance of critical loads. The results demonstrated that the critical load value of Cd was the minimum, and the values of Cu and Zn were lager. There were spatial differences among the critical loads of four elements in the study area, lower critical loads areas mainly occurred in woodland and high value areas distributed in the east and southwest of the study area, while median values and the medium high areas mainly occurred in farmland. Comparing the input fluxes of heavy metals, we found that Pb and Zn in more than 90% of the area exceeded the critical loads under different environmental effects in the study area. The critical load exceedance of Cd mainly occurred under the status balance and the water environmental effect, while Cu under the status balance and water environmental effect with a higher proportion of exceeded areas. Critical loads of heavy metals at different effect levels in this study could serve as a reference from effective control of the emissions of heavy metals and to prevent the occurrence of heavy metal pollution.

  1. Event-based stormwater quality and quantity loadings from elevated urban infrastructure affected by transportation.

    PubMed

    Sansalone, John J; Hird, Jonathan P; Cartledge, Frank K; Tittlebaum, Marty E

    2005-01-01

    Urban-rainfall runoff affected by transportation is a complex matrix of a very wide gradation of particulate matter (< 1 to > 10 000 microm) and dissolved inorganic and organic constituents. Particulate matter transported by rainfall runoff can be a significant vector for many reactive particulate-bound constituents, particularly metal elements. The water quality and hydrology of nine events from a representative elevated section of Interstate 10 (I-10) (eastbound average daily traffic load of 70 400 vehicles) in Baton Rouge, Louisiana, were characterized and compared with respect to the passage of each hydrograph. Residence time on the paved concrete surface was less than 30 minutes for all events. Results indicate that event-mean concentrations (EMCs) of particulate matter as total-suspended solids (TSS) (138 to 561 mg/L) and chemical-oxygen demand (COD) (128 to 1440 mg/L) were greater than those found in untreated municipal wastewater from the same service area. Particulate-matter dissolution and COD partitioned as a function of pH, pavement residence time, and organic content. In general, delivery of mass for aggregate indices, such as particulate matter (measured as TSS) and COD mass, were driven by the hydrology of the event, while concentrations of aggregate-constituent measurements, such as total-dissolved solids (TDS), illustrated an exponential-type decline during the rising limb of the hydrograph. Despite the short residence times, wide solids gradation, partitioning, and complexity of the rainfall-runoff chemistry, conductivity and dissolved solids were strongly correlated. Characterization of the transport and loads of constituents in urban-rainfall runoff, as a function of hydrology, is a necessary first step when considering treatability, structural or nonstructural controls, and mass trading for discharges from paved infrastructure. PMID:16121503

  2. The contact mechanics and occurrence of edge loading in modular metal-on-polyethylene total hip replacement during daily activities.

    PubMed

    Hua, Xijin; Li, Junyan; Jin, Zhongmin; Fisher, John

    2016-06-01

    The occurrence of edge loading in hip joint replacement has been associated with many factors such as prosthetic design, component malposition and activities of daily living. The present study aimed to quantify the occurrence of edge loading/contact at the articulating surface and to evaluate the effect of cup angles and edge loading on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR) during different daily activities. A three-dimensional finite element model was developed based on a modular MoP bearing system. Different cup inclination and anteversion angles were modelled and six daily activities were considered. The results showed that edge loading was predicted during normal walking, ascending and descending stairs activities under steep cup inclination conditions (≥55°) while no edge loading was observed during standing up, sitting down and knee bending activities. The duration of edge loading increased with increased cup inclination angles and was affected by the cup anteversion angles. Edge loading caused elevated contact pressure at the articulating surface and substantially increased equivalent plastic strain of the polyethylene liner. The present study suggested that correct positioning the component to avoid edge loading that may occur during daily activities is important for MoP THR in clinical practice.

  3. Non-ideal assembly of the driving unit affecting shape of load-displacement curves

    NASA Astrophysics Data System (ADS)

    Huang, Hu; Zhao, Hongwei

    2015-03-01

    The results of nanoindentation testing strongly rely on load-displacement curves, but an abnormal load-displacement curve with obvious inflection in the unloading portion was commonly observed in previously published papers and the reason is not clear. In this paper, possible reasons involved in a custom-made indentation instrument, such as sensors, control and assembly issues, are analyzed and discussed step by step. Experimental results indicate that non-ideal assembly of the precision driving unit strongly affects the shape of the load-displacement curve and its affecting mechanism is studied by theoretical analysis and finite element simulations. This paper reveals the reason leading to the abnormal load-displacement curve, which is helpful for debugging of indentation instruments and can enhance comparability of indentation results.

  4. Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites.

    PubMed

    Oyanedel-Craver, Vinka A; Smith, James A

    2006-09-21

    Sorption of four heavy metals (Pb, Cd, Zn and Hg) to calcium bentonite (Ca bentonite), hexadecyltrimethylammonium bentonite (HDTMA bentonite) and benzyltriethylammonium bentonite (BTEA bentonite) was measured as a function of the quaternary ammonium cation (QAC) loading at 25, 50 and 100% of the clay's cation-exchange capacity (CEC). The effects of pH on the surface charge of the clays and heavy metal sorption were also measured. Sorption of Cd, Pb, and Zn was non-linear and sorption of all three metals by HDTMA and BTEA bentonites decreased as the QAC loading increased from 25 to 100%. In most cases, sorption of these metals to 25% BTEA and 25% HDTMA bentonite was similar to or greater than sorption to Ca bentonite. Hg sorption was linear for both HDTMA and BTEA bentonite. No significant effect on Hg sorption was observed with increasing QAC loading on BTEA bentonite. However, an increase of Hg sorption was detected with increasing QAC loading on HDTMA bentonite. This behavior suggests that a process different than cation exchange was the predominant Hg sorption mechanism. Cd, Pb, and Zn sorption decreased with pH. However, this effect was stronger for Cd and Pb than Zn. Hg sorption varied inversely with pH. QAC loading affected the surface charge of the clays. Twenty-five and 50% loading of BTEA cations increased the negative charge on the clay's surface relative to the untreated clay, without affecting the zero point of charge (ZPC) of the clay. Increased QAC loading on HDTMA bentonite causes the surface charge to become more positive and the ZPC increased. One hundred percent of HDTMA bentonite maintained a positive surface charge over the range of pH values tested. The organoclays studied have considerable capacity for heavy metal sorption. Given that prior studies have demonstrated the strong sorption capacity of organoclays for nonionic organic pollutants, it is likely that organoclays can be useful sorbents for the treatment of effluent streams containing

  5. Slow light in the GaAs-rod-loaded metallic waveguide for terahertz wave.

    PubMed

    Wang, Wei; He, Jinlong; Li, Xiangjun; Hong, Zhi

    2010-05-24

    The modes in a circular metallic waveguide loaded with a high permittivity dielectric rod may possess similar dispersion relations to the modes in the left-handed metamaterial (LHM) waveguide. Therefore such dielectric-loaded metallic waveguide may also support slow light with parameters properly selected. The slow light in the GaAs-rod-loaded metallic waveguide is numerically studied. The results show that the wavelength of slow light varies with the parameters of the waveguide. A linearly tapered waveguide and other realizable simple structures are proposed accordingly to realize the "trapped rainbow" phenomena. Moreover, the practical lossy tapered waveguide is also investigated in the terahertz region. It is shown that the slow light with low loss can be achieved in a realistic GaAs-loaded metallic waveguide.

  6. Note: Contamination-free loading of lithium metal into a nozzle source.

    PubMed

    Huang, Chuanfu; Kresin, Vitaly V

    2016-06-01

    This note describes a system for transferring a load of high purity lithium metal into a molecular or cluster beam source. A hot loading vessel is thoroughly baked out while empty and overpressured with argon. A clean Li rod is then dropped in through a long narrow tube. The thoroughly degassed interior of the vessel and the rapid melting of the inserted rod facilitate contamination-free transfer of the highly reactive liquid metal into the source oven. PMID:27370506

  7. An improved technique of expanding metal ring experiment under high explosive loading.

    PubMed

    Tang, Tiegang; Ren, Guowu; Guo, Zhaoliang; Li, Qingzhong

    2013-04-01

    An experimental technique for metal expanding ring subjected to high explosive loading is conducted to significantly improve the loading stability compared with the traditional setup of two-end detonator initiation. Aspects of the circuit design, experimental arrangement, and initiation principle are illustrated in great detail. In terms of this experimental platform, we examine the velocity response of an individual ring, which demonstrates the experimental reproducibility. Moreover, fragmentation of multiple rings stacked on a metal driver is discussed.

  8. Note: Contamination-free loading of lithium metal into a nozzle source

    NASA Astrophysics Data System (ADS)

    Huang, Chuanfu; Kresin, Vitaly V.

    2016-06-01

    This note describes a system for transferring a load of high purity lithium metal into a molecular or cluster beam source. A hot loading vessel is thoroughly baked out while empty and overpressured with argon. A clean Li rod is then dropped in through a long narrow tube. The thoroughly degassed interior of the vessel and the rapid melting of the inserted rod facilitate contamination-free transfer of the highly reactive liquid metal into the source oven.

  9. Modeling and mapping of critical loads for heavy metals in Kunshan soil.

    PubMed

    Wu, Shaohua; Shi, Yaxing; Zhou, Shenglu; Wang, Chunhui; Chen, Hao

    2016-11-01

    The assessment of critical loads of metals in soil can be used as an important tool for evaluation and for risk precaution of future inputs of metal in order to avoid the occurrence of heavy metal pollution and its long-term risks for people. In this study, critical loads of Cd, Cu, and Pb in farming and non-farming areas of Kunshan were calculated based on three main effects. Two of these effects, limit value of daily metals dose and different environmental water quality criteria are new ways to calculate the critical content of heavy metals. The mean value of critical loads decreased in the order Cu>Pb>Cd when calculated using mass balance effects, child health risk effects, and adult health risk effects. Critical loads were highest in the areas near construction land, areas of low critical load were scattered throughout the city. The areal proportion of critical load exceedance is greatest for Pb based on mass balance effects, followed by Cu based on water quality effects, and Cd based on mass balance effects. Exceedances only occurred in 6% and 3% of farming areas for water quality effects for Cd and Pb when compared critical load values to the input fluxes in the Yangtze River delta. However, for these metals, values were up to 83% and 100%, respectively, based on mass balance effects. Exceedances completely covered non-farming areas for each effect for Pb. Most exceedances occurred in the north and south of the city in non-farming areas. Spatially explicit critical loads of heavy metals based on the different effects can serve as a reference for controlling the emissions of heavy metals effectively and meeting the demands of different management objectives.

  10. Method for producing UO$sub 2$ loaded refractory metals

    DOEpatents

    Baker, R.D.; Hayter, S.W.; Lewis, H.D.

    1973-12-11

    A finely divided dispersion of UO/sub 2/ in tungsten or molybdenum is prepared by co-precipitating the metals from mixed aqueous solution with oxine. The co-precipitate thus formed is separated from the solution, dried, calcined, and finally reduced to UO/sub 2/ and refractory metal. (Official Gazette)

  11. Principal Locations of Metal Loading from Flood-Plain Tailings, Lower Silver Creek, Utah, April 2004

    USGS Publications Warehouse

    Kimball, Briant A.; Runkel, Robert L.; Walton-Day, Katherine

    2007-01-01

    Because of the historical deposition of mill tailings in flood plains, the process of determining total maximum daily loads for streams in an area like the Park City mining district of Utah is complicated. Understanding the locations of metal loading to Silver Creek and the relative importance of these locations is necessary to make science-based decisions. Application of tracer-injection and synoptic-sampling techniques provided a means to quantify and rank the many possible source areas. A mass-loading study was conducted along a 10,000-meter reach of Silver Creek, Utah, in April 2004. Mass-loading profiles based on spatially detailed discharge and chemical data indicated five principal locations of metal loading. These five locations contributed more than 60 percent of the cadmium and zinc loads to Silver Creek along the study reach and can be considered locations where remediation efforts could have the greatest effect upon improvement of water quality in Silver Creek.

  12. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees.

    PubMed

    Mountcastle, Andrew M; Ravi, Sridhar; Combes, Stacey A

    2015-08-18

    Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee's center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee's moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection.

  13. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture

    SciTech Connect

    Siegel, F.R.; Slaboda, M.L.; Stanley, D.J.

    1994-03-01

    High cultural enrichment factors are found for Hg (13 x), Pb (22.1 x), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into the Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and Lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies. 21 refs., 7 figs., 3 tabs.

  14. Metal pollution loading, Manzalah lagoon, Nile delta, Egypt: Implications for aquaculture

    NASA Astrophysics Data System (ADS)

    Siegel, F. R.; Slaboda, M. L.; Stanley, D. J.

    1994-03-01

    High cultural enrichment factors are found for Hg (13×), Pb (22.1×), and other potentially toxic metals (e.g., Sn, Zn, Cu, Ag) in the upper 20 cm of sediment cores from the southeastern Ginka subbasin of Manzalah lagoon, Nile delta, Egypt. Cores from other areas of the lagoon show little metal loading. Metal loading followed the closure of the Aswan High Dam, the availability of abundant cheap electricity, and the development of major power-based industries. Industrial wastes containing potentially toxic metals are dumped into the Nile delta drain system. The load carried by Bahr El-Baqar drain discharges into the Ginka subbasin, which acts as a sink and results in metal loading of the sediment deposited there. Further development of aquaculture in this subbasin, of food-stuff agriculture on recently reclaimed lagoon bottom, or where irrigation waters come from Bahr El-Baqar drain or its discharge should be halted or strictly limited until potentially toxic metals in the drain waters and sediment are removed and polluted input drastically reduced. This environmental assessment of heavy metals in aquaculture or agriculture development should extend to other waterbodies in the northern Nile delta, particularly Idku lagoon and lake Mariut, where industrial metal-bearing wastes discharge into the waterbodies.

  15. Behavior of metals Induced by magnetic pulse loading

    NASA Astrophysics Data System (ADS)

    Svetlana, Atroshenko; Viktor, Morozov; Denis, Gribanov; Anton, Lukin; Yuriy, Petrov

    2015-09-01

    The investigation of copper and aluminum ring samples was carried out using magnetic pulse loading. Two modifications of the magnetic pulse technique were used. They were based on a GKVI-300 high-voltage narrow-pulse generator Morozov et al. (2011) [1]. It is possible using these two approaches to decrease the period of the harmonic load up to 100 ns. The study of fracture surfaces of aluminum and copper samples after the test was carried out on an optical microscope Axio-Observer-Z1-M in a dark field, and study of the cross sections structure - in the bright field or C-DIC. The structure has been studied in cross sections after appropriate etching. Grain size and the number of pores on the surface of cross sections were determined after etching. Microhardness was measured on a PMT-3 device with a load of 20 g. The optical micrographs of aluminum demonstrate that the long pulse causes almost fully ductile fracture. In the case of the short pulse, the number of fibers decreases: the fracture surface exhibits the signs of both ductile cup fracture and brittle crystalline fracture with cracks, which are sometimes rather deep. In addition, the short pulse results in twinning, which seems surprising for aluminum featuring a high stacking fault energy. It is seen that under short loading dynamic recrystallization occurs. As for copper samples before loading they were in the form of single crystal and after loading their structure due to dynamic recrystallization consists of small grain. The specimen with notch has more developed dynamic recrystallization shear bands.

  16. Working Memory Load Affects Processing Time in Spoken Word Recognition: Evidence from Eye-Movements.

    PubMed

    Hadar, Britt; Skrzypek, Joshua E; Wingfield, Arthur; Ben-David, Boaz M

    2016-01-01

    In daily life, speech perception is usually accompanied by other tasks that tap into working memory capacity. However, the role of working memory on speech processing is not clear. The goal of this study was to examine how working memory load affects the timeline for spoken word recognition in ideal listening conditions. We used the "visual world" eye-tracking paradigm. The task consisted of spoken instructions referring to one of four objects depicted on a computer monitor (e.g., "point at the candle"). Half of the trials presented a phonological competitor to the target word that either overlapped in the initial syllable (onset) or at the last syllable (offset). Eye movements captured listeners' ability to differentiate the target noun from its depicted phonological competitor (e.g., candy or sandal). We manipulated working memory load by using a digit pre-load task, where participants had to retain either one (low-load) or four (high-load) spoken digits for the duration of a spoken word recognition trial. The data show that the high-load condition delayed real-time target discrimination. Specifically, a four-digit load was sufficient to delay the point of discrimination between the spoken target word and its phonological competitor. Our results emphasize the important role working memory plays in speech perception, even when performed by young adults in ideal listening conditions. PMID:27242424

  17. Working Memory Load Affects Processing Time in Spoken Word Recognition: Evidence from Eye-Movements

    PubMed Central

    Hadar, Britt; Skrzypek, Joshua E.; Wingfield, Arthur; Ben-David, Boaz M.

    2016-01-01

    In daily life, speech perception is usually accompanied by other tasks that tap into working memory capacity. However, the role of working memory on speech processing is not clear. The goal of this study was to examine how working memory load affects the timeline for spoken word recognition in ideal listening conditions. We used the “visual world” eye-tracking paradigm. The task consisted of spoken instructions referring to one of four objects depicted on a computer monitor (e.g., “point at the candle”). Half of the trials presented a phonological competitor to the target word that either overlapped in the initial syllable (onset) or at the last syllable (offset). Eye movements captured listeners' ability to differentiate the target noun from its depicted phonological competitor (e.g., candy or sandal). We manipulated working memory load by using a digit pre-load task, where participants had to retain either one (low-load) or four (high-load) spoken digits for the duration of a spoken word recognition trial. The data show that the high-load condition delayed real-time target discrimination. Specifically, a four-digit load was sufficient to delay the point of discrimination between the spoken target word and its phonological competitor. Our results emphasize the important role working memory plays in speech perception, even when performed by young adults in ideal listening conditions. PMID:27242424

  18. Metals in Particulate Pollutants Affect Peak Expiratory Flow of Schoolchildren

    PubMed Central

    Hong, Yun-Chul; Hwang, Seung-Sik; Kim, Jin Hee; Lee, Kyoung-Ho; Lee, Hyun-Jung; Lee, Kwan-Hee; Yu, Seung-Do; Kim, Dae-Seon

    2007-01-01

    Background The contribution of the metal components of particulate pollutants to acute respiratory effects has not been adequately evaluated. Moreover, little is known about the effects of genetic polymorphisms of xenobiotic metabolism on pulmonary function. Objectives This study was conducted to assess lung function decrement associated with metal components in particulate pollutants and genetic polymorphisms of glutathione S-transferase M1 and T1. Methods We studied 43 schoolchildren who were in the 3rd to 6th grades. Each student measured peak expiratory flow rate three times a day for 42 days. Particulate air concentrations were monitored every day, and the concentrations of iron, manganese, lead, zinc, and aluminum in the particles were measured. Glutathione S-transferase M1 and T1 genetic polymorphisms were determined using DNA extracted from participant buccal washings. We used a mixed linear regression model to estimate the association between peak expiratory flow rate and particulate air pollutants. Results We found significant reduction in the peak expiratory flow rate after the children’s exposure to particulate pollutants. The effect was shown most significantly 1 day after exposure to the ambient particles. Manganese and lead in the particles also reduced the peak expiratory flow rate. Genetic polymorphisms of glutathione S-transferase M1 and T1 did not significantly affect peak expiratory flow rate. Conclusions This study demonstrated that particulate pollutants and metals such as manganese and lead in the particles are associated with a decrement of peak expiratory flow rate. These effects were robust even with consideration of genetic polymorphisms of glutathione S-transferase. PMID:17431494

  19. Residual thermal stress control in composite reinforced metal structures. [by mechanical loading of metal component prior to bonding

    NASA Technical Reports Server (NTRS)

    Kelly, J. B.; June, R. R.

    1972-01-01

    Advanced composite materials, composed of boron or graphite fibers and a supporting matrix, make significant structural efficiency improvements available to aircraft and aerospace designers. Residual stress induced during bonding of composite reinforcement to metal structural elements can be reduced or eliminated through suitable modification to the manufacturing processes. The most successful method employed during this program used a steel tool capable of mechanically loading the metal component in compression prior to the adhesive bonding cycle. Compression loading combined with heating to 350 F during the bond cycle can result in creep deformation in aluminum components. The magnitude of the deformation increases with increasing stress level during exposure to 350 F.

  20. Size Effects in Thin Face-Centered Cubic Metals for Different Complex Forming Loadings

    NASA Astrophysics Data System (ADS)

    Dubos, Pierre-Antoine; Hug, Eric; Thibault, Simon; Ben Bettaieb, Mohamed; Keller, Clément

    2013-12-01

    Influence of the size effects on the mechanical behavior of face-centered cubic metals was studied for complex loadings close to microforming ones. The effect of a reduction in thickness ( t) over grain size ( d) ratio on the mechanical behavior for high-purity nickel and copper is investigated for three different loadings by tensile and Nakazima tests (plane strain conditions and balanced biaxial expansion). Experimental results highlight a strong degradation of the mechanical properties of Cu and Ni when the t/ d ratio is reduced below a critical value, independently of the strain path. However, this effect occurs if the equivalent plastic strain is larger than a critical level which is strain path dependent and related to the stress triaxiality. The current study reveals that plastic anisotropy is also affected by size effects. An excellent correlation is obtained between the t/ d ratio and the thickness reduction, through the mean normal plastic anisotropy parameter which is widely used to estimate sheet formability. A size effect map based on forming limit diagrams is proposed to depict the optimal conditions of microforming.

  1. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-11-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  2. Serration Behavior of a Zr-Based Metallic Glass Under Different Constrained Loading Conditions

    NASA Astrophysics Data System (ADS)

    Yang, G. N.; Gu, J. L.; Chen, S. Q.; Shao, Y.; Wang, H.; Yao, K. F.

    2016-08-01

    To understand the plastic behavior and shear band dynamics of metallic glasses (MGs) being tuned by the external constraint, uniaxial compression tests were performed on Zr41.2Ti13.8Cu12.5Ni10.0Be22.5 MG samples with aspect ratios of 0.5:1, 1:1, 1.5:1, 2:1, 2.5:1, and 3:1. Better plasticity was observed for the samples with smaller aspect ratio (under higher constraint degree). In the beginning of yielding, increasing serration (jerky stress drop) size on the loading curves was noticed for all samples. Statistical analysis of the serration patterns indicated that the small stress-drop serrations and large stress-drop serrations follow self-organized critical and chaotic dynamics, respectively. Under constrained loading, the large stress-drop serrations are depressed, while the small stress-drop serrations are less affected. When changing the external constraint level by varying the sample aspect ratio, the serration pattern, shear band dynamics, and plastic behavior will change accordingly. This study provides a perspective from tuning shear band dynamics to understand the plastic behavior of MGs under different external constraint.

  3. Inelastic response of metal matrix composites under biaxial loading

    NASA Technical Reports Server (NTRS)

    Lissenden, C. J.; Mirzadeh, F.; Pindera, M.-J.; Herakovich, C. T.

    1991-01-01

    Theoretical predictions and experimental results were obtained for inelastic response of unidirectional and angle ply composite tubes subjected to axial and torsional loading. The composite material consist of silicon carbide fibers in a titanium alloy matrix. This material is known to be susceptible to fiber matrix interfacial damage. A method to distinguish between matrix yielding and fiber matrix interfacial damage is suggested. Biaxial tests were conducted on the two different layup configurations using an MTS Axial/Torsional load frame with a PC based data acquisition system. The experimentally determined elastic moduli of the SiC/Ti system are compared with those predicted by a micromechanics model. The test results indicate that fiber matrix interfacial damage occurs at relatively low load levels and is a local phenomenon. The micromechanics model used is the method of cells originally proposed by Aboudi. Finite element models using the ABACUS finite element program were used to study end effects and fixture specimen interactions. The results to date have shown good correlation between theory and experiment for response prior to damage initiation.

  4. Comparison of Doxorubicin Anticancer Drug Loading on Different Metal Oxide Nanoparticles

    PubMed Central

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-01-01

    Abstract Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs. This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug. Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  5. Comparison of doxorubicin anticancer drug loading on different metal oxide nanoparticles.

    PubMed

    Javed, Khalid Rashid; Ahmad, Munir; Ali, Salamat; Butt, Muhammad Zakria; Nafees, Muhammad; Butt, Alvina Rafiq; Nadeem, Muhammad; Shahid, Abubakar

    2015-03-01

    Nanomaterials are being vigorously investigated for their use in anticancer drug delivery regimes or as biomarkers agents and are considered to be a candidate to provide a way to combat severe weaknesses of anticancer drug pharmacokinetics, such as their nonspecificity. Because of this weakness, a bigger proportion of the drug-loaded nanomaterials flow toward healthy tissues and result in undesirable side effects. It is very important to evaluate drug loading and release efficiency of various nanomaterials to find out true pharmacokinetics of these drugs.This observational study aims to evaluate various surface functionalized and naked nanomaterials for their drug loading capability and consequently strengthens the Reporting of Observational Studies in Epidemiology (STROBE). We analyzed naked and coated nanoparticles of transition metal oxides for their further loading with doxorubicin, a representative water-soluble anticancer drug.Various uncoated and polyethylene glycol-coated metal oxide nanoparticles were synthesized and loaded with anticancer drug using simple stirring of the nanoparticles in a saturated aqueous solution of the drug. Results showed that surface-coated nanoparticles have higher drug-loading capabilities; however, certain naked metal oxide nanoparticles, such as cobalt oxide nanoparticles, can load a sufficient amount of drug. PMID:25789952

  6. Effect of mass loading on ionic polymer metal composite actuators and sensors

    NASA Astrophysics Data System (ADS)

    Sakthi Swarrup, J.; Ganguli, Ranjan

    2015-04-01

    Ionic polymer metal composites (IPMC) actuator for flapping insect scale wing is advantageous due to its low mass, high deflection and simple actuation mechanism. Some of the factors that affect the actuation of IPMC are the amount of hydration in the polymer membrane and the environmental conditions such as temperature, humidity etc. In structural design, the attachment of wing on the IPMC actuators is an important concern as the attached wing increases the mass of actuators thereby affecting the parameters like displacement, stiffness and resonant frequencies. Such IPMC actuators have to produce sufficient actuation force and frequency to lift and flap the attached wing. Therefore, it is relevant to study the influence of attachment of wing on the actuator parameters (displacement, resonant frequency, block force and stiffness) and performance of the actuators. This paper is divided into two parts; the first part deals with the modeling of the IPMC actuators for its effect on the level of water uptake and temperature using energy based method. The modeling method adapted is validated with the experimental procedure used to actuate the IPMC. The second part deals with the experimental analysis of IPMC actuation at dry, wet and in water conditions. The effect of end mass loading on the performance of 20 Hz, high frequency actuator (HFA) and 8.7 Hz, low frequency IPMC actuators (LFA) and sensors is studied. The IPMC actuators are attached with IPMC flapping wing at its free end and performance analysis on the attached wing is also carried out.

  7. Stratification of Metal and Sulphate Loads in Acid Mine Drainage Receiving Water Dams - Variables Regionalization by Cluster Analysis.

    PubMed

    Grande, J A; de la Torre, M L; Valente, T; Fernández, J P; Borrego, J; Santisteban, M; Cerón, J C; Sánchez-Rodas, D

    2015-07-01

    The Sancho Reservoir (Iberian Pyrite Belt, SW Spain) is nourished by the waters of the river Meca, which is affected by acid mine drainage (AMD) processes from the abandoned Tharsis mine. The aim of the present work is to study the hydrochemical variations in this reservoir, in order to define potential stratification processes in metal load and sulphates. A stratified sampling from the surface, with one meter deep intervals to the bottom of the dam, was performed. The results show a clear stratification of temperature, pH, electric conductivity, dissolved oxygen, metal and sulphate loads associated with depth. There is an increase of metal loads at the bottom of the reservoir, though previous studies only detect iron. The proximity between pH and aluminium suggests that water chemistry is strongly influenced by aluminium precipitation processes. This indicates the buffer effect that aluminium exercises, which precipitates as amorphous or low crystalline phases, introducing hydrogen ions to the system, while alkalinity input tends to raise pH. PMID:26163498

  8. Nectar vs. pollen loading affects the tradeoff between flight stability and maneuverability in bumblebees

    PubMed Central

    Mountcastle, Andrew M.; Combes, Stacey A.

    2015-01-01

    Bumblebee foragers spend a significant portion of their lives transporting nectar and pollen, often carrying loads equivalent to more than half their body mass. Whereas nectar is stored in the abdomen near the bee’s center of mass, pollen is carried on the hind legs, farther from the center of mass. We examine how load position changes the rotational moment of inertia in bumblebees and whether this affects their flight maneuverability and/or stability. We applied simulated pollen or nectar loads of equal mass to Bombus impatiens bumblebees and examined flight performance in a wind tunnel under three conditions: flight in unsteady flow, tracking an oscillating flower in smooth flow, and flower tracking in unsteady flow. Using an inertial model, we estimated that carrying a load on the legs rather than in the abdomen increases a bee’s moment of inertia about the roll and yaw axes but not the pitch axis. Consistent with these predictions, we found that bees carrying a load on their legs displayed slower rotations about their roll and yaw axes, regardless of whether these rotations were driven by external perturbations or self-initiated steering maneuvers. This allowed pollen-loaded bees to maintain a more stable body orientation and higher median flight speed in unsteady flow but reduced their performance when tracking a moving flower, supporting the concept of a tradeoff between stability and maneuverability. These results demonstrate that the types of resources collected by bees affect their flight performance and energetics and suggest that wind conditions may influence resource selection. PMID:26240364

  9. A preliminary model for predicting heavy metal contaminant loading from an urban catchment.

    PubMed

    Yuan, Y; Hall, K; Oldham, C

    2001-02-01

    The toxicity of heavy metals to biota in urban catchments has been regarded as a very important non-point source pollution issue. Numerous studies on heavy metal pollution in urban receiving waters have found that metal transport by surface runoff is closely correlated to the partitioning of the metal forms between dissolved and particulate phases, where sediment plays an important role in the transport process. Sediment cycling on urban streets, metal binding form, and rainfall character in the catchment area are considered to be the key factors for metal transport. A preliminary model is developed based on these considerations. Starting from classical build-up and wash-off processes for the suspended sediment (SS) on the urban impervious surface, the model links the transport of suspended sediment to the transport of metal species. Monitoring data from a small highway catchment were used in the model development. A total of 47 rain events over 1 year were monitored intensively at short time intervals (5-10 min) for hydrological data, rainfall intensity, and stormwater quality. In developing the model, lead was used for the metal load prediction, as it has been a common fuel additive for urban transportation. Agreement between model results and monitoring data indicates that the model can be used in predicting metal load from impervious urban areas, such as streets and roadways, on a long-term basis.

  10. External Load Affects Ground Reaction Force Parameters Non-uniformly during Running in Weightlessness

    NASA Technical Reports Server (NTRS)

    DeWitt, John; Schaffner, Grant; Laughlin, Mitzi; Loehr, James; Hagan, R. Donald

    2004-01-01

    Long-term exposure to microgravity induces detrimefits to the musculcskdetal system (Schneider et al., 1995; LeBlanc et al., 2000). Treadmill exercise is used onboard the International Space Station as an exercise countermeasure to musculoskeletal deconditioning due to spaceflight. During locomotive exercise in weightlessness (0G), crewmembers wear a harness attached to an external loading mechanism (EL). The EL pulls the crewmember toward the treadmill, and provides resistive load during the impact and propulsive phases of gait. The resulting forces may be important in stimulating bone maintenance (Turner, 1998). The EL can be applied via a bungee and carabineer clip configuration attached to the harness and can be manipulated to create varying amounts of load levels during exercise. Ground-based research performed using a vertically mounted treadmill found that peak ground reaction forces (GRF) during running at an EL of less than one body weight (BW) are less than those that occur during running in normal gravity (1G) (Davis et al., 1996). However, it is not known how the GRF are affected by the EL in a true OG environment. Locomotion while suspended may result in biomechanics that differ from free running. The purpose of this investigation was to determine how EL affects peak impact force, peak propulsive force, loading rate, and impulse of the GRF during running in 0G. It was hypothesized that increasing EL would result in increases in each GRF parameter.

  11. Changes in plantar load distribution and gait pattern following foot drop correction in leprosy affected patients.

    PubMed

    Karmakar, Mrinmoy; Joshua, Jerry; Mahato, Nidhu

    2015-09-01

    This study was done to compare the changes in plantar load (weight distribution) and gait patterns before and after tibialis posterior transfer surgery in people affected by leprosy. Changes in gait patterns were observed and proportionate changes in plantar load were quantified using data captured by a baropodometer. All the eight patients who underwent tibialis posterior transfer surgery in 2013 in our hospital were included in the study. In addition to the regular pre-operative and post-operative assessments, the patients also underwent baropodometric evaluation. There was a significant change in plantar load at the heel, lateral border and forefoot. Using the foot pressure scan, it was noted that the progression of the centre of mass (displayed graphically as 'the gait line') was also affected by the altered pattern of weight distribution. This study reiterates the importance of tibialis posterior transfer because: it restores the normal gait pattern of 1, 2, 3 (where 1 is heel strike, 2 is mid foot contact and 3 is forefoot contact) and provides a more uniform distribution of planter load. PMID:26665356

  12. Evaluation of food processing wastewater loading characteristics on metal mobilization within the soil.

    PubMed

    Julien, Ryan; Safferman, Steven

    2015-01-01

    Wastewater generated during food processing is commonly treated using land-application systems which primarily rely on soil microbes to transform nutrients and organic compounds into benign byproducts. Naturally occurring metals in the soil may be chemically reduced via microbially mediated oxidation-reduction reactions as oxygen becomes depleted. Some metals such as manganese and iron become water soluble when chemically reduced, leading to groundwater contamination. Alternatively, metals within the wastewater may not become assimilated into the soil and leach into the groundwater if the environment is not sufficiently oxidizing. A lab-scale column study was conducted to investigate the impacts of wastewater loading values on metal mobilization within the soil. Oxygen content and volumetric water data were collected via soil sensors for the duration of the study. The pH, chemical oxygen demand, manganese, and iron concentrations in the influent and effluent water from each column were measured. Average organic loading and organic loading per dose were shown to have statistically significant impacts using Spearman's Rank Correlation Coefficient on effluent water quality. The Hydraulic resting period qualitatively appeared to have impacts on effluent water quality. This study verifies that excessive organic loading of land application systems causes mobilization of naturally occurring metals and prevents those added in the wastewater from becoming immobilized, resulting in ineffective wastewater treatment. Results also indicate the need to consider the organic dose load and hydraulic resting period in the treatment system design. Findings from this study demonstrate waste application twice daily may encourage soil aeration and allow for increased organic loading while limiting the mobilization of metals already in the soil and those being applied.

  13. Evaluation of food processing wastewater loading characteristics on metal mobilization within the soil.

    PubMed

    Julien, Ryan; Safferman, Steven

    2015-01-01

    Wastewater generated during food processing is commonly treated using land-application systems which primarily rely on soil microbes to transform nutrients and organic compounds into benign byproducts. Naturally occurring metals in the soil may be chemically reduced via microbially mediated oxidation-reduction reactions as oxygen becomes depleted. Some metals such as manganese and iron become water soluble when chemically reduced, leading to groundwater contamination. Alternatively, metals within the wastewater may not become assimilated into the soil and leach into the groundwater if the environment is not sufficiently oxidizing. A lab-scale column study was conducted to investigate the impacts of wastewater loading values on metal mobilization within the soil. Oxygen content and volumetric water data were collected via soil sensors for the duration of the study. The pH, chemical oxygen demand, manganese, and iron concentrations in the influent and effluent water from each column were measured. Average organic loading and organic loading per dose were shown to have statistically significant impacts using Spearman's Rank Correlation Coefficient on effluent water quality. The Hydraulic resting period qualitatively appeared to have impacts on effluent water quality. This study verifies that excessive organic loading of land application systems causes mobilization of naturally occurring metals and prevents those added in the wastewater from becoming immobilized, resulting in ineffective wastewater treatment. Results also indicate the need to consider the organic dose load and hydraulic resting period in the treatment system design. Findings from this study demonstrate waste application twice daily may encourage soil aeration and allow for increased organic loading while limiting the mobilization of metals already in the soil and those being applied. PMID:26327299

  14. Metal ions affecting the pulmonary and cardiovascular systems.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2011-01-01

    Some metals, such as copper and manganese, are essential to life and play irreplaceable roles in, e.g., the functioning of important enzyme systems. Other metals are xenobiotics, i.e., they have no useful role in human physiology and, even worse, as in the case of lead, may be toxic even at trace levels of exposure. Even those metals that are essential, however, have the potential to turn harmful at very high levels of exposure, a reflection of a very basic tenet of toxicology--"the dose makes the poison." Toxic metal exposure may lead to serious risks to human health. As a result of the extensive use of toxic metals and their compounds in industry and consumer products, these agents have been widely disseminated in the environment. Because metals are not biodegradable, they can persist in the environment and produce a variety of adverse effects. Exposure to metals can lead to damage in a variety of organ systems and, in some cases, metals also have the potential to be carcinogenic. Even though the importance of metals as environmental health hazards is now widely appreciated, the specific mechanisms by which metals produce their adverse effects have yet to be fully elucidated. The unifying factor in determining toxicity and carcinogenicity for most metals is the generation of reactive oxygen and nitrogen species. Metal-mediated formation of free radicals causes various modifications to nucleic acids, enhanced lipid peroxidation, and altered calcium and sulfhydryl homeostasis. Whilst copper, chromium, and cobalt undergo redox-cycling reactions, for metals such as cadmium and nickel the primary route for their toxicity is depletion of glutathione and bonding to sulfhydryl groups of proteins. This chapter attempts to show that the toxic effects of different metallic compounds may be manifested in the pulmonary and cardiovascular systems. The knowledge of health effects due to metal exposure is necessary for practising physicians, and should be assessed by inquiring

  15. Closeout of Advanced Boron and Metal Loaded High Porosity Carbons.

    SciTech Connect

    Peter C. Eklund; T. C. Mike Chung; Henry C. Foley; Vincent H. Crespi

    2011-05-01

    The Penn State effort explored the development of new high-surface-area materials for hydrogen storage, materials that could offer enhancement in the hydrogen binding energy through a direct chemical modification of the framework in high specific-surface-area platforms. The team chemically substituted boron into the hexagonal sp2 carbon framework, dispersed metal atoms bound to the boro-carbon structure, and generated the theory of novel nanoscale geometries that can enhance storage through chemical frustration, sheet curvature, electron deficiency, large local fields and mixed hybridization states. New boro-carbon materials were synthesized by high temperature plasma, pyrolysis of boron-carbon precursor molecules, and post-synthesis modification of carbons. Hydrogen uptake has been assessed, and several promising leads have been identified, with the requirement to simultaneously optimize total surface area while maintaining the enhanced hydrogen binding energies already demonstrated.

  16. Heavy metal load of soil, water and vegetables in peri-urban Delhi.

    PubMed

    Singh, S; Kumar, M

    2006-09-01

    Peri-urban lands are often used for production of vegetables for better market accessibility and higher prices. But most of these lands are contaminated with heavy metals through industrial effluents, sewage and sludge, and vehicular emission. Vegetables grown in such lands, therefore, are likely to be contaminated with heavy metals and unsafe for consumption. Samples of vegetables i.e., spinach (Spinacia oleracea L.) and okra (Abelmoschus esculentus L.); soil and irrigation water were collected from 5 peri-urban sites of New Delhi to monitor their heavy metal loads. While heavy metal load of the soils were below the maximum allowable limit prescribed by the World Health Organization (WHO), it was higher in irrigation water and vegetable samples. The spinach and okra samples showed Zn, Pb and Cd levels higher than the WHO limits. The levels of Cu, however, were at their safe limits. Metal contamination was higher in spinach than in okra. Spatial variability of metal contamination was also observed in the study. Bio-availability of metals present in soil showed a positive relationship with their total content and organic matter content of soil but no relationship was observed with soil pH. Washing of vegetables with clean water was a very effective and easy way of decontaminating the metal pollution as it reduced the contamination by 75 to 100%.

  17. Humic Acid Complexation of Th, Hf and Zr in Ligand Competition Experiments: Metal Loading and Ph Effects

    NASA Technical Reports Server (NTRS)

    Stern, Jennifer C.; Foustoukos, Dionysis I.; Sonke, Jeroen E.; Salters, Vincent J. M.

    2014-01-01

    The mobility of metals in soils and subsurface aquifers is strongly affected by sorption and complexation with dissolved organic matter, oxyhydroxides, clay minerals, and inorganic ligands. Humic substances (HS) are organic macromolecules with functional groups that have a strong affinity for binding metals, such as actinides. Thorium, often studied as an analog for tetravalent actinides, has also been shown to strongly associate with dissolved and colloidal HS in natural waters. The effects of HS on the mobilization dynamics of actinides are of particular interest in risk assessment of nuclear waste repositories. Here, we present conditional equilibrium binding constants (Kc, MHA) of thorium, hafnium, and zirconium-humic acid complexes from ligand competition experiments using capillary electrophoresis coupled with ICP-MS (CE- ICP-MS). Equilibrium dialysis ligand exchange (EDLE) experiments using size exclusion via a 1000 Damembrane were also performed to validate the CE-ICP-MS analysis. Experiments were performed at pH 3.5-7 with solutions containing one tetravalent metal (Th, Hf, or Zr), Elliot soil humic acid (EHA) or Pahokee peat humic acid (PHA), and EDTA. CE-ICP-MS and EDLE experiments yielded nearly identical binding constants for the metal- humic acid complexes, indicating that both methods are appropriate for examining metal speciation at conditions lower than neutral pH. We find that tetravalent metals form strong complexes with humic acids, with Kc, MHA several orders of magnitude above REE-humic complexes. Experiments were conducted at a range of dissolved HA concentrations to examine the effect of [HA]/[Th] molar ratio on Kc, MHA. At low metal loading conditions (i.e. elevated [HA]/[Th] ratios) the ThHA binding constant reached values that were not affected by the relative abundance of humic acid and thorium. The importance of [HA]/[Th] molar ratios on constraining the equilibrium of MHA complexation is apparent when our estimated Kc, MHA values

  18. On the behaviour characterization of metallic cellular materials under impact loading

    NASA Astrophysics Data System (ADS)

    Fang, Dai-Ning; Li, Yu-Long; Zhao, Han

    2010-12-01

    This paper reviews the common mechanical features of the metallic cellular material under impact loading as well as the characterization methods of such behaviours. The main focus is on the innovations of various testing methods at impact loading rates. Following aspects were discussed in details. (1) The use of soft nylon Hopkinson/Kolsky bar for an enhanced measuring accuracy in order to assess if there is a strength enhancement or not for this class of cellular materials under moderate impact loading; (2) The use of digital image correlations to determine the strain fields during the tests to confirm the existence of a pseudo-shock wave propagation inside the cellular material under high speed impact; (3) The use of new combined shear compression device to determine the loading envelop of cellular materials under impact multiaxial loadings.

  19. Structure and Metal Loading of a Soluble Periplasm Cuproprotein*

    PubMed Central

    Waldron, Kevin J.; Firbank, Susan J.; Dainty, Samantha J.; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J.

    2010-01-01

    A copper-trafficking pathway was found to enable Cu2+ occupancy of a soluble periplasm protein, CucA, even when competing Zn2+ is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu2+, but not Zn2+, quenches the fluorescence of Trp165, which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn2+ following exposure to equimolar Zn2+ and Cu2+. Cu2+-CucA is more thermodynamically stable than Zn2+-CucA but k(Zn→Cu)exchange is slow, raising questions about how the periplasm contains solely the Cu2+ form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu2+-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low Mr copper complexes in the periplasm, and purified apoCucA can readily acquire Cu2+ from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm. PMID:20702411

  20. Structure and metal loading of a soluble periplasm cuproprotein.

    PubMed

    Waldron, Kevin J; Firbank, Susan J; Dainty, Samantha J; Pérez-Rama, Mónica; Tottey, Steve; Robinson, Nigel J

    2010-10-15

    A copper-trafficking pathway was found to enable Cu(2+) occupancy of a soluble periplasm protein, CucA, even when competing Zn(2+) is abundant in the periplasm. Here, we solved the structure of CucA (a new cupin) and found that binding of Cu(2+), but not Zn(2+), quenches the fluorescence of Trp(165), which is adjacent to the metal site. Using this fluorescence probe, we established that CucA becomes partly occupied by Zn(2+) following exposure to equimolar Zn(2+) and Cu(2+). Cu(2+)-CucA is more thermodynamically stable than Zn(2+)-CucA but k((Zn→Cu)exchange) is slow, raising questions about how the periplasm contains solely the Cu(2+) form. We discovered that a copper-trafficking pathway involving two copper transporters (CtaA and PacS) and a metallochaperone (Atx1) is obligatory for Cu(2+)-CucA to accumulate in the periplasm. There was negligible CucA protein in the periplasm of ΔctaA cells, but the abundance of cucA transcripts was unaltered. Crucially, ΔctaA cells overaccumulate low M(r) copper complexes in the periplasm, and purified apoCucA can readily acquire Cu(2+) from ΔctaA periplasm extracts, but in vivo apoCucA fails to come into contact with these periplasmic copper pools. Instead, copper traffics via a cytoplasmic pathway that is coupled to CucA translocation to the periplasm. PMID:20702411

  1. Evaluation of elements loading in the metal structures of powered support units

    NASA Astrophysics Data System (ADS)

    Nikitenko, M. S.

    2016-10-01

    In the paper the evaluation results of elements loading in the metal structures of powered support units are presented performed in the laboratory and plant conditions using the developed test samples of portable strain-gauge transducers on the basis of a spring element and a mobile multifunctional automated strain-gauge system.

  2. How absorbed hydrogen affects the catalytic activity of transition metals.

    PubMed

    Aleksandrov, Hristiyan A; Kozlov, Sergey M; Schauermann, Swetlana; Vayssilov, Georgi N; Neyman, Konstantin M

    2014-12-01

    Heterogeneous catalysis is commonly governed by surface active sites. Yet, areas just below the surface can also influence catalytic activity, for instance, when fragmentation products of catalytic feeds penetrate into catalysts. In particular, H absorbed below the surface is required for certain hydrogenation reactions on metals. Herein, we show that a sufficient concentration of subsurface hydrogen, H(sub) , may either significantly increase or decrease the bond energy and the reactivity of the adsorbed hydrogen, H(ad) , depending on the metal. We predict a representative reaction, ethyl hydrogenation, to speed up on Pd and Pt, but to slow down on Ni and Rh in the presence of H(sub) , especially on metal nanoparticles. The identified effects of subsurface H on surface reactivity are indispensable for an atomistic understanding of hydrogenation processes on transition metals and interactions of hydrogen with metals in general.

  3. Intra-arterial infusion of leptin does not affect blood pressure in salt-loaded rabbits.

    PubMed

    Mohammad, Mukhallad A; Talafih, Khalid; Mohamad, Mohamad M J; Khabaz, Mohammad Nidal

    2010-08-01

    The aim of this research is to see the effect of intra-arterial infusion of leptin on blood pressure of salt loaded rabbits in vivo. Increased blood pressure was produced in rabbits by giving diets containing 8% sodium chloride for 5 weeks. Leptin in different concentrations was infused intra-arterially into rabbits fed on high salt diets and the response was compared in rabbits fed with low salt diets. High salt diets produced significant increase in blood pressure. In rabbits fed with low salt diet, leptin infused intra-arterially caused an increase in blood pressure while infusion of leptin into rabbits fed with high salt diets does not affect the blood pressure. In conclusion, salt loading to rabbits abolishes the effect ofleptin on cardiovascular system. This may indicate that leptin effect on sympathetic activity is altered by high salt diets in these animals.

  4. Plasmon-Induced Water Splitting Using Metallic-Nanoparticle-Loaded Photocatalysts and Photoelectrodes.

    PubMed

    Ueno, Kosei; Oshikiri, Tomoya; Misawa, Hiroaki

    2016-01-18

    Visible- and near-infrared-light-driven water splitting, which splits water molecules to generate hydrogen and oxygen gases, is a significant subject in artificial photosynthesis with the goal of achieving a low-carbon society. In recent years, considerable attention has been paid to studies on the development of a plasmon-induced water-splitting system responding to visible light. In this review, we categorized water-splitting systems as gold-nanoparticle-loaded semiconductor photocatalytic particles system and metallic-nanoparticles-loaded semiconductor photoelectrode systems, and introduce the latest studies according to these categories. Especially, we describe the studies that optimize a material or a structural design of metallic-nanoparticle-loaded semiconductor photoelectrodes and consider a whole water-splitting system, including a cathode design. Furthermore, we discuss important points when studying plasmon-induced water splitting, and we describe a methodology that enhances plasmon-induced water-splitting efficiency.

  5. Invertebrate grazers affect metal/metalloid fixation during litter decomposition.

    PubMed

    Schaller, Jörg; Brackhage, Carsten

    2015-01-01

    Plant litter and organic sediments are main sinks for metals and metalloids in aquatic ecosystems. The effect of invertebrates as key species in aquatic litter decomposition on metal/metalloid fixation by organic matter is described only for shredders, but for grazers as another important animal group less is known. Consequently, a laboratory batch experiment was conducted to examine the effect of invertebrate grazers (Lymnaea stagnalis L.) on metal/metalloid fixation/remobilization during aquatic litter decomposition. It could be shown that invertebrate grazers facilitate significantly the formation of smaller sizes of particulate organic matter (POM), as shown previously for invertebrate shredders. The metal/metalloid binding capacity of these smaller particles of POM is higher compared to leaf litter residuals. But element enrichment is not as high as shown previously for the effect by invertebrate shredders. Invertebrate grazers enhance also the mobilization of selected elements to the water, in the range also proven for invertebrate shredders but different for the different elements. Nonetheless invertebrate grazers activity during aquatic litter decomposition leads to a metal/metalloid fixation into leaf litter as part of sediment organic matter. Hence, the effect of invertebrate grazers on metal/metalloid fixation/remobilization contrasts partly with former assessments revealing the possibility of an enhanced metal/metalloid fixation.

  6. Use of tracer injections and synoptic sampling to measure metal loading from acid mine drainage

    USGS Publications Warehouse

    Kimball, Briant A.

    1997-01-01

    Thousands of abandoned and inactive mines are located in environmentally sensitive mountain watersheds. Cost-effective remediation of the effects of metals from mining in these watersheds requires knowledge of the most significant sources of metals. The significance of a given source depends on the toxicity of a particular metal, how much of the metal enters the stream, and whether or not the metal remains in the stream in a toxic form. This discussion deals with accounting for how much metal enters the stream and whether it stays in the stream. The amount of metal entering the stream is called the mass loading and is calculated as the product of metal concentration and stream discharge. The overall effect of high metal concentrations on streams and aquatic organisms is unclear without discharge measurements. A traditional discharge measurement is obtained by dividing a stream into small sections and measuring the cross-sectional area and the average water velocity in each section. Summing the measurements of all the sections gives the discharge of the entire stream. This method works well where the channel bottom and banks are smooth. In mountain streams, however, the stream bottom typically is covered with cobbles, allowing much of the water to flow through the cobbles of the streambed where it cannot be measured by a flow meter (fig. 1). Thus, accurate discharge measurements are difficult to obtain in mountain streams, even under the best of conditions.

  7. Prediction of contact mechanics in metal-on-metal Total Hip Replacement for parametrically comprehensive designs and loads.

    PubMed

    Donaldson, Finn E; Nyman, Edward; Coburn, James C

    2015-07-16

    Manufacturers and investigators of Total Hip Replacement (THR) bearings require tools to predict the contact mechanics resulting from diverse design and loading parameters. This study provides contact mechanics solutions for metal-on-metal (MoM) bearings that encompass the current design space and could aid pre-clinical design optimization and evaluation. Stochastic finite element (FE) simulation was used to calculate the head-on-cup contact mechanics for five thousand combinations of design and loading parameters. FE results were used to train a Random Forest (RF) surrogate model to rapidly predict the contact patch dimensions, contact area, pressures and plastic deformations for arbitrary designs and loading. In addition to widely observed polar and edge contact, FE results included ring-polar, asymmetric-polar, and transitional categories which have previously received limited attention. Combinations of design and load parameters associated with each contact category were identified. Polar contact pressures were predicted in the range of 0-200 MPa with no permanent deformation. Edge loading (with subluxation) was associated with pressures greater than 500 MPa and induced permanent deformation in 83% of cases. Transitional-edge contact (with little subluxation) was associated with intermediate pressures and permanent deformation in most cases, indicating that, even with ideal anatomical alignment, bearings may face extreme wear challenges. Surrogate models were able to accurately predict contact mechanics 18,000 times faster than FE analyses. The developed surrogate models enable rapid prediction of MoM bearing contact mechanics across the most comprehensive range of loading and designs to date, and may be useful to those performing bearing design optimization or evaluation.

  8. How strain affects the reactivity of surface metal oxide catalysts.

    PubMed

    Amakawa, Kazuhiko; Sun, Lili; Guo, Chunsheng; Hävecker, Michael; Kube, Pierre; Wachs, Israel E; Lwin, Soe; Frenkel, Anatoly I; Patlolla, Anitha; Hermann, Klaus; Schlögl, Robert; Trunschke, Annette

    2013-12-16

    Highly dispersed molybdenum oxide supported on mesoporous silica SBA-15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2-2.5 Mo atoms nm(-2) ). X-ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature-programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O-K-edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity. PMID:24259425

  9. Lichen substances affect metal adsorption in Hypogymnia physodes.

    PubMed

    Hauck, Markus; Huneck, Siegfried

    2007-01-01

    Lichen substances are known to function as chelators of cations. We tested the hypothesis that lichen substances can control the uptake of toxic metals by adsorbing metal ions at cation exchange sites on cell walls. If true, this hypothesis would help to provide a mechanistic explanation for results of a recent study showing increased production of physodalic acid by thalli of the lichen Hypogymnia physodes transplanted to sites with heavy metal pollution. We treated cellulose filters known to mimic the cation exchange abilities of lichen thalli with four lichen substances produced by H. physodes (physodic acid, physodalic acid, protocetraric acid, and atranorin). Treated filters were exposed to solutions containing seven cations (Ca(2+), Cu(2+), Fe(2+), Fe(3+), Mg(2+), Mn(2+), and Na(+)), and changes to the solution concentrations were measured. Physodalic acid was most effective at influencing metal adsorption, as it increased the adsorption of Fe(3+), but reduced the adsorption of Cu(2+), Mn(2+), and Na(+), and to a lesser extent, that of Ca(2+) and Mg(2+). Reduced Na(+) adsorption matches with the known tolerance of this species to NaCl. The results may indicate a possible general role of lichen substances in metal homeostasis and pollution tolerance. PMID:17136464

  10. An examination of blast and impulse effects from the metal loading of explosives

    SciTech Connect

    Sanders, Victor E; Zucker, Jonathan M; Mc Afee, John M; Tappan, Bryce C; Asay, Blaine W

    2010-01-01

    Explosive compositions loaded with various metal particulates were produced and tested using a unique experimental configuration. The high explosive HMX was used as the standard and was tested over a range of mass loading fractions using tungsten and tantalum as metal additives. The diagnostics used in this set of experiments included free-field blast sensors, dynamic force sensors, time-of-arrival sensors, and a high-speed digital camera. The experimental arrangement allowed for concurrent spatial measurements of the static pressure from expanding gaseous detonation products, along with the total force from the combination of gaseous products and solid particles. The total pressure from the multi-phase products was calculated by measuring the total force applied to the surface of a newly developed force sensor. The results from the force sensor and other measurement techniques were validated against existing numerical methods. The relationship between static and dynamic pressures as a function of metal loading fraction was examined empirically at several distances from the charge for two distinct metal additives.

  11. Cognitive Load Does Not Affect the Behavioral and Cognitive Foundations of Social Cooperation

    PubMed Central

    Mieth, Laura; Bell, Raoul; Buchner, Axel

    2016-01-01

    The present study serves to test whether the cognitive mechanisms underlying social cooperation are affected by cognitive load. Participants interacted with trustworthy-looking and untrustworthy-looking partners in a sequential Prisoner’s Dilemma Game. Facial trustworthiness was manipulated to stimulate expectations about the future behavior of the partners which were either violated or confirmed by the partners’ cheating or cooperation during the game. In a source memory test, participants were required to recognize the partners and to classify them as cheaters or cooperators. A multinomial model was used to disentangle item memory, source memory and guessing processes. We found an expectancy-congruent bias toward guessing that trustworthy-looking partners were more likely to be associated with cooperation than untrustworthy-looking partners. Source memory was enhanced for cheating that violated the participants’ positive expectations about trustworthy-looking partners. We were interested in whether or not this expectancy-violation effect—that helps to revise unjustified expectations about trustworthy-looking partners—depends on cognitive load induced via a secondary continuous reaction time task. Although this secondary task interfered with working memory processes in a validation study, both the expectancy-congruent guessing bias as well as the expectancy-violation effect were obtained with and without cognitive load. These findings support the hypothesis that the expectancy-violation effect is due to a simple mechanism that does not rely on demanding elaborative processes. We conclude that most cognitive mechanisms underlying social cooperation presumably operate automatically so that they remain unaffected by cognitive load.

  12. Cognitive Load Does Not Affect the Behavioral and Cognitive Foundations of Social Cooperation.

    PubMed

    Mieth, Laura; Bell, Raoul; Buchner, Axel

    2016-01-01

    The present study serves to test whether the cognitive mechanisms underlying social cooperation are affected by cognitive load. Participants interacted with trustworthy-looking and untrustworthy-looking partners in a sequential Prisoner's Dilemma Game. Facial trustworthiness was manipulated to stimulate expectations about the future behavior of the partners which were either violated or confirmed by the partners' cheating or cooperation during the game. In a source memory test, participants were required to recognize the partners and to classify them as cheaters or cooperators. A multinomial model was used to disentangle item memory, source memory and guessing processes. We found an expectancy-congruent bias toward guessing that trustworthy-looking partners were more likely to be associated with cooperation than untrustworthy-looking partners. Source memory was enhanced for cheating that violated the participants' positive expectations about trustworthy-looking partners. We were interested in whether or not this expectancy-violation effect-that helps to revise unjustified expectations about trustworthy-looking partners-depends on cognitive load induced via a secondary continuous reaction time task. Although this secondary task interfered with working memory processes in a validation study, both the expectancy-congruent guessing bias as well as the expectancy-violation effect were obtained with and without cognitive load. These findings support the hypothesis that the expectancy-violation effect is due to a simple mechanism that does not rely on demanding elaborative processes. We conclude that most cognitive mechanisms underlying social cooperation presumably operate automatically so that they remain unaffected by cognitive load. PMID:27630597

  13. Cognitive Load Does Not Affect the Behavioral and Cognitive Foundations of Social Cooperation

    PubMed Central

    Mieth, Laura; Bell, Raoul; Buchner, Axel

    2016-01-01

    The present study serves to test whether the cognitive mechanisms underlying social cooperation are affected by cognitive load. Participants interacted with trustworthy-looking and untrustworthy-looking partners in a sequential Prisoner’s Dilemma Game. Facial trustworthiness was manipulated to stimulate expectations about the future behavior of the partners which were either violated or confirmed by the partners’ cheating or cooperation during the game. In a source memory test, participants were required to recognize the partners and to classify them as cheaters or cooperators. A multinomial model was used to disentangle item memory, source memory and guessing processes. We found an expectancy-congruent bias toward guessing that trustworthy-looking partners were more likely to be associated with cooperation than untrustworthy-looking partners. Source memory was enhanced for cheating that violated the participants’ positive expectations about trustworthy-looking partners. We were interested in whether or not this expectancy-violation effect—that helps to revise unjustified expectations about trustworthy-looking partners—depends on cognitive load induced via a secondary continuous reaction time task. Although this secondary task interfered with working memory processes in a validation study, both the expectancy-congruent guessing bias as well as the expectancy-violation effect were obtained with and without cognitive load. These findings support the hypothesis that the expectancy-violation effect is due to a simple mechanism that does not rely on demanding elaborative processes. We conclude that most cognitive mechanisms underlying social cooperation presumably operate automatically so that they remain unaffected by cognitive load. PMID:27630597

  14. The Biomechanical Effect of Loading Speed on Metal-on-UHMWPE Contact Mechanics

    PubMed Central

    Zdero, Radovan; Bagheri, Zahra S; Rezaey, Mojtaba; Schemitsch, Emil H; Bougherara, Habiba

    2014-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a material commonly used in total hip and knee joint replacements. Numerous studies have assessed the effect of its viscoelastic properties on phenomena such as creep, stress relaxation, and tensile stress. However, these investigations either use the complex 3D geometries of total hip and knee replacements or UHMWPE test objects on their own. No studies have directly measured the effect of vertical load application speed on the contact mechanics of a metal sphere indenting UHMWPE. To this end, a metal ball was used to apply vertical force to a series of UHMWPE flat plate specimens over a wide range of loading speeds, namely, 1, 20, 40, 60, 80, 100, and 120 mm/min. Pressure sensitive Fujifilm was placed at the interface to measure contact area. Experimental results showed that maximum contact force ranged from 3596 to 4520 N and was logarithmically related (R2=0.96) to loading speed. Average contact area ranged from 76.5 to 79.9 mm2 and was linearly related (R2=0.56) to loading speed. Average contact stress ranged from 45.1 to 58.2 MPa and was logarithmically related (R2=0.95) to loading speed. All UHMWPE specimens displayed a circular area of permanent surface damage, which did not disappear with time. This study has practical implications for understanding the contact mechanics of hip and knee replacements for a variety of activities of daily living. PMID:24893849

  15. The Biomechanical Effect of Loading Speed on Metal-on-UHMWPE Contact Mechanics.

    PubMed

    Zdero, Radovan; Bagheri, Zahra S; Rezaey, Mojtaba; Schemitsch, Emil H; Bougherara, Habiba

    2014-01-01

    Ultra high molecular weight polyethylene (UHMWPE) is a material commonly used in total hip and knee joint replacements. Numerous studies have assessed the effect of its viscoelastic properties on phenomena such as creep, stress relaxation, and tensile stress. However, these investigations either use the complex 3D geometries of total hip and knee replacements or UHMWPE test objects on their own. No studies have directly measured the effect of vertical load application speed on the contact mechanics of a metal sphere indenting UHMWPE. To this end, a metal ball was used to apply vertical force to a series of UHMWPE flat plate specimens over a wide range of loading speeds, namely, 1, 20, 40, 60, 80, 100, and 120 mm/min. Pressure sensitive Fujifilm was placed at the interface to measure contact area. Experimental results showed that maximum contact force ranged from 3596 to 4520 N and was logarithmically related (R(2)=0.96) to loading speed. Average contact area ranged from 76.5 to 79.9 mm(2) and was linearly related (R(2)=0.56) to loading speed. Average contact stress ranged from 45.1 to 58.2 MPa and was logarithmically related (R(2)=0.95) to loading speed. All UHMWPE specimens displayed a circular area of permanent surface damage, which did not disappear with time. This study has practical implications for understanding the contact mechanics of hip and knee replacements for a variety of activities of daily living.

  16. Concurrent material-fabrication optimization of metal-matrix laminates under thermo-mechanical loading

    NASA Technical Reports Server (NTRS)

    Saravanos, D. A.; Morel, M. R.; Chamis, C. C.

    1991-01-01

    A methodology is developed to tailor fabrication and material parameters of metal-matrix laminates for maximum loading capacity under thermomechanical loads. The stresses during the thermomechanical response are minimized subject to failure constrains and bounds on the laminate properties. The thermomechanical response of the laminate is simulated using nonlinear composite mechanics. Evaluations of the method on a graphite/copper symmetric cross-ply laminate were performed. The cross-ply laminate required different optimum fabrication procedures than a unidirectional composite. Also, the consideration of the thermomechanical cycle had a significant effect on the predicted optimal process.

  17. Geometrically nonlinear bending analysis of Metal-Ceramic composite beams under thermomechanical loading

    NASA Astrophysics Data System (ADS)

    Torabizadeh, Mohammad Amin

    2013-07-01

    A new method is developed to derive equilibrium equations of Metal-Ceramic beams based on first order shear deformation plate theory which is named first order shear deformation beam theory2(FSDBT2). Equilibrium equations obtained from conventional method (FSDBT1) is compared with FSDBT2 and the case of cylindrical bending of Metal-Ceramic composite plates for non-linear thermomechanical deformations and various loadings and boundary conditions. These equations are solved by using three different methods (analytical, perturbation technique and finite element solution). The through-thickness variation of the volume fraction of the ceramic phase in a Metal-Ceramic beam is assumed to be given by a power-law type function. The non-linear strain-displacement relations in the von-Kármán sense are used to study the effect of geometric non-linearity. Also, four other representative averaging estimation methods, the linear rule, Mori-Tanaka, Self-Consistent and Wakashima-Tsukamoto schemes, by comparing with the power-law type function are also investigated. Temperature distribution through the thickness of the beams in thermal loadings is obtained by solving the one-dimensional heat transfer equation. Finally it is concluded that for Metal-Ceramic composites, these two theories result in identical static responses. Also the displacement field and equilibrium equations in the case of cylindrical bending of Metal-Ceramic plates are the same as those supposed in FSDBT2.

  18. Improving the Loading Capacity of Metal-Organic Framework Thin Films Using Optimized Linkers.

    PubMed

    Guo, Wei; Zha, Meiqin; Wang, Zhengbang; Redel, Engelbert; Xu, Zhengtao; Wöll, Christof

    2016-09-21

    The large surface area of metal-organic frameworks (MOFs) sparks great interest for their use in storage applications. While the bulk of MOF applications focuses on incorporation of gases, we demonstrate that these highly porous frameworks are also well-suited for metal ion storage. For well-defined, highly oriented surface-anchored MOF thin films grown on modified gold surfaces using liquid-phase epitaxy (LPE), also referred to as SURMOFs, we determined the loading of two different types of MOF materials with a total of seven types of metal ions (Zn(2+), Ag(+), Pd(2+), Fe(3+), Cd(2+), Ni(2+), and Co(2+)). Measurements using a quartz crystal microbalance (QCM) allowed determination of loading capacities as well as diffusion constants in a quantitative fashion. The adsorption capacities were observed to be highly ion specific; the largest uptake was for Fe(3+) and Pd(2+) ions with six and four metal ions per MOF pore, respectively. By comparing results for SURMOFs fabricated from different types of linkers, we demonstrate that S-containing functionalities in particular drastically improve the storage capacity of MOFs for metal ions. PMID:27575655

  19. Flight Investigation on a Fighter-type Airplane of Factors which Affect the Loads and Load Distributions on the Vertical Tail Surfaces During Rudder Kicks and Fishtails

    NASA Technical Reports Server (NTRS)

    Boshar, John

    1947-01-01

    Results are presented of a flight investigation conducted on a fighter-type airplane to determine the factors which affect the loads and load distributions on the vertical tail surfaces in maneuvers. An analysis is made of the data obtained in steady flight, rudder kicks, and fishtail maneuvers. For the rudder kicks, the significant loads were the "deflection load" resulting from an abrupt control deflection and the "dynamic load" consisting of a load corresponding to the new static equilibrium condition for the rudder deflected plus a load due to a transient overshoot. The minimum time to reach the maximum control deflection attainable by the pilot in any flight condition was found to be a constant. In the fishtail maneuvers, it was found that the pilot tends to deflect the rudder in phase with the natural frequency of the airplane. The maximum loads measured in fishtails were of the same order of magnitude as those from a rudder kick in which the rudder is returned to zero at the time of maximum sideslip.

  20. A comprehensive study of physical and physiological parameters that affect bio-sorption of metal pollutants from aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fosso-Kankeu, E.; Mulaba-Bafubiandi, A. F.; Mamba, B. B.; Marjanovic, L.; Barnard, T. G.

    An attempt was made to remove silver (I), chromium (III), and lead (II) from aqueous solutions. To optimize the bio-sorption capacity of microorganisms ( Bacillus subtilis and Bacillaceae bacterium), the effect of process parameters such as pH, temperature, metal load and culture age on the metal uptake was investigated. Indigenous strains of B. subtilis and Bacillaceae bacterium found in gold and copper mines in South Africa were exposed to silver (I), chromium (III), and lead (II) solutions under different physico-chemical and physiological conditions. Optimum conditions for the uptake of silver (I), chromium (III) and lead (II) by microorganisms used in this study were determined. The pH range 7-8, higher temperature (45 °C) and stationary growth phase, were observed as being suitable physical and physiological conditions for optimum removal of metals (Ag-87.2%; Cr-94% and Pb-98.5%). On the other hand very low pH (3) adversely affected the metal removal ability of bacteria. Silver (I) was the most poorly uptaken metal. It was also found that silver inhibited bacteria growth. Attempt to elute metal from the above cell biomass showed that 56.6% silver (I) and 88.3% lead (II) could effectively be desorbed at pH 5. It was additionally observed that optimum conditions for metal removal were specific to microbial bio-sorbent and the targeted metal. Design and implementation of bioremediation processes therefore require thorough study of specific interactions among metals and bio-sorbents involved.

  1. Atmospheric Deposition of Heavy Metals in Soil Affected by Different Soil Uses of Southern Spain

    NASA Astrophysics Data System (ADS)

    Acosta, J. A.; Faz, A.; Martínez-Martínez, S.; Bech, J.

    2009-04-01

    Heavy metals are a natural constituent of rocks, sediments and soils. However, the heavy metal content of top soils is also dependent on other sources than weathering of the indigenous minerals; input from atmospheric deposition seems to be an important pathway. Atmospheric deposition is defined as the process by which atmospheric pollutants are transferred to terrestrial and aquatic surfaces and is commonly classified as either dry or wet. The interest in atmospheric deposition has increased over the past decade due to concerns about the effects of deposited materials on the environment. Dry deposition provides a significant mechanism for the removal of particles from the atmosphere and is an important pathway for the loading of heavy metals into the soil ecosystem. Within the last decade, an intensive effort has been made to determine the atmospheric heavy metal deposition in both urban and rural areas. The main objective of this study was to identification of atmospheric heavy metals deposition in soil affected by different soil uses. Study area is located in Murcia Province (southeast of Spain), in the surroundings of Murcia City. The climate is typically semiarid Mediterranean with an annual average temperature of 18°C and precipitation of 350 mm. In order to determine heavy metals atmospheric deposition a sampling at different depths (0-1 cm, 1-5 cm, 5-15 cm and 15-30 cm) was carried out in 7 sites including agricultural soils, two industrial areas and natural sites. The samples were taken to the laboratory where, dried, passed through a 2 mm sieve, and grinded. For the determination of the moisture the samples were weighed and oven dried at 105 °C for 24 h. The total amounts of metals (Pb, Cu, Pb, Zn, Cd, Mn, Ni and Cr) were determined by digesting the samples with nitric/perchoric acids and measuring with ICP-MS. Results showed that zinc contamination in some samples of industrial areas was detected, even this contamination reaches 30 cm depth; thus it is

  2. Effect of metal loading processes on the stability and thermal transformation of Co{sup 2+}- and Cu{sup 2+}-zeolite Y prepared from Egyptian kaolin

    SciTech Connect

    EL-Mekkawi, Doaa M. Selim, Mohamed M.

    2012-07-15

    This paper aims to assess the effect of the transition metals (TM) loading procedure on the incorporation of Co{sup 2+} and Cu{sup 2+} in zeolite Y, and their relevance to stability of the zeolite, particularly with respect to the thermal transformation to the spinel phases. In this work, zeolite Y prepared from Egyptian kaolin was used. XRF, XRD, TEM, UV/visible absorption measurements, and atomic absorption analyses in addition to the visual observations are recorded. XRF has been used to investigate the materials composition. TEM and XRD indicate the presence of nanoparticle spinel upon the calcination of the TM-zeolites at 1000 Degree-Sign C. In addition to spinel particles, XRD shows the formation of metal oxides, SiO{sub 2} and alumino-silicate phases. According to the transition metal and the cation loading process, different phases were detected. UV/visible absorption measurements and the visual observations are used to determine the experimental condition of the highest spinel content. It has been noticed that the experimental conditions of the metal sorption processes greatly affect the phase transformation. Stability and thermal transformation of zeolite depend on the initial concentration of the transition cation solutions and the number of loading cycles. - Highlights: Black-Right-Pointing-Pointer We study the effects of loading procedure in the incorporation of TM in zeolite Y. Black-Right-Pointing-Pointer Synthetic zeolite Y prepared from Egyptian kaolin has been used. Black-Right-Pointing-Pointer The type of TM affects the stability and thermal transformation of zeolite. Black-Right-Pointing-Pointer Loading processes affect the stability and thermal transformation of zeolite.

  3. Combine the soil water assessment tool (SWAT) with sediment geochemistry to evaluate diffuse heavy metal loadings at watershed scale.

    PubMed

    Jiao, Wei; Ouyang, Wei; Hao, Fanghua; Huang, Haobo; Shan, Yushu; Geng, Xiaojun

    2014-09-15

    Assessing the diffuse pollutant loadings at watershed scale has become increasingly important when formulating effective watershed water management strategies, but the process was seldom achieved for heavy metals. In this study, the overall temporal-spatial variability of particulate Pb, Cu, Cr and Ni losses within an agricultural watershed was quantitatively evaluated by combining SWAT with sediment geochemistry. Results showed that the watershed particulate heavy metal loadings displayed strong variability in the simulation period 1981-2010, with an obvious increasing trend in recent years. The simulated annual average loadings were 20.21 g/ha, 21.75 g/ha, 47.35 g/ha and 21.27 g/ha for Pb, Cu, Cr and Ni, respectively. By comparison, these annual average values generally matched the estimated particulate heavy metal loadings at field scale. With spatial interpolation of field loadings, it was found that the diffuse heavy metal pollution mainly came from the sub-basins dominated with cultivated lands, accounting for over 70% of total watershed loadings. The watershed distribution of particulate heavy metal losses was very similar to that of soil loss but contrary to that of heavy metal concentrations in soil, highlighting the important role of sediment yield in controlling the diffuse heavy metal loadings.

  4. Metal loading assessment of a small mountainous sub-basin characterized by acid drainage -- Prospect Gulch, upper Animas River watershed, Colorado

    USGS Publications Warehouse

    Wirt, Laurie; Leib, Kenneth J.; Melick, Roger; Bove, Dana J.

    2001-01-01

    strongly affected by natural acidity from pyrite weathering. Metal content in the water column is a composite of multiple sources affected by hydrologic, geologic, climatic, and anthropogenic conditions. Identifying sources of metals from various drainage areas was determined using a tracer injection approach and synoptic sampling during low flow conditions on September 29, 1999 to determine loads. The tracer data was interpreted in conjunction with detailed geologic mapping, topographic profiling, geochemical characterization, and the occurrence and distribution of trace metals to identify sources of ground-water inflows. For this highly mineralized sub-basin, we demonstrate that SO4, Al, and Fe load contributions from drainage areas that have experienced historical mining?although substantial?are relatively insignificant in comparison with SO4, Al, and Fe loads from areas experiencing natural weathering of highlyaltered, pyritic rocks. Regional weathering of acid-sulfate mineral assemblages produces moderately low pH waters elevated in SO4, Al, and Fe; but generally lacking in Cu, Cd, Ni, and Pb. Samples impacted by mining are also characterized by low pH and large concentrations of SO4, Al, and Fe; but contained elevated dissolved metals from ore-bearing vein minerals such as Cu, Zn, Cd, Ni, and Pb. Occurrences of dissolved trace metals were helpful in identifying ground-water sources and flow paths. For example, cadmium was greatest in inflows associated with drainage from inactive mine sites and absent in inflows that were unaffected by past mining activities and thus served as an important indicator of mining contamination for this environmental setting. The most heavily mine-impacted reach (PG153 to PG800), contributed 8% of the discharge, and 11%, 9%, and 12% of the total SO4, Al, and Fe loads in Prospect Gulch. The same reach yielded 59% and 37% of the total Cu and Zn loads for the subbasin. In contrast, the naturally acidic inflows from the Red Chemotroph

  5. The influence of the structure of the metal load removal from liquid steel in electric arc furnaces

    NASA Astrophysics Data System (ADS)

    Pǎcurar, Cristina; Hepuť, Teodor; Crisan, Eugen

    2016-06-01

    One of the main technical and economic indicators in the steel industry and steel respectively the development it is the removal of liquid steel. This indicator depends on several factors, namely technology: the structure and the quality metal load, the degree of preparedness of it, and the content of non-metallic material accompanying the unit of drawing up, the technology for the elaboration, etc. research has been taken into account in drawing up steel electric arc furnace type spring EBT (Electric Bottom taping), seeking to load and removing components of liquid steel. Metal load has been composed of eight metal grades, in some cases with great differences in terms of quality. Data obtained were processed in the EXCEL spreadsheet programs and MATLAB, the results obtained being presented both graphically and analytically. On the basis of the results obtained may opt for a load optimal structure metal.

  6. Runoff and loads of nutrients and heavy metals from an urbanized area.

    PubMed

    Shirasuna, H; Fukushima, T; Matsushige, K; Imai, A; Ozaki, N

    2006-01-01

    To investigate the run-off characteristics of dissolved and particulate substances from a heavily urbanized area (basin area: 95 ha, percentage of impervious surfaces: 60%), sensors for measuring water level, water temperature, DO, pH, electric conductivity (EC), turbidity and ammonium ion were placed in the channel connecting storm sewers and natural river, together with water sampling for analyzing SS, nutrients and metals. While both turbidity and EC showed apparent "first flush", the peaks of EC were always earlier than those of turbidity. In a similar manner, dissolved nutrients and metals exhibited earlier "first flush" compared with particulate nutrients and acid-extractable metals. Significantly positive correlations between EC and dissolved substances as well as those between turbidity and particulate (acid-extractable minus dissolved) substances were usually observed, and two distinct different regressions were found between the two datasets separated before and after the concentration peaks. Using these relationships, the total loads during the respective rainfall events were calculated on the basis of EC and turbidity changes. The total loads of nitrogen, zinc, etc. were nearly proportional to the lengths of non-rainfall periods before the events, indicating that these loads derived from the atmospheric deposition.

  7. Runoff and loads of nutrients and heavy metals from an urbanized area.

    PubMed

    Shirasuna, H; Fukushima, T; Matsushige, K; Imai, A; Ozaki, N

    2006-01-01

    To investigate the run-off characteristics of dissolved and particulate substances from a heavily urbanized area (basin area: 95 ha, percentage of impervious surfaces: 60%), sensors for measuring water level, water temperature, DO, pH, electric conductivity (EC), turbidity and ammonium ion were placed in the channel connecting storm sewers and natural river, together with water sampling for analyzing SS, nutrients and metals. While both turbidity and EC showed apparent "first flush", the peaks of EC were always earlier than those of turbidity. In a similar manner, dissolved nutrients and metals exhibited earlier "first flush" compared with particulate nutrients and acid-extractable metals. Significantly positive correlations between EC and dissolved substances as well as those between turbidity and particulate (acid-extractable minus dissolved) substances were usually observed, and two distinct different regressions were found between the two datasets separated before and after the concentration peaks. Using these relationships, the total loads during the respective rainfall events were calculated on the basis of EC and turbidity changes. The total loads of nitrogen, zinc, etc. were nearly proportional to the lengths of non-rainfall periods before the events, indicating that these loads derived from the atmospheric deposition. PMID:16594339

  8. Fracto-emission in lanthanum-based metallic glass microwires under quasi-static tensile loading

    NASA Astrophysics Data System (ADS)

    Banerjee, Amit; Jiang, Chenchen; Lohiya, Lokesh; Yang, Yong; Lu, Yang

    2016-04-01

    Plastic deformation in metallic glasses is highly localized and often associated with shear banding, which may cause momentary release of heat upon fracture. Here, we report an explosive fracture phenomenon associated with momentary (˜10 ms) light emission (flash) in Lanthanum-based (LaAlNi) metallic glass microwires (dia. ˜50 μm) under quasi-static tensile loading. The load-displacement data as well as the visual information of the tensile deformation process were acquired through an in situ measurement set-up, which clearly showed nonlinear stress (σ)-strain ( ɛ) curves prior to yielding and also captured the occurrence of the flash at high fracture stresses (˜1 GPa). Through the postmortem fractographic analysis, it can be revealed that the fracto-emission upon quasi-static loading could be mainly attributed to the localized adiabatic work accumulated at a very large elastic strain confined within the microscale sample volume, followed by a localized high temperature rise up to ˜1000 K at the fracture surface through localized energy dissipation. Our findings suggest that the La-based metallic glass microwires could be useful for energetic microchips, micro-ignition devices, and other functional applications.

  9. Visible-light driven degradation of ibuprofen using abundant metal-loaded BiVO₄ photocatalysts.

    PubMed

    Bian, Zhao-Yong; Zhu, Ya-Qi; Zhang, Jun-Xiao; Ding, Ai-Zhong; Wang, Hui

    2014-12-01

    An efficient method for the degradation of ibuprofen as an aqueous contaminant was developed under visible-light irradiation with as-prepared bismuth vanadate (BiVO4) catalysts. The metal-loaded catalysts Cu-BiVO4 and Ag-BiVO4 were synthesized using a hydrothermal process and then a wet-impregnation method. All of the materials were fully characterized by X-ray diffraction, scanning electron microscopy, UV-vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy and BET surface area. The results indicated that all of the prepared samples had monoclinic scheelite structures. In the metal-loaded catalysts, silver existed as a mixture of Ag and Ag2O on the surface of the catalysts. However, copper existed as Cu2O and CuO. Additionally, the band gap values of BiVO4, Ag-BiVO4, and Cu-BiVO4 were 2.38, 2.31, and 2.30eV, respectively. Compared to the BiVO4 catalyst, the metal-loaded BiVO4 catalysts showed superior photocatalytic properties for the degradation of ibuprofen. PMID:25268078

  10. Load Carrying Capacity of Metal Dowel Type Connections of Timber Structures

    NASA Astrophysics Data System (ADS)

    Gocál, Jozef

    2014-12-01

    This paper deals with the load-carrying capacity calculation of laterally loaded metal dowel type connections according to Eurocode 5. It is based on analytically derived, relatively complicated mathematical relationships, and thus it can be quite laborious for practical use. The aim is to propose a possible simplification of the calculation. Due to quite a great variability of fasteners' types and the connection arrangements, the attention is paid to the most commonly used nailed connections. There was performed quite an extensive parametric study focused on the calculation of load-carrying capacity of the simple shear and double shear plane nail connections, joining two or three timber parts of softwood or hardwood. Based on the study results, in conclusion there are presented simplifying recommendations for practical design.

  11. Atmospheric deposition and critical loads for nitrogen and metals in Arctic Alaska: Review and current status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  12. Atmospheric Deposition and Critical Loads for Nitrogen and Metals in Arctic Alaska: Review and Current Status

    USGS Publications Warehouse

    Linder, Greg L.; Brumbaugh, William G.; Neitlich, Peter; Little, Edward

    2013-01-01

    To protect important resources under their bureau’s purview, the United States National Park Service’s (NPS) Arctic Network (ARCN) has developed a series of “vital signs” that are to be periodically monitored. One of these vital signs focuses on wet and dry deposition of atmospheric chemicals and further, the establishment of critical load (CL) values (thresholds for ecological effects based on cumulative depositional loadings) for nitrogen (N), sulfur, and metals. As part of the ARCN terrestrial monitoring programs, samples of the feather moss Hylocomium splendens are being col- lected and analyzed as a cost-effective means to monitor atmospheric pollutant deposition in this region. Ultimately, moss data combined with refined CL values might be used to help guide future regulation of atmospheric contaminant sources potentially impacting Arctic Alaska. But first, additional long-term studies are needed to determine patterns of contaminant deposition as measured by moss biomonitors and to quantify ecosystem responses at particular loadings/ ranges of contaminants within Arctic Alaska. Herein we briefly summarize 1) current regulatory guidance related to CL values 2) derivation of CL models for N and metals, 3) use of mosses as biomonitors of atmospheric deposition and loadings, 4) preliminary analysis of vulnerabilities and risks associated with CL estimates for N, 5) preliminary analysis of existing data for characterization of CL values for N for interior Alaska and 6) implications for managers and future research needs.

  13. Surface loading affects internal pressure source characteristics derived from volcano deformation signals

    NASA Astrophysics Data System (ADS)

    Grapenthin, Ronni; Sigmundsson, Freysteinn; Ofeigsson, Benedikt; Sturkell, Erik

    2010-05-01

    InSAR observations prior to the Hekla 2000 eruption that show circular pattern of near field subsidence and far field inflation. We compare these data to the deformation pattern expected from pressure changes in a hypothetical, shallow magma reservoir. We estimate surface loading at the volcano to account for a displacement of 13.5mm-yr based on a comparison of expected Mogi source and observed InSAR line of sight velocity. From this we estimate an effective relaxation time of tr = 100yrs for this region. We infer an elastic plate thickness of H = 3.5km which controls the 15 - 20km radius of subsidence. We find that surface load signals in volcanic regions affect magmatic source model estimates significantly ; to the point of changing the preferred source model. This effect should be considered in virtually any volcanic region that shows lava flow emplacement, glacier dynamics, or sudden load removal (i.e., lateral blasts). Deformation data that remains uncorrected will most likely result in an overestimation of depth and volume of a magma reservoir. We find that the ratio of displacements aids the identification of composite signals and suggest that the ratio for GPS data be employed more rigorously in future studies since this allows volume independent source depth estimates.

  14. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    USGS Publications Warehouse

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  15. Experimental and Simulative Investigations of Laser Assisted Plastic-metal-joints Considering Different Load Directions

    NASA Astrophysics Data System (ADS)

    Engelmann, Christoph; Eckstaedt, Johannes; Olowinsky, Alexander; Aden, Mirko; Mamuschkin, Viktor

    Particularly in the automotive industry, the combination of dissimilar materials presents manufacturing engineering with major challenges. Notably, the adapted use of plastic and metal opens up further potential for weight savings. Directly and firmly bonding the two materials together fails, however, on account of the chemical and physical dissimilarity of plastic and metal. Since joining of plastics and metals nowadays is based on adhesive bonding, the joint is weak and underlies ageing processes. A promising approach to overcome these problems is a laser based two-step process. In the first process step laser radiation is applied to generate microstructures on the surface of the metallic joining partner. In the subsequent laser joining process, the plastic is molten and interlocked into the microstructures after curing. The mechanical strength of the joint depends strongly on the load direction and can be influenced by the geometry and arrangement of microstructures. These influencing factors are investigated for three different load directions (tensile shear, tensile and peel) by experiments and by structural mechanics simulations.

  16. Critical load analysis in hazard assessment of metals using a Unit World Model.

    PubMed

    Gandhi, Nilima; Bhavsar, Satyendra P; Diamond, Miriam L

    2011-09-01

    A Unit World approach has been used extensively to rank chemicals for their hazards and to understand differences in chemical behavior. Whereas the fate and effects of an organic chemical in a Unit World Model (UWM) analysis vary systematically according to one variable (fraction of organic carbon), and the chemicals have a singular ranking regardless of environmental characteristics, metals can change their hazard ranking according to freshwater chemistry, notably pH and dissolved organic carbon (DOC). Consequently, developing a UWM approach for metals requires selecting a series of representative freshwater chemistries, based on an understanding of the sensitivity of model results to this chemistry. Here we analyze results from a UWM for metals with the goal of informing the selection of appropriate freshwater chemistries for a UWM. The UWM loosely couples the biotic ligand model (BLM) to a geochemical speciation model (Windermere Humic Adsorption Model [WHAM]) and then to the multi-species fate transport-speciation (Transpec) model. The UWM is applied to estimate the critical load (CL) of cationic metals Cd, Cu, Ni, Pb, and Zn, using three lake chemistries that vary in trophic status, pH, and other parameters. The model results indicated a difference of four orders of magnitude in particle-to-total dissolved partitioning (K(d)) that translated into minimal differences in fate because of the short water residence time used. However, a maximum 300-fold difference was calculated in Cu toxicity among the three chemistries and three aquatic organisms. Critical loads were lowest (greatest hazard) in the oligotrophic water chemistry and highest (least hazard) in the eutrophic water chemistry, despite the highest fraction of free metal ion as a function of total metal occurring in the mesotrophic system, where toxicity was ameliorated by competing cations. Water hardness, DOC, and pH had the greatest influence on CL, because of the influence of these factors on aquatic

  17. Dust-metal Loadings and the Risk of Childhood Acute Lymphoblastic Leukemia

    PubMed Central

    Whitehead, Todd P.; Ward, Mary H.; Colt, Joanne S.; Dahl, Gary; Ducore, Jonathan; Reinier, Kyndaron; Gunier, Robert B.; Hammond, S. Katharine; Rappaport, Stephen M.; Metayer, Catherine

    2015-01-01

    We evaluated the relationship between the risk of childhood acute lymphoblastic leukemia (ALL) and levels of metals in carpet dust. A dust sample was collected from the homes of 142 ALL cases and 187 controls participating in the California Childhood Leukemia Study using a high volume small surface sampler (2001–2006). Samples were analyzed using microwave-assisted acid digestion in combination with inductively-coupled plasma mass spectrometry for arsenic, cadmium, chromium, copper, lead, nickel, tin, tungsten, and zinc. Eight metals were detected in at least 85% of the case and control homes; tungsten was detected in less than 15% of homes. Relationships between dust-metal loadings (μg metal per m2 carpet) and ALL risk were modeled using multivariable logistic regression, adjusting for the child’s age, sex, and race/ethnicity and confounders, including household annual income. A doubling of dust-metal loadings was not associated with significant changes in ALL risk [odds ratio (95% confidence interval): arsenic: 0.94 (0.83, 1.05), cadmium: 0.91 (0.80, 1.04), chromium: 0.99 (0.87, 1.12), copper: 0.96 (0.90, 1.03), lead: 1.01 (0.93, 1.10), nickel: 0.92 (0.80, 1.07), tin: 0.93 (0.82, 1.05), and zinc: 0.91 (0.81, 1.02)]. Our findings do not support the hypothesis that metals in carpet dust are risk factors for childhood ALL. PMID:25736162

  18. Performance of nanoscale metallic multilayer systems under mechanical and thermal loading

    NASA Astrophysics Data System (ADS)

    Economy, David Ross

    Reports of nanoscale metallic multilayers (NMM) performance show a relatively high strength and radiation damage resistance when compared their monolithic components. Hardness of NMMs has been shown to increase with increasing interfacial density (i.e. decreasing layer thickness). This interface density-dependent behavior within NMMs has been shown to deviate from Hall-Petch strengthening, leading to higher measured strengths during normal loading than those predicted by a rule of mixtures. To fully understand why this occurs, other researchers have looked at the influence of the crystal structures of the component layers, orientations, and compositions on deformation processes. Additionally, a limited number of studies have focused on the structural stability and possible performance variation between as-deposited systems and those exposed to mechanical and thermal loading. This dissertation identified how NMM as-deposited structures and performance are altered by mechanical loading (sliding/wear contact) and/or thermal (such as diffusion, relaxation) loading. These objectives were pursued by tracking hardness evolution during sliding wear and after thermal loading to as-deposited stress and mechanical properties. Residual stress progression was also examined during thermal loading and supporting data was collected to detail structural and chemical changes. All of these experimental observations were conducted using Cu/Nb NMMs with 2 nm, 20 nm, or 100 nm thick individual layers deposited with either 1 microm or 10 microm total thicknesses with two geometries (Cu/Nb and Nb/Cu) on (100) Si. Wear boxes were performed on Cu/Nb NMM using a nanoindentation system with a 1 microm conical diamond counterface. After nano-wear deformation, the hardness of the deformed regions significantly rose with respect to as-deposited measurements, which further increased with greater wear loads. Additionally, NMMs with thinner layers showed less volume loss as measured by laser

  19. Spallation in metallic systems: Effects of microstructure, and loading pulse shape, rate and orientation

    NASA Astrophysics Data System (ADS)

    Luo, S. N.

    2011-06-01

    The dynamic nature of spallation and the ubiquitous presence of microstructure may give rise to significant dependences on microstructure and loading, as indicated by indirect experimental observations. We present systematic, direct molecular dynamics (MD) simulations of spallation in metallic systems represented by Cu and a CuZr glass. The ``microstructure'' includes various defects in Cu, porous Cu, atomic-level inhomogeneities in the CuZr glass, and the Cu crystal -CuZr glass interfaces. We explore supported and decaying shock loading pulses, as well as different loading orientations. Tensile loading rates are changed via varying the flyer and target thicknesses in shock simulations, and more significantly (down to ~106 s-1), with accelerated MD simulations of single-void growth in Cu (mimicking shock). Our direct simulations reveal strong dependences of spallation on microstructure and loading, and quantitative dynamics of void nucleation/growth as well as mechanisms for plasticity, void nucleation and their interactions in the absence or presence of defects or interfaces. The future task of incorporating statistically the microstructure effects and their rate dependences into analytic models is of great interest to shock physics but a challenge. Work done in collaboration with T.C. Germann, D. Perez, Q. An, B. Arman, W.Z. Han, D.L. Tonks, J.E. Hammerberg, A.F. Voter, Los Alamos National Laboratory; W.A. Goddard III, Caltech; and T. Cagin, Texas A & M University.

  20. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions

    PubMed Central

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-01-01

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR. PMID:25218504

  1. Contact mechanics of modular metal-on-polyethylene total hip replacement under adverse edge loading conditions.

    PubMed

    Hua, Xijin; Li, Junyan; Wang, Ling; Jin, Zhongmin; Wilcox, Ruth; Fisher, John

    2014-10-17

    Edge loading can negatively impact the biomechanics and long-term performance of hip replacements. Although edge loading has been widely investigated for hard-on-hard articulations, limited work has been conducted for hard-on-soft combinations. The aim of the present study was to investigate edge loading and its effect on the contact mechanics of a modular metal-on-polyethylene (MoP) total hip replacement (THR). A three-dimensional finite element model was developed based on a modular MoP bearing. Different cup inclination angles and head lateral microseparation were modelled and their effect on the contact mechanics of the modular MoP hip replacement were examined. The results showed that lateral microseparation caused loading of the head on the rim of the cup, which produced substantial increases in the maximum von Mises stress in the polyethylene liner and the maximum contact pressure on both the articulating surface and backside surface of the liner. Plastic deformation of the liner was observed under both standard conditions and microseparation conditions, however, the maximum equivalent plastic strain in the liner under microseparation conditions of 2000 µm was predicted to be approximately six times that under standard conditions. The study has indicated that correct positioning the components to avoid edge loading is likely to be important clinically even for hard-on-soft bearings for THR.

  2. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals.

  3. Quantification of Heavy Metals in Mining Affected Soil and Their Bioaccumulation in Native Plant Species.

    PubMed

    Nawab, Javed; Khan, Sardar; Shah, Mohammad Tahir; Khan, Kifayatullah; Huang, Qing; Ali, Roshan

    2015-01-01

    Several anthropogenic and natural sources are considered as the primary sources of toxic metals in the environment. The current study investigates the level of heavy metals contamination in the flora associated with serpentine soil along the Mafic and Ultramafic rocks northern-Pakistan. Soil and wild native plant species were collected from chromites mining affected areas and analyzed for heavy metals (Cr, Ni, Fe, Mn, Co, Cu and Zn) using atomic absorption spectrometer (AAS-PEA-700). The heavy metal concentrations were significantly (p < 0.01) higher in mine affected soil as compared to reference soil, however Cr and Ni exceeded maximum allowable limit (250 and 60 mg kg(-1), respectively) set by SEPA for soil. Inter-metal correlations between soil, roots and shoots showed that the sources of contamination of heavy metals were mainly associated with chromites mining. All the plant species accumulated significantly higher concentrations of heavy metals as compared to reference plant. The open dumping of mine wastes can create serious problems (food crops and drinking water contamination with heavy metals) for local community of the study area. The native wild plant species (Nepeta cataria, Impatiens bicolor royle, Tegetis minuta) growing on mining affected sites may be used for soil reclamation contaminated with heavy metals. PMID:26079739

  4. Safety Analysis of Dual Purpose Metal Cask Subjected to Impulsive Loads due to Aircraft Engine Crash

    NASA Astrophysics Data System (ADS)

    Shirai, Koji; Namba, Kosuke; Saegusa, Toshiari

    In Japan, the first Interim Storage Facility of spent nuclear fuel away from reactor site is being planned to start its commercial operation around 2010, in use of dual-purpose metal cask in the northern part of Main Japan Island. Business License Examination for safety design approval has started since March, 2007. To demonstrate the more scientific and rational performance of safety regulation activities on each phase for the first license procedure, CREPEI has executed demonstration tests with full scale casks, such as drop tests onto real targets without impact limiters(1) and seismic tests subjected to strong earthquake motions(2). Moreover, it is important to develop the knowledge for the inherent security of metal casks under extreme mechanical-impact conditions, especially for increasing interest since the terrorist attacks from 11th September 2001(3)-(6). This paper presents dynamic mechanical behavior of the metal cask lid closure system caused by direct aircraft engine crash and describes calculated results (especially, leak tightness based on relative dynamic displacements between metallic seals). Firstly, the local penetration damage of the interim storage facility building by a big passenger aircraft engine crash (diameter 2.7m, length 4.3m, weight 4.4ton, impact velocity 90m/s) has been examined. The reduced velocity is calculated by the local damage formula for concrete structure with its thickness of 70cm. The load vs. time function for this reduced velocity (60m/s) is estimated by the impact analysis using Finite Element code LS-DYNA with the full scale engine model onto a hypothetically rigid target. Secondly, as the most critical scenarios for the metal cask, two impact scenarios (horizontal impact hitting the cask and vertical impact onto the lid metallic seal system) are chosen. To consider the geometry of all bolts for two lids, the gasket reaction forces and the inner pressure of the cask cavity, the detailed three dimensional FEM models are

  5. Guided wave propagation in metallic and resin plates loaded with water on single surface

    NASA Astrophysics Data System (ADS)

    Hayashi, Takahiro; Inoue, Daisuke

    2016-02-01

    Our previous papers reported dispersion curves for leaky Lamb waves in a water-loaded plate and wave structures for several typical modes including quasi-Scholte waves [1,2]. The calculations were carried out with a semi-analytical finite element (SAFE) method developed for leaky Lamb waves. This study presents SAFE calculations for transient guided waves including time-domain waveforms and animations of wave propagation in metallic and resin water-loaded plates. The results show that non-dispersive and non-attenuated waves propagating along the interface between the fluid and the plate are expected for effective non-destructive evaluation of such fluid-loaded plates as storage tanks and transportation pipes. We calculated transient waves in both steel and polyvinyl chloride (PVC) plates loaded with water on a single side and input dynamic loading from a point source on the other water-free surface as typical examples of metallic and resin plates. For a steel plate, there exists a non-dispersive and non-attenuated mode, called the quasi-Scholte wave, having an almost identical phase velocity to that of water. The quasi-Scholte wave has superior generation efficiency in the low frequency range due to its broad energy distribution across the plate, whereas it is localized near the plate-water interface at higher frequencies. This means that it has superior detectability of inner defects. For a PVC plate, plural non-attenuated modes exist. One of the non-attenuated modes similar to the A0 mode of the Lamb wave in the form of a group velocity dispersion curve is promising for the non-destructive evaluation of the PVC plate because it provides prominent characteristics of generation efficiency and low dispersion.

  6. Surface damage of metallic implants due to mechanical loading and chemical reactions

    NASA Astrophysics Data System (ADS)

    Ryu, Jaejoong

    The present study investigates interfacial damage mechanism of modular implants due to synergetic action of mechanical contact loading and corrosion. Modular implants are manufactured such that surfaces have a characteristic degree of roughness determined by tool tip size and motion of tool path or feeding speed. The central hypothesis for this work is that during contact loading of metallic implants, mechanisms of damage and dissolution are determined by contact loads, plastic deformation, residual stresses and environmental conditions at the nanoscale surface asperities; while during subsequent rest periods, mechanism of metallic dissolution is determined by the environmental conditions and residual stress field induced due to long range elastic interactions of the plastically deformed asperities. First part of the thesis is focused on investigating the mechanisms underlying surface roughness evolution due to stress-assisted dissolution during the rest period. The latter part is focused on investigating material removal mechanisms during single asperity contact of implant surfaces. Experimental study was performed to elucidate the roughness evolution mechanism by combined effect of multi-asperity contact and environmental corrosion. Cobalt-chromium-molybdenum specimen was subjected to either contact loading alone or alternating contact loading and exposure to reactive environment. Roughness of the specimen surface was monitored by optical profilometry and Fast Fourier Transform (FFT) calculation was used to characterize the evolving behavior of roughness modes. Finite element analysis (FEA) was employed to identify influences of surface morphological configurations and contact pressures on the residual stress development. Analytical model of multi-asperity contact has been developed for prediction of residual stress field for different roughness configurations during varying magnitude of contact loads based on elastic inclusion theory. Experimental results

  7. [Seasonal Provincial Characteristics of Vertical Distribution of Dust Loadings and Heavy Metals near Surface in City].

    PubMed

    Li, Xiao-yan; Zhang, Shu-ting

    2015-06-01

    With the emergence of urban high-rise building, the vertical space of human daily life gradually extended upward. Seasonal characteristics of vertical distribution of dust loadings and heavy metals near surface are remarkable. In this study, we collected dust deposited on the windowsill at different space height (1th-8th floor) from three buildings in Guiyang city during spring, summer, autumn and winter, and analyzed the deposition fluxes of dust and elements including Ca, Fe, Cd, Cr, Cu, Ni, Pb and Zn. The results showed that: the total changing trend of vertical distribution of dust loadings was that the deposition fluxes of dust in winter were the highest, followed by those in spring, and the deposition fluxes of dust in summer were the lowest. The degree of variation on dust loadings dependent on the change of elevation was the highest in winter, followed by that in summer, and was relatively lower in spring and autumn. The effect on dust loadings by seasonal changing was relatively heavier on windowsill on the lower level than on the higher level. The levels of elements were the highest in spring dust, while those in autumn were relatively lower. Among the 8 elements, the variability of Zn in dust related to space time variation was the most obvious, and that of Ca was weaker. The atmospheric inversion condition might be one of the reasons that improved the deposition fluxes of dust and the contents of Ph and Zn in dust during winter and spring.

  8. [Seasonal Provincial Characteristics of Vertical Distribution of Dust Loadings and Heavy Metals near Surface in City].

    PubMed

    Li, Xiao-yan; Zhang, Shu-ting

    2015-06-01

    With the emergence of urban high-rise building, the vertical space of human daily life gradually extended upward. Seasonal characteristics of vertical distribution of dust loadings and heavy metals near surface are remarkable. In this study, we collected dust deposited on the windowsill at different space height (1th-8th floor) from three buildings in Guiyang city during spring, summer, autumn and winter, and analyzed the deposition fluxes of dust and elements including Ca, Fe, Cd, Cr, Cu, Ni, Pb and Zn. The results showed that: the total changing trend of vertical distribution of dust loadings was that the deposition fluxes of dust in winter were the highest, followed by those in spring, and the deposition fluxes of dust in summer were the lowest. The degree of variation on dust loadings dependent on the change of elevation was the highest in winter, followed by that in summer, and was relatively lower in spring and autumn. The effect on dust loadings by seasonal changing was relatively heavier on windowsill on the lower level than on the higher level. The levels of elements were the highest in spring dust, while those in autumn were relatively lower. Among the 8 elements, the variability of Zn in dust related to space time variation was the most obvious, and that of Ca was weaker. The atmospheric inversion condition might be one of the reasons that improved the deposition fluxes of dust and the contents of Ph and Zn in dust during winter and spring. PMID:26387336

  9. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-02-01

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.

  10. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass.

    PubMed

    Chen, S H; Chan, K C; Wang, G; Wu, F F; Xia, L; Ren, J L; Li, J; Dahmen, K A; Liaw, P K

    2016-02-25

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.

  11. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    PubMed Central

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-01-01

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids. PMID:26912191

  12. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass.

    PubMed

    Chen, S H; Chan, K C; Wang, G; Wu, F F; Xia, L; Ren, J L; Li, J; Dahmen, K A; Liaw, P K

    2016-01-01

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate. The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. The findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids. PMID:26912191

  13. Local stresses in metal matrix composites subjected to thermal and mechanical loading

    NASA Technical Reports Server (NTRS)

    Highsmith, Alton L.; Shin, Donghee; Naik, Rajiv A.

    1990-01-01

    An elasticity solution has been used to analyze matrix stresses near the fiber/matrix interface in continuous fiber-reinforced metal-matrix composites, modeling the micromechanics in question in terms of a cylindrical fiber and cylindrical matrix sheath which is embedded in an orthotropic medium representing the composite. The model's predictions for lamina thermal and mechanical properties are applied to a laminate analysis determining ply-level stresses due to thermomechanical loading. A comparison is made between these results, which assume cylindrical symmetry, and the predictions yielded by a FEM model in which the fibers are arranged in a square array.

  14. Development of an all-metal thick film cost affective metallization system for solar cells

    NASA Technical Reports Server (NTRS)

    Ross, B.

    1981-01-01

    An economical thick film solar cell contact for high volume production of low cost silicon solar array modules was investigated. All metal screenable pastes using base metals were studied. Solar cells with junction depths varying by a factor of 3.3, with and without a deposited oxide coating were used. Cells were screened and fired by a two step firing process. Adhesion and metallurgical results are unsatisfactory. No electrical information is obtained due to inadequate contact adhesion.

  15. Muscular activity level during pedalling is not affected by crank inertial load.

    PubMed

    Duc, S; Villerius, V; Bertucci, W; Pernin, J N; Grappe, F

    2005-10-01

    The aim of the present study was to investigate the influence of gear ratio (GR) and thus crank inertial load (CIL), on the activity levels of lower limb muscles. Twelve competitive cyclists performed three randomised trials with their own bicycle equipped with a SRM crankset and mounted on an Axiom ergometer. The power output ( approximately 80% of maximal aerobic power) and the pedalling cadence were kept constant for each subject across all trials but three different GR (low, medium and high) were indirectly obtained for each trial by altering the electromagnetic brake of the ergometer. The low, medium and high GR (mean +/- SD) resulted in CIL of 44 +/- 3.7, 84 +/- 6.5 and 152 +/- 17.9 kg.m(2), respectively. Muscular activity levels of the gluteus maximus (GM), the vastus medialis (VM), the vastus lateralis (VL), the rectus femoris (RF), the medial hamstrings (MHAM), the gastrocnemius (GAS) and the soleus (SOL) muscles were quantified and analysed by mean root mean square (RMS(mean)). The muscular activity levels of the measured lower limb muscles were not significantly affected when the CIL was increased approximately four fold. This suggests that muscular activity levels measured on different cycling ergometers (with different GR and flywheel inertia) can be compared among each other, as they are not influenced by CIL. PMID:16032416

  16. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  17. Shock loading characteristics of Zr and Ti metals using dual beam velocimeter

    SciTech Connect

    Saxena, A. K. Kaushik, T. C.; Gupta, Satish C.

    2015-08-21

    The characteristics of titanium and zirconium metal foils under shock loading have been studied up to 16 GPa and 12 GPa pressure, respectively, using portable electric gun setup as projectile launcher. In these experiments, the capabilities of a single Fabry-Perot velocimeter have been enhanced by implementing it in dual beam mode to record the two velocity profiles on a single streak camera. The measured equation of state data for both the metals have been found to be well in agreement with the reported Hugoniot, within experimental accuracies. A phase transition from α to ω phase has been detected near to 11.4 GPa for titanium and 8.2 GPa for zirconium in the rising part of target-glass interface velocity profile.

  18. Intelligent Detection of Cracks in Metallic Surfaces Using a Waveguide Sensor Loaded with Metamaterial Elements

    PubMed Central

    Ali, Abdulbaset; Hu, Bing; Ramahi, Omar M.

    2015-01-01

    This work presents a real-life experiment implementing an artificial intelligence model for detecting sub-millimeter cracks in metallic surfaces on a dataset obtained from a waveguide sensor loaded with metamaterial elements. Crack detection using microwave sensors is typically based on human observation of change in the sensor's signal (pattern) depicted on a high-resolution screen of the test equipment. However, as demonstrated in this work, implementing artificial intelligence to classify cracked from non-cracked surfaces has appreciable impacts in terms of sensing sensitivity, cost, and automation. Furthermore, applying artificial intelligence for post-processing the data collected from microwave sensors is a cornerstone for handheld test equipment that can outperform rack equipment with large screens and sophisticated plotting features. The proposed method was tested on a metallic plate with different cracks, and the experimental results showed good crack classification accuracy rates. PMID:25988871

  19. Do toxic heavy metals affect antioxidant defense mechanisms in humans?

    PubMed

    Wieloch, Monika; Kamiński, Piotr; Ossowska, Anna; Koim-Puchowska, Beata; Stuczyński, Tomasz; Kuligowska-Prusińska, Magdalena; Dymek, Grażyna; Mańkowska, Aneta; Odrowąż-Sypniewska, Grażyna

    2012-04-01

    The aim of this study was to prove whether anthropogenic pollution affects antioxidant defense mechanisms such as superoxide dismutase (SOD) and catalase (CAT) activity, ferritin (FRT) concentration and total antioxidant status (TAS) in human serum. The study area involves polluted and salted environment (Kujawy region; northern-middle Poland) and Tuchola Forestry (unpolluted control area). We investigated 79 blood samples of volunteers from polluted area and 82 from the control in 2008 and 2009. Lead, cadmium and iron concentrations were measured in whole blood by the ICP-MS method. SOD and CAT activities were measured in serum using SOD and CAT Assay Kits by the standardized colorimetric method. Serum TAS was measured spectrophotometrically by the modified Benzie and Strain (1996) method and FRT concentration-by the immunonefelometric method. Pb and Cd levels and SOD activity were higher in volunteers from polluted area as compared with those from the control (0.0236 mg l(-1) vs. 0.014 mg l(-1); 0.0008 mg l(-1) vs. 0.0005 mg l(-1); 0.137 Um l(-1) vs. 0.055 Um l(-1), respectively). Fe level, CAT activity and TAS were lower in serum of volunteers from polluted area (0.442 g l(-1) vs. 0.476 gl(-1); 3.336 nmol min(-1)ml(-1) vs. 6.017 nmol min(-1)ml(-1); 0.731 Trolox-equivalents vs. 0.936 Trolox-equivalents, respectively), whilst differences in FRT concentration were not significant (66.109 μg l(-1) vs. 37.667 μg l(-1), p=0.3972). Positive correlations between Pb (r=0.206), Cd (r=0.602) and SOD in the inhabitants of polluted area, and between Cd and SOD in the control (r=0.639) were shown. In volunteers from both studied environments TAS-FRT (polluted: r=0.625 vs. control: r=0.837) and Fe-FRT (polluted area: r=0.831 vs. control: r=0.407) correlations, and Pb-FRT (r=0.360) and Pb-TAS (r=0.283) in the control were stated. The higher lead and cadmium concentrations in blood cause an increase of SOD activity. It suggests that this is one of the defense mechanisms of an

  20. Determination of instream metal loads using tracer-injection and synoptic-sampling techniques, Wightman Fork, southwestern Colorado, July 1999

    USGS Publications Warehouse

    Ortiz, Roderick F.

    2001-01-01

    In July 1999, a tracer-injection study was conducted concurrently with synoptic sampling to generate mass-load profiles in Wightman Fork near the Summitville Mine site. The mine site is located in the San Juan Mountains of southwestern Colorado at an elevation of about 3,500 meters above sea level. Metal loads increased substantially along the 2,815-meter study reach along the boundary of the mine site. Spatial determinations of dissolved aluminum, copper, iron, manganese, and zinc loads were used to identify potential source areas to the stream. Overall, four source areas appeared to contribute most of the specific load at the end of the study reach. One source area was along a 60-meter reach downgradient from the toe of the North Waste Dump that generally corresponded to a region of radial faults. Another source area was a short reach that included inputs from the Summitville Water Treatment Facility and the Pump House Fault. In July 1999, seepage from the Summitville Dam Impoundment was a substantial contributor of metal load at the end of the study reach. Finally, the metal load contributed along a 60-meter reach that included Cropsy Creek is considered a substantial source of metal load to Wightman Fork.

  1. Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles.

    PubMed

    Vucko, M J; King, P C; Poole, A J; Hu, Y; Jahedi, M Z; de Nys, R

    2014-01-01

    Particles of copper, bronze and zinc were embedded into a polymer using cold-spray technology to produce loading density gradients of metal particles. The gradients were used to identify the species with the highest tolerance to the release of copper and zinc ions. The gradients also established the minimum effective release rates (MERRs) of copper and zinc ions needed to prevent the recruitment of fouling under field conditions. Watersipora sp. and Simplaria pseudomilitaris had the highest tolerances to the release of metal ions. Copper and bronze gradient tubes were similar in their MERRs of copper ions against Watersipora sp. (0.058 g m(-2) h(-1) and 0.054 g m(-2) h(-1), respectively) and against S. pseudomilitaris (0.030 g m(-2) h(-1) and 0.025 g m(-2) h(-1), respectively). Zinc was not an effective antifoulant, with failure within two weeks. In conclusion, cold-spray gradients were effective in determining MERRs and these outcomes provide the basis for the development of cold-spray surfaces with pre-determined life-spans using controlled MERRs.

  2. Assessing the antifouling properties of cold-spray metal embedment using loading density gradients of metal particles.

    PubMed

    Vucko, M J; King, P C; Poole, A J; Hu, Y; Jahedi, M Z; de Nys, R

    2014-01-01

    Particles of copper, bronze and zinc were embedded into a polymer using cold-spray technology to produce loading density gradients of metal particles. The gradients were used to identify the species with the highest tolerance to the release of copper and zinc ions. The gradients also established the minimum effective release rates (MERRs) of copper and zinc ions needed to prevent the recruitment of fouling under field conditions. Watersipora sp. and Simplaria pseudomilitaris had the highest tolerances to the release of metal ions. Copper and bronze gradient tubes were similar in their MERRs of copper ions against Watersipora sp. (0.058 g m(-2) h(-1) and 0.054 g m(-2) h(-1), respectively) and against S. pseudomilitaris (0.030 g m(-2) h(-1) and 0.025 g m(-2) h(-1), respectively). Zinc was not an effective antifoulant, with failure within two weeks. In conclusion, cold-spray gradients were effective in determining MERRs and these outcomes provide the basis for the development of cold-spray surfaces with pre-determined life-spans using controlled MERRs. PMID:24738882

  3. Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds.

    PubMed

    Ahn, Yong-Yoon; Yun, Eun-Tae; Seo, Ji-Won; Lee, Changha; Kim, Sang Hoon; Kim, Jae-Hong; Lee, Jaesang

    2016-09-20

    This study demonstrates the capability of noble metal nanoparticles immobilized on Al2O3 or TiO2 support to effectively activate peroxymonosulfate (PMS) and degrade select organic compounds in water. The noble metals outperformed a benchmark PMS activator such as Co(2+) (water-soluble) for PMS activation and organic compound degradation at acidic pH and showed the comparable activation capacity at neutral pH. The efficiency was found to depend on the type of noble metal (following the order of Pd > Pt ≈ Au ≫ Ag), the amount of noble metal deposited onto the support, solution pH, and the type of target organic substrate. In contrast to common PMS-activated oxidation processes that involve sulfate radical as a main oxidant, the organic compound degradation kinetics were not affected by sulfate radical scavengers and exhibited substrate dependency that resembled the PMS activated by carbon nanotubes. The results presented herein suggest that noble metals can mediate electron transfer from organic compounds to PMS to achieve persulfate-driven oxidation, rather than through reductive conversion of PMS to reactive sulfate radical. PMID:27564590

  4. Activation of Peroxymonosulfate by Surface-Loaded Noble Metal Nanoparticles for Oxidative Degradation of Organic Compounds.

    PubMed

    Ahn, Yong-Yoon; Yun, Eun-Tae; Seo, Ji-Won; Lee, Changha; Kim, Sang Hoon; Kim, Jae-Hong; Lee, Jaesang

    2016-09-20

    This study demonstrates the capability of noble metal nanoparticles immobilized on Al2O3 or TiO2 support to effectively activate peroxymonosulfate (PMS) and degrade select organic compounds in water. The noble metals outperformed a benchmark PMS activator such as Co(2+) (water-soluble) for PMS activation and organic compound degradation at acidic pH and showed the comparable activation capacity at neutral pH. The efficiency was found to depend on the type of noble metal (following the order of Pd > Pt ≈ Au ≫ Ag), the amount of noble metal deposited onto the support, solution pH, and the type of target organic substrate. In contrast to common PMS-activated oxidation processes that involve sulfate radical as a main oxidant, the organic compound degradation kinetics were not affected by sulfate radical scavengers and exhibited substrate dependency that resembled the PMS activated by carbon nanotubes. The results presented herein suggest that noble metals can mediate electron transfer from organic compounds to PMS to achieve persulfate-driven oxidation, rather than through reductive conversion of PMS to reactive sulfate radical.

  5. Key parameters affecting the initial leaky effect of hemoglobin-loaded nanoparticles as blood substitutes.

    PubMed

    Zhang, Xiaolan; Liu, Changsheng; Yuan, Yuan; Zhang, Shiyu; Shan, Xiaoqian; Sheng, Yan; Xu, Feng

    2008-06-01

    In order to realize long-term carrying/delivering oxygen and minimize the adverse effects of free hemoglobin (Hb) in vivo, Hb is desired to be confined in Hb-loaded nanoparticles (HbP), a novel blood substitute with potential clinical applications, and thus functions as the native red blood cells (RBCs). However, the initial burst release of Hb ("leaky effect") greatly underscores the significance of this work. The study described here wants to disclose the key preparative parameters, including polymer, excipients in the inner aqueous phase and solvent profile, affecting the Hb release behavior (the initial 24 h) from HbP fabricated by commonly used solvent diffusion/evaporation double emulsion technique. The results demonstrate that PEGlytated polymers, regardless of two- or tri-block copolymers show slower release compared with the corresponding non-PEGlytated ones. The higher polymer concentration yields lower initial release. PEG200, added as excipient facilitates Hb burst effect to about 38.4%, almost 17% increase compared to the control ( approximately 21%), whereas, PVA and Poloxamer188, due to amphiphilic nature, can effectively attenuate this leakage to about 13.0 and 5.1%, respectively. The diffusion/extraction rate from oil phase and the subsequent evaporation rate from the aqueous continuous phase of solvents impose different influences on Hb release. To reduce the burst effect, the initial diffusion/extraction rate should be slow, whereas, the concomitant evaporation rate should be as fast as possible. The results obtained here will be guidance's for the future tailored design of more desirable polymersome nanoparticle blood substitutes.

  6. Cells Sensing Mechanical Cues: Stiffness Influences the Lifetime of Cell-Extracellular Matrix Interactions by Affecting the Loading Rate.

    PubMed

    Jiang, Li; Sun, Zhenglong; Chen, Xiaofei; Li, Jing; Xu, Yue; Zu, Yan; Hu, Jiliang; Han, Dong; Yang, Chun

    2016-01-26

    The question of how cells sense substrate mechanical cues has gained increasing attention among biologists. By introducing contour-based data analysis to single-cell force spectroscopy, we identified a loading-rate threshold for the integrin α2β1-DGEA bond beyond which a dramatic increase in bond lifetime was observed. On the basis of mechanical cues (elasticity or topography), the effective spring constant of substrates k is mapped to the loading rate r under actomyosin pulling speed v, which, in turn, affects the lifetime of the integrin-ligand bond. Additionally, downregulating v with a low-dose blebbistatin treatment promotes the neuronal lineage specification of mesenchymal stem cells on osteogenic stiff substrates. Thus, sensing of the loading rate is central to how cells sense mechanical cues that affect cell-extracellular matrix interactions and stem cell differentiation.

  7. Loading-unloading response of circular GLARE fiber-metal laminates under lateral indentation

    NASA Astrophysics Data System (ADS)

    Tsamasphyros, George J.; Bikakis, George S.

    2015-01-01

    GLARE is a Fiber-Metal laminated material used in aerospace structures which are frequently subjected to various impact damages. Hence, the response of GLARE plates subjected to lateral indentation is very important. In this paper, analytical expressions are derived and a non-linear finite element modeling procedure is proposed in order to predict the static load-indentation curves of circular GLARE plates during loading and unloading by a hemispherical indentor. We have recently published analytical formulas and a finite element procedure for the static indentation of circular GLARE plates which are now used during the loading stage. Here, considering that aluminum layers are in a state of membrane yield and employing energy balance during unloading, the unloading path is determined. Using this unloading path, an algebraic equation is derived for calculating the permanent dent depth of the GLARE plate after the indentor's withdrawal. Furthermore, our finite element procedure is modified in order to simulate the unloading stage as well. The derived formulas and the proposed finite element modeling procedure are applied successfully to GLARE 2-2/1-0.3 and to GLARE 3-3/2-0.4 circular plates. The analytical results are compared with corresponding FEM results and a good agreement is found. The analytically calculated permanent dent depth is within 6 % for the GLARE 2 plate, and within 7 % for the GLARE 3 plate, of the corresponding numerically calculated result. No other solution of this problem is known to the authors.

  8. Non-contacting Measurement of Oil Film Thickness Between Loaded Metallic Gear Teeth

    NASA Astrophysics Data System (ADS)

    Cox, Daniel B.; Ceccio, Steven L.; Dowling, David R.

    2013-11-01

    The mechanical power transmission efficiency of gears is depends on the lubrication condition between gear teeth. While the lubrication levels can be generally predicted, an effective in-situ non-contacting measurement of oil film thicknesses between loaded metallic gear teeth has proved elusive. This study explores a novel oil film thickness measurement technique based on optical fluence, the light energy transmitted between loaded gear teeth. A gear testing apparatus that allowed independent control of gear rotation rate, load torque, and oil flow was designed and built. Film thickness measurements made with 5-inch-pitch-diameter 60-tooth spur gears ranged from 0.3 to 10.2 mil. These results are compared with film thickness measurements made in an earlier investigation (MacConochie and Cameron, 1960), as well as with predictions from two film thickness models: a simple two-dimensional squeezed oil film and the industry-accepted model as described by the American Gear Manufacturers Association (AGMA 925, 2003). In each case, the measured film thicknesses were larger than the predicted thicknesses, though these discrepancies might be attributed to the specifics the experiments and to challenges associated with calibrating the fluence measurements. [Sponsored by General Electric].

  9. Composite cathode based on doped vanadate enhanced with loaded metal nanoparticles for steam electrolysis

    NASA Astrophysics Data System (ADS)

    Li, Yuanxin; Wu, Guojian; Ruan, Cong; Zhou, Qi; Wang, Yan; Doherty, Winston; Xie, Kui; Wu, Yucheng

    2014-05-01

    The use of composite electrodes based on La0.7Sr0.3VO3 (LSV) for steam electrolysis has uncovered the tremendous potential and capacity inherent in this material. Unfortunately, this material has a major setback of inefficient electrolysis triggered by limited electrocatalytic activity. In this work, an infiltration method is employed to load catalytic-active metal nanoparticles onto the composite electrodes in order to achieve an activity-enhanced electrode performance. The electrical properties of LSV are methodically explored and correlated to electrode performance. At 800 °C in either pure H2 or low hydrogen partial pressure (pH2) of 5%H2/N2, the polarization resistance of symmetrical cells with Ni-loaded LSV (LSV-Ni) cathode is largely enhanced, in contrast to bare LSV cathode. Similar improvement is also achieved for the Fe-loaded LSV (LSV-Fe) cathode in a wide range of hydrogen partial pressures of 5%-100%. The Faraday efficiencies of LSV-Ni and LSV-Fe composite cathodes were remarkably improved for electrolysis in either 3%H2O/4.7H2/Ar or 3%H2O/Ar at 800 °C.

  10. Sound as Affective Design Feature in Multimedia Learning--Benefits and Drawbacks from a Cognitive Load Theory Perspective

    ERIC Educational Resources Information Center

    Königschulte, Anke

    2015-01-01

    The study presented in this paper investigates the potential effects of including non-speech audio such as sound effects into multimedia-based instruction taking into account Sweller's cognitive load theory (Sweller, 2005) and applied frameworks such as the cognitive theory of multimedia learning (Mayer, 2005) and the cognitive affective theory of…

  11. Structural studies of carbon aerogels and their metal-loaded derivatives

    NASA Astrophysics Data System (ADS)

    Kang, Dafei

    Carbon aerogels (CAs) are a class of mesoporous materials derived from the sol-gel polymerization of resorcinol (R) and formaldehyde (F) under base catalyse (C) in an aqueous solution, followed by supercritical drying and pyrolysis. CAs are characterized by highly-uniform pore sizes that can be tailored according to the reaction conditions, high surface areas, low densities, and high electrical conductivities. Due to the combination of these properties, CAs receive wide attention for such applications as the electrodes in fuel cells and supercapacitors, and supports for catalytic noble metals, to name but a few. Their high infrared optical absorption coefficients also make them promising materials for high-temperature thermal insulation and black broad-band absorption. This dissertation is a comprehensive study of the structural aspects of naked CAs and their metal-loaded derivatives. As-prepared CAs were also subjected to a series of post-pyrolysis treatments, such as high-temperature heat-treatment and in-situ electron irradiation in TEM. In the first part of this study, it is shown using nitrogen physisorption and transmission electron microscopy (TEM) that the pore characters of CAs can be engineered by systematically adjusting the key parameters of the initial R-F reaction. These parameters include the ratio of resorcinol to catalyst (R/C) and the ratio of resorcinol to water (R/W). Such adjustments resulted in the preparation of a series of CAs with average pore diameter ranging from 4 to 22nm. In a parallel study, it is shown that the use of acidic catalyst caused a drastic change in the pore type of the resulting materials. In this case, macropores are dominant. A selected group of noble metals (ruthenium and platinum) were incorporated into CA substrates via a novel supercritical carbon dioxide deposition, followed by a thermal reduction of the metal precursor. TEM results show that the metal nanoparticles thus prepared exhibit surprisingly uniform size

  12. Adsorptive removal of fluoride from aqueous solution using orange waste loaded with multi-valent metal ions.

    PubMed

    Paudyal, Hari; Pangeni, Bimala; Inoue, Katsutoshi; Kawakita, Hidetaka; Ohto, Keisuke; Harada, Hiroyuki; Alam, Shafiq

    2011-08-30

    Adsorption gels for fluoride ion were prepared from orange waste by saponification followed by metal loading. The pectin compounds contained in orange waste creates ligand exchange sites once it is loaded with multi-valent metal ions such as Al(3+), La(3+), Ce(3+), Ti(4+), Sn(4+), and V(4+) to be used for fluoride removal from aqueous solution. The optimum pH for fluoride removal depends on the type of loaded metal ions. The isotherm experiments showed the Langmuir type monolayer adsorption. Among all kinds of metal loaded gels tested, Al loaded gel appeared to exhibit the most favorable adsorption behavior. The adsorption kinetics of fluoride on loaded gel demonstrated fast adsorption process. The presence of NO(3)(-), Cl(-) and Na(+) ions has negligible effect on fluoride removal whereas SO(4)(2-) and HCO(3)(-) retarded the fluoride removal capacity in some extent. Fluoride removal at different adsorbent doses showed that fluoride concentration can be successfully lowered down to the acceptable level of environmental standard. The fluoride adsorption mechanism was interpreted in terms of ligand exchange mechanism. The complete elution of adsorbed fluoride from the gel was successfully achieved using NaOH solution.

  13. Ecological risk assessment of boreal sediments affected by metal mining: Metal geochemistry, seasonality, and comparison of several risk assessment methods.

    PubMed

    Väänänen, Kristiina; Kauppila, Tommi; Mäkinen, Jari; Leppänen, Matti T; Lyytikäinen, Merja; Akkanen, Jarkko

    2016-10-01

    The mining industry is a common source of environmental metal emissions, which cause long-lasting effects in aquatic ecosystems. Metal risk assessment is challenging due to variations in metal distribution, speciation, and bioavailability. Therefore, seasonal effects must be better understood, especially in boreal regions in which seasonal changes are large. We sampled 4 Finnish lakes and sediments affected by mining for metals and geochemical characteristics in autumn and late winter, to evaluate seasonal changes in metal behavior, the importance of seasonality in risk assessment, and the sensitivity and suitability of different risk assessment methods. We compared metal concentrations in sediment, overlying water, and porewater against environmental quality guidelines (EQGs). We also evaluated the toxicity of metal mixtures using simultaneously extracted metals and an acid volatile sulfides (SEM-AVS) approach together with water quality criteria (US Environmental Protection Agency equilibrium partitioning benchmarks). Finally, site-specific risks for 3 metals (Cu, Ni, Zn) were assessed using 2 biotic ligand models (BLMs). The metal concentrations in the impacted lakes were elevated. During winter stratification, the hypolimnetic O2 saturation levels were low (<6%) and the pH was acidic (3.5-6.5); however, abundant O2 (>89%) and neutral pH (6.1-7.5) were found after the autumnal water overturn. Guidelines were the most conservative benchmark for showing an increased risk of toxicity in the all of the lakes. The situation remained stable between seasons. On the other hand, SEM-AVS, equilibrium partition sediment benchmarks (ESBs), and BLMs provided a clearer distinction between lakes and revealed a seasonal variation in risk among some of the lakes, which evidenced a higher risk during late winter. If a sediment risk assessment is based on the situation in the autumn, the overall risk may be underestimated. It is advisable to carry out sampling and risk assessment

  14. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process

    DOE PAGES

    Pei, Yuchen; Xiao, Chaoxian; Goh, Tian -Wei; Zhang, Qianhui; Goes, Shannon; Sun, Weijun; Huang, Wenyu

    2015-10-20

    Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. Amore » series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV–Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA–IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. Lastly, these results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.« less

  15. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process

    SciTech Connect

    Pei, Yuchen; Xiao, Chaoxian; Goh, Tian -Wei; Zhang, Qianhui; Goes, Shannon; Sun, Weijun; Huang, Wenyu

    2015-10-20

    Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. A series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV–Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA–IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. Lastly, these results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.

  16. Tuning surface properties of amino-functionalized silica for metal nanoparticle loading: The vital role of an annealing process

    NASA Astrophysics Data System (ADS)

    Pei, Yuchen; Xiao, Chaoxian; Goh, Tian-Wei; Zhang, Qianhui; Goes, Shannon; Sun, Weijun; Huang, Wenyu

    2016-06-01

    Metal nanoparticles (NPs) loaded on oxides have been widely used as multifunctional nanomaterials in various fields such as optical imaging, sensors, and heterogeneous catalysis. However, the deposition of metal NPs on oxide supports with high efficiency and homogeneous dispersion still remains elusive, especially when silica is used as the support. Amino-functionalization of silica can improve loading efficiency, but metal NPs often aggregate on the surface. Herein, we report that a facial annealing of amino-functionalized silica can significantly improve the dispersion and enhance the loading efficiency of various metal NPs, such as Pt, Rh, and Ru, on the silica surface. A series of characterization techniques, such as diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), Zeta potential analysis, UV-Vis spectroscopy, thermogravimetric analysis coupled with infrared analysis (TGA-IR), and nitrogen physisorption, were employed to study the changes of surface properties of the amino-functionalized silica before and after annealing. We found that the annealed amino-functionalized silica surface has more cross-linked silanol groups and relatively lesser amount of amino groups, and less positively charges, which could be the key to the uniform deposition of metal NPs during the loading process. These results could contribute to the preparation of metal/oxide hybrid NPs for the applications that require uniform dispersion.

  17. Accumulation of cadmium by freshwater benthic organisms is affected by the presence of other metals

    SciTech Connect

    Stewart, A.R.; Malley, D.F. |

    1994-12-31

    The effect of a suite of metals (Cu, Zn, Pb and Ni) on Cd accumulation by a rooted macrophyte and a freshwater mussel was examined in a mesocosm experiment during the summer of 1992. Cd was added alone to treatment 1 and together with the metal suite (at three dosage levels) to treatments 2, 3 and 4. Each treatment was represented by two mesocosms. The limnocorrals were sampled at three times over the summer (t = 0, 40 and 80 days). The metal suite increased the residence time of Cd in the water column and caused a reduction in the adsorption of Cd onto sediment particles. Cd contents in plant roots were significantly higher in treatments with the metal suite and were found to increase with the dose of the metal suite. An overall reduction in the amount of metal-induced metallothionein (MT) in the mussel kidneys was found with the highest doses of the metal suite. These results suggest that the total metal complement affects the uptake of Cd in a dose-dependent fashion and should be considered when setting water or sediment quality guidelines.

  18. Experimental Parameters Affecting Stripping of Rare Earth Elements from Loaded Sorptive Media in Simulated Geothermal Brines

    DOE Data Explorer

    Dean Stull

    2016-05-24

    Experimental results from several studies exploring the impact of pH and acid volume on the stripping of rare earth elements (REEs) loaded onto ligand-based media via an active column. The REEs in this experiment were loaded onto the media through exposure to a simulated geothermal brine with known mineral concentrations. The data include the experiment results, rare earth element concentrations, and the experimental parameters varied.

  19. Neutron emission and the tritium content associated with deuterium-loaded palladium and titanium metals

    NASA Astrophysics Data System (ADS)

    Wolf, K. L.; Packham, N. J. C.; Lawson, D.; Shoemaker, J.; Cheng, F.; Wass, J. C.

    1990-06-01

    An experimental investigation has been conducted on samples of palladium and titanium metals which have been loaded with deuterium through the electrolysis of D2O and by absorption of D2 gas. In approximately 200 experiments on 25 cells, statistically significant evidence for neutron emission was obtained in three separate experiments from one palladium cathode. Observed rates are 3-4 times the background rate and correspond to source strengths up to 50 neutrons/min. The pulse height response of the NE213 liquid scintillator-based detectors corresponds to that expected for 2.45 MeV neutrons. Tritium has been identified in nine Pd-Ni electrolytic cells, at levels corresponding 1012-1016 atoms. Activity buildup curves indicate that the apparent production occurs over a time period as short as a few hours.

  20. Achieving highly dispersed nanofibres at high loading in carbon nanofibre-metal composites

    NASA Astrophysics Data System (ADS)

    Kang, Jianli; Nash, Philip; Li, Jiajun; Shi, Chunsheng; Zhao, Naiqin

    2009-06-01

    In order to tap into the advantages of the properties of carbon nanotubes (CNTs) or carbon nanofibres (CNFs) in composites, the high dispersion of CNTs (or CNFs) and strong interfacial bonding are the key issues which are still challenging. In the current work, a novel approach, consisting of in situ synthesis of CNFs within the Cu powders and mixing Cu ions with the in situ CNF(Ni/Y)-Cu composite powders in a solvent, was developed to highly disperse CNFs in a Cu matrix. The composite, produced by vacuum hot pressing, shows extremely high strength, 3.6 times more than that of the matrix material alone. It is worth mentioning that this method can disperse CNFs at high loading in a metal matrix, inferring good potential for applications, such as electronic packaging materials.

  1. Models for predicting damage evolution in metal matrix composites subjected to cyclic loading

    SciTech Connect

    Allen, D.H.; Hurtado, L.D.; Helms, K.L.E.

    1995-03-01

    A thermomechanical analysis of a continuous fiber metal matrix composite (MMC) subjected to cyclic loading is performed herein. The analysis includes the effects of processing induced residual thermal stresses, matrix inelasticity, and interface cracking. Due to these complexities, the analysis is performed computationally using the finite element method. Matrix inelasticity is modelled with a rate dependent viscoplasticity model. Interface fracture is modelled by the use of a nonlinear interface constitutive model. The problem formulation is summarized, and results are given for a four-ply unidirectional SCS-6/{beta}21S titanium composite under high temperature isothermal mechanical fatigue. Results indicate rate dependent viscoplasticity can be a significant mechanism for dissipating the energy available for damage propagation, thus contributing to improved ductility of the composite. Results also indicate that the model may be useful for inclusion in life prediction methodologies for MMC`s.

  2. Quantification of metal loads by tracer injection and synoptic sampling in Daisy Creek and the Stillwater River, Park County, Montana, August 1999

    USGS Publications Warehouse

    Nimick, David A.; Cleasby, Thomas E.

    2001-01-01

    A metal-loading study using tracer-injection and synoptic-sampling methods was conducted in Daisy Creek and a short reach of the Stillwater River during baseflow in August 1999 to quantify the metal inputs from acid rock drainage in the New World Mining District near Yellowstone National Park and to examine the downstream transport of these metals into the Stillwater River. Loads were calculated for many mainstem and inflow sites by combining streamflow determined using the tracer-injection method with concentrations of major ions and metals that were determined in synoptic water-quality samples. Water quality and aquatic habitat in Daisy Creek have been affected adversely by drainage derived from waste rock and adit discharge at the McLaren Mine as well as from natural weathering of pyrite-rich mineralized rock that comprises and surrounds the ore zones. However, the specific sources and transport pathways are not well understood. Knowledge of the main sources and transport pathways of metals and acid can aid resource managers in planning and conducting effective and cost-efficient remediation activities. The metals cadmium, copper, lead, and zinc occur at concentrations that are sufficiently elevated to be potentially lethal to aquatic life in Daisy Creek and to pose a toxicity risk in part of the Stillwater River. Copper is of most concern in Daisy Creek because it occurs at higher concentrations than the other metals. Acidic surface inflows had dissolved concentrations as high as 20.6 micrograms per liter (?g/L) cadmium, 26,900 ?g/L copper, 76.4 ?g/L lead, and 3,000 ?g/L zinc. These inflows resulted in maximum dissolved concentrations in Daisy Creek of 5.8 ?g/L cadmium, 5,790 ?g/L copper, 3.8 ?g/L lead, and 848 ?g/L zinc. Significant copper loading to Daisy Creek occurred only in the upper half of the stream. Sources included subsurface inflow and right-bank (mined side) surface inflows. Copper loads in left-bank (unmined side) surface inflows were negligible

  3. Poor phonetic perceivers are affected by cognitive load when resolving talker variability.

    PubMed

    Antoniou, Mark; Wong, Patrick C M

    2015-08-01

    Speech training paradigms aim to maximise learning outcomes by manipulating external factors such as talker variability. However, not all individuals may benefit from such manipulations because subject-external factors interact with subject-internal ones (e.g., aptitude) to determine speech perception and/or learning success. In a previous tone learning study, high-aptitude individuals benefitted from talker variability, whereas low-aptitude individuals were impaired. Because increases in cognitive load have been shown to hinder speech perception in mixed-talker conditions, it has been proposed that resolving talker variability requires cognitive resources. This proposal leads to the hypothesis that low-aptitude individuals do not use their cognitive resources as efficiently as those with high aptitude. Here, high- and low-aptitude subjects identified pitch contours spoken by multiple talkers under high and low cognitive load conditions established by a secondary task. While high-aptitude listeners outperformed low-aptitude listeners across load conditions, only low-aptitude listeners were impaired by increased cognitive load. The findings suggest that low-aptitude listeners either have fewer available cognitive resources or are poorer at allocating attention to the signal. Therefore, cognitive load is an important factor when considering individual differences in speech perception and training paradigms.

  4. Factors Affecting Pollutant Load Reduction with Uncertainty Analysis in Urban Stormwater BMP Systems

    NASA Astrophysics Data System (ADS)

    Park, D.

    2015-12-01

    This study incorporates uncertainty analysis into a model of the performance of stormwater best management practices (BMPs) to characterize the uncertainty in stormwater BMP effluent load that results from uncertainty in the BMP performance modeling in an urban stormwater system. Detention basins are used as BMPs in the urban stormwater systems, and the total suspended solids (TSS) are used as an urban nonpoint source pollutant in Los Angeles, CA. The k-C* model, which incorporates uncertainty analysis, is applied to the uncertainty of the stormwater effluent concentration in urban stormwater systems. This study presents a frequency analysis of the runoff volume and BMP overflows to characterize the uncertainty of BMP effluent loads, and the load frequency curve (LFC) is simulated with and without BMP conditions and verified using the observed TSS load. Finally, the effects of imperviousness, BMP volume, and BMP surface area are investigated using a reliability analysis. The results of this study can be used to determine the appropriate BMP size to achieve a specific watershed runoff pollutant load. The result of this evaluation method can support the adequate sizing of a BMP to meet the defined nonpoint source pollutant regulations. Acknowlegments This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  5. Poor phonetic perceivers are affected by cognitive load when resolving talker variability

    PubMed Central

    Antoniou, Mark; Wong, Patrick C. M.

    2015-01-01

    Speech training paradigms aim to maximise learning outcomes by manipulating external factors such as talker variability. However, not all individuals may benefit from such manipulations because subject-external factors interact with subject-internal ones (e.g., aptitude) to determine speech perception and/or learning success. In a previous tone learning study, high-aptitude individuals benefitted from talker variability, whereas low-aptitude individuals were impaired. Because increases in cognitive load have been shown to hinder speech perception in mixed-talker conditions, it has been proposed that resolving talker variability requires cognitive resources. This proposal leads to the hypothesis that low-aptitude individuals do not use their cognitive resources as efficiently as those with high aptitude. Here, high- and low-aptitude subjects identified pitch contours spoken by multiple talkers under high and low cognitive load conditions established by a secondary task. While high-aptitude listeners outperformed low-aptitude listeners across load conditions, only low-aptitude listeners were impaired by increased cognitive load. The findings suggest that low-aptitude listeners either have fewer available cognitive resources or are poorer at allocating attention to the signal. Therefore, cognitive load is an important factor when considering individual differences in speech perception and training paradigms. PMID:26328675

  6. Streamflow, Water Quality, and Metal Loads from Chat Leachate and Mine Outflow into Tar Creek, Ottawa County, Oklahoma, 2005

    USGS Publications Warehouse

    Cope, Caleb C.; Becker, Mark F.; Andrews, William J.; DeHay, Kelli

    2008-01-01

    Picher mining district is an abandoned lead and zinc mining area located in Ottawa County, northeastern Oklahoma. During the first half of the 20th century, the area was a primary producer of lead and zinc in the United States. Large accumulations of mine tailings, locally referred to as chat, produce leachate containing cadmium, iron, lead, and zinc that enter drainages within the mining area. Metals also seep to local ground water and streams from unplugged shafts, vent holes, seeps, and abandoned mine dewatering wells. Streamflow measurements were made and water-quality samples were collected and analyzed from two locations in Picher mining district from August 16 to August 29 following a rain event beginning on August 14, 2005, to determine likely concentrations and loads of metals from tailings and mine outflows in the part of Picher mining district near Tar Creek. Locations selected for sampling included a tailings pile with an adjacent mill pond, referred to as the Western location, and a segment of Tar Creek from above the confluence with Lytle Creek to below Douthat bridge, referred to as Tar Creek Study Segment. Measured streamflow was less than 0.01 cubic foot per second at the Western location, with streamflow only being measurable at that site on August 16, 2005. Measured streamflows ranged from <0.01 to 2.62 cubic feet per second at Tar Creek Study Segment. One water-quality sample was collected from runoff at the Western location. Total metals concentrations in that sample were 95.3 micrograms per liter cadmium, 182 micrograms per liter iron, 170 micrograms per liter lead, 1,760 micrograms per liter zinc. Total mean metals concentrations in 29 water-quality samples collected from Tar Creek Study Segment from August 16-29, 2005, were 21.8 micrograms per liter cadmium, 7,924 micrograms per liter iron, 7.68 micrograms per liter lead, and 14,548 micrograms per liter zinc. No metals loading values were calculated for the Western location. Metals loading

  7. Loading-rate-independent delay of catastrophic avalanches in a bulk metallic glass

    DOE PAGES

    Chen, S. H.; Chan, K. C.; Wang, G.; Wu, F. F.; Xia, L.; Ren, J. L.; Li, J.; Dahmen, K. A.; Liaw, P. K.

    2016-02-25

    The plastic flow of bulk metallic glasses (BMGs) is characterized by intermittent bursts of avalanches, and this trend results in disastrous failures of BMGs. In the present work, a double-side-notched BMG specimen is designed, which exhibits chaotic plastic flows consisting of several catastrophic avalanches under the applied loading. The disastrous shear avalanches have, then, been delayed by forming a stable plastic-flow stage in the specimens with tailored distances between the bottoms of the notches, where the distribution of a complex stress field is acquired. Differing from the conventional compressive testing results, such a delaying process is independent of loading rate.more » The statistical analysis shows that in the specimens with delayed catastrophic failures, the plastic flow can evolve to a critical dynamics, making the catastrophic failure more predictable than the ones with chaotic plastic flows. Lastly, the findings are of significance in understanding the plastic-flow mechanisms in BMGs and controlling the avalanches in relating solids.« less

  8. Dynamic response and optimal design of curved metallic sandwich panels under blast loading.

    PubMed

    Qi, Chang; Yang, Shu; Yang, Li-Jun; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a "soft" outer face and a "hard" inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances.

  9. Dynamic Response and Optimal Design of Curved Metallic Sandwich Panels under Blast Loading

    PubMed Central

    Yang, Shu; Han, Shou-Hong; Lu, Zhen-Hua

    2014-01-01

    It is important to understand the effect of curvature on the blast response of curved structures so as to seek the optimal configurations of such structures with improved blast resistance. In this study, the dynamic response and protective performance of a type of curved metallic sandwich panel subjected to air blast loading were examined using LS-DYNA. The numerical methods were validated using experimental data in the literature. The curved panel consisted of an aluminum alloy outer face and a rolled homogeneous armour (RHA) steel inner face in addition to a closed-cell aluminum foam core. The results showed that the configuration of a “soft” outer face and a “hard” inner face worked well for the curved sandwich panel against air blast loading in terms of maximum deflection (MaxD) and energy absorption. The panel curvature was found to have a monotonic effect on the specific energy absorption (SEA) and a nonmonotonic effect on the MaxD of the panel. Based on artificial neural network (ANN) metamodels, multiobjective optimization designs of the panel were carried out. The optimization results revealed the trade-off relationships between the blast-resistant and the lightweight objectives and showed the great use of Pareto front in such design circumstances. PMID:25126606

  10. Trace metals in sediments of a Mediterranean estuary affected by human activities (Acheloos river estuary, Greece).

    PubMed

    Dassenakis, M; Degaita, A; Scoullos, M

    1995-05-19

    Trace metals were studied in the sediments of the ecologically, economically and scientifically important estuary of the Acheloos river, in western Greece. Human activities (dams, agriculture, traffic, etc.) influence the estuarine system of Acheloos and in combination with the hydrological, mineralogical and morphological characteristics of the estuary affect the chemical behaviour and the distribution patterns of trace metals in its sediments. The large scale disturbance of the system is imminent in the near future as it is planned to divert approximately 50% of the river water. A study of the distribution patterns of trace metals revealed that in the estuary there are zones with different metal levels. The concentrations of most metals (Al, Fe, Cu, Ni, Zn) are elevated in three of these zones (upstream, sill, seawards). A different behaviour was observed for Mn due to its association with carbonates that were observed in significant concentrations throughout the estuarine zone. A sequential extraction procedure, applied to the sediments, indicated low percentages of easily exchangeable metals, increased mobility of Cu and Zn and increased association of Ni, Cr and Fe with the aluminosilicate lattice. Although the river is not considered to be heavily polluted, some metals have shown an enrichment in the surface sediments as a result of general anthropogenic activities not derived from point sources.

  11. Rapid increase in training load affects markers of skeletal muscle damage and mechanical performance.

    PubMed

    Kamandulis, Sigitas; Snieckus, Audrius; Venckunas, Tomas; Aagaard, Per; Masiulis, Nerijus; Skurvydas, Albertas

    2012-11-01

    The aim of this study was to monitor the changes in indirect markers of muscle damage during 3 weeks (9 training sessions) of stretch-shortening (drop jump) exercise with constant load alternated with steep increases in load. Physically active men (n = 9, mean age 19.1 years) performed a program involving a rapid stepwise increase in the number of jumps, drop height, and squat depth, and the addition of weight. Concentric, isometric maximal voluntary contraction (MVC), and stimulated knee extension torque were measured before and 10 minutes after each session. Muscle soreness and plasma creatine kinase activity were assessed after each session. Steep increments in stretch-shortening exercise load in sessions 4 and 7 amplified the postexercise decrease in stimulated muscle torque and slightly increased muscle soreness but had a minimal effect on the recovery of MVC and stimulated torque. Maximal jump height increased by 7.8 ± 6.3% (p < 0.05), 11.4 ± 3.3% (p < 0.05), and 12.8 ± 3.6% (p < 0.05) at 3, 10, and 17 days after the final training session, respectively. Gains in isometric knee extension MVC (7.9 ± 8.2%) and 100-Hz-evoked torque (9.9 ± 9.6%) (both p < 0.05) were observed within 17 days after the end of the training. The magnitude of improvement was greater after this protocol than that induced by a continuous constant progression loading pattern with small gradual load increments in each training session. These findings suggest that plyometric training using infrequent but steep increases in loading intensity and volume may be beneficial to athletic performance. PMID:22158097

  12. Quantification of metal loading to Silver Creek through the Silver Maple Claims area, Park City, Utah, May 2002

    USGS Publications Warehouse

    Kimball, Briant A.; Johnson, Kevin K.; Runkel, Robert L.; Steiger, Judy I.

    2004-01-01

    The Silver Maple Claims area along Silver Creek, near Park City, Utah, is administered by the Bureau of Land Management. To quantify possible sources of elevated zinc concentrations in Silver Creek that exceed water-quality standards, the U.S. Geological Survey conducted a mass-loading study in May 2002 along a 1,400-meter reach of Silver Creek that included the Silver Maple Claims area. Additional samples were collected upstream and downstream from the injection reach to investigate other possible sources of zinc and other metals to the stream. Many metals were investigated in the study, but zinc is of particular concern for water-quality standards. The total loading of zinc along the study reach from Park City to Wanship, Utah, was about 49 kilograms per day. The Silver Maple Claims area contributed about 38 percent of this load. The Silver Creek tailings discharge pipe, which empties just inside the Silver Maple Claims area, contributed more than half the load of the Silver Maple Claims area. Substantial zinc loads also were added to Silver Creek downstream from the Silver Maple Claims area. Ground-water discharge upstream from the waste-water treatment plant contributed 20 percent of the total zinc load, and another 17 percent was contributed near the waste-water treatment plant. By identifying the specific areas where zinc and other metal loads are contributed to Silver Creek, it is possible to assess the needs of a remediation plan. For example, removing the tailings from the Silver Maple Claims area could contribute to lowering the zinc concentration in Silver Creek, but without also addressing the loading from the Silver Creek tailings discharge pipe and the ground-water discharge farther downstream, the zinc concentration could not be lowered enough to meet water-quality standards. Additional existing sources of zinc loading downstream from the Silver Maple Claims area could complicate the process of lowering zinc concentration to meet water

  13. Full-arch metal-resin cement- and screw-retained provisional restoration for immediately loaded implants.

    PubMed

    Baig, Mirza Rustum; Rajan, Gunaseelan

    2010-01-01

    Abstract This article describes the clinical and laboratory procedures involved in the fabrication of laboratory-processed, provisional, screw-retained, implant-supported maxillary and mandibular fixed complete dentures incorporating a cast metal reinforcement for immediate loading of implants. Precise fit is achieved by intraoral luting of the cast frame to milled abutments. Effective splinting of all implants is attained by the metal substructure and retrievability is provided by the screw-retention of the prosthesis. PMID:20553176

  14. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  15. Children's Negative Emotionality Combined with Poor Self-Regulation Affects Allostatic Load in Adolescence

    ERIC Educational Resources Information Center

    Dich, Nadya; Doan, Stacey; Evans, Gary

    2015-01-01

    The present study examined the concurrent and prospective, longitudinal effects of childhood negative emotionality and self-regulation on allostatic load (AL), a physiological indicator of chronic stress. We hypothesized that negative emotionality in combination with poor self-regulation would predict elevated AL. Mothers reported on children's…

  16. Nutrient loads and sediment losses in sprinkler irrigation runoff affected by compost and manure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High water application rates beneath the outer spans of center pivot sprinkler systems can cause runoff, erosion, and nutrient losses, particularly from sloping fields. This study determined runoff, sediment losses, and loads of nutrients (dissolved organic C, Nitrate-N, ammonium-N, total phosphoru...

  17. Simulation and analysis of the plutonium oxide/metal storage containers subject to various loading conditions

    SciTech Connect

    Gong, C.; Miller, R.F.

    1995-05-01

    The structural and functional requirements of the Plutonium Oxide/Metal Storage Containers are specified in the Report ``Complex 21 Plutonium Storage Facility Material Containment Team Technical Data Report`` [Complex 21, 1993]. There are no existing storage containers designed for long term storage of plutonium and current codes, standards or regulations do not adequately cover this case. As there is no extensive experience with the long term (50+ years) storage of plutonium, the design of high integrity storage containers must address many technical considerations. This analysis discusses a few potential natural phenomena that could theoretically adversely affect the container integrity over time. The plutonium oxide/metal storage container consists of a primary containment vessel (the outer container), a bagless transfer can (the inner container), two vertical plates on top of the primary containment vessel, a circular plate (the flange) supported by the two plates, tube for gas sampling operations mounted at the center of the primary containment vessel top and a spring system being inserted in the cavity between the primary containment vessel and the cap of the bagless transfer can. The dimensions of the plutonium oxide/metal storage container assembly can be found in Figure 2-1. The primary container, the bagless transfer can, and all the attached components are made of Type 304L stainless steel.

  18. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  19. An assessment of landscape characteristics affecting estuarine nitrogen loading in an urban watershed.

    PubMed

    Yang, Xiaojun

    2012-02-01

    Exploring the quantitative association between landscape characteristics and the ecological conditions of receiving waters has recently become an emerging area for eco-environmental research. While the landscape-water relationship research has largely targeted on inland aquatic systems, there has been an increasing need to develop methods and techniques that can better work with coastal and estuarine ecosystems. In this paper, we present a geospatial approach to examine the quantitative relationship between landscape characteristics and estuarine nitrogen loading in an urban watershed. The case study site is in the Pensacola estuarine drainage area, home of the city of Pensacola, Florida, USA, where vigorous urban sprawling has prompted growing concerns on the estuarine ecological health. Central to this research is a remote sensor image that has been used to extract land use/cover information and derive landscape metrics. Several significant landscape metrics are selected and spatially linked with the nitrogen loading data for the Pensacola bay area. Landscape metrics and nitrogen loading are summarized by equal overland flow-length rings, and their association is examined by using multivariate statistical analysis. And a stepwise model-building protocol is used for regression designs to help identify significant variables that can explain much of the variance in the nitrogen loading dataset. It is found that using landscape composition or spatial configuration alone can explain most of the nitrogen loading variability. Of all the regression models using metrics derived from a single land use/cover class as the independent variables, the one from the low density urban gives the highest adjusted R-square score, suggesting the impact of the watershed-wide urban sprawl upon this sensitive estuarine ecosystem. Measures towards the reduction of non-point source pollution from urban development are necessary in the area to protect the Pensacola bay ecosystem and its

  20. Factors Affecting Stream Nutrient Loads: A Synthesis of Regional SPARROW Model Results for the Continental United States1

    PubMed Central

    Preston, Stephen D; Alexander, Richard B; Schwarz, Gregory E; Crawford, Charles G

    2011-01-01

    Abstract We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models – 6 for total nitrogen and 6 for total phosphorus – all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. PMID:22457574

  1. Factors affecting stream nutrient loads: A synthesis of regional SPARROW model results for the continental United States

    USGS Publications Warehouse

    Preston, Stephen D.; Alexander, Richard B.; Schwarz, Gregory E.; Crawford, Charles G.

    2011-01-01

    We compared the results of 12 recently calibrated regional SPARROW (SPAtially Referenced Regressions On Watershed attributes) models covering most of the continental United States to evaluate the consistency and regional differences in factors affecting stream nutrient loads. The models - 6 for total nitrogen and 6 for total phosphorus - all provide similar levels of prediction accuracy, but those for major river basins in the eastern half of the country were somewhat more accurate. The models simulate long-term mean annual stream nutrient loads as a function of a wide range of known sources and climatic (precipitation, temperature), landscape (e.g., soils, geology), and aquatic factors affecting nutrient fate and transport. The results confirm the dominant effects of urban and agricultural sources on stream nutrient loads nationally and regionally, but reveal considerable spatial variability in the specific types of sources that control water quality. These include regional differences in the relative importance of different types of urban (municipal and industrial point vs. diffuse urban runoff) and agriculture (crop cultivation vs. animal waste) sources, as well as the effects of atmospheric deposition, mining, and background (e.g., soil phosphorus) sources on stream nutrients. Overall, we found that the SPARROW model results provide a consistent set of information for identifying the major sources and environmental factors affecting nutrient fate and transport in United States watersheds at regional and subregional scales. ?? 2011 American Water Resources Association. This article is a U.S. Government work and is in the public domain in the USA.

  2. Accumulation of clinically relevant antibiotic-resistance genes, bacterial load, and metals in freshwater lake sediments in Central Europe.

    PubMed

    Devarajan, Naresh; Laffite, Amandine; Graham, Neil D; Meijer, Maria; Prabakar, Kandasamy; Mubedi, Josué I; Elongo, Vicky; Mpiana, Pius T; Ibelings, Bastiaan Willem; Wildi, Walter; Poté, John

    2015-06-01

    Wastewater treatment plants (WWTP) receive the effluents from various sources (communities, industrial, and hospital effluents) and are recognized as reservoir for antibiotic-resistance genes (ARGs) that are associated with clinical pathogens. The aquatic environment is considered a hot-spot for horizontal gene transfer, and lake sediments offer the opportunity for reconstructing the pollution history and evaluating the impacts. In this context, variation with depth and time of the total bacterial load, the abundance of faecal indicator bacteria (FIB; E. coli and Enterococcus spp. (ENT)), Pseudomonas spp., and ARGs (blaTEM, blaSHV, blaCTX-M, blaNDM, and aadA) were quantified in sediment profiles of different parts of Lake Geneva using quantitative PCR. The abundance of bacterial marker genes was identified in sediments contaminated by WWTP following eutrophication of the lake. Additionally, ARGs, including the extended-spectrum ß-lactam- and aminoglycoside-resistance genes, were identified in the surface sediments. The ARG and FIB abundance strongly correlated (r ≥ 0.403, p < 0.05, n = 34) with organic matter and metal concentrations in the sediments, indicating a common and contemporary source of contamination. The contamination of sediments by untreated or partially treated effluent water can affect the quality of ecosystem. Therefore, the reduction of contaminants from the source is recommended for further improvement of water quality. PMID:25933054

  3. Coupling and Elastic Loading Affect the Active Response by the Inner Ear Hair Cell Bundles

    PubMed Central

    Strimbu, Clark Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2012-01-01

    Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures. PMID:22479461

  4. Coupling and elastic loading affect the active response by the inner ear hair cell bundles.

    PubMed

    Strimbu, Clark Elliott; Fredrickson-Hemsing, Lea; Bozovic, Dolores

    2012-01-01

    Active hair bundle motility has been proposed to underlie the amplification mechanism in the auditory endorgans of non-mammals and in the vestibular systems of all vertebrates, and to constitute a crucial component of cochlear amplification in mammals. We used semi-intact in vitro preparations of the bullfrog sacculus to study the effects of elastic mechanical loading on both natively coupled and freely oscillating hair bundles. For the latter, we attached glass fibers of different stiffness to the stereocilia and observed the induced changes in the spontaneous bundle movement. When driven with sinusoidal deflections, hair bundles displayed phase-locked response indicative of an Arnold Tongue, with the frequency selectivity highest at low amplitudes and decreasing under stronger stimulation. A striking broadening of the mode-locked response was seen with increasing stiffness of the load, until approximate impedance matching, where the phase-locked response remained flat over the physiological range of frequencies. When the otolithic membrane was left intact atop the preparation, the natural loading of the bundles likewise decreased their frequency selectivity with respect to that observed in freely oscillating bundles. To probe for signatures of the active process under natural loading and coupling conditions, we applied transient mechanical stimuli to the otolithic membrane. Following the pulses, the underlying bundles displayed active movement in the opposite direction, analogous to the twitches observed in individual cells. Tracking features in the otolithic membrane indicated that it moved in phase with the bundles. Hence, synchronous active motility evoked in the system of coupled hair bundles by external input is sufficient to displace large overlying structures. PMID:22479461

  5. Decreased Core Crystallinity Facilitated Drug Loading in Polymeric Micelles without Affecting Their Biological Performances.

    PubMed

    Gou, Jingxin; Feng, Shuangshuang; Xu, Helin; Fang, Guihua; Chao, Yanhui; Zhang, Yu; Xu, Hui; Tang, Xing

    2015-09-14

    Cargo-loading capacity of polymeric micelles could be improved by reducing the core crystallinity and the improvement in the amount of loaded cargo was cargo-polymer affinity dependent. The effect of medium chain triglyceride (MCT) in inhibiting PCL crystallization was confirmed by DSC and polarized microscope. When incorporating MCT into polymeric micelles, the maximum drug loading of disulfiram (DSF), cabazitaxel (CTX), and TM-2 (a taxane derivative) increased from 2.61 ± 0.100%, 13.5 ± 0.316%, and 20.9 ± 1.57% to 8.34 ± 0.197%, 21.7 ± 0.951%, and 28.0 ± 1.47%, respectively. Moreover, the prepared oil-containing micelles (OCMs) showed well-controlled particle size, good stability, and decreased drug release rate. MCT incorporation showed little influence on the performances of micelles in cell studies or pharmacokinetics. These results indicated that MCT incorporation could be a core construction module applied in the delivery of hydrophobic drugs. PMID:26314832

  6. Transient perceptual neglect: visual working memory load affects conscious object processing.

    PubMed

    Emrich, Stephen M; Burianová, Hana; Ferber, Susanne

    2011-10-01

    Visual working memory (VWM) is a capacity-limited cognitive resource that plays an important role in complex cognitive behaviors. Recent studies indicate that regions subserving VWM may play a role in the perception and recognition of visual objects, suggesting that conscious object perception may depend on the same cognitive and neural architecture that supports the maintenance of visual object information. In the present study, we examined this question by testing object processing under a concurrent VWM load. Under a high VWM load, recognition was impaired for objects presented in the left visual field, in particular when two objects were presented simultaneously. Multivariate fMRI revealed that two independent but partially overlapping networks of brain regions contribute to object recognition. The first network consisted of regions involved in VWM encoding and maintenance. Importantly, these regions were also sensitive to object load. The second network comprised regions of the ventral temporal lobes traditionally associated with object recognition. Importantly, activation in both networks predicted object recognition performance. These results indicate that information processing in regions that mediate VWM may be critical to conscious visual perception. Moreover, the observation of a hemifield asymmetry in object recognition performance has important theoretical and clinical significance for the study of visual neglect.

  7. Optimizing the structure of metal load in order to reduce electricity consumption in the production of steel

    NASA Astrophysics Data System (ADS)

    Pǎcurar, Cristina; Hepuť, Teodor; Ardelean, Marius

    2016-06-01

    As the basic units in the preparation of steel, in industrial practice is used oxygen converters and electric arc furnaces. In research carried out has been taken into account structure analysis load electric arc furnaces of the specific consumption of electricity (kWh/t). Data to be achieved for a number of 96 batches, have been taken into account load holding metal of each assortment of scrap metal, these varieties being considered as independent parameters, and electricity consumption is considered dependent parameter. By processing the data in the EXCEL spreadsheet programs and MATLAB have been obtained correlations between parameters analyze, analytical results being presented and the graph. On the basis of an analysis of these correlations to choose optimal structure of the load in order to obtain an acceptable energy consumption from technical and economic point of view.

  8. How Hydrogen Bonds Affect the Growth of Reverse Micelles around Coordinating Metal Ions.

    PubMed

    Qiao, Baofu; Demars, Thomas; Olvera de la Cruz, Monica; Ellis, Ross J

    2014-04-17

    Extensive research on hydrogen bonds (H-bonds) have illustrated their critical role in various biological, chemical and physical processes. Given that existing studies are predominantly performed in aqueous conditions, how H-bonds affect both the structure and function of aggregates in organic phase is poorly understood. Herein, we investigate the role of H-bonds on the hierarchical structure of an aggregating amphiphile-oil solution containing a coordinating metal complex by means of atomistic molecular dynamics simulations and X-ray techniques. For the first time, we show that H-bonds not only stabilize the metal complex in the hydrophobic environment by coordinating between the Eu(NO3)3 outer-sphere and aggregating amphiphiles, but also affect the growth of such reverse micellar aggregates. The formation of swollen, elongated reverse micelles elevates the extraction of metal ions with increased H-bonds under acidic condition. These new insights into H-bonds are of broad interest to nanosynthesis and biological applications, in addition to metal ion separations.

  9. Fatty acid composition of an oral load affects chylomicron size in human subjects.

    PubMed

    Sakr, S W; Attia, N; Haourigui, M; Paul, J L; Soni, T; Vacher, D; Girard-Globa, A

    1997-01-01

    HDL-phospholipids are determinants in reverse cholesterol transport. They are mostly derived from triacylglycerol (TG)-rich lipoproteins. Chylomicron size is important, therefore, because it is related to the ratio surface phospholipids: core TG and, thus, determines the availability of postprandial phospholipids for transfer to HDL. Eleven healthy young women each ingested four different fat loads supplemented with retinyl palmitate and containing 60 g sunflower oil (SO), oleic-sunflower oil (OSO), mixed oil (MO; (g/kg) linoleic acid 480, oleic acid 380, linolenic acid 13) or beef tallow (BT). At the peak of TG absorption for all loads (4 h) chylomicron diameters, determined by agarose-gel filtration, were larger after SO compared with OSO (P < 0.05) and BT (P = 0.06) and after MO compared with BT (P < 0.05). At 6 h chylomicron size was larger after the vegetable oils compared with BT (P < 0.05 in each case). After each fat load chylomicron size decreased at 6 and 8 h compared with that at 4 h (P < 0.05) except for OSO. Retinyl ester and TG concentrations were lower in chylomicrons after BT than after the other fats but not in the chylomicron-free serum (containing chylomicron remnants), suggesting absorption in the form of very small particles. Compared with the fasting value, the concentration of the Svedberg unit of flotation 20-400 fraction, which contains VLDL and chylomicron remnants, was lower 8 h after MO, the only fat to contain significant amounts of linolenic acid. We conclude that chylomicron size is dependent on the fatty acid composition of ingested fats and the time-course of digestion, being larger for polyunsaturated fatty acid-rich fats and in the early phase of digestion. On the basis of retinyl ester concentration there were no differences between fats in chylomicron-remnant clearance.

  10. Municipal sludge metal contamination of old-field ecosystems: Do liming and tilling affect remediation

    SciTech Connect

    Benninger-Truax, M.; Taylor, D.H. . Dept. of Zoology)

    1993-10-01

    Mechanisms of ecosystem recovery following 11 years of sewage sludge disposal were addressed by examining the effects of tilling and/or liming on soil chemistry and the heavy metal (Cd, Cu, Pb, and Zn) concentrations in soil, earthworms, vegetation, spiders, and crickets. In 1989 and 1990, subplots in each of three former 0.1-ha, long-term treatments (sludge, fertilizer, and control) were either unmanipulated or manipulated via tilling and/or liming. Liming significantly increased the pH of soil from the long-term sludge and fertilizer plots, and the combination of tilling and liming affected the heavy metal concentrations in earthworms, as lower concentrations of Cd, Cu, Pb, and Zn were found in earthworms collected from subplots that had been both tilled and limed. However, most observed significant differences in heavy metal concentrations reflected the long-term treatments, as heavy metal concentrations tended to be greater in the soil and biota collected from sludge-treated plots. Thus, heavy metals remained in the soil in forms available to the biota, regardless of the cessation of sludge application or subplot manipulations (liming and/or tilling) for two years following cessation of sludge application.

  11. Factors Affecting P Loads to Surface Waters: Comparing the Roles of Precipitation and Land Management Practices

    NASA Astrophysics Data System (ADS)

    Motew, M.; Booth, E.; Carpenter, S. R.; Kucharik, C. J.

    2014-12-01

    Surface water quality is a major concern in the Yahara watershed (YW) of southern Wisconsin, home to a thriving dairy industry, the city of Madison, and five highly valued lakes that are eutrophic. Despite management interventions to mitigate runoff, there has been no significant trend in P loading to the lakes since 1975. Increases in manure production and heavy rainfall events over this time period may have offset any effects of management. We developed a comprehensive, integrated modeling framework that can simulate the effects of multiple drivers on ecosystem services, including surface water quality. The framework includes process-based representation of terrestrial ecosystems (Agro-IBIS) and groundwater flow (MODFLOW), hydrologic routing of water and nutrients across the landscape (THMB), and assessment of lake water quality (YWQM). Biogeochemical cycling and hydrologic transport of P have been added to the framework to enable detailed simulation of P dynamics within the watershed, including interactions with climate and management. The P module features in-soil cycling of organic, inorganic, and labile forms of P; manure application, decomposition, and subsequent loss of dissolved P in runoff; loss of particulate-bound P with erosion; and transport of dissolved and particulate P within waterways. Model results will compare the effects of increased heavy rainfall events, increased manure production, and implementation of best management practices on P loads to the Yahara lakes.

  12. Gd-DTPA-loaded polymer-metal complex micelles with high relaxivity for MR cancer imaging.

    PubMed

    Mi, Peng; Cabral, Horacio; Kokuryo, Daisuke; Rafi, Mohammad; Terada, Yasuko; Aoki, Ichio; Saga, Tsuneo; Takehiko, Ishii; Nishiyama, Nobuhiro; Kataoka, Kazunori

    2013-01-01

    Nanodevices for magnetic resonance imaging of cancer were self-assembled to core-shell micellar structures by metal complex formation of K(2)PtCl(6) with diethylenetriaminepentaacetic acid gadolinium (III) dihydrogen (Gd-DTPA), a T(1)-contrast agent, and poly(ethylene glycol)-b-poly{N-[N'-(2-aminoethyl)-2-aminoethyl]aspartamide} (PEG-b-PAsp(DET)) copolymer in aqueous solution. Gd-DTPA-loaded polymeric micelles (Gd-DTPA/m) showed a hydrodynamic diameter of 45 nm and a core size of 22 nm. Confining Gd-DTPA inside the core of the micelles increased the relaxivity of Gd-DTPA more than 13 times (48 mM(-1) s(-1)). In physiological conditions Gd-DTPA/m sustainedly released Gd-DTPA, while the Pt(IV) complexes remain bound to the polymer. Gd-DTPA/m extended the circulation time in plasma and augmented the tumor accumulation of Gd-DTPA leading to successful contrast enhancement of solid tumors. μ-Synchrotron radiation-X-ray fluorescence results confirmed that Gd-DTPA was delivered to the tumor site by the micelles. Our study provides a facile strategy for incorporating contrast agents, dyes and bioactive molecules into nanodevices for developing safe and efficient drug carriers for clinical application.

  13. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas.

    PubMed

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F Javier

    2016-01-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1-5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation. PMID:27561789

  14. Radial-directed fluid-pressure-loaded all-metal-sealed gate valve

    DOEpatents

    Batzer, Thomas H.

    1992-01-01

    A large diameter gate valve uses a radially directed fluid pressure loaded all metal seal formed by engaging and disengaging a fixed and a moveable seal element. The fixed element is formed of a circular flange which contains a pressure chamber with a deformable wall, and is mounted to the valve body. The moving seal element contains an annular recess which mates with the circular flange, and is carried on a moveable sub-frame which moves on a frame fixed in the valve body. The valve opening defines an axis in a first direction, and the sub-frame moves through the valve body in a second direction which is substantially perpendicular to the first direction. The sub-frame and moveable seal element move in the second direction until the moveable element reaches a stop mounted in the valve body at which position the moveable element is aligned with but spaced apart from the fixed element. As the sub-frame continues to move in the second direction, the moveable element is forced to move toward and engage the fixed element. The pressure chamber in the flange is then pressurized to complete the seal.

  15. Observation and Simulation of Motion and Deformation for Impact-Loaded Metal Cylinders

    NASA Astrophysics Data System (ADS)

    Hickman, R. J.; Wise, J. L.; Smith, J. A.; Mersch, J. P.; Robino, C. V.; Arguello, J. G.

    2015-06-01

    Complementary gas-gun experiments and computational simulations have examined the time-resolved motion and post-mortem deformation of cylindrical metal samples subjected to impact loading. The effect of propagation distance on a compressive waveform generated in a sample by planar impact at one end was determined using a velocity interferometer to track the longitudinal motion of the opposing rear (i.e., free) surface. Samples (24 or 25.4-mm diameter) were fabricated from aluminum (types 6061 and 7075), copper, stainless steel (type 316), and cobalt alloy L-605 (AMS 5759). For each material, waveforms obtained for a short (2 mm) and a long (25.4 mm) cylinder corresponded, respectively, to one-dimensional (i.e., uniaxial) and two-dimensional strain at the measurement point. The wave-profile data have been analyzed to (i) establish key dynamic material modeling parameters, (ii) assess the functionality of the Sierra Solid Mechanics-Presto (SierraSM/Presto) code, and (iii) identify the need for additional testing, material modeling, and/or code development. The results of subsequent simulations have been compared to benchmark recovery experiments that showed the residual plastic deformation incurred by cylinders following end, side, and corner impacts. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  16. Prediction of damage evolution in continuous fiber metal matrix composites subjected to fatigue loading

    SciTech Connect

    Allen, D.; Helms, K.; Lagoudas, D.

    1995-08-01

    A life prediction model is being developed by the authors for application to metal matrix composites (MMC`s). The systems under study are continuous silicon carbide fibers imbedded in titanium matrix. The model utilizes a computationally based framework based on thermodynamics and continuum mechanics, and accounts for matrix inelasticity, damage evolution, and environmental degradation due to oxidation. The computational model utilizes the finite element method, and an evolutionary analysis of a unit cell is accomplished via a time stepping algorithm. The computational scheme accounts for damage growth such as fiber-matrix debonding, surface cracking, and matrix cracking via the inclusion of cohesive zone elements in the unit cell. These elements are located based on experimental evidence also obtained by the authors. The current paper outlines the formulation utilized by the authors to solve this problem, and recent results are discussed. Specifically, results are given for a four-ply unidirectional composite subjected to cyclic fatigue loading at 650{degrees}C both in air and inert gas. The effects of oxidation on the life of the composite are predicted with the model, and the results are compared to limited experimental results.

  17. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas.

    PubMed

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F Javier

    2016-08-26

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1-5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation.

  18. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas

    PubMed Central

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F. Javier

    2016-01-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1–5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation. PMID:27561789

  19. Active modulation of visible light with graphene-loaded ultrathin metal plasmonic antennas

    NASA Astrophysics Data System (ADS)

    Yu, Renwen; Pruneri, Valerio; García de Abajo, F. Javier

    2016-08-01

    Electro-optical modulation of visible and near-infrared light is important for a wide variety of applications, ranging from communications to sensing and smart windows. However, currently available approaches result in rather bulky devices, suffer from low integrability, and can hardly operate at the low power consumption levels and fast switching rates required by microelectronic drivers. Here we show that planar nanostructures patterned in ultrathin metal-graphene hybrid films sustain highly tunable plasmons in the visible and near-infrared spectral regions. Strong variations in the reflection and absorption of incident light take place when the plasmons are tuned on- and off-resonance with respect to externally incident light. As a result, a remarkable modulation depth (i.e., the maximum relative variation with/without graphene doping) exceeding 90% in transmission and even more dramatic in reflection (>600%) is predicted for graphene-loaded silver films of 1–5 nm thickness and currently attainable lateral dimensions. These new structures hold great potential for fast low-power electro-optical modulation.

  20. A comparative study on different metal loaded soybean milk by-product 'okara' for biosorption of phosphorus from aqueous solution.

    PubMed

    Nguyen, T A H; Ngo, H H; Guo, W S; Nguyen, T V; Zhang, J; Liang, S; Chen, S S; Nguyen, N C

    2014-10-01

    Cationization of agricultural by-products using metal salts is widely used to activate their phosphorous capture ability. This study developed three kinds of new metal loaded soybean milk by-product 'okara' for phosphorus biosorption. A comparative study among these biosorbents was carried out with respect to their performances in terms of affinity, stability and reusability. Zirconium loaded okara (ZLO) was found to have the highest affinity towards PO(4)(3-) anions (47.88 mg/g), followed by iron/zirconium loaded okara--IZLO (40.96 mg/g) and iron loaded okara--ILO (16.39 mg/g). ZLO was successfully desorbed with 0.2M NaOH and activated with 0.1 HCl prior to the next cycle. After five consecutive cycles, the efficiency of both adsorption and desorption of ZLO remained about 85% whilst no Zr(IV) leakage was observed. Conversely, IZLO and ILO suffered from vital short comings such as high metal release and/or sharp reduction in PO4(3-) sequestering capability after multi operation cycles. PMID:25062541

  1. Visual short-term memory load affects sensory processing of irrelevant sounds in human auditory cortex.

    PubMed

    Valtonen, Jussi; May, Patrick; Mäkinen, Ville; Tiitinen, Hannu

    2003-07-01

    We used whole-head magnetoencephalography (MEG) to investigate neural activity in human auditory cortex elicited by irrelevant tones while the subjects were engaged in a short-term memory task presented in the visual modality. As compared to a no-memory-task condition, memory load enhanced the amplitude of the auditory N1m response. In addition, the N1m amplitude depended on the phase of the memory task, with larger response amplitudes observed during encoding than retention. Further, these amplitude modulations were accompanied by anterior-posterior shifts in N1m source locations. The results show that a memory task for visually presented stimuli alters sensory processing in human auditory cortex, even when subjects are explicitly instructed to ignore any auditory stimuli. Thus, it appears that task demands requiring attentional allocation and short-term memory result in interaction across visual and auditory brain areas carrying out the processing of stimulus features.

  2. Hoof position during limb loading affects dorsoproximal bone strains on the equine proximal phalanx.

    PubMed

    Singer, Ellen; Garcia, Tanya; Stover, Susan

    2015-07-16

    Sagittal fractures of the proximal phalanx (P1) in the racehorse appear to be associated with turf racing surfaces, which are known to restrict forward slide of the foot at impact. We hypothesized that restriction of forward foot slip would result in higher P1 bone strains during metacarpophalangeal joint (MCPJ) hyperextension. Unilateral limbs from six equine cadavers were instrumented with strain gauges and bone reference markers to measure dorsoproximal P1 bone strains and MCPJ extension, collateromotion and axial rotation during in vitro limb loading to 10,500 N. By limiting movement of the distal actuator platform, three different foot conditions (forward, free, and restricted) were applied in a randomised block design. Bone reference markers, recorded by video, were analyzed to determine motion of P1 relative to MC3. Rosette strain data were reduced to principal and shear magnitudes and directions. A mixed model ANOVA determined the effect of foot position on P1 bone strains and MCPJ angles. At 10,000 N load, the restricted condition resulted in higher P1 axial compressive (p=0.015), maximum shear (p=0.043) and engineering shear (p=0.046) strains compared to the forward condition. The restricted condition had higher compressive (p=0.025) and lower tensile (p=0.043) principal strains compared to the free condition. For the same magnitude of principal or shear strains, axial rotation and collateromotion angles were greatest for the restricted condition. Therefore, the increase in P1 principal compressive and shear bone strains associated with restricted foot slip indicate that alterations in foot:ground interaction may play a role in fracture occurrence in horses.

  3. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    NASA Astrophysics Data System (ADS)

    Chen, Pengwan; Liu, Han; Zhang, Shaolong; Liu, Haibo; Chen, Ang; Guo, Baoqiao

    2015-09-01

    In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC). An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  4. Stabilization of Metal-Loaded Ion-Exchange Resin with a Porous Silica Supporter Through Thermal Treatment

    SciTech Connect

    Kim, I-T. Park, H-S.; Yoo, J-H.; Kim, J-H.

    2003-02-25

    A new ion exchanger with porous silica as a supporting material and diphosphonic acid as a functional chelating group has been developed at ANL for the effective removal of transition metals and actinide ions from very acidic radioactive liquid wastes. The applicability of this resin for the treatment of low- and/or intermediate-level aqueous waste from nuclear power plants (NPP) has not been reported in scientific literature, but is under study now in Korea. The major radioisotopes in NPP radioactive liquid waste are Cs and Co in neutral pH ranges. This study on the thermal stabilization of metal-loaded waste resin has been carried out in parallel with the sorption experiment. Thermal treatment of metal (Co, Cs or U) loaded resin was accomplished to see the possibility of enhancing the safety and stability of the final product during transportation and disposal. In this paper, characteristics of the metal-loaded resins before and after heat treatment at three different thermal conditions were investigated and compared with each other to see the effectiveness of the thermal treatment method.

  5. Complexation-induced phase separation: preparation of composite membranes with a nanometer-thin dense skin loaded with metal ions.

    PubMed

    Villalobos, Luis Francisco; Karunakaran, Madhavan; Peinemann, Klaus-Viktor

    2015-05-13

    We present the development of a facile phase-inversion method for forming asymmetric membranes with a precise high metal ion loading capacity in only the dense layer. The approach combines the use of macromolecule-metal intermolecular complexes to form the dense layer of asymmetric membranes with nonsolvent-induced phase separation to form the porous support. This allows the independent optimization of both the dense layer and porous support while maintaining the simplicity of a phase-inversion process. Moreover, it facilitates control over (i) the thickness of the dense layer throughout several orders of magnitude from less than 15 nm to more than 6 μm, (ii) the type and amount of metal ions loaded in the dense layer, (iii) the morphology of the membrane surface, and (iv) the porosity and structure of the support. This simple and scalable process provides a new platform for building multifunctional membranes with a high loading of well-dispersed metal ions in the dense layer.

  6. Metals other than uranium affected microbial community composition in a historical uranium-mining site.

    PubMed

    Sitte, Jana; Löffler, Sylvia; Burkhardt, Eva-Maria; Goldfarb, Katherine C; Büchel, Georg; Hazen, Terry C; Küsel, Kirsten

    2015-12-01

    To understand the links between the long-term impact of uranium and other metals on microbial community composition, ground- and surface water-influenced soils varying greatly in uranium and metal concentrations were investigated at the former uranium-mining district in Ronneburg, Germany. A soil-based 16S PhyloChip approach revealed 2358 bacterial and 35 archaeal operational taxonomic units (OTU) within diverse phylogenetic groups with higher OTU numbers than at other uranium-contaminated sites, e.g., at Oak Ridge. Iron- and sulfate-reducing bacteria (FeRB and SRB), which have the potential to attenuate uranium and other metals by the enzymatic and/or abiotic reduction of metal ions, were found at all sites. Although soil concentrations of solid-phase uranium were high, ranging from 5 to 1569 μg·g (dry weight) soil(-1), redundancy analysis (RDA) and forward selection indicated that neither total nor bio-available uranium concentrations contributed significantly to the observed OTU distribution. Instead, microbial community composition appeared to be influenced more by redox potential. Bacterial communities were also influenced by bio-available manganese and total cobalt and cadmium concentrations. Bio-available cadmium impacted FeRB distribution while bio-available manganese and copper as well as solid-phase zinc concentrations in the soil affected SRB composition. Archaeal communities were influenced by the bio-available lead as well as total zinc and cobalt concentrations. These results suggest that (i) microbial richness was not impacted by heavy metals and radionuclides and that (ii) redox potential and secondary metal contaminants had the strongest effect on microbial community composition, as opposed to uranium, the primary source of contamination.

  7. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    USGS Publications Warehouse

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    the 1998 study. The second affected reach was downstream from Arrastra Gulch, where the increase in zinc load seems related to a series of right-bank inflows with low pH Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998By Suzanne S. Paschke, Briant A. Kimball, and Robert L. Runkeland elevated dissolved zinc concentrations. A third increase in zinc load occurred 6,100 meters downstream from the 1997 injection site and may have been from ground-water discharge with elevated zinc concentrations based on mass-loading graphs and the lack of visible inflow in the reach. A fourth but lesser dissolved zinc load increase occurred downstream from tailings near the Lackawanna Mill. Results of the tracer-injection studies and the effects of potential remediation were analyzed using the one- dimensional stream-transport computer code OTIS. Based on simulation results, instream zinc concentrations downstream from the Kittimack tailings to upstream from Arrastra Gulch would approach 0.16 milligram per liter (the upper limit of acute toxicity for some sensitive aquatic species) if zinc inflow concentrations were reduced by 75 percent in the stream reaches receiving inflow from the Forest Queen mine, the Kittimack tailings, and downstream from Howardsville. However, simulated zinc concentrations downstream from Arrastra Gulch were higher than approximately 0.30 milligram per liter due to numerous visible inflows and assumed ground-water discharge with elevated zinc concentrations in the lower part of the study reach. Remediation of discrete visible inflows seems a viable approach to reducing zinc inflow loads to the upper Animas River. Remediation downstream from Arrastra Gulch is more complicated because ground-water discharge with elevated zinc concentrations seems to contribute to the instream zinc load.

  8. Heavy metal ions affecting the removal of polycyclic aromatic hydrocarbons by fungi with heavy-metal resistance.

    PubMed

    Ma, Xiao-Kui; Ling Wu, Ling; Fam, Hala

    2014-12-01

    The co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and heavy metals (HMs) is very common in contaminated environments. It is of paramount importance and great challenge to exploit a bioremediation to remove PAHs in these environments with combined pollution. We approached this question by probing the influence of HMs coexisting with PAHs on the removal of PAHs by Acremonium sp. P0997 possessing metal resistance. A removal capability for naphthalene, fluorene, phenanthrene, anthracene, and fluoranthenepresentalone (98.6, 99.3, 89.9, 60.4, and 70 %, respectively) and in a mixture (96.9, 71.8, 67.0, 85.0, and 87.9 %, respectively) was achieved in mineral culture inoculated with Acremonium sp. P0997, and this strain also displayed high resistance to the individual HMs (Mn(2+), Fe(2+), Zn(2+), Cu(2+), Al(3+), and Pb(2+)). The removal of individual PAHs existing in a mixture was differently affected by the separately tested HMs. Cu(2+)enhanced the partition process of anthracene to dead or alive mycelia and the contribution of the biosorption by this strain but imposed a little negative influence on the contribution of biodegradation to the total removal of anthracene individually in a culture. However, Mn(2+) had an inhibitory effect on the partition process of anthracene to dead or alive mycelia and decreased the contributions of both biosorption and biodegradation to the total anthracene removal. This work showcased the value of fungi in bioremediation for the environments with combined pollution, and the findings have major implications for the bioremediation of organic pollutants in metal-organic mixed contaminated sites.

  9. Cognition-emotion interactions in schizophrenia: emerging evidence on working memory load and implicit facial-affective processing.

    PubMed

    Mano, Quintino R; Brown, Gregory G

    2013-01-01

    Although much is known about working memory (WM) and emotion perception deficits in schizophrenia, little is known of how these deficits interact. We sought to address this gap by conducting a narrative review of relevant literatures and distilling core themes. First, people with schizophrenia have difficulty with high load and during initial phases of WM (e.g., encoding, early rehearsal), yet are able to activate WM-related prefrontal brain regions to the same maximal degree as comparison controls under certain circumstances. Second, people with schizophrenia have difficulty identifying and expressing facial emotions, yet demonstrate heightened automatic/implicit processing of facial emotions. Third, people with schizophrenia behaviourally demonstrate intact cognition-emotion interactions on laboratory tasks wherein emotional processing is automatic/implicit, yet demonstrate cognition-emotion disconnections in other levels of analysis. Insights are drawn from basic science showing interdependency between WM load and implicit emotion. Future research questions are raised regarding interactions between WM load and implicit facial-affective processing in schizophrenia.

  10. Trophallaxis in filled-crop honeybees (Apis mellifera L.): food-loading time affects unloading behaviour

    NASA Astrophysics Data System (ADS)

    Wainselboim, A. J.; Farina, W. M.

    Honeybees ingested 50% w/w (1.8M) sucrose solution at a rate feeder offering either 16.5, 32.5 or 65 μl/min. While the time spent ingesting solution at the feeder decreased significantly with increasing flow of solution, bees attained maximum crop loads with this range of flows. Different parameters related to mouth-to-mouth food exchange (trophallaxis) showed important modulations as the offered flow of solution was incremented. Trophallactic transfer rate, i.e. the speed at which liquid food is transferred from donor to recipient bee, was found to increase along with increasing profitability at the rate feeder. In the present case, food source profitability could have been evaluated by foragers either by measuring the time invested in ingesting the solution, or by direct assessment of the flow rate of the feeder. Thus it seems that perception of profitability conditions at the food sourcesuffices for later representation in the hive through trophallactic contacts, independently of crop-filling state.

  11. Evaluation of Metal Toxicity in Streams Affected by Abandoned Mine Lands, Upper Animas River Watershed, Colorado

    USGS Publications Warehouse

    Besser, John M.; Allert, Ann L.; Hardesty, Douglas K.; Ingersoll, Christopher G.; May, Thomas W.; Wang, Ning; Leib, Kenneth J.

    2001-01-01

    Acid drainage from abandoned mines and from naturally-acidic rocks and soil in the upper Animas River watershed of Colorado generates elevated concentrations of acidity and dissolved metals in stream waters and deposition of metal-contaminated particulates in streambed sediments, resulting in both toxicity and habitat degradation for stream biota. High concentrations of iron (Fe), aluminum (Al), zinc (Zn), copper (Cu), cadmium (Cd), and lead (Pb) occur in acid streams draining headwaters of the upper Animas River watershed, and high concentrations of some metals, especially Zn, persist in circumneutral reaches of the Animas River and Mineral Creek, downstream of mixing zones of acid tributaries. Seasonal variation of metal concentrations is reflected in variation in toxicity of stream water. Loadings of dissolved metals to the upper Animas River and tributaries are greatest during summer, during periods of high stream discharge from snowmelt and monsoonal rains, but adverse effects on stream biota may be greater during winter low-flow periods, when stream flows are dominated by inputs of groundwater and contain greatest concentrations of dissolved metals. Fine stream-bed sediments of the upper Animas River watershed also contain elevated concentrations of potentially toxic metals. Greatest sediment metal concentrations occur in the Animas River upstream from Silverton, where there are extensive deposits of mine and mill tailings, and in mixing zones in the Animas River and lower Mineral Creek, where precipitates of Fe and Al oxides also contain high concentrations of other metals. This report summarizes the findings of a series of toxicity studies in streams of the upper Animas River watershed, conducted on-site and in the laboratory between 1998 and 2000. The objectives of these studies were: (1) to determine the relative toxicity of stream water and fine stream-bed sediments to fish and invertebrates; (2) to determine the seasonal range of toxicity in stream

  12. Study on Effects of Different Metallic Vane-Loaded Helix Slow-Wave Structures in Traveling-Wave Tubes

    NASA Astrophysics Data System (ADS)

    Yang, Jianhong; Zhang, Yong; Cai, Xueyuan; Li, Lin

    2009-06-01

    The effects of different metallic vane-loaded helix slow-wave structures of a traveling-wave tube are proposed based on the analysis of the Fourier expansions of the exterior region with metallic vanes. The influences of the metallic vanes dimensions on the phase velocity and interaction impedance are considered in detail. The computed data is compared with the reference data in the 0-16 GHz frequency range with a good consistency. The analytical results reveal that the method of using Fourier expansions can contribute effectively to the reducing of the error between the theoretical and experimented data (around 1.2%). By analyzing the computed results, the performances of the helix slow-wave structure, with T-shaped metallic vanes are superior to the sector-shaped with the same designed parameters. Adjustments can be made to the outer radius of T-shaped metallic vanes which then control the dispersion relation showing either negative or positive, and it is similar to sector-shaped vanes by adjusting its inner radius. And with increasing the distance between the helix and metallic vanes, the dispersion characteristics and interaction impedance of the helix slow-wave structure with T-shaped/sector-shaped metallic vane are all improved.

  13. Statistical analysis of compositional factors affecting the compressive strength of alumina-loaded epoxy (ALOX).

    SciTech Connect

    Montgomery, Stephen Tedford; Ahn, Sung K. (Washington State University, Pullman, WA); Lee, Moo Yul

    2006-02-01

    Detailed statistical analysis of the experimental data from testing of alumina-loaded epoxy (ALOX) composites was conducted to better understand influences of the selected compositional properties on the compressive strength of these ALOX composites. Analysis of variance (ANOVA) for different models with different sets of parameters identified the optimal statistical model as, y{sub l} = -150.71 + 29.72T{sub l} + 204.71D{sub l} + 160.93S{sub 1l} + 90.41S{sub 2l}-20.366T{sub l}S{sub 2l}-137.85D{sub l}S{sub 1l}-90.08D{sub l}S{sub 2l} where y{sub l} is the predicted compressive strength, T{sub l} is the powder type, D{sub l} is the density as the covariate for powder volume concentration, and S{sub il}(i=1,2) is the strain rate. Based on the optimal statistical model, we conclude that the compressive strength of the ALOX composite is significantly influenced by the three main factors examined: powder type, density, and strain rate. We also found that the compressive strength of the ALOX composite is significantly influenced by interactions between the powder type and the strain rate and between the powder volume concentration and the strain rate. However, the interaction between the powder type and the powder volume concentration may not significantly influence the compressive strength of the ALOX composite.

  14. Virus load in pigs affected with different clinical forms of classical swine fever.

    PubMed

    Rout, M; Saikumar, G

    2012-04-01

    Classical swine fever (CSF) is an endemic disease in India, but the real magnitude of the problem is not known as only outbreaks of acute CSF are reported and many cases of chronic and clinically inapparent forms of the disease, which manifest a confusing clinical picture, remain undiagnosed. The real status of classical swine fever virus (CSFV) infection can only be known by testing pigs with highly specific and sensitive diagnostic assays. To obtain the baseline prevalence of CSFV infection among pigs in an endemic region where no vaccination was being performed, a real-time PCR assay was used to detect viral genetic material in tissue samples collected from a slaughterhouse in the northern state of Uttar Pradesh in India. In total, 1120 slaughtered pigs were examined for the presence of CSF suggestive pathological lesions and tissues from suspected cases were tested for the presence of CSFV antigen and nucleic acids by indirect immuno-peroxidase test and real-time PCR, respectively. Based on the detection of viral genetic material in the tonsils, the prevalence of CSFV infection among slaughtered pigs was found to be 7.67%. Pigs detected positive for viral genome by quantitative real-time PCR assay when categorized into different forms of CSF, depending upon the pathological lesions observed, the viral load in the tonsils of some of the pigs with chronic or clinically inapparent form of the disease was similar to that detected in pigs with acute CSF. The results of the study suggested that the risk posed by pigs with chronic disease or those infected but showing no clinical disease may be relatively higher as they can transmit the virus to new susceptible hosts over a longer period of time.

  15. Liquid gallium metal cooling for optical elements with high heat loads

    NASA Astrophysics Data System (ADS)

    Smither, Robert K.; Forster, George A.; Kot, Christian A.; Kuzay, Tuncer M.

    1988-04-01

    The intense photon beams from the insertion devices of the Argonne Advanced Photon Source (APS) will have very high total powers, which in some cases will exceed 10 kW, spread over a few cm 2. These high heat loads will require special cooling methods for the optical elements to preserve the quality of the photon beam. A set of finite element analysis calculations were made in three dimensions to determine the temperature distributions and thermal stresses in a single crystal of silicon with heat loads of 2-20 kW. Different geometric arrangements and different cooling fluids (water, gallium, oil, Na, etc.) were considered. These data were then used in a second set of calculations to determine the distortion of the surface of the crystal and the change in the crystal plane spacing for different parts of the surface. The best heat transfer, smallest surface distortions and smallest temperature gradients on the surface of the crystals were obtained when the cooling fluid was allowed to flow through channels in the crystal. The two best fluids for room temperature operation were found to be water and liquid gallium metal. In all cases tried, the variation in temperature across the face of the crystal and the distortion of the surface was at least a factor of two less for the gallium cooling case than for the water cooling case. The water cooling was effective only for very high flow rates. These high flow rates can cause vibrations in the diffraction crystal and in its mount that can seriously degrade the quality of the diffracted photon beam. When the flow rates were decreased the gallium cooling became 3-10 times more effective. This very efficient cooling and the very low vapor pressure for liquid gallium (less than 10 -12 Torr at 100°C) make liquid gallium a very attractive cooling fluid for high vacuum synchrotron applications. A small electromagnetic induction pump for liquid Ga was built to test this cooling method. A pumping volume of 100 cm 3/s was achieved

  16. Effects of sulfur loading on the corrosion behaviors of metal lithium anode in lithium–sulfur batteries

    SciTech Connect

    Han, Yamiao; Duan, Xiaobo; Li, Yanbing; Huang, Liwu; Zhu, Ding; Chen, Yungui

    2015-08-15

    Highlights: • The effects of sulfur loading on the corrosion behaviors were investigated systematically. • The corrosion became severer with increasing sulfur loading or cycle times. • The corrosion films are porous and loose and cannot prevent further reaction between lithium and polysulfides. - Abstract: The corrosion behaviors in rechargeable lithium–sulfur batteries come from the reactions between polysulfides and metal lithium anode, and they are significantly influenced by the sulfur loading. While there are limited papers reported on the effects of sulfur loading on the corrosion behaviors. In this paper, the effects have been investigated systematically. The corrosion films consisted of insulating lithium ion conductors are loose and porous, so that the corrosive reactions cannot be hindered. The thickness of the corrosion layers, consequently, increased along with increasing sulfur loading or cycle times. For instance, the thickness of corrosion layers after 50 cycles was 98 μm in the cell with 5 mg sulfur while it reached up to 518 μm when the loading increased to 15 mg. The continuous deposition of corrosion products gave rise to low active materials utilization and poor cycling performance.

  17. Factors affecting acceptability of radioactive metal recycling to the public and stakeholders

    SciTech Connect

    Nieves, L.A.; Burke, C.J.

    1995-08-01

    The perception of risk takes place within a cultural context that is affected by individual and societal values, risk information, personal experience, and the physical environment. Researchers have found that measures of {open_quotes}voluntariness of risk assumption,{close_quotes} of {open_quotes}disaster potential,{close_quotes} and of {open_quotes}benefit{close_quotes} are important in explaining risk acceptability. A review of cross-cultural studies of risk perception and risk acceptance, as well as an informal stakeholder survey, are used to assess the public acceptability of radioactive scrap metal recycling.

  18. Task Difficulty Differentially Affects Two Measures of Processing Load: The Pupil Response during Sentence Processing and Delayed Cued Recall of the Sentences

    ERIC Educational Resources Information Center

    Zekveld, Adriana A.; Festen, Joost M.; Kramer, Kramera

    2013-01-01

    Purpose: In this study, the authors assessed the influence of masking level (29% or 71% sentence perception) and test modality on the processing load during language perception as reflected by the pupil response. In addition, the authors administered a delayed cued stimulus recall test to examine whether processing load affected the encoding of…

  19. Oligonol supplementation affects leukocyte and immune cell counts after heat loading in humans.

    PubMed

    Lee, Jeong Beom; Shin, Young Oh

    2014-06-24

    Oligonol is a low-molecular-weight form of polyphenol and has antioxidant and anti-inflammatory activity, making it a potential promoter of immunity. This study investigates the effects of oligonol supplementation on leukocyte and immune cell counts after heat loading in 19 healthy male volunteers. The participants took a daily dose of 200 mg oligonol or a placebo for 1 week. After a 2-week washout period, the subjects were switched to the other study arm. After each supplement, half-body immersion into hot water was made, and blood was collected. Then, complete and differential blood counts were performed. Flow cytometry was used to enumerate and phenotype lymphocyte subsets. Serum concentrations of interleukin (IL)-1β and IL-6 in blood samples were analyzed. Lymphocyte subpopulation variables included counts of total T cells, B cells, and natural killer (NK) cells. Oligonol intake attenuated elevations in IL-1β (an 11.1-fold change vs. a 13.9-fold change immediately after heating; a 12.0-fold change vs. a 12.6-fold change 1h after heating) and IL-6 (an 8.6-fold change vs. a 9.9-fold change immediately after heating; a 9.1-fold change vs. a 10.5-fold change 1h after heating) immediately and 1 h after heating in comparison to those in the placebo group. Oligonol supplementation led to significantly higher numbers of leukocytes (a 30.0% change vs. a 21.5% change immediately after heating; a 13.5% change vs. a 3.5% change 1h after heating) and lymphocytes (a 47.3% change vs. a 39.3% change immediately after heating; a 19.08% change vs. a 2.1% change 1h after heating) relative to those in the placebo group. Oligonol intake led to larger increases in T cells, B cells, and NK cells at rest (p < 0.05, p < 0.05, and p < 0.001, respectively) and immediately after heating (p < 0.001) in comparison to those in the placebo group. In addition, levels of T cells (p < 0.001) and B cells (p < 0.001) were significantly higher 1 h after heating in comparison to those in the

  20. Determination of instream metal loads using tracer-injection and synoptic-sampling techniques in Wightman Fork, southwestern Colorado, September 1997

    USGS Publications Warehouse

    Ortiz, Roderick F.; Bencala, Kenneth E.

    2001-01-01

    Spatial determinations of the metal loads in Wightman Fork can be used to identify potential source areas to the stream. In September 1997, a chloride tracer-injection study was done concurrently with synoptic water-quality sampling in Wightman Fork near the Summitville Mine site. Discharge was determined and metal concentrations at 38 sites were used to generate mass-load profiles for dissolved aluminum, copper, iron, manganese, and zinc. The U.S. Environmental Protection Agency had previously identified these metals as contaminants of concern.Metal loads increased substantially in Wightman Fork near the Summitville Mine. A large increase occurred along a 60-meter reach that is north of the North Waste Dump and generally corresponds to a region of radial faults. Metal loading from this reach was equivalent to 50 percent or more of the dissolved aluminum, copper, iron, manganese, and zinc load upstream from the outfall of the Summitville Water Treatment Facility (SWTF). Overall, sources along the entire reach upstream from the SWTF were equivalent to 15 percent of the iron, 33 percent of the copper and manganese, 58 percent of the zinc, and 66 percent of the aluminum load leaving the mine site. The largest increases in metal loading to Wightman Fork occurred as a result of inflow from Cropsy Creek. Aluminum, iron, manganese, and zinc loads from Cropsy Creek were equivalent to about 40 percent of the specific metal load leaving the mine site. Copper, iron, and manganese loads from Cropsy Creek were nearly as large or larger than the load from sources upstream from the SWTF.

  1. Creep deformation and rupture behavior of 2.25Cr-1Mo steel weldments and its constituents (base metal, weld metal and simulated heat affected zones)

    SciTech Connect

    Laha, K.; Chandravathi, K.S.; Rao, K.B.S.; Mannan, S.L.

    1995-12-31

    Microstructure across a weldment base metal through transformed heat-affected zone (HAZ) to cast weld metal. HAZ of 2.25Cr-1Mo weldment consists of coarse-grain bainite, fine-grain bainite and intercritical region. These HAZ microstructures were simulated by isothermal heat-treatments. Creep tests were carried out on base metal, weld metal, weldment and the simulated HAZ structures. Creep deformation and fracture behavior of 2.25Cr-1Mo weldments has been assessed based on the properties of its constituents. Coarse-grain bainite with low ductility and intercritical structure with low strength are the critical components of HAZ determining performance of the weldments.

  2. Head orientation affects the intracranial pressure response resulting from shock wave loading in the rat.

    PubMed

    Dal Cengio Leonardi, Alessandra; Keane, Nickolas J; Bir, Cynthia A; Ryan, Anne G; Xu, Liaosa; Vandevord, Pamela J

    2012-10-11

    Since an increasing number of returning military personnel are presenting with neurological manifestations of traumatic brain injury (TBI), there has been a great focus on the effects resulting from blast exposure. It is paramount to resolve the physical mechanism by which the critical stress is being inflicted on brain tissue from blast wave encounters with the head. This study quantitatively measured the effect of head orientation on intracranial pressure (ICP) of rats exposed to a shock wave. Furthermore, the study examined how skull maturity affects ICP response of animals exposed to shock waves at various orientations. Results showed a significant increase in ICP values in larger rats at any orientation. Furthermore, when side-ICP values were compared to the other orientations, the peak pressures were significantly lower suggesting a relation between ICP and orientation of the head due to geometry of the skull and location of sutures. This finding accentuates the importance of skull dynamics in explaining possible injury mechanisms during blast. Also, the rate of pressure change was measured and indicated that the rate was significantly higher when the top of the head was facing the shock front. The results confirm that the biomechanical response of the superior rat skull is distinctive compared to other areas of the skull, suggesting a skull flexure mechanism. These results not only present insights into the mechanism of brain injury, but also provide information which can be used for designing more effective protective head gear. PMID:22947434

  3. Anomalies in Trace Metal and Rare-Earth Loads below a Waste-Water Treatment Plant

    NASA Astrophysics Data System (ADS)

    Antweiler, R.; Writer, J. H.; Murphy, S.

    2013-12-01

    The changes in chemical loads were examined for 54 inorganic elements and compounds in a 5.4-km reach of Boulder Creek, Colorado downstream of a waste water treatment plant (WWTP) outfall. Elements were partitioned into three categories: those showing a decrease in loading downstream, those showing an increase, and those which were conservative, at least over the length of the study reach. Dissolved loads which declined - generally indicative of in-stream loss via precipitation or sorption - were typically rapid (occurring largely before the first sampling site, 2.3 km downstream); elements showing this behavior were Bi, Cr, Cs, Ga, Ge, Hg, Se and Sn. These results were as expected before the experiment was performed. However, a large group (28 elements, including all the rare-earth elements, REE, except Gd) exhibited dissolved load increases indicating in-stream gains. These gains may be due to particulate matter dissolving or disaggregating, or that desorption is occurring below the WWTP. As with the in-stream loss group, the processes tended to be rapid, typically occurring before the first sampling site. Whole-water samples collected concurrently also had a large group of elements which showed an increase in load downstream of the WWTP. Among these were most of the group which had increases in the dissolved load, including all the REE (except Gd). Because whole-water samples include both dissolved and suspended particulates within them, increases in loads cannot be accounted for by invoking desorption or disaggregation mechanisms; thus, the only source for these increases is from the bed load of the stream. Further, the difference between the whole-water and dissolved loads is a measure of the particulate load, and calculations show that not only did the dissolved and whole-water loads increase, but so did the particulate loads. This implies that at the time of sampling the bed sediment was supplying a significant contribution to the suspended load. In general

  4. The Potential of a Clinch-Lock Polymer Metal Hybrid Technology for Use in Load-Bearing Automotive Components

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Sellappan, V.; Arakere, G.; Seyr, Norbert; Obieglo, Andreas; Erdmann, Marc; Holzleitner, Jochen

    2009-10-01

    In order to help meet the needs of automotive original equipment manufacturers and their suppliers for a cost-effective, robust, reliable polymer-metal-hybrid (PMH) technology which can be used for the manufacturing of load-bearing body-in-white (BIW) components and which is compatible with the current BIW manufacturing process chain, a new approach, the so-called direct-adhesion PMH technology, was recently proposed (Grujicic et al., J. Mater. Process. Technol., 2008, 195, p 282-298). Within this approach, the necessary level of polymer-to-metal mechanical interconnectivity is attained through direct adhesion and mechanical interlocking. In the present work, a new concept for mechanical interlocking between the metal and plastics is proposed and analyzed computationally. The approach utilizes some of the ideas used in the spot-clinching joining process and is appropriately named clinch-lock PMH technology. To assess the potential of the clinch-lock approach for providing the required level of metal/polymer mechanical interlocking, a set of finite-element based sheet-metal forming, injection molding and structural mechanics analyses was carried out. The results obtained show that stiffness and buckling resistance levels can be attained which are comparable with those observed in the competing injection overmolding PMH process but with an ~3% lower weight (of the polymer subcomponent) and without the need for holes and for overmolding of the free edges of the metal stamping.

  5. Super-strengthening and stabilizing with carbon nanotube harnessed high density nanotwins in metals by shock loading

    PubMed Central

    Lin, Dong; Saei, Mojib; Suslov, Sergey; Jin, Shengyu; Cheng, Gary J.

    2015-01-01

    CNTs reinforced metal composites has great potential due to their superior properties, such as light weight, high strength, low thermal expansion and high thermal conductivity. The current strengthening mechanisms of CNT/metal composite mainly rely on CNTs’ interaction with dislocations and CNT’s intrinsic high strength. Here we demonstrated that laser shock loading the CNT/metal composite results in high density nanotwins, stacking fault, dislocation around the CNT/metal interface. The composites exhibit enhanced strength with excellent stability. The results are interpreted by both molecular dynamics simulation and experiments. It is found the shock wave interaction with CNTs induces a stress field, much higher than the applied shock pressure, surrounding the CNT/metal interface. As a result, nanotwins were nucleated under a shock pressure much lower than the critical values to generate twins in metals. This hybrid unique nanostructure not only enhances the strength, but also stabilize the strength, as the nanotwin boundaries around the CNTs help pin the dislocation movement. PMID:26493533

  6. Enzyme activities in the Delaware Estuary affected by elevated suspended sediment load

    NASA Astrophysics Data System (ADS)

    Ziervogel, K.; Arnosti, C.

    2009-09-01

    Extracellular enzyme activities were compared among surface water, bottom water, and sediments of the Delaware Estuary using six fluorescently labeled, structurally distinct polysaccharides to determine the effects of suspended sediment transport on water column hydrolytic activities. Potential hydrolysis rates in surface waters were also measured for the nearby shelf. Samples were taken in December 2006, 6 months after a major flood event in the Delaware Basin that was followed by high freshwater run-off throughout the fall of 2006. All substrates were hydrolyzed in sediments and in the water column, including two (pullulan and fucoidan) that previously were not hydrolyzed in surface waters of the Delaware estuary. At the time of sampling, total particulate matter (TPM) in surface waters at the lower bay, bay mouth, and shelf ranged between 31 mg l -1 and 48 mg l -1 and were 2 to 20 times higher than previously reported. The presence of easily resuspended sediments at the lower bay and bay mouth indicated enhanced suspended sediment transport in the estuary prior to our sampling. Bottom water hydrolysis rates at the two sites affected by sediment resuspension were generally higher than those in surface waters from the same site. Most notably, fucoidan and pullulan hydrolysis rates in bay mouth bottom waters were 22.6 and 6.2 nM monomer h -1, respectively, and thus three and five times higher than surface water rates. Our data suggest that enhanced mixing processes between the sediment and the overlying water broadened the spectrum of water column hydrolases activity, improving the efficiency of enzymatic degradation of high molecular weight organic matter in the water with consequences for organic matter cycling in the Delaware estuary.

  7. Metal speciation and immobilization reactions affecting the true efficiency of artificial wetlands to treat acid mine drainage. Research report

    SciTech Connect

    Karathanasis, A.D.; Thompson, Y.L.

    1990-08-01

    The ability of constructed wetlands to lower total Al, Cu, Fe, Mn, and Zn concentrations and organically complex the metals in acid mine drainage (AMD) was investigated under greenhouse and field conditions. In the greenhouse study, Typha plants grown in six different substrates received simulated acid mine drainage of low metal load for five months. Most effluents, especially those from ground flows, showed significant decreases in acidity and metal concentrations. The pine needle and hay substrates most effectively reduced acidity and total Al levels. The metal concentration and acidity of a very high metal load AMD were also reduced substantially during the first six months of treatment with a wetland which was constructed by the U.S. Forest Service in McCreary County, KY and used mushroom compost as a substrate. After 8 months of operation, however, and during periods of high flow rates (> 10 gallons/min) the efficiency of the wetland was drastically reduced, apparently due to reduced residence time, insufficient size and metal overloading. The metals in Fe, Mn, and Zn showed the highest tendency for residual retention, while Al and especially Cu showed high affinity for organic retention. Exchangeable and sorbed forms were present in very small concentrations and in many cases were almost negligible.

  8. Surface coating affects behavior of metallic nanoparticles in a biological environment.

    PubMed

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Vinković Vrček, Ivana; Gajović, Srećko

    2016-01-01

    Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.

  9. Surface coating affects behavior of metallic nanoparticles in a biological environment

    PubMed Central

    Jurašin, Darija Domazet; Ćurlin, Marija; Capjak, Ivona; Crnković, Tea; Lovrić, Marija; Babič, Michal; Horák, Daniel; Gajović, Srećko

    2016-01-01

    Summary Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible. PMID:26977382

  10. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  11. Peach ( Prunus persica L. Batsch) allergen-encoding genes are developmentally regulated and affected by fruit load and light radiation.

    PubMed

    Botton, Alessandro; Andreotti, Carlo; Costa, Guglielmo; Ramina, Angelo

    2009-01-28

    The fruits of Rosaceae species may frequently induce allergic reactions in both adults and children, especially in the Mediterranean area. In peach, true allergens and cross-reactive proteins may cause hypersensitive reactions involving a wide diversity of symptoms. Three known classes of allergenic proteins, namely, Pru p 1, Pru p 3, and Pru p 4, have been reported to be mostly involved, but an exhaustive survey of the proteins determining the overall allergenic potential, their biological functions, and the factors affecting the expression of the related genes is still missing. In the present study, the expression profiles of some selected genes encoding peach allergen isoforms were studied during fruit growth and development and upon different fruit load and light radiation regimens. The results indicate that the majority of allergen-encoding genes are expressed at their maximum during the ripening stage, therefore representing a potential risk for peach consumers. Nevertheless, enhancing the light radiation and decreasing the fruit load achieved a reduction of the transcription rate of most genes and a possible decrease of the overall allergenic potential at harvest. According to these data, new growing practices could be set up to obtain hypoallergenic peach fruits and eventually combined with the cultivation of hypoallergenic genotypes to obtain a significant reduction of the allergenic potential.

  12. [Effect analysis on the two total load control methods for poisonous heavy metals].

    PubMed

    Fu, Guo-Wei

    2012-12-01

    Firstly it should be made clear that implementation of source total load control for the first type of pollutants is necessary for environmental pollution control legislation and economic structure regulation. This kind of surveillance method has been more practical to be implemented since the Manual of the Industry Discharge Coefficient of First National Pollution Sources Investigation was published. The source total load control and water environment total load control are independent of each other and none of them is redundant, on the other side they can be complementary to each other. In the present, some local planning managers are blurring and confusing the contents and styles of the two surveillance methods. They just use the water total load control to manage all the pollutants, and source total load control is discarded, which results in the loss of control for the first type of pollutants especially for the drinking water source surveillance. There is a big difference between the water quality standards and the water environmental background concentration values for the first type of pollutants in the Environmental quality standard for surface water (GB 3838-88), which means that there are problems such as "relaxing the pollutant discharge permit" and "risk induced by valence state change". Taking an enterprise with 10t electrolytic lead production capacity as an example, there is a big difference between the allowable lead discharged loads by the two total load surveillance methods. In summary, it will bring a lot of harmful effects if the water total load control is implemented for the two types of pollutants, so the source total load control and water environmental total load control should be implemented strictly at the same time.

  13. Plastic scintillators with high loading of one or more metal carboxylates

    DOEpatents

    Cherepy, Nerine; Sanner, Robert Dean

    2016-01-12

    In one embodiment, a material includes at least one metal compound incorporated into a polymeric matrix, where the metal compound includes a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands includes a tertiary butyl group, and where the material is optically transparent. In another embodiment, a method includes: processing pulse traces corresponding to light pulses from a scintillator material; and outputting a result of the processing, where the scintillator material comprises at least one metal compound incorporated into a polymeric matrix, the at least one metal compound including a metal and one or more carboxylate ligands, where at least one of the one or more carboxylate ligands has a tertiary butyl group, and where the scintillator material is optically transparent and has an energy resolution at 662 keV of less than about 20%.

  14. Plastic scintillators with high loading of one or more metal carboxylates

    DOEpatents

    Cherepy, Nerine; Sanner, Robert Dean

    2016-09-20

    According to one embodiment, a method includes incorporating a metal carboxylate complex into a polymeric matrix to form an optically transparent material. According to another embodiment, a material includes at least one metal carboxylate complex incorporated into a polymeric matrix, where the material is optically transparent.

  15. Metals loads into the Mediterranean Sea: estimate of Sarno River inputs and ecological risk.

    PubMed

    Montuori, P; Lama, P; Aurino, S; Naviglio, D; Triassi, M

    2013-03-01

    The metals pollution in the Sarno River and its environmental impact on the Gulf of Naples (Tyrrhenian Sea, Central Mediterranean Sea) were estimated. Eight selected metals (As, Hg, Cd, Cr, Cu, Ni, Pb and Zn) were determined in the water dissolved phase (DP), suspended particulate matter (SPM) and sediment samples. Selected metals concentrations ranged from 0.32 to 1,680.39 μg l(-1) in water DP, from 103.6 to 7,734.6 μg l(-1) in SPM and from 90.7 to 2,470.3 mg kg(-1) in sediment samples. Contaminant discharges of selected metals into the sea were calculated in about 13,977.6 kg year(-1) showing that this river should account as one of the main contribution sources of metals to the Tyrrhenian Sea. PMID:23229134

  16. Groundwater contributions to metal transport in a small river affected by mining and smelting waste.

    PubMed

    Coynel, Alexandra; Schäfer, Jörg; Dabrin, Aymeric; Girardot, Naïg; Blanc, Gérard

    2007-08-01

    The Riou Mort watershed, strongly affected by former coal mining and Zn ore treatment, has been the major source of the historical polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system. Two decades after the end of ore treatment, the former industrial area still contributes important amounts of metals/metalloids from various, partly unidentified, sources to the downstream river system. This study presents the high spatial variability of metal/metalloid (Cd, Zn, As, Sb, U, V) concentrations in water and suspended particulate matter (SPM) from eight observation sites during a short, intense flood event. Despite important dilution effects, the observed concentration levels at the different sites suggested additional Cd and Zn inputs, probably from polluted groundwater. This formerly unknown metal source was then localized and characterized by sampling water and SPM along two longitudinal profiles during different hydrological situations. Groundwater inputs of "truly dissolved" (<0.02 microm) Cd and Zn occurred along approximately 200 m, contributing 43% and 28% to the total annual (2004) Cd and Zn fluxes in the Riou Mort River. The estimated groundwater concentrations of Cd and Zn (2500-6700 and 83,000-170,000 microg l(-1), respectively) in the source zone were consistent with values measured in samples from the near aquifer (5400-13,000 and 200,000-400,000 microg l(-1)). The present work induced concrete remediation actions (pumping and treatment of the polluted groundwater), that are expected to strongly reduce dissolved Cd and Zn emissions into the Riou Mort River.

  17. Age affects not only metabolome but also metal toxicity in Scenedesmus quadricauda cultures.

    PubMed

    Kováčik, Jozef; Klejdus, Bořivoj; Babula, Petr; Hedbavny, Josef

    2016-04-01

    Responses of Scenedesmus quadricauda grown in vitro and differing in age (old culture-13 months, young culture-1 month) to short-term cadmium (Cd) or nickel (Ni) excess (24h) were compared. Higher age of the culture led to lower amount of chlorophylls, ascorbic acid and glutathione but higher signal of ROS. Surprisingly, sucrose was detected using DART-Orbitrap MS in both old and young culture and subsequent quantification confirmed its higher amount (ca. 3-times) in the old culture. Cd affected viability and ROS amount more negatively than Ni that could arise from excessive Cd uptake which was also higher in all treatments than in respective Ni counterparts. Surprisingly, nitric oxide was not extensively different in response to age or metals. Strong induction of phytochelatin 2 is certainly Cd-specific response while Ni also elevated ascorbate content. Krebs cycle acids were more accumulated in the young culture but they were rather elevated in the old culture (citric acid under Ni excess). We conclude that organic solid 'Milieu Bristol' medium we tested is suitable for long-term storage of unicellular green algae (also successfully tested for Coccomyxa sp. and Parachlorella sp.) and the impact of age on metal uptake may be useful for bioremediation purposes. PMID:26687303

  18. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition.

  19. Toxic metal interactions affect the bioaccumulation and dietary intake of macro- and micro-nutrients.

    PubMed

    Khan, Anwarzeb; Khan, Sardar; Alam, Mehboob; Khan, Muhammad Amjad; Aamir, Muhammad; Qamar, Zahir; Ur Rehman, Zahir; Perveen, Sajida

    2016-03-01

    The present study was conducted to evaluate the effects of heavy metals (cadmium (Cd), lead (Pb) and Cd-Pb mix) on bioaccumulation of different nutrients. Three plant species including potato, tomato and lettuce were grown in pots containing soil contaminated with Cd, Pb and Cd-Pb mix at four different levels. The edible portions of each plant were analysed for Cd, Pb and different macro- and micro-nutrients including protein, vitamin C, nitrogen (N), phosphorous (P), potassium (K), iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg). Results indicated significant variations in selected elemental concentrations in all the three plants grown in different treatments. The projected daily dietary intake values of selected metals were significant (P < 0.001) for Fe, Mn, Ca and Mg but not significant for protein, vitamin C, N and P. The elemental contribution to Recommended Dietary Allowance (RDA) was significant for Mn. Similarly, Fe and Mg also showed substantial contribution to RDA, while Ca, N, P, K, protein and vitamin C showed the minimal contribution for different age groups. This study suggests that vegetables cultivated on Cd and Pb contaminated soil may significantly affect their quality, and the consumption of such vegetables may result in substantial negative effects on nutritional composition of the consumer body. Long term and continuous use of contaminated vegetables may result in malnutrition. PMID:26714294

  20. Metal loading and enzymatic degradation of fungal cell walls and chitin.

    PubMed

    Krantz-Rülcker, C; Frändberg, E; Schnürer, J

    1995-01-01

    The capacity of chitin (from crab shells) and of fungal cell walls from Trichoderma harzianum to accumulate zinc, cadmium and mercury was studied as well as the effects of adsorbed metals on the enzymatic hydrolysis by Novozym 234 of the two substrates. The total adsorbing capacity with respect to these metals was estimated to be at least 10 mmol kg-1 chitin (dry weight) and 50 mmol kg-1 fungal cell walls (dry weight), respectively, at pH 6.1. Enzymatic digestion of fungal cell walls preloaded with mercury and cadmium was significantly reduced, while zinc did not cause any significant inhibition. The effect of metal complexation by chitin on the enzymatic digestion was not as pronounced as for fungal cell walls. This could reflect the fact that chitin sorbed a lower total amount of metals. The inhibitory effect of metals on the enzymatic hydrolysis was caused by the association of the metals with the two substrates and not by the presence of free metals in solution.

  1. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production.

    PubMed

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2013-01-21

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu(2)O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO(2) catalyst has enhanced the photocatalytic H(2) production. Comparatively, H(2) treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H(2) production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO(2) catalyst systems due to their low cost and high performance in photocatalytic applications. PMID:23228941

  2. Non-noble metal Cu-loaded TiO2 for enhanced photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Foo, Wei Jian; Zhang, Chun; Ho, Ghim Wei

    2012-12-01

    Here we have demonstrated the preparation of high-quality, monodispersed and tunable phases of Cu nanoparticles. Structural and chemical composition studies depict the evolution of Cu-Cu2O-CuO nanoparticles at various process stages. The loading of Cu and Cu oxide nanoparticles on TiO2 catalyst has enhanced the photocatalytic H2 production. Comparatively, H2 treatment produces well-dispersed Cu nanoparticles with thin oxide shells that show the highest H2 production amongst the samples. The relatively higher photocatalytic performance is deemed to result from reduced structural defects, higher surface area and dispersivity as well as favorable charge transfer, which inhibits recombination. The Cu nanoparticles are shown to be a promising alternative to noble metal-loaded TiO2 catalyst systems due to their low cost and high performance in photocatalytic applications.

  3. CSER 94-014: Storage of metal-fuel loaded EBR-II casks in concrete vault on PFP grounds

    SciTech Connect

    Hess, A.L.

    1994-12-05

    A criticality safety evaluation is presented to permit EBR-2 spent fuel casks loaded with metallic fuel rods to be stored in an 8-ft diameter, cylindrical concrete vault inside the PFP security perimeter. The specific transfer of three casks with Pu alloy fuel from the Los Alamos Molten Plutonium Reactor Experiment from the burial grounds to the vault is thus covered. Up to seven casks may be emplaced in the casing with 30 inches center to center spacing. Criticality safety is assured by definitive packaging rules which keep the fissile medium dry and at a low effective volumetric density.

  4. Left-handed-media simulation and transmission of EM waves in subwavelength split-ring-resonator-loaded metallic waveguides.

    PubMed

    Marqués, R; Martel, J; Mesa, F; Medina, F

    2002-10-28

    At microwave frequencies, hollow metallic waveguides behave in certain aspects as a "one-dimensional plasma." This feature will be advantageously used for simulating the propagation of electromagnetic (EM) waves in left-handed metamaterials provided the hollow waveguide is periodically loaded with split ring resonators. It will be shown that EM transmission in this structure is feasible within a certain frequency band even if the transverse dimensions of the waveguide are much smaller than the associated free-space wavelength. This effect can be qualitatively and quantitatively explained by the left-handed metamaterial theory, thus providing a new experimental validation for such a theory.

  5. Analysis of the effect of different absorber materials and loading on the shielding effectiveness of a metallic enclosure

    NASA Astrophysics Data System (ADS)

    Parr, S.; Karcoon, H.; Dickmann, S.; Rambousky, R.

    2015-11-01

    Metallic rooms as part of a complex system, like a ship, are necessarily connected electromagnetically via apertures and cables to the outside. Therefore, their electromagnetic shielding effectiveness (SE) is limited by ventilation openings, cable feed-throughs and door gaps. Thus, electronic equipment inside these rooms is susceptible to outer electromagnetic threats like IEM (Intentional Electromagnetic Interference). Dielectric or magnetic absorber inside such a screened room can be used in order to prevent the SE from collapsing at the resonant frequencies. In this contribution, the effect of different available absorber materials is compared, as well as other properties like weight and workability. Furthermore, parameter variations of the absorber as well as the effect of loading in form of metallic and dielectric structures on the SE are analyzed.

  6. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.

    PubMed

    Bonthoux, Francis

    2016-07-01

    Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  7. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding.

    PubMed

    Bonthoux, Francis

    2016-07-01

    Welding fumes are classified as Group 2B 'possibly carcinogenic' and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s(-1) The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s(-1)) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s(-1) The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives.

  8. Factors Affecting the Capture Efficiency of a Fume Extraction Torch for Gas Metal Arc Welding

    PubMed Central

    Bonthoux, Francis

    2016-01-01

    Welding fumes are classified as Group 2B ‘possibly carcinogenic’ and this prompts to the implementation of local exhaust ventilation (LEV). The fume extraction torch with LEV integrated into the tool is the most attractive solution but its capture efficiency is often disappointing in practice. This study assesses the main parameters affecting fume capture efficiency namely the extraction flow rate, the positioning of the suction openings on the torch, the angle of inclination of the torch to the workpiece during welding, the metal transfer modes, and the welding deposition rate. The theoretical velocity induced by suction, estimated from the extraction flow rate and the position of the suction openings, is the main parameter affecting effectiveness of the device. This is the design parameter and its value should never be <0.25 m s−1. The angle of the torch relative to the workpiece also has a great deal of influence. To improve efficiency, work station layouts need to favour positions where the torch is held with angles closer to perpendicular (<15°). Welding with high deposition rates (>1.1g s−1) and spray transfer leads to low capture efficiency if induced velocities are <0.5 m s−1. The results of the study can be used in the design of integrated on-torch extraction systems and provide information for fixing system objectives. PMID:27074798

  9. Decrease in air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens.

    PubMed

    Guttová, Anna; Lackovičová, Anna; Pišút, Ivan; Pišút, Peter

    2011-11-01

    The study illustrates the response of epiphytic lichens to changing atmospheric conditions in Central Europe, where the emission of air pollutants has significantly decreased from 1990, in the area in and around Bratislava City. Variation in concentrations of seven metal elements (Cu, Cd, Cr, Mn, Ni, Pb and Zn) in the thalli of Evernia prunastri, Hypogymnia physodes and Parmelia sulcata is assessed. Samples of these species were exposed in lichen bags in 39 sites throughout the territory of the city (more than 300 km(2)) during the period December 2006-February 2007. The samples were analyzed by AAS for metal element contents prior to and after exposure. The decrease in air pollution (for all studied elements by more than 90%) corresponded to a decrease in the accumulation of elements in lichen thalli, e.g. the contents of Pb decreased by 69% and of Cd by 34% on average. The results show also variations in accumulation between with different lichen species. The background values of metal element contents in thalli of H. physodes growing in situ were measured in semi-natural sites in Slovakia. It is suggested that these can be used as a reference in large-scale monitoring studies in Central Europe. Analysis of compatible data from the current study, and the study performed at the end of 1990s shows a significant decrease of metal elements in the air pollution load. PMID:21327486

  10. Decrease in air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens.

    PubMed

    Guttová, Anna; Lackovičová, Anna; Pišút, Ivan; Pišút, Peter

    2011-11-01

    The study illustrates the response of epiphytic lichens to changing atmospheric conditions in Central Europe, where the emission of air pollutants has significantly decreased from 1990, in the area in and around Bratislava City. Variation in concentrations of seven metal elements (Cu, Cd, Cr, Mn, Ni, Pb and Zn) in the thalli of Evernia prunastri, Hypogymnia physodes and Parmelia sulcata is assessed. Samples of these species were exposed in lichen bags in 39 sites throughout the territory of the city (more than 300 km(2)) during the period December 2006-February 2007. The samples were analyzed by AAS for metal element contents prior to and after exposure. The decrease in air pollution (for all studied elements by more than 90%) corresponded to a decrease in the accumulation of elements in lichen thalli, e.g. the contents of Pb decreased by 69% and of Cd by 34% on average. The results show also variations in accumulation between with different lichen species. The background values of metal element contents in thalli of H. physodes growing in situ were measured in semi-natural sites in Slovakia. It is suggested that these can be used as a reference in large-scale monitoring studies in Central Europe. Analysis of compatible data from the current study, and the study performed at the end of 1990s shows a significant decrease of metal elements in the air pollution load.

  11. Investigation of Anomalous Behavior in Metallic-Based Materials Under Compressive Loading

    NASA Technical Reports Server (NTRS)

    Gil, Christopher M.; Lissenden, Cliff J.; Lerch, Bradley A.

    1998-01-01

    An anomalous material response has been observed under the action of applied compressive loads in fibrous SiC/Ti (both Ti-6242 and Ti-15-3 alloys) and the monolithic nickel-base alloy IN-718 in the aged condition. The observed behavior is an increase, rather than a decrease, in the instantaneous Young's modulus with increasing load. This increase is small, but can be significant in yield surface determination tests, where an equivalent offset strain on the order of 10 micron(1 x 10(exp -6) m/m) is being used. Stiffening has been quantified by calculating offset strains from the linear elastic loading line. The offset strains associated with stiffening during compressive loading are positive and of the same order as the target offset strains in yield surface determination tests. At this time we do not have a reasonable explanation for this response nor can we identify a deformation mechanism that might cause it. On the other hand, we are not convinced that it is an artifact of the experimental procedure because a number of issues have been identified and seemingly ruled out. In fact, stiffening appears to be temperature dependent, since it decreases as the temperature increases.

  12. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    USGS Publications Warehouse

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow

  13. Rhizosphere Microbial Community Composition Affects Cadmium and Zinc Uptake by the Metal-Hyperaccumulating Plant Arabidopsis halleri

    PubMed Central

    Muehe, E. Marie; Weigold, Pascal; Adaktylou, Irini J.; Planer-Friedrich, Britta; Kraemer, Ute; Kappler, Andreas

    2015-01-01

    The remediation of metal-contaminated soils by phytoextraction depends on plant growth and plant metal accessibility. Soil microorganisms can affect the accumulation of metals by plants either by directly or indirectly stimulating plant growth and activity or by (im)mobilizing and/or complexing metals. Understanding the intricate interplay of metal-accumulating plants with their rhizosphere microbiome is an important step toward the application and optimization of phytoremediation. We compared the effects of a “native” and a strongly disturbed (gamma-irradiated) soil microbial communities on cadmium and zinc accumulation by the plant Arabidopsis halleri in soil microcosm experiments. A. halleri accumulated 100% more cadmium and 15% more zinc when grown on the untreated than on the gamma-irradiated soil. Gamma irradiation affected neither plant growth nor the 1 M HCl-extractable metal content of the soil. However, it strongly altered the soil microbial community composition and overall cell numbers. Pyrosequencing of 16S rRNA gene amplicons of DNA extracted from rhizosphere samples of A. halleri identified microbial taxa (Lysobacter, Streptomyces, Agromyces, Nitrospira, “Candidatus Chloracidobacterium”) of higher relative sequence abundance in the rhizospheres of A. halleri plants grown on untreated than on gamma-irradiated soil, leading to hypotheses on their potential effect on plant metal uptake. However, further experimental evidence is required, and wherefore we discuss different mechanisms of interaction of A. halleri with its rhizosphere microbiome that might have directly or indirectly affected plant metal accumulation. Deciphering the complex interactions between A. halleri and individual microbial taxa will help to further develop soil metal phytoextraction as an efficient and sustainable remediation strategy. PMID:25595759

  14. Effects of Loading Type And Cavity Position On The Pattern Height In Micro-manufacturing of Al5083 Superplastic Alloy And Zr62Cu17Ni13Al8 Metallic Glass

    NASA Astrophysics Data System (ADS)

    Na, Young-Sang; Son, Seon-Cheon; Park, Kyu-Yeol; Lee, Jong-Hoon

    2009-11-01

    Vibrational micro-forming of pyramidal shape patterns was conducted for an Al superplastic alloy, Al 5083 and a Zr-based bulk metallic glass, Zr62Cu17Ni13Al8. A vibrational micro-forming system was specially designed for generating vibrational load by combining a PZT actuator with a signal generator. Si micro dies with wet-etched pyramidal patterns were used as master dies for vibrational micro-forming. The micro-formed pattern height was increasing with increasing the frequency of the vibrational load. In particular, the vibrationally-microformed pattern height is similar or even higher than the statically-microformed pattern height when the load frequency exceeded about 125 kHz. It was also observed that the crystal grains affect the surface quality of the microformed pattern and the distribution of the pattern height in the die cavity array.

  15. Factors Affecting Microbial Load and Profile of Potential Pathogens and Food Spoilage Bacteria from Household Kitchen Tables

    PubMed Central

    Latouche, Melissa Cathleen

    2016-01-01

    The aim was to study the bacterial load and isolate potential pathogens and food spoilage bacteria from kitchen tables, including preparation tables and dining tables. Methods. A total of 53 households gave their consent for participation. The samples were collected by swabbing over an area of 5 cm by 5 cm of the tables and processed for bacterial count which was read as colony forming units (CFU), followed by isolation and identification of potential pathogens and food spoilage bacteria. Result. Knowledge about hygiene was not always put into practice. Coliforms, Enterococcus spp., Pseudomonas spp., Proteus spp., and S. aureus were detected from both dining and preparation tables. The mean CFU and presence of potential pathogens were significantly affected by the hygienic practices of the main food handler of the house, materials of kitchen tables, use of plastic covers, time of sample collection, use of multipurpose sponges/towels for cleaning, and the use of preparation tables as chopping boards (p < 0.05). Conclusion. Kitchen tables could be very important source of potential pathogens and food spoilage bacteria causing foodborne diseases. Lack of hygiene was confirmed by presence of coliforms, S. aureus, and Enterococcus spp. The use of plastic covers, multipurpose sponges, and towels should be discouraged. PMID:27446220

  16. Factors Affecting Microbial Load and Profile of Potential Pathogens and Food Spoilage Bacteria from Household Kitchen Tables.

    PubMed

    Biranjia-Hurdoyal, Susheela; Latouche, Melissa Cathleen

    2016-01-01

    The aim was to study the bacterial load and isolate potential pathogens and food spoilage bacteria from kitchen tables, including preparation tables and dining tables. Methods. A total of 53 households gave their consent for participation. The samples were collected by swabbing over an area of 5 cm by 5 cm of the tables and processed for bacterial count which was read as colony forming units (CFU), followed by isolation and identification of potential pathogens and food spoilage bacteria. Result. Knowledge about hygiene was not always put into practice. Coliforms, Enterococcus spp., Pseudomonas spp., Proteus spp., and S. aureus were detected from both dining and preparation tables. The mean CFU and presence of potential pathogens were significantly affected by the hygienic practices of the main food handler of the house, materials of kitchen tables, use of plastic covers, time of sample collection, use of multipurpose sponges/towels for cleaning, and the use of preparation tables as chopping boards (p < 0.05). Conclusion. Kitchen tables could be very important source of potential pathogens and food spoilage bacteria causing foodborne diseases. Lack of hygiene was confirmed by presence of coliforms, S. aureus, and Enterococcus spp. The use of plastic covers, multipurpose sponges, and towels should be discouraged.

  17. Factors Affecting Microbial Load and Profile of Potential Pathogens and Food Spoilage Bacteria from Household Kitchen Tables.

    PubMed

    Biranjia-Hurdoyal, Susheela; Latouche, Melissa Cathleen

    2016-01-01

    The aim was to study the bacterial load and isolate potential pathogens and food spoilage bacteria from kitchen tables, including preparation tables and dining tables. Methods. A total of 53 households gave their consent for participation. The samples were collected by swabbing over an area of 5 cm by 5 cm of the tables and processed for bacterial count which was read as colony forming units (CFU), followed by isolation and identification of potential pathogens and food spoilage bacteria. Result. Knowledge about hygiene was not always put into practice. Coliforms, Enterococcus spp., Pseudomonas spp., Proteus spp., and S. aureus were detected from both dining and preparation tables. The mean CFU and presence of potential pathogens were significantly affected by the hygienic practices of the main food handler of the house, materials of kitchen tables, use of plastic covers, time of sample collection, use of multipurpose sponges/towels for cleaning, and the use of preparation tables as chopping boards (p < 0.05). Conclusion. Kitchen tables could be very important source of potential pathogens and food spoilage bacteria causing foodborne diseases. Lack of hygiene was confirmed by presence of coliforms, S. aureus, and Enterococcus spp. The use of plastic covers, multipurpose sponges, and towels should be discouraged. PMID:27446220

  18. Impact of mechanical street cleaning and rainfall events on the quantity and heavy metals load of street sediments.

    PubMed

    Calabrò, P S

    2010-10-01

    The paper presents and analyses the results of a street sediments monitoring campaign carried out during dry weather in order to quantify the impact of mechanical street cleaning and rainfall events on the quantity and heavy metals load of street sediments. The study has been carried out in an experimental catchment in a medium traffic street of a residential/commercial area in the city of Reggio Calabria (Italy). Thanks to acquired data, it was possible to assess the amount and the degree of pollution of street sediments, the efficiency of mechanical street cleaning in terms of sediments and pollutants removal, the wash-off of street sediments during rainfall events and the related potential impact on receiving water bodies. The results obtained confirm that street sweeping is generally scarcely effective as a practice for urban storm run-off quality control and that run-off is, on the contrary, quite effective in street sediments removal especially for smaller particles. Moreover, chemical analyses indicate that, although the concentration of heavy metals is higher in sediments particles having a diameter lower than 0.075 mm, the greatest part of the pollutants load is associated to larger particles.

  19. Impact of fertilizers on heavy metal loads in surface soils in Nzoia nucleus Estate Sugarcane Farms in Western Kenya.

    PubMed

    Omwoma, Solomon; Lalah, Joseph O; Ongeri, David M K; Wanyonyi, Maurice B

    2010-12-01

    Analysis of heavy metals in top soil samples from Nzoia sugarcane farms in Western Kenya found elevated levels of heavy metals in the soils with mean concentrations (mg kg⁻¹ dry weight) of 142.38, 59.12, 73.35, 116.27, 409.84 (dry season) and 144.22, 50.29, 72.14, 158.81, 368.83 (wet season) for Cr, Pb, Cu, Zn and Fe, respectively, compared with a control soil sample from an adjacent field where fertilizers are not applied having mean concentrations of 117.27, 61.87, 63.68, 123.49, 282.93 (dry season) 108.00, 50.68, 66.10, 114.23, 167.01 (wet season), respectively. The heavy metal loads in the sugarcane farms were above international standards. The levels of the same metals in the fertilizers used in the sugarcane farms were within acceptable international standards. A risk assessment of the continued use of phosphate fertilizer (DAP) in the farms based on a 50-year period, did not exceed international threshold. The soil pH values (6.18 dry season and 5.66 wet season) were low compared to the control (7.46 dry season and 7.10 wet season) a situation that could accelerate heavy metal solubility and mobility in the farm soil. Lowering of soil pH was attributed mainly to fertilizer application and partly to increased organic matter content as shown by the high mean total organic carbon content values of 8.63% (dry season) and 8.43 (wet season) in comparison with a control soil meant total organic carbon content value of 4.76% (dry season) and 5.02 (wet season).

  20. Physicochemical properties and different sequence of metal loading (CuFe) over nanoporous of SUZ-4 zeolite.

    PubMed

    Pornrattanapimolchai, Choompoonut; Worathanakul, Patcharin

    2013-04-01

    Different sequence of Cu and Fe loading over nanoporous SUZ-4 zeolite were prepared by incipient wetness impregnation method. K/SUZ-4 zeolite was prepared with SiO2:Al2O3 molar ratio of 21.2 under hydrothermal process at 150 degrees C, 250 rpm for 1 day using tetraethylammonium hydroxide (TEAOH) as a template. Copper(II) and Iron(III) were loaded in K/SUZ-4 with 2.3 and 5.5 wt.% of Copper(II) and 1.0 and 5.0 wt.% of Iron(III). The physico-chemical characterization of CuFe/SUZ-4 were investigated using X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), BET-N2 adsorption, Scanning electron microscopy (SEM) and chemical element analysis. The results show the several types of sequential loading of Cu and Fe metals did not change the structure and pore size of nanoporous SUZ-4 zeolite. The obtained CuFe/SUZ-4 zeolites has a narrow pore size distribution with approximately 0.06 microm diameter with 0.66 microm length of needle crystal shape. PMID:23763208

  1. Failure behavior of generic metallic and composite aircraft structural components under crash loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Robinson, Martha P.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs incorporating improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures including individual fuselage frames, skeleton subfloors with stringers and floor beams without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models.

  2. Metals in benthic macrofauna and biogeochemical factors affecting their trophic transfer to wild fish around fish farm cages.

    PubMed

    Kalantzi, I; Papageorgiou, N; Sevastou, K; Black, K D; Pergantis, S A; Karakassis, I

    2014-02-01

    Benthic macroinvertebrates and wild fish aggregating in the vicinity of four Mediterranean fish farms were sampled. Concentrations of metals and other elements were measured in macrofaunal taxa and in fish tissues (muscle, liver, gills, bone, gonad, stomach, intestine, and stomach content). Biological and geochemical characteristics play an important role in metal accumulation in benthic invertebrates, and consequently in metal transfer to higher trophic levels. Macroinvertebrates accumulated lower concentrations of most metals and elements than their respective sediment, except As, P, Na, Zn and Cd. Elemental concentrations of benthic organisms increased with increasing sediment metal content, except Cd, and with % silt, refractory organic matter and chlorophyll-a of sediment due to the influence of sediment geochemistry on metal bioavailability. Tolerant species were found to accumulate higher concentrations of most metals and elements, except for Cd, than equilibrium species. The ecological and morphological characteristics of the benthic invertebrates can affect the bioaccumulation of metals and elements in macrobenthos. Hg and P were found to increase their concentrations from zoobenthos to wild fish aggregating around fish cages feeding on macrofauna.

  3. Element specificity of ortho-positronium annihilation for alkali-metal loaded SiO{sub 2} glasses

    SciTech Connect

    Sato, K.; Hatta, T.

    2015-03-07

    Momentum distributions associated with ortho-positronium (o-Ps) pick-off annihilation photon are often influenced by light elements, as, e.g., carbon, oxygen, and fluorine. This phenomenon, so-called element specificity of o-Ps pick-off annihilation, has been utilized for studying the elemental environment around the open spaces. To gain an insight into the element specificity of o-Ps pick-off annihilation, the chemical shift of oxygen 1s binding energy and the momentum distributions associated with o-Ps pick-off annihilation were systematically investigated for alkali-metal loaded SiO{sub 2} glasses by means of X-ray photoelectron spectroscopy and positron-age-momentum correlation spectroscopy, respectively. Alkali metals introduced into the open spaces surrounded by oxygen atoms cause charge transfer from alkali metals to oxygen atoms, leading to the lower chemical shift for the oxygen 1s binding energy. The momentum distribution of o-Ps localized into the open spaces is found to be closely correlated with the oxygen 1s chemical shift. This correlation with the deepest 1s energy level evidences that the element specificity of o-Ps originates from pick-off annihilation with orbital electrons, i.e., dominantly with oxygen 2p valence electrons and s electrons with lower probability.

  4. Annual trace-metal load estimates and flow-weighted concentrations of cadmium, lead, and zinc in the Spokane River basin, Idaho and Washington, 1999-2004

    USGS Publications Warehouse

    Donato, Mary M.

    2006-01-01

    Streamflow and trace-metal concentration data collected at 10 locations in the Spokane River basin of northern Idaho and eastern Washington during 1999-2004 were used as input for the U.S. Geological Survey software, LOADEST, to estimate annual loads and mean flow-weighted concentrations of total and dissolved cadmium, lead, and zinc. Cadmium composed less than 1 percent of the total metal load at all stations; lead constituted from 6 to 42 percent of the total load at stations upstream from Coeur d'Alene Lake and from 2 to 4 percent at stations downstream of the lake. Zinc composed more than 90 percent of the total metal load at 6 of the 10 stations examined in this study. Trace-metal loads were lowest at the station on Pine Creek below Amy Gulch, where the mean annual total cadmium load for 1999-2004 was 39 kilograms per year (kg/yr), the mean estimated total lead load was about 1,700 kg/yr, and the mean annual total zinc load was 14,000 kg/yr. The trace-metal loads at stations on North Fork Coeur d'Alene River at Enaville, Ninemile Creek, and Canyon Creek also were relatively low. Trace-metal loads were highest at the station at Coeur d'Alene River near Harrison. The mean annual total cadmium load was 3,400 kg/yr, the mean total lead load was 240,000 kg/yr, and the mean total zinc load was 510,000 kg/yr for 1999-2004. Trace-metal loads at the station at South Fork Coeur d'Alene River near Pinehurst and the three stations on the Spokane River downstream of Coeur d'Alene Lake also were relatively high. Differences in metal loads, particularly lead, between stations upstream and downstream of Coeur d'Alene Lake likely are due to trapping and retention of metals in lakebed sediments. LOADEST software was used to estimate loads for water years 1999-2001 for many of the same sites discussed in this report. Overall, results from this study and those from a previous study are in good agreement. Observed differences between the two studies are attributable to streamflow

  5. How physical alteration of technic materials affects mobility and phytoavailabilty of metals in urban soils?

    PubMed

    El Khalil, Hicham; Schwartz, Christophe; El Hamiani, Ouafae; Sirguey, Catherine; Kubiniok, Jochen; Boularbah, Ali

    2016-06-01

    One fundamental characteristic distinguishing urban soils from natural soils is the presence of technic materials or artefacts underlining the influence of human activity. These technic materials have different nature (organic or inorganic) and origins. They contribute to the enrichment of the soil solution by metallic trace elements. The present study aims to determine the effect of physical alteration of the technic coarse fraction on the bioavailability of metallic trace elements in urban Technosols. In general, results show that physical alteration increases the metallic trace elements water extractible concentrations of technic materials. The ability of lettuce to accumulate metallic trace elements, even at low concentrations, underlines the capacity of technic materials to contaminate the anthropised soil solution by bioavailable metals. The highest metal levels, accumulated by the various organs of the lettuce (leaves and roots), were measured in plants grown in presence of metallic particles mixtures. This indicates that the majority of metallic trace elements released by this technic constituent is bioavailable and explains the low plant biomass obtained. The abundant part of metallic trace elements released by the other technic constituents (building materials, bones, wood, plastic and fabric-paper) remains less bioavailable. Under anthropised soil conditions, technic materials have a significant effect on the metallic trace elements behavior. They impact the flow of these metallic elements in Technosols, which can increase their bioavailability and, therefore, the contamination of the food chain. PMID:26999750

  6. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research.

  7. Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats.

    PubMed

    Wężowicz, K; Turnau, K; Anielska, T; Zhebrak, I; Gołuszka, K; Błaszkowski, J; Rozpądek, P

    2015-12-01

    Phytoremediation offers an environmental friendly alternative to conventional cleanup techniques. In this study, mycorrhizal fungi isolated from the roots of Mentha longifolia grown in the basin of the Centuria River (S Poland) were used. Iris pseudacorus was grown in substratum from an industrial waste, enriched in Pb, Fe, Zn, and Cd in a terrestrial and water-logged habitat. Plant yield and photosynthetic performance was the highest in the aquatic environment; however, the presence of toxic metals (TM) negatively affected photosystem II (PSII) photochemistry as shown by the JIP test. Fungi colonization and Cd accumulation within plant tissues was decreased. In the terrestrial habitat, neither arbuscular mycorrhizal fungi (AMF) nor metal toxicity affected plant growth, although metal uptake, Cd in particular, as well as photosynthesis were affected. Inoculated plants accumulated significantly more Cd, and photosynthesis was downregulated. The results presented in this study clearly indicate that the I. pseudacorus-AMF symbiosis adapts itself to the presence of toxic metals in the environment, optimizing resource supply, energy fluxes, and possibly stress tolerance mechanisms. Plant/AMF consortia grown in terrestrial and water-logged habitats utilize different strategies to cope with metal toxicity. The use of AMF in improving the phytoremediation potential of I. pseudacorus needs, however, further research. PMID:26585452

  8. Dislocation creation and void nucleation in FCC ductile metals under tensile loading: a general microscopic picture.

    PubMed

    Pang, Wei-Wei; Zhang, Ping; Zhang, Guang-Cai; Xu, Ai-Guo; Zhao, Xian-Geng

    2014-11-10

    Numerous theoretical and experimental efforts have been paid to describe and understand the dislocation and void nucleation processes that are fundamental for dynamic fracture modeling of strained metals. To date an essential physical picture on the self-organized atomic collective motions during dislocation creation, as well as the essential mechanisms for the void nucleation obscured by the extreme diversity in structural configurations around the void nucleation core, is still severely lacking in literature. Here, we depict the origin of dislocation creation and void nucleation during uniaxial high strain rate tensile processes in face-centered-cubic (FCC) ductile metals. We find that the dislocations are created through three distinguished stages: (i) Flattened octahedral structures (FOSs) are randomly activated by thermal fluctuations; (ii) The double-layer defect clusters are formed by self-organized stacking of FOSs on the close-packed plane; (iii) The stacking faults are formed and the Shockley partial dislocations are created from the double-layer defect clusters. Whereas, the void nucleation is shown to follow a two-stage description. We demonstrate that our findings on the origin of dislocation creation and void nucleation are universal for a variety of FCC ductile metals with low stacking fault energies.

  9. Myocardial performance index is sensitive to changes in cardiac contractility, but is also affected by vascular load condition.

    PubMed

    Uemura, Kazunori; Kawada, Toru; Zheng, Can; Li, Meihua; Shishido, Toshiaki; Sugimachi, Masaru

    2013-01-01

    Myocardial performance index (MPI), or Tei index, is measured by Doppler echocardiography in clinical practice. MPI has been shown to be useful in evaluating left ventricular (LV) performance and predicting prognosis in cardiac patients. However, the effects of LV load and contractile states on MPI remain to be thoroughly investigated. In 14 anesthetized dogs, we obtained LV pressure-volume relationship with use of sonomicrometry and catheter-tip manometry. MPI was determined from the time derivative of LV volume and pressure. LV end-systolic pressure-volume ratio (Ees'), effective arterial elastance (Ea) and LV end-diastolic volume (Ved) were used as indices of LV contractility, afterload and preload, respectively. Hemodynamic conditions were varied over wide ranges [heart rate (HR), 66-192 bpm; mean arterial pressure, 71-177 mmHg] by infusing cardiovascular agents, by inducing ischemic heart failure and by electrical atrial pacing. Multiple linear regression analysis of pooled data (66 data sets) indicated that MPI (0.6-1.8) significantly correlated with Ees' [1.5-17.5 mmHg · ml(-1), p<0.0001, standard partial regression coefficient (β) =-0.66], Ea (3.6-21.9 mmHg · ml(-1), p<0.001, β = 0.4) and Ved (11-100 ml, p<0.0001, β = -0.69). MPI directly correlated with the time constant of isovolumic relaxation (19-66 ms, p<0.05), but not with HR or LV diastolic-stiffness (all p>0.1). Theoretical analysis also indicated that MPI decreases following the increases in LV contractility and in preload, while it increases in response to an increase in LV afterload. We conclude that MPI sensitively detects changes in LV contractility. However, MPI is also affected by changes in LV afterload and preload. PMID:24109782

  10. Edge loading does not increase wear rates of ceramic-on-ceramic and metal-on-polyethylene articulations.

    PubMed

    Halma, Jelle J; Señaris, Jose; Delfosse, Daniel; Lerf, Reto; Oberbach, Thomas; van Gaalen, Steven M; de Gast, Arthur

    2014-11-01

    The mal-positioning of total hip arthroplasty components can result in edge loading conditions. Purpose of this study was to determine if the wear rate of ceramic-on-ceramic and metal-on-polyethylene increases under edge loading conditions. The literature was reviewed to determine which of the commonly used hip bearings is the most forgiving to implant mal-orientation. Two 28-mm ceramic-on-ceramic articulations were tested in vitro: pure alumina (PAL) ceramic versus the new alumina-toughened zirconia (ATZ). Two 28-mm metal-on-polyethylene articulations were tested in vitro: conventional ultrahigh molecular weight polyethylene (UHMWPE) versus highly crosslinked polyethylene (HXLPE) stabilized with vitamin E. All bearings were tested at standard and at highest possible inclination angles. Hip simulator tests were run for five million cycles based on N = 3 tests per condition. The average wear rate of ATZ-on-ATZ is 0.024 mm(3) /Mcycles at 45° and 0.018 mm(3) /Mcycles at 65°. Wear rate of PAL-on-PAL is between 0.02 and 0.03 mm(3) /Mcycles at 45°, as well as 65°. The wear rate of UHMWPE was 31 ± 1 mm(3) /Mcycles at an inclination angle of 45° and 26 ± 1 mm(3) /Mcycles at 80°. The wear rate of vitamin E stabilized HXLPE was 5.9 ± 0.2 mm(3) /Mcycles at 45° and 5.8 ± 0.2 mm(3) /Mcycles at 80°. Edge loading does not increase the wear rate of ceramic-on-ceramic and metal-on-polyethylene articulations. The newest biomaterials showed markedly lower wear rates compared with their conventional counterparts. ATZ-on-ATZ showed the lowest wear rate of all tested pairings, but the vitamin E stabilized HXLPE seems to be the most forgiving material when it comes to implant mal-orientation.

  11. Lack of Evidence for Increased Genetic Loading for Autism among Families of Affected Females: A Replication from Family History Data in Two Large Samples

    ERIC Educational Resources Information Center

    Goin-Kochel, Robin P.; Abbacchi, Anna; Constantino, John N.

    2007-01-01

    Both the broad and narrow phenotypes of autism have been consistently observed in family members of affected individuals. Additionally, autism spectrum disorders (ASDs) present four times more often in males than in females, for reasons that are currently unknown. In this study, we examined whether there were differences in familial loading of ASD…

  12. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined. PMID:22177528

  13. Airborne concentrations of metals and total dust during solid catalyst loading and unloading operations at a petroleum refinery.

    PubMed

    Lewis, Ryan C; Gaffney, Shannon H; Le, Matthew H; Unice, Ken M; Paustenbach, Dennis J

    2012-09-01

    Workers handle catalysts extensively at petroleum refineries throughout the world each year; however, little information is available regarding the airborne concentrations and plausible exposures during this type of work. In this paper, we evaluated the airborne concentrations of 15 metals and total dust generated during solid catalyst loading and unloading operations at one of the largest petroleum refineries in the world using historical industrial hygiene samples collected between 1989 and 2006. The total dust and metals, which included aluminum, cadmium, chromium, cobalt, copper, iron, lead, manganese, molybdenum, nickel, platinum, silicon, silver, vanadium, and zinc, were evaluated in relation to the handling of four different types of solid catalysts associated with three major types of catalytic processes. Consideration was given to the known components of the solid catalysts and any metals that were likely deposited onto them during use. A total of 180 analytical results were included in this analysis, representing 13 personal and 54 area samples. Of the long-term personal samples, airborne concentrations of metals ranged from <0.001 to 2.9mg/m(3), and, in all but one case, resulted in concentrations below the current U.S. Occupational Safety and Health Administration's Permissible Exposure Limits and the American Conference of Governmental Industrial Hygienists' Threshold Limit Values. The arithmetic mean total dust concentration resulting from long-term personal samples was 0.31mg/m(3). The data presented here are the most complete set of its kind in the open literature, and are useful for understanding the potential exposures during solid catalyst handling activities at this petroleum refinery and perhaps other modern refineries during the timeframe examined.

  14. Unique failure behavior of metal/composite aircraft structural components under crash type loads

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.

    1990-01-01

    Failure behavior results are presented on some of the crash dynamics research conducted with concepts of aircraft elements and substructure which have not necessarily been designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash type loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static/dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the thread of similarity in behavior is telling the designer and dynamists a great deal about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  15. Locating Gases in Porous Materials: Cryogenic Loading of Fuel-Related Gases Into a Sc-based Metal-Organic Framework under Extreme Pressures.

    PubMed

    Sotelo, Jorge; Woodall, Christopher H; Allan, Dave R; Gregoryanz, Eugene; Howie, Ross T; Kamenev, Konstantin V; Probert, Michael R; Wright, Paul A; Moggach, Stephen A

    2015-11-01

    An alternative approach to loading metal organic frameworks with gas molecules at high (kbar) pressures is reported. The technique, which uses liquefied gases as pressure transmitting media within a diamond anvil cell along with a single-crystal of a porous metal-organic framework, is demonstrated to have considerable advantages over other gas-loading methods when investigating host-guest interactions. Specifically, loading the metal-organic framework Sc2BDC3 with liquefied CO2 at 2 kbar reveals the presence of three adsorption sites, one previously unreported, and resolves previous inconsistencies between structural data and adsorption isotherms. A further study with supercritical CH4 at 3-25 kbar demonstrates hyperfilling of the Sc2 BDC3 and two high-pressure displacive and reversible phase transitions are induced as the filled MOF adapts to reduce the volume of the system.

  16. Nanoindentation study of size effect and loading rate effect on mechanical properties of a thin film metallic glass Cu 49.3Zr 50.7

    NASA Astrophysics Data System (ADS)

    Pang, Jian-Jun; Tan, Ming-Jen; Liew, K. M.; Shearwood, Christopher

    2012-02-01

    A binary metallic glass (MG) Cu 49.3Zr 50.7 in the form of thin film was successfully grown on a Si (1 0 0) substrate by magnetron sputtering. The mechanical properties, specifically, hardness and modulus at various peak loads and loading rates were characterized through instrumented nanoindentation. Unlike other metallic glasses showing an indentation size effect (ISE), the composition of this study does not have an ISE, which is phenomenologically the result of the negligible length scale according to the strain gradient plasticity model. The proportional specimen resistance model is applicable to the load-displacement behaviors and suggests that the frictional effect is too small to contribute to the ISE. The occurrence of plasticity depends on loading rates and can be delayed so that the displacement during the load holding segment increases logarithmically. In addition, the hardness and modulus are both dependent on the loading rates as well, i.e., they increase as the loading rate increases up to 0.1 mN/s and then hold constant, which is independent of creep time (≤100 s). These loading-rate-dependent behaviors are interpreted as the result of viscoelastic effect rather than free volume kinetics.

  17. Soft recovery technique to investigate dynamic fragmentation of laser shock-loaded metals

    SciTech Connect

    Lescoute, E.; De Resseguier, T.; Boustie, M.; Cuq-Lelandais, J.-P.; Chevalier, J.-M.; Berthe, L.

    2009-11-23

    With the development of high energy laser facilities dedicated to inertial confinement fusion, the question of debris ejection from metallic shells subjected to intense laser irradiation has become a key issue. We have used two diagnostics to investigate fragmentation processes. Recovery of ejected fragments has been performed in a highly transparent gel of density 0.9 g/cm{sup 3}. Fragments sizes, shapes, and penetration depths, can be easily observed with a spatial resolution of micrometer-order. Complementary data are provided by transverse shadowgraphy which allows to obtain quasi-instantaneous, successive pictures of the debris clouds and mean ejection velocities.

  18. Performance Enhancement Using Selective Reinforcement for Metallic Single- and Multi-Pin Loaded Holes

    NASA Technical Reports Server (NTRS)

    Farley, Gary L.; Seshadri, Banavara R.

    2005-01-01

    An analysis based investigation of aluminum with metal matrix composite selectively reinforced single- and multi-hole specimens was performed and their results compared with results from geometrically comparable non-reinforced specimens. All reinforced specimens exhibited a significant increase in performance. Performance increase of up to 170 percent was achieved. Specimen failure modes were consistent with results from reinforced polymeric matrix composite specimens. Localized reinforcement application (circular) proved as effective as a broader area (strip) reinforcement. Also, selective reinforcement is an excellent method of increasing the performance of multi-hole specimens.

  19. Shear-driven damage of ductile metals induced by indentation load

    NASA Astrophysics Data System (ADS)

    Zhang, Chunyu; Xiao, Wenkang

    2015-08-01

    Although indentation does not induce apparent cracking in ductile materials, degradation of elastic stiffness of ductile metals has been found in micro-/macro- indentation tests. After comparing the predicted degradation by extended damaged-plasticity models with that measured by experimental testing, it is found that the softening caused by distortion of existing voids is inadequate to cause the notable degradation of elasticity. It is suggested that an independent damage-nucleation mechanism arising from shear deformation may exist. Although attractive in practical applications for its non-destructive nature, the damage-based indentation technique for estimating the fracture properties of ductile materials needs further investigation.

  20. An assessment of land use and other factors affecting sediment loads in the Rio Puerco watershed, New Mexico

    NASA Astrophysics Data System (ADS)

    Phippen, Stephanie J.; Wohl, Ellen

    2003-06-01

    Rapid channel erosion in the Rio Puerco watershed of northwest New Mexico has been attributed to land use, climate changes, and internal channel adjustments. The objectives of this study were to assess (1) the impacts of land uses on sediment load, (2) the quantitative relationships between land use and sediment load, and (3) the effectiveness of different erosion control methods. The impacts of land uses on sediment load were assessed via hypotheses that, holding other erosion-related variables constant, sediment load correlates positively with grazing intensity and with density of unpaved roads, and correlates negatively with the number of erosion control treatments. We calculated the average annual sediment load for 17 subbasins of 0.67-17.97 km 2 by comparing sediment accumulation at two points in time (mid-1960s and 1999) behind intact sediment retention structures. We assessed land use via grazing records and measurements of unpaved roads generated from aerial photographs. Soil characteristics, vegetation, and physical factors were quantified for each subbasin. Using 18 variables for each subbasin, we employed Mallow's Cp as a selection criterion. We used six statistical models, including multiple regression and principal components analysis, to determine inherent mathematical relationships between significant independent variables and sediment load. The results indicate that sediment load does not correlate with grazing intensity except in small, relatively low-relief basins with fewer bedrock exposures. However, this interpretation may be compromised by the low quality of data available to quantify grazing. Sediment load is highly sensitive to the presence of unpaved roads, which serve as high gradient, channelized conduits of water and sediment during storms. Sediment load does not correlate with erosion control except in the subset of small, relatively low-relief subbasins that also proved sensitive to grazing intensity. Overall, the statistical analyses

  1. Study of Plant Cell Wall Polymers Affected by Metal Accumulation Using Stimulated Raman Scattering Microscopy

    SciTech Connect

    Ding, Shi-You

    2015-03-02

    This project aims to employ newly-developed chemical imaging techniques to measure, in real-time, the concentration, dynamics and spatial distribution of plant cell wall polymers during biomass growth with inoculation of transgenic symbiotic fungi, and to explore a new pathway of delivering detoxified metal to plant apoplast using transgenic symbiotic fungi, which will enhance metal accumulation from soil, and potentially these metals may in turn be used as catalysts to improve the efficiency of biomass conversion to biofuels. The proposed new pathway of biomass production will: 1) benefit metal and radionuclide contaminant mobility in subsurface environments, and 2) potentially improve biomass production and process for bioenergy

  2. Metal sorption by peat and algae treated peat: kinetics and factors affecting the process.

    PubMed

    Lourie, Elena; Gjengedal, Elin

    2011-10-01

    The article presents a new approach that can be used for the purification of water contaminated by heavy metals. The treatment of peat with microalgae showed to be an effective way of increasing metal uptake by peat. Metal sorption was studied for a multimetal solution containing Cu, Cd, Ni, Zn, Cd, and Pb. Cu and Pb were found to be the metals having the highest affinity to peat. Water hardness has a strong effect on the uptake of borderline metals (Cd, Ni, Zn, Cd) from a solution. The use of algae for peat treatment resulted in less time to reach an equilibrium (24 h vs. 72 h for pure peat), and the effect of water hardness (Ca²⁺) on metal uptake was considerably reduced. Both peat and algal-treated peat were able to take up metals from rather acidic solutions (pH 3.0). pH had less influence on the metal uptake compared with water hardness. The affinity of heavy metals to peat was the following: Pb>Cu>Ni>Cd>Zn>Co. It slightly changed to Pb>Cu>Ni>Cd≈Co≈Zn when the combined sorbent, peat treated with microalga, was applied.

  3. Strain distribution in the proximal femur with flexible composite and metallic femoral components under axial and torsional loads.

    PubMed

    Otani, T; Whiteside, L A; White, S E

    1993-05-01

    This study investigated strain distribution changes in the proximal femur after implantation of a flexible composite femoral component (carbon composite material, modulus of elasticity = 18.6 GPa), a titanium alloy implant (E = 100 GPa), and a stainless steel implant (E = 200 GPa). Transverse as well as longitudinal strain was measured using bipolar strain gauges at eight locations on the proximal femur under both physiologic axial (1000 N and 2000 N) and physiologic torsional (10 N-m and 20 N-m) loads. Under axial load, longitudinal compressive strain at the calcar region was significantly greater in intact femurs and the carbon composite stem specimens than in the two metal stem specimens. The difference between intact femurs and the carbon composite stem specimens was not significant. Stress shielding in the proximal lateral region of the femur, however, was still apparent even in the carbon composite stem specimens. Without seating of the stem collar on the femoral neck, longitudinal compressive strain was not generated at the calcar region, and transverse tensile strain at this region was increased. With conventional implant design, the stem collar was still necessary even in the flexible composite stem to provide near normal longitudinal compressive strain in the calcar region. Under torsional load, proximal strain in intact femurs was small and the proximal strain levels observed after either carbon composite or titanium alloy stem implantation were greater than strain levels before implantation. It seemed unlikely that torsional stress relief played a significant role in proximal bone loss after total hip arthroplasty. Both longitudinal and transverse strains at the calcar region under torsional load were significantly greater in the carbon composite stem specimens than in both intact femurs and the titanium alloy stem specimens, suggesting that these abnormally high proximal stresses may cause high proximal micromotion of the implant, and even bone

  4. Characterisation and evaluation of metal-loaded iminodiacetic acid-silica of different porosity for the selective enrichment of phosphopeptides.

    PubMed

    Trojer, L; Stecher, G; Feuerstein, I; Lubbad, S; Bonn, G K

    2005-06-24

    Silica particles of different porosity were functionalised with iminodiacetic acid (IDA) and loaded with Fe(III) to yield immobilised metal affinity chromatography stationary phases (Fe(III)-IDA-silica) for phosphopeptide enrichment. The elution step of bound phosphopeptides was optimised with a 32P radioactive labelled peptide by a comprehensive study. Several elution systems, including phosphate buffers of different pH and concentration and ethylenediaminetetraacetic acid solutions were employed. Furthermore the effect of support porosity on elution behaviour was investigated. Under best conditions recoveries higher than 90% were achieved. A solid-phase extraction (SPE) protocol was developed for fractionation of phosphorylated and non-phosphorylated peptides and desalting of the fractions which is essential for subsequent mass spectrometric analysis by the combination of Fe(III)-IDA-silica and C18-silica particles. The pH of the loading buffer was found to be a critical parameter for the efficiency of the SPE protocol. As tryptic digests of alpha-lactalbumin, lysozyme and ribonuclease A mixed with three synthetic phosphopeptides were fractionated, pH 2.5 provided minimal proportion of unspecific bound peptides when comparing the fractions after mu-LC-electrospray ionization MS separation. The effect of a sample derivatisation reaction (methylation) on the efficiency of phosphopeptide enrichment was further investigated. Blocking carboxylate groups by methyl ester formation totally prevented unspecific interaction with the immobilised Fe(III) ions, but generated partially methylated phosphopeptides that increased the complexity of the phosphorylated fraction. PMID:16038305

  5. A quantitatively accurate theory of stable crack growth in single phase ductile metal alloys under the influence of cyclic loading

    NASA Astrophysics Data System (ADS)

    Huffman, Peter oel

    Although fatigue has been a well studied phenomenon over the past century and a half, there has yet to be found a quantitative link between fatigue crack growth rates and materials properties. This work serves to establish that link, in the case of well behaved, single phase, ductile metals. The primary mechanisms of fatigue crack growth are identified in general terms, followed by a description of the dependence of the stress intensity factor range on those mechanisms. A method is presented for calculating the crack growth rate for an ideal, linear elastic, non-brittle material, which is assumed to be similar to the crack growth rate for a real material at very small crack growth rate values. The threshold stress intensity factor is discussed as a consequence of "crack tip healing". Residual stresses are accounted for in the form of an approximated residual stress intensity factor. The results of these calculations are compared to data available in the literature. It is concluded that this work presents a new way to consider crack growth with respect to cyclic loading which is quantitatively accurate, and introduces a new way to consider fracture mechanics with respect to the relatively small, cyclic loads, normally associated with fatigue.

  6. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment. PMID:25288547

  7. Arbuscular mycorrhizal fungal phylogenetic groups differ in affecting host plants along heavy metal levels.

    PubMed

    He, Lei; Yang, Haishui; Yu, Zhenxing; Tang, Jianjun; Xu, Ligen; Chen, Xin

    2014-10-01

    Arbuscular mycorrhizal fungi (AMF) are important components of soil microbial communities, and play important role in plant growth. However, the effects of AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) on host plant under various heavy metal levels are not clear. Here we conducted a meta-analysis to compare symbiotic relationship between AMF phylogenetic groups (Glomeraceae and non-Glomeraceae) and host plant functional groups (herbs vs. trees, and non-legumes vs. legumes) at three heavy metal levels. In the meta-analysis, we calculate the effect size (ln(RR)) by taking the natural logarithm of the response ratio of inoculated to non-inoculated shoot biomass from each study. We found that the effect size of Glomeraceae increased, but the effect size of non-Glomeraceae decreased under high level of heavy metal compared to low level. According to the effect size, both Glomeraceae and non-Glomeraceae promoted host plant growth, but had different effects under various heavy metal levels. Glomeraceae provided more benefit to host plants than non-Glomeraceae did under heavy metal condition, while non-Glomeraceae provided more benefit to host plants than Glomeraceae did under no heavy metal. AMF phylogenetic groups also differed in promoting plant functional groups under various heavy metal levels. Interacting with Glomeraceae, herbs and legumes grew better than trees and non-legumes did under high heavy metal level, while trees and legumes grew better than herbs and non-legumes did under medium heavy metal level. Interacting with non-Glomeraceae, herbs and legumes grew better than trees and non-legumes did under no heavy metal. We suggested that the combination of legume with Glomeraceae could be a useful way in the remediation of heavy metal polluted environment.

  8. Sonofusion: Heat and ^4He Created by Cavitationally Induced Loading of Metal Foils

    NASA Astrophysics Data System (ADS)

    Stringham, Roger

    2003-03-01

    Helium four was produced in a vacuum tight system and measured by mass spectrometry with no measurable accompanying radiation. This fusion product from a piezo driven, acoustic reactor forces deuterons into a metallic foil. We believe the reaction is the result of the adiabatic collapse of transient bubbles in D_2O. The collapse process forms high-density plasma jets that are further z-pinched and then implanted into the foil lattices where the DD fusion takes place. With no evidence of long range radiation, the mc^2 energy was converted to heat. The reactor gases were analyzed at levels as high as 500 ppm of ^4He, which is 100 times that found in air. The SEM, Scanning Electron Microscope, photos of target foil surfaces show evidence of violent activity identified as ejecta sites varying in size from 100 to 10000 nm in diameter. The ^4He, radiation, excess heat, and SEM measurements support the DD fusion explanation.

  9. Application of iron and zinc isotopes to track the sources and mechanisms of metal loading in a mountain watershed

    USGS Publications Warehouse

    Borrok, D.M.; Wanty, R.B.; Ian, Ridley W.; Lamothe, P.J.; Kimball, B.A.; Verplanck, P.L.; Runkel, R.L.

    2009-01-01

    Here the hydrogeochemical constraints of a tracer dilution study are combined with Fe and Zn isotopic measurements to pinpoint metal loading sources and attenuation mechanisms in an alpine watershed impacted by acid mine drainage. In the tested mountain catchment, ??56Fe and ??66Zn isotopic signatures of filtered stream water samples varied by ???3.5??? and 0.4???, respectively. The inherent differences in the aqueous geochemistry of Fe and Zn provided complimentary isotopic information. For example, variations in ??56Fe were linked to redox and precipitation reactions occurring in the stream, while changes in ??66Zn were indicative of conservative mixing of different Zn sources. Fen environments contributed distinctively light dissolved Fe (<-2.0???) and isotopically heavy suspended Fe precipitates to the watershed, while Zn from the fen was isotopically heavy (>+0.4???). Acidic drainage from mine wastes contributed heavier dissolved Fe (???+0.5???) and lighter Zn (???+0.2???) isotopes relative to the fen. Upwelling of Fe-rich groundwater near the mouth of the catchment was the major source of Fe (??56Fe ??? 0???) leaving the watershed in surface flow, while runoff from mining wastes was the major source of Zn. The results suggest that given a strong framework for interpretation, Fe and Zn isotopes are useful tools for identifying and tracking metal sources and attenuation mechanisms in mountain watersheds. ?? 2009 Elsevier Ltd.

  10. Evaluation of some heavy metal loading in the Kpeshi lagoon, Ghana

    NASA Astrophysics Data System (ADS)

    Fianko, Joseph R.; Laar, Cynthia; Osei, Juilet; Anim, Alfred K.; Gibrilla, Abass; Adomako, Dickson

    2013-03-01

    A study was carried out on the Kpeshi lagoon to evaluate the relative contributions of some heavy metals (Na, k, Ca, K, Fe, Mn, Ni, Cr, Cd, Al, Pb) on the current state of the Kpeshi lagoon. The lagoon water was sampled along with some fish samples. Water pH, electrical conductivity and total dissolved salts were measured in situ whilst Na and K were measured using flame emission spectrometry. Heavy metals (iron, manganese, nickel, aluminium, chromium, lead and cadmium) in both water and fish samples were analyzed using atomic absorption spectrometry. Measured pH values ranged between 6.60 and 7.87, a mean conductivity and total dissolved salts of 87.31 ± 19.14 μS/cm and 38.4 ± 8.43 mg/L, respectively. Nutrient and organic matter were among the frequent source of pollution in the lagoon with mean sulphate, phosphate and nitrate concentrations of 190 ± 108.84, 1.62 ± 0.49 and 0.89 ± 0.26 mg/L, respectively. Iron and aluminium in the lagoon water measured the highest concentration of 13.2 ± 3.47 and 13.6 ± 4.29 mg/L, respectively. Fish samples however revealed very high concentrations of calcium and potassium measuring 15,709 ± 75.35 and 5,949.49 ± 87.30 mg/kg, respectively. Sodium and aluminium also revealed relatively high concentrations: 3,775.70 ± 24.80 and 708.47 ± 4.95 mg/kg, respectively. Notably, sites closer to settlement community (Teshie Township, e.g. S1, S2, S3 and S4) and the hospitality industries (i.e. dotted hotels, e.g. S7) appeared to be relatively more contaminated.

  11. Factors affecting metal toxicity to (and accumulation by) aquatic organisms - overview

    SciTech Connect

    Wang, Wuncheng )

    1987-01-01

    This literature review encompasses aquatic environmental toxicities of metals and metalloids. The emphasis is on the influencing factors on metal toxicity to aquatic organisms. The effects of environmental factors on metal uptake are also discussed. The factors can be divided into biotic and abiotic. The biotic factors include tolerance, size and life stages, species, and nutrition related to the test organisms. The abiotic factors include organic substances, pH, temperature, alkalinity and hardness, inorganic ligands, interactions, sediments, and others. These factors can alter metal toxicity in the aquatic environment substantially, mostly causing attenuating effect. The literature shows divergent results. For example, the interactions between Cd and Zn were reported to be synergistic by some researchers and antagonistic by others. It is recommended that environmental hazard assessment takes into consideration the results of standard toxicity tests and site-specific conditions which can moderate metal toxicity considerably. 238 refs.

  12. Metallic-nanowire-loaded silicon-on-insulator structures: a route to low-loss plasmon waveguiding on the nanoscale

    NASA Astrophysics Data System (ADS)

    Bian, Yusheng; Gong, Qihuang

    2015-02-01

    The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced down to the nanometer scale. Here we introduce a class of low-loss guiding schemes by integrating silicon-on-insulator (SOI) waveguides with plasmon nanowire structures. The closely spaced silicon and metal configurations allow efficient light squeezing within the nanometer, low-index silica gaps between them, enabling deep-subwavelength light transmission with low modal attenuation. Optimizations of key structural parameters unravel the wide-range existence of the high-performance hybrid nanowire plasmon mode, which demonstrates improved guiding properties compared to the conventional hybrid and nanowire plasmon polaritons. The excitation strategy of the guided mode and the feasibility of the waveguide for compact photonic integration as well as active components are also discussed to lay the foundation for its practical implementation. The remarkable properties of these metallic-nanowire-loaded SOI waveguides potentially lend themselves to the implementation of high performance nanophotonic components, and open up promising opportunities for a variety of intriguing applications on the nanoscale.The simultaneous realization of nanoscale field localization and low transmission loss remains one of the major challenges in nanophotonics. Metal nanowire waveguides can fulfill this goal to a certain extent by confining light within subwavelength space, yet their optical performances are still restricted by the tradeoff between confinement and loss, which results in quite limited propagation distances when their mode sizes are reduced

  13. Trace metal distribution in pristine permafrost-affected soils of the Lena River delta and its hinterland, northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Eschenbach, A.; Zubrzycki, S.; Kutzbach, L.; Bolshiyanov, D.; Pfeiffer, E.-M.

    2014-01-01

    Soils are an important compartment of ecosystems and have the ability to buffer and immobilize substances of natural and anthropogenic origin to prevent their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since Arctic ecosystems are considered to be highly sensitive to climatic changes as well as to chemical contamination. This study characterises background levels of trace metals in permafrost-affected soils of the Lena River delta and its hinterland in northern Siberia (73.5-69.5° N), representing a remote region far from evident anthropogenic trace metal sources. Investigations on the element content of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co), and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest median concentrations of Fe and Mn were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) while the highest median values of Ni, Pb and Zn were found in soils of both the ice-complex and the Holocene estuarine terrace of the Lena River delta region, as well as in the southernmost study unit of the hinterland area. Detailed observations of trace metal distribution on the micro scale showed that organic matter content, soil texture and iron-oxide contents influenced by cryogenic processes, temperature, and hydrological regimes are the most important factors determining the metal abundance in permafrost-affected soils. The observed range of trace element background concentrations was similar to trace metal levels reported for other pristine northern areas.

  14. Metal-support interaction in platinum and palladium nanoparticles loaded on nitrogen-doped mesoporous carbon for oxygen reduction reaction.

    PubMed

    Perini, Lorenzo; Durante, Christian; Favaro, Marco; Perazzolo, Valentina; Agnoli, Stefano; Schneider, Oliver; Granozzi, Gaetano; Gennaro, Armando

    2015-01-21

    Mesoporous carbons are highly porous materials, which show large surface area, chemical inertness and electrochemical performances superior to traditional carbon material. In this study, we report the preparation of nitrogen-doped and undoped mesoporous carbons by an optimized hard template procedure employing silica as template, sucrose and ammonia as carbon and nitrogen source, respectively. Surface area measurements assert a value of 900 and 600 m(2) g(-1) for the best doped and undoped samples, respectively. Such supports were then thoroughly characterized by surface science and electron microscopy tools. Afterward, they were decorated with Pt and Pd nanoparticles, and it was found that the presence of nitrogen defects plays a significant role in improving the metal particles dimension and dispersion. In fact, when doped supports are used, the resulting metal nanoparticles are smaller (2-4 nm) and less prone to aggregation. Photoemission measurements give evidence of a binding energy shift, which is consistent with the presence of an electronic interaction between nitrogen atoms and the metal nanoparticles, especially in the case of Pd. The catalytic properties of electrodes decorated with such catalyst/support systems were investigated by linear sweep voltammetry and by rotating disk electrode measurements, revealing excellent stability and good activity toward oxygen reduction reaction (ORR). In particular, although Pd nanoparticles always result in lower activity than Pt ones, both Pt and Pd electrodes based on the N-doped supports show an increased activity toward ORR with respect to the undoped ones. At the same mass loading, the Tafel slope and the stability test of the Pt@N-doped electrocatalysts indicate superior performances to that of a commercial Pt@C catalysts (30 wt % Pt on Vulcan XC-72, Johnson Matthey). PMID:25525718

  15. Factors affecting metal concentrations in the upper sediment layer of intertidal reedbeds along the river Scheldt.

    PubMed

    Du Laing, Gijs; Vandecasteele, Bart; De Grauwe, Pieter; Moors, Wouter; Lesage, Els; Meers, Erik; Tack, Filip M G; Verloo, Marc G

    2007-05-01

    Factors that play a role in determining metal accumulation in sediments of 26 intertidal marshes which are mainly vegetated by reed plants (Phragmites australis) were assessed along the Scheldt estuary (Belgium and The Netherlands). In the upper 20 cm sediment layer, several physico-chemical properties (clay, silt and sand content, organic matter, carbonate and chloride content, pH and conductivity) and aqua regia extractable metals (Cd, Cr, Cu, Ni, Pb, Zn) were determined. The sediments were significantly contaminated with trace metals. The Cd concentrations often exceeded the Flemish soil remediation thresholds for nature areas, whereas Cr, Cu and Zn levels indicated moderate contamination. Pb concentrations occasionally were high, whereas Ni concentrations leaned towards background values. Organic matter was the single most important predictor variable for total metal contents in regression models, except for Cr. Additional significant predictor variables were clay or chloride content, depending on the metal. Observed metal concentrations at sites within a range of a few km from specific point-sources of metals (e.g. shipyards, industrial areas with metallurgic activities, affluents, major motorways) were somewhat higher than predicted by the models, whereas they were lower than predicted at sites which are regularly subjected to flooding by water of high salinity. The ratio between observed and predicted concentrations seems to be a valuable tool for the identification of areas which are specifically impacted by point sources. PMID:17492090

  16. Plant water relations as affected by heavy metal stress: A review

    SciTech Connect

    Barcelo, J.; Poschenrieder, C. )

    1990-01-01

    Metal toxicity causes multiple direct and indirect effects in plants which concern practically all physiological functions. In this review the effects of excess heavy metals and aluminum on those functions which will alter plant water relations are considered. After a brief comment on the metal effects in cell walls and plasma-lemma, and their consequences for cell expansion growth, the influences of high meal availability on the factors which regulate water entry and water exit in plants are considered. Emphasis is placed on the importance of distinguishing between low water availability in mine and serpentine soils and toxicity effects in plants which may impair the ability of a plant to regulate water uptake. Examples on water relations of both plants grown on metalliferous soil and hydroponics are presented, and the effects of metal toxicity on root growth, water transport and transpiration are considered. It is concluded that future research has to focus on the mechanisms of metal-induced inhibition of both root elongation and morphogenetic processes within roots. In order to understand the relation between metal tolerance and drought resistance better, further studies into metal tolerance mechanisms at the cell wall, membrane and vacuolar level, as well as into the mechanisms of drought resistance of plants adapted to metalliferous soils are required. 135 refs., 7 figs., 6 tabs.

  17. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  18. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  19. Cultivation practices affect heavy metal migration between soil and Vicia faba (broad bean).

    PubMed

    Li, Feili; Ni, Lijia; Yuan, Jin; Daniel Sheng, G

    2010-09-01

    Pot-test experiments were conducted to study the influences of mulching and fertilizing on the migration of heavy metals from soil to Vicia faba (broad bean). Semi-transparent film was used to mulch soil. Swine manure compost was mixed with soil at a rate of 50 mg kg(-1) to fertilize the soil. Broad bean was grown for several months until fruits were formed. Soils and bean parts were sampled to analyze and fractionate heavy metals (Cd, Cu, Fe, Mn, Pb, and Zn). Mulching promoted an obvious growth of broad bean. Fertilizing decreased soil pH and increased organic matter content and conductivity. Mulching reduced the exchangeable metal fractions by 5-52%. Fertilizing, in contrast, increased the exchangeable fractions of most of the metals except Fe and Pb by 20-295%. While the two cultivations increased obviously metal concentrations in bean laminas as compared to un-mulched and un-fertilized controls, the levels of most of the metals except Pb decreased in bean fruits. No clear relationships existed in roots and caudices in terms of metal levels. Calculated bioconcentration factors (BCF) and transfer factors (TF) indicate that the cultivations had little influences on the metal enrichments in roots, but promoted their migration from roots to laminas. In particular, mulching greatly promoted the absorption and translocation of Fe, while fertilizing enhanced the bean fruit uptake of Pb. Further studies on the influence of cultivation practices on heavy metal migration in soil-plant systems are recommended to acquire more information for evaluation of crop safety.

  20. Constraints to obtaining consistent annual yields in perennials. II: Environment and fruit load affect induction of flowering.

    PubMed

    Samach, Alon; Smith, Harley M

    2013-06-01

    In many commercial fruit crop species, high fruit load inhibits vegetative growth and floral induction. As a result, trees that had a high fruit load will bear few flowers and fruit the following year, along with abundant vegetative growth. We previously discussed how high fruit load interferes with concurrent shoot growth. Here we focus on how high fruit load impacts the process of flowering. Ascertaining the precise time at which specific buds begin the floral transition in each species is challenging. The use of indirect approaches to determine time of floral induction or evocation may lead to questionable conclusions. Annual and perennial plants appear to use conserved proteins for flowering induction and initiation. The accumulation or reduction of transcripts encoding proteins similar to Arabidopsis (annual) FLOWERING LOCUS T (FT) and TERMINAL FLOWER1 (TFL1), respectively, correlates well with flower induction in several diverse species. The recent use of such markers provides a means to formulate an accurate timeframe for floral induction in different species and holds promise in providing new insight into this important developmental event. A role for hormones in modulating the inhibitory effect of fruit load on floral induction is also discussed.

  1. DIRECT DECOMPOSITION OF METHANE TO HYDROGEN ON METAL LOADED ZEOLITE CATALYST

    SciTech Connect

    Lucia M. Petkovic; Daniel M. Ginosar; Kyle C. Burch; Harry W. Rollins

    2005-08-01

    The manufacture of hydrogen from natural gas is essential for the production of ultra clean transportation fuels. Not only is hydrogen necessary to upgrade low quality crude oils to high-quality, low sulfur ultra clean transportation fuels, hydrogen could eventually replace gasoline and diesel as the ultra clean transportation fuel of the future. Currently, refinery hydrogen is produced through the steam reforming of natural gas. Although efficient, the process is responsible for a significant portion of refinery CO2 emissions. This project is examining the direct catalytic decomposition of methane as an alternative to steam reforming. The energy required to produce one mole of hydrogen is slightly lower and the process does not require water-gas-shift or pressure-swing adsorption units. The decomposition process does not produce CO2 emissions and the product is not contaminated with CO -- a poison for PEM fuel cells. In this work we examined the direct catalytic decomposition of methane over a metal modified zeolite catalyst and the recovery of catalyst activity by calcination. A favorable production of hydrogen was obtained, when compared with previously reported nickel-zeolite supported catalysts. Reaction temperature had a strong influence on catalyst activity and on the type of carbon deposits. The catalyst utilized at 873 and 973 K could be regenerated without any significant loss of activity, however the catalyst utilized at 1073 K showed some loss of activity after regeneration.

  2. Soils affected by heavy metals due to old mining on perudic conditions

    NASA Astrophysics Data System (ADS)

    Garrigo, Jordi; Elustondo, David; Laheras, Ester; Oiarzabal, Maite; Jaume, Bech

    2010-05-01

    The aim of this work is to assess the actual status of the soils of a natural environment surrounding an abandoned mine (exploited since the Roman Age) where Pb, Zn, Fe and Cu were obtained. The study has been carried out in the Aitzondo valley (Guipuzkoa, North of Iberian Peninsula), which cross the exploited mountainous area with middle temperatures and perudic soil moisture regime Soils in the valley are polygenic, acids, very washed and sometimes show redoximorphic features and have undergone a great mobilization of trace metals due to these physical-chemical characteristics that enhance the heavy metals solubility and mobility. The analysis of soil surface samples shows a punctual and intense pollution at Meazuri area (where the mine is located) and another more dispersal and wide pollution due to the parent material (Palaeozoic shales). The main soil type of the area has been characterized by means of the performance of a soil and six surface samples have been collected along an altitudinal transect, which goes down from 460 to 75 meters. Both profile and surface samples have been analysed for suitable parameters due to their repercussion in mobility and fixation of some heavy metals (organic matter, clay content…). Total (Na, K, Mg, Ca, Al, Fe, Mn, Ti, Cd, Cr) and extractable fraction (using NH4Ac-EDTA pH=4.65, as extracting agent, have been analysed. Trace elements Cd, Cr, Cu, Ni, Pb and Zn have been measured. On summary, the soils studied are characterized by high levels of trace metals inherited from the parent material whose composition shows a great metallic richness. Hence, values of trace metals are very high even in remote areas where there has not been anthropic influence. Besides, the physical-chemical properties (acidity, base saturation, organic matter) have enhanced the mobility of trace metals. The anthropogenic activity (mining activity) has caused an increase in values of several metals, reaching, in some cases, concentrations above the

  3. Soluble metal pool as affected by soil addition with organic inputs.

    PubMed

    Hernandez-Soriano, Maria C; Peña, Aránzazu; Mingorance, Maria Dolores

    2013-04-01

    The potential impact of diverse inputs of organic matter (hay, maize straw, and peat) on the mobility and bioavailability of Cd, Cu, Pb, and Zn was examined at laboratory scale for three soils with contrasting properties and for two moisture regimes: field capacity and saturated conditions. Soil solution was characterized for total soluble metals, dissolved soil organic carbon, and ultraviolet absorbance at 254 nm. Speciation analyses were performed with WHAM VI. For field capacity conditions, metal mobility increased (Pb>Cu>Zn>Cd) for all soils and treatments compared with controls and was significantly correlated (p<0.05) with dissolved organic matter (r=0.540). Solubilization of organic matter was mostly driven by Al mobilization (r=0.580, p<0.05) and variations in solution pH. The bioavailable pool of metals, estimated as free ion activities, decreased with the increasing occurrence of metal-organic matter complexes, which was accompanied by an increase in solution of highly aromatic organic matter. Soil saturation generally decreased metal mobility and the ratio of metal-organo matter complexes in solution. Consistently, such effects were accompanied by a decrease in the solubilization of organic matter and lower mobilization of Al, Fe, and Mn.

  4. Trace metal distribution in pristine permafrost-affected soils of the Lena River Delta and its Hinterland, Northern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Antcibor, I.; Zubrzycki, S.; Eschenbach, A.; Kutzbach, L.; Bol'shiyanov, D.; Pfeiffer, E.-M.

    2013-02-01

    Soils are an important compartment of ecosystems and have the ability to immobilize chemicals preventing their movement to other environment compartments. Predicted climatic changes together with other anthropogenic influences on Arctic terrestrial environments may affect biogeochemical processes enhancing leaching and migration of trace elements in permafrost-affected soils. This is especially important since the Arctic ecosystems are considered to be very sensitive to climatic changes as well as to chemical contamination. This study characterizes background levels of trace metals in permafrost-affected soils of the Lena River Delta and its hinterland in northern Siberia (73.5° N-69.5° N) representing a remote region far from evident anthropogenic trace metal sources. Investigations on total element contents of iron (Fe), arsenic (As), manganese (Mn), zinc (Zn), nickel (Ni), copper (Cu), lead (Pb), cadmium (Cd), cobalt (Co) and mercury (Hg) in different soil types developed in different geological parent materials have been carried out. The highest concentrations of the majority of the measured elements were observed in soils belonging to ice-rich permafrost sediments formed during the Pleistocene (ice-complex) in the Lena River Delta region. Correlation analyses of trace metal concentrations and soil chemical and physical properties at a Holocene estuarine terrace and two modern floodplain levels in the southern-central Lena River Delta (Samoylov Island) showed that the main factors controlling the trace metal distribution in these soils are organic matter content, soil texture and contents of iron and manganese-oxides. Principal Component Analysis (PCA) revealed that soil oxides play a significant role in trace metal distribution in both top and bottom horizons. Occurrence of organic matter contributes to Cd binding in top soils and Cu binding in bottom horizons. Observed ranges of the background concentrations of the majority of trace elements were similar to

  5. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system.

  6. Flood-related contamination in catchments affected by historical metal mining: an unexpected and emerging hazard of climate change.

    PubMed

    Foulds, S A; Brewer, P A; Macklin, M G; Haresign, W; Betson, R E; Rassner, S M E

    2014-04-01

    Floods in catchments affected by historical metal mining result in the remobilisation of large quantities of contaminated sediment from floodplain soils and old mine workings. This poses a significant threat to agricultural production and is preventing many European river catchments achieving a 'good chemical and ecological status', as demanded by the Water Framework Directive. Analysis of overbank sediment following widespread flooding in west Wales in June 2012 showed that flood sediments were contaminated above guideline pollution thresholds, in some samples by a factor of 82. Most significantly, silage produced from flood affected fields was found to contain up to 1900 mg kg(-1) of sediment associated Pb, which caused cattle poisoning and mortality. As a consequence of climate related increases in flooding this problem is likely to continue and intensify. Management of contaminated catchments requires a geomorphological approach to understand the spatial and temporal cycling of metals through the fluvial system. PMID:24463253

  7. Sorption behavior of Pb(II) and Cd(II) on iron ore slime and characterization of metal ion loaded sorbent.

    PubMed

    Mohapatra, M; Rout, K; Mohapatra, B K; Anand, S

    2009-07-30

    The present investigation evaluates the sorption effectiveness of Pb(II) and Cd(II) ions on iron ore slime (IOS) obtained from Jindal Steel Ltd., Vijayanagaram, India. The sorption followed pseudo-second-order kinetics for both the cations. Pb(II) and Cd(II) sorption increased with the increase in pH from 2 to 4.5. The sorption data fitted well to Freundlich model as compared to Langmuir model. Synergistic effect of Pb(II) and Cd(II) on their sorption on IOS sample showed that Pb(II) sorption increases in presence of Cd(II) whereas Cd(II) sorption decreases. Presence of chloride or sulphate resulted in increased Pb(II) sorption but adversely affected Cd(II) sorption. The XRD patterns of Pb(II) adsorbed on IOS sample showed disappearance of some silica peaks and shifting of hematite peaks corresponding to 104 and 110 plane. For Cd(II) sorbed IOS sample, only peak shift for hematite of 104 and 110 plane was observed. Shifting of IR bands indicated that the Pb(II) sorption occurred through an inner sphere mechanism where as Cd(II) sorption occurred through outer sphere mechanism. EPMA studies showed that Pb(II) form a uniform thin layer and Cd(II) concentrate only on iron oxide phase. Regeneration and stability data on metal ion loaded IOS sample has been included.

  8. Factors affecting the mobilization of DOC and metals in a peat soil under a warmer scenario

    NASA Astrophysics Data System (ADS)

    Carrera, Noela; Barreal, María. Esther; Briones, María. Jesús I.

    2010-05-01

    Most climate change models predict an increase of temperature of 3-5°C in Southern Europe by the end of this century (IPCC 2007). However, changes in summer precipitations are more uncertain, and although a decrease in rainfall inputs is forecasted by most models, the magnitude of this effect has not been assessed properly (Rowell & Jones 2006). Peatland areas are very sensitive to climate change. In Galicia they survive in upland areas where cold temperatures and continuous moisture supply allow their presence. Besides abiotic factors, alterations in soil fauna activities can also affect peat turnover. Among them, enchytraeids are usually the most numerous invertebrate group in these systems and both temperature and moisture content regulate their abundances and vertical distribution. Previous studies have demonstrated that changes in their populations associated to increasing temperatures can significantly affect metal mobilization, namely iron and aluminium, together with an important decline in the acidity of the soil solution, which possibly eliminates one of the critical mechanisms restricting DOC release (Carrera et al., 2009). In this study we investigated whether changes in water content of the peat soil and soil invertebrate activities associated to increasing temperatures could alter the mobilization rates of Fe and Al and in turn, DOC. 72 undisturbed soil cores (6 cm diameter x 10 cm deep) with their associated vegetation were taken from a blanket bog in Galicia (NW Spain). Back at the laboratory they were sliced horizontally into two layers, (0-5cm and 5-10cm) which were defaunated by means of a wet extraction. Thereafter, the two soil layers derived from the same core were introduced in each microcosm by placing them in their original position but separated by a 1 mm nylon mesh to allow the vertical movements of the organisms. Half of the experimental units were adjusted to the used moisture values observed in the field (80% SWC, H1), whereas in the

  9. The role of the mobility law of dislocations in the plastic response of shock loaded pure metals

    NASA Astrophysics Data System (ADS)

    Gurrutxaga-Lerma, Beñat

    2016-08-01

    This article examines the role that the choice of a dislocation mobility law has in the study of plastic relaxation at shock fronts. Five different mobility laws, two of them phenomenological fits to data, and three more based on physical models of dislocation inertia, are tested by employing dynamic discrete dislocation plasticity (D3P) simulations of a shock loaded aluminium thin foil. It is found that inertial laws invariably entail very short acceleration times for dislocations changing their kinematic state. As long as the mobility laws describe the same regime of terminal speeds, all mobility laws predict the same degree of plastic relaxation at the shock front. This is used to show that the main factor affecting plastic relaxation at the shock front is in fact the speed of dislocations.

  10. Nitrogen and Phosphorus Loads in an Agricultural Watershed Affected by Poultry Litter Application and Wastewater Effluent, Northeastern Oklahoma and Northwestern Arkansas, 2002-2009

    NASA Astrophysics Data System (ADS)

    Esralew, R.; Tortorelli, R. L.

    2010-12-01

    . These results indicate that precipitation and streamflow will likely continue to have the largest affect on nutrient loading in the basin while non-point sources dominate nutrient contributions. Global climate change forecasts for this region indicate that the magnitude of annual precipitation and frequency and intensity of storm events will likely increase which indicate that total nutrient loading may increase with time. However, negative coefficients for independent variables representing time in the phosphorus load regression model for Spavinaw Creek suggest that when streamflow is factored out, flow-weighted concentrations in this basin may have decreased over the study period, possibly from reduction of either non-point or point sources of nutrients in the basin.

  11. Degradation of Zr-based bulk metallic glasses used in load-bearing implants: A tribocorrosion appraisal.

    PubMed

    Zhao, Guo-Hua; Aune, Ragnhild E; Mao, Huahai; Espallargas, Nuria

    2016-07-01

    Owing to the amorphous structure, Bulk Metallic Glasses (BMGs) have been demonstrating attractive properties for potential biomedical applications. In the present work, the degradation mechanisms of Zr-based BMGs with nominal compositions Zr55Cu30Ni5Al10 and Zr65Cu18Ni7Al10 as potential load-bearing implant material were investigated in a tribocorrosion environment. The composition-dependent micro-mechanical and tribological properties of the two BMGs were evaluated prior to the tribocorrosion tests. The sample Zr65-BMG with a higher Zr content exhibited increased plasticity but relatively reduced wear resistance during the ball-on-disc tests. Both BMGs experienced abrasive wear after the dry wear test under the load of 2N. The cross-sectional subsurface structure of the wear track was examined by Focused Ion Beam (FIB). The electrochemical properties of the BMGs in simulated body fluid were evaluated by means of potentiodynamic polarization and X-ray Photoelectron Spectroscopy (XPS). The spontaneous passivation of Zr-based BMGs in Phosphate Buffer Saline solution was mainly attributed to the highly concentrated zirconium cation (Zr(4+)) in the passive film. The tribocorrosion performance of the BMGs was investigated using a reciprocating tribometer equipped with an electrochemical cell. The more passive nature of the Zr65-BMG had consequently a negative influence on its tribocorrosion resistance, which induced the wear-accelerated corrosion and eventually speeded-up the degradation process. It has been revealed the galvanic coupling was established between the depassivated wear track and the surrounding passive area, which is the main degradation mechanism for the passive Zr65-BMG subjected to the tribocorrosion environment. PMID:26773648

  12. Geological factors affecting the distribution of trace metals in glacial sediments of central Newfoundland

    USGS Publications Warehouse

    Klassen, R.A.

    1998-01-01

    In central Newfoundland (NTS 12A/10, 15, 16, 2H/1), As, Pb, and Zn concentrations in the clay-sized ( 1000 ppm), exceeding levels commonly set for purposes of environmental protection. Near Pb-Zn mines at Buchans, geochemical variation with depth reflects the dispersal of detritus from mineralized bedrock, and differences in sediment type and provenance. There, surface sediments are rich in granitic debris derived from the Topsails igneous terrane 5 km north of Buchans and contain low concentrations of trace metals. These sediments are compositionally unrelated to either Buchans Group volcanic rock or an underlying, older till enriched in sulphide minerals and trace metals. Metal-rich till extending up to 10 km southwest of Buchans results from combined glacial and debris flow transport related to two distinct geological events. Trace metals are enriched (two- to fourfold) in the clay-sized fraction of till compared to the silt and clay-sized, and are associated with Al- and Mg-bearing minerals that preferentially concentrate in the clay fraction. The geochemistry of the silt and clay-sized fraction can approximate that of the < 2-mm fraction. Background variations in till illustrate the important role of a geological framework to the interpretation of geochemical surveys and the origins of trace metals in the environment.

  13. Heavy metal balances of an Italian soil as affected by sewage sludge and Bordeaux mixture applications

    SciTech Connect

    Moolenaar, S.W.; Beltrami, P.

    1998-07-01

    Applications of sewage sludge and Bordeaux mixture (Bm) (a mixture of copper sulfate and lime) add heavy metals to the soil. At an experimental farm in the Cremona district (Italy), the authors measured current heavy metal contents in soil and their removal via harvested products. They also measured heavy metal adsorption by soil from this farm. With these data, projections were made of the long-term development of heavy metal (Cd, Cu, and Zn) contents in soil, crop removal, and leaching at different application rates of sewage sludge and Bm. These projections were compared with existing quality standards of the European Union (EU) and Italy with regard to soil and groundwater. The calculations reveal that the permitted annual application rates of sewage sludge and Bm are likely to result in exceedance of groundwater and soil standards. Sewage sludge applications, complying with the Italian legal limits, may pose problems for Cd, Cu, and Zn within 30, 70, and 100 yr, respectively. Furthermore, severe Cu pollution of integrated and especially organic (Bm only) vineyards is unavoidable with the currently allowed application rates of Bm. The results suggest that the current Italian soil protection policy as well as the EU policy are not conducive of a sustainable heavy metal management in agroecosystems.

  14. Factors affecting the strength of multipass low-alloy steel weld metal

    NASA Technical Reports Server (NTRS)

    Krantz, B. M.

    1972-01-01

    The mechanical properties of multipass high-strength steel weld metals depend upon several factors, among the most important being: (1) The interaction between the alloy composition and weld metal cooling rate which determines the as-deposited microstructure; and (2) the thermal effects of subsequent passes on each underlying pass which alter the original microstructure. The bulk properties of a multipass weld are therefore governed by both the initial microstructure of each weld pass and its subsequent thermal history. Data obtained for a high strength low alloy steel weld metal confirmed that a simple correlation exists between mechanical properties and welding conditions if the latter are in turn correlated as weld cooling rate.

  15. Repeated annual paper mill and alkaline residuals application affects soil metal fractions.

    PubMed

    Gagnon, Bernard; Robichaud, Annie; Ziadi, Noura; Karam, Antoine

    2014-03-01

    The application of industrial residuals in agriculture may raise concerns about soil and crop metal accumulation. A complete study using a fractionation scheme would reveal build-up in metal pools occurring after material addition and predict the transformation of metals in soil between the different forms and potential metal release into the environment. An experimental study was conducted from 2000 to 2008 on a loamy soil at Yamachiche, Quebec, Canada, to evaluate the effects of repeated annual addition of combined paper mill biosolids when applied alone or with several liming by-products on soil Cu, Zn, and Cd fractions. Wet paper mill biosolids at 0, 30, 60, or 90 Mg ha and calcitic lime, lime mud, or wood ash, each at 3 Mg ha with 30 Mg paper mill biosolids ha, were surface applied after seeding. The soils were sampled after 6 (soybean [ (L.) Merr.]) and 9 [corn ( L.)] crop years and analyzed using the Tessier fractionation procedure. Results indicated that biosolids addition increased exchangeable Zn and Cd, carbonate-bound Cd, Fe-Mn oxide-bound Zn and Cd, organically bound Cu and Zn, and total Zn and Cd fractions but decreased Fe-Mn oxide-bound Cu in the uppermost 30-cm layer. With liming by-products, there was a shift from exchangeable to carbonate-bound forms. Even with very small metals addition, paper mill and liming materials increased the mobility of soil Zn and Cd after 9 yr of application, and this metal redistribution resulted into higher crop grain concentrations. PMID:25602653

  16. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment.

  17. Removal of organic compounds and trace metals from oil sands process-affected water using zero valent iron enhanced by petroleum coke.

    PubMed

    Pourrezaei, Parastoo; Alpatova, Alla; Khosravi, Kambiz; Drzewicz, Przemysław; Chen, Yuan; Chelme-Ayala, Pamela; Gamal El-Din, Mohamed

    2014-06-15

    The oil production generates large volumes of oil sands process-affected water (OSPW), referring to the water that has been in contact with oil sands or released from tailings deposits. There are concerns about the environmental impacts of the release of OSPW because of its toxicity. Zero valent iron alone (ZVI) and in combination with petroleum coke (CZVI) were investigated as environmentally friendly treatment processes for the removal of naphthenic acids (NAs), acid-extractable fraction (AEF), fluorophore organic compounds, and trace metals from OSPW. While the application of 25 g/L ZVI to OSPW resulted in 58.4% removal of NAs in the presence of oxygen, the addition of 25 g petroleum coke (PC) as an electron conductor enhanced the NAs removal up to 90.9%. The increase in ZVI concentration enhanced the removals of NAs, AEF, and fluorophore compounds from OSPW. It was suggested that the electrons generated from the oxidation of ZVI were transferred to oxygen, resulting in the production of hydroxyl radicals and oxidation of NAs. When OSPW was de-oxygenated, the NAs removal decreased to 17.5% and 65.4% during treatment with ZVI and CZVI, respectively. The removal of metals in ZVI samples was similar to that obtained during CZVI treatment. Although an increase in ZVI concentration did not enhance the removal of metals, their concentrations effectively decreased at all ZVI loadings. The Microtox(®) bioassay with Vibrio fischeri showed a decrease in the toxicity of ZVI- and CZVI-treated OSPW. The results obtained in this study showed that the application of ZVI in combination with PC is a promising technology for OSPW treatment. PMID:24681364

  18. Comparison of two methods for estimating discharge and nutrient loads from Tidally affected reaches of the Myakka and Peace Rivers, West-Central Florida

    USGS Publications Warehouse

    Levesque, V.A.; Hammett, K.M.

    1997-01-01

    The Myakka and Peace River Basins constitute more than 60 percent of the total inflow area and contribute more than half the total tributary inflow to the Charlotte Harbor estuarine system. Water discharge and nutrient enrichment have been identified as significant concerns in the estuary, and consequently, it is important to accurately estimate the magnitude of discharges and nutrient loads transported by inflows from both rivers. Two methods for estimating discharge and nutrient loads from tidally affected reaches of the Myakka and Peace Rivers were compared. The first method was a tidal-estimation method, in which discharge and nutrient loads were estimated based on stage, water-velocity, discharge, and water-quality data collected near the mouths of the rivers. The second method was a traditional basin-ratio method in which discharge and nutrient loads at the mouths were estimated from discharge and loads measured at upstream stations. Stage and water-velocity data were collected near the river mouths by submersible instruments, deployed in situ, and discharge measurements were made with an acoustic Doppler current profiler. The data collected near the mouths of the Myakka River and Peace River were filtered, using a low-pass filter, to remove daily mixed-tide effects with periods less than about 2 days. The filtered data from near the river mouths were used to calculate daily mean discharge and nutrient loads. These tidal-estimation-method values were then compared to the basin-ratio-method values. Four separate 30-day periods of differing streamflow conditions were chosen for monitoring and comparison. Discharge and nutrient load estimates computed from the tidal-estimation and basin-ratio methods were most similar during high-flow periods. However, during high flow, the values computed from the tidal-estimation method for the Myakka and Peace Rivers were consistently lower than the values computed from the basin-ratio method. There were substantial

  19. The second-shell metal ligands of human arginase affect coordination of the nucleophile and substrate.

    PubMed

    Stone, Everett M; Chantranupong, Lynne; Georgiou, George

    2010-12-14

    The active sites of eukaryotic arginase enzymes are strictly conserved, especially the first- and second-shell ligands that coordinate the two divalent metal cations that generate a hydroxide molecule for nucleophilic attack on the guanidinium carbon of l-arginine and the subsequent production of urea and l-ornithine. Here by using comprehensive pairwise saturation mutagenesis of the first- and second-shell metal ligands in human arginase I, we demonstrate that several metal binding ligands are actually quite tolerant to amino acid substitutions. Of >2800 double mutants of first- and second-shell residues analyzed, we found more than 80 unique amino acid substitutions, of which four were in first-shell residues. Remarkably, certain second-shell mutations could modulate the binding of both the nucleophilic water/hydroxide molecule and substrate or product ligands, resulting in activity greater than that of the wild-type enzyme. The data presented here constitute the first comprehensive saturation mutagenesis analysis of a metallohydrolase active site and reveal that the strict conservation of the second-shell metal binding residues in eukaryotic arginases does not reflect kinetic optimization of the enzyme during the course of evolution. PMID:21053939

  20. The problems of weld metal or heat affected zone toughness in offshore structural steels

    SciTech Connect

    Hancock, P.; Spurrier, J.; Chubb, J.P.

    1996-12-01

    An extensive set of fracture toughness results for welded offshore structural steels, gathered from nine separate sponsoring companies, has been entered into a specially constructed database. With over eleven thousand Charpy results and over two thousand CTOD results available, it has been possible to analyze the occurrence of low toughness results with respect to variables such as thickness, PWHT, steel production route etc., even though the individual test programs were not specifically structured to do this. This paper concentrates on the toughness of the weld metal. The data demonstrates that the likelihood of a low toughness result from a CTOD test in weld metal at {minus}10 C is comparable with that from the HAZ region for welded offshore structural steels, and PWHT of the joint is beneficial in reducing the occurrence of low toughness values in the weld metal. It is therefore important that when the HAZ performance is assessed, either through weld procedure tests or plate prequalification procedures, adequate attention is also paid to the weld metal toughness.

  1. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    SciTech Connect

    Titran, R.H.; Moore, T.J.; Grobstein, T.L.

    1994-09-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electrode beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the aged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistance as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 0.6 MPa for annealed Nb-1%Zr and 2.8 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  2. Calibration of radiographs by a reference metal ball affects preoperative selection of implant size.

    PubMed

    Schropp, Lars; Stavropoulos, Andreas; Gotfredsen, Erik; Wenzel, Ann

    2009-12-01

    The aim was to evaluate the impact of a reference ball for calibration of periapical and panoramic radiographs on preoperative selection of implant size for three implant systems. Presurgical digital radiographs (70 panoramic, 43 periapical) from 70 patients scheduled for single-tooth implant treatment, recorded with a metal ball placed in the edentulous area, were evaluated by three observers with the intent to select the appropriate implant size. Four reference marks corresponding to the margins of the metal ball were manually placed on the digital image by means of computer software. Additionally, an implant with proper dimensions for the respective site was outlined by manually placing four reference marks. The diameter of the metal ball and the unadjusted length and width of the implant were calculated. Implant size was adjusted according to a "standard" calibration method (SCM; magnification factor 1.25 in panoramic images and 1.05 in periapical images) and according to a reference ball calibration method (RCM; true magnification). Based on the unadjusted as well as the adjusted implant dimensions, the implant size was selected among those available in a given implant system. For periapical radiographs, when comparing SCM and RCM with unadjusted implant dimensions, implant size changed in 42% and 58%, respectively. When comparing SCM and RCM, implant size changed in 24%. For panoramic radiographs, comparing SCM and RCM changed implant size in 48%. The use of a reference metal ball for calibration of periapical and panoramic radiographs when selecting implant size during treatment planning might be advantageous. PMID:19221809

  3. ENVIRONMENTAL RESEARCH BRIEF: SPATIAL HETEROGENEITY OF GEOCHEMICAL AND HYDROLOGIC PARAMETERS AFFECTING METAL TRANSPORT IN GROUND WATER

    EPA Science Inventory

    Reliable assessment of the hazards or risks arising from groundwater contamination and the design of effective means of rehabilitation of contaminated sites requires the capability to predict the movement and fate of dissolved solutes in groundwater. The modeling of metal transp...

  4. Creep properties of PWC-11 base metal and weldments as affected by heat treatment

    NASA Technical Reports Server (NTRS)

    Titran, R. H.; Moore, T. J.; Grobstein, T. L.

    1986-01-01

    In a preliminary study using single specimens for each condition, PWC-11 (a niobium-base alloy with a nominal composition of Nb-1%Zr-0.1%C) was creep tested at 1350 K and 40 MPa. Base metal specimens and specimens with transverse electron beam welds were tested with and without a 1000 hr, 1350 K aging treatment prior to testing. In the annealed condition (1 hr at 1755 K + 2 hr at 1475 K), the base metal exhibited superior creep strength compared to the nonaged condition, reaching 1 percent strain in 3480 hr. A 1000 hr, 1350 K aging treatment prior to creep testing had a severe detrimental effect on creep strength of the base metal and transverse electron beam weldments, reducing the time to attain 1 percent strain by an order of magnitude. Extrapolated temperature compensated creep rates indicate that the present heat of PWC-11 may be four times as creep resistant as similarly tested Nb-1%Zr. The extrapolated stress to achieve 1 percent creep strain in 7 yr at 1350 K is 2.7 MPa for annealed Nb-1%Zr and 12 MPa for annealed and aged PWC-11 base metal with and without a transverse electron beam weld.

  5. Encapsulation of curcumin in cyclodextrin-metal organic frameworks: Dissociation of loaded CD-MOFs enhances stability of curcumin.

    PubMed

    Moussa, Zeinab; Hmadeh, Mohamad; Abiad, Mohamad G; Dib, Omar H; Patra, Digambara

    2016-12-01

    Curcumin has been successfully encapsulated in cyclodextrin-metal organic frameworks (CD-MOFs) without altering their crystallinity. The interaction between curcumin and CD-MOFs is strong through hydrogen bond type interaction between the OH group of cyclodextrin of CD-MOFs and the phenolic hydroxyl group of the curcumin. Interestingly, dissolving the curcumin loaded CD-MOFs crystals in water results in formation of a unique complex between curcumin, γCD and potassium cations. In fact, the initial interaction between curcumin and CD-MOF is crucial for the formation of the latter. This new complex formed in alkaline media at pH 11.5 has maximum absorbance at 520nm and emittance at 600nm. Most importantly, the stability of curcumin in this complex was enhanced by at least 3 orders of magnitude compared to free curcumin and curcumin:γ-CD at pH 11.5. These results suggest a promising benign system of CD-MOFs, which can be used to store and stabilize curcumin for food applications.

  6. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal.

  7. Fe-Mn bi-metallic oxides loaded on granular activated carbon to enhance dye removal by catalytic ozonation.

    PubMed

    Tang, Shoufeng; Yuan, Deling; Zhang, Qi; Liu, Yameng; Zhang, Qi; Liu, Zhengquan; Huang, Haiming

    2016-09-01

    A Fe-Mn bi-metallic oxide supported on granular activated carbon (Fe-Mn GAC) has been fabricated by an impregnation-desiccation method and tested in the catalytic ozonation of methyl orange (MO) degradation and mineralization. X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy characterizations revealed that Fe-Mn oxides were successfully loaded and uniformly distributed on the GAC, and nitrogen adsorption isotherms showed that the supported GAC retained a large surface area and a high pore volume compared with the pristine GAC. The catalytic activity was systematically assessed by monitoring the MO removal efficiencies at different operational parameters, such as catalyst dosage, initial solution pH, and ozone flow rate. The Fe-Mn GAC exhibited better catalytic activity relative to ozone alone and GAC alone, improving the TOC removal by 24.5 and 11.5 % and COD removal by 13.6 and 7.3 %, respectively. The reusability of the hybrid was examined over five consecutive cyclic treatments. The Fe-Mn GAC catalytic activity was only a slight loss in the cycles, showing good stability. The addition of Na2CO3 as hydroxyl radicals (•OH) scavengers proved that the catalytic ozonation mechanism was the enhanced generation of •OH by the Fe-Mn GAC. The above results render the Fe-Mn GAC an industrially promising candidate for catalytic ozonation of dye contaminant removal. PMID:27316651

  8. Factors affecting the bond strength of denture base and reline acrylic resins to base metal materials

    PubMed Central

    TANOUE, Naomi; MATSUDA, Yasuhiro; YANAGIDA, Hiroaki; MATSUMURA, Hideo; SAWASE, Takashi

    2013-01-01

    Objective The shear bond strengths of two hard chairside reline resin materials and an auto-polymerizing denture base resin material to cast Ti and a Co-Cr alloy treated using four conditioning methods were investigated. Material and Methods Disk specimens (diameter 10 mm and thickness 2.5 mm) were cast from pure Ti and Co-Cr alloy. The specimens were wet-ground to a final surface finish of 600 grit, air-dried, and treated with the following bonding systems: 1) air-abraded with 50-70-µm grain alumina (CON); 2) 1) + conditioned with a primer, including an acidic phosphonoacetate monomer (MHPA); 3) 1) + conditioned with a primer including a diphosphate monomer (MDP); 4) treated with a tribochemical system. Three resin materials were applied to each metal specimen. Shear bond strengths were determined before and after 10,000 thermocycles. Results The strengths decreased after thermocycling for all combinations. Among the resin materials assessed, the denture base material showed significantly (p<0.05) greater shear bond strengths than the two reline materials, except for the CON condition. After 10,000 thermocycles, the bond strengths of two reline materials decreased to less than 10 MPa for both metals. The bond strengths of the denture base material with MDP were sufficient: 34.56 MPa for cast Ti and 38.30 for Co-Cr alloy. Conclusion Bonding of reline resin materials to metals assessed was clinically insufficient, regardless of metal type, surface treatment, and resin composition. For the relining of metal denture frameworks, a denture base material should be used. PMID:24037070

  9. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes. PMID:26910952

  10. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    PubMed

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.

  11. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.

  12. Effect of thermal and mechanical loading on marginal adaptation and microtensile bond strength of a self-etching adhesive with caries-affected dentin

    PubMed Central

    Aggarwal, Vivek; Singla, Mamta; Miglani, Sanjay

    2011-01-01

    Aim: This study evaluated the effect of thermal and mechanical loading on marginal adaptation and microtensile bond strength in total-etch versus self-etch adhesive systems in caries-affected dentin. Materials and Methods: Forty class II cavities were prepared on extracted proximally carious human mandibular first molars and were divided into two groups: Group I — self-etch adhesive system restorations and Group II — total-etch adhesive system restorations. Group I and II were further divided into sub-groups A (Without thermal and mechanical loading) and B (With thermal and mechanical loading of 5000 cycles, 5 ± 2°C to 55 ± 2°C, dwell time 30 seconds, and 150,000 cycles at 60N). The gingival margin of the proximal box was evaluated at 200X magnification for marginal adaptation in a low vacuum scanning electron microscope. The restorations were sectioned, perpendicular to the bonded surface, into 0.8 mm thick slabs. All the specimens were subjected to microtensile bond strength testing. The marginal adaptation was analyzed using descriptive studies, and the bond strength data was analyzed using the one-way analysis of variance (ANOVA) test. Results and Conclusions: The total-etch system performed better under thermomechanical loading. PMID:21691507

  13. Determination of elastoplastic mechanical properties of the weld and heat affected zone metals in tailor-welded blanks by nanoindentation test

    NASA Astrophysics Data System (ADS)

    Ma, Xiangdong; Guan, Yingping; Yang, Liu

    2015-09-01

    The elastoplastic mechanical properties of the weld and heat affected zone metals have comparatively major impact on the forming process of tailor-welded blanks. A few scholars investigated the elastoplastic mechanical properties of the weld and heat affected zone, but they only simply assumed that it was a uniform distribution elastoplastic material different from the base materials. Four types of tailor-welded blanks which consist of ST12 and 304 stainless steel plates are selected as the research objects, the elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals are obtained based on the nanoindentation tests, and the Erichsen cupping tests are conducted by combining numerical simulation with physical experiment. The nanoindentation tests results demonstrate that the elastoplastic mechanical properties of the weld and heat affected zone metals are not only different from the base materials, but also varying between the weld metals and the heat affected zone metals. Comparing the Erichsen cupping test resulted from numerical with that from experimental method, it is found that the numerical value of Erichsen cupping test which consider the elastoplastic mechanical properties of the weld and heat affected zone metals have a good agreement with the experimental result, and the relative error is only 4.8%. The proposed research provides good solutions for the inhomogeneous elastoplastic mechanical properties of the tailor-welded blanks weld and heat affected zone metals, and improves the control performance of tailor-welded blanks forming accuracy.

  14. Thigh-calf contact: does it affect the loading of the knee in the high-flexion range?

    PubMed

    Zelle, J; Barink, M; De Waal Malefijt, M; Verdonschot, N

    2009-03-26

    Recently, high-flexion knee implants have been developed to provide for a large range of motion (ROM>120 degrees ) after total knee arthroplasty (TKA). Since knee forces typically increase with larger flexion angles, it is commonly assumed that high-flexion knee implants are subjected to larger loads than conventional knee implants. However, most high-flexion studies do not consider thigh-calf contact which occurs during high-flexion activities such as squatting and kneeling. In this study, we hypothesized that thigh-calf contact reduces the knee forces during deep knee flexion as the tibio-femoral load shifts from occurring inside the knee towards the thigh-calf contact interface. Hence, the effect of thigh-calf contact on the knee loading was evaluated using a free body diagram and a finite element model and both the knee forces and polyethylene stresses were analyzed. Thigh-calf contact force characteristics from an earlier study were included and a squatting movement was simulated. In general, we found thigh-calf contact considerably reduced both the knee forces and polyethylene stresses during deep knee flexion. At maximal flexion (155 degrees ), the compressive knee force decreased from 4.89 to 2.90 times the bodyweight (BW) in case thigh-calf contact was included and the polyethylene contact stress at the tibial post decreased from 49.3 to 28.1MPa. Additionally, there was a clear correlation between a subject's thigh and calf circumference and the force reduction at maximal flexion due to thigh-calf contact (R=0.89). The findings presented in this study can be used to optimize the mechanical behavior of high-flexion total knee arthroplasty designs. PMID:19200996

  15. Analysis of Operational Parameters Affecting the Sulfur Content in Hot Metal of the COREX Process

    NASA Astrophysics Data System (ADS)

    Wu, Shengli; Wang, Laixin; Kou, Mingyin; Wang, Yujue; Zhang, Jiacong

    2016-10-01

    The COREX process, which has obvious advantages in environment protection, still has some disadvantages. It has a higher sulfur content in hot metal (HM) than the blast furnace has. In the present work, the distribution and transfer of sulfur in the COREX have been analyzed and several operational parameters related to the sulfur content in HM ([pct S]) have been obtained. Based on this, the effects of the coal rate, slag ratio, temperature of HM, melting rate, binary basicity (R 2), the ratio of MgO/Al2O3, utilization of reducing gas, top gas consumption per ton burden solid, metallization rate, oxidation degree of reducing gas, and coal and DRI distribution index on the sulfur content in HM are investigated. What's more, a linear model has been developed and subsequently used for predicting and controlling the S content in HM of the COREX process.

  16. Surface interactions affect the toxicity of engineered metal oxide nanoparticles toward Paramecium.

    PubMed

    Li, Kungang; Chen, Ying; Zhang, Wen; Pu, Zhichao; Jiang, Lin; Chen, Yongsheng

    2012-08-20

    To better understand the potential impacts of engineered metal oxide nanoparticles (NPs) in the ecosystem, we investigated the acute toxicity of seven different types of engineered metal oxide NPs against Paramecium multimicronucleatum, a ciliated protozoan, using the 48 h LC(50) (lethal concentration, 50%) test. Our results showed that the 48 h LC(50) values of these NPs to Paramecium ranged from 0.81 (Fe(2)O(3) NPs) to 9269 mg/L (Al(2)O(3) NPs); their toxicity to Paramecium increased as follows: Al(2)O(3) < TiO(2) < CeO(2) < ZnO < SiO(2) < CuO < Fe(2)O(3) NPs. On the basis of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, interfacial interactions between NPs and cell membrane were evaluated, and the magnitude of interaction energy barrier correlated well with the 48 h LC(50) data of NPs to Paramecium; this implies that metal oxide NPs with strong association with the cell surface might induce more severe cytotoxicity in unicellular organisms.

  17. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  18. Variations in heavy metal contamination of stream water and groundwater affected by an abandoned lead-zinc mine in Korea.

    PubMed

    Lee, Jin-Yong; Choi, Jung-Chan; Lee, Kang-Kun

    2005-09-01

    This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead-zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002-2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 microg L(-1), copper (Cu) 616 microg L(-1), cadmium (Cd) 223 microg L(-1) and lead (Pb) 10,590 microg L(-1), which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6-174 microg L(-1)), Cd (1-46 microg L(-1)) and Pb (2-26 microg L(-1)). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO(4)), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO(4) increased while those of bicarbonate (HCO(3)) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758

  19. Vision and Haptics Share Spatial Attentional Resources and Visuotactile Integration Is Not Affected by High Attentional Load.

    PubMed

    Wahn, Basil; König, Peter

    2015-01-01

    Human information processing is limited by attentional resources. Two questions that are discussed in multisensory research are (1) whether there are separate spatial attentional resources for each sensory modality and (2) whether multisensory integration is influenced by attentional load. We investigated these questions using a dual task paradigm: Participants performed two spatial tasks (a multiple object tracking ['MOT'] task and a localization ['LOC'] task) either separately (single task condition) or simultaneously (dual task condition). In the MOT task, participants visually tracked a small subset of several randomly moving objects. In the LOC task, participants either received visual, tactile, or redundant visual and tactile location cues. In the dual task condition, we found a substantial decrease in participants' performance and an increase in participants' mental effort (indicated by an increase in pupil size) relative to the single task condition. Importantly, participants performed equally well in the dual task condition regardless of whether they received visual, tactile, or redundant multisensory (visual and tactile) location cues in the LOC task. This result suggests that having spatial information coming from different modalities does not facilitate performance, thereby indicating shared spatial attentional resources for the tactile and visual modality. Also, we found that participants integrated redundant multisensory information optimally even when they experienced additional attentional load in the dual task condition. Overall, findings suggest that (1) spatial attentional resources for the tactile and visual modality overlap and that (2) the integration of spatial cues from these two modalities occurs at an early pre-attentive processing stage.

  20. Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain).

    PubMed

    Hierro, A; Olías, M; Cánovas, C R; Martín, J E; Bolivar, J P

    2014-11-01

    The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH~6 Cu is desorbed, probably by the formation of Cu(I)-chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes.

  1. Colloid centrifugation of fresh stallion semen before cryopreservation decreased microorganism load of frozen-thawed semen without affecting seminal kinetics.

    PubMed

    Guimarães, T; Lopes, G; Pinto, M; Silva, E; Miranda, C; Correia, M J; Damásio, L; Thompson, G; Rocha, A

    2015-01-15

    Freezability of equine semen may be influenced by microorganism population of semen. The objective of this study was to verify the effect of single-layer density gradient centrifugation (SLC) of fresh semen before cryopreservation on semen's microbial load (ML) and sperm cells kinetics after freezing-thawing. For that, one ejaculate was collected from 20 healthy stallions and split into control (C) samples (cryopreserved without previous SLC) and SLC samples (subjected to SLC). Semen cryopreservation was performed according to the same protocol in both groups. Microbial load of each microorganism species and total microbial load (TML) expressed in colony-forming units (CFU/mL) as well as frozen-thawed sperm kinetics were assessed in both groups. Additional analysis of the TML was performed, subdividing the frozen-thawed samples in "suitable" (total motility ≥ 30%) and "unsuitable" (total motility < 30%) semen for freezing programs, and comparing the C and SLC groups within these subpopulations. After thawing, SLC samples had less (P < 0.05) TML (88.65 × 10(2) ± 83.8 × 10(2) CFU/mL) than C samples (155.69 × 10(2) ± 48.85 × 10(2) CFU/mL), mainly due to a reduction of Enterococcus spp. and Bacillus spp. A relationship between post-thaw motility and SLC effect on ML was noted, as only in samples with more than 30% total motility was ML reduced (P < 0.05) by SLC (from 51.33 × 10(2) ± 33.26 × 10(2) CFU/mL to 26.68 × 10(2) ± 12.39 × 10(2) CFU/mL in "suitable" frozen-thawed semen vs. 240.90 × 10(2) ± 498.20 × 10(2) to 139.30 × 10(2) ± 290.30 × 10(2) CFU/mL in "unsuitable" frozen-thawed semen). The effect of SLC on kinetics of frozen-thawed sperm cells was negligible.

  2. Do fattening process and biological parameters affect the accumulation of metals in Atlantic bluefin tuna?

    PubMed

    Milatou, Niki; Dassenakis, Manos; Megalofonou, Persefoni

    2015-01-01

    The objective of this study was to determine the current levels of heavy metals and trace elements in Atlantic bluefin tuna muscle tissues and how they are influenced by the fattening process and various life history parameters to ascertain whether the concentrations in muscle tissue exceed the maximum levels defined by the European Commission Decision and to evaluate the health risk posed by fish consumption. A total of 20 bluefin tuna reared in sea cages, ranging from 160 to 295 cm in length and from 80 to 540 kg in weight, were sampled from a bluefin tuna farm in the Ionian Sea. The condition factor K of each specimen was calculated and their age was estimated. Heavy metal and trace element (Hg, Zn, Fe and Cu) contents were determined in muscle tissue using cold vapour atomic absorption spectrometry and flame and graphite furnace atomic absorption spectrometry. The total Hg concentrations ranged from 0.28 to 1.28 mg kg(-1) w/w, Zn from 5.81 to 76.37 mg kg(-1) w/w, Fe from 12.14 to 39.58 mg kg(-1) w/w, and Cu from 0.36 to 0.94 mg kg(-1) w/w. Only 5% of the muscle samples of tuna contained Hg above the maximum level laid down by the European Commission Decision. Moreover, 15% of the muscle samples contained Zn above the maximum level, while Fe and Cu concentrations were within the acceptable tolerable guideline values. The reared bluefin tuna had lower concentrations of Hg than the wild ones from the Mediterranean Sea. Hg and Fe concentrations showed a positive relationship with size and age of bluefin tuna, whereas negative relationships were found for the concentrations of Zn and Cu. The estimated dietary intake values of the analysed metals were mostly below the derived guidelines.

  3. Heavy metal desorption kinetic as affected by of anions complexation onto manganese dioxide surfaces.

    PubMed

    Zaman, Muhammad Iqbal; Mustafa, Syed; Khan, Sadullah; Xing, Baoshan

    2009-10-01

    Oxides of Fe, Al, and Mn have been studied extensively for heavy metals fixation in soil. However, little is known about the effect of anions on the desorption processes of these metals, especially from manganese dioxide. The purpose of this study was to examine the influence of residence time, temperature, and interacting anions on desorption of Pb(2+), Cd(2+) and Cu(2+) from MnO(2). MnO(2) was characterized by different experimental techniques prior to desorption studies. The sorption-desorption studies were conducted for Pb(2+), Cu(2+), and Cd(2+) ions in the presence of different electrolytes and at different temperature in the range 293-323 K. For all the sorption experiments, Pb(2+) sorption was the greatest and almost 100% sorption occurred in the presence of 0.001 M potassium phosphate. The sorption of metals under investigation followed the order Pb(2+)>Cu(2+)>Cd(2+), whereas the desorption order was Cd(2+)>Cu(2+)>Pb(2+) in 0.01 M potassium nitrate and sulphate. Only a small quantity of desorbed Pb was detected, even at the low value of pH 3. These results indicated the stability of lead phosphate precipitates or that phosphate treatment imparted stability to the ternary complexes formed at the MnO(2) surface. The detailed desorption kinetics were conducted only for Cd(2+) in 0.01 M potassium nitrate or 0.001 M phosphate at pH values of 3 and 4 in the temperature range 303-323 K. A substantial decrease in Cd(2+) desorption was noted with increasing pH and temperature and the desorption process reached equilibration in 3h at pH 4. However, at pH 3 the desorption fluctuated, which is probably due the dissolution of the solid at such low pH values.

  4. Friction, Wear, and Surface Damage of Metals as Affected by Solid Surface Films

    NASA Technical Reports Server (NTRS)

    Bisson, Edmond E; Johnson, Robert L; Swikert, Max A; Godfrey, Douglas

    1956-01-01

    As predicted by friction theory, experiments showed that friction and surface damage of metals can be reduced by solid surface films. The ability of materials to form surface films that prevent welding was a very important factor in wear of dry and boundary lubricated surfaces. Films of graphitic carbon on cast irons, nio on nickel alloys, and feo and fe sub 3 o sub 4 on ferrous materials were found to be beneficial. Abrasive films such as fe sub 2 o sub 3 or moo sub 3 were definitely detrimental. It appears that the importance of oxide films to friction and wear processes has not been fully appreciated.

  5. How does muscle stiffness affect the internal deformations within the soft tissue layers of the buttocks under constant loading?

    PubMed

    Loerakker, S; Solis, L R; Bader, D L; Baaijens, F P T; Mushahwar, V K; Oomens, C W J

    2013-01-01

    Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury (DTI). Deformation plays an important role in the aetiology of DTI. Therefore, it is essential to minimise internal muscle deformations in subjects at risk of DTI. As an example, spinal cord-injured (SCI) individuals exhibit structural changes leading to a decrease in muscle thickness and stiffness, which subsequently increase the tissue deformations. In the present study, an animal-specific finite element model, where the geometry and boundary conditions were derived from magnetic resonance images, was developed. It was used to investigate the internal deformations in the muscle, fat and skin layers of the porcine buttocks during loading. The model indicated the presence of large deformations in both the muscle and the fat layers, with maximum shear strains up to 0.65 in muscle tissue and 0.63 in fat. Furthermore, a sensitivity analysis showed that the tissue deformations depend considerably on the relative stiffness values of the different tissues. For example, a change in muscle stiffness had a large effect on the muscle deformations. A 50% decrease in stiffness caused an increase in maximum shear strain from 0.65 to 0.99, whereas a 50% increase in stiffness resulted in a decrease in maximum shear strain from 0.65 to 0.49. These results indicate the importance of restoring tissue properties after SCI, with the use of, for example, electrical stimulation, to prevent the development of DTI.

  6. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression.

    PubMed

    Hirschberg, Cosima; Sun, Changquan Calvin; Rantanen, Jukka

    2016-09-01

    Characterization of particulate systems (powders) is one of the remaining scientific challenges. Evaluation of powder behaviour is often empirical and the decision-making processes are experience-based. There is a need for development of analytical instrumentation enabling more fundamental understanding of powder behaviour. Flowability and tabletability, two key factors in commercial scale manufacturing of tablets with direct compression (DC) approach, were analysed for formulations containing increasing amounts of several model active pharmaceutical ingredients (APIs). Flowability was investigated using a ring shear tester and tablets were prepared at four different compression pressures using a single punch tablet press. Thereby, a material sparing screening approach was developed to estimate the influence of APIs on behaviour of a given DC formulation. Additionally, this approach is useful for estimating the low threshold amount of API (wt%), at which the properties of an API start affecting the powder behaviour of a given formulation (API-excipient mixture). This threshold will be referred to as critical drug loading. The flowability of microcrystalline cellulose (reference grade pH 102) was used as a threshold for adequate flowability of model formulations. The threshold for tablet tensile strength was set to 2MPa. Simultaneous visual presentation of both- flowability and tabletability were used for a fast evaluation of manufacturability of a given formulation. The results confirmed that flowability is more sensitive to drug loading than tabletability, and that the critical drug loading for a DC formulation is strongly affected by particulate properties of API. For example, decreasing the particle size of paracetamol led to rapid decrease in flowability index, whereas the tabletability was not affected. PMID:27368089

  7. Selective enrichment of sulfides, thiols and methylthiophosphates from water samples on metal-loaded cation-exchange materials for gas chromatographic analysis.

    PubMed

    Beiner, K; Popp, P; Wennrich, R

    2002-08-30

    The suitability of using metal-loaded sorbents for solid-phase extraction to enrich organic sulfur compounds from water samples was studied. To test the retention behavior of a number of sulfides, thiols and methylthiophosphates, a cation-exchanger was loaded with various metal ions. The elution behavior of sulfur compounds was investigated with different solvents. A combination of Pb2+-modified cation-exchanger as sorbent and CS2 (1%, v/v) in toluene proved to be the most suitable approach for the given problem. Using GC with a pulsed flame photometric detector yielded detection limits of between 0.6 and 2.9 microg/l. The results showed good reproducibility with relative standard deviations of 2-11%. PMID:12236501

  8. Statistical evaluation of biogeochemical variables affecting spatiotemporal distributions of multiple free metal ion concentrationsin an urban estuary

    EPA Science Inventory

    Free metal ion concentrations have been recognized as a better indicator of metal bioavailability in aquatic environments than total dissolved metal concentrations. However, our understanding of the determinants of free ion concentrations, especially in a metal mixture, is limite...

  9. Load-deflection and surface properties of coated and conventional superelastic orthodontic archwires in conventional and metal-insert ceramic brackets

    PubMed Central

    Alavi, Shiva; Hosseini, Navid

    2012-01-01

    Background: Properties of coated archwires, which have been introduced for esthetic demands during orthodontic treatments, along with the use of tooth-colored brackets, are not clear. The aim of this study is to compare the load-deflection and surface properties of coated superelastic archwires with conventional superelastic archwires in conventional and metal-insert ceramic brackets. Materials and Methods: In this experimental study, 3 types of archwires including ultraesthetic polycoated, ultraesthetic epoxyresin coated and conventional (uncoated) superelastic nickel-titanium (NiTi) archwires were used in each of 2 types of brackets including conventional and metal-insert ceramic. To simulate oral environment, all specimens were incubated in artificial saliva using thermocycling model and then were tested in three-bracket bending test machine. Loading and unloading forces, plateau gap and end load deflection point (ELDP) were recorded. Archwires were investigated with a stereomicroscope before and after the experiment. Two-way ANOVA and Tukey tests were used at P<0.05. Results: Epoxyresin archwires produced lower forces (19 to 310 gr) compared to polycoated (61 to 359 gr) and NiTi (61 to 415 gr) (P<0.0001). The maximum ELDP (0.43 mm) was observed in epoxyresin archwires (P<0.001). Coatings of some epoxyresin wires were torn and of polycoated wires peeled off. Conventional ceramic bracket produced higher loading forces with polycoated and NiTi archwires and lower unloading forces with all 3 types of archwires compared to metal-insert type (P<0.05). Conclusion: Epoxyresin-coated archwire had the lowest force and highest ELDP. Coatings were not durable in these experimental conditions. Conventional ceramic bracket produced higher frictional force compared to metal-insert type. PMID:22623927

  10. Design Considerations for a Large Metal-Loaded Liquid Scintillator Detector with Applications for Solar Neutrino and Double Beta Decay Studies

    NASA Astrophysics Data System (ADS)

    Doe, Peter; Robertson, Hamish; Gehman, Victor; Gehring, George; Iwamoto, Hideko; Will, Doug

    2002-10-01

    The realization of a large, metal-loaded liquid scintillator detector has exciting possibilities in the areas of Double Beta Decay, low-energy solar neutrino, and supernova neutrino studies. We have used statistical considerations to arrive at an analytical expression which will allow us to optimize a detector design for energy and spatial resolution. Using these results, we consider the possible use of Avalanche Photo-Diode detectors operated in the Geiger regime as a possible replacement for Photomultiplier Tubes.

  11. Binding intensity and metal partitioning in soils affected by mining and smelting activities in Minas Gerais, Brazil.

    PubMed

    Lopes, G; Costa, E T S; Penido, E S; Sparks, D L; Guilherme, L R G

    2015-09-01

    Mining and smelting activities are potential sources of heavy metal contamination, which pose a threat to human health and ecological systems. This study investigated single and sequential extractions of Zn, Pb, and Cd in Brazilian soils affected by mining and smelting activities. Soils from a Zn mining area (soils A, B, C, D, E, and the control soil) and a tailing from a smelting area were collected in Minas Gerais state, Brazil. The samples were subjected to single (using Mehlich I solution) and sequential extractions. The risk assessment code (RAC), the redistribution index (U ts ), and the reduced partition index (I R ) have been applied to the sequential extraction data. Zinc and Cd, in soil samples from the mining area, were found mainly associated with carbonate forms. This same pattern did not occur for Pb. Moreover, the Fe-Mn oxides and residual fractions had important contributions for Zn and Pb in those soils. For the tailing, more than 70 % of Zn and Cd were released in the exchangeable fraction, showing a much higher mobility and availability of these metals at this site, which was also supported by results of RAC and I R . These differences in terms of mobility might be due to different chemical forms of the metals in the two sites, which are attributable to natural occurrence as well as ore processing.

  12. 75 years after mining ends stream insect diversity is still affected by heavy metals.

    PubMed

    Lefcort, Hugh; Vancura, James; Lider, Edward L

    2010-11-01

    A century of heavy metal mining in the western United States has left a legacy of abandoned mines. While large operations have left a visible reminder, smaller one and two-man operations have been overgrown and largely forgotten. We revisited an area of northern Idaho that has not had active mining since at least 1932 and probably since 1910. At three sites along each of 10 mountain streams we sampled larval stream insects and correlated their community diversity to stream levels of arsenic, cadmium, lead, zinc, pH, temperature, oxygen content, and conductivity. Although the streams appear pristine, multivariate statistics indicated that cadmium and zinc levels were significantly correlated with fewer animals, fewer families, a smaller percentage of plecopterans (stoneflies), and lower Shannon H diversity values. After at least 75 years, abandoned mines appear to be still influencing stream communities. PMID:20680454

  13. Metal mobility in river and sea sediments affected by mine drainage (Sestri Levante, Italy)

    NASA Astrophysics Data System (ADS)

    Consani, Sirio; Capello, Marco; Cutroneo, Laura; Vagge, Greta; Zuccarelli, Andrea; Carbone, Cristina

    2016-04-01

    The Gromolo Torrent is a metal-polluted Apennine streamflow located near Sestri Levante (Liguria, Italy). It springs from the Monte Rocca Grande (850 m a.s.l.), and flows for 11.5 km through the Gromolo Valley before flowing into the Ligurian Sea. Inside the Gromolo basin is located the abandoned Fe-Cu mine of Libiola, which was the most important sulfide deposit of the Ligurian Apennines. In this mining site, extensive Acid Mine Drainage (AMD) processes are active, both inside the mine tunnels and in the sulfide rich waste-rock dumps; the solutions generated are characterised by low pH values and high amounts of dissolved SO42-, Fe, and other chemical elements such as Cu, Zn, Pb, Al, Co, and Ni. Moreover, exstensively precipitation of Fe and Cu-rich secondary minerals occurs both as soft crusts inside the mine adits and as loose suspensions associated with overland flow of mine drainage. AMD waters flowed into the uncontaminated Gromolo Torrent where abundant precipitation of amorphous Fe(III)-oxy-hydroxides occurred. The marine study area is characterised by the presence of the headland of Sestri Levante with two bays, the western one named "Baia delle Favole". The dynamics of the area is dominated by a permanent north-westward off-shore current flowing approximately along isobath, and an eastward counter-current along the north coast with a resulting drift of the coastal materials from the West to Est towards "Baia delle Favole". The bottom sediment are principally characterised by coarse materials, mostly consisting of fine sand, with a percentage of the fine sediment increasing inside the bay, where the dynamics is low. The aims of this work are to 1) evaluate the metal mobility of colloidal river precipitates for about 7 km up to its mouth in the Ligurian Sea; 2) verify the contamination state of the marine bottom sediments off the mouth of the Gromolo Torrent ("Baia delle Favole" of Sestri Levante), and 3) identify the main sources and diffusion ways of

  14. Drug loading and elution from a phosphorylcholine polymer-coated coronary stent does not affect long-term stability of the coating in vivo.

    PubMed

    Lewis, Andrew L; Willis, Sean L; Small, Sharon A; Hunt, Stuart R; O'byrne, Vincent; Stratford, Peter W

    2004-01-01

    A drug eluting coronary stent was developed for use in preclinical and clinical trial evaluation. The stent was coated with a phosphorylcholine (PC)-based polymer coating containing the cell migration inhibitor batimastat. A pharmacokinetic study was conducted in a rabbit iliac model using (14)C-radiolabeled version of the drug; this showed the drug release to be first order with 94% of it being released within 28 days. Unloaded and drug-loaded stents were implanted in a porcine coronary artery model; a number were explanted at 5 days and scanning electron microscopy was used to show that the presence of the drug did not affect the rate of stent endothelialization. The remainder of the stents were removed after 6 months and the stents carefully removed from the arterial tissue. Fourier-transform infrared (FT-IR) spectroscopy (both attenuated total reflectance and microscopic imaging) was used to show the presence of the PC coating on control unloaded, drug-loaded and explanted stents, providing evidence that the coating was still present. This was further confirmed by use of atomic force microscopy (AFM) amplitude-phase, distance (a-p,d) curves which generated the characteristic traces of the PC coating. Further AFM depth-profiling techniques found that the thicknesses of the PC coatings on an control unloaded stent was 252+/-19 nm, on an control batimastat-loaded stent 906+/-224 nm and on an explanted stent 405+/-224 nm. The increase in thickness after the drug-loading process was a consequence of drug incorporation in the film, and the return to the unloaded dimensions for the explanted sample indicative of elution of the drug from the coating. The drug delivery PC coating was therefore found to be stable following elution of the drug and after 6 months implantation in vivo. PMID:15472385

  15. Fruit load and canopy shading affect leaf characteristics and net gas exchange of 'Spring' navel orange trees.

    PubMed

    Syvertsen, J P; Goñi, C; Otero, A

    2003-09-01

    Five-year-old 'Spring' navel (Citrus sinensis (L.) Osbeck) orange trees were completely defruited, 50% defruited or left fully laden to study effects of fruit load on concentrations of nitrogen (N) and carbohydrate, net assimilation of CO2 (Ac) and stomatal conductance (gs) of mature leaves on clear winter days just before fruit harvest. Leaves on defruited trees were larger, had higher starch concentrations and greater leaf dry mass per area (LDMa) than leaves on fruited trees. Both Ac and gs were more than 40% lower in sunlit leaves on defruited trees than in sunlit leaves on trees with fruit. Leaves immediately adjacent to fruit were smaller, had lower leaf nitrogen and carbohydrate concentrations, lower LDMa and lower Ac than leaves on non-fruiting branches of the same trees. Removing half the crop increased individual fruit mass, but reduced fruit color development. Half the trees were shaded with 50% shade cloth for 4 months before harvest to determine the effects of lower leaf temperature (Tl) and leaf-to-air vapor pressure difference on leaf responses. On relatively warm days when sunlit Tl > 25 degrees C, shade increased Ac and gs, but had no effect on the ratio of internal to ambient CO2 (Ci/Ca) concentration in leaves, implying that high mesophyll temperatures in sunlit leaves were more important than gs in limiting Ac. Sunlit leaves were more photoinhibited than shaded leaves on cooler days when Tl < 25 degrees C. Shade decreased total soluble sugar concentrations in leaves, but had no effect on leaf starch concentrations. Shading had no effects on canopy volume, yield or fruit size, but shaded fruit developed better external color than sun-exposed fruit. Overall, the presence of a normal fruit crop resulted in lower foliar carbohydrate concentrations and higher Ac compared with defruited trees, except on warm days when Ac was reduced by high leaf temperatures.

  16. Biomonitoring metal deposition in Galicia (NW Spain) with mosses: factors affecting bioconcentration.

    PubMed

    Fernández, J A; Carballeira, A

    2002-01-01

    Three factors (canopy effect, lithology and seasonal variations) that may influence the concentrations of metals in terrestrial mosses were studied. The levels of 17 elements were determined in terrestrial mosses (Scleropodium purum (Hedw.) Limpr, and Hypnum cupressiforme Hedw.) collected from 75 sites in Galicia at two sampling times, in 1995 and 1997. In addition, monthly samples of S. purum were collected throughout a period of one year from four sites in the same area, for analysis of levels of eight elements. The first studied factor, collection of mosses from areas under tree cover, did not influence significantly the levels of the elements analysed. The second factor studied was the dominant lithology in the sampling area (granite, slate and schist). No significant differences were found between samples from sites where granites and slates dominated. Significant differences were found in the levels of Co, Cr, Ni and Mn in both species growing in granite and slate substrate areas when compared with those growing in schist areas. This was also found for Al and Fe in S. purum and for As in H. cupressiforme. The third factor investigated, using the results from the monthly survey, was the seasonal effect. No significant differences were found in the concentrations of all elements in S. purum throughout the year.

  17. Metal contaminated biochar and wood ash negatively affect plant growth and soil quality after land application.

    PubMed

    Jones, D L; Quilliam, R S

    2014-07-15

    Pyrolysis or combustion of waste wood can provide a renewable source of energy and produce byproducts which can be recycled back to land. To be sustainable requires that these byproducts pose minimal threat to the environment or human health. Frequently, reclaimed waste wood is contaminated by preservative-treated timber containing high levels of heavy metals. We investigated the effect of feedstock contamination from copper-preservative treated wood on the behaviour of pyrolysis-derived biochar and combustion-derived ash in plant-soil systems. Biochar and wood ash were applied to soil at typical agronomic rates. The presence of preservative treated timber in the feedstock increased available soil Cu; however, critical Cu guidance limits were only exceeded at high rates of feedstock contamination. Negative effects on plant growth and soil quality were only seen at high levels of biochar contamination (>50% derived from preservative-treated wood). Negative effects of wood ash contamination were apparent at lower levels of contamination (>10% derived from preservative treated wood). Complete removal of preservative treated timber from wood recycling facilities is notoriously difficult and low levels of contamination are commonplace. We conclude that low levels of contamination from Cu-treated wood should pose minimal environmental risk to biochar and ash destined for land application. PMID:24915641

  18. Adsorptive removal of heavy metals from water using sodium titanate nanofibres loaded onto GAC in fixed-bed columns.

    PubMed

    Sounthararajah, D P; Loganathan, P; Kandasamy, J; Vigneswaran, S

    2015-04-28

    Heavy metals are serious pollutants in aquatic environments. A study was undertaken to remove Cu, Cd, Ni, Pb and Zn individually (single metal system) and together (mixed metals system) from water by adsorption onto a sodium titanate nanofibrous material. Langmuir adsorption capacities (mg/g) at 10(-3)M NaNO3 ionic strength in the single metal system were 60, 83, 115 and 149 for Ni, Zn, Cu, and Cd, respectively, at pH 6.5 and 250 for Pb at pH 4.0. In the mixed metals system they decreased at high metals concentrations. In column experiments with 4% titanate material and 96% granular activated carbon (w/w) mixture at pH 5.0, the metals breakthrough times and adsorption capacities (for both single and mixed metals systems) decreased in the order Pb>Cd, Cu>Zn>Ni within 266 bed volumes. The amounts adsorbed were up to 82 times higher depending on the metal in the granular activated carbon+titanate column than in the granular activated carbon column. The study showed that the titanate material has high potential for removing heavy metals from polluted water when used with granular activated carbon at a very low proportion in fixed-bed columns.

  19. Anomalously High Isotope Ratio 3He/4He and Tritium in Deuterium-Loaded Metal: Evidence for Nuclear Reaction in Metal Hydrides at Low Temperature

    NASA Astrophysics Data System (ADS)

    Jiang, Song-Sheng; He, Ming; Wu, Shao-Yong; Qi, Bu-Jia

    2012-01-01

    Anomalous 3He/4He ratios in deuterium-loaded titanium samples are observed to be about 1-4 × 10-1, much greater than the values (<=10-4) in natural objects. Control experiments with the deuterium-unloaded titanium sample and original industrial deuterium gas are also carried out, but no anomalous 3He/4He values are observed. In addition, anomalous tritium in deuterium-loaded titanium samples are also observed. To explain the excess 3He and tritium in the deuterium-loaded titanium samples, it is required that the deuteron-induced nuclear reaction occurs in the samples at low temperature.

  20. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned

  1. Evaluation of factors affecting the analysis of metals using laser-induced breakdown spectroscopy

    SciTech Connect

    Cremers, D.A.; Romero, D.J.

    1986-01-01

    Some of the main factors affecting the analysis of solid steel using laser-induced break-down spectroscopy (LIBS) have been investigated and are reported here. Pulses from an electro-optically Q-switched Nd:YAG laser were focused on steel samples to generate a high temperature plasma. The spectrally resolved plasma light was time resolved and detected using a photodiode array. The effects that changes in the lens-to-sample distance, laser pulse energy, and position of the imaging lens had on the LIBS analysis are described. These effects were minimized by ratioing the absolute element signals to adjacent Fe-lines. Calibration curves for Mn, Si, and Cr are presented and the accuracy and precision of LIBS analysis listed for several elements. 12 refs.

  2. Model of the biotic cycle "plants germs - microorganisms" by affect heavy metal salts

    NASA Astrophysics Data System (ADS)

    Pisman, Tamara

    The growth of wheat germ roots exposed to heavy metal salts (ZnSO4) was studied experimentally and theoretically. During the experiment the plant seeds were preliminarily treated with an experimental microbial association. As a result, data were obtained about the decrease of the inhibiting effect of zinc on the growth of wheat germ roots where the seeds had been treated with the microbial association. To understand such effect, calculations were made to reveal the specific growth rate of a germ root depending on the inhibitor concentration with and without microorganism association treatment. It was shown that in case with the wheat germ roots the seeds of which had been treated with the microorganisms the inhibition constant (kI = 45 MPC (Maximum Permissible Concentration) was higher than in the case with the roots growing out of the seeds that hadn't been treated with the microorganisms (kI = 32 MPC). One of possible reasons for the decrease of growth inhibition of wheat germ roots by zinc salt is the protective function of microorganism's treatment of the seeds. To verify and confirm the experimental results, a mathematical model was created imitating the interaction between wheat germ roots and microbial association exposed to an inhibitor. Investigation of the model proved that the microbial association has a positive effect on the growth of wheat germ roots exposed to an inhibitor. The experimental and theoretical results agreed quantitatively. It was found out that the increase of the inhibitor concentration led to the effect of maximum relief of zinc inhibiting impact. The work is supported by grants Yenissei 07-04-96806.

  3. Does Physical Loading Affect The Speed and Accuracy of Tactical Decision-Making in Elite Junior Soccer Players?

    PubMed

    Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír

    2016-06-01

    A soccer player's capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players' motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key pointsDifferent exercise intensity modes did not affect the accuracy of motor response.Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise.Further research

  4. Does Physical Loading Affect The Speed and Accuracy of Tactical Decision-Making in Elite Junior Soccer Players?

    PubMed Central

    Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír

    2016-01-01

    A soccer player’s capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players’ motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key points Different exercise intensity modes did not affect the accuracy of motor response. Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise. Further

  5. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-07-01

    Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional scales is challenging because of the heterogeneity of soil parent materials and high variability of anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we developed a novel method for apportioning the contributions of natural and anthropogenic sources by combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45-86% of Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils, while only 12-24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthropogenic sources. These results were in general agreements with those obtained through subtraction of regional soil metal background from total loadings, and the soil metal inputs through atmospheric deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively. PMID:27108044

  6. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  7. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded. PMID:18707753

  8. Have the bioavailabilities of trace metals to a suite of biomonitors changed over three decades in SW England estuaries historically affected by mining?

    PubMed

    Rainbow, P S; Kriefman, S; Smith, B D; Luoma, S N

    2011-03-15

    Many estuaries of southwest England were heavily contaminated with toxic metals associated with the mining of copper and other metals, particularly between 1850 and 1900. The question remains whether the passage of time has brought remediation to these estuaries. In 2003 and 2006 we revisited sites in 5 metal-contaminated estuaries sampled in the 1970s and 1980s - Restronguet Creek, Gannel, West Looe, East Looe and Tavy. We evaluate changes in metal contamination in sediments and in metal bioavailabilities in sediments and water to local organisms employed as biomonitors. We find that the decline in contamination in these estuaries is complex. Differences in bioavailable contamination in the water column were detectable, as were significant detectable changes in at least some estuaries in bioavailable metal contamination originating from sediments. However, in the 100 years since mining activities declined, bioavailable contamination has not declined to the regional baseline in any estuary affected by the mine wastes. The greatest decline in contamination occurred in the one instance (East Looe) where a previous industrial source of (Ag) contamination was considered. We used the macroalgae Fucus vesiculosus and Ascophyllum nodosum as biomonitors of dissolved metal bioavailabilities and the deposit feeders Nereis diversicolor and Scrobicularia plana as biomonitors of bioavailable metal in sediments. We found no systematic decrease in the atypically high Ag, Cu, Pb and Zn concentrations in the estuarine sediments over a 26 year period. Accumulated metal (Ag, As, Cu, Pb, and Zn) concentrations in the deposit feeders are similarly still atypically high in at least one estuary for each metal, and there is no consistent evidence for general decreases in sediment metal bioavailabilities over time. We conclude that the legacy of mining in sheltered estuaries of southwest England is the ongoing presence of sediments rich in metals bioavailable to deposit feeders, while

  9. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed. Streamflow conditions observed and measured during the synoptic water-quality study represent summer base-flow conditions and rainfall conditions for July 2007. The lack of large tributary inflows and the spatial distribution of small tributary inflows, seeps, and springs indicate that diffuse and

  10. Effect of Metal-Support Interactions in Ni/Al2O3 Catalysts with Low Metal Loading for Methane Dry Reforming

    SciTech Connect

    Ewbank, Jessica L.; Kovarik, Libor; Diallo, Fatoumata Z.; Sievers, Carsten

    2015-03-01

    Types of nickel sites as a function of preparation method have received much attention in the literature. In this work, two preparation methods, controlled adsorption and dry impregnation, are implemented to explore the effect of preparation method on catalytic nickel centers. For controlled adsorption, optimal synthesis conditions are identified using point of zero charge measurements, pH-precipitation experiments, and adsorption isotherms to prepare a catalyst with a high dispersion and strong metal support interactions. Metal support interactions influence the types of nickel sites formed. Thus, comparison of catalysts that differ primarily in metal support interactions, strong metal support interaction (controlled adsorption) and weak metal support interactions (dry impregnation), is of great interest. It is confirmed through characterization techniques; N2 physisorption, H2 chemisorption, temperature programmed reduction (TPR), transmission electron microscopy (TEM), and x-ray photoelectron spectroscopy (XPS) that the types of nickel sites formed are indeed strongly dependent on preparation method. Methane dry reforming reactivity studies are used to demonstrate the successful application of these catalysts and further probe the types of active centers present. Combustion analysis and XPS of spent catalysts reveal different amounts and nature of carbonaceous deposits as a function of the synthesis method.

  11. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    SciTech Connect

    Durand, O.; Soulard, L.

    2013-11-21

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.

  12. The Potential Impact of Increased Phosphorus Loads in Lakes Acting as Heavy Metal Reservoirs: A case study from west-central Indiana

    NASA Astrophysics Data System (ADS)

    McLennan, D. A.; Latimer, J. C.; Smith, E.; Stone, J.

    2015-12-01

    Green Valley Lake is a designated state fishing area in west-central Indiana. Prior to this designation, the lake was a water supply reservoir for the adjacent and now abandoned Green Valley Coal Mine (Operating from 1948-1963). The Green Valley Coal Mine property continues to produce excess acidity despite reclamation efforts. The former mine property and the lake are connected by a channel that discharges acidic drainage directly into Green Valley Lake. To evaluate temporal variability in metal and phosphorus (P) geochemistry, two short cores were collected in spring 2014 (38cm) and spring 2015 (39cm). Metal concentrations were determined by a hand-held X-ray fluorescence analyzer after the samples had been dried and crushed. Approximately 20% of these metal concentrations will be verified by ICP-OES following extraction in 50% aqua regia. Detailed P geochemistry was determined using a sequential extraction technique (SEDEX). The sediments in Green Valley Lake are characterized by heavy metal concentrations that are elevated above typical background levels. These metals tend to be concentrated near the sediment water interface, often 3-5 times greater than the average concentration for the rest of the core, which suggests that they are diagenetically mobile and possibly diffusing out of the sediments under dysoxic to anoxic conditions and returning to the sediments under oxic conditions. Total sedimentary P averages 57 umol/g, but oscillates between 20 - 110 umol/g. The most dramatic shift in the detailed P geochemistry is the significant reduction of mineral P at 15 cm and the increasing importance of oxide-associated and adsorbed P upcore. Diatom assemblages suggest that the lake has become increasingly more eutrophic over time. As nutrient loads continue to increase, the oxygen depleted zone may expand impacting fish populations and changing water geochemistry significantly, in particular, mobilizing heavy metals.

  13. Mercury and cadmium trigger expression of the copper importer Ctr1B, which enables Drosophila to thrive on heavy metal-loaded food.

    PubMed

    Balamurugan, Kuppusamy; Hua, Haiqing; Georgiev, Oleg; Schaffner, Walter

    2009-02-01

    Organisms from insects to mammals respond to heavy metal load (copper, zinc, cadmium, and mercury) by activating the metal-responsive transcription factor 1 (MTF-1). MTF-1 binds to short DNA sequence motifs, termed metal response elements, and boosts transcription of a number of genes, notably those for metallothioneins. In Drosophila, MTF-1 somewhat counter-intuitively also activates transcription of a copper importer gene (Ctr1B) in response to copper starvation. Here, we report that mutant flies lacking Ctr1B are extremely sensitive to cadmium and mercury treatment, but can be rescued by excess copper in the food. We thus propose that copper, by competing for binding sites on cellular proteins, alleviates the toxic effects of mercury and cadmium. Such a scenario also explains a seemingly fortuitous metal response, namely, that cadmium and mercury strongly induce the expression of a Ctr1B reporter gene. Thus, the transcription enhancer/promoter region of the Ctr1B copper importer gene is subject to three modes of regulation. All of them depend on MTF-1 and all make biological sense, namely, (i) induction by copper starvation, (ii) repression by copper abundance, and (iii), as shown here, induction by cadmium or mercury at normal copper supply.

  14. Barley HvHMA1 Is a Heavy Metal Pump Involved in Mobilizing Organellar Zn and Cu and Plays a Role in Metal Loading into Grains

    PubMed Central

    Mikkelsen, Maria Dalgaard; Pedas, Pai; Schiller, Michaela; Vincze, Eva; Mills, Rebecca F.; Borg, Søren; Møller, Annette; Schjoerring, Jan K.; Williams, Lorraine E.; Baekgaard, Lone; Holm, Preben Bach; Palmgren, Michael G.

    2012-01-01

    Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. Heavy metal transporters belonging to the P1B-ATPase subfamily of P-type ATPases are key players in cellular heavy metal homeostasis. In this study we investigated the properties of HvHMA1, which is a barley orthologue of Arabidopsis thaliana AtHMA1 localized to the chloroplast envelope. HvHMA1 was localized to the periphery of chloroplast of leaves and in intracellular compartments of grain aleurone cells. HvHMA1 expression was significantly higher in grains compared to leaves. In leaves, HvHMA1 expression was moderately induced by Zn deficiency, but reduced by toxic levels of Zn, Cu and Cd. Isolated barley chloroplasts exported Zn and Cu when supplied with Mg-ATP and this transport was inhibited by the AtHMA1 inhibitor thapsigargin. Down-regulation of HvHMA1 by RNA interference did not have an effect on foliar Zn and Cu contents but resulted in a significant increase in grain Zn and Cu content. Heterologous expression of HvHMA1 in heavy metal-sensitive yeast strains increased their sensitivity to Zn, but also to Cu, Co, Cd, Ca, Mn, and Fe. Based on these results, we suggest that HvHMA1 is a broad-specificity exporter of metals from chloroplasts and serve as a scavenging mechanism for mobilizing plastid Zn and Cu when cells become deficient in these elements. In grains, HvHMA1 might be involved in mobilizing Zn and Cu from the aleurone cells during grain filling and germination. PMID:23155447

  15. Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China).

    PubMed

    Liu, Hongyu; Probst, Anne; Liao, Bohan

    2005-03-01

    , and rice and capsicum had high Cd concentration in the edible parts. However, the toxic element concentrations in maize, sorghum, Adzuki bean, soybean and mung bean remained lower than the threshold levels. The bio-accumulation factors (BAFs) of crops were in the order: Cd>Zn>Cu>Pb>As. BAF was typically lower in the edible seeds or fruits than in stems and leaves. The accumulation effect strongly depends on the crop's physiological properties, the mobility, of the metals, and the availability of metals in soils but not entirely on the total element concentrations in the soils. Even so, the estimated daily intake amount of Cu, Zn, Cd, and Pb from the crops grown in the affected three sites and arsenic at SZY and GYB exceeded the RDA (Recommended dietary allowance) levels. Subsequently, the crops grown in Chenzhou Pb/Zn mine waste affected area might have a hazardous effect on the consumer's health. This area still needs effective measures to cure the As, Cd, Pb, Zn and Cu contamination. PMID:15740766

  16. Small-Scale Variation in Fuel Loads Differentially Affects Two Co-Dominant Bunchgrasses in a Species-Rich Pine Savanna

    PubMed Central

    Gagnon, Paul R.; Harms, Kyle E.; Platt, William J.; Passmore, Heather A.; Myers, Jonathan A.

    2012-01-01

    Ecological disturbances frequently control the occurrence and patterning of dominant plants in high-diversity communities like C4 grasslands and savannas. In such ecosystems disturbance-related processes can have important implications for species, and for whole communities when those species are dominant, yet mechanistic understanding of such processes remains fragmentary. Multiple bunchgrass species commonly co-dominate disturbance-dependent and species-rich pine savannas, where small-scale fuel heterogeneity may influence bunchgrass survival and growth following fires. We quantified how fire in locally varying fuel loads influenced dynamics of dominant C4 bunchgrasses in a species-rich pine savanna in southeastern Louisiana, USA. We focused on two congeneric, co-dominant species (Schizachyrium scoparium and S. tenerum) with similar growth forms, functional traits and reproductive strategies to highlight effects of fuel heterogeneity during fires. In experimental plots with either reduced or increased fuels versus controls with unmanipulated fuels, we compared: 1) bunchgrass damage and 2) mortality from fires; 3) subsequent growth and 4) flowering. Compared to controls, fire with increased fuels caused greater damage, mortality and subsequent flowering, but did not affect post-fire growth. Fire with reduced fuels had no effect on any of the four measures. The two species responded differently to fire with increased fuels – S. scoparium incurred measurably more damage and mortality than S. tenerum. Logistic regression indicated that the larger average size of S. tenerum tussocks made them resistant to more severe burning where fuels were increased. We speculate that locally increased fuel loading may be important in pine savannas for creating colonization sites because where fuels are light or moderate, dominant bunchgrasses persist through fires. Small-scale heterogeneity in fires, and differences in how species tolerate fire may together promote shared local

  17. Mining-impacted sources of metal loading to an alpine stream based on a tracer-injection study, Clear Creek County, Colorado

    USGS Publications Warehouse

    Fey, David L.; Wirt, Laurie

    2007-01-01

    The largest sources of copper and zinc to the creek were from surface inflows from the adit, diffuse inflows from wetland areas, and leaching of dispersed mill tailings. Major instream processes included mixing between mining- and non-mining-impacted waters and the attenuation of iron, aluminum, manganese, and othermetals by precipitation or sorption. One year after the rerouting, the Zn and Cu loads in Leavenworth Creek from the adit discharge versus those from leaching of a large volume of dispersed mill tailings were approximately equal to, if not greater than, those before. The mine-waste dump does not appear to be a major source of metal loading. Any improvement that may have resulted from the elimination of adit flow across the dump was masked by higher adit discharge attributed to a larger snow pack. Although many mine remediation activities commonly proceed without prior scientific studies to identify the sources and pathways of metal transport, such strategies do not always translate to water-quality improvements in the stream. Assessment of sources and pathways to gain better understanding of the system is a necessary investment in the outcome of any successful remediation strategy.

  18. Pressure-induced metallization of condensed phase β-HMX under shock loadings via molecular dynamics simulations in conjunction with multi-scale shock technique.

    PubMed

    Ge, Ni-Na; Wei, Yong-Kai; Zhao, Feng; Chen, Xiang-Rong; Ji, Guang-Fu

    2014-07-01

    The electronic structure and initial decomposition in high explosive HMX under conditions of shock loading are examined. The simulation is performed using quantum molecular dynamics in conjunction with multi-scale shock technique (MSST). A self-consistent charge density-functional tight-binding (SCC-DFTB) method is adapted. The results show that the N-N-C angle has a drastic change under shock wave compression along lattice vector b at shock velocity 11 km/s, which is the main reason that leads to an insulator-to-metal transition for the HMX system. The metallization pressure (about 130 GPa) of condensed-phase HMX is predicted firstly. We also detect the formation of several key products of condensed-phase HMX decomposition, such as NO2, NO, N2, N2O, H2O, CO, and CO2, and all of them have been observed in previous experimental studies. Moreover, the initial decomposition products include H2 due to the C-H bond breaking as a primary reaction pathway at extreme condition, which presents a new insight into the initial decomposition mechanism of HMX under shock loading at the atomistic level.

  19. Static and dynamic fracture toughness of 25mm thick single edge notch bend (SENB) specimen of C-Mn pressure vessel submerged arc weld metal and flaw assessment under dynamic loading

    NASA Astrophysics Data System (ADS)

    Xu, W.; Wiesner, C. S.

    2003-09-01

    Although there are well established procedures for assessing the significance of defects in welded structures in a number of countries, such as BS7910 and R6 procedures in the UK, the Japanese WES 2807 procedure, the API and MPC procedures in the USA and the recently completed SINT AP procedure resulting from European collaboration, there are no clear guidelines for assessment of the effects of dynamic loading. In principle, the standard procedure can be applied for any rate of loading but there is little or no experience of how to allow for the effects of dynamic loading on load magnitude and material properties. Submerge arc weldments of 100mm thick have been manufactured. The effect of loading rate was investigated by testing 25mm thick SENB specimens. The fracture toughness of the weld metal exhibited marked loading rate sensitivity; shift in fracture toughness transition temperature for high loading rate tests of up to 115^{circ}C for 25mm specimens. Finite element (FE) analyses have been carried out to obtain plastic collapse load solutions for SENB fracture mechanics test piece. A simple equation for estimate of dynamic plastic yielding load has been suggested. Flaw assessment under dynamic loading has been demonstrated using the results of dynamic fracture toughness and plastic yiending load. The general methods of assessment of the significance of defects in BS7910 is shown to be applicable to assessments under dynamic loading up to impact.

  20. Precipitate microstructures and resulting properties of Al-Zn-Mg metal inert gas-weld heat-affected zones

    NASA Astrophysics Data System (ADS)

    Nicolas, M.; Deschamps, A.

    2004-05-01

    Using the combination of small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM), the precipitate microstructure is quantitatively investigated in the heat-affected zones (HAZs) of Al-Zn-Mg metal inert gas (MIG)-welds, and the resulting mechanical properties are determined by hardness measurements. Three initial states prior to welding (T4, T6, and T7) are investigated, and the subsequent microstructure evolution during natural aging and postwelding heat treatments (PWHTs) is assessed. The critical part of the HAZ is shown to be the transition region where partial dissolution of the initially present precipitates occurs. In this transition zone, precipitate coarsening is shown to occur for the T6 and T7 initial states, contrarily to the T4 material. After PWHT, the T6 and T7 materials experience a weak region related to this coarsening behavior, whereas the T4 material HAZ is able to recover a homogeneous microstructure after a suitably chosen PWHT. Simple model ramp heat treatments are shown to describe the main phenomena involved in the HAZ. Finally, a precipitation hardening model is successfully applied to the microstructural data to describe the hardness profiles in the various HAZs.

  1. Catalytic cracking with FCCT loaded with tin metal traps: Adsorption constants for gas oil, gasoline, and light gases

    SciTech Connect

    Farag, H.; Blasetti, A.; Lasa, H. de . Faculty of Engineering Science)

    1994-12-01

    Catalysts, so-called FCCT (catalysts for fluid catalytic cracking (FCC) with in situ metal traps), were developed to achieve high dispersion of passivators. These FCCTs were extensively tested and demonstrated experimentally. The catalyst, steamed to achieve equilibrium conditions, was artificially impregnated with a tin compound (0--3,750 ppm) and with nickel and vanadium naphthenates. Experimental runs were performed in a microcatalytic fixed bed reactor using different carrier gas flows (120--150 std m/min) and different temperatures (510--550 C). The unsteady state pulse technique, gas oil pulses reacting with FCC catalyst, was used to study the effects of metal traps in a FCC catalyst contaminated with 3,000 ppm of Ni and 4,500 ppm of V. The four-lump model featuring gas oil, gasoline, light gases, and coke was used to evaluate the kinetic constants. The equations developed for the four-lump model were also used to evaluate the adsorption constants for gas oil, gasoline, and light gases. These parameters are of special importance for the simulation of industrial scale FCC risers. Experimental results demonstrated that gas oil conversion recovered significantly with FCCTs. It was also proven that the effects of the addition of the in situ metal traps were beneficial on gasoline yield, gasoline selectivity, and research octane number. A major contribution of the in situ metal traps was an important reduction in coke yield. Consistent with this result a reduced catalyst deactivation was observed with FCCTs.

  2. TRACE METAL LOADING ON WATERBORNE SOIL AND DUST PARTICLES CHARACTERIZED THROUGH THE USE OF SPLIT-FLOW THIN CELL FRACTIONATION

    EPA Science Inventory

    The fate and transport of metallic pollutants through a watershed are related to the characteristics of undissolved solid particles to which they are bound. Removal of these particles and their associated pollutants via engineered structures such as settling ponds i one goal of s...

  3. Quantification of metal loading in French Gulch, Summit County, Colorado, using a tracer-injection study, July 1996. Final report

    SciTech Connect

    Kimball, B.A.; Runkel, R.L.; Gerner, L.J.

    1999-10-01

    The objective of this report is to present a description of the complex hydrology of the French Gulch site using the tracer-injection study and the synoptic sampling. In particular, the tracer injection allows for evaluation of the effect of the hydrology on the fate and transport of the metals in French Gulch.

  4. Simulation of spallation life of metals in relation to operating stresses in the nanosecond loading time range

    NASA Astrophysics Data System (ADS)

    Makarov, P. V.; Bakeev, R. A.

    2015-10-01

    Spall fracture of materials is still the only means for investigation of the material life and mechanisms of its fracture in the micro-, nano-, and picosecond time ranges of tensile loading. The phenomenological model based on the concepts of multiscale fracture of materials as nonlinear dynamic systems is shown to satisfactorily describe their life in the given range. The model is employed for the calculation of spallation life.

  5. Heavy metal bioavailability in a soil affected by mineral sulphides contamination following the mine spillage at Aznalcóllar (Spain).

    PubMed

    Clemente, Rafael; Walker, David J; Roig, Asunción; Bernal, M Pilar

    2003-06-01

    A field experiment, lasting 14 months, was carried out in order to assess the effect of organic amendment and lime addition on the bioavailability of heavy metals in contaminated soils. The experiment took place in a soil affected by acid, highly toxic pyritic waste from the Aznalcóllar mine (Seville, Spain) in April 1998. The following treatments were applied (3 plots per treatment): cow manure, a mature compost, lime (to plots having pH < 4), and control without amendment. During the study two crops of Brassica juncea were grown, with two additions of each organic amendment. Throughout the study, the evolution of soil pH, total and available (DTPA-extractable) heavy metals content (Zn, Cu, Mn, Fe, Pb and Cd), electrical conductivity (EC), soluble sulphates and plant growth and heavy metal uptake were followed. The study indicates that: (1) soil acidification, due to the oxidation of metallic sulphides in the soil, increased heavy metal bioavailability; (2) liming succeeded in controlling the soil acidification; and (3) the organic materials generally promoted fixation of heavy metals in non-available soil fractions, with Cu bioavailability being particularly affected by the organic treatments. PMID:12889610

  6. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.

    PubMed

    Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

    2015-01-01

    The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application. PMID:25243917

  7. Modification of gold nanoparticle loaded on activated carbon with bis(4-methoxysalicylaldehyde)-1,2-phenylenediamine as new sorbent for enrichment of some metal ions.

    PubMed

    Karimipour, Gholamreza; Ghaedi, Mehrorang; Sahraei, Reza; Daneshfar, Ali; Biyareh, Mehdi Nejati

    2012-01-01

    In this study, a new sorbent based on the gold nanoparticle loaded in activated carbon (Au-NP-AC) was synthesized and modified by bis(4-methoxy salicylaldehyde)-1,2-phenylenediamine (BMSAPD). This sorbent, which is abbreviated as Au-NP-AC-BMSAPD, has been applied for the enrichment and preconcentration of trace amounts of Co(2+), Cu(2+), Ni(2+), Fe(2+), Pb(2+), and Zn(2+) ions in real samples. All metal ions under study were retained on the Au-NP-AC-BMSAPD sorbent by complexation of the ions with the BMSAPD ligand, providing an efficient preconcentration fashion. The retained metal ions were then eluted from the sorbent by HNO(3) and detected by flame atomic absorption spectrometry. The analytical parameters including pH, amount of ligand, and the nature of the eluent and solid phase were evaluated to obtain the optimum condition for the preconcentration factor. Following the optimum conditions, a preconcentration factor of 200 was obtained for all the metal ions under study with detection limits of 1.4-2.6 ng mL(-1). The method has been successfully applied for the extraction and determination of the ion content in the same real samples with recoveries in the range of 95-99.6% and a relative standard deviation lower than 4.0%. PMID:21837453

  8. A novel reusable nanocomposite for complete removal of dyes, heavy metals and microbial load from water based on nanocellulose and silver nano-embedded pebbles.

    PubMed

    Suman; Kardam, Abhishek; Gera, Meeta; Jain, V K

    2015-01-01

    The present work proposed a nanocellulose (NC)-silver nanoparticles (AgNPs) embedded pebbles-based composite material as a novel reusable cost-effective water purification device for complete removal of dyes, heavy metals and microbes. NC was prepared using acid hydrolysis of cellulose. The AgNPs were generated in situ using glucose and embedded within the porous concrete pebbles by the technique of inter-diffusion of ion, providing a very strong binding of nanoparticles within the porous pebbles and thus preventing any nanomaterials leaching. Fabrication of a continual running water purifier was achieved by making different layering of NC and Ag nano-embedded pebbles in a glass column. The water purifier exhibited not only excellent dye and heavy metal adsorption capacity, but also long-term antibacterial activity against pathogenic and non-pathogenic bacterial strains. The adsorption mainly occurred through electrostatic interaction and pore diffusion also contributed to the process. The bed column purifier has shown 99.48% Pb(II) and 98.30% Cr(III) removal efficiency along with 99% decontamination of microbial load at an optimum working pH of 6.0. The high adsorption capacity and reusability, with complete removal of dyes, heavy metals and Escherichia coli from the simulated contaminated water of composite material, will provide new opportunities to develop a cost-effective and eco-friendly water purifier for commercial application.

  9. Hydrological regulations, land use and a mud volcano affecting the sediment and carbon load of the tropical Brantas River, Java, Indonesia

    NASA Astrophysics Data System (ADS)

    Jennerjahn, Tim; Jänen, Ingo

    2014-05-01

    Intensive human uses of the coastal zone and increasing extreme events are more and more endangering the integrity of coastal ecosystems during the Anthropocene. This is of particular importance in SE Asia where large parts of the population live in the coastal zone and economically depend on its resources. Intensive tectonic activity in the circum-Pacific 'Ring of fire' exposes the region to extreme natural events like volcano eruptions, earthquakes and occasionally following tsunamis. The Indonesian island of Java is a prime example in this respect because of its location on an active continental margin and a population density >1,000 inhabitants km-2. Its second largest river, the Brantas, empties into the shallow Madura Strait through two major branches, the Wonokromo and the Porong, the latter being responsible for 80 % of the discharge. Major land use in the catchment is agriculture (61 %) and the hydrology and sediment load of the river is regulated by 8 large dams and numerous weirs. The estuarine lowlands in the prograding delta were once covered by mangroves which were to a large extent replaced by aquaculture ponds. The eruption of a mud volcano near the Porong in 2006 added another factor affecting the amount and composition of the dissolved and particulate river loads. Concentrations of total suspended sediments (TSM) and particulate organic carbon (POC) displayed large seasonal variations in the Brantas before its diversion into the Porong and the Wonokromo as well as in the latter two with maxima during the wet season (Nov-April). High concentrations in the Porong during both seasons were mainly due to the constantly high input from the mud volcano. Favourable weathering conditions and agriculture as the predominant land use are responsible for high erosion rates of 4-14 mm yr-1 in the catchment. The 8 major dams and numerous weirs built between the 1970s and the 1990s retain a large amount of that sediment leading to an overall low sediment yield of

  10. Anti-buckling fatigue test assembly. [for subjecting metal specimen to tensile and compressive loads at constant temperature

    NASA Technical Reports Server (NTRS)

    Eichenbrenner, F. F.; Imig, L. A. (Inventor)

    1974-01-01

    An antibuckling fatigue test assembly is described for holding a metal specimen which is subjected to compression and to rapid cyclical heating and cooling while permitting visual observation. In an illustrative embodiment of this invention, the anti-buckling fatigue test apparatus includes first and second guide members between which the metal specimen is disposed and held, a heating assembly comprising a suitable heating source such as a quartz lamp and a reflecting assembly directing the heat onto the specimen, and a cooling assembly for directing a suitable cooling fluid such as air onto the specimen. The guide members each have a passage to permit the heat to be directed onto the specimen. An opening is provided in the reflecting assembly to permit visual inspection of that region of the specimen adjacent to the opening onto which the heat is directed.

  11. Metal sorption on soils as affected by the dissolved organic matter in sewage sludge and the relative calculation of sewage sludge application.

    PubMed

    Liu, Xiaoli; Zhang, Shuzhen; Wu, Wenyong; Liu, Honglu

    2007-10-22

    To evaluate the influences of sewage sludge-derived organic matters on metal sorption and on the resultant sludge loading estimates, a batch experiment was conducted to compare the sorption of Ni, Cu and Pb in sewage sludge filtrates (1:20 sewage sludge to water) on eight soils and the adsorption of metals in a reference solution which had the same matrix as the sewage sludge filtrate except dissolved organic material (henceforth referred to as reference solution). Metal sorption could be well fitted by linear isotherm and the dissolved organic matter in sludge significantly depressed the sorption (p<0.01). The main factor controlling sorption of Ni on different soils was dominated by soil cation exchange capacity (CEC) and sorption of Cu and Pb was by soil organic matter (SOM). The parameters obtained from the sorption isotherm equations were then used to estimate sludge loadings into the soils. When the sorption parameters derived from the reference solution were used for calculation, that is the effect of dissolved organic matter was not considered, the calculated safe application rates are approximately 47.8, 51.4, 34.2, 31.3, 21.7, 46.3, 187.1 and 27.6 t-sludge/ha for the Beijing, Jiangxi, Xiamen, Jilin, Guangdong, Wuhan, Gansu and Xinjiang soils, respectively. However, when the sorption parameters derived from the dissolved organo-metallic complexes are used for calculation, the corresponding application rates are reduced to approximately 6.0, 3.4, 1.9, 10.0, 6.3, 3.6, 7.3 and 3.5 t-sludge/ha, respectively. By this study we can get a conclusion that the effect of sewage sludge derived dissolved organic matter on heavy metal sorption and soil properties should be considered in the course of regulating the safe application rates of sewage sludge to soil.

  12. Y3+, La3+, and some bivalent metals inhibited the opening of the Tl+-induced permeability transition pore in Ca2+-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey; Konovalova, Svetlana; Emelyanova, Larisa; Brailovskaya, Irina

    2014-12-01

    We showed earlier that diminution of 2,4-dinitrophenol (DNP)-stimulated respiration and increase of both mitochondrial swelling and electrochemical potential (ΔΨmito) dissipation in medium containing TlNO3 and KNO3 were caused by opening of Tl(+)-induced mitochondrial permeability transition pore (MPTP) in the inner membrane of Ca(2+)-loaded rat liver mitochondria. The MPTP opening was studied in the presence of bivalent metal ions (Sr(2+), Ba(2+), Mn(2+), Co(2+) and Ni(2+)), trivalent metal ions (Y(3+) and La(3+)), and ruthenium red. We found that these metal ions (except Ba(2+) and Co(2+)) as well as ruthenium red inhibited to the MPTP opening that manifested in preventing both diminution of the DNP-stimulated respiration and increase of the swelling and of the ΔΨmito dissipation in medium containing TlNO3, KNO3, and Ca(2+). Inhibition of the MPTP opening by Sr(2+) and Mn(2+) is suggested because of their interaction with high affinity Ca(2+) sites, facing the matrix side and participating in the MPTP opening. The inhibitory effects of metal ions (Y(3+), La(3+), and Ni(2+)), and ruthenium red are accordingly discussed in regard to competitive and noncompetitive inhibition of the mitochondrial Ca(2+)-uniporter. High concentrations (50μM) of Y(3+) and La(3+) favored of MPTP opening in the inner membrane of rat liver mitochondria in Ca(2+) free medium containing TlNO3. The latter MPTP opening was markedly eliminated by MPTP inhibitors (cyclosporine A and ADP).

  13. Streamflow and water-quality conditions including geologic sources and processes affecting selenium loading in the Toll Gate Creek watershed, Aurora, Arapahoe County, Colorado, 2007

    USGS Publications Warehouse

    Paschke, Suzanne S.; Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Schaffrath, Keelin R.

    2013-01-01

    Toll Gate Creek is a perennial stream draining a suburban area in Aurora, Colorado, where selenium concentrations have consistently exceeded the State of Colorado aquatic-life standard for selenium of 4.6 micrograms per liter since the early 2000s. In cooperation with the City of Aurora, Colorado, Utilities Department, a synoptic water-quality study was performed along an 18-kilometer reach of Toll Gate Creek extending from downstream from Quincy Reservoir to the confluence with Sand Creek to develop a detailed understanding of streamflow and concentrations and loads of selenium in Toll Gate Creek. Streamflow and surface-water quality were characterized for summer low-flow conditions (July–August 2007) using four spatially overlapping synoptic-sampling subreaches. Mass-balance methods were applied to the synoptic-sampling and tracer-injection results to estimate streamflow and develop spatial profiles of concentration and load for selenium and other chemical constituents in Toll Gate Creek surface water. Concurrent groundwater sampling determined concentrations of selenium and other chemical constituents in groundwater in areas surrounding the Toll Gate Creek study reaches. Multivariate principal-component analysis was used to group samples and to suggest common sources for dissolved selenium and major ions. Hydrogen and oxygen stable-isotope ratios, groundwater-age interpretations, and chemical analysis of water-soluble paste extractions from core samples are presented, and interpretation of the hydrologic and geochemical data support conclusions regarding geologic sources of selenium and the processes affecting selenium loading in the Toll Gate Creek watershed. Streamflow conditions observed and measured during the synoptic water-quality study represent summer base-flow conditions and rainfall conditions for July 2007. The lack of large tributary inflows and the spatial distribution of small tributary inflows, seeps, and springs indicate that diffuse and

  14. Chloride concentrations, loads, and yields in four watersheds along Interstate 95, southeastern Connecticut, 2008-11: factors that affect peak chloride concentrations during winter storms

    USGS Publications Warehouse

    Brown, Craig J.; Mullaney, John R.; Morrison, Jonathan; Martin, Joseph W.; Trombley, Thomas J.

    2015-07-01

    Cl- loads in streams generally were highest in the winter and early spring. The estimated daily Cl- yield for the four monitoring sites downstream from I–95 ranged from 0.0004 ton per day per square mile for one of the least developed watersheds to 0.052 ton per day per square mile for the watershed with the highest percentage of urban development and impervious area. The estimated median contribution of Cl- load from atmospheric deposition was small and ranged from 0.07 percent of Cl- load at the Jordan Brook watershed to 0.57 percent at the Oil Mill Brook watershed. The Cl- loads in streams (outputs) were compared with Cl- load inputs, which include atmospheric deposition and deicer applications; Cl- load inputs were slightly larger than the C

  15. Behavior of composite/metal aircraft structural elements and components under crash type loads: What are they telling us

    NASA Technical Reports Server (NTRS)

    Carden, Huey D.; Boitnott, Richard L.; Fasanella, Edwin L.

    1990-01-01

    Failure behavior results are presented from crash dynamics research using concepts of aircraft elements and substructure not necessarily designed or optimized for energy absorption or crash loading considerations. To achieve desired new designs which incorporate improved energy absorption capabilities often requires an understanding of how more conventional designs behave under crash loadings. Experimental and analytical data are presented which indicate some general trends in the failure behavior of a class of composite structures which include individual fuselage frames, skeleton subfloors with stringers and floor beams but without skin covering, and subfloors with skin added to the frame-stringer arrangement. Although the behavior is complex, a strong similarity in the static and dynamic failure behavior among these structures is illustrated through photographs of the experimental results and through analytical data of generic composite structural models. It is believed that the similarity in behavior is giving the designer and dynamists much information about what to expect in the crash behavior of these structures and can guide designs for improving the energy absorption and crash behavior of such structures.

  16. Changes in the structure of the surface layer of metal materials upon friction and electric current loading

    NASA Astrophysics Data System (ADS)

    Fadin, V. V.

    2013-09-01

    Dependences of the electric conductivity of a contact and wear intensity of metal materials on the electric current density in sliding friction are obtained. It is established that alloying of the material basis leads to faster damage of the friction surface. The presence of about 40 аt.% oxygen in the surface layer is detected by the Auger spectrometry method. It is demonstrated by the x-ray diffraction method that FeO formed in the surface layer leads to an increase in the electric conductivity of the contact.

  17. Inclusions and Microstructure of Ce-Added Weld Metal Coarse Grain Heat-Affected Zone in Twin-Wire Submerged-Arc Welding

    NASA Astrophysics Data System (ADS)

    Yu, S. F.; Yan, N.; Chen, Y.

    2016-06-01

    In high heat-input multi-pass twin-wire submerged-arc welding, weld metal of previous pass will be affected by the heat input of subsequent one and form coarse-grained heat-affected zone (CGHAZ). This study focused on the effects of welding thermal cycle on the inclusions and microstructure of Ce-alloyed weld metal CGHAZ. According to the study of inclusions and microstructure of weld metal CGHAZ, it was found that the composition and type of the inclusions did not change under the effect of welding thermal cycle. Although the inclusions were coarsened slightly, the promoting ability to acicular ferrite (AF) was not deprived after thermal cycling. There are three types of AF in weld metal CGHAZ, which include oxy-sulfides of Ce inclusions-promoted AF, home-position-precipitated AF, and sympathetic AF. Results showed more than 80% of microstructure was AF, which greatly benefited the mechanical properties of weld metal CGHAZ, even though granular bainite and M-A constituents were generated.

  18. Dye-sensitized MIL-101 metal organic frameworks loaded with Ni/NiO{sub x} nanoparticles for efficient visible-light-driven hydrogen generation

    SciTech Connect

    Liu, Xin-Ling; Wang, Rong; Yuan, Yu-Peng E-mail: cxue@ntu.edu.sg; Zhang, Ming-Yi; Xue, Can E-mail: cxue@ntu.edu.sg

    2015-10-01

    The Ni/NiO{sub x} particles were in situ photodeposited on MIL-101 metal organic frameworks as catalysts for boosting H{sub 2} generation from Erythrosin B dye sensitization under visible-light irradiation. The highest H{sub 2} production rate of 125 μmol h{sup −1} was achieved from the system containing 5 wt. % Ni-loaded MIL-101 (20 mg) and 30 mg Erythrosin B dye. Moreover, the Ni/NiO{sub x} catalysts show excellent stability for long-term photocatalytic reaction. The enhancement on H{sub 2} generation is attributed to the efficient charge transfer from photoexcited dye to the Ni catalyst via MIL-101. Our results demonstrate that the economical Ni/NiO{sub x} particles are durable and active catalysts for photocatalytic H{sub 2} generation.

  19. Precipitation, pH and metal load in AMD river basins: an application of fuzzy clustering algorithms to the process characterization.

    PubMed

    Grande, J A; Andújar, J M; Aroba, J; de la Torre, M L; Beltrán, R

    2005-04-01

    In the present work, Acid Mine Drainage (AMD) processes in the Chorrito Stream, which flows into the Cobica River (Iberian Pyrite Belt, Southwest Spain) are characterized by means of clustering techniques based on fuzzy logic. Also, pH behavior in contrast to precipitation is clearly explained, proving that the influence of rainfall inputs on the acidity and, as a result, on the metal load of a riverbed undergoing AMD processes highly depends on the moment when it occurs. In general, the riverbed dynamic behavior is the response to the sum of instant stimuli produced by isolated rainfall, the seasonal memory depending on the moment of the target hydrological year and, finally, the own inertia of the river basin, as a result of an accumulation process caused by age-long mining activity.

  20. Precipitation, pH and metal load in AMD river basins: an application of fuzzy clustering algorithms to the process characterization.

    PubMed

    Grande, J A; Andújar, J M; Aroba, J; de la Torre, M L; Beltrán, R

    2005-04-01

    In the present work, Acid Mine Drainage (AMD) processes in the Chorrito Stream, which flows into the Cobica River (Iberian Pyrite Belt, Southwest Spain) are characterized by means of clustering techniques based on fuzzy logic. Also, pH behavior in contrast to precipitation is clearly explained, proving that the influence of rainfall inputs on the acidity and, as a result, on the metal load of a riverbed undergoing AMD processes highly depends on the moment when it occurs. In general, the riverbed dynamic behavior is the response to the sum of instant stimuli produced by isolated rainfall, the seasonal memory depending on the moment of the target hydrological year and, finally, the own inertia of the river basin, as a result of an accumulation process caused by age-long mining activity. PMID:15798799

  1. Highly reusability surface loaded metal particles magnetic catalyst microspheres (MCM-MPs) for treatment of dye-contaminated water

    NASA Astrophysics Data System (ADS)

    Liu, Ying; Zhang, Kun; Yin, Xiaoshuang; Yang, Wenzhong; Zhu, Hongjun

    2016-04-01

    The metal-deposited magnetic catalyst microspheres (MCM-MPs) were successfully synthesized by one facile, high yield and controllable approach. Here, the bare magnetic microspheres were firstly synthesized according to the solvothermal method. Then silica shell were coated on the surface of the magnetic microspheres via sol-gel method, and subsequently with surface modifying with amino in the purpose to form SiO2-NH2 shell. Thus, metal particles were easily adsorbed into the SiO2-NH2 shell and in-situ reduced by NaBH4 solution. All the obtained products (MCM-Cu, MCM-Ag, MCM-Pd) which were monodisperse and constitutionally stable were exhibited high magnetization and excellent catalytic activity towards dyes solution reduction. The catalytic rate ratio of MCM-Pd: MCM-Cu: MCM-Ag could be 10:3:1. Besides, some special coordination compound Cu2(OH)3Br had been generated in the in-situ reduced process of MCM-Cu, which produced superior cyclical stability (>20 times) than that of MCM-Ag and MCM-Pd. In all, those highly reusability and great catalytic efficiency of MCM-MPs show promising and great potential for treatment of dye-contaminated water.

  2. Effects of soil amendments at a heavy loading rate associated with cover crops as green manures on the leaching of nutrients and heavy metals from a calcareous soil.

    PubMed

    Wang, Qing-Ren; Li, Yun-Cong; Klassen, Waldemar

    2003-11-01

    The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N-viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co-compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor x S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot(-1) for each amendment (equivalent to 50 t ha(-1) of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3-N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3-N and inorganic P concentration significantly compared with the non-legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3- could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co-compost and biosolids, but decreased by coal ash and N-viro soil by virtue of improved adsorption. The leguminous cover crop

  3. Effects of soil amendments at a heavy loading rate associated with cover crops as green manures on the leaching of nutrients and heavy metals from a calcareous soil.

    PubMed

    Wang, Qing-Ren; Li, Yun-Cong; Klassen, Waldemar

    2003-11-01

    The potential risk of groundwater contamination by the excessive leaching of N, P and heavy metals from soils amended at heavy loading rates of biosolids, coal ash, N-viro soil (1:1 mixture of coal ash and biosolids), yard waste compost and co-compost (3:7 mixture of biosolids to yard wastes), and by soil incorporation of green manures of sunn hemp (Crotalaria juncea) and sorghum sudangrass (Sorghum bicolor x S. bicolor var. sudanense) was studied by collecting and analyzing leachates from pots of Krome very gravelly loam soil subjected to these treatments. The control consisted of Krome soil without any amendment. The loading rate was 205 g pot(-1) for each amendment (equivalent to 50 t ha(-1) of the dry weight), and the amounts of the cover crops incorporated into the soil in the pot were those that had been grown in it. A subtropical vegetable crop, okra (Abelmoschus esculentus L.), was grown after the soil amendments or cover crops had been incorporated into the soil. The results showed that the concentration of NO3-N in leachate from biosolids was significantly higher than in leachate from other treatments. The levels of heavy metals found in the leachates from all amended soils were so low, as to suggest these amendments may be used without risk of leaching dangerous amounts of these toxic elements. Nevertheless the level of heavy metals in leachate from coal ash amended soil was substantially greater than in leachates from the other treatments. The leguminous cover crop, sunn hemp, returned into the soil, increased the leachate NO3-N and inorganic P concentration significantly compared with the non-legume, sorghum sudangrass. The results suggest that at heavy loading rates of soil amendments, leaching of NO3- could be a significant concern by application of biosolids. Leaching of inorganic P can be increased significantly by both co-compost and biosolids, but decreased by coal ash and N-viro soil by virtue of improved adsorption. The leguminous cover crop

  4. Prenatal dietary load of Maillard reaction products combined with postnatal Coca-Cola drinking affects metabolic status of female Wistar rats

    PubMed Central

    Gurecká, Radana; Koborová, Ivana; Janšáková, Katarína; Tábi, Tamás; Szökő, Éva; Somoza, Veronika; Šebeková, Katarína; Celec, Peter

    2015-01-01

    Aim To assess the impact of prenatal exposure to Maillard reaction products (MRPs) -rich diet and postnatal Coca-Cola consumption on metabolic status of female rats. Diet rich in MRPs and consumption of saccharose/fructose sweetened soft drinks is presumed to impose increased risk of development of cardiometabolic afflictions, such as obesity or insulin resistance. Methods At the first day of pregnancy, 9 female Wistar rats were randomized into two groups, pair-fed either with standard rat chow (MRP-) or MRPs-rich diet (MRP+). Offspring from each group of mothers was divided into two groups and given either water (Cola-) or Coca-Cola (Cola+) for drinking ad libitum for 18 days. Oral glucose tolerance test was performed, and circulating markers of inflammation, oxidative stress, glucose and lipid metabolism were assessed. Results MRP+ groups had higher weight gain, significantly so in the MRP+/Cola- vs MRP-/Cola-. Both prenatal and postnatal intervention increased carboxymethyllysine levels and semicarbazide-sensitive amine oxidase activity, both significantly higher in MRP+/Cola + than in MRP-/Cola-. Total antioxidant capacity was lower in MRP+ groups, with significant decrease in MRP+/Cola + vs MRP-/Cola+. Rats drinking Coca-Cola had higher insulin, homeostatic model assessment of insulin resistance, heart rate, advanced oxidation of protein products, triacylglycerols, and oxidative stress markers measured as thiobarbituric acid reactive substances compared to rats drinking water, with no visible effect of MRPs-rich diet. Conclusion Metabolic status of rats was affected both by prenatal and postnatal dietary intervention. Our results suggest that combined effect of prenatal MRPs load and postnatal Coca-Cola drinking may play a role in development of metabolic disorders in later life. PMID:25891868

  5. Cognitive Load Imposed by Knobology May Adversely Affect Learners' Perception of Utility in Using Ultrasonography to Learn Physical Examination Skills, but Not Anatomy

    ERIC Educational Resources Information Center

    Jamniczky, Heather A.; McLaughlin, Kevin; Kaminska, Malgorzata E.; Raman, Maitreyi; Somayaji, Ranjani; Wright, Bruce; Ma, Irene W. Y.

    2015-01-01

    Ultrasonography is increasingly used for teaching anatomy and physical examination skills but its effect on cognitive load is unknown. This study aimed to determine ultrasound's perceived utility for learning, and to investigate the effect of cognitive load on its perceived utility. Consenting first-year medical students (n?=?137) completed…

  6. Predicting the contribution of nanoparticles (Zn, Ti, Ag) to the annual metal load in the Dutch reaches of the Rhine and Meuse.

    PubMed

    Markus, A A; Parsons, J R; Roex, E W M; Kenter, G C M; Laane, R W P M

    2013-07-01

    Although nanoparticles are being increasingly used in consumer products, the risks they may pose to the environment and to human health remain largely unknown. One important reason for this is the lack of quantitative techniques for identifying and measuring the amount of nanomaterials in environmentally relevant circumstances. Such techniques should also discriminate between manufactured and naturally occurring nanoparticles, so that the influence of human activities can be identified. This article describes a technique for estimating nanoparticles by calculating the potential releases of nano-forms of zinc, titanium and silver, the three metals that are widely used for nano-enhanced products, and comparing them to the total loads, based on measurements of the total concentration. We use The Netherlands for our case study. Combining the scarce available data (indicative figures on the content of nanomaterials in various products and usage profiles found in an unrelated category of research) we were able to estimate the total use of such materials in The Netherlands and therefore the potential release into the environment. The calculations indicate that nanomaterials contribute a small but discernible fraction (5 to 20%) to the total loads of zinc and titanium in the Dutch reaches of the Rhine and Meuse. For silver the contribution is at most 3%. The contribution is, however, close to the minimum that can be detected, given the variability in the measured concentrations.

  7. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources. PMID:26547321

  8. Heavy metal contamination of agricultural soils affected by mining activities around the Ganxi River in Chenzhou, Southern China.

    PubMed

    Ma, Li; Sun, Jing; Yang, Zhaoguang; Wang, Lin

    2015-12-01

    Heavy metal contamination attracted a wide spread attention due to their strong toxicity and persistence. The Ganxi River, located in Chenzhou City, Southern China, has been severely polluted by lead/zinc ore mining activities. This work investigated the heavy metal pollution in agricultural soils around the Ganxi River. The total concentrations of heavy metals were determined by inductively coupled plasma-mass spectrometry. The potential risk associated with the heavy metals in soil was assessed by Nemerow comprehensive index and potential ecological risk index. In both methods, the study area was rated as very high risk. Multivariate statistical methods including Pearson's correlation analysis, hierarchical cluster analysis, and principal component analysis were employed to evaluate the relationships between heavy metals, as well as the correlation between heavy metals and pH, to identify the metal sources. Three distinct clusters have been observed by hierarchical cluster analysis. In principal component analysis, a total of two components were extracted to explain over 90% of the total variance, both of which were associated with anthropogenic sources.

  9. Metals affect the structure and activity of human plasminogen activator inhibitor-1. II. Binding affinity and conformational changes

    PubMed Central

    Thompson, Lawrence C; Goswami, Sumit; Peterson, Cynthia B

    2011-01-01

    Human plasminogen activator inhibitor type 1 (PAI-1) is a serine protease inhibitor with a metastable active conformation. The lifespan of the active form of PAI-1 is modulated via interaction with the plasma protein, vitronectin, and various metal ions. These metal ions fall into two categories: Type I metals, including calcium, magnesium, and manganese, stabilize PAI-1 in the absence of vitronectin, whereas Type II metals, including cobalt, copper, and nickel, destabilize PAI-1 in the absence of vitronectin, but stabilize PAI-1 in its presence. To provide a mechanistic basis for understanding the unusual modulation of PAI-1 structure and activity, the binding characteristics and conformational effects of these two types of metals were further evaluated. Steady-state binding measurements using surface plasmon resonance indicated that both active and latent PAI-1 exhibit a dissociation constant in the low micromolar range for binding to immobilized nickel. Stopped-flow measurements of approach-to-equilibrium changes in intrinsic protein fluorescence indicated that the Type I and Type II metals bind in different modes that induce distinct conformational effects on PAI-1. Changes in the observed rate constants with varying concentrations of metal allowed accurate determination of binding affinities for cobalt, nickel, and copper, yielding dissociation constants of ∼40, 30, and 0.09 μM, respectively. Competition experiments that tested effects on PAI-1 stability were consistent with these measurements of affinity and indicate that copper binds tightly to PAI-1. PMID:21280128

  10. Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India.

    PubMed

    Roychowdhury, Tarit; Uchino, Tadashi; Tokunaga, Hiroshi; Ando, Masanori

    2002-11-01

    Domkal is one of the 19, out of 26 blocks in Murshidabad district where groundwater contains arsenic above 0.05 mg/l. Many millions of cubic meters of groundwater along with arsenic and other heavy metals are coming out from both the hand tubewells, used by the villagers for their daily needs and shallow big diameter tubewells, installed for agricultural irrigation and depositing on soil throughout the year. So there is a possibility of soil contamination which can moreover affect the food chain, cultivated in this area. A somewhat detailed study was carried out, in both micro- and macrolevel, to get an idea about the magnitude of soil contamination in this area. The mean concentrations (mg/kg) of As (5.31), Fe (6740), Cu (18.3), Pb (10.4), Ni (18.8), Mn (342), Zn (44.3), Se (0.53), Mg (534), V (44.6), Cr (33.1), Cd (0.37), Sb (0.29) and Hg (0.54) in fallow land soils are within the normal range. The mean As (10.7), Fe (7860) and Mg (733) concentrations (mg/kg) are only in higher side whereas Hg (0.17 mg/kg) is in lower side in agricultural land soils, compared to the fallow land soils. Arsenic concentrations (11.5 and 28.0 mg/kg respectively) are high in those agricultural land soils where irrigated groundwater contains high arsenic (0.082 and 0.17 mg/l respectively). The total arsenic withdrawn and mean arsenic deposition per land by the 19 shallow tubewells per year are 43.9 kg (mean: 2.31 kg, range: 0.53-5.88 kg) and 8.04 kg ha(-1) (range: 1.66-16.8 kg ha(-1)) respectively. For the macrolevel study, soil arsenic concentration decreases with increase of distance from the source and higher the water arsenic concentration, higher the soil arsenic at any distance. A proper watershed management is urgently required to save the contamination.

  11. Metals, Parasites, and Environmental Conditions Affecting Breeding Populations of Spotted Salamanders (Ambystoma maculatum) in Northern Arkansas, USA.

    PubMed

    DeMali, Heather M; Trauth, Stanley E; Bouldin, Jennifer L

    2016-06-01

    The spotted salamander (Ambystoma maculatum) is indigenous to northern Arkansas, and several breeding sites are known to exist in the region. Spotted salamanders (n = 17) were collected and examined for parasites and only three females harbored nematodes (Physaloptera spp.). Chronic aquatic bioassays were conducted using water collected from eight breeding ponds during different hydroperiod events. No lethal or sublethal effects were measured in Ceriodaphnia dubia; however, decreased growth and survival were seen in Pimephales promelas. Aqueous, sediment, and salamander hepatic samples were analyzed for As, Cd, Cu, Pb, and Ni. Metal analysis revealed possible increased metal exposure following precipitation, with greatest metal concentrations measured in sediment samples. Hepatic metal concentrations were similar in parasitized and non-parasitized individuals, and greatest Pb concentrations were measured following normal precipitation events. Determining environmental stressors of amphibians, especially during their breeding and subsequent larval life stage, is imperative to improve species conservation. PMID:26886425

  12. Metal loading determines the stabilization pathway for Co2+ in titanate nanowires: ion exchange vs. cluster formation.

    PubMed

    Madarász, D; Pótári, G; Sápi, A; László, B; Csudai, C; Oszkó, A; Kukovecz, Á; Erdőhelyi, A; Kónya, Z; Kiss, J

    2013-10-14

    Co nanoparticles were produced and characterized on protonated titanate nanowires. Co deposits were obtained after low-temperature decomposition of Co2(CO)8 on titanate nanostructures. The carbonylation was carried out by vapor-phase adsorption in a fluidized bed reactor and the decarbonylation processes were followed by FT-IR spectroscopy and microbalance combined with temperature programmed reaction mass spectrometry. The band gap of Co-decorated titanate nanostructures determined by UV-VIS diffuse reflectance spectroscopy decreased sharply from 3.14 eV to 2.41 eV with increasing Co content up to 2 wt%. The Co-decorated titanate morphology was characterized by high-resolution transmission electron microscopy (HRTEM) and electron diffraction (ED). The chemical environment of Co deposition was studied by photoelectron spectroscopy (XPS). A certain amount of cobalt underwent an ion exchange process. Higher cobalt loadings led to the formation of nanosized-dispersed particles complexed to oxygen vacancies. The average sizes were found to be mostly between 2 and 6 nm. This size distribution and the measured band gap could be favorable regimes for some important low-temperature thermal- and photo-induced catalytic reactions.

  13. Field reconnaissance and estimation of petroleum hydrocarbon and heavy metal contents of soils affected by the Ebocha-8 oil spillage in Niger Delta, Nigeria.

    PubMed

    Osuji, Leo C; Onojake, Chukunedum M

    2006-04-01

    Field reconnaissance of the Ebocha-8 oil spill-affected site at Obiobi/Obrikom in the Niger Delta region of Nigeria was carried out to assess the extent of damage to the terrestrial ecosystem and delimit the epicenter of oil spillage. Following three successive reconnaissance surveys, the area to be sampled was delimited (200 x 200 m2), and soil samples were collected using the grid method from three replicate quadrats at two depths, surface (0-15 cm) and subsurface (15-30 cm). A geographically similar area located 50 m adjacent to the oil-polluted area was used as a reference (control) site. Total hydrocarbon content (THC) and heavy metal concentrations were later determined in the laboratory by extraction and spetrophotemetric techniques. Generally, the THC of soils at surface and subsurface depths of the oil-polluted plots was 2.06 x 10(4) +/- 4.97 x 10(3) mg/kg and 1.67 x 10(3) +/- 3.61 x 10(2) mg/kg soil, respectively, (no overlap in standard errors at 95% confidence limit) while concentrations of heavy metals(Pb, Cd, V, Cu and Ni) were enhanced, especially at the surface. The high levels of THC and heavy metals may predispose the site, which hitherto served as arable agricultural land, to impaired fertility and possible conflagration. When concentrations of heavy metals reach the levels obtained in this study, they may become toxic to plants or possibly bio-accumulate, thus leading to toxic reactions along the food chain. While the spilled-oil may have contributed to the enhanced levels of the metals in the affected soils, physico-chemical properties of the soils, mobility of metals, and the intense rainfall and flooding that preceded the period of study may have also contributed in part to their enhanced concentrations. The presence of high hydrocarbon content may cause oxygen deprivation, which may result in the death of soil fauna by asphyxiation. There is, therefore, an urgent need to clear the affected site of these excess hydrocarbon deposits so as to

  14. Theranostic multimodular potential of zinc-doped ferrite-saturated metal-binding protein-loaded novel nanocapsules in cancers

    PubMed Central

    Kamalapuram, Sishir K; Kanwar, Rupinder K; Roy, Kislay; Chaudhary, Rajneesh; Sehgal, Rakesh; Kanwar, Jagat R

    2016-01-01

    The present study successfully developed orally deliverable multimodular zinc (Zn) iron oxide (Fe3O4)-saturated bovine lactoferrin (bLf)-loaded polymeric nanocapsules (NCs), and evaluated their theranostic potential (antitumor efficacy, magnetophotothermal efficacy and imaging capability) in an in vivo human xenograft CpG-island methylator phenotype (CIMP)-1+/CIMP2−/chromosome instability-positive colonic adenocarcinoma (Caco2) and claudin-low, triple-negative (ER−/PR−/HER2−; MDA-MB-231) breast cancer model. Mice fed orally on the Zn-Fe-bLf NC diet showed downregulation in tumor volume and complete regression in tumor volume after 45 days of feeding. In human xenograft colon cancer, vehicle-control NC diet-group (n=5) mice showed a tumor volume of 52.28±11.55 mm3, and Zn-Fe-bLf NC diet (n=5)-treated mice had a tumor-volume of 0.10±0.073 mm3. In the human xenograft breast cancer model, Zn-Fe-bLf NC diet (n=5)-treated mice showed a tumor volume of 0.051±0.062 mm3 within 40 days of feeding. Live mouse imaging conducted by near-infrared fluorescence imaging of Zn-Fe-bLf NCs showed tumor site-specific localization and regression of colon and breast tumor volume. Ex vivo fluorescence-imaging analysis of the vital organs of mice exhibited sparse localization patterns of Zn-Fe-bLf NCs and also confirmed tumor-specific selective localization patterns of Zn-Fe-bLf NCs. Dual imaging using magnetic resonance imaging and computerized tomography scans revealed an unprecedented theranostic ability of the Zn-Fe-bLf NCs. These observations warrant consideration of multimodular Zn-Fe-bLf NCs for real-time cancer imaging and simultaneous cancer-targeted therapy. PMID:27099495

  15. Post-glucose-load urinary C-peptide and glucose concentration obtained during OGTT do not affect oral minimal model-based plasma indices.

    PubMed

    Jainandunsing, Sjaam; Wattimena, J L Darcos; Rietveld, Trinet; van Miert, Joram N I; Sijbrands, Eric J G; de Rooij, Felix W M

    2016-05-01

    The purpose of this study was to investigate how renal loss of both C-peptide and glucose during oral glucose tolerance test (OGTT) relate to and affect plasma-derived oral minimal model (OMM) indices. All individuals were recruited during family screening between August 2007 and January 2011 and underwent a 3.5-h OGTT, collecting nine plasma samples and urine during OGTT. We obtained the following three subgroups: normoglycemic, at risk, and T2D. We recruited South Asian and Caucasian families, and we report separate analyses if differences occurred. Plasma glucose, insulin, and C-peptide concentrations were analyzed as AUCs during OGTT, OMM estimate of renal C-peptide secretion, and OMM beta-cell and insulin sensitivity indices were calculated to obtain disposition indices. Post-glucose load glucose and C-peptide in urine were measured and related to plasma-based indices. Urinary glucose corresponded well with plasma glucose AUC (Cau r = 0.64, P < 0.01; SA r = 0.69, P < 0.01), S I (Cau r = -0.51, P < 0.01; SA r = -0.41, P < 0.01), Φ dynamic (Cau r = -0.41, P < 0.01; SA r = -0.57, P < 0.01), and Φ oral (Cau r = -0.61, P < 0.01; SA r = -0.73, P < 0.01). Urinary C-peptide corresponded well to plasma C-peptide AUC (Cau r = 0.45, P < 0.01; SA r = 0.33, P < 0.05) and OMM estimate of renal C-peptide secretion (r = 0.42, P < 0.01). In general, glucose excretion plasma threshold for the presence of glucose in urine was ~10-10.5 mmol L(-1) in non-T2D individuals, but not measurable in T2D individuals. Renal glucose secretion during OGTT did not influence OMM indices in general nor in T2D patients (renal clearance range 0-2.1 %, with median 0.2 % of plasma glucose AUC). C-indices of urinary glucose to detect various stages of glucose intolerance were excellent (Cau 0.83-0.98; SA 0.75-0.89). The limited role of renal glucose secretion validates the neglecting of urinary glucose secretion in kinetic models of glucose homeostasis using plasma glucose concentrations. Both C

  16. Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (Mufulira, Zambian Copperbelt).

    PubMed

    Ettler, Vojtěch; Konečný, Ladislav; Kovářová, Lucie; Mihaljevič, Martin; Sebek, Ondřej; Kříbek, Bohdan; Majer, Vladimír; Veselovský, František; Penížek, Vít; Vaněk, Aleš; Nyambe, Imasiku

    2014-03-01

    Six soil profiles located near Mufulira (Zambian Copperbelt) were studied to evaluate and compare the extent of environmental pollution of Cu-ore mining and smelting in both forested and grassland areas. The highest metal concentrations were detected in the uppermost soil layers with the following maxima: Co 45.8 mg kg(-1), Cu 8,980 mg kg(-1), Pb 41.6 mg kg(-1), and Zn 97.0 mg kg(-1). Numerous anthropogenic metal-bearing particles were detected in the most polluted soil layers. The spherical smelter-derived particles were mainly composed of covellite (CuS) and chalcocite (Cu2S), while the angular mining-derived particles were mostly composed of chalcopyrite (CuFeS2). Additionally, Fe-Cu oxide particles predominantly corresponding to tenorite (CuO) and delafossite (Cu(1+)Fe(3+)O2), along with hydrated Fe-oxides corresponding to secondary weathering products, were detected. In contrast to smelter-affected soils in temperate climates, where forest soils are significantly more enriched in metals than tilled soils due to high canopy interception, our data indicate a higher proportion of metal-bearing anthropogenic particles and higher metal concentrations in soils from unforested sites. This phenomenon is probably related to the more frequent and intense bushfires in forested areas, leading to the mobilization of pollutants contained in the biomass-rich surface soils back into the atmosphere. PMID:24365587

  17. Surprisingly contrasting metal distribution and fractionation patterns in copper smelter-affected tropical soils in forested and grassland areas (Mufulira, Zambian Copperbelt).

    PubMed

    Ettler, Vojtěch; Konečný, Ladislav; Kovářová, Lucie; Mihaljevič, Martin; Sebek, Ondřej; Kříbek, Bohdan; Majer, Vladimír; Veselovský, František; Penížek, Vít; Vaněk, Aleš; Nyambe, Imasiku

    2014-03-01

    Six soil profiles located near Mufulira (Zambian Copperbelt) were studied to evaluate and compare the extent of environmental pollution of Cu-ore mining and smelting in both forested and grassland areas. The highest metal concentrations were detected in the uppermost soil layers with the following maxima: Co 45.8 mg kg(-1), Cu 8,980 mg kg(-1), Pb 41.6 mg kg(-1), and Zn 97.0 mg kg(-1). Numerous anthropogenic metal-bearing particles were detected in the most polluted soil layers. The spherical smelter-derived particles were mainly composed of covellite (CuS) and chalcocite (Cu2S), while the angular mining-derived particles were mostly composed of chalcopyrite (CuFeS2). Additionally, Fe-Cu oxide particles predominantly corresponding to tenorite (CuO) and delafossite (Cu(1+)Fe(3+)O2), along with hydrated Fe-oxides corresponding to secondary weathering products, were detected. In contrast to smelter-affected soils in temperate climates, where forest soils are significantly more enriched in metals than tilled soils due to high canopy interception, our data indicate a higher proportion of metal-bearing anthropogenic particles and higher metal concentrations in soils from unforested sites. This phenomenon is probably related to the more frequent and intense bushfires in forested areas, leading to the mobilization of pollutants contained in the biomass-rich surface soils back into the atmosphere.

  18. How can we take advantage of halophyte properties to cope with heavy metal toxicity in salt-affected areas?

    PubMed Central

    Lutts, Stanley; Lefèvre, Isabelle

    2015-01-01

    Background Many areas throughout the world are simultaneously contaminated by high concentrations of soluble salts and by high concentrations of heavy metals that constitute a serious threat to human health. The use of plants to extract or stabilize pollutants is an interesting alternative to classical expensive decontamination procedures. However, suitable plant species still need to be identified for reclamation of substrates presenting a high electrical conductivity. Scope Halophytic plant species are able to cope with several abiotic constraints occurring simultaneously in their natural environment. This review considers their putative interest for remediation of polluted soil in relation to their ability to sequester absorbed toxic ions in trichomes or vacuoles, to perform efficient osmotic adjustment and to limit the deleterious impact of oxidative stress. These physiological adaptations are considered in relation to the impact of salt on heavy metal bioavailabilty in two types of ecosystem: (1) salt marshes and mangroves, and (2) mine tailings in semi-arid areas. Conclusions Numerous halophytes exhibit a high level of heavy metal accumulation and external NaCl may directly influence heavy metal speciation and absorption rate. Maintenance of biomass production and plant water status makes some halophytes promising candidates for further management of heavy-metal-polluted areas in both saline and non-saline environments. PMID:25672360

  19. Processing and Performance of MOF (Metal Organic Framework)-Loaded PAN Nanofibrous Membrane for CO2 Adsorption

    NASA Astrophysics Data System (ADS)

    Wahiduzzaman; Khan, Mujibur R.; Harp, Spencer; Neumann, Jeffrey; Sultana, Quazi Nahida

    2016-04-01

    The objective of this experimental study is to produce a nanofibrous membrane functionalized with adsorbent particles called metal organic framework (MOF) in order to adsorb CO2 from a gas source. Therefore, Polyacrylonitrile (PAN) was chosen as the precursor for nanofibers and HKUST-1, a Cu-based MOF, was chosen as adsorbent. The experimental process consists of electrospinning PAN solution blended with HKUST-1 to produce a nanofibrous mat as working substrates. The fibers were collected in a cylindrical canister model. SEM image of this mat showed nanofibers with the presence of small adsorbent particles, impregnated into the as-spun fibers discretely. To increase the amount of MOF particles for effectual gas adsorption, a secondary solvothermal process of producing MOF particles on the fibers was required. This process consists of multiple growth cycles of HKUST-1 particles by using a sol-gel precursor. SEM images showed uniform distribution of porous MOF particles of 2-4 µm in size on the fiber surface. Energy dispersive spectroscopy report of the fiber confirmed the presence of MOF particles through the identification of characteristic Copper elemental peaks of HKUST-1. To determine the thermal stability of the fibrous membrane, Thermogravimetric analysis of HKUST-1 consisting of PAN fiber was performed where a total weight loss of 40% between 210 and 360 °C was observed, hence proving the high-temperature durability of the synthesized membrane. BET surface area of the fiber membrane was measured as 540.73 m2/g. The fiber membrane was then placed into an experimental test bench containing a mixed gas inflow of CO2 and N2. Using non-dispersive infrared CO2 sensors connected to the inlet and outlet port of the bench, significant reduction of CO2 in concentration was measured. Comparative IR spectroscopic analysis between the gas-treated and gas untreated fiber samples showed the presence of characteristic peak in the vicinity of 2300 and 2400 cm-1 which

  20. The role of mechanical properties in cavitation erosion resistance. [parameters affecting metal fatigue under cavitation flow conditions

    NASA Technical Reports Server (NTRS)

    Gould, G. C.

    1974-01-01

    Methods for determining the correlations of erosion resistance and mechanical properties of materials are discussed. The most common method of testing cavitation erosion resistance of materials is the vibratory cavitation probe. The instrument and its operation are described. The use of the whirling arm device is considered as a second method. Metallographic investigations of the earliest stages of cavitation erosion damage of metallic materials was conducted. The materials show plastic deformation occurring during the incubation period and increasing until cracks form and metal fragments are lost. The parameters of the work done to cause material fractures are identified. The reactions obtained with specific materials are reported.

  1. Metal contamination in urban street sediment in Pisa (Italy) can affect the production of antioxidant metabolites in Taraxacum officinale Weber.

    PubMed

    Bretzel, Francesca; Benvenuti, Stefano; Pistelli, Laura

    2014-02-01

    Taraxacum officinale Weber (dandelion) is a very ubiquitous species, and it can grow in urban environments on metal-polluted sediments deposited in the gutters. This study represents a preliminary step to verify the presence of metals in sediments collected in urban streets in Pisa and to assess the alteration in dandelion metabolites in order to understand its adaptation to polluted environments. The soil and sediments were collected at three urban streets and analyzed for total and extractable Cr, Pb, Cu, Ni, and Zn. The total values of Pb and Zn in street sediments exceeded the limits for residential areas of soils. Zn was the most mobile of the metals analyzed. Floating cultivations trials were set up with dandelion seedlings and street sediments. The metals were analyzed in roots and leaves. Antioxidant power, anthocyanins, polyphenols, non-protein thiols (NP-TH) and chlorophylls were measured in dandelion leaves. The first two parameters (anthocyanins and antioxidant power) were higher in the polluted samples compared to the control; chlorophyll content was lower in the treated samples, whereas NP-TH showed no differences. NP-TH groups determined in roots were associated with the root content of Zn and Pb. These results indicate that dandelion can tolerate plant stress by altering its metabolite content.

  2. Electro-migration of heavy metals in an aged electroplating contaminated soil affected by the coexisting hexavalent chromium.

    PubMed

    Zhang, Weihua; Zhuang, Luwen; Tong, Lizhi; Lo, Irene M C; Qiu, Rongliang

    2012-02-01

    Cr(VI) was often reported to oxidize soil organic matter at acidic environments due to its high ORP, probably thus changing cationic metal species bound to soil organic matter, and influencing their electro-migration patterns. However, such an effect on the electro-migration was not confirmed in most previous studies. Therefore, this study applied a fixed voltage direct current field on an aged electroplating contaminated clayed soil, with a special interest in the direct or indirect influence of Cr(VI) on the electro-migration of other coexisting metals. After 353 h electrokinetic process, 81% of Zn, 53% of Ni and 22% of Cu in the original soil were electro-migrated into the electrolyte, and most of the remaining concentrated near the cathode. The Cr(VI) oxidized some soil organic matter along its migration pathway, with a pronounced reaction occurred near the anode at low pHs. The resulting Cr(III) reversed its original movement, and migrated towards the cathode, leading to the occurrence of a second Cr concentration peak in the soil. Metal species analyses showed that the amount of metals bound to soil organic matter significantly decreased, while a substantial increase in the Cr species bound to Fe/Mn (hydro-)oxides was observed, suggesting an enhancement of cationic metal electro-migration by the reduction of Cr(VI) into Cr(III). However, the Cr(VI) may form some stable lead chromate precipitates, and in turn demobilize Pb in the soil, as the results showed a low Pb removal and an increase in its acid-extractable and residual fractions after electrokinetic remediation. PMID:22197017

  3. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    PubMed

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  4. [Accumulation Characteristics and Evaluation of Heavy Metals in Soil-Crop System Affected by Wastewater Irrigation Around a Chemical Factory in Shenmu County].

    PubMed

    Qi, Yan-bing; Chu, Wan-lin; Pu, Jie; Liu, Meng-yun; Chang, Qing-rui

    2015-04-01

    Soil heavy metals Cu, Pb, Zn, and Cd, are regarded as "chemical time bombs" because of their propensity for accumulation in the soil and uptake by crops. This ultimately causes human toxicity in both the short and long-term, making farmland ecosystems dangerous to health. In this paper, accumulation and spatial variability of Cu, Zn, Pb and Cd in soil-crop system affected by wastewater irrigation around a chemical factor in northern Shaanxi province were analyzed. Results showed that wastewater irrigation around the chemical factory induced significant accumulation in soils compared with control areas. The average concentrations of available Cu and total Cu were 4.32 mg x kg(-1) and 38.4 mg x kg(-1), which were twice and 1.35 times higher than those of the control area, respectively. Soil Zn and Pb were slightly accumulated. Whereas soil Cd was significantly accumulated and was higher than the critical level of soil environmental quality (II), the available and total Cd concentrations were 0.248 mg x kg(-1) and 1.21 mg x kg(-1), which were 10 and 6.1 times higher than those of the control areas. No significant correlations were found between available and total heavy metals except between available Cd and total Cd. All the heavy metals were mainly accumulated in the top layer (0-10 cm). Spatially, soils and plants high in heavy metal concentration were distributed within the radius of about 100 m from the waste water outlet for Cu, Zn and Cd and about 200 m for Pb, and decreased exponentially with the distance from the factory. Affected by wastewater irrigation, contents of Cu, Pb and Cd in maize were 4.74, 0.129 and 0.036 mg x kg(-1) which were slightly higher than those in the control area. The content of Zn was similar to that in the control area. Affected by the vehicle exhaust, the over standard rate of Pb was 5.7% in maize. All the heavy metals did not show significant correlation between soil and crop, except Cd. The square correlation coefficients were 0

  5. Assessing bioavailability levels of metals in effluent-affected rivers: effect of Fe(III) and chelating agents on the distribution of metal speciation.

    PubMed

    Han, Shuping; Naito, Wataru; Masunaga, Shigeki

    2016-01-01

    To assess the effects of Fe(III) and anthropogenic ligands on the bioavailability of Ni, Cu, Zn, and Pb, concentrations of bioavailable metals were measured by the DGT (diffusive gradients in thin films) method in some urban rivers, and were compared with concentrations calculated by a chemical equilibrium model (WHAM 7.0). Assuming that dissolved Fe(III) (<0.45 μm membrane filtered) was in equilibrium with colloidal iron oxide, the WHAM 7.0 model estimated that bioavailable concentrations of Ni, Cu, and Zn were slightly higher than the corresponding values estimated assuming that dissolved Fe(III) was absent. In contrast, lower levels of free Pb were predicted by the WHAM 7.0 model when dissolved Fe(III) was included. Estimates showed that most of the dissolved Pb was present as colloidal iron-Pb complex. Ethylene-diamine-tetra-acetic acid (EDTA) concentrations at sampling sites were predicted from the relationship between EDTA and the calculated bioavailable concentration of Zn. When both colloidal iron and predicted EDTA concentrations were included in the WHAM 7.0 calculations, dissolved metals showed a strong tendency to form EDTA complexes, in the order Ni > Cu > Zn > Pb. With the inclusion of EDTA, bioavailable concentrations of Ni, Cu, and Zn predicted by WHAM 7.0 were different from those predicted considering only humic substances and colloidal iron. PMID:27533864

  6. Evaluation of crack arrest fracture toughness of parent plate, weld metal and heat affected zone of BIS 812 EMA ship plate steel

    NASA Astrophysics Data System (ADS)

    Burch, I. A.

    1993-10-01

    The steel chosen for the pressure hull of the Collins class submarine has undergone evaluation to compare the crack arrest fracture toughness, K(Ia), of the parent plate with that of weld metal and heat affected zone. The tests were conducted over a range of subzero temperatures on specimens slightly outside the ASTM standard test method specimen configuration. Shallow face grooved specimens were used to vary the propagating crack velocity from that of non face grooved specimens and determine if K(Ia), is sensitive to changes in crack velocity. The weld metal, heat affected zone (HAZ), and parent plate were assessed to determine if the welding process had a deleterious effect on the crack arrest properties of this particular steel. Tests on each of these regions revealed that, for the combination of parent plate, welding procedure and consumables, no adverse effect on crack arrest properties was encountered. Crack arrest fracture toughness of the weld metal and HAZ was superior to that of the parent plate at comparable temperatures.

  7. Elevated CO2 levels affects the concentrations of copper and cadmium in crops grown in soil contaminated with heavy metals under fully open-air field conditions.

    PubMed

    Guo, Hongyan; Zhu, Jianguo; Zhou, Hui; Sun, Yuanyuan; Yin, Ying; Pei, Daping; Ji, Rong; Wu, Jichun; Wang, Xiaorong

    2011-08-15

    Elevated CO(2) levels and the increase in heavy metals in soils through pollution are serious problems worldwide. Whether elevated CO(2) levels will affect plants grown in heavy-metal-polluted soil and thereby influence food quality and safety is not clear. Using a free-air CO(2) enrichment (FACE) system, we investigated the impacts of elevated atmospheric CO(2) on the concentrations of copper (Cu) or cadmium (Cd) in rice and wheat grown in soil with different concentrations of the metals in the soil. In the two-year study, elevated CO(2) levels led to lower Cu concentrations and higher Cd concentrations in shoots and grain of both rice and wheat grown in the respective contaminated soil. Elevated CO(2) levels slightly but significantly lowered the pH of the soil and led to changes in Cu and Cd fractionation in the soil. Our study indicates that elevated CO(2) alters the distribution of contaminant elements in soil and plants, thereby probably affecting food quality and safety.

  8. Gender Differences in Cognitive Load and Competition Anxiety Affect 6th Grade Students' Attitude toward Playing and Intention to Play at a Sequential or Synchronous Game

    ERIC Educational Resources Information Center

    Hwang, Ming-Yueh; Hong, Jon-Chao; Cheng, Hao-Yueh; Peng, Yu-Chi; Wu, Nien-Chen

    2013-01-01

    Do girls have more competition anxiety and exogenous cognitive load than equally able boys during the playing of stressful competitive on-line games? This question led to the adoption of a technology acceptance model to compare the influence factors of competitors in sequential and synchronous games. Confirmatory factor analysis of the data on 220…

  9. Imazalil residue loading on citrus fruit as affected by formulation, solution pH and exposure time in aqueous dip treatments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Green mould caused by Penicillium digitatum is responsible for major postharvest fruit losses on the South African fresh citrus export market. Some of these losses, as well as fungicide resistance development, can be attributed to sub-optimal imazalil (IMZ) residue loading on citrus fruit, i.e. <2 µ...

  10. Fruit load and branch ring-barking affect carbon allocation and photosynthesis of leaf and fruit of Coffea arabica in the field.

    PubMed

    Vaast, Philippe; Angrand, Jobert; Franck, Nicolas; Dauzat, Jean; Génard, Michel

    2005-06-01

    Increasing fruit load (from no berries present to 25, 50 and 100% of the initial fruit load) significantly decreased branch growth on 5-year-old coffee (Coffea arabica L.) trees of the dwarf cultivar 'Costa Rica 95', during their third production cycle. Ring-barking the branches further reduced their growth. Berry dry mass at harvest was significantly reduced by increasing fruit load. Dry matter allocation to berries was four times that allocated to branch growth during the cycle. Branch dieback and berry drop were significantly higher at greater fruit loads. This illustrates the importance of berry sink strength and indicates that there is competition for carbohydrates between berries and shoots and also among berries. Leaf net photosynthesis (P(n)) increased with increasing fruit load. Furthermore, leaves of non-isolated branches bearing full fruit load achieved three times higher P(n) than leaves of isolated (ring-barked) branches without berries, indicating strong relief of leaf P(n) inhibition by carbohydrate demand from berries and other parts of the coffee tree when excess photoassimilates could be exported. Leaf P(n) was significantly higher in the morning than later during the day. This reduction in leaf P(n) is generally attributed to stomatal closure in response to high irradiance, temperature and vapor pressure deficit in the middle of the day; however, it could also be a feedback effect of reserves accumulating during the morning when climatic conditions for leaf P(n) were optimal, because increased leaf mass ratio was observed in leaves of ring-barked branches with low or no fruit loads. Rates of CO(2) emission by berries decreased and calculated photosynthetic rates of berries increased with increasing photosynthetic photon flux (PPF) especially at low PPFs (0 to 100 micromol m(-2) s(-1)). The photosynthetic contribution of berries at the bean-filling stage was estimated to be about 30% of their daily respiration costs and 12% of their total carbon

  11. Load regulating expansion fixture

    DOEpatents

    Wagner, L.M.; Strum, M.J.

    1998-12-15

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils is disclosed. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components. 1 fig.

  12. Load regulating expansion fixture

    DOEpatents

    Wagner, Lawrence M.; Strum, Michael J.

    1998-01-01

    A free standing self contained device for bonding ultra thin metallic films, such as 0.001 inch beryllium foils. The device will regulate to a predetermined load for solid state bonding when heated to a bonding temperature. The device includes a load regulating feature, whereby the expansion stresses generated for bonding are regulated and self adjusting. The load regulator comprises a pair of friction isolators with a plurality of annealed copper members located therebetween. The device, with the load regulator, will adjust to and maintain a stress level needed to successfully and economically complete a leak tight bond without damaging thin foils or other delicate components.

  13. Hepatic oxidative stress and metal subcellular partitioning are affected by selenium exposure in wild yellow perch (Perca flavescens).

    PubMed

    Ponton, Dominic E; Caron, Antoine; Hare, Landis; Campbell, Peter G C

    2016-07-01

    Yellow perch (Perca flavescens) collected from 11 lakes in the Canadian mining regions of Sudbury (Ontario) and Rouyn-Noranda (Quebec) display wide ranges in the concentrations of cadmium (Cd), nickel (Ni), selenium (Se), and thallium (Tl) in their livers. To determine if these trace elements, as well as copper (Cu) and zinc (Zn), are causing oxidative stress in these fish, we measured three biochemical indicators (glutathione (GSH), glutathione disulfide (GSSG) and thiobarbituric acid-reactive substances (TBARS)) in their livers. We observed that 44% of the yellow perch that we collected were at risk of cellular oxidative stress and lipid peroxidation. Considering all fish from all lakes, higher liver Se concentrations were coincident with both lower proportions of GSSG compared to GSH and lower concentrations of TBARS, suggesting that the essential trace-element Se acts as an antioxidant. Furthermore, fish suffering oxidative stress had higher proportions of Cd, Cu and Zn in potentially sensitive subcellular fractions (organelles and heat-denatured proteins) than did fish not suffering from stress. This result suggests that reactive oxygen species may oxidize metal-binding proteins and thereby reduce the capacity of fish to safely bind trace metals. High Cd concentrations in metal-sensitive subcellular fractions likely further exacerbate the negative effects of lower Se exposure. PMID:27131821

  14. Assessments of chromium (and other metals) in vegetables and potential bio-accumulations in humans living in areas affected by tannery wastes.

    PubMed

    Chen, Hualin; Arocena, Joselito M; Li, Jianbing; Thring, Ronald W; Zhou, Jiangmin

    2014-10-01

    Chromium (Cr) commonly enters the food chain through uptake by vegetables. However, accurate prediction of plant uptake of Cr (and other metals) still remains a challenge. In this study, we evaluated 5 indices of availability for Cr (and other metals) to identify reliable predictors of metal transfer from soils to garlic, onion, bokchoy, radish and celery grown in soils impacted by tannery wastes. The potential bio-accumulation of Cr in humans was calculated from the Cr content of vegetable predicted by the best bio-availability index, amounts of vegetable consumed and recommended daily doses for Cr. Our results show that soil total Cr is the best predictor of Cr transfer from soils to onion (Cr in onion=8.51+0.005 Total Cr) while Cr extractable by Synthetic Precipitation Leaching Procedure at pH 5 correlates very well with Cr uptake by bokchoy (Cr bokchoy=5.86+7.32 SPLP-5 Cr) and garlic (Cr garlic=7.63+2.36 SPLP-5 Cr). The uptake of Cr by radish and celery could not be reliably estimated by any of the 5 indices of availability tested in this study. Potential bio-accumulation of Cr in humans (BA-Cr) increases from soils with low Cr (BA-Cr=11.5) to soil with high total Cr (BA-Cr=31.3). Due to numerous soil factors affecting the behavior of Cr in soils and the physiological differences among vegetables, we suggest that the prediction of the transfer of Cr (and other metals) from soils to plants should be specific to site, metal and vegetable. Potential bio-accumulation of Cr in humans can be derived from a transfer function of Cr from soils to plants and the human consumption of vegetables.

  15. Cognitive load imposed by knobology may adversely affect learners' perception of utility in using ultrasonography to learn physical examination skills, but not anatomy.

    PubMed

    Jamniczky, Heather A; McLaughlin, Kevin; Kaminska, Malgorzata E; Raman, Maitreyi; Somayaji, Ranjani; Wright, Bruce; Ma, Irene W Y

    2015-01-01

    Ultrasonography is increasingly used for teaching anatomy and physical examination skills but its effect on cognitive load is unknown. This study aimed to determine ultrasound's perceived utility for learning, and to investigate the effect of cognitive load on its perceived utility. Consenting first-year medical students (n = 137) completed ultrasound training that includes a didactic component and four ultrasound-guided anatomy and physical examination teaching sessions. Learners then completed a survey on comfort with physical examination techniques (three items; alpha = 0.77), perceived utility of ultrasound in learning (two items; alpha = 0.89), and cognitive load on ultrasound use [measured with a validated nine-point scale (10 items; alpha = 0.88)]. Learners found ultrasound useful for learning for both anatomy and physical examination (mean 4.2 ± 0.9 and 4.4 ± 0.8, respectively; where 1 = very useless and 5 = very useful). Principal components analysis on the cognitive load survey revealed two factors, "image interpretation" and "basic knobology," which accounted for 60.3% of total variance. Weighted factor scores were not associated with perceived utility in learning anatomy (beta = 0.01, P = 0.62 for "image interpretation" and beta = -0.04, P = 0.33 for "basic knobology"). However, factor score on "knobology" was inversely associated with perceived utility for learning physical examination (beta = -0.06; P = 0.03). While a basic introduction to ultrasound may suffice for teaching anatomy, more training may be required for teaching physical examination. Prior to teaching physical examination skills with ultrasonography, we recommend ensuring that learners have sufficient knobology skills.

  16. Nd:YAG Laser Welding of Sheet Metal Assembly: Transformation Induced Volume Strain Affect on Elastoplastic Model

    NASA Astrophysics Data System (ADS)

    Seang, C.; David, A. K.; Ragneau, E.

    This study presents the effect of transformation induced volume strain on the thermo-elastoplastic model in the simulation of Nd: YAG laser welding process applied for thin sheet metal dual phases steel DP600. The metallurgical phase transformations during heating and during cooling are used as the thermal expansion dependent parameters. The effect of transformation induced volumetric strain was identified where the comparisons of the elastoplastic model with and without metallurgical effect are based on the global distribution of residual stresses such as the longitudinal residual stresses and the transverse residual stresses.

  17. Elevated oxidative stress in skin of B6C3F1 mice affects dermal exposure to metal working fluid.

    PubMed

    Shvedova, A A; Kisin, E; Kisin, J; Castranova, V; Kommineni, C

    2000-09-01

    Metal working fluids (MWFs) are widely used in industry for metal cutting, drilling, shaping, lubricating, and milling. Potential for dermal exposure to MWFs exists for a large number of men and women via aerosols and splashing during the machining operations. It has been reported earlier that occupational exposure to MWFs causes allergic and irritant contact dermatitis. Previously, we showed that dermal exposure of female and male B6C3F1 mice to 5% MWFs for 3 months resulted in accumulation of mast cells and elevation of histamine in the skin. Topical exposure to MWF also resulted in elevated oxidative stress in the liver of both sexes and the testes in males. The goal of this study was to evaluate the interaction between oxidative stress in the skin and topical application of MWF. Oxidative stress in skin ofB6C3F1 mice of both sexes was generated by intradermal injection ofthe hydrogen peroxide (H2O2) -producing enzyme, glucose oxidase with polyethylene glycol (GOD+PEG). In mice given GOD+PEG, topical treatment with MWF (200 microl, 30%, for 1, 3, or 7 days) resulted in a mixed inflammatory cell response, accumulation of peroxidative products, and reduction of GSH content in the skin. Such changes were not observed with MWF treatment alone. These data indicate that oxidative stress can enhance dermal inflammation caused by occupational exposure to MWF.

  18. Colloid formation and metal transport through two mixing zones affected by acid mine drainage near Silverton, Colorado

    USGS Publications Warehouse

    Schemel, L.E.; Kimball, B.A.; Bencala, K.E.

    2000-01-01

    Stream discharges and concentrations of dissolved and colloidal metals (Al, Ca, Cu, Fe, Mg, Mn, Pb, and Zn), SO4, and dissolved silica were measured to identify chemical transformations and determine mass transports through two mixing zones in the Animas River that receive the inflows from Cement and Mineral Creeks. The creeks were the dominant sources of Al, Cu, Fe, and Pb, whereas the upstream Animas River supplied about half of the Zn. With the exception of Fe, which was present in dissolved and colloidal forms, the metals were dissolved in the acidic, high-SO4 waters of Cement Creek (pH 3.8). Mixing of Cement Creek with the Animas River increased pH to near-neutral values and transformed Al and some additional Fe into colloids which also contained Cu and Pb. Aluminium and Fe colloids had already formed in the mildly acidic conditions in Mineral Creek (pH 6.6) upstream of the confluence with the Animas River. Colloidal Fe continued to form downstream of both mixing zones. The Fe- and Al-rich colloids were important for transport of Cu, Pb, and Zn, which appeared to have sorbed to them. Partitioning of Zn between dissolved and colloidal phases was dependent on pH and colloid concentration. Mass balances showed conservative transports for Ca, Mg, Mn, SO4, and dissolved silica through the two mixing zones and small losses (< 10%) of colloidal Al, Fe and Zn from the water column.

  19. Dynamic response of Cu4Zr54 metallic glass to high strain rate shock loading: plasticity, spall and atomic-level structures

    SciTech Connect

    Luo, Shengnian; Arman, Bedri; Germann, Timothy C; Cagin, Tahir

    2009-01-01

    We investigate dynamic response of Cu{sub 46}Zr{sub 54} metallic glass under adiabatic planar shock wave loading (one-dimensional strain) wjth molecular dynamics simulations, including Hugoniot (shock) states, shock-induced plasticity and spallation. The Hugoniot states are obtained up to 60 CPa along with the von Mises shear flow strengths, and the dynamic spall strength, at different strain rates and temperatures. The spall strengths likely represent the limiting values achievable in experiments such as laser ablation. For the steady shock states, a clear elastic-plastic transition is identified (e.g., in the shock velocity-particle velocity curve), and the shear strength shows strain-softening. However, the elastic-plastic transition across the shock front displays transient stress overshoot (hardening) above the Hugoniot elastic limit followed by a relatively sluggish relaxation to the steady shock state, and the plastic shock front steepens with increasing shock strength. The local von Mises shear strain analysis is used to characterize local deformation, and the Voronoi tessellation analysis, the corresponding short-range structures at various stages of shock, release, tension and spallation. The plasticity in this glass is manifested as localized shear transformation zones and of local structure rather than thermal origin, and void nucleation occurs preferentially at the highly shear-deformed regions. The Voronoi and shear strain analyses show that the atoms with different local structures are of different shear resistances that lead to shear localization (e.g., the atoms indexed with (0,0,12,0) are most shear-resistant, and those with (0,2,8,1) are highly prone to shear flow). The dynamic changes in local structures are consistent with the observed deformation dynamics.

  20. Benthic metal fluxes and sediment diagenesis in a water reservoir affected by acid mine drainage: A laboratory experiment and reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Torres, E.; Ayora, C.; Jiménez-Arias, J. L.; García-Robledo, E.; Papaspyrou, S.; Corzo, A.

    2014-08-01

    Reservoirs are one of the primary water supply sources. Knowledge of the metal fluxes at the water-sediment interfaces of reservoirs is essential for predicting their ecological quality. Redox oscillations in the water column are promoted by stratification; turnover events may significantly alter metal cycling, especially in reservoirs impacted by acid mine drainage (AMD). To study this phenomenon, an experiment was performed under controlled laboratory conditions. Sediment cores from an AMD-affected reservoir were maintained in a tank with reservoir water for approximately two months and subjected to alternating oxic-hypoxic conditions. A detailed metal speciation in solid phases of the sediment was initially performed by sequential extraction, and pore water was analyzed at the end of each redox period. Tank water metals concentrations were systematically monitored throughout the experiment. The experimental results were then used to calibrate a diffusion-reaction model and quantify the reaction rates and sediment-water fluxes. Under oxic conditions, pH, Fe and As concentrations decreased in the tank due to schwertmannite precipitation, whereas the concentrations of Al, Zn, Cu, Ni, and Co increased due to Al(OH)3 and sulfide dissolution. The reverse trends occurred under hypoxic conditions. Under oxic conditions, the fluxes calculated by applying Fick’s first law to experimental concentration gradients contradicted the fluxes expected based on the evolution of the tank water. According to the reactive transport calculations, this discrepancy can be attributed to the coarse resolution of sediment sampling. The one-cm-thick slices failed to capture effectively the notably narrow (1-2 mm) concentration peaks of several elements in the shallow pore water resulting from sulfide and Al(OH)3 dissolution. The diffusion-reaction model, extended to the complete year, computed that between 25% and 50% of the trace metals and less than 10% of the Al that precipitated under

  1. A study of ethanol reactions on O2-treated Au/TiO2. Effect of support and metal loading on reaction selectivity

    NASA Astrophysics Data System (ADS)

    Nadeem, M. A.; Waterhouse, G. I. N.; Idriss, H.

    2016-08-01

    The reactions of ethanol have been studied on bare and Au supported TiO2 polymorphs (anatase and rutile) in order to understand the effect of Au loading and prior O2 treatment on the reaction selectivity and conversion using temperature programmed desorption (TPD). Although O2 treatment has negligible effect on the reaction selectivity of ethanol on TiO2 alone it considerably affects the reaction on Au/TiO2. Au/TiO2 had three main effects on the reaction when compared to TiO2 alone. First, it switches the reaction selectivity of the dehydration (to ethylene) in favor of dehydrogenation (to acetaldehyde) on both polymorphs. Second, it decreases the desorption temperature of the main reaction products. Third, it increases secondary reaction products (mainly C4 (crotonaldehyde, butene, furan) reaching ca. 78% of the overall carbon selectivity for the 8 wt.% Au/TiO2 anatase. These effects are more pronounced on the anatase phase when compared to that on the rutile phase. Reasons for these are discussed.

  2. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  3. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  4. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  5. Assessment of toxic metals in groundwater and saliva in an arsenic affected area of West Bengal, India: A pilot scale study.

    PubMed

    Bhowmick, Subhamoy; Kundu, Amit Kumar; Adhikari, Jishnu; Chatterjee, Debankur; Iglesias, Monica; Nriagu, Jerome; Guha Mazumder, Debendra Nath; Shomar, Basem; Chatterjee, Debashis

    2015-10-01

    Communities in many parts of the world are unintentionally exposed to arsenic (As) and other toxic metals through ingestion of local drinking water and foods. The concentrations of individual toxic metals often exceed their guidelines in drinking water but the health risks associated with such multiple-metal exposures have yet to receive much attention. This study examines the co-occurrence of toxic metals in groundwater samples collected from As-rich areas of Nadia district, West Bengal, India. Arsenic in groundwater (range: 12-1064 µg L(-1); mean ± S.D: 329±294 µg L(-1)) was the most important contaminant with concentrations well above the WHO guideline of 10 µg L(-1). Another important toxic metal in the study area was manganese (Mn) with average concentration of 202±153 µg L(-1), range of 18-604 µg L(-1). The average concentrations (µg L(-1)) of other elements in groundwater were: Cr (5.6±5.9), Mo (3.5±2.1), Ni (8.3±8.7), Pb (2.9±1.3), Ba (119±43), Zn (56±40), Se (0.60±0.33), U (0.50±0.74). Saliva collected from the male participants of the area had mean concentrations of 6.3±7.0 µg As L(-1) (0.70-29 µg L(-1)), 5.4±5.5 µg Mn L(-1) (0.69-22 µg L(-1)), 2.6±3.1 µg Ni L(-1) (0.15-13 µg L(-1)), 0.78±1.0µg Cr L(-1) (metals beside As must be monitored in drinking water before implementation of any policies to provide safe water to the

  6. Electrical Load Modeling and Simulation

    SciTech Connect

    Chassin, David P.

    2013-01-01

    Electricity consumer demand response and load control are playing an increasingly important role in the development of a smart grid. Smart grid load management technologies such as Grid FriendlyTM controls and real-time pricing are making their way into the conventional model of grid planning and operations. However, the behavior of load both affects, and is affected by load control strategies that are designed to support electric grid planning and operations. This chapter discussed the natural behavior of electric loads, how it interacts with various load control and demand response strategies, what the consequences are for new grid operation concepts and the computing issues these new technologies raise.

  7. The content and toxicity of heavy metals in soils affected by aerial emissions from the Pechenganikel plant

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Mozgova, N. P.; Korneikova, M. V.

    2014-05-01

    The zoning of the terrestrial ecosystems exposed to the aerial emissions from the Pechenganikel plant (Murmansk oblast) was performed; it was based on the state of the soil cover in 2012. The following parameters were determined: the pH, the contents of heavy metals (HMs) and exchangeable calcium and magnesium, the proportion between the organic and mineral soil components, and the state of the soil micro-biota. Three zones differing in the intensity of the soil pollution were distinguished: the zone of strong pollution (at a distance of 3 km from the source of the emission), the zone of medium pollution (16 km), and the zone of weak pollution (25-30 km to the southwest from the pollution source). In the last ten years, the soil pollution in the zone influenced by aerial emissions from the Pechenganikel plant has remained the same. The amount of bacteria and fungi in the air is directly related to that in the soil. The results obtained point to the bacterial pollution of the atmosphere nearby the industrial center. In the vicinity of the plant, gram-negative bacteria ( Gracilicutes) predominate in the air; in remote areas, gram-positive bacteria ( Fermicutes) are dominants. In the air nearby the industrial center, potentially pathogenic fungi ( Gongronella butleri and Alternaria alternata) were revealed.

  8. Contents and toxicity of heavy metals in soils of the zone affected by aerial emissions from the Severonikel Enterprise

    NASA Astrophysics Data System (ADS)

    Evdokimova, G. A.; Kalabin, G. V.; Mozgova, N. P.

    2011-02-01

    In 2009, the zoning of the terrestrial ecosystems in the area exposed to aerial emissions from the Severonikel Enterprise (Murmansk oblast) was performed on the basis of the parameters characterizing the state of the soils, including the contents of the main heavy metal pollutants and exchangeable calcium and magnesium, the soils' pH, the ratio of the organic to mineral soil components, and the state of the soils' microbiota. Three zones differing in the degree of the soil pollution were delimited. These were the zones of heavy, moderate, and weak pollution, which extended for up to 3, 25, and 50 km from the emission source in the prevailing wind direction. The data on the amount of bacterial and fungal biomass provided evidence of the profound degradation of the soils in the heavily polluted zone. In particular, the biomass of the soil microbiota, including its prokaryotic and eukaryotic components, was two to six times lower in this zone than in the background (control) area. The soils of the heavily polluted zone can be classified as strongly toxic for plants, and most of the soils of the moderately polluted zone also fall into the same category.

  9. Alumina polymorphs affect the metal immobilization effect when beneficially using copper-bearing industrial sludge for ceramics.

    PubMed

    Tang, Yuanyuan; Lu, Xiuqing; Shih, Kaimin

    2014-12-01

    The feasibility of recycling copper-bearing industrial sludge as a part of ceramic raw materials was evaluated through thermal interaction of sludge with aluminum-rich precursors. To observe copper incorporation mechanism, mixtures of copper-bearing sludge with alumina polymorphs (γ-Al2O3 and α-Al2O3) were fired between 750 and 1250°C. Different copper-hosting phases were identified by X-ray diffraction, and CuAl2O4 was found to be the predominant phase throughout the reactions. The experimental results indicate different CuAl2O4 initiating temperatures for two alumina materials, and the optimal temperature for CuAl2O4 formation is around 1100°C. To monitor the stabilization effect, prolonged leaching tests were carried out to leach sintered products for up to 20d. The results clearly demonstrate a substantial decrease in copper leachability for products with higher CuAl2O4 content formed from both alumina precursors despite their different sintering behavior. Meanwhile, the leachability of aluminum was much lower than that of copper, and it decreased by more than fourfold through the formation of CuAl2O4 spinel in γ-Al2O3 system. This study clearly indicates spinel formation as the most crucial metal stabilization mechanism when sintering multiphase copper-bearing industrial sludge with aluminum-rich ceramic raw materials, and suggests a promising and reliable technique for reusing industrial sludge.

  10. Chloride concentrations, loads, and yields in four watersheds along Interstate 95, southeastern Connecticut, 2008-11: factors that affect peak chloride concentrations during winter storms

    USGS Publications Warehouse

    Brown, Craig J.; Mullaney, John R.; Morrison, Jonathan; Martin, Joseph W.; Trombley, Thomas J.

    2015-07-01

    The addition of a lane mile in both directions on I–95 would result in an estimate of approximately 2 to 11 percent increase in Cl- input from deicers applied to I–95 and other roads maintained by Connecticut Department of Transportation. The largest estimated increase in Cl- load was in the watersheds with the greatest number miles of I–95 corridor relative to the total lane miles maintained by Connecticut Department of Transportation. On the basis of these estimates and the estimated peak Cl- concentrations during the study period, it is unlikely that the increased use of deicers on the additional lanes would lead to Cl- concentrations that exceed the aquatic habitat criteria.

  11. Geochemistry of trace metals in shelf sediments affected by seasonal and permanent low oxygen conditions off central Chile, SE Pacific (˜36°S)

    NASA Astrophysics Data System (ADS)

    Muñoz, Praxedes; Dezileau, Laurent; Cardenas, Lissette; Sellanes, Javier; Lange, Carina B.; Inostroza, Jorge; Muratli, Jesse; Salamanca, Marco A.

    2012-02-01

    Trace metals (Cd, U, Co, Ni, Cu, Ba, Fe, Mn), total organic carbon (TOC) and C and N stable isotope signatures (δ 13C and δ 15N) were determined in short sediments cores from the inner and outer shelf off Concepción, Chile (˜36°S). The objectives were to establish the effect of environmental conditions on trace metal distributions at two shelf sites, one affected by seasonal oxygenation and the other by permanent low oxygen conditions due to the presence of the oxygen minimum zone (OMZ). We evaluate trace metals as proxies of past changes in primary productivity and the bottom water oxygen regime. Concentrations of pore water sulfides and NH4+ were also measured as indicators of the main diagenetic pathways at each site. Our results for the inner shelf (seasonal suboxia) suggest that the oxidative state of the sediments responds to seasonal pulses of organic matter and that seasonal oxygenation develops during high and low primary productivity in the water column. Here, positive fluxes (to the water column) estimated from pore water concentrations of several elements were observed (Ba, Co, Ni, Fe and Mn). The less reduced environment at this site produces authigenic enrichment of Cu associated with the formation of oxides in the oxic surface sediment layer, and the reduction of U within deeper sediment sections occur consistently with negative estimated pore water fluxes. In the outer shelf sediments (permanent suboxia, OMZ site), negative fluxes (to the sediment) were estimated for all elements, but these sediments showed authigenic enrichments only for Cd, Cu and U. The short oxygenation period during the winter season did not affect the accumulation of these metals on the shelf. The distribution of Cu, Cd and U have been preserved within the sediments and the authigenic accumulation rates estimated showed a decrease from the deep sections of the core to the surface sediments. This could be explained by a gradual decrease in the strength of the OMZ in the

  12. Stormwater contaminant loading following southern California wildfires.

    PubMed

    Stein, Eric D; Brown, Jeffrey S; Hogue, Terri S; Burke, Megan P; Kinoshita, Alicia

    2012-11-01

    Contaminant loading associated with stormwater runoff from recently burned areas is poorly understood, despite the fact that it has the potential to affect downstream water quality. The goal of the present study is to assess regional patterns of runoff and contaminant loading from wildfires in urban fringe areas of southern California. Postfire stormwater runoff was sampled from five wildfires that each burned between 115 and 658 km(2) of natural open space between 2003 and 2009. Between two and five storm events were sampled per site over the first one to two years following the fires for basic constituents, metals, nutrients, total suspended solids, and polycyclic aromatic hydrocarbons (PAHs). Results were compared to data from 16 unburned natural areas and six developed sites. Mean copper, lead, and zinc flux (kg/km(2)) were between 112- and 736-fold higher from burned catchments and total phosphorus was up to 921-fold higher compared to unburned natural areas. Polycyclic aromatic hydrocarbon flux was four times greater from burned areas than from adjacent urban areas. Ash fallout on nearby unburned watersheds also resulted in a threefold increase in metals and PAHs. Attenuation of elevated concentration and flux values appears to be driven mainly by rainfall magnitude. Contaminant loading from burned landscapes has the potential to be a substantial contribution to the total annual load to downstream areas in the first several years following fires.

  13. Arterial Vasoreactivity is Equally Affected by In Vivo Cross-Clamping with Increasing Loads in Young and Middle-Aged Mice Aortas

    PubMed Central

    Geenens, Rachel; Famaey, Nele; Gijbels, Andy; Verhulst, Valérie; Vinckier, Stefan; Vander Sloten, Jos

    2015-01-01

    Purpose: To compensate for the lack of haptic feedback by surgical robots, limitation of exerted forces could be implemented. The limits should be based on the observed relationship between tissue load and induced damage. This study examines whether age-related changes influence this relationship. Methods: Descending thoracic aortas of male C57BL/6J mice of 10, 25 and 40 weeks were clamped in vivo (no clamp, 0.5N or 2.0N) for 2 min. Functional integrity was tested in vitro by studying endothelium-dependent and -independent vasoreactivity. Results: Endothelium-dependent relaxation deteriorated with increased clamping force at all ages. Clamping did not influence endothelium-independent vasodilation. Age (10, 25 and 40 weeks) did not significantly impact on the effect of clamping on endothelium-dependent and independent vasoreactivity. Conclusions: Within the tested conditions, mechanical clamping induces damage to the vascular endothelium, but not to the smooth muscle cells. Age has no effect on the obtained results in mice from 10 to 40 weeks old. PMID:26548538

  14. Blood pressure regulation V: in vivo mechanical properties of precapillary vessels as affected by long-term pressure loading and unloading.

    PubMed

    Eiken, Ola; Mekjavic, Igor B; Kölegård, Roger

    2014-03-01

    Recent studies are reviewed, concerning the in vivo wall stiffness of arteries and arterioles in healthy humans, and how these properties adapt to iterative increments or sustained reductions in local intravascular pressure. A novel technique was used, by which arterial and arteriolar stiffness was determined as changes in arterial diameter and flow, respectively, during graded increments in distending pressure in the blood vessels of an arm or a leg. Pressure-induced increases in diameter and flow were smaller in the lower leg than in the arm, indicating greater stiffness in the arteries/arterioles of the leg. A 5-week period of intermittent intravascular pressure elevations in one arm reduced pressure distension and pressure-induced flow in the brachial artery by about 50%. Conversely, prolonged reduction of arterial/arteriolar pressure in the lower body by 5 weeks of sustained horizontal bedrest, induced threefold increases of the pressure-distension and pressure-flow responses in a tibial artery. Thus, the wall stiffness of arteries and arterioles are plastic properties that readily adapt to changes in the prevailing local intravascular pressure. The discussion concerns mechanisms underlying changes in local arterial/arteriolar stiffness as well as whether stiffness is altered by changes in myogenic tone and/or wall structure. As regards implications, regulation of local arterial/arteriolar stiffness may facilitate control of arterial pressure in erect posture and conditions of exaggerated intravascular pressure gradients. That increased intravascular pressure leads to increased arteriolar wall stiffness also supports the notion that local pressure loading may constitute a prime mover in the development of vascular changes in hypertension.

  15. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress.

    PubMed

    Martínez-Ruiz, Erika Berenice; Martínez-Jerónimo, Fernando

    2016-11-01

    Nickel (Ni) is an essential metal for some organisms, but also a common toxic pollutant released into the water. Toxicity of Ni has not been completely established for cyanobacteria; for this reason, we evaluated the effect of sub-inhibitory Ni concentrations on a toxigenic strain of Microcystis aeruginosa and on microcystins production. Population growth, photosynthetic pigments concentration, biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]), as well as macromolecules (proteins, carbohydrates and lipids) were quantified; SEM and TEM observations were also performed. Population growth was affected starting at 3µgL(-1), and at 24µgL(-1) growth was completely inhibited; the 96-h Ni(2+) IC50 was 3.7µgL(-1). Ni exposure increased pigments concentration, augmented all the macromolecules, and increased activities of CAT and GPx; alterations on the internal cell structure were also observed. The integrated biomarker response revealed that Ni(2+) augmented the antioxidant response and the macromolecules content. Ni stress also increased microcystins production. M. aeruginosa was affected by Ni at very low concentrations, even lower than those established as safe limit to protect aquatic biota. Aside from the toxic effects produced in this cyanobacterium, stimulation to produce toxins could potentiate the environmental risks associated with water pollution and eutrophication.

  16. How do toxic metals affect harmful cyanobacteria? An integrative study with a toxigenic strain of Microcystis aeruginosa exposed to nickel stress.

    PubMed

    Martínez-Ruiz, Erika Berenice; Martínez-Jerónimo, Fernando

    2016-11-01

    Nickel (Ni) is an essential metal for some organisms, but also a common toxic pollutant released into the water. Toxicity of Ni has not been completely established for cyanobacteria; for this reason, we evaluated the effect of sub-inhibitory Ni concentrations on a toxigenic strain of Microcystis aeruginosa and on microcystins production. Population growth, photosynthetic pigments concentration, biomarkers, including antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]), as well as macromolecules (proteins, carbohydrates and lipids) were quantified; SEM and TEM observations were also performed. Population growth was affected starting at 3µgL(-1), and at 24µgL(-1) growth was completely inhibited; the 96-h Ni(2+) IC50 was 3.7µgL(-1). Ni exposure increased pigments concentration, augmented all the macromolecules, and increased activities of CAT and GPx; alterations on the internal cell structure were also observed. The integrated biomarker response revealed that Ni(2+) augmented the antioxidant response and the macromolecules content. Ni stress also increased microcystins production. M. aeruginosa was affected by Ni at very low concentrations, even lower than those established as safe limit to protect aquatic biota. Aside from the toxic effects produced in this cyanobacterium, stimulation to produce toxins could potentiate the environmental risks associated with water pollution and eutrophication. PMID:27400062

  17. Method and apparatus for imparting strength to a material using sliding loads

    DOEpatents

    Hughes, D.A.; Dawson, D.B.; Korellis, J.S.

    1999-03-16

    A method of enhancing the strength of metals by affecting subsurface zones developed during the application of large sliding loads is disclosed. Stresses which develop locally within the near surface zone can be many times larger than those predicted from the applied load and the friction coefficient. These stress concentrations arise from two sources: (1) asperity interactions and (2) local and momentary bonding between the two surfaces. By controlling these parameters more desirable strength characteristics can be developed in weaker metals to provide much greater strength to rival that of steel, for example. 11 figs.

  18. Method And Apparatus For Imparting Str