Batch study of manganese removal from mine effluent using mixture of ferromanganese ore and humus
NASA Astrophysics Data System (ADS)
Kamal, Norinsafrina Mustaffa; Aziz, Hamidi Abdul; Sulaiman, Shamsul Kamal; Hussin, Hashim
2017-10-01
Environmental problem related to mining industry always associates with high heavy metal contents in mine effluent. Manganese is among the metals that need to be reduced before the mine effluent entering receiving waterways. In this batch study, mixture of ferromanganese ore and humus had been applied to remove manganese from mine effluent. Effect of particle size of ferromanganese ore, dosage, mix ratio, pH and contact time had been studied to examine the effectiveness of the mixture in removing manganese. Results from the study have shown that optimum manganese removal was 93.54% by using particle size of 0.25-0.5 mm of ferromanganese ore, 3g of dosage mixture, mix ratio of 20%;80%, solution pH of 7 and 210 minutes (3.5 hours) of contact time. Thus, it is proven that mixture of ferromanganese ore and humus has potential to be used for removal of manganese in mine effluent.
Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som
2013-05-01
Metal mine effluents can impact fish in the receiving environment via both direct effects from exposure as well as indirect effects via food web. The main objective of the present study was to assess whether an indirect effect such as reduced food (prey) availability could influence metal accumulation and reproductive capacity in fish during chronic exposure to a metal mine effluent. Breeding pairs of fathead minnows (Pimephales promelas) were exposed to either reference water (RW) or an environmentally relevant metal mine effluent [45 percent process water effluent (PWE)] for 21 days and fed either low food quantities [LF (a daily ration of 6-10 percent body weight)] or normal food quantities [NF (a daily ration of 20-30 percent body weight)] in artificial stream systems. Fish in RW treatments were fed Chironomus dilutus larvae cultured in RW (Treatments: RW-NF or RW-LF), while fish in PWE treatments were fed C. dilutus larvae cultured in PWE (Treatments: PWE-NF or PWE-LF). Tissue-specific (gill, liver, gonad and carcass) metal accumulation, egg production, and morphometric parameters in fish were analyzed. Fathead minnows that were exposed to LF rations had significantly smaller body, gonad and liver sizes, and were in a relatively poor condition compared to fathead minnows exposed to NF rations, regardless of the treatment water type (RW or PWE) (two-way ANOVA; p<0.05). Although elevated concentrations of copper, nickel, rubidium, selenium, and thallium were recorded in C. dilutus cultured in PWE, only the concentrations of rubidium, selenium and thallium increased in tissues of fish in PWE treatments. Interestingly though, despite the greater abundance of metal-contaminated food in the PWE-NF treatment, tissue metal accumulation pattern were almost similar between the PWE-NF and PWE-LF treatments, except for higher liver barium, cobalt and manganese concentrations in the latter treatment. This indicated that a higher food ration could help reduce the tissue burden of at least some metals and thereby ameliorate the toxicity of metal-mine effluents in fish. More importantly, cumulative egg production in fish was found to be lowest in the PWE-LF treatment, whereas fish egg production in the PWE-NF treatment was not impacted. Overall, these findings suggest that decreased food abundance could have a greater impact than metal accumulation in target tissues on the reproductive capacity of fish inhabiting metal-mine effluent receiving environments. Copyright © 2013 Elsevier Inc. All rights reserved.
Gopalapillai, Yamini; Vigneault, Bernard; Hale, Beverley A
2014-10-01
Lemna minor, a free-floating macrophyte, is used for biomonitoring of mine effluent quality under the Metal Mining Effluent Regulations (MMER) of the Environmental Effects Monitoring (EEM) program in Canada and is known to be sensitive to trace metals commonly discharged in mine effluents such as Ni. Environment Canada's standard toxicity testing protocol recommends frond count (FC) and dry weight (DW) as the 2 required toxicity endpoints-this is similar to other major protocols such as those by the US Environmental Protection Agency (USEPA) and the Organisation for Economic Co-operation and Development (OECD)-that both require frond growth or biomass endpoints. However, we suggest that similar to terrestrial plants, average root length (RL) of aquatic plants will be an optimal and relevant endpoint. As expected, results demonstrate that RL is the ideal endpoint based on the 3 criteria: accuracy (i.e., toxicological sensitivity to contaminant), precision (i.e., lowest variance), and ecological relevance (metal mining effluents). Roots are known to play a major role in nutrient uptake in conditions of low nutrient conditions-thus having ecological relevance to freshwater from mining regions. Root length was the most sensitive and precise endpoint in this study where water chemistry varied greatly (pH and varying concentrations of Ca, Mg, Na, K, dissolved organic carbon, and an anthropogenic organic contaminant, sodium isopropyl xanthates) to match mining effluent ranges. Although frond count was a close second, dry weight proved to be an unreliable endpoint. We conclude that toxicity testing for the floating macrophyte should require average RL measurement as a primary endpoint. © 2014 SETAC.
Kobayashi, Naomasa; Okamura, Hideo
2005-12-01
Interactive toxic effects between heavy metals were investigated using a sea urchin (Anthocidaris crassispina) bioassay. An effluent from an abandoned mine showed significant inhibitory effects on embryo development as well as producing specific malformations. The effects on the embryos were reproduced by synthetic polluted seawater consisting of eight metals (manganese, lead, cadmium, nickel, zinc, chromium, iron, and copper) at the concentrations detected in the mine effluent. This indicated that the heavy metals were responsible for the effects observed. Five heavy metals were ranked in decreasing order of toxicity as follows: Cu>Zn>Pb>Fe>Mn. Among these, zinc and manganese could cause malformation of the embryos. From bioassay results using 27 combinations of heavy metals, 16 combinations including zinc could produce specific malformations, such as radialized, exo-gastrulal, and spaceship Apollo-like gastrulal embryos. Zinc was one of the elements responsible for causing malformations and its effects were intensified by the presence of the other metals, such as manganese, lead, iron, and copper.
Yusoff, Ismail; Fatt, Ng Tham; Othman, Faridah; Ashraf, Muhammad Aqeel
2013-01-01
The potential of three submerged aquatic plant species (Cabomba piauhyensis, Egeria densa, and Hydrilla verticillata) to be used for As, Al, and Zn phytoremediation was tested. The plants were exposed for 14 days under hydroponic conditions to mine waste water effluents in order to assess the suitability of the aquatic plants to remediate elevated multi-metals concentrations in mine waste water. The results show that the E. densa and H. verticillata are able to accumulate high amount of arsenic (95.2%) and zinc (93.7%) and resulted in a decrease of arsenic and zinc in the ambient water. On the other hand, C. piauhyensis shows remarkable aluminium accumulation in plant biomass (83.8%) compared to the other tested plants. The ability of these plants to accumulate the studied metals and survive throughout the experiment demonstrates the potential of these plants to remediate metal enriched water especially for mine drainage effluent. Among the three tested aquatic plants, H. verticillata was found to be the most applicable (84.5%) and suitable plant species to phytoremediate elevated metals and metalloid in mine related waste water. PMID:24102060
Treatment Of Metal-Mine Effluents By Limestone Neutralization And Calcite Co-Precipitation
The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...
The U.S. Geological Survey - Leetown Science Center and the Colorado School of Mines have developed a remediation process for the treatment of metals in circumneutral mining influenced waters. The process involves treatment with a pulsed limestone bed (PLB) system, followed by c...
Lakra, Kalpana C; Lal, B; Banerjee, T K
2017-06-03
Toxicity of the effluent generated at the Rajrappa coal mine complex under the Central Coalfields Limited (CCL, a subsidiary of Coal India Limited) in Jharkhand, India was investigated. The concentrations (mg L -1 ) of all the toxic metals (Fe, Mn, Ni, Zn, Cu, Pb, Cr, and Cd) in the coal mine effluent were above the safe limit suggested by the Environmental Protection Agency (EPA 2003). Among these, Fe showed the highest concentration (18.21 ± 3.865), while Cr had the lowest effluent concentration (0.15 ± 0.014). Efforts were also made to detoxify the effluent using two species of aquatic macrophytes namely "'Salvinia molesta and Pistia stratiotes." After 10 days of phytoremediation, S. molesta removed Pb (96.96%) > Ni (97.01%) > Cu (96.77%) > Zn (96.38%) > Mn (96.22%) > Fe (94.12%) > Cr (92.85%) > Cd (80.99%), and P. stratiotes removed Pb (96.21%) > Fe (94.34%) > Ni (92.53%) > Mn (85.24%) > Zn (79.51%) > Cr (78.57%) > Cu (74.19%) > Cd (72.72%). The impact of coal mine exposure on chlorophyll content showed a significant decrease of 42.49% and 24.54% from control values in S. molesta and P. stratiotes, respectively, perhaps due to the damage inflicted by the toxic metals, leading to the decay of plant tissues.
Tatsi, Kristi; Turner, Andrew
2014-03-01
Thallium is a highly toxic heavy metal whose concentrations and distributions in the aquatic environment are poorly defined. In this study, concentrations of aqueous and total Tl have been measured in water samples from a variety of rivers and effluents (the latter related to historical metal mining) in the county of Cornwall, SW England. Aqueous concentrations ranged from about 13 ng L(-1) in a river whose catchment contained no metal mines to 2,640 ng L(-1) in water abstracted directly from an abandoned mine shaft. Concentrations of Tl in rivers were greatest in the vicinity of mine-related effluents, with a maximum value measured of about 770 ng L(-1). Thallium was not efficiently removed by the conventional, active treatment of mine water, and displayed little interaction with suspended particles. Its mobility in surface waters, coupled with concentrations that are close to a quality guideline of 800 ng L(-1), is cause for concern. Accordingly, we recommend that the metal is more closely monitored in this and other regions impacted by mining activities. Copyright © 2013 Elsevier B.V. All rights reserved.
Rozon-Ramilo, Lisa D; Dubé, Monique G; Rickwood, Carrie J; Niyogi, Som
2011-09-01
This study illustrates the use of a mesocosm approach for assessing the independent effects of three treated metal mine effluents (MME) discharging into a common receiving environment and regulated under the same regulation. A field-based, multi-trophic artificial stream study was conducted in August 2008 to assess the effects of three metal mining effluents on fathead minnow (Pimephales promelas) in a 21-day reproduction bioassay. The nature of the approach allowed for assessment of both dietary and waterborne exposure pathways. Elements (e.g. Se, Co, Cl, Cu, Fe) were analyzed in several media (water, sediments) and tissues (biofilm, Chironomus dilutus, female fathead minnow (FHM) body, ovary, liver, gills). Significant increases in metal and micronutrient concentrations were observed in the water and biofilm tissues in all MME treatments [20% surface water effluent (SWE), 30% mine water effluent (MWE), and 45% process water effluent (PWE)], compared to reference. However, copper was the only element to significantly increase in the sediments when exposed to PWE. Co and Ni increased significantly in C. dilutus tissues in SWE (1.4- and 1.5-fold, respectively), Cu and Se also increased in chironomid tissues in PWE (5.2- and 3.3-fold, respectively); however, no significant increases in metals or micronutrients occurred in chironomid tissues when exposed to MWE compared to reference. There were no significant increases in metal concentrations in female FHM tissues (body, liver, gonads, gills) in any of the treatments suggesting that metals were either not bioavailable, lost from the females via the eggs, or naturally regulated through homeostatic mechanisms. Cumulative number of eggs per female per day increased significantly (∼127%) after exposure to SWE and decreased significantly (∼33%) after exposure to PWE when compared to reference. Mean total number of days to hatch was reduced in PWE compared to reference. This study shows the importance of isolating treatment streams in cumulative discharge environments to assess aquatic effects due to the different nature of the effluents. Copyright © 2011 Elsevier Inc. All rights reserved.
Fuller, Richard H.; Shay, J.M.; Ferreira, R.F.; Hoffman, R.J.
1978-01-01
Streams draining the mined areas of massive sulfide ore deposits in the Shasta Mining Districts of northern California are generally acidic and contain large concentrations of dissolved metals, including iron, copper, and zinc. The streams, including Flat, Little Backbone, Spring, West Squaw, Horse, and Zinc Creeks, discharge into Shasta Reservoir and the Sacramento River and have caused numerous fish kills. The sources of pollution are discharge from underground mines, streams that flow into open pits, and streams that flow through pyritic mine dumps where the oxidation of pyrite and other sulfide minerals results in the production of acid and the mobilization of metals. Suggested methods of treatment include the use of air and hydraulic seals in the mines, lime neutralization of mine effluent, channeling of runoff and mine effluent away from mine and tailing areas, and the grading and sealing of mine dumps. A comprehensive preabatement and postabatement program is recommended to evaluate the effects of any treatment method used. (Woodard-USGS)
Alanoca, L; Guédron, S; Amouroux, D; Audry, S; Monperrus, M; Tessier, E; Goix, S; Acha, D; Seyler, P; Point, D
2016-12-08
Lake Uru Uru (3686 m a.s.l.) located in the Bolivian Altiplano region receives both mining effluents and urban wastewater discharges originating from the surrounding local cities which are under rapid development. We followed the spatiotemporal distribution of different mercury (Hg) compounds and other metal(oid)s (e.g., Fe, Mn, Sb, Ti and W) in both water and sediments during the wet and dry seasons along a north-south transect of this shallow lake system. Along the transect, the highest Hg and metal(oid) concentrations in both water and sediments were found downstream of the confluences with mining effluents. Although a dilution effect was found for major elements during the wet season, mean Hg and metal(oid) concentrations did not significantly differ from the dry season due to the increase in acid mine drainage (AMD) inputs into the lake from upstream mining areas. In particular, high filtered (<0.45 μm) mono-methylmercury (MMHg) concentrations (0.69 ± 0.47 ng L -1 ) were measured in surface water representing 49 ± 11% of the total filtered Hg concentrations (THgF) for both seasons. Enhanced MMHg lability in relation with the water alkalinity, coupled with abundant organic ligands and colloids (especially for downstream mining effluents), are likely factors favoring Hg methylation and MMHg preservation while inhibiting MMHg photodegradation. Lake sediments were identified as the major source of MMHg for the shallow water column. During the dry season, diffusive fluxes were estimated to be 227 ng m -2 d -1 for MMHg. This contribution was found to be negligible during the wet season due to a probable shift of the redox front downwards in the sediments. During the wet season, the results obtained suggest that various sources such as mining effluents and benthic or macrophytic biofilms significantly contribute to MMHg inputs in the water column. This work demonstrates the seasonally dependent synergistic effect of AMD and urban effluents on the shallow, productive and evaporative high altitude lake ecosystems which promotes the formation of natural organometallic toxins such as MMHg in the water column.
Nogueira, V; Lopes, I; Rocha-Santos, T A P; Gonçalves, F; Pereira, R
2018-06-01
High quantities of industrial wastewaters containing a wide range of organic and inorganic pollutants are being directly discharged into the environment, sometimes without proper treatment. Nanotechnology has a tremendous potential improving the existing treatments or even develop new treatment solutions. In this study, nano-TiO 2 or nano-Fe 2 O 3 was used for the photocatalytic treatment of kraft pulp mill effluent and mining effluent. The experiments with the organic effluent lead to reduction percentages of 93.3%, 68.4% and 89.8%, for colour, aromatic compounds and chemical oxygen demand, respectively, when treated with nano-TiO 2 /H 2 O 2 /UV and nano-Fe 2 O 3 /H 2 O 2 /UV, at pH 3.0. Significant removal of metals from the mining effluent was recorded but only for Zn, Al and Cd, the highest removal attained with 1.0 g L -1 of nano-TiO 2 /UV and nano-Fe 2 O 3 /UV. Regarding the toxicity of the organic effluent to Vibrio fischeri, it was reduced with the treatments combining the oxidant and the catalyst. However, for the inorganic effluent, the best reduction was achieved using 1.0 g L -1 of catalyst. In fact, the increase in dose of the catalyst, especially for nano-TiO 2 , enhanced toxicity reduction. Our results have shown that the use of these NMs seemed to be more effective in the organic effluent than in metal-rich effluent.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peplow, Dan
1999-05-28
The Alder Mine, an abandoned gold, silver, copper, and zinc mine in Okanogan County, Washington, produces heavy metal-laden effluent that affects the quality of water in a tributary of the Methow River. The annual mass loading of heavy metals from two audits at the Alder Mine was estimated to exceed 11,000 kg per year. In this study, water samples from stations along Alder Creek were assayed for heavy metals by ICP-AES and were found to exceed Washington State's acute freshwater criteria for cadmium (Cd), copper (Cu), selenium (Se), and zinc (Zn).
Geochemistry of Standard Mine Waters, Gunnison County, Colorado, July 2009
Verplanck, Philip L.; Manning, Andrew H.; Graves, Jeffrey T.; McCleskey, R. Blaine; Todorov, Todor I.; Lamothe, Paul J.
2009-01-01
In many hard-rock-mining districts water flowing from abandoned mine adits is a primary source of metals to receiving streams. Understanding the generation of adit discharge is an important step in developing remediation plans. In 2006, the U.S. Environmental Protection Agency listed the Standard Mine in the Elk Creek drainage basin near Crested Butte, Colorado as a superfund site because drainage from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to the stream. Elk Creek flows into Coal Creek, which is a source of drinking water for the town of Crested Butte. In 2006 and 2007, the U.S. Geological Survey undertook a hydrogeologic investigation of the Standard Mine and vicinity and identified areas of the underground workings for additional work. Mine drainage, underground-water samples, and selected spring water samples were collected in July 2009 for analysis of inorganic solutes as part of a follow-up study. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 2 and 3 of the Standard Mine, two spring samples, and an Elk Creek sample. Reported analyses include field measurements (pH, specific conductance, water temperature, dissolved oxygen, and redox potential), major constituents and trace elements, and oxygen and hydrogen isotopic determinations. Overall, water samples collected in 2009 at the same sites as were collected in 2006 have similar chemical compositions. Similar to 2006, water in Level 3 did not flow out the portal but was observed to flow into open workings to lower parts of the mine. Many dissolved constituent concentrations, including calcium, magnesium, sulfate, manganese, zinc, and cadmium, in Level 3 waters substantially are lower than in Level 1 effluent. Concentrations of these dissolved constituents in water samples collected from Level 2 approach or exceed concentrations of Level 1 effluent suggesting that water-rock interaction between Levels 3 and 1 can account for the elevated concentration of metals and other constituents in Level 1 portal effluent. Ore minerals (sphalerite, argentiferous galena, and chalcopyrite) are the likely sources of zinc, cadmium, lead, and copper and are present within the mine in unmined portions of the vein system, within plugged ore chutes, and in muck piles.
Nordstrom, D. Kirk; Alpers, Charles N.
1999-01-01
The Richmond Mine of the Iron Mountain copper deposit contains some of the most acid mine waters ever reported. Values of pH have been measured as low as -3.6, combined metal concentrations as high as 200 g/liter, and sulfate concentrations as high as 760 g/liter. Copious quantities of soluble metal sulfate salts such as melanterite, chalcanthite, coquimbite, rhomboclase, voltaite, copiapite, and halotrichite have been identified, and some of these are forming from negative-pH mine waters. Geochemical calculations show that, under a mine-plugging remediation scenario, these salts would dissolve and the resultant 600,000-m3 mine pool would have a pH of 1 or less and contain several grams of dissolved metals per liter, much like the current portal effluent water. In the absence of plugging or other at-source control, current weathering rates indicate that the portal effluent will continue for approximately 3,000 years. Other remedial actions have greatly reduced metal loads into downstream drainages and the Sacramento River, primarily by capturing the major acidic discharges and routing them to a lime neutralization plant. Incorporation of geochemical modeling and mineralogical expertise into the decision-making process for remediation can save time, save money, and reduce the likelihood of deleterious consequences.
Nordstrom, D. Kirk; Alpers, Charles N.
1999-01-01
The Richmond Mine of the Iron Mountain copper deposit contains some of the most acid mine waters ever reported. Values of pH have been measured as low as −3.6, combined metal concentrations as high as 200 g/liter, and sulfate concentrations as high as 760 g/liter. Copious quantities of soluble metal sulfate salts such as melanterite, chalcanthite, coquimbite, rhomboclase, voltaite, copiapite, and halotrichite have been identified, and some of these are forming from negative-pH mine waters. Geochemical calculations show that, under a mine-plugging remediation scenario, these salts would dissolve and the resultant 600,000-m3 mine pool would have a pH of 1 or less and contain several grams of dissolved metals per liter, much like the current portal effluent water. In the absence of plugging or other at-source control, current weathering rates indicate that the portal effluent will continue for approximately 3,000 years. Other remedial actions have greatly reduced metal loads into downstream drainages and the Sacramento River, primarily by capturing the major acidic discharges and routing them to a lime neutralization plant. Incorporation of geochemical modeling and mineralogical expertise into the decision-making process for remediation can save time, save money, and reduce the likelihood of deleterious consequences. PMID:10097057
Rickwood, Carrie J; Dubé, Monique G; Weber, Lynn P; Lux, Sarah; Janz, David M
2008-01-31
The Junction Creek watershed, located in Sudbury, ON, Canada receives effluent from three metal mine wastewater treatment plants, as well as a municipal wastewater (MWW) discharge. Effects on fish have been documented within the creek (decreased egg size and increased metal body burdens). It has been difficult to identify the cause of the effects observed due to the confounded nature of the creek. The objectives of this investigation were to assess the: (1) effects of a mine effluent and municipal wastewater (CCMWW) mixture on fathead minnow (FHM; Pimephales promelas) reproduction in an on-site artificial stream and (2) importance of food (Chironomus tentans) as a source of exposure using a trophic-transfer system. Exposures to CCMWW through the water significantly decreased egg production and spawning events. Exposure through food and water using the trophic-transfer system significantly increased egg production and spawning events. Embryos produced in the trophic-transfer system showed similar hatching success but increased incidence and severity of deformities after CCMWW exposure. We concluded that effects of CCMWW on FHM were more apparent when exposed through the water. Exposure through food and water may have reduced effluent toxicity, possibly due to increased nutrients and organic matter, which may have reduced metal bioavailability. More detailed examination of metal concentrations in the sediment, water column, prey (C. tentans) and FHM tissues is recommended to better understand the toxicokinetics of potential causative compounds within the different aquatic compartments when conducting exposures through different pathways.
Bioremediation of an iron-rich mine effluent by Lemna minor.
Teixeira, S; Vieira, M N; Espinha Marques, J; Pereira, R
2014-01-01
Contamination of water resources by mine effluents is a serious environmental problem. In a old coal mine, in the north of Portugal (São Pedro da Cova, Gondoma),forty years after the activity has ended, a neutral mine drainage, rich in iron (FE) it stills being produced and it is continuously released in local streams (Ribeiro de Murta e Rio Ferreira) and in surrounding lands. The species Lemna minor has been shown to be a good model for ecotoxicological studies and it also has the capacity to bioaccumulate metals. The work aimed test the potential of the species L. minor to remediate this mine effluent, through the bioaccumulation of Fe, under greenhouse experiments and, at the same time, evaluate the time required to the maximum removal of Fe. The results have shown that L. minor was able to grow and develop in the Fe-rich effluent and bioaccumulating this element. Throughout the 21 days of testing it was found that there was a meaningful increase in the biomass of L. minor both in the contaminated and in the non-contaminated waters. It was also found that bioaccumulation of Fe (iron) occurred mainly during the first 7 days of testing. It was found that L. minor has potential for the bioremediation of effluents rich in iron.
Lourenço, J; Marques, S; Carvalho, F P; Oliveira, J; Malta, M; Santos, M; Gonçalves, F; Pereira, R; Mendo, S
2017-12-15
Active and abandoned uranium mining sites often create environmentally problematic situations, since they cause the contamination of all environmental matrices (air, soil and water) with stable metals and radionuclides. Due to their cytotoxic, genotoxic and teratogenic properties, the exposure to these contaminants may cause several harmful effects in living organisms. The Fish Embryo Acute Toxicity Test (FET) test was employed to evaluate the genotoxic and teratogenic potential of mine liquid effluents and sludge elutriates from a deactivated uranium mine. The aims were: a) to determine the risk of discharge of such wastes in the environment; b) the effectiveness of the chemical treatment applied to the uranium mine water, which is a standard procedure generally applied to liquid effluents from uranium mines and mills, to reduce its toxicological potential; c) the suitability of the FET test for the evaluation the toxicity of such wastes and the added value of including the evaluation of genotoxicity. Results showed that through the FET test it was possible to determine that both elutriates and effluents are genotoxic and also that the mine effluent is teratogenic at low concentrations. Additionally, liquid effluents and sludge elutriates affect other parameters namely, growth and hatching and that water pH alone played an important role in the hatching process. The inclusion of genotoxicity evaluation in the FET test was crucial to prevent the underestimation of the risks posed by some of the tested effluents/elutriates. Finally, it was possible to conclude that care should be taken when using benchmark values calculated for specific stressors to evaluate the risk posed by uranium mining wastes to freshwater ecosystems, due to their chemical complexity. Copyright © 2017 Elsevier B.V. All rights reserved.
Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands.
Marrugo-Negrete, José; Enamorado-Montes, Germán; Durango-Hernández, José; Pinedo-Hernández, José; Díez, Sergi
2017-01-01
Phytoremediation has received increased attention over the recent decades, as an emerging and eco-friendly approach that utilizes the natural properties of plants to remediate contaminated water, soils or sediments. The current study provides information about a pilot-scale experiment designed to evaluate the potential of the anchored aquatic plant Limnocharis flava for phytoremediation of water contaminated with mercury (Hg), in a constructed wetland (CW) with horizontal subsurface flow (HSSF). Mine effluent used in this experiment was collected from a gold mining area located at the Alacran mine in Colombia (Hg: 0.11 ± 0.03 μg mL -1 ) and spiked with HgNO 3 (1.50 ± 0.09 μg mL -1 ). Over a 30 day test period, the efficiency of the reduction in the heavy metal concentration in the wetlands, and the relative metal sorption by the L. flava, varied according to the exposure time. The continued rate of removal of Hg from the constructed wetland was 9 times higher than the control, demonstrating a better performance and nearly 90% reduction in Hg concentrations in the contaminated water in the presence of L. flava. The results in this present study show the great potential of the aquatic macrophyte L. flava for phytoremediation of Hg from gold mining effluents in constructed wetlands. Copyright © 2016 Elsevier Ltd. All rights reserved.
An overview of the Gold King Mine Release and its Transport ...
On August 5, 2015, a large acidic mine pool trapped behind a collapsed mine structure and rock debris in the Gold King Mine (GKM) was accidently breached releasing approximately 11.3 million liters (3 million gallons) of low pH (~3) metal contaminated mine drainage into a small tributary in the headwaters of the Animas River in southwestern Colorado. The release introduced approximately 490,000 kg of dissolved and particulate metals over a 12-hour period into the Animas River at Silverton, CO, located 13 km downstream from the mine. The mine effluent contained 2,900 kg of dissolved metals. Most of the released metals were eroded from the old waste pile outside the mine entrance and within Cement Creek by the rushing water. The release introduced large quantities of particulate aluminum, iron, manganese, lead, copper, arsenic and zinc to the Animas River, of which 15,000 kg was in dissolved form To be presented at the New Mexico Water Institute Symposium, 2nd Annual Conference on Environmental Conditionsof the Animas and San Juan Watersheds with Emphasis on Gold King Mine and Other Mine Waste Issues.
Cravotta, C.A.
2008-01-01
This paper demonstrates the use of dissolution-rate data obtained in the laboratory to indicate the potential quality of effluent from a field-scale oxic limestone drain (OLD) treatment system for neutralization of dilute acidic mine drainage (AMD). Effluent from the Reevesdale Mine South Dip Tunnel, a large source of AMD and base flow to the Wabash Creek and Little Schuylkill River in the Southern Anthracite Coalfield of east-central Pennsylvania, is representative of AMD with low concentrations but high loadings of dissolved Fe, Al and other metals because of a high flow rate. In January 2003, rapid neutralization of the AMD from the Reevesdale Mine was achieved in laboratory tests of its reaction rate with crushed limestone in closed, collapsible containers (Cubitainers). The tests showed that net-alkaline effluent could be achieved with retention times greater than 3 h and that effluent alkalinities and associated dissolution rates were equivalent for Fe(OH)3-coated and uncoated limestone. On the basis of the laboratory results, a flushable OLD containing 1450 metric tons of high-purity calcitic limestone followed by two 0.7-m deep wetlands were constructed at the Reevesdale Mine. During the first year of operation, monthly data at the inflow, outflow and intermediate points within the treatment system were collected (April 2006-2007). The inflow to the treatment system ranged from 6.8 to 27.4 L/s, with median pH of 4.7, net acidity of 9.1 mg/L CaCO3, and concentrations of dissolved Al, Fe and Mn of 1.0, 1.9 and 0.89 mg/L, respectively. The corresponding effluent from the OLD had computed void-volume retention times of 4.5-18 h, with median pH of 6.6, net acidity of -93.2 mg/L CaCO3, and concentrations of dissolved Al, Fe and Mn of <0.1, 0.08 and 0.52 mg/L, respectively. The wetlands below the OLD were effective for retaining metal-rich solids flushed at monthly or more frequent intervals from the OLD, but otherwise had little effect on the effluent quality. During the first year of operation, approximately 43 metric tons of limestone were dissolved and 2 metric tons of Al, Fe and Mn were precipitated within the OLD. However, because of the accumulation of these metals within the OLD and possibly other debris from the mine, the effectiveness of the treatment system declined. Despite the installation of a flush-pipe network at the base of the OLD to remove precipitated solids, the limestone bed clogged near the inflow. Consequently, a large fraction of the AMD bypassed the treatment system. To promote flow through the OLD, the flush pipes were open continuously during the last 4 months of the study; however, this effluent was only partially treated because short-circuiting through the pipes decreased contact between the effluent and limestone. A reconfiguration of the flow path through the limestone bed from horizontal to vertical upward could increase the limestone surface area exposed to the metal-laden influent, increase the cross-sectional area perpendicular to flow, decrease the flow path for solids removal, and, consequently, decrease potential for clogging.
Salmelin, Johanna; Leppänen, Matti T; Karjalainen, Anna K; Vuori, Kari-Matti; Gerhardt, Almut; Hämäläinen, Heikki
2017-01-01
Mining of sulfide-rich pyritic ores produces acid mine drainage waters and has induced major ecological problems in aquatic ecosystems worldwide. Biomining utilizes microbes to extract metals from the ore, and it has been suggested as a new sustainable way to produce metals. However, little is known of the potential ecotoxicological effects of biomining. In the present study, biomining impacts were assessed using survival and behavioral responses of aquatic macroinvertebrates at in situ exposures in streams. The authors used an impedance conversion technique to measure quantitatively in situ behavioral responses of larvae of the regionally common mayfly, Heptagenia dalecarlica, to discharges from the Talvivaara mine (Sotkamo, Northern Finland), which uses a biomining technique. Behavioral responses measured in 3 mine-impacted streams were compared with those measured in 3 reference streams. In addition, 3-d survival of the mayfly larvae and the oligochaete Lumbriculus variegatus was measured in the study sites. Biomining impacts on stream water quality included increased concentrations of sulfur, sulfate, and metals, especially manganese, cadmium, zinc, sodium, and calcium. Survival of the invertebrates in the short term was not affected by the mine effluents. In contrast, apparent behavioral changes in mayfly larvae were detected, but these responses were not consistent among sites, which may reflect differing natural water chemistry of the study sites. Environ Toxicol Chem 2017;36:147-155. © 2016 SETAC. © 2016 SETAC.
Selected water-quality data for the Standard Mine, Gunnison County, Colorado, 2006-2007
Verplanck, Philip L.; Manning, Andrew H.; Mast, M. Alisa; Wanty, Richard B.; McCleskey, R. Blaine; Todorov, Todor I.; Adams, Monique
2007-01-01
Mine drainage and underground water samples were collected for analysis of inorganic solutes as part of a 1-year, hydrogeologic investigation of the Standard Mine and vicinity. The U.S. Environmental Protection Agency has listed the Standard Mine in the Elk Creek drainage near Crested Butte, Colorado, as a Superfund Site because discharge from the Standard Mine enters Elk Creek, contributing dissolved and suspended loads of zinc, cadmium, copper, and other metals to Coal Creek, which is the primary drinking-water supply for the town of Crested Butte. Water analyses are reported for mine-effluent samples from Levels 1 and 5 of the Standard Mine, underground samples from Levels 3 and 5 of the Standard Mine, mine effluent from an adit located on the Elk Lode, and two spring samples that emerged from waste-rock material below Level 5 of the Standard Mine and the adit located on the Elk Lode. Reported analyses include field parameters (pH, specific conductance, water temperature, dissolved oxygen, and redox potential) and major constituents and trace elements.
BCR have been successful at removing a high percentage of metals from MIW, while BCR effluent toxicity has not been examined previously in the field. This study examined 4 active pilot BCR systems for removal of metals and toxicity. Removal efficiency for Al, As, Cd, Cu, Ni, Pb...
NASA Astrophysics Data System (ADS)
Banks, David; Younger, Paul L.; Dumpleton, Steve
1996-04-01
Waters draining from abandoned coal or metals mines are often regarded as an environmental threat. Historical examples from the lead and coal mining industries of central and northeastern England illustrate that mine waters can also be regarded as an important resource in terms of 1) baseflow for effluent dilution; 2) drinking or industrial waters; 3) flocculating agents for sewage or water treatment; 4) spa waters; 5) sources of industrial minerals, including alkali metals and barium; and 6) a source of iron oxides or sulphates for tanning or pigmentation purposes. An appreciation of the potential economic value of mine waters and their contents is essential for the design of cost-effective treatment options.
Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.
Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko
2007-11-01
This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line reactor, the difference between maximum and minimum temperature was as low as 6 degrees C. The quantity of solid residue in reactors respectively was 0.62 g, 2.05 g and 3.91 g. In the case of copper, minimum achieved concentration was 0.62 mg/dm3 at pH = 10.4. At pH = 4.50 content of iron has rapidly decreased to < 0.1 mg/dm3 and maintained constant at all higher pH values. That means that precipitation has already ended at pH=4.5 and maximum efficiency of iron removal was 99.53%. The concentration of manganese was minimum at pH value of 11.0. Minimum obtained concentration of Zn was 2.18 mg/dm3 at a pH value of 11. If pH value is higher than 11, Zn can be re-dissolved. The maximum efficiency of Ni removal reached 76.30% at a pH value of 10.4. Obtained results show that efficiency of copper, iron and manganese removal is very satisfactory (higher than 90%). The obtained efficiency of Zn and Ni removal is lower (72.30% and 76.31%, respectively). The treated effluent met discharge water standard according to The Council Directive 76/464/EEC on pollution caused by certain dangerous substances into the aquatic environment of the Community. Maximum changing of temperature during the whole process was 6 degrees C. This technology, which was based on inducing chemical precipitation of heavy metals is viable for selective removal of heavy metals from metal-bearing effluents in three reactor systems in a cascade line. The worldwide increasing concern for the environment and guidelines regarding effluent discharge make their treatment necessary for safe discharge in water receivers. In the case where the effluents contain valuable metals, there is also an additional economic interest to recover these metals and to recycle them as secondary raw materials in different production routes.
ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT
Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...
Acute and chronic toxicity of effluent water from an abandoned uranium mine.
Antunes, S C; Pereira, R; Gonçalves, F
2007-08-01
Inactive or abandoned mines represent a significant source of environmental, chemical, physical, and aesthetic impact. Among concerning situations, the occurrence of abandoned or semi-abandoned mine-associated ponds (for sedimentation of solids, for effluent neutralization, or for washing the ore) is a common feature in this type of system. These ponds are a source of contamination for the groundwater resources and adjacent soils, because they lack appropriate impermeabilization. The use of this water for agriculture may also pose chronic risks to humans. In Portugal, these problems have been diagnosed and some remediation projects have been developed. The purpose of our study was to evaluate the acute and chronic toxicity of water samples collected from the aquatic system surrounding an abandoned uranium mine (Cunha Baixa, Mangualde, Central Portugal). The present study focuses on the water compartment, whose toxicity was evaluated by means of standard toxicity assays using two Daphnia species (D. longispina and D. magna). Three different ponds were used in the characterization of the aquatic system from Cunha Baixa mine: a reference pond (Ref), a mine effluent treatment pond (T), and a mine pit pond (M). Metal analyses performed in the water samples from these ponds showed values that, in some cases, were much higher than maximum recommendable values established (especially Al, Mn) by Portuguese legislation for waters for crop irrigation. Acute toxicity was only observed in the mine pit pond, with EC(50) values of 28.4% and 50.4% for D. longispina and D. magna, respectively. The significant impairment of chronic endpoints, translated in reductions in the population growth rate for both species, gives rise to concerns regarding the potential risks for aquatic zooplanktonic communities, from local receiving waters, potentially exposed to point source discharges of the treated and nontreated effluent from Cunha Baixa uranium mine.
Fractionation of heavy metals and assessment of contamination of the sediments of Lake Titicaca.
Cáceres Choque, Luis Fernando; Ramos Ramos, Oswaldo E; Valdez Castro, Sulema N; Choque Aspiazu, Rigoberto R; Choque Mamani, Rocío G; Fernández Alcazar, Samuel G; Sracek, Ondra; Bhattacharya, Prosun
2013-12-01
Chemical weathering is one of the major geochemical processes that control the mobilization of heavy metals. The present study provides the first report on heavy metal fractionation in sediments (8-156 m) of Lake Titicaca (3,820 m a.s.l.), which is shared by the Republic of Peru and the Plurinational State of Bolivia. Both contents of total Cu, Fe, Ni, Co, Mn, Cd, Pb, and Zn and also the fractionation of these heavy metals associated with four different fractions have been determined following the BCR scheme. The principal component analysis suggests that Co, Ni, and Cd can be attributed to natural sources related to the mineralized geological formations. Moreover, the sources of Cu, Fe, and Mn are effluents and wastes generated from mining activities, while Pb and Zn also suggest that their common source is associated to mining activities. According to the Risk Assessment Code, there is a moderate to high risk related to Zn, Pb, Cd, Mn, Co, and Ni mobilization and/or remobilization from the bottom sediment to the water column. Furthermore, the Geoaccumulation Index and the Enrichment Factor reveal that Zn, Pb, and Cd are enriched in the sediments. The results suggest that the effluents from various traditional mining waste sites in both countries are the main source of heavy metal contamination in the sediments of Lake Titicaca.
Recent Developments for Remediating Acidic Mine Waters Using Sulfidogenic Bacteria
Bitencourt, José A. P.; Sahoo, Prafulla K.; Alves, Joner Oliveira; Siqueira, José O.
2017-01-01
Acidic mine drainage (AMD) is regarded as a pollutant and considered as potential source of valuable metals. With diminishing metal resources and ever-increasing demand on industry, recovering AMD metals is a sustainable initiative, despite facing major challenges. AMD refers to effluents draining from abandoned mines and mine wastes usually highly acidic that contain a variety of dissolved metals (Fe, Mn, Cu, Ni, and Zn) in much greater concentration than what is found in natural water bodies. There are numerous remediation treatments including chemical (lime treatment) or biological methods (aerobic wetlands and compost bioreactors) used for metal precipitation and removal from AMD. However, controlled biomineralization and selective recovering of metals using sulfidogenic bacteria are advantageous, reducing costs and environmental risks of sludge disposal. The increased understanding of the microbiology of acid-tolerant sulfidogenic bacteria will lead to the development of novel approaches to AMD treatment. We present and discuss several important recent approaches using low sulfidogenic bioreactors to both remediate and selectively recover metal sulfides from AMD. This work also highlights the efficiency and drawbacks of these types of treatments for metal recovery and points to future research for enhancing the use of novel acidophilic and acid-tolerant sulfidogenic microorganisms in AMD treatment. PMID:29119111
Ricci, Bárbara C; Ferreira, Carolina D; Marques, Larissa S; Martins, Sofia S; Amaral, Míriam C S
This work assessed the potential of nanofiltration (NF) and reverse osmosis (RO) to treat acid streams contaminated with metals, such as effluent from the pressure oxidation process (POX) used in refractory gold ore processing. NF and RO were evaluated in terms of rejections of sulfuric acid and metals. Regarding NF, high sulfuric acid permeation (∼100%), was observed, while metals were retained with high efficiencies (∼90%), whereas RO led to high acid rejections (<88%) when conducted in pH values higher than 1. Thus, sequential use of NF and RO was proved to be a promising treatment for sulfuric acid solutions contaminated by metals, such as POX effluent. In this context, a purified acid stream could be recovered in NF permeate, which could be further concentrated in RO. Recovered acid stream could be reused in the gold ore processing or commercialized. A metal-enriched stream could be also recovered in NF retentate and transferred to a subsequent metal recovery stage. In addition, considering the high acid rejection obtained through the proposed system, RO permeate could be used as recycling water.
Challenges in recovering resources from acid mine drainage
Nordstrom, D. Kirk; Bowell, Robert J.; Campbell, Kate M.; Alpers, Charles N.
2017-01-01
Metal recovery from mine waters and effluents is not a new approach but one that has occurred largely opportunistically over the last four millennia. Due to the need for low-cost resources and increasingly stringent environmental conditions, mine waters are being considered in a fresh light with a designed, deliberate approach to resource recovery often as part of a larger water treatment evaluation. Mine water chemistry is highly dependent on many factors including geology, ore deposit composition and mineralogy, mining methods, climate, site hydrology, and others. Mine waters are typically Ca-Mg-SO4±Al±Fe with a broad range in pH and metal content. The main issue in recovering components of these waters having potential economic value, such as base metals or rare earth elements, is the separation of these from more reactive metals such as Fe and Al. Broad categories of methods for separating and extracting substances from acidic mine drainage are chemical and biological. Chemical methods include solution, physicochemical, and electrochemical technologies. Advances in membrane techniques such as reverse osmosis have been substantial and the technique is both physical and chemical. Biological methods may be further divided into microbiological and macrobiological, but only the former is considered here as a recovery method, as the latter is typically used as a passive form of water treatment.
Retention of metal and sulphate ions from acidic mining water by anionic nanofibrillated cellulose.
Venäläinen, Salla H; Hartikainen, Helinä
2017-12-01
We carried out an adsorption experiment to investigate the ability of anionic nanofibrillated cellulose (NFC) to retain metal and SO 4 2- ions from authentic highly acidic (pH3.2) mining water. Anionic NFC gels of different consistencies (1.1-%, 1.4-% and 1.8-% w/w) were allowed to react for 10min with mining water, after which NFC-induced changes in the metal and SO 4 2- concentrations of the mining water were determined. The sorption capacities of the NFC gels were calculated as the difference between the element concentrations in the untreated and NFC-treated mining water samples. All the NFCs efficiently co-adsorbed both metals and SO 4 2- . The retention of metals was concluded to take place through formation of metal-ligand complexes. The reaction between the NFC ligand and the polyvalent cations renders the cellulose nanofibrils positively charged and, thus, able to retain SO 4 2- electrostatically. Adsorption capacity of the NFC gels substantially increased upon decreasing DM content as a result of the dilution-induced weakening of the mutual interactions between individual cellulose nanofibrils. This outcome reveals that the dilution of the NFC gel not only increases its purification capacity but also reduces the demand for cellulosic raw material. These results suggest that anionic NFC made of renewable materials serves as an environmentally sound and multifunctional purification agent for acidic multimetal mining waters or AMDs of high ionic strength. Unlike industrial minerals traditionally used to precipitate valuable metals from acidic mining effluents before their permanent disposal from the material cycle, NFC neither requires mining of unrenewable raw materials nor produces inorganic sludges. Copyright © 2017 Elsevier B.V. All rights reserved.
Doig, Lorne E; Schiffer, Stephanie T; Liber, Karsten
2015-07-01
As a result of long-term metal mining and metallurgical activities, the sediment of Ross Lake (Flin Flon, MB, Canada) is highly contaminated with metals and other elements. Although the effluents likely were discharged into Ross Lake as early as the late 1920s, lake biophysical data were not collected until 1973, more than 4 decades after the onset of mining and municipal activities. The early influence of these activities on the ecology of Ross Lake is unknown, as are the effects of improvements to metallurgical effluent quality and discontinuation of municipal wastewater discharge into the lake's north basin. To address this knowledge gap, analyses typical of paleolimnological investigations were applied to cores of sediment collected in 2009 from the south basin of Ross Lake. Stratigraphic analyses of physicochemical sediment characteristics (e.g., the concentrations of metals and other elements, organic C, total N, and δ(13)C and δ(15)N values) and subfossil remains (diatoms, Chironomidae, Chaoborus, and Cladocera) were used to infer historical biological and chemical changes in Ross Lake. With the onset of mining activities, concentrations of various elements (e.g., As, Cr, Cu, Zn, and Se) increased dramatically in the sediment profile, eventually declining with improved tailings management. Nevertheless, concentrations of metals in recent sediments remain elevated compared with pre-industrial sediments. Constrained cluster analyses demonstrated distinct pre-industrial and postindustrial communities for both the diatoms and chironomids. The biodiversity of the postindustrial diatom assemblages were much reduced compared with the pre-industrial assemblages. The postindustrial chironomid assemblage was dominated by Chironomus and to a lesser extent by Procladius, suggesting that Ross Lake became a degraded environment. Abundances of Cladocera and Chaoborus were severely reduced in the postindustrial era, likely because of metals toxicity. Overall, improvements to the management of both metallurgical and municipal effluent are reflected in the physicochemical sediment record; nevertheless, the ecology of Ross Lake remains impaired and shows minimal signs of returning to a pre-industrial state. Recommendations are made regarding possible future investigations at this site and the need for a framework to help assess causation using paleolimnological and other site data. © 2015 SETAC.
Leaching characteristics, ecotoxicity, and risk assessment based management of mine wastes
NASA Astrophysics Data System (ADS)
Kim, J.; Ju, W. J.; Jho, E. H.; Nam, K.; Hong, J. K.
2016-12-01
Mine wastes generated during mining activities in metal mines generally contain high concentrations of metals that may impose toxic effects to surrounding environment. Thus, it is necessary to properly assess the mining-impacted landscapes for management. The study investigated leaching characteristics, potential environmental effects, and human health risk of mine wastes from three different metal mines in South Korea (molybdenum mine, lead-zinc mine, and magnetite mine). The heavy metal concentrations in the leachates obtained by using the Korean Standard Test Method for Solid Wastes (STM), Toxicity Characteristics Leaching Procedure (TCLP), and Synthetic Precipitation Leaching Procedure (SPLP) met the Korea Waste Control Act and the USEPA region 3 regulatory levels accordingly, even though the mine wastes contained high concentrations of metals. Assuming that the leachates may get into nearby water sources, the leachate toxicity was tested using Daphnia Magna. The toxic unit (TU) values after 24 h and 48 h exposure of all the mine wastes tested met the Korea Allowable Effluent Water Quality Standards (TU<1). The column leaching test showed that the lead-zinc mine waste may have long-term toxic effects (TU>1 for the eluent at L/S of 30) implying that the long-term effect of mine wastes left in mining areas need to be assessed. Considering reuse of mine wastes as a way of managing mine wastes, the human health risk assessment of reusing the lead-zinc mine waste in industrial areas was carried out using the bioavailable fraction of the heavy metals contained in the mine wastes, which was determined by using the Solubility/Bioavailability Research Consortium method. There may be potential carcinogenic risk (9.7E-05) and non-carcinogenic risk (HI, Hazard Index of 1.0E+00) as CR≧1.0E-05 has carcinogenic risk and HI≧1.0E+00 has non-carcinogenic risk. Overall, this study shows that not only the concentration-based assessment but ecological toxic effect and human health risk based assessments can be utilized for mining-impacted landscapes management.
Kulshrestha, Shail; Awasthi, Alok; Dabral, S K
2013-07-01
The bio-geochemical cycles of metals involve the lands, rivers, oceans and the atmosphere. Although a large number of metals are introduced to the water bodies during their mining and extraction processes and geochemical weathering of rocks, but the role of domestic and industrial wastes is predominant and of much concern. Increased industrial activities has increased the incidence of percolation of toxic metal ions to the soil and water bodies and presently their presence in ecosystem, have reached to an alarming level that environmentalists are finding it difficult to enforce control measures. Human activities and large number of small and big industrial units are increasingly discharging deleterious metals present in the effluents and wastes, to the environment and aquatic systems and have contaminated heavily even the ground water. The toxic metals have a great tendency of bioaccumulation through which they enter the food chain system and ultimately affect adversely the life on this planet Earth in various ways. Further, due to contamination of irrigation system by the harmful Chemicals and toxic metals, the farm products, vegetables, fruits, potable water and even milk is not spared. This paper describes the assessment of the heavy metal concentration in various industrial effluents of the surrounding area. Various physico-chemical characteristics of the effluents collected from various sites are also reported. To assess the status of ground water quality, water samples from four tube wells of different localities of the area and four drinking water samples supplied by Municipal Distribution System were also analyzed.
Alvarez, R; Ordóñez, A; Loredo, J; Younger, P L
2013-10-01
Gold extraction operations generate a variety of wastes requiring responsible disposal in compliance with current environmental regulations. During recent decades, increased emphasis has been placed on effluent control and treatment, in order to avoid the threat to the environment posed by toxic constituents. In many modern gold mining and ore processing operations, cyanide species are of most immediate concern. Given that natural degradation processes are known to reduce the toxicity of cyanide over time, trials have been made at laboratory and field scales into the feasibility of using wetland-based passive systems as low-cost and environmentally friendly methods for long-term treatment of leachates from closed gold mine tailing disposal facilities. Laboratory experiments on discrete aerobic and anaerobic treatment units supported the development of design parameters for the construction of a field-scale passive system at a gold mine site in northern Spain. An in situ pilot-scale wetland treatment system was designed, constructed and monitored over a nine-month period. Overall, the results suggest that compost-based constructed wetlands are capable of detoxifying cyanidation effluents, removing about 21.6% of dissolved cyanide and 98% of Cu, as well as nitrite and nitrate. Wetland-based passive systems can therefore be considered as a viable technology for removal of residual concentrations of cyanide from leachates emanating from closed gold mine tailing disposal facilities.
Geochemical evolution of solutions derived from experimental weathering of sulfide-bearing rocks
Munk, L.; Faure, G.; Koski, R.
2006-01-01
The chemical composition of natural waters is affected by the weathering of geologic materials at or near the surface of the Earth. Laboratory weathering experiments of whole-rock sulfide rocks from the Shoe-Basin Mine (SBM) and the Pennsylvania Mine (PM) from the Peru Creek Basin, Summit County, Colorado, indicate that the mineral composition of the sulfide rocks, changes in pH, the duration of the experiment, and the formation of sorbents such as Fe and Al oxyhydroxides affect the chemical composition of the resulting solution. Carbonate minerals in the rock from SBM provide buffering capacity to the solution, contribute to increases in the pH and enhance the formation of Fe and Al oxyhydroxides, which sorb cations from solution. The final solution pH obtained in the experiments was similar to those measured in the field (i.e., 2.8 for PM and 5.0 for SBM). At PM, acidic, metal-rich mine effluent is discharged into Peru Creek where it mixes with stream water. As a result, the pH of the effluent increases causing Fe and Al oxyhydroxide and schwertmannite to precipitate. The resulting solids sorb metal cations from the water thereby improving the quality of the water in Peru Creek. ?? 2006.
Iron ore mines leachate potential for oxyradical production.
Hamoutene, D; Rahimtula, A; Payne, J
2000-06-01
The ecotoxicological effects of mining effluents is coming under much greater scrutiny. It appears necessary to explore possible health effects in association with iron ore mining effluents. The present results clearly demonstrate that iron-ore leachate is not an inert media but has the potential to induce lipid peroxidation. Peroxidation was assessed by measuring oxygen consumption in the presence of a reducing agent such as ascorbate or NADPH and a chelator such as EDTA. Labrador iron ore is an insoluble complex crystalline material containing a mixture of metals (Fe, Al, Ti, Mn, Mg,ellipsis, ) in contrast to the iron sources used for normal lipid peroxidation studies. The metal of highest percentage is iron (59. 58%), a metal known to induce oxyradical production. Iron ore powder initiated ascorbic acid-dependent lipid peroxidation (nonenzymatic) in liposomes, lipids extracted from rat and salmon liver microsomes, and intact salmon liver microsomes. It also revealed an inhibitory effect of NADPH-dependent microsomes lipid peroxidation as well as on NADPH cytochrome c reductase activity. However, nonenzymatic peroxidation in rat liver microsomes was not significantly inhibited. Cytochrome P450 IA1- and IIB1-dependent enzymatic activities as well as P450 levels were not affected. The inhibition could be due to one of the other components of iron ore leachate (Mn, Al,ellipsis, ). These effects of iron-ore leachate indicate that a potential toxicity could be associated with its release into lakes. Further studies are necessary to explore in vivo effects on aquatic animals. Copyright 2000 Academic Press.
Zhang, Nan; Chen, Tian-Hu; Zhou, Yue-Fei; Li, Shao-Jie; Jin, Jie; Wang, Yan-Ming
2012-04-01
Mine tailings in Xiangsi Valley, Tongling, China, is a typical skarn-type tailing with high contents of carbonates. This study designed dynamic leaching experiments to investigate the efficiency of this tailing under the acid mine drainage treatment. During 80 d trial period, the physical and chemical properties of influents were fixed and the effluents were monitored. After the trial, the speciation of Fe, Cu and Zn in solid was analyzed. The results showed that during the trial period, pH value maintained above 7.5. Moreover, the concentrations of Cu, Zn, Fe ions in effluents kept below 0.1, 0.4 and 1 mg x L(-1), respectively. In addition, the permeability coefficient of experimental column kept decreasing during the experimental period (from 0.23 cm x s(-1) to 0.10 cm x s(-1)). Five-step sequential extraction method was employed to study the distribution of elements at different depths. The results showed that Cu2+, Zn2+ were removed mainly through sorption and precipitation. This study indicates that Tongling skarn mine tailings have strong acid neutralization as well as heavy metal binding capacities. Therefore, the authors suggest that this mine tailing, which used to be waste, has a potential in AMD control and treatment.
Turner, Elena A.; Kroeger, Gretchen L.; Arnold, Mariah C.; Thornton, B. Lila; Di Giulio, Richard T.; Meyer, Joel N.
2013-01-01
Mountaintop removal-valley fill coal mining has been associated with a variety of impacts on ecosystem and human health, in particular reductions in the biodiversity of receiving streams. However, effluents emerging from valley fills contain a complex mixture of chemicals including metals, metalloids, and salts, and it is not clear which of these are the most important drivers of toxicity. We found that streamwater and sediment samples collected from mine-impacted streams of the Upper Mud River in West Virginia inhibited the growth of the nematode Caenorhabditis elegans. Next, we took advantage of genetic and transgenic tools available in this model organism to test the hypotheses that the toxicity could be attributed to metals, selenium, oxidative stress, or osmotic stress. Our results indicate that in general, the toxicity of streamwater to C. elegans was attributable to osmotic stress, while the toxicity of sediments resulted mostly from metals or metalloids. PMID:24066176
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.83 Effluent limitations representing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.83 Effluent limitations representing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.85 Effluent limitations representing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.85 Effluent limitations representing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.83 Effluent limitations representing...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.85 Effluent limitations representing...
Cravotta, Charles A.; Parkhurst, David L.; Means, Brent P; McKenzie, Bob; Morris, Harry; Arthur, Bill
2010-01-01
Treatment with caustic chemicals typically is used to increase pH and decrease concentrations of dissolved aluminum, iron, and/or manganese in largevolume, metal-laden discharges from active coal mines. Generally, aluminum and iron can be removed effectively at near-neutral pH (6 to 8), whereas active manganese removal requires treatment to alkaline pH (~10). The treatment cost depends on the specific chemical used (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) and increases with the quantities of chemical added and sludge produced. The pH and metals concentrations do not change linearly with the amount of chemical added. Consequently, the amount of caustic chemical needed to achieve a target pH and the corresponding effluent composition and sludge volume can not be accurately determined without empirical titration data or the application of geochemical models to simulate the titration of the discharge water with caustic chemical(s). The AMDTreat computer program (http://amd.osmre.gov/ ) is widely used to compute costs for treatment of coal-mine drainage. Although AMDTreat can use results of empirical titration with industrial grade caustic chemicals to compute chemical costs for treatment of net-acidic or net-alkaline mine drainage, such data are rarely available. To improve the capability of AMDTreat to estimate (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the concentrations of dissolved metals in treated effluent, and (3) the volume of sludge produced by the treatment, a titration simulation is being developed using the geochemical program PHREEQC (wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/) that will be coupled as a module to AMDTreat. The simulated titration results can be compared with or used in place of empirical titration data to estimate chemical quantities and costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module for AMDTreat.
A combined CaO/electrochemical treatment of the acid mine drainage from the "Robule" Lake.
Orescanin, Visnja; Kollar, Robert
2012-01-01
The purpose of this work was development and application of the purification system suitable for the treatment of the acid mine drainage (AMD) accumulated in the "Robule" Lake, which represents the part of the Bor copper mining and smelting complex, Serbia. The study was undertaken in order to minimize adverse effect on the environment caused by the discharge of untreated AMD, which was characterized with low pH value (2.63) and high concentration of heavy metals (up to 610 mg/L) and sulfates (up to 12,000 mg/L). The treatment of the effluent included pretreatment/pH adjustment with CaO followed by electrocoagulation using iron and aluminum electrode sets. Following the final treatment, the decrease in the concentration of heavy metals ranged from 40 up to 61000 times depending on the metal and its initial concentration. The parameters, color and turbidity were removed completely in the pretreatment step, while the removal efficiencies for other considered parameters were as follows: EC = 55.48%, SO(4) (2-) = 70.83%, Hg = 98.36%, Pb = 97.50%, V = 98.43%, Cr = 99.86%, Mn = 97.96%, Fe = 100.00%, Co = 99.96%, Ni = 99.78%, Cu = 99.99% and Zn = 99.94%. Because the concentrations of heavy metals in the electrochemically treated AMD (ranging from 0.001 to 0.336 mg/L) are very low, the negative impact of this effluent on the aquatic life and humans is not expected. The sludge generated during the treatment of AMD is suitable for reuse for at least two purposes (pretreatment of AMD and covering of the flotation waste heap). From the presented results, it could be concluded that electrochemical treatment is a suitable approach for the treatment of AMD.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology...
Song, Hocheol; Yim, Gil-Jae; Ji, Sang-Woo; Neculita, Carmen Mihaela; Hwang, Taewoon
2012-11-30
Pilot-scale field-testing of passive bioreactors was performed to evaluate the efficiency of a mixture of four substrates (cow manure compost, mushroom compost, sawdust, and rice straw) relative to mushroom compost alone, and of the effect of the Fe/Mn ratio, during the treatment of acid mine drainage (AMD) over a 174-day period. Three 141 L columns, filled with either mushroom compost or the four substrate mixture (in duplicate), were set-up and fed with AMD from a closed mine site, in South Korea, using a 4-day hydraulic retention time. In the former bioreactor, effluent deterioration was observed over 1-2 months, despite the good efficiency predicted by the physicochemical characterization of mushroom compost. Steady state effluent quality was then noted for around 100 days before worsening in AMD source water occurred in response to seasonal variations in precipitation. Such changes in AMD quality resulted in performance deterioration in all reactors followed by a slow recovery toward the end of testing. Both substrates (mushroom compost and mixtures) gave satisfactory performance in neutralizing pH (6.1-7.8). Moreover, the system was able to consistently reduce sulfate from day 49, after the initial leaching out from organic substrates. Metal removal efficiencies were on the order of Al (∼100%) > Fe (68-92%) > Mn (49-61%). Overall, the mixed substrates showed comparable performance to mushroom compost, while yielding better effluent quality upon start-up. The results also indicated mushroom compost could release significant amounts of Mn and sulfate during bioreactor operation. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cravotta, C.A.; Ward, S.J.; Hammarstrom, J.M.
2008-01-01
Acidic mine drainage (AMD) containing elevated concentrations of dissolved iron and other metals can be neutralized to varying degrees by reactions with limestone in passive treatment systems. We evaluated the chemical and mineralogical characteristics and the effectiveness of calcitic and dolomitic limestone for the neutralization of net-acidic, oxic, iron-laden AMD from a flooded anthracite mine. The calcitic limestone, with CaCO3 and MgCO3 contents of 99.8 and <0.1 wt%, respectively, and the dolomitic limestone, with CaCO3 and MgCO3 contents of 60.3 and 40.2 wt%, were used to construct a downflow treatment system in 2003 at the Bell Mine, a large source of AMD and baseflow to the Schuylkill River in the Southern Anthracite Coalfield, in east-central Pennsylvania. In the winter of 2002-2003, laboratory neutralization-rate experiments evaluated the evolution of effluent quality during 2 weeks of continuous contact between AMD from the Bell Mine and the crushed calcitic or dolomitic limestone in closed, collapsible containers (cubitainers). The cubitainer tests showed that: (1) net-alkaline effluent could be achieved with detention times greater than 3 h, (2) effluent alkalinities and associated dissolution rates were equivalent for uncoated and Fe(OH)3-coated calcitic limestone, and (3) effluent alkalinities and associated dissolution rates for dolomitic limestone were about half those for calcitic limestone. The dissolution rate data for the cubitainer tests were used with data on the volume of effuent and surface area of limestone in the treatment system at the Bell Mine to evaluate the water-quality data for the first 1.5 years of operation of the treatment system. These rate models supported the interpretation of field results and indicated that treatment benefits were derived mainly from the dissolution of calcitic limestone, despite a greater quantity of dolomitic limestone within the treatment system. The dissolution-rate models were extrapolated on a decadal scale to indicate the expected decreases in the mass of limestone and associated alkalinities resulting from the long-term reaction of AMD with the treatment substrate. The models indicated the calcitic limestone would need to be replenished approaching the 5-year anniversary of treatment operations to maintain net-alkaline effluent quality. ?? 2008 Springer-Verlag.
Code of Federal Regulations, 2012 CFR
2012-07-01
...) The concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source...
Code of Federal Regulations, 2011 CFR
2011-07-01
... concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent characteristic... provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source subject to...
Code of Federal Regulations, 2014 CFR
2014-07-01
...) The concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source...
Code of Federal Regulations, 2010 CFR
2010-07-01
... concentration of pollutants discharged in mine drainage from mines, either open-pit or underground, that produce uranium ore, including mines using in-situ leach methods, shall not exceed: Effluent characteristic... provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source subject to...
Campaner, Veridiana P; Luiz-Silva, Wanilson; Machado, Wilson
2014-05-14
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Unruh, Daniel M.; Church, Stanley E; Nimick, David A.; Fey, David L.
2009-01-01
The legacy of acid mine drainage and toxic trace metals left in streams by historical mining is being addressed by many important yet costly remediation efforts. Monitoring of environmental conditions frequently is not performed but is essential to evaluate remediation effectiveness, determine whether clean-up goals have been met, and assess which remediation strategies are most effective. Extensive pre- and post-remediation data for water and sediment quality for the Boulder River watershed in southwestern Montana provide an unusual opportunity to demonstrate the importance of monitoring. The most extensive restoration in the watershed occurred at the Comet mine on High Ore Creek and resulted in the most dramatic improvement in aquatic habitat. Removal of contaminated sediment and tailings, and stream-channel reconstruction reduced Cd and Zn concentrations in water such that fish are now present, and reduced metal concentrations in streambed sediment by a factor of c. 10, the largest improvement in the district. Waste removals at the Buckeye/Enterprise and Bullion mine sites produced limited or no improvement in water and sediment quality, and acidic drainage from mine adits continues to degrade stream aquatic habitat. Recontouring of hillslopes that had funnelled runoff into the workings of the Crystal mine substantially reduced metal concentrations in Uncle Sam Gulch, but did not eliminate all of the acidic adit drainage. Lead isotopic evidence suggests that the Crystal mine rather than the Comet mine is now the largest source of metals in streambed sediment of the Boulder River. The completed removal actions prevent additional contaminants from entering the stream, but it may take many years for erosional processes to diminish the effects of contaminated sediment already in streams. Although significant strides have been made, additional efforts to seal draining adits or treat the adit effluent at the Bullion and Crystal mines would need to be completed to achieve the desired restoration.
Argane, R; El Adnani, M; Benzaazoua, M; Bouzahzah, H; Khalil, A; Hakkou, R; Taha, Y
2016-01-01
In some developing countries, base-metal residues that were abandoned in tailing ponds or impoundments are increasingly used as construction material without any control, engineering basis, or environmental concern. This uncontrolled reuse of mine tailings may constitute a new form of pollution risks for humans and ecosystems through metal leaching. Therefore, the aim of the current study is to assess mine drainage, metal mobility, and geochemical behavior of two abandoned mine tailings commonly used in the upper-Moulouya region (eastern Morocco) as fine aggregates for mortar preparation. Their detailed physical, chemical, and mineralogical properties were subsequently evaluated in the context of developing appropriate alternative reuses to replace their conventional disposal and limit their weathering exposure. The obtained results showed that both tailings contain relatively high quantities of residual metals and metalloids with lead (ranging between 3610 and 5940 mg/kg) being the major pollutant. However, the mineralogical investigations revealed the presence of abundant neutralizing minerals and low sulfide content which influence mine drainage geochemistry and subsequently lower metals mobility. In fact, leachate analyses from weathering cell kinetic tests showed neutral conditions and low sulfide oxidation rates. According to these results, the tailings used as construction material in the upper-Moulouya region have very low generating potential of contaminated effluents and their reuse as aggregates may constitute a sustainable alternative method for efficient tailing management.
Orandi, Sanaz; Lewis, David M
2013-02-01
The stringent regulations for discharging acid mine drainage (AMD) has led to increased attention on traditional or emerging treatment technologies to establish efficient and sustainable management for mine effluents. To assess new technologies, laboratory investigations on AMD treatment are necessary requiring a consistent supply of AMD with a stable composition, thus limiting environmental variability and uncertainty during controlled experiments. Additionally, biotreatment systems using live cells, particularly micro-algae, require appropriate nutrient availability. Synthetic AMD (Syn-AMD) meets these requirements. However, to date, most of the reported Syn-AMDs are composed of only a few selected heavy metals without considering the complexity of actual AMD. In this study, AMD was synthesised based on the typical AMD characteristics from a copper mine where biotreatment is being considered using indigenous AMD algal-microbes. Major cations (Ca, Na, Cu, Zn, Mg, Mn and Ni), trace metals (Al, Fe, Ag, Na, Co, Mo, Pb and Cr), essential nutrients (N, P and C) and high SO(4) were incorporated into the Syn-AMD. This paper presents the preparation of chemically complex Syn-AMD and the challenges associated with combining metal salts of varying solubility that is not restricted to one particular mine site. The general approach reported and the particular reagents used can produce alternative Syn-AMD with varying compositions. The successful growth of indigenous AMD algal-microbes in the Syn-AMD demonstrated its applicability as appropriate generic media for cultivation and maintenance of mining microorganisms for future biotreatment studies.
Code of Federal Regulations, 2011 CFR
2011-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Galhardi, Juliana Aparecida; Bonotto, Daniel Marcos
2016-09-01
Effects of acid mine drainage (AMD) were investigated in surface waters (Laranjinha River and Ribeirão das Pedras stream) and groundwaters from a coal mining area sampled in two different seasons at Figueira city, Paraná State, Brazil. The spatial data distribution indicated that the acid effluents favor the chemical elements leaching and transport from the tailings pile into the superficial water bodies or aquifers, modifying their quality. The acid groundwaters in both sampling periods (dry: pH 2.94-6.04; rainy: pH 3.25-6.63) were probably due to the AMD generation and infiltration, after the oxidation of sulfide minerals. Such acid effluents cause an increase of the solubilization rate of metals, mainly iron and aluminum, contributing to both groundwater and surface water contamination. Sulfate in high levels is a result of waters' pollution due to AMD. In some cases, high sulfate and low iron contents, associated with less acidic pH values, could indicate that AMD, previously generated, is nowadays being neutralized. The chemistry of the waters affected by AMD is controlled by the pH, sulfide minerals' oxidation, oxygen, iron content, and microbial activity. It is also influenced by seasonal variations that allow the occurrence of dissolution processes and the concentration of some chemical elements. Under the perspective of the waters' quality evaluation, the parameters such as conductivity, dissolved sodium, and sulfate concentrations acted as AMD indicators of groundwaters and surface waters affected by acid effluents.
Brix, Kevin V; Gerdes, Robert; Grosell, Martin
2010-10-01
A series of Toxicity Identification Evaluations (TIEs) to identify the cause(s) of observed toxicity to Ceriodaphnia dubia have been conducted on a hard rock mining effluent. Characteristic of hard rock mining discharges, the effluent has elevated (∼3000 mg l(-1)) total dissolved solids (TDS) composed primarily of Ca(2+) and SO(4)(2-). The effluent typically exhibits 6-12 toxic units (TUs) when tested with C. dubia. Phase I and II toxicity identification evaluations (TIEs) indicated Ca(2+) and SO(4)(2-) contributed only ∼4 TUs of toxicity, but this was likely an underestimate due to problems with simulating the supersaturated CaSO(4) concentrations in the effluent. Treatment of the effluent with BaCO(3) to precipitate Ca(2+) and SO(4)(2-) revealed that these ions contribute ∼6 TUs of the observed toxicity, but the remaining source(s) of toxicity (up to 6 TUs) remained unidentified. Subsequent investigations identified thiocyanate (SCN(-)) in the effluent at 100-150 μM. Toxicity tests reveal that C. dubia are sensitive to SCN(-) with an estimated IC25 of 8.3 μΜ for reproduction in moderately hard water suggesting between 12 and 18 TUs of toxicity in the effluent. Additional experiments demonstrated that SCN(-) toxicity is reduced in the high TDS matrix of the mining effluent. Testing of a mock effluent simulating the major ion and SCN(-) concentrations resulted in 10.4 TUs, suggesting that Ca(2+), SO(4)(2-) and SCN(-) are the three toxicants present in this effluent. This research suggests SCN(-) may be a more common cause of toxicity in mining effluents than is generally recognized. Copyright © 2010 Elsevier Inc. All rights reserved.
Spencer, Paula; Bowman, Michelle F; Dubé, Monique G
2008-07-01
It is not known if current chemical and biological monitoring methods are appropriate for assessing the impacts of growing industrial development on ecologically sensitive northern waters. We used a multitrophic level approach to evaluate current monitoring methods and to determine whether metal-mining activities had affected 2 otherwise pristine rivers that flow into the South Nahanni River, Northwest Territories, a World Heritage Site. We compared upstream reference conditions in the rivers to sites downstream and further downstream of mines. The endpoints we evaluated included concentrations of metals in river water, sediments, and liver and flesh of slimy sculpin (Cottus cognatus); benthic algal and macroinvertebrate abundance, richness, diversity, and community composition; and various slimy sculpin measures, our sentinel forage fish species. Elevated concentrations of copper and iron in liver tissue of sculpin from the Flat River were associated with high concentrations of mine-derived iron in river water and copper in sediments that were above national guidelines. In addition, sites downstream of the mine on the Flat River had increased algal abundances and altered benthic macroinvertebrate communities, whereas the sites downstream of the mine on Prairie Creek had increased benthic macroinvertebrate taxa richness and improved sculpin condition. Biological differences in both rivers were consistent with mild enrichment of the rivers downstream of current and historical mining activity. We recommend that monitoring in these northern rivers focus on indicators in epilithon and benthic macroinvertebrate communities due to their responsiveness and as alternatives to lethal fish sampling in habitats with low fish abundance. We also recommend monitoring of metal burdens in periphyton and benthic invertebrates for assessment of exposure to mine effluent and causal association. Although the effects of mining activities on riverine biota currently are limited, our results show that there is potential for effects to occur with proposed growth in mining activities.
Code of Federal Regulations, 2013 CFR
2013-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... using in-situ leach methods shall not exceed: Effluent characteristic Effluent limitations Maximum for... uranium, radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall... available (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing...
Microbial communities in riparian soils of a settling pond for mine drainage treatment.
Fan, Miaochun; Lin, Yanbing; Huo, Haibo; Liu, Yang; Zhao, Liang; Wang, Entao; Chen, Weimin; Wei, Gehong
2016-06-01
Mine drainage leads to serious contamination of soil. To assess the effects of mine drainage on microbial communities in riparian soils, we used an Illumina MiSeq platform to explore the soil microbial composition and diversity along a settling pond used for mine drainage treatment. Non-metric multidimensional scaling analysis showed that the microbial communities differed significantly among the four sampling zones (influent, upstream, downstream and effluent), but not seasonally. Constrained analysis of principal coordinates indicated heavy metals (zinc, lead and copper), total sulphur, pH and available potassium significantly influenced the microbial community compositions. Heavy metals were the key determinants separating the influent zone from the other three zones. Lower diversity indices were observed in the influent zone. However, more potential indicator species, related to sulphur and organic matter metabolism were found there, such as the sulphur-oxidizing genera Acidiferrobacter, Thermithiobacillus, Limnobacter, Thioprofundum and Thiovirga, and the sulphur-reducing genera Desulfotomaculum and Desulfobulbus; the organic matter degrading genera, Porphyrobacter and Paucimonas, were also identified. The results indicated that more microorganisms related to sulphur- and carbon-cycles may exist in soils heavily contaminated by mine drainage. Copyright © 2016 Elsevier Ltd. All rights reserved.
Dev, Subhabrata; Roy, Shantonu; Bhattacharya, Jayanta
2017-09-15
The present study discusses the potentiality of using anaerobic Packed Bed Bioreactor (PBR) for the treatment of acid mine drainage (AMD). The multiple process parameters such as pH, hydraulic retention time (HRT), concentration of marine waste extract (MWE), total organic carbon (TOC) and sulfate were optimized together using Taguchi design. The order of influence of the parameters towards biological sulfate reduction was found to be pH > MWE > sulfate > HRT > TOC. At optimized conditions (pH - 7, 20% (v/v) MWE, 1500 mg/L sulfate, 48 h HRT and 2300 mg/L TOC), 98.3% and 95% sulfate at a rate of 769.7 mg/L/d. and 732.1 mg/L/d. was removed from the AMD collected from coal and metal mine, respectively. Efficiency of metal removal (Fe, Cu, Zn, Mg and Ni) was in the range of 94-98%. The levels of contaminants in the treated effluent were below the minimum permissible limits of industrial discharge as proposed by Bureau of Indian Standards (IS 2490:1981). The present study establishes the optimized conditions for PBR operation to completely remove sulfate and metal removal from AMD at high rate. The study also creates the future scope to develop an efficient treatment process for sulfate and metal-rich mine wastewater in a large scale. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ouellet, Jacob D; Dubé, Monique G; Niyogi, Som
2013-09-01
Metal bioavailability in aquatic organisms is known to be influenced by various water chemistry parameters. The present study examined the influence of alkalinity and natural organic matter (NOM) on tissue-specific metal accumulation and reproductive performance of fathead minnows (Pimephales promelas) during environmentally relevant chronic exposures to a metal mine effluent (MME). Sodium bicarbonate (NaHCO3) or NOM (as commercial humic acid) were added to a Canadian MME [45 percent process water effluent (PWE)] in order to evaluate whether increases in alkalinity (3-4 fold) or NOM (~1.5-3mg/L dissolved organic carbon) would reduce metal accumulation and mitigate reproductive toxicity in fathead minnows during a 21-day multi-trophic exposure. Eleven metals (barium, boron, cobalt, copper, lithium, manganese, molybdenum, nickel, rubidium, selenium, and strontium) were elevated in the 45 percent PWE relative to the reference water. Exposure to the unmodified 45 percent PWE resulted in a decrease of fathead minnow egg production (~300 fewer eggs/pair) relative to the unmodified reference water, over the 21-day exposure period. Water chemistry modifications produced a modest decrease in free ion activity of some metals (as shown by MINTEQ, Version 3) in the 45 percent PWE exposure water, but did not alter the metal burden in the treatment-matched larval Chironomus dilutus (the food source of fish during exposure). The tissue-specific metal accumulation increased in fish exposed to the 45 percent PWE relative to the reference water, irrespective of water chemistry modifications, and the tissue metal concentrations were found to be similar between fish in the unmodified and modified 45 percent PWE (higher alkalinity or NOM) treatments. Interestingly however, increased alkalinity and NOM markedly improved fish egg production both in the reference water (~500 and ~590 additional eggs/pair, respectively) and 45 percent PWE treatments (~570 and ~260 additional eggs/pair, respectively), although fecundity over 21 day exposure consistently remained lower in the 45 percent PWE treatment groups relative to the treatment-matched reference groups. Collectively, these findings suggest that metal accumulation caused by chronic 45 percent PWE exposure cannot solely explain the reproductive toxicity in fish, and decrease in food availability (decrease in C. dilutus abundance in 45 percent PWE exposures) might have played a role. In addition, it appears that NaHCO3 or humic acid mitigated reproductive toxicity in fish exposed to 45 percent PWE by their direct beneficial effects on the physiological status of fish. Copyright © 2013 Elsevier Inc. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... an open-cut mine plant site shall not exceed the volume of infiltration, drainage and mine drainage... of infiltration, drainage and mine drainage waters which is in excess of the make up water required...
Code of Federal Regulations, 2010 CFR
2010-07-01
... an open-cut mine plant site shall not exceed the volume of infiltration, drainage and mine drainage... of infiltration, drainage and mine drainage waters which is in excess of the make up water required...
Karna, Ranju R; Hettiarachchi, Ganga M; Newville, Matthew; Sun, ChengJun; Ma, Qing
2016-11-01
Several studies have examined the effect of submergence on the mobility of metals present in mine waste materials. This study examines the effect of organic carbon (OC) and sulfur (S) additions and submergence time on redox-induced biogeochemical transformations of lead (Pb), zinc (Zn), and cadmium (Cd) present in mine waste materials collected from the Tri-State mining district located in southeastern Kansas, southwestern Missouri, and northeastern Oklahoma. A completely randomized design, with a two-way treatment structure, was used for conducting a series of column experiments. Two replicates were used for each treatment combination. Effluent samples were collected at several time points, and soil samples were collected at the end of each column experiment. Because these samples are highly heterogeneous, we used a variety of synchrotron-based techniques to identify Pb, Zn, and Cd speciation at both micro- and bulk-scale. Spectroscopic analysis results from the study revealed that the addition of OC, with and without S, promoted metal-sulfide formation, whereas metal carbonates dominated in the nonamended flooded materials and in mine waste materials only amended with S. Therefore, the synergistic effect of OC and S may be more promising for managing mine waste materials disposed of in flooded subsidence mine pits instead of individual S or OC treatments. The mechanistic understanding gained in this study is also relevant for remediation of waste materials using natural or constructed wetland systems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.
A simple scheme to determine potential aquatic metal toxicity from mining wastes
Wildeman, T.R.; Smith, K.S.; Ranville, J.F.
2007-01-01
A decision tree (mining waste decision tree) that uses simple physical and chemical tests has been developed to determine whether effluent from mine waste material poses a potential toxicity threat to the aquatic environment. For the chemical portion of the tree, leaching tests developed by the United States Geological Survey, the Colorado Division of Minerals and Geology (Denver, CO), and a modified 1311 toxicity characteristic leaching procedure (TCLP) test of the United States Environmental Protection Agency have been extensively used as a surrogate for readily available metals that can be released into the environment from mining wastes. To assist in the assessment, element concentration pattern graphs (ECPG) are produced that compare concentrations of selected groups of elements from the three leachates and any water associated with the mining waste. The MWDT makes a distinction between leachates or waters with pH less than or greater than 5. Generally, when the pH values are below 5, the ECPG of the solutions are quite similar, and potential aquatic toxicity from cationic metals, such as Pb, Cu, Zn, Cd, and Al, is assumed. Below pH 5, these metals are mostly dissolved, generally are not complexed with organic or inorganic ligands, and hence are more bioavailable. Furthermore, there is virtually no carbonate alkalinity at pH less than 5. All of these factors promote metal toxicity to aquatic organisms. On the other hand, when the pH value of the water or the leachates is above 5, the ECPG from the solutions are variable, and inferred aquatic toxicity depends on factors in addition to the metals released from the leaching tests. Hence, leachates and waters with pH above 5 warrant further examination of their chemical composition. Physical ranking criteria provide additional information, particularly in areas where waste piles exhibit similar chemical rankings. Rankings from physical and chemical criteria generally are not correlated. Examples of how this decision tree has been applied in assessing mine sites are discussed. Copyright ?? Taylor & Francis Group, LLC.
Türker, Onur Can; Türe, Cengiz; Böcük, Harun; Yakar, Anıl; Chen, Yi
2016-10-01
A major environmental problem associated with boron (B) mining in many parts of the world is B pollution, which can become a point source of B mine effluent pollution to aquatic habitats. In this study, a cost-effective, environment-friendly, and sustainable prototype engineered wetland was evaluated and tested to prevent B mine effluent from spilling into adjoining waterways in the largest B reserve in the world. According to the results, average B concentrations in mine effluent significantly decreased from 17.5 to 5.7 mg l(-1) after passing through the prototype with a hydraulic retention time of 14 days. The results of the present experiment, in which different doses of B had been introduced into the prototype, also demonstrated that Typha latifolia (selected as donor species in the prototype) showed a good resistance to alterations against B mine effluent loading rates. Moreover, we found that soil enzymes activities gradually decreased with increasing B dosages during the experiment. Boron mass balance model further showed that 60 % of total B was stored in the filtration media, and only 7 % of B was removed by plant uptake. Consequently, we suggested that application of the prototype in the vicinity of mining site may potentially become an innovative model and integral part of the overall landscape plan of B mine reserve areas worldwide. Graphical Abstract ᅟ.
30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...
30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...
30 CFR 817.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 817.42 Section 817.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-UNDERGROUND MINING ACTIVITIES § 817.42 Hydrologic balance: Water quality standards and effluent...
30 CFR 816.42 - Hydrologic balance: Water quality standards and effluent limitations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic balance: Water quality standards and effluent limitations. 816.42 Section 816.42 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND... STANDARDS-SURFACE MINING ACTIVITIES § 816.42 Hydrologic balance: Water quality standards and effluent...
Crane, R A; Sapsford, D J
2018-07-01
This paper introduces the concept of 'Precision Mining' of metals which can be defined as a process for the selective in situ uptake of a metal from a material or media, with subsequent retrieval and recovery of the target metal. In order to demonstrate this concept nanoscale zerovalent iron (nZVI) was loaded onto diatomaceous earth (DE) and tested for the selective uptake of Cu from acid mine drainage (AMD) and subsequent release. Batch experiments were conducted using the AMD and nZVI-DE at 4.0-16.0 g/L. Results demonstrate nZVI-DE as highly selective for Cu removal with >99% uptake recorded after 0.25 h when using nZVI-DE concentrations ≥12.0 g/L, despite appreciable concentrations of numerous other metals in the AMD, namely: Co, Ni, Mn and Zn. Cu uptake was maintained in excess of 4 and 24 h when using nZVI-DE concentrations of 12.0 and 16.0 g/L respectively. Near-total Cu release from the nZVI-DE was then recorded and attributed to the depletion of the nZVI component and the subsequent Eh, DO and pH recovery. This novel Cu uptake and release mechanism, once appropriately engineered, holds great promise as a novel 'Precision Mining' process for the rapid and selective Cu recovery from acidic wastewater, process effluents and leach liquors. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Metal Oxides in Surface Sediment Control Nickel Bioavailability to Benthic Macroinvertebrates.
Mendonca, Raissa M; Daley, Jennifer M; Hudson, Michelle L; Schlekat, Christian E; Burton, G Allen; Costello, David M
2017-11-21
In aquatic ecosystems, the cycling and toxicity of nickel (Ni) are coupled to other elemental cycles that can limit its bioavailability. Current sediment risk assessment approaches consider acid-volatile sulfide (AVS) as the major binding phase for Ni, but have not yet incorporated ligands that are present in oxic sediments. Our study aimed to assess how metal oxides play a role in Ni bioavailability in surficial sediments exposed to effluent from two mine sites. We coupled spatially explicit sediment geochemistry (i.e., separate oxic and suboxic) to the indigenous macroinvertebrate community structure. Effluent-exposed sites contained high concentrations of sediment Ni and AVS, though roughly 80% less AVS was observed in surface sediments. Iron (Fe) oxide mineral concentrations were elevated in surface sediments and bound a substantial proportion of Ni. Redundancy analysis of the invertebrate community showed surface sediment geochemistry significantly explained shifts in community abundances. Relative abundance of the dominant mayfly (Ephemeridae) was reduced in sites with greater bioavailable Ni, but accounting for Fe oxide-bound Ni greatly decreased variation in effect thresholds between the two mine sites. Our results provide field-based evidence that solid-phase ligands in oxic sediment, most notably Fe oxides, may have a critical role in controlling nickel bioavailability.
Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado
NASA Astrophysics Data System (ADS)
Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.
2013-05-01
SummaryThe synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed. The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.
Estimating instream constituent loads using replicate synoptic sampling, Peru Creek, Colorado
Runkel, Robert L.; Walton-Day, Katherine; Kimball, Briant A.; Verplanck, Philip L.; Nimick, David A.
2013-01-01
The synoptic mass balance approach is often used to evaluate constituent mass loading in streams affected by mine drainage. Spatial profiles of constituent mass load are used to identify sources of contamination and prioritize sites for remedial action. This paper presents a field scale study in which replicate synoptic sampling campaigns are used to quantify the aggregate uncertainty in constituent load that arises from (1) laboratory analyses of constituent and tracer concentrations, (2) field sampling error, and (3) temporal variation in concentration from diel constituent cycles and/or source variation. Consideration of these factors represents an advance in the application of the synoptic mass balance approach by placing error bars on estimates of constituent load and by allowing all sources of uncertainty to be quantified in aggregate; previous applications of the approach have provided only point estimates of constituent load and considered only a subset of the possible errors. Given estimates of aggregate uncertainty, site specific data and expert judgement may be used to qualitatively assess the contributions of individual factors to uncertainty. This assessment can be used to guide the collection of additional data to reduce uncertainty. Further, error bars provided by the replicate approach can aid the investigator in the interpretation of spatial loading profiles and the subsequent identification of constituent source areas within the watershed.The replicate sampling approach is applied to Peru Creek, a stream receiving acidic, metal-rich effluent from the Pennsylvania Mine. Other sources of acidity and metals within the study reach include a wetland area adjacent to the mine and tributary inflow from Cinnamon Gulch. Analysis of data collected under low-flow conditions indicates that concentrations of Al, Cd, Cu, Fe, Mn, Pb, and Zn in Peru Creek exceed aquatic life standards. Constituent loading within the study reach is dominated by effluent from the Pennsylvania Mine, with over 50% of the Cd, Cu, Fe, Mn, and Zn loads attributable to a collapsed adit near the top of the study reach. These estimates of mass load may underestimate the effect of the Pennsylvania Mine as leakage from underground mine workings may contribute to metal loads that are currently attributed to the wetland area. This potential leakage confounds the evaluation of remedial options and additional research is needed to determine the magnitude and location of the leakage.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall not exceed...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines, either open-pit...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., radium and vanadium including mill-mine facilities and mines using in-situ leach methods shall not exceed...). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines, either open-pit...
Pilot test of pollution control and metal resource recovery for acid mine drainage.
Yan, Bo; Mai, Ge; Chen, Tao; Lei, Chang; Xiao, Xianming
2015-01-01
The study was undertaken in order to recover the metal resources from acid mine drainage (AMD). A 300 m(3)/d continuous system was designed and fractional precipitation technology employed for the main metals Fe, Cu, Zn, and Mn recovery. The system was operated for six months using actual AMD in situ. The chemicals' input and also the retention time was optimized. Furthermore, the material balance was investigated. With the system, the heavy metals of the effluent after the Mn neutralization precipitation were below the threshold value of the Chinese integrated wastewater discharge limit. The precipitates generated contained 42%, 12%, 31%, and 18% for Fe, Cu, Zn, and Mn, respectively, and the recovery rates of Fe, Cu, Zn, and Mn were 82%, 79%, 83%, and 83%, respectively. The yield range of the precipitate had significant correlation with the influent metal content. Using the X-ray diffraction analysis, the refinement for Fe, Cu, and Zn could be achieved through the processes of roasting and floatation. Cost-benefit was also discussed; the benefit from the recycled metal was able to pay for the cost of chemical reagents used. Most important of all, through the use of this technology, the frustrating sludge problems were solved.
40 CFR 440.64 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... attainable by the application of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from tungsten mines shall not exceed: Effluent characteristic Effluent...
40 CFR 440.64 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... attainable by the application of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from tungsten mines shall not exceed: Effluent characteristic Effluent...
Park, Young-Tae; Lee, Hongkyun; Yun, Hyun-Shik; Song, Kyung-Guen; Yeom, Sung-Ho; Choi, Jaeyoung
2013-12-01
In this study, the microalgae culture system to combined active treatment system and pipe inserted microalgae reactor (PIMR) was investigated. After pretreated AMD in active treatment system, the effluent load to PIMR in order to Nephroselmis sp. KGE 8 culture. In experiment, effect of iron on growth and lipid accumulation in microalgae were inspected. The 2nd pretreatment effluent was economic feasibility of microalgae culture and lipid accumulation. The growth kinetics of the microalgae are modeled using logistic growth model and the model is primarily parameterized from data obtained through an experimental study where PIMR were dosed with BBM, BBM added 10 mg L(-1) iron and 2nd pretreatment effluent. Moreover, the continuous of microalgae culture in PIMR can be available. Overall, this study indicated that the use of pretreated AMD is a viable method for culture microalgae and lipid accumulation. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mackey, Robin; Rees, Cassandra; Wells, Kelly; Pham, Samantha; England, Kent
2013-01-01
The Metal Mining Effluent Regulations (MMER) took effect in 2002 and require most metal mining operations in Canada to complete environmental effects monitoring (EEM) programs. An "effect" under the MMER EEM program is considered any positive or negative statistically significant difference in fish population, fish usability, or benthic invertebrate community EEM-defined endpoints. Two consecutive studies with the same statistically significant differences trigger more intensive monitoring, including the characterization of extent and magnitude and investigation of cause. Standard EEM study designs do not require multiple reference areas or preexposure sampling, thus results and conclusions about mine effects are highly contingent on the selection of a near perfect reference area and are at risk of falsely labeling natural variation as mine related "effects." A case study was completed to characterize the natural variability in EEM-defined endpoints during preexposure or baseline conditions. This involved completing a typical EEM study in future reference and exposure lakes surrounding a proposed uranium (U) mine in northern Saskatchewan, Canada. Moon Lake was sampled as the future exposure area as it is currently proposed to receive effluent from the U mine. Two reference areas were used: Slush Lake for both the fish population and benthic invertebrate community surveys and Lake C as a second reference area for the benthic invertebrate community survey. Moon Lake, Slush Lake, and Lake C are located in the same drainage basin in close proximity to one another. All 3 lakes contained similar water quality, fish communities, aquatic habitat, and a sediment composition largely comprised of fine-textured particles. The fish population survey consisted of a nonlethal northern pike (Esox lucius) and a lethal yellow perch (Perca flavescens) survey. A comparison of the 5 benthic invertebrate community effect endpoints, 4 nonlethal northern pike population effect endpoints, and 10 lethal yellow perch effect endpoints resulted in the observation of several statistically significant differences at the future exposure area relative to the reference area and/or areas. When the data from 2 reference areas assessed for the benthic invertebrate community survey were pooled, no significant differences in effect endpoints were observed. These results demonstrate weaknesses in the definition of an "effect" used by the MMER EEM program and in the use of a single reference area. Determination of the ecological significance of statistical differences identified as part of EEM programs conducted during the operational period should consider preexisting (background) natural variability between reference and exposure areas. Copyright © 2012 SETAC.
Cravotta,, Charles A.; Watzlaf, George R.
2002-01-01
Data on the construction characteristics and the composition of influent and effluent at 13 underground, limestone-filled drains in Pennsylvania and Maryland are reported to evaluate the design and performance of limestone drains for the attenuation of acidity and dissolved metals in acidic mine drainage. On the basis of the initial mass of limestone, dimensions of the drains, and average flow rates, the initial porosity and average detention time for each drain were computed. Calculated porosity ranged from 0.12 to 0.50 with corresponding detention times at average flow from 1.3 to 33 h. The effectiveness of treatment was dependent on influent chemistry, detention time, and limestone purity. At two sites where influent contained elevated dissolved Al (>5 mg/liter), drain performance declined rapidly; elsewhere the drains consistently produced near-neutral effluent, even when influent contained small concentrations of dissolved Fe^+ (<5 mg/liter). Rates of limestone dissolution computed on the basis of average long-term Ca ion flux normalized by initial mass and purity of limestone at each of the drains ranged from 0.008 to 0.079 year-1. Data for alkalinity concentration and flux during 11-day closed-container tests using an initial mass of 4kg crushed limestone and a solution volume of 2.3 liter yielded dissolution rate constants that were comparable to these long-term field rates. An analytical method is proposed using closed-container test data to evaluate long-term performance (longevity) or to estimate the mass of limestone needed for a limestone treatment. This method condisers flow rate, influent alkalinity, steady-state alkalinity of effluent, and desired effluent alkalinity or detention time at a future time(s) and aplies first-order rate laws for limestone dissolution (continuous) and production of alkalinity (bounded).
Grande, J A; Borrego, J; Morales, J A; de la Torre, M L
2003-04-01
In the last few decades, the study of space-time distribution and variations of heavy metals in estuaries has been extensively studied as an environmental indicator. In the case described here, the combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel Rivers, located in the southwest of the Iberian Peninsula. Based on the statistical treatment of the data from the analysis of the water samples from this system, which has been affected by processes of industrial and mining pollution, the 16 variables analyzed can be grouped into two large families. Each family presents high, positive Pearson r values that suggest common origins (fluvial or sea) for the pollutants present in the water analyzed and allow their subsequent contrast through cluster analysis.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.93 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.73 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.25 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.45 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.95 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.65 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.45 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore Subcategory § 440.45 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.93 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.73 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.65 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Tungsten Ore Subcategory § 440.65 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.25 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.75 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Titanium Ore Subcategory § 440.55 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.73 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.93 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Aluminum Ore Subcategory § 440.25 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.95 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.95 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.75 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Nickel Ore Subcategory § 440.75 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.15 Effluent limitations representing the degree of effluent reduction attainable...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.15 Effluent limitations representing the degree of effluent reduction attainable...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Iron Ore Subcategory § 440.15 Effluent limitations representing the degree of effluent reduction attainable...
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of effluent reduction...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of effluent...
Gonçalves, Márcia Monteiro Machado; de Oliveira Mello, Luiz Antonio; da Costa, Antonio Carlos Augusto
2008-03-01
When wetlands reach maximum treatment capacity to remove heavy metals, removal can still take place through precipitation as sulfide because of the biological reduction of sulfate. To achieve this goal, anaerobic conditions must be attained, a sulfate source must exist, and an adequate substrate for sulfate-reducing bacteria (SRB) is also required. In the present work, two ligneous-cellulosic materials, a brown seaweed and sugarcane bagasse, have been selected as substrates for SRB growth. Experiments were simultaneously conducted in continuous operation in two columns (0.57 L each), one containing the ligneous-cellulosic material plus inoculum and another containing only the ligneous-cellulosic material. In this work, the removal of cadmium and zinc was studied because of their presence in effluents from mining/metallurgy operations. Results obtained indicated that the inoculated reactor was able to treat the effluent more efficiently than the noninoculated reactor considering the time course of the tests.
Acid neutralization within limestone sand reactors receiving coal mine drainage
Watten, B.J.; Sibrell, P.L.; Schwartz, M.F.
2005-01-01
Pulsed bed treatment of acid mine drainage (AMD) uses CO2 to accelerate limestone dissolution and intermittent fluidization to abrade and carry away metal hydrolysis products. Tests conducted with a prototype of 60 L/min capacity showed effective removal of H+ acidity over the range 196-584 mg/L (CaCO3) while concurrently generating surplus acid neutralization capacity. Effluent alkalinity (mg/L CaCO3) rose with increases in CO2 (DC, mg/L) according to the model Alkalinity = 31.22 + 2.97(DC)0.5, where DC was varied from 11-726 mg/L. Altering fluidization and contraction periods from 30 s/30 s to 10 s/50 s did not influence alkalinity but did increase energy dissipation and bed expansion ratios. Field trials with three AMD sources demonstrated the process is capable of raising AMD pH above that required for hydrolysis and precipitation of Fe3+ and Al3+ but not Fe2+ and Mn2+. Numerical modeling showed CO2 requirements are reduced as AMD acidity increases and when DC is recycled from system effluent. ?? 2005 Elsevier Ltd. All rights reserved.
Grande, José Antonio; Borrego, José; de la Torre, Maria Luisa; Sáinz, A
2003-06-01
The combination of acid water from mines, industrial effluents and sea water plays a determining role in the evolutionary process of the chemical makeup of the water in the estuary of the Tinto and Odiel rivers. This estuary is in the southwest of the Iberian Peninsula and is one of the estuarine systems on the northwest coast of the Gulf of Cádiz. From the statistical treatment of data obtained by analyzing samples of water from this system, which is affected by industrial and mining pollution processes, we can see how the sampling points studied form two large groups depending on whether they receive tidal or fluvial influences. Fluvial input contributes acid water with high concentrations of heavy metal, whereas industrial effluents are responsible for the presence of phosphates, silica and other nutrients. The estuarine system of the Tinto and Odiel Rivers can be divided into three areas--the Tinto estuary, the Odiel estuary and the area of confluence--based on the physical--chemical characteristics of the water.
N̆ancucheo, Ivan; Johnson, D. Barrie
2011-01-01
Pyritic mine tailings (mineral waste generated by metal mining) pose significant risk to the environment as point sources of acidic, metal-rich effluents (acid mine drainage [AMD]). While the accelerated oxidative dissolution of pyrite and other sulfide minerals in tailings by acidophilic chemolithotrophic prokaryotes has been widely reported, other acidophiles (heterotrophic bacteria that catalyze the dissimilatory reduction of iron and sulfur) can reverse the reactions involved in AMD genesis, and these have been implicated in the “natural attenuation” of mine waters. We have investigated whether by manipulating microbial communities in tailings (inoculating with iron- and sulfur-reducing acidophilic bacteria and phototrophic acidophilic microalgae) it is possible to mitigate the impact of the acid-generating and metal-mobilizing chemolithotrophic prokaryotes that are indigenous to tailing deposits. Sixty tailings mesocosms were set up, using five different microbial inoculation variants, and analyzed at regular intervals for changes in physicochemical and microbiological parameters for up to 1 year. Differences between treatment protocols were most apparent between tailings that had been inoculated with acidophilic algae in addition to aerobic and anaerobic heterotrophic bacteria and those that had been inoculated with only pyrite-oxidizing chemolithotrophs; these differences included higher pH values, lower redox potentials, and smaller concentrations of soluble copper and zinc. The results suggest that empirical ecological engineering of tailing lagoons to promote the growth and activities of iron- and sulfate-reducing bacteria could minimize their risk of AMD production and that the heterotrophic populations could be sustained by facilitating the growth of microalgae to provide continuous inputs of organic carbon. PMID:21965397
Code of Federal Regulations, 2014 CFR
2014-07-01
... which may be discharged from an open-cut mine plant site shall not exceed the volume of infiltration... site shall not exceed the volume of infiltration, drainage and mine drainage waters which is in excess...
Code of Federal Regulations, 2012 CFR
2012-07-01
... which may be discharged from an open-cut mine plant site shall not exceed the volume of infiltration... site shall not exceed the volume of infiltration, drainage and mine drainage waters which is in excess...
Squadrone, S; Burioli, E; Monaco, G; Koya, M K; Prearo, M; Gennero, S; Dominici, A; Abete, M C
2016-10-15
The concentrations of 14 essential and nonessential trace elements were determined in fish from Lake Tshangalele, Katanga province, Democratic Republic of Congo. This province has been a place of intensive mining activities for centuries, which have increased in recent years, due to the use of metals such as copper and cobalt for the industries of fast-growing countries. Lake Tshangalele, which receives effluents from metallurgical and mining plants in Likasi, is home to several fish species that are an important part of the diet of the local population, and, therefore, it constitutes a relevant site for documenting the human exposure to metals as a result of a fish diet. The highest concentrations (median levels, dry weight) of cobalt (7.25mgkg(-1)), copper (88.1mgkg(-1)), iron (197.5mgkg(-1)), manganese (65.35mgkg(-1)), zinc (122.9mgkg(-1)) and aluminum (135.4mgkg(-1)) were found in fish collected closest to the copper mining plant, with decreasing concentrations along the lake, up to the dam. In the most contaminated fish samples, values of up to 270.1mgkg(-1) for Al, 173.1mgkg(-1) for Cu, 220.9mgkg(-1) for Zn, 211.0mgkg(-1) for Mn, 324.2mgkg(-1) for Fe, 15.1mgkg(-1) for Co, 4.2mgkg(-1) for Cr, 1.6mgkg(-1) for Cd, 1.9mgkg(-1) for Pb, and 1.8mgkg(-1) for Ni were found. Metal contamination from mining activity resulted in being of great concern because of potential health risks to the local inhabitants due to the consumption of heavily contaminated fish. High levels of metals, especially cobalt, aluminum, iron, manganese, zinc and cadmium were found in fish from Tshangalele water system. Copyright © 2016 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Platinum Ores Subcategory § 440.112 Effluent limitations representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Antimony Ore Subcategory § 440.92 Effluent limitations representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of...
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper, Lead, Zinc, Gold, Silver, and Molybdenum Ores Subcategory § 440.105 Effluent limitations representing...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Uranium, Radium and Vanadium Ores Subcategory § 440.35 Effluent limitations representing the degree of...
NASA Astrophysics Data System (ADS)
Terán Mita, Tania; Faz Cano, Angel; Muñoz, Maria Angeles; Millán Gómez, Rocio; Chincheros Paniagua, Jaime
2010-05-01
In Bolivia, metal mining activities since historical times have been one of the most important sources of environmental pollution. This is the case of the National Area of Apolobamba Integrated Management (ANMIN of Apolobamba) in La Paz, Bolivia, where intense gold mining activities have been carried out from former times to the present, with very little gold extraction and very primitive mineral processing technology; in fact, mercury is still being used in the amalgam processes of the gold concentration, which is burned outdoors to recover the gold. Sunchullí is a representative mining district in ANMIN of Apolobamba where mining activity is mainly gold extraction and its water effluents go to the Amazonian basin; in this mining district the productivity of extracted mineral is very low but the processes can result in heavy-metal contamination of the air, water, soils and plants. Due to its high toxicity, the contamination by arsenic and mercury create the most critical environmental problems. In addition, some other heavy metals may also be present such as lead, copper, zinc and cadmium. These heavy metals could be incorporated in the trophic chain, through the flora and the fauna, in their bio-available and soluble forms. Inhabitants of this area consume foodcrops, fish from lakes and rivers and use the waters for the livestock, domestic use, and irrigation. The aim of this work was to evaluate the heavy metals pollution by gold mining activities in Sunchullí area. In Sunchullí two representative zones were distinguished and sampled. Zone near the mining operation site was considered as affected by mineral extraction processes, while far away zones represented the non affected ones by the mining operation. In each zone, 3 plots were established; in each plot, 3 soil sampling points were selected in a random manner and analysed separately. In each sampling point, two samples were taken, one at the surface, from 0-5 cm depth (topsoil), and the other between 5 and 15 cm (subsurface). In addition, surface soils from mercury burn areas were also taken. Arsenic, mercury, lead, copper, zinc and cadmium total, DTPA and water extractable metals were determined. In both zones, the results show that mining activities do not increase heavy metals levels except for arsenic (17.20 - 69.25 mg/kg) that presents high concentrations surpassing the Belgium reference levels (19.00 mg/kg), in some cases stands out the high mercury values in the affected zone (2.07 mg/kg, 1.18 mg/kg, 1.93 mg/kg). The most polluted soils are mercury burn areas with high levels of mercury (4.21 - 21.79 mg/kg) surpassing levels according to the Holland regulation (0.3 mg/kg). Workers and population are in close contact with these soils without any type of protection.
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...
Code of Federal Regulations, 2013 CFR
2013-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...
Code of Federal Regulations, 2014 CFR
2014-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...
Code of Federal Regulations, 2012 CFR
2012-07-01
... degree of effluent reduction attainable by the application of the best practicable control technology... Placer Mine Subcategory § 440.142 Effluent limitations representing the degree of effluent reduction attainable by the application of the best practicable control technology currently available (BPT). Except as...
Code of Federal Regulations, 2011 CFR
2011-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations guidelines representing the degree of effluent reduction attainable by application of the best available technology...
NASA Astrophysics Data System (ADS)
Szlachta, Małgorzata; Włodarczyk, Paweł; Wójtowicz, Patryk
2015-04-01
Arsenic is naturally occurring element in the environment. Over three hundred minerals are known to contain some form of arsenic and among them arsenopyrite is the most common one. Arsenic-bearing minerals are frequently associated with ores containing mined metals such as copper, tin, nickel, lead, uranium, zinc, cobalt, platinum and gold. In the aquatic environment arsenic is typically present in inorganic forms, mainly in two oxidation states (+5, +3). As(III) is dominant in more reduced conditions, whereas As(V) is mostly present in an oxidizing environment. However, due to certain human activities the elevated arsenic levels in aquatic ecosystems are arising to a serious environmental problem. High arsenic concentrations found in surface and groundwaters, in some regions originate from mining activities and ore processing. Therefore, the major concern of mining industry is to maintain a good quality of effluents discharged in large volumes. This requires constant monitoring of effluents quality that guarantee the efficient protection of the receiving waters and reacting to possible negative impact of contamination on local communities. A number of proven technologies are available for arsenic removal from waters and wastewaters. In the presented work special attention is given to the adsorption method as a technically feasible, commonly applied and effective technique for the treatment of arsenic rich mine effluents. It is know that arsenic has a strong affinity towards iron rich materials. Thus, in this study the granular ferric hydroxides (CFH 12, provided by Kemira Oyj, Finland) was applied to remove As(III) and As(V) from aqueous solutions. The batch adsorption experiments were carried out to assess the efficiency of the tested Fe-based material under various operating parameters, including composition of treated water, solution pH and temperature. The results obtained from the fixed bed adsorption tests demonstrated the benefits of applying granular ferric hydroxides for treatment As-contaminated waters. This research is a part of the study supported by the National Centre for Research and Development grant (2014-2017) "Sustainable and responsible supply of primary resources - SUSMIN" (http://projects.gtk.fi/susmin), within the EU ERA-NET ERA-MIN program.
Environmental management in North American mining sector.
Asif, Zunaira; Chen, Zhi
2016-01-01
This paper reviews the environmental issues and management practices in the mining sector in the North America. The sustainable measures on waste management are recognized as one of the most serious environmental concerns in the mining industry. For mining activities, it will be no surprise that the metal recovery reagents and acid effluents are a threat to the ecosystem as well as hazards to human health. In addition, poor air quality and ventilation in underground mines can lead to occupational illness and death of workers. Electricity usage and fuel consumption are major factors that contribute to greenhouse gases. On the other hand, many sustainability challenges are faced in the management of tailings and disposal of waste rock. This paper aims to highlight the problems that arise due to poor air quality and acid mine drainage. The paper also addresses some of the advantages and limitations of tailing and waste rock management that still have to be studied in context of the mining sector. This paper suggests that implementation of suitable environmental management tools like life cycle assessment (LCA), cleaner production technologies (CPTs), and multicriteria decision analysis (MCD) are important as it ultimately lead to improve environmental performance and enabling a mine to focus on the next stage of sustainability.
Nano-scale mechanisms of metal rhizostabilization in mine tailings
NASA Astrophysics Data System (ADS)
Chorover, J.; Rushforth, R. R.; Hayes, S.; Root, R.; Maier, R.
2010-12-01
Desert mine tailings pose significant health risks to proximal communities and ecosystems because metal-laden particles in the un-vegetated landscapes are readily transported via wind and water erosion. Therefore, establishment of a bioactive, vegetated cover and associated root mass can contribute significantly to site remediation. As a result of delivery to the subsurface of labile forms of reduced carbon, the incipient rhizosphere presents a bioactive zone where geochemical disequilibria are strongly influenced by root-microbe-metal-mineral interactions. Infusion of biota and carbon affect local mineral transformations and the associated speciation of toxic metal(loid)s. We investigated biogeochemical transformations in Pb and Zn containing mine tailings from Klondyke State Superfund site (AZ) as affected by phytostabilization. The research approach was to combine instrumented column experiments with molecular spectroscopy of the solid phase. Pb LIII-edge and Zn K-edge EXAFS spectroscopy, synchrotron-based XRF and XRD, and Raman microspectroscopy were employed to assess local coordination and mineralogy of Pb and Zn. Prior to plant introduction, contaminant Pb in the weathered surficial tailings was dominantly present in the minerals plumbojarosite (PbFe6(SO4)4(OH)12) and PbSO4, whereas Zn was dominantly present as hemimorphite (Zn4Si2O7(OH)2.H2O), Zn phyllosilicate, and ZnSO4(s). Column experiments showed that planted columns diminished pore water and effluent concentrations of both Pb and Zn, whereas transport of some other metals (e.g., Cu) was enhanced by complexation with dissolved organic matter. Spectroscopic studies of fine root tissues and root-microbe-metal associations revealed the formation of apparently biogenic Mn oxide plaques that were highly enriched in Zn and Pb.
Dhal, B; Thatoi, H N; Das, N N; Pandey, B D
2013-04-15
Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Effluent limitations representing the degree of effluent reduction attainable by the application of the best conventional pollutant control... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Copper...
Code of Federal Regulations, 2013 CFR
2013-07-01
... application of the best practicable control technology currently available (BPT). 434.82 Section 434.82... practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, the following effluent limitations apply to mine drainage from applicable areas of western coal mining...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best practicable control technology currently available (BPT). 434.82 Section 434.82... control technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, the following effluent limitations apply to mine drainage from applicable areas of western coal mining...
Code of Federal Regulations, 2014 CFR
2014-07-01
... application of the best practicable control technology currently available (BPT). 434.82 Section 434.82... practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, the following effluent limitations apply to mine drainage from applicable areas of western coal mining...
Code of Federal Regulations, 2012 CFR
2012-07-01
... application of the best practicable control technology currently available (BPT). 434.82 Section 434.82... practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, the following effluent limitations apply to mine drainage from applicable areas of western coal mining...
Code of Federal Regulations, 2011 CFR
2011-07-01
... application of the best practicable control technology currently available (BPT). 434.82 Section 434.82... control technology currently available (BPT). Except as provided in 40 CFR 125.30 through 125.32, the following effluent limitations apply to mine drainage from applicable areas of western coal mining...
Reclaiming metallic material from an article comprising a non-metallic friable substrate
Bohland, John Raphael; Anisimov, Igor Ivanovich; Dapkus, Todd James; Sasala, Richard Anthony; Smigielski, Ken Alan; Kamm, Kristin Danielle
2000-01-01
A method for reclaiming a metallic material from a article including a non-metallic friable substrate. The method comprising crushing the article into a plurality of pieces. An acidic solution capable of dissolving the metallic material is provided dissolving the metallic material in the acidic material to form an etchant effluent. The etchant effluent is separated from the friable substrate. A precipitation agent, capable of precipitating the metallic material, is added to the etchant effluent to precipitate out the metallic material from the etchant effluent. The metallic material is then recovered.
Galhardi, Juliana Aparecida; García-Tenorio, Rafael; Bonotto, Daniel Marcos; Díaz Francés, Inmaculada; Motta, João Gabriel
2017-10-01
Mining activities can increase the mobility of metals by accelerating the dissolution and leaching of minerals from the rocks and tailing piles to the environment and, consequently, their availability for plants and subsequent transfer to the food chain. The weathering of minerals and the disposal of coal waste in tailing piles can accelerate the generation of acid mine drainage (AMD), which is responsible for the higher dissolution of metals in mining areas. In this context, the behavior of U, Th and K in soils and sediment, and the transfer factor (TF) of 238 U, 234 U and 210 Po for soybean, wheat, pine and eucalyptus cultivated around a coal mine in southern Brazil was evaluated. Alpha and gamma spectrometry were used for the measurements of the activity concentration of the radioelements. 210 Po was the radionuclide that is most accumulated in the plants, especially in the leaves. When comparing the plant species, pine showed the highest TF values for 234 U (0.311 ± 0.420) for leaves, while eucalyptus showed the highest TF for 238 U (0.344 ± 0.414) for leaves. In general, TF were higher for the leaves of soybean and wheat when compared to the grains, and grains of wheat showed higher TF for 210 Po and 238 U than grains of soybean. Deviations from the natural U isotopic ratio were recorded at all investigated areas, indicating possible industrial and mining sources of U for the vegetables. A safety assessment of transport routes and accumulation of radionuclides in soils with a potential for cultivation is important, mainly in tropical areas contaminated with solid waste and effluents from mines and industry. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-07-01
... achievable (BAT). 440.103 Section 440.103 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Effects of acid-mine wastes on aquatic ecosystems
John David Parsons
1976-01-01
The Cedar Creek Basin (39th N parallel 92nd W meridian) was studied for the period June 1952 through August 1954 to observe the effects of both continuous and periodic acid effluent flows on aquatic communities. The acid strip-mine effluent contained ferric and ferrous iron, copper, lead, zinc, aluminum, magnesium, titratable acid, and elevated hydrogen ion...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY.... The height difference between the maximum safe surge capacity level and the normal operating level...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY.... The height difference between the maximum safe surge capacity level and the normal operating level...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY.... The height difference between the maximum safe surge capacity level and the normal operating level...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY.... The height difference between the maximum safe surge capacity level and the normal operating level...
NASA Astrophysics Data System (ADS)
Chen, Xueming; Chen, Guohua
Electroflotation (EF) is the flotation using electrolytically generated bubbles of hydrogen and oxygen for separating suspended substances from aqueous phases. This process was first proposed by Elmore in 1905 for flotation of valuable minerals from ores. Compared with the conventional dissolved air flotation (DAF), EF has many advantages, including high flotation efficiency, compact units, easy operation, and less maintenance. Therefore, EF is an attractive alternative to DAF. This technique has been proven very effective in treating oily wastewater or oil-water emulsion, mining wastewater, groundwater, food processing wastewater, restaurant wastewater, industrial sewage, heavy metals containing effluent, and many other water and wastewaters.
Assessment of uranium release to the environment from a disabled uranium mine in Brazil.
Pereira, Wagner de Souza; Kelecom, Alphonse Germaine Albert Charles; da Silva, Ademir Xavier; do Carmo, Alessander Sá; Py Júnior, Delcy de Azavedo
2018-08-01
The Ore Treatment Unit (in Portuguese Unidade de Tratamento de Minérios - UTM) located in Caldas, MG, Brazil is a disabled uranium mine. Environmental conditions generate acid drainage leaching metals and radionuclides from the waste rock pile. This drainage is treated to remove the heavy metals and radionuclides, before allowing the release of the effluent to the environment. To validate the treatment, samples of the released effluents were collected at the interface of the installation with the environment. Sampling was carried out from 2010 to 2015, and the activity concentration (AC, in Bq·l -1 ) of uranium in the liquid effluent was analyzed by arzenazo UV-Vis spectrophotometry of the soluble and particulate fractions, and of the sum of both fractions. Descriptive statistics, Z test and Pearson R 2 correlation among the fractions were performed. Then, the data were organized by year and both ANOVA and Tukey test were carried out to group the means by magnitude of AC. The annual mean ranged from 0.02 Bq·l -1 in 2015 to 0.11 Bq·l -1 in 2010. The soluble fraction showed a higher AC mean when compared to the mean of the particulate fraction and no correlation of the data could be observed. Concerning the magnitude of the release, the ANOVA associated with the Tukey test, identified three groups of annual means (AC 2010 > AC 2011 = AC 2012 = AC 2013 = AC 2014 > AC 2015 ). The mean values of uranium release at the interface installation-environment checking point (point 014) were within the Authorized Annual Limit (AAL) set by the regulator (0.2 Bq·l -1 ) indicating compliance of treatment with the licensing established for the unit. Finally, the data showed a decreasing tendency of U release. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cravotta, Charles A.; Means, Brent P; Arthur, Willam; McKenzie, Robert M; Parkhurst, David L.
2015-01-01
Alkaline chemicals are commonly added to discharges from coal mines to increase pH and decrease concentrations of acidity and dissolved aluminum, iron, manganese, and associated metals. The annual cost of chemical treatment depends on the type and quantities of chemicals added and sludge produced. The AMDTreat computer program, initially developed in 2003, is widely used to compute such costs on the basis of the user-specified flow rate and water quality data for the untreated AMD. Although AMDTreat can use results of empirical titration of net-acidic or net-alkaline effluent with caustic chemicals to accurately estimate costs for treatment, such empirical data are rarely available. A titration simulation module using the geochemical program PHREEQC has been incorporated with AMDTreat 5.0+ to improve the capability of AMDTreat to estimate: (1) the quantity and cost of caustic chemicals to attain a target pH, (2) the chemical composition of the treated effluent, and (3) the volume of sludge produced by the treatment. The simulated titration results for selected caustic chemicals (NaOH, CaO, Ca(OH)2, Na2CO3, or NH3) without aeration or with pre-aeration can be compared with or used in place of empirical titration data to estimate chemical quantities, treated effluent composition, sludge volume (precipitated metals plus unreacted chemical), and associated treatment costs. This paper describes the development, evaluation, and potential utilization of the PHREEQC titration module with the new AMDTreat 5.0+ computer program available at http://www.amd.osmre.gov/.
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... capacity level and the normal operating level must be greater than the inches of rain representing the 10...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... level and the normal operating level must be greater than the inches of rain representing the 10-year...
Code of Federal Regulations, 2010 CFR
2010-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
Code of Federal Regulations, 2014 CFR
2014-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...
Code of Federal Regulations, 2012 CFR
2012-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Code of Federal Regulations, 2012 CFR
2012-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... (BPT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines...
Code of Federal Regulations, 2011 CFR
2011-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...
Code of Federal Regulations, 2014 CFR
2014-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... economically achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32... economically achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that...
Code of Federal Regulations, 2010 CFR
2010-07-01
... which employ dump, heap, in situ leach or vat leach processes for the extraction of copper from ores or... as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing point source... available (BPT): (a) The concentration of pollutants discharged in mine drainage from mines operated to...
Code of Federal Regulations, 2011 CFR
2011-07-01
... that use dump, heap, in situ leach or vat-leach processes to extract copper from ores or ore waste... achievable (BAT). Except as provided in subpart L of this part and 40 CFR 125.30 through 125.32, any existing... achievable (BAT): (a) The concentration of pollutants discharged in mine drainage from mines that produce...
Sağlam, Emine Selva; Akçay, Miğraç; Çolak, Dilşat Nigar; İnan Bektaş, Kadriye; Beldüz, Ali Osman
2016-09-01
The Karaerik Cu mine is a worked-out deposit with large volumes of tailings and slags which were left around the mine site without any protection. Natural feeding of these material and run-off water from the mineralised zones into the Acısu effluent causes a serious environmental degradation and creation of acid mine drainage (AMD) along its entire length. This research aims at modelling the formation of AMD with a specific attempt on the characterisation of the bacterial population in association with AMD and their role on its occurrence. Based on 16SrRNA analyses of the clones obtained from a composite water sample, the bacterial community was determined to consist of Acidithiobacillus ferrivorans, Ferrovum myxofaciens, Leptospirillum ferrooxidans and Acidithiobacillus ferrooxidans as iron-oxidising bacteria, Acidocella facilis, Acidocella aluminiidurans, Acidiphilium cryptum and Acidiphilium multivorum as iron-reducing bacteria, and Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Acidiphilium cryptum as sulphur-oxidising bacteria. This association of bacteria with varying roles was interpreted as evidence of a concomitant occurrence of sulphur and iron cycles during the generation of AMD along the Acısu effluent draining the Karaerik mine.
Code of Federal Regulations, 2014 CFR
2014-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2010 CFR
2010-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2012 CFR
2012-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2013 CFR
2013-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Code of Federal Regulations, 2011 CFR
2011-07-01
... point source subject to this subpart and using borax produced by the Trona process must achieve the... remined borax must achieve the following effluent limitations representing the degree of effluent...): Subpart AB—Boric Acid Mined Borax Process Pollutant or pollutant property BPT limitations Maximum for any...
Impact of industrial effluent on growth and yield of rice (Oryza sativa L.) in silty clay loam soil.
Anwar Hossain, Mohammad; Rahman, Golum Kibria Muhammad Mustafizur; Rahman, Mohammad Mizanur; Molla, Abul Hossain; Mostafizur Rahman, Mohammad; Khabir Uddin, Mohammad
2015-04-01
Degradation of soil and water from discharge of untreated industrial effluent is alarming in Bangladesh. Therefore, buildup of heavy metals in soil from contaminated effluent, their entry into the food chain and effects on rice yield were quantified in a pot experiment. The treatments were comprised of 0, 25%, 50%, 75% and 100% industrial effluents applied as irrigation water. Effluents, initial soil, different parts of rice plants and post-harvest pot soil were analyzed for various elements, including heavy metals. Application of elevated levels of effluent contributed to increased heavy metals in pot soils and rice roots due to translocation effects, which were transferred to rice straw and grain. The results indicated that heavy metal toxicity may develop in soil because of contaminated effluent application. Heavy metals are not biodegradable, rather they accumulate in soils, and transfer of these metals from effluent to soil and plant cells was found to reduce the growth and development of rice plants and thereby contributed to lower yield. Moreover, a higher concentration of effluent caused heavy metal toxicity as well as reduction of growth and yield of rice, and in the long run a more aggravated situation may threaten human lives, which emphasizes the obligatory adoption of effluent treatment before its release to the environment, and regular monitoring by government agencies needs to be ensured. Copyright © 2015. Published by Elsevier B.V.
Chaplin, Jeffrey J.; Cravotta,, Charles A.; Weitzel, Jeffrey B.; Klemow, Kenneth M.
2007-01-01
This report characterizes the effects of historical mining and abandoned mine drainage (AMD) on streamflow and water quality and evaluates potential strategies for AMD abatement in the 14-square-mile Newport Creek Basin and 7.6-square-mile Nanticoke Creek Basin. Both basins are mostly within the Northern Anthracite Coal Field and drain to the Susquehanna River in central Luzerne County, Pa. The U.S. Geological Survey (USGS), in cooperation with the Earth Conservancy, conducted an assessment from April 1999 to September 2000 that included (1) continuous stage measurement at 7 sites; (2) synoptic water-quality and flow sampling at 21 sites on June 2-4, 1999, and at 24 sites on October 7-8, 1999; and (3) periodic measurement of flow and water quality at 26 additional sites not included in the synoptic sampling effort. Stream water and surface runoff from the unmined uplands drain northward to the valley, where most of the water is intercepted and diverted into abandoned underground mines. Water that infiltrates into the mine workings becomes loaded with acidity, metals, and sulfate and later discharges as AMD at topographically low points along lower reaches of Newport Creek, Nanticoke Creek, and their tributaries. Differences among streamflows in unmined and mined areas of the watersheds indicated that (1) intermediate stream reaches within the mined area but upgradient of AMD sites generally were either dry or losing reaches, (2) ground water flowing to AMD sites could cross beneath surface-drainage divides, and (3) AMD discharging to the lower stream reaches restored volumes lost in the upstream reaches. The synoptic data for June and October 1999, along with continuous stage data during the study period, indicated flows during synoptic surveys were comparable to average values. The headwaters upstream of the mined area generally were oxygenated (dissolved oxygen range was 4.7 to 11.0 mg/L [milligrams per liter]), near-neutral (pH range was 5.8 to 7.6), and net alkaline (net alkalinity range was 2.0 to 25.0 mg/L CaCO3), with relatively low concentrations of sulfate (6.40 to 24.0 mg/L) and dissolved metals (less than 500 ug/L [micrograms per liter] of iron, manganese, and aluminum). In contrast, the AMD discharges and downstream waters were characterized by elevated concentrations of sulfate and dissolved metals that exceeded Federal and State regulatory limits. The largest AMD sources were the Susquehanna Number 7 Mine discharge entering Newport Creek near its mouth (flow range was 4.7 to 19 ft3/s [cubic feet per second]), the Truesdale Mine Discharge (Dundee Outfall) entering Nanticoke Creek about 0.5 mile upstream of Loomis Park (flow range was 0.00 to 38 ft3/s), and a mine-pit overflow entering near the midpoint of Newport Creek (flow range was 4.0 to 6.9 ft3/s). The three large discharges were poorly oxygenated (dissolved oxygen concentration range was <0.05 to 6.4 mg/L) and had elevated concentrations of sulfate (range was 710 to 890 mg/L) and low concentrations of dissolved aluminum (less than 25 ug/L), but they had distinctive concentrations of net alkalinity and dissolved iron and manganese. Effluent from the Susquehanna Number 7 Mine was near-neutral (pH range was 5.9 to 6.6) and net alkaline (net alkalinity range was 12.0 to 42.0 mg/L CaCO3) with elevated concentrations of sulfate (718 to 1,170 mg/L), dissolved iron (52,500 to 77,400 ug/L), and manganese (5,200 to 5,300 ug/L). Effluent from the Truesdale Mine also was near-neutral (pH range was 5.9 to 6.3) but had variable net alkalinity (-19.0 to 57.0 mg/L CaCO3) with elevated concentrations of sulfate (571 to 740 mg/L), dissolved iron (30,500 to 43,000 ug/L), and manganese (3,600 to 5,200 ug/L). Effluent from the mine-pit overflow in Newport Creek Basin was acidic (pH range was 4.3 to 5.0; net alkalinity range was -42 to -38 mg/L CaCO3) with elevated concentrations of sulfate (800 to 840 mg/L), iron (13,000 to 16,000 ug/L), and manganese (6,800 to 7,000 ug
NASA Astrophysics Data System (ADS)
Osaliya, R.; Kansiime, F.; Oryem-Origa, H.; Kateyo, E.
During the operation of the Kilembe Mines (copper mining) a cobaltiferous stockpile was constructed, which began to erode after the closure of the mines in the early 1970s. The erosion of the pyrite stockpile resulted in a large acid trail all the way to Lake George (a Ramsar site). The acid trail contaminated a large area of Queen Elizabeth National Park (QENP) resulting in the death of most of the shallow-rooted vegetation. Processes and conditions created by storm water and effluent from a constructed wetland were assessed for vegetation regeneration in the degraded QENP pyrite trail. Cynodon dactylon, Imperata cylindrica and Hyparrhenia filipendula dominated the regeneration zone (RZ) where storm water and effluent from a constructed wetland was flowing; and the adjacent unpolluted area (UP) with importance value indices of 186.4 and 83.3 respectively. Typha latifolia and C. dactylon formed two distinct vegetation sub-zones within the RZ with the former inhabiting areas with a higher water table. Soil pH was significantly higher in the RZ, followed by UP and bare pyrite trail (BPT) at both 0-15 cm and 16-30 cm depths. Soil electrical conductivity was not significantly different in the RZ and BPT but significantly higher than that in UP for both depths. For 0-15 cm depth, RZ had significantly higher concentrations of copper than BPT and UP which had similar concentrations. Still at this depth (0-15 cm), the unpolluted area had significantly higher concentrations of total phosphorus and total nitrogen than the regeneration zone and the bare pyrite trail which had similar concentrations. The RZ dominated by Typha had significantly higher concentrations of TP and TN compared to the RZ dominated by Cynodon. The concentrations of NH 4-N were significantly lower in Typha regeneration zone than in CRZ at 0-15 cm depth but similar at 16-30 cm depth. At 16-30 cm depth, concentrations of copper were significantly higher in the regeneration zone followed by the bare pyrite trail and the unpolluted zone. The concentration of lead in the regeneration zone and bare pyrite trail were similar but significantly higher in the unpolluted zone. Concentrations of TP and TN were significantly higher in unpolluted zone, followed by regeneration zone and bare pyrite trail. Storm water and effluent from a constructed wetland enhanced the revegetation process by modifying soil pH, making plant growth nutrients available and by providing a steady supply of moisture necessary for plant growth. T. latifolia and C. dactylon which seem to have tolerance of high concentrations of metals were the dominant species in the regeneration zone. If storm water and effluent supply continues, the aforementioned vegetation will colonize the pyrite trail and will eventually protect QENP and Lake George from metal contamination.
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44 Effluent... conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44 Effluent... conventional pollutant control technology (BCT). [Reserved] ...
Igwe, Ogbonnaya; Una, Chuku Okoro; Abu, Ezekiel; Adepehin, Ekundayo Joseph
2017-09-07
Assessment of the impacts of lead-zinc mining in Adudu-Imon metallogenic province was carried out. Reconnaissance and detailed field studies were done. Lithologies, stream sediments, farmland soils, mine tailings, artificial pond water, stream water, well water, and borehole water were collected and subjected to atomic absorption spectrometry (AAS) and X-ray fluorescence (XRF) analyses. Geochemical maps were generated using ArcGIS 10.1. Significant contamination with cadmium (Cd), iron (Fe), and lead (Pb) was recorded in the collected water samples. Virtually all collected soil samples were observed to be highly contaminated when compared with the European Union environmental policy standard. The discharge of mining effluents through farmlands to the Bakebu stream, which drains the area, further exposes the dwellers of this environment to the accumulation of potentially harmful metals (PHMs) in their bodies through the consumption of food crops, aquatic animals, and domestic uses of the water collected from the stream channels. The study revealed non-conformity of past mining operations in the Adudu-Imon province to existing mining laws in Nigeria. Inhabitants of this region should stop farming in the vicinity of the mines, fishing from the Bakebu stream channels should be discouraged, and domestic use of the water should be condemned, even as concerned government agencies put necessary mercenaries in place to ensure conformity of miners to standard mining regulations in Nigeria.
Balaji, S; Kalaivani, T; Rajasekaran, C; Shalini, M; Vinodhini, S; Priyadharshini, S Sunitha; Vidya, A G
2015-06-01
The present study was carried out with the tannery effluent contaminated with heavy metals collected from Ambur industrial area to determine the phycoremediation potential of Arthrospira (Spirulina) platensis. Two different concentrations (50 and 100 %) of heavy metals containing tannery effluent treated with A. platensis were analysed for growth, absorption spectra, biochemical properties and antioxidant enzyme activity levels. The effluent treatments revealed dose-dependent decrease in the levels of A. platensis growth (65.37 % for 50 % effluent and 49.32 % for 100 % effluent), chlorophyll content (97.43 % for 50 % effluent and 71.05 % for 100 % effluent) and total protein content (82.63 % for 50 % effluent and 62.10 % for 100 % effluent) that leads to the reduction of total solids, total dissolved solids and total suspended solids. A. platensis with lower effluent concentration was effective than at higher concentration. Treatment with the effluent also resulted in increased activity levels of antioxidant enzymes, such as superoxide dismutase (14.58 units/g fresh weight for 50 % and 24.57 units/g fresh weight for 100 %) and catalase (0.963 units/g fresh weight for 50 % and 1.263 units/g fresh weight for 100 %). Furthermore, heavy metal content was determined using atomic absorption spectrometry. These results indicated that A. platensis has the ability to combat heavy metal stress by the induction of antioxidant enzymes demonstrating its potential usefulness in phycoremediation of tannery effluent.
A spatial and seasonal assessment of river water chemistry across North West England.
Rothwell, J J; Dise, N B; Taylor, K G; Allott, T E H; Scholefield, P; Davies, H; Neal, C
2010-01-15
This paper presents information on the spatial and seasonal patterns of river water chemistry at approximately 800 sites in North West England based on data from the Environment Agency regional monitoring programme. Within a GIS framework, the linkages between average water chemistry (pH, sulphate, base cations, nutrients and metals) catchment characteristics (topography, land cover, soil hydrology, base flow index and geology), rainfall, deposition chemistry and geo-spatial information on discharge consents (point sources) are examined. Water quality maps reveal that there is a clear distinction between the uplands and lowlands. Upland waters are acidic and have low concentrations of base cations, explained by background geological sources and land cover. Localised high concentrations of metals occur in areas of the Cumbrian Fells which are subjected to mining effluent inputs. Nutrient concentrations are low in the uplands with the exception sites receiving effluent inputs from rural point sources. In the lowlands, both past and present human activities have a major impact on river water chemistry, especially in the urban and industrial heartlands of Greater Manchester, south Lancashire and Merseyside. Over 40% of the sites have average orthophosphate concentrations >0.1mg-Pl(-1). Results suggest that the dominant control on orthophosphate concentrations is point source contributions from sewage effluent inputs. Diffuse agricultural sources are also important, although this influence is masked by the impact of point sources. Average nitrate concentrations are linked to the coverage of arable land, although sewage effluent inputs have a significant effect on nitrate concentrations. Metal concentrations in the lowlands are linked to diffuse and point sources. The study demonstrates that point sources, as well as diffuse sources, need to be considered when targeting measures for the effective reduction in river nutrient concentrations. This issue is clearly important with regards to the European Union Water Framework Directive, eutrophication and river water quality. Copyright 2009 Elsevier B.V. All rights reserved.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.33 Effluent limitations... technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, 40 CFR 401.17, and...
Code of Federal Regulations, 2013 CFR
2013-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.33 Effluent... available technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, 40 CFR 401...
Code of Federal Regulations, 2012 CFR
2012-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations... technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, and §§ 434.61 and 434...
Code of Federal Regulations, 2014 CFR
2014-07-01
... representing the degree of effluent reduction attainable by application of the best available technology... LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.43 Effluent limitations... technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, and §§ 434.61 and 434...
Code of Federal Regulations, 2014 CFR
2014-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.33 Effluent... available technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, 40 CFR 401...
Code of Federal Regulations, 2012 CFR
2012-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.33 Effluent... available technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, 40 CFR 401...
Code of Federal Regulations, 2011 CFR
2011-07-01
... representing the degree of effluent reduction attainable by the application of the best available technology... NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.33 Effluent limitations... technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, 40 CFR 401.17, and...
Sofianska, E; Michailidis, K
2015-03-01
The concentration and chemical fractionation of some heavy metals (Mn, Pb, Zn, Cu, Cd) and As in agricultural soils of the western Drama plain (northern Greece) were determined using inductively coupled plasma-mass spectrometry (ICP-MS) technique. Drama plain constitutes the recipient of the effluents from Xiropotamos stream, which passes through the abandoned "25 km Mn-mine" place. Results showed that soils were found to have elevated concentrations of potentially harmful elements which are mainly associated with Mn mineralization. Peak total concentrations (in mg kg(-1)) of 130,013 for Mn, 1996 for Pb, 2140 for Zn, 147 for Cu, 28 for Cd, and 1077 for As were found in sampling points close and along both sides of the Xiropotamos stream, as a result of downstream transfer and dispersion of Mn mine wastes via flooding episodes. Contaminated sites are important sources of pollution and may pose significant environmental hazards for terrestrial and aquatic ecosystems. The geochemical influence of the mine wastes as a source of soil pollution is substantially reduced in sites 200 m remote of the Xiropotamos stream course. The chemical partitioning patterns indicated that the potential for Mn, Pb, Zn, Cu, Cd, and As remobilization and bioavailability is low, as most of these elements were present in the residual and/or the more stable Mn- and Fe-hydroxide fractions. The partitioning in significant percent (14-25 %) of Cd with the weakly bound exchangeable/carbonate fraction indicated that this metal could be highly mobile as well as bioavailable in the studied contaminated soils and this could be concern to human health.
MANAGEMENT AND TREATMENT OF WATER FROM HARD-ROCK MINES {ENGINEERING ISSUE}
This Engineering Issue document on treatment of mining waters is a practical guide to understanding and selecting technologies for the environmental management of waste materials and effluents at hard-rock mines. For the purposes of this discussion, hard-rock mining primarily ref...
Removal of heavy metals from acid mine drainage using chicken eggshells in column mode.
Zhang, Ting; Tu, Zhihong; Lu, Guining; Duan, Xingchun; Yi, Xiaoyun; Guo, Chuling; Dang, Zhi
2017-03-01
Chicken eggshells (ES) as alkaline sorbent were immobilized in a fixed bed to remove typical heavy metals from acid mine drainage (AMD). The obtained breakthrough curves showed that the breakthrough time increased with increasing bed height, but decreased with increasing flow rate and increasing particle size. The Thomas model and bed depth service time model could accurately predict the bed dynamic behavior. At a bed height of 10 cm, a flow rate of 10 mL/min, and with ES particle sizes of 0.18-0.425 mm, for a multi-component heavy metal solution containing Cd 2+ , Pb 2+ and Cu 2+ , the ES capacities were found to be 1.57, 146.44 and 387.51 mg/g, respectively. The acidity of AMD effluent clearly decreased. The ES fixed-bed showed the highest removal efficiency for Pb with a better adsorption potential. Because of the high concentration in AMD and high removal efficiency in ES fixed-bed of iron ions, iron floccules (Fe 2 (OH) 2 CO 3 ) formed and obstructed the bed to develop the overall effectiveness. The removal process was dominated by precipitation under the alkaline reaction of ES, and the co-precipitation of heavy metals with iron ions. The findings of this work will aid in guiding and optimizing pilot-scale application of ES to AMD treatment. Copyright © 2016 Elsevier Ltd. All rights reserved.
Johannessen, Sophia C; Macdonald, Robie W; Burd, Brenda; van Roodselaar, Albert; Bertold, Stan
2015-03-01
To predict the likely effects of management action on any point source discharge into the coastal ocean, it is essential to understand both the composition of the effluent and the environmental conditions in the receiving waters. We illustrate a broadly-applicable approach to evaluating the comprehensive environmental footprint of a discharge, using regional geochemical budgets and nearfield monitoring. We take as a case study municipal effluent discharged into the Strait of Georgia (west coast of Canada), where there has been public controversy over the discharge of screened or primary-treated effluent directly into the ocean. Wastewater contributes ≤ 1% of the nitrogen, organic carbon and oxygen demand in the Strait and is unlikely to cause eutrophication, harmful algal blooms or hypoxia in this region. Metals (Hg, Pb, Cd) are controlled by natural cycles augmented by past mining and urbanization, with 0.3-5% of the flux contributed by wastewater. Wastewater contributes ~5% of PCBs but ≤ 60% of PBDEs and is likely also important for pharmaceuticals and personal care products. Effects of high organic flux on benthos are measurable in the immediate receiving environment. The availability of particle-active contaminants to enter the food chain depends on how long those contaminants remain in the sediment surface mixed layer before burial. Secondary treatment, slated for completion in Vancouver in 2030, will reduce fluxes of some contaminants, but will have negligible effect on regional budgets for organic carbon, nitrogen, oxygen, metals and PCBs. Removal of PBDEs from wastewater will affect regional budgets, depending on how the sludge is sequestered. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.
Cravotta, III, Charles A.; Brady, Keith B.C.
2015-01-01
Findings from this study suggest that typical chemical or aerobic treatment of CMD to pH > 6 with removal of Fe to <7 mg/L and Mn to <5 mg/L may provide a reasonable measure of protection for aquatic life from priority pollutant metals and other toxic or hazardous constituents in effluent but may not be effective for achieving permissible or background levels for TDS, SC, osmotic pressure, or concentrations of SO4 and some other pollutants, including Se, Br, and Cl, if present.
Zhang, Mingliang; Wang, Haixia; Han, Xuemei
2016-07-01
Novel immobilized sulfate-reducing bacteria (SRB) beads were prepared for the treatment of synthetic acid mine drainage (AMD) containing high concentrations of Fe, Cu, Cd and Zn using up-flow anaerobic packed-bed bioreactor. The tolerance of immobilized SRB beads to heavy metals was significantly enhanced compared with that of suspended SRB. High removal efficiencies of sulfate (61-88%) and heavy metals (>99.9%) as well as slightly alkaline effluent pH (7.3-7.8) were achieved when the bioreactor was fed with acidic influent (pH 2.7) containing high concentrations of multiple metals (Fe 469 mg/L, Cu 88 mg/L, Cd 92 mg/L and Zn 128 mg/L), which showed that the bioreactor filled with immobilized SRB beads had tolerance to AMD containing high concentrations of heavy metals. Partially decomposed maize straw was a carbon source and stabilizing agent in the initial phase of bioreactor operation but later had to be supplemented by a soluble carbon source such as sodium lactate. The microbial community in the bioreactor was characterized by denaturing gradient gel electrophoresis (DGGE) and sequencing of partial 16S rDNA genes. Synergistic interaction between SRB (Desulfovibrio desulfuricans) and co-existing fermentative bacteria could be the key factor for the utilization of complex organic substrate (maize straw) as carbon and nutrients source for sulfate reduction. Copyright © 2016 Elsevier Ltd. All rights reserved.
Singh, Rajesh; Bishnoi, Narsi R; Kirrolia, Anita; Kumar, Rajender
2013-01-01
In this study Pseudomonas aeruginosa a metal tolerant strain was not only applied for heavy metal removal but also to the solublization performance of the precipitated metal ions during effluent treatment. The synergistic effect of the isolate and Fe(0) enhanced the metal removal potential to 72.97% and 87.63% for Cr(VI) and cadmium, respectively. The decrease in cadmium ion removal to 43.65% (aeration+stirring reactors), 21.33% (aerated reactors), and 18.95% (without aerated+without stirring) with an increase in incubation period not only indicate the presence of soluble less toxic complexes, but also help in exploration of the balancing potential for valuable metal recovery. A relatively best fit and significant values of the correlation coefficient 0.912, 0.959, and 0.9314 for mixed effluent (Paint Industry effluent+CETP Wazirpur, effluent), CETP, Wazirpur, and control effluents, respectively, indicating first-order formulation and provide a reasonable description of COD kinetic data. Copyright © 2012 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... from which the process brine solution was originally withdrawn, provided no additional pollutants are... through 125.32, any existing point source subject to this subpart and using the solution brine mining...
Code of Federal Regulations, 2013 CFR
2013-07-01
... economically achievable (BAT). 434.23 Section 434.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT... by application of the best available technology economically achievable (BAT). (a) Except as provided...
Code of Federal Regulations, 2014 CFR
2014-07-01
... economically achievable (BAT). 434.23 Section 434.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT... by application of the best available technology economically achievable (BAT). (a) Except as provided...
Code of Federal Regulations, 2013 CFR
2013-07-01
... economically achievable (BAT). 434.53 Section 434.53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT... economically achievable (BAT). (a) Reclamation areas. The limitations of this subsection apply to discharges...
Code of Federal Regulations, 2010 CFR
2010-07-01
... application of the best conventional pollutant control technology (BCT). 434.74 Section 434.74 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COAL MINING POINT... Effluent limitations attainable by application of the best conventional pollutant control technology (BCT...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available (BPT): (a) The concentration of pollutants discharged in mine drainage from... technology currently available (BPT). 440.52 Section 440.52 Protection of Environment ENVIRONMENTAL... of effluent reduction attainable by the application of the best practicable control technology...
Impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased.
Chen, Ming; Qin, Xiaosheng; Zeng, Guangming; Li, Jian
2016-06-01
Groundwater quality deterioration has attracted world-wide concerns due to its importance for human water supply. Although more and more studies have shown that human activities and climate are changing the groundwater status, an investigation on how different groundwater heavy metals respond to human activity modes (e.g. mining, waste disposal, agriculture, sewage effluent and complex activity) in a varying climate has been lacking. Here, for each of six heavy metals (i.e. Fe, Zn, Mn, Pb, Cd and Cu) in groundwater, we use >330 data points together with mixed-effect models to indicate that (i) human activity modes significantly influence the Cu and Mn but not Zn, Fe, Pb and Cd levels, and (ii) annual mean temperature (AMT) only significantly influences Cu and Pb levels, while annual precipitation (AP) only significantly affects Fe, Cu and Mn levels. Given these differences, we suggest that the impacts of human activity modes and climate on heavy metal "spread" in groundwater are biased. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gibert, O; de Pablo, J; Cortina, J-L; Ayora, C
2010-08-01
In this study, two mixtures of municipal compost, limestone and, optionally, zero-valent iron were assessed in two column experiments on acid mine treatment. The effluent solution was systematically analysed throughout the experiment and precipitates from both columns were withdrawn for scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry analysis and, from the column containing zero-valent iron, solid digestion and sequential extraction analysis. The results showed that waters were cleaned of arsenic, metals and acidity, but chemical and morphological analysis suggested that metal removal was not due predominantly to biogenic sulphide generation but to pH increase, i.e. metal (oxy)hydroxide and carbonate precipitation. Retained arsenic and metal removal were clearly associated to co-precipitation with and/or sorption on iron and aluminum (oxy)hydroxides. An improvement on the arsenic removal efficiency was achieved when the filling mixture contained zero-valent iron. Values of arsenic concentrations were then always below 10 microg/L.
NASA Astrophysics Data System (ADS)
Madyiwa, S.; Chimbari, M.; Nyamangara, J.; Bangira, C.
Although sewage effluent and sludge provides nutrients for plant growth, its continual use over extended periods can result in the accumulation of heavy metals in soils and in grass to levels that are detrimental to the food chain. This study was carried in 2001 out at Firle farm, owned by the Municipality of Harare, to assess heavy metal loading on a sandy soil and uptake of the metals by pasture grass consisting of a mixture of Cynodon nlemfuensis (star grass) and Pennisetum clandestinum Chiov (kikuyu grass) following sewage effluent and sludge application for 29 years. Firle Farm receives treated effluent and sludge emanating from domestic and industrial sources. Soil and grass samples were taken from the study area, consisting of 3 ha of non-irrigated area (control) and 1.3 ha of irrigated area. Both the soil and grass samples were tested for Cu, Zn, Ni and Pb using atomic absorption spectrophotometry. Sewage sludge addition resulted in high levels of soil pollution, especially in the 20 cm horizon, in the irrigated area when compared to the control. Grasses took up moderate levels of Cu and Zn, and limited levels of Pb. Nickel was not detectable in grasses despite high levels in the irrigated soil. Copper uptake was several times higher than the suggested potentially toxic level of 12 mg/kg [Soil Science Society of America, Micronutrients in agriculture, second ed., Wisconsin, USA, 1991]. Lead uptake averaged 1.0 mg/kg, which was below 10 mg/kg the suggested limit for agronomic crops [E.M. Seaker, Zinc, copper, cadmium and lead in minespoil, water and plants from reclaimed mine land amended with sewage sludge, 1991]. Cu and Zn showed relatively higher mobility down the soil profile than Ni and Pb. Even then, the concentrations in the lower soil layers were very small, suggesting that the metals were unlikely to contaminate groundwater. There was no direct correlation between metal levels in soils and grasses. It was postulated that it is the bio-available metal fraction in the soil that is correlated to plant uptake. The grasses appeared healthy even though they contained moderately high levels of Zn and Cu. This raises the possibility of beef animals grazing on ;healthy; looking grass that has very high concentrations of heavy metals. The fact that the total metal concentrations in the experimental soil were very high but did not cause any toxicity symptoms to the grass suggested that the limit soil concentration do not necessarily imply toxicity to all plants. However, limit concentrations are set not only for plant growth, but also for the protection of soil microorganisms and the latter are more sensitive to heavy metal pollution.
40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the gold... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory § 440.140 Applicability; description of the gold placer mine subcategory. (a) The...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... from that impoundment. The height difference between the maximum safe surge capacity level and the normal operating level must be greater than the inches of rain representing the 10-year, 24-hour rainfall...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... from that impoundment. The height difference between the maximum safe surge capacity level and the normal operating level must be greater than the inches of rain representing the 10-year, 24-hour rainfall...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... from that impoundment. The height difference between the maximum safe surge capacity level and the normal operating level must be greater than the inches of rain representing the 10-year, 24-hour rainfall...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... discharged from that impoundment. The height difference between the maximum safe surge capacity level and the normal operating level must be greater than the inches of rain representing the 10-year, 24-hour rainfall...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... from that impoundment. The height difference between the maximum safe surge capacity level and the normal operating level must be greater than the inches of rain representing the 10-year, 24-hour rainfall...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS MINERAL MINING AND PROCESSING POINT SOURCE CATEGORY... from that impoundment. The height difference between the maximum safe surge capacity level and the normal operating level must be greater than the inches of rain representing the 10-year, 24-hour rainfall...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42 Effluent... practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30-125.32, 40 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42 Effluent... practicable control technology currently available (BPT). Except as provided in 40 CFR 125.30-125.32, 40 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... SOURCE CATEGORY Sodium Chloride Production Subcategory § 415.162 Effluent limitations guidelines... added to the bitterns during the production of sodium chloride. (b) Except as provided in 40 CFR 125.30...—Sodium Chloride Brine Mining Process Pollutant or pollutant property BPT limitations Maximum for any 1...
Williams, Donald R.; Sams, James I.; Mulkerrin, Mary E.
1996-01-01
This report describes the results of a study by the U.S. Geological Survey, done in cooperation with the Somerset Conservation District, to locate and sample abandoned coal-mine discharges in the Stonycreek River Basin, to prioritize the mine discharges for remediation, and to determine the effects of the mine discharges on water quality of the Stonycreek River and its major tributaries. From October 1991 through November 1994, 270 abandoned coal-mine discharges were located and sampled. Discharges from 193 mines exceeded U.S. Environmental Protection Agency effluent standards for pH, discharges from 122 mines exceeded effluent standards for total-iron concentration, and discharges from 141 mines exceeded effluent standards for total-manganese concentration. Discharges from 94 mines exceeded effluent standards for all three constituents. Only 40 mine discharges met effluent standards for pH and concentrations of total iron and total manganese.A prioritization index (PI) was developed to rank the mine discharges with respect to their loading capacity on the receiving stream. The PI lists the most severe mine discharges in a descending order for the Stonycreek River Basin and for subbasins that include the Shade Creek, Paint Creek, Wells Creek, Quemahoning Creek, Oven Run, and Pokeytown Run Basins.Passive-treatment systems that include aerobic wetlands, compost wetlands, and anoxic limestone drains (ALD's) are planned to remediate the abandoned mine discharges. The successive alkalinity-producing-system treatment combines ALD technology with the sulfate reduction mechanism of the compost wetland to effectively remediate mine discharge. The water quality and flow of each mine discharge will determine which treatment system or combination of treatment systems would be necessary for remediation.A network of 37 surface-water sampling sites was established to determine stream-water quality during base flow. A series of illustrations show how water quality in the mainstem deteriorates downstream because of inflows from tributaries affected by acidic mine discharges. From the upstream mainstem site (site 801) to the outflow mainstem site (site 805), pH decreased from 6.8 to 4.2, alkalinity was completely depleted by inflow acidities, and total-iron discharges increased from 30 to 684 pounds per day. Total-manganese and total-sulfate discharges increased because neither constituent precipitates readily. Also, discharges of manganese and sulfate entering the mainstem from tributary streams have a cumulative effect.Oven Run and Pokeytown Run are two small tributary streams significantly affected by acidic mine drainage (AMD) that flow into the Stonycreek River near the town of Hooversville. The Pokeytown Run inflow is about 0.5 mile downstream from the Oven Run inflow. These two streams are the first major source of AMD flowing into the Stonycreek River. Data collected on the Stonycreek River above the Oven Run inflow and below the Pokeytown Run inflow show a decrease in pH from 7.6 to 5.1, a decrease in alkalinity concentration from 42 to 2 milligrams per liter, an increase in total sulfate discharge from 18 to 41 tons per day, and an increase in total iron discharge from 29 to 1,770 pounds per day. Data collected at three mainstem sites on the Stonycreek River below Oven Run and Pokeytown Run show a progressive deterioration in river water quality from AMD.Shade Creek and Paint Creek are other tributary streams to the Stonycreek River that have a significant negative effect on water quality of the Stonycreek River. One third of the abandoned-mine discharges sampled were in the Shade Creek and Paint Creek Basins.
Multivariate analysis of selected metals in tannery effluents and related soil.
Tariq, Saadia R; Shah, Munir H; Shaheen, N; Khalique, A; Manzoor, S; Jaffar, M
2005-06-30
Effluent and relevant soil samples from 38 tanning units housed in Kasur, Pakistan, were obtained for metal analysis by flame atomic absorption spectrophotometric method. The levels of 12 metals, Na, Ca, K, Mg, Fe, Mn, Cr, Co, Cd, Ni, Pb and Zn were determined in the two media. The data were evaluated towards metal distribution and metal-to-metal correlations. The study evidenced enhanced levels of Cr (391, 16.7 mg/L) and Na (25,519, 9369 mg/L) in tannery effluents and relevant soil samples, respectively. The effluent versus soil trace metal content relationship confirmed that the effluent Cr was strongly correlated with soil Cr. For metal source identification the techniques of principal component analysis, and cluster analysis were applied. The principal component analysis yielded two factors for effluents: factor 1 (49.6% variance) showed significant loading for Ca, Fe, Mn, Cr, Cd, Ni, Pb and Zn, referring to a tanning related source for these metals, and factor 2 (12.6% variance) with higher loadings of Na, K, Mg and Co, was associated with the processes during the skin/hide treatment. Similarly, two factors with a cumulative variance of 34.8% were obtained for soil samples: factor 1 manifested the contribution from Mg, Mn, Co, Cd, Ni and Pb, which though soil-based is basically effluent-derived, while factor 2 was found associated with Na, K, Ca, Cr and Zn which referred to a tannery-based source. The dendograms obtained from cluster analysis, also support the observed results. The study exhibits a gross pollution of soils with Cr at levels far exceeding the stipulated safe limit laid down for tannery effluents.
Impact of potential phosphate mining on the hydrology of Osceola National Forest, Florida
Miller, James A.; Hughes, G.H.; Hull, R.W.; Vecchioli, John; Seaber, P.R.
1978-01-01
Potentially exploitable phosphate deposits underlie part of Osceola National Forest, Fla. Hydrologic conditions in the forest are comparable with those in nearby Hamilton County, where phosphate mining and processing have been ongoing since 1965. Given similarity of operations, hydroloigc effects of mining in the forest are predicted. Flow of stream receiving phosphate industry effluent would increase somewhat during mining, but stream quality would not be greatly affected. Local changes in the configuration of the water table and the quality of water in the surficial aquifer will occur. Lowering of the potentiometric surface of the Floridan aquifer because of proposed pumpage would be less than five feet at nearby communities. Flordian aquifer water quality would be appreciably changed only if industrial effluent were discharged into streams which recharge the Flordian through sinkholes. The most significant hydrologic effects would occur at the time of active mining: long-term effects would be less significant. (Woodard-USGS)
Effects of uranium mining, Puerco River, New Mexico
Lopes, Thomas J.
1991-01-01
Effluent from uranium-mine dewatering and acidic water released by a tailings-pond dike failure increased radionuclide activities in streamflow in the Puerco River in New Mexico and Arizona. Median dissolved gross-alpha activity in the streamflow was 1,130 picocuries per liter from 1975 to 1986 when mine discharges ceased and 6.2 picocuries per liter from 1986 to 1989. From 1975 to July 1979, major ions in streamflow at the Puerco River at Gallup streamflow-gaging station were sodium, bicarbonate, and sulfate. On July 16, 1979, the day of the tailing spill, major ions in streamflow were magnesium, calcium, and sulfate. From 1979 to 1984, major ions in streamflow had a greater proportion of calcium and sulfate than prior to the spill, indicating flushing of residual tailings solution. Geochemical modeling of mine effluent indicates that uranium was unlikely to precipitate from effluent between the mines and Gallup or when mixed with wastewater downstream from Gallup. Geochemical modeling of acidic-tailings solution indicates that uranium was in solution as far downstream as Gallup. When the acidic-tailings solution mixed with 10- to 40-percent wastewater, uranium may have precipitated from solution as carnotite [K2(UO2)2(VO4)2] and tyuyamunite [Ca(UO2)2(VO4)2].
40 CFR 440.64 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... reduction attainable by the application of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from tungsten mines shall not exceed: Effluent...
40 CFR 440.24 - New Source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... attainable by the application of the best available demonstrated technology (BADT). The concentration of pollutants discharged in mine drainage from mines producting bauxite ores shall not exceed: Effluent...
40 CFR 440.64 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... reduction attainable by the application of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from tungsten mines shall not exceed: Effluent...
40 CFR 440.64 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... reduction attainable by the application of the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from tungsten mines shall not exceed: Effluent...
40 CFR 440.24 - New Source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... attainable by the application of the best available demonstrated technology (BADT). The concentration of pollutants discharged in mine drainage from mines producting bauxite ores shall not exceed: Effluent...
Code of Federal Regulations, 2013 CFR
2013-07-01
... economically achievable (BAT). 434.43 Section 434.43 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT... technology economically achievable (BAT). Except as provided in 40 CFR 125.30-125.32, and §§ 434.61 and 434...
Assessment of the effluent quality from a gold mining industry in Ghana.
Acheampong, Mike A; Paksirajan, Kannan; Lens, Piet N L
2013-06-01
The physical and chemical qualities of the process effluent and the tailings dam wastewater of AngloGold-Ashanti Limited, a gold mining company in Ghana, were studied from June to September, 2010. The process effluent from the gold extraction plant contains high amounts of suspended solids and is therefore highly turbid. Arsenic, copper and cyanide were identified as the major pollutants in the process effluent with average concentrations of 10.0, 3.1 and 21.6 mg L(-1), respectively. Arsenic, copper, iron and free cyanide (CN(-)) concentrations in the process effluent exceeded the Ghana EPA discharge limits; therefore, it is necessary to treat the process effluent before it can be discharged into the environment. Principal component analysis of the data indicated that the process effluent characteristics were influenced by the gold extraction process as well as the nature of the gold-bearing ore processed. No significant correlation was observed between the wastewater characteristics themselves, except for the dissolved oxygen and the biochemical oxygen demand. The process effluent is fed to the Sansu tailings dam, which removes 99.9 % of the total suspended solids and 99.7 % of the turbidity; but copper, arsenic and cyanide concentrations were still high. The effluent produced can be classified as inorganic with a high load of non-biodegradable compounds. It was noted that, though the Sansu tailings dam stores the polluted effluent from the gold extraction plant, there will still be serious environmental problems in the event of failure of the dam.
Removal of heavy metals from waste streams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spence, M.D.; Kozaruk, J.M.; Melvin, M.
1988-07-19
A method for removing heavy metals from effluent water is described comprising performing sequentially the following steps: (a) adding from 7-333 ppm of an anionic surfactant to the effluent water to provide coagulatable heavy metal ion; (b) adjusting the effluent water pH to within the range of 8 to 10, (c) providing from 10-200 ppm of a cationic coagulant to coagulate the heavy metal ion, (d) providing from 0.3 to 5.0 ppm of a polymeric flocculant whereby a heavy metal containing floc is formed for removal from the effluent water, and, (e) then removing the floc from the effluent water,more » wherein the anionic surfactant is sodium lauryl ether sulfate. The cationic coagulant is selected from the group consisting of diallyl dimethylammonium chloride polymer, epichlorohydrin dimethylamine polymer, ethylene amine polymer, polyaluminum chloride, and alum; and the flocculant is an acrylamide/sodium acrylate copolymer having an RSV greater than 23.« less
NASA Astrophysics Data System (ADS)
Hussain, Athar; Maitra, Jaya; Khan, Kashif Ali
2017-12-01
Heavy metals are usually released into water bodies from industrial/domestic effluents such as metal plating industries, mining and tanneries. Adsorption is a fundamental process in the physiochemical treatment of wastewaters because of its low cost. Great efforts have been made to use the economically efficient and unconventional adsorbents to adsorb heavy metals from aqueous solutions, such as plant wastes and agricultural waste. Biochar mixed with chitosan after crosslinking can be casted into membranes, beads and solutions which can be effectively utilized as an adsorbent for metal ion uptake. Keeping these facts into consideration, the present study was undertaken with the objective to determine the effect of various proportions of biochar-modified chitosan membranes on the sorption characteristics of different heavy metals like Cu, Pb, As and Cd along with comparison of sorption characteristics between industrial waste water samples containing multi-metals and standard synthetic stock solution containing a particular metal. It is apparent from the results that the bioadsorbent prepared from biochar and chitosan are low-cost efficacious resource due to its easy availability. It is also eco-friendly material for making adsorbent for abstraction of heavy metals from aqueous solution. This adsorbent can be best utilized for adsorption of heavy metals.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.61 Effluent limitations representing the degree of...-pounds) of titanium rolled with contact cooling water Cyanide 1.4 0.586 Lead 2.05 0.976 Zinc 7.13 2.98...
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.61 Effluent limitations representing the degree of...-pounds) of titanium rolled with contact cooling water Cyanide 1.4 0.586 Lead 2.05 0.976 Zinc 7.13 2.98...
40 CFR 440.14 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... reduction attainable by applying the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines operated to obtain iron ore shall not exceed: Effluent...
40 CFR 440.14 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... reduction attainable by applying the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines operated to obtain iron ore shall not exceed: Effluent...
40 CFR 440.14 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... reduction attainable by applying the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines operated to obtain iron ore shall not exceed: Effluent...
40 CFR 440.14 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... attainable by applying the best available demonstrated technology (BADT): (a) The concentration of pollutants discharged in mine drainage from mines operated to obtain iron ore shall not exceed: Effluent characteristic...
NASA Astrophysics Data System (ADS)
Liu, Guokun; Peng, Jingji; Zheng, Hong; Yuan, Dongxing
2018-05-01
With the reinforce of the copper mining, the on-site monitoring of the accompanied effluent discharge is highly demanded for the emergency response to minimize the negative effect of the effluent on the surrounding ecosystem. On the basis of the specific interaction between Cu2+ and L-Cysteine (L-Cys), which was modified on gold nanoparticles (Au NPs), and the aggregation dependent surface plasmon resonance (SPR) of Au NPs, we developed an easy-on-going paper colorimetric method for the quick evaluating the copper ion concentration in the waste water excreted from the copper mine. The color change of L-Cys modified Au NPs (L-Cys-Au NPs)immobilized on a filter paper was very sensitive to the Cu2+ concentration and free of interference from other metal ions typically in waste water. The proposed paper colorimetry has the LOD of 0.09 mg/L and the linear range of 0.1-10 mg/L, respectively, with the RSD (n = 5) was 6.6% for 1 mg/L Cu2+ and 3.5% for 5 mg/L Cu2+. The quantitative analysis results for the mineral wastewater is in good agreement the China National Environmental Protection Standards HJ485-2009, which indicates the current method could be developed to the on-site detection technique for the emergency response in monitoring Cu2+ in industrial wastewater or polluted water.
Mishra, Abhishek; Malik, Anushree
2012-10-15
Toxic impacts of heavy metals in the environment have lead to intensive research on various methods of heavy metal remediation. However, in spite of abundant work on heavy metals removal from simple synthetic solutions, a very few studies demonstrate the potential of microbial strains for the treatment of industrial effluents containing mixtures of metals. In the present study, the efficiency of an environmental isolate (Aspergillus lentulusFJ172995), for simultaneous removal of chromium, copper and lead from a small-scale electroplating industry effluent was investigated. Initial studies with synthetic solutions infer that A. lentulus has a remarkable tolerance against Cr, Cu, Pb and Ni. During its growth, a significant bioaccumulation of individual metal was recorded. After 5 d of growth, the removal of metals from synthetic solutions followed the trend Pb(2+) (100%) > Cr(3+) (79%) > Cu(2+) (78%), > Ni(2+) (42%). When this strain was applied to the treatment of multiple metal containing electroplating effluent (after pH adjustment), the metal concentrations decreased by 71%, 56% and 100% for Cr, Cu and Pb, respectively within 11 d. Based on our results, we propose that the simultaneous removal of hazardous metals from industrial effluents can be accomplished using A. lentulus. Copyright © 2012 Elsevier Ltd. All rights reserved.
40 CFR 440.40 - Applicability; description of the mercury ore subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Mercury Ore... are applicable to discharges from (a) mines, either open-pit or underground, that produce mercury ores...
40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold... gold bearing ores from placer deposits; and (2) The beneficiation processes which use gravity... applicable to any mines or beneficiation processes which process less than 1500 cubic yards (cu yd) of ore...
Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores
2018-01-01
Abstract Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed. PMID:29438505
Cabello, Purificación; Luque-Almagro, Víctor M; Olaya-Abril, Alfonso; Sáez, Lara P; Moreno-Vivián, Conrado; Roldán, M Dolores
2018-03-01
Mining, jewellery and metal-processing industries use cyanide for extracting gold and other valuable metals, generating large amounts of highly toxic wastewater. Biological treatments may be a clean alternative under the environmental point of view to the conventional physical or chemical processes used to remove cyanide and related compounds from these industrial effluents. Pseudomonas pseudoalcaligenes CECT5344 can grow under alkaline conditions using cyanide, cyanate or different nitriles as the sole nitrogen source, and is able to remove up to 12 mM total cyanide from a jewellery industry wastewater that contains cyanide free and complexed to metals. Complete genome sequencing of this bacterium has allowed the application of transcriptomic and proteomic techniques, providing a holistic view of the cyanide biodegradation process. The complex response to cyanide by the cyanotrophic bacterium P. pseudoalcaligenes CECT5344 and the potential biotechnological applications of this model organism in the bioremediation of cyanide-containing industrial residues are reviewed.
76 FR 4469 - Privacy Act of 1974; Report of Modified or Altered System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... Records, 09-20-0153, ``Mortality Studies in Coal Mining, Metal and Non-metal Mining and General Industry... Coal Mining, Metal and Non-metal Mining and General Industry, HHS/CDC/NIOSH.'' The purpose of this... Occupational Safety and Health (NIOSH) Mortality Studies in Coal Mining, Metal and Non-Metal Mining and General...
Effects of acid mine effluent on sediment and water geochemistry, Ruttan Cu-Zn mine
Shilts, W.W.
1996-01-01
Waters were collected from the surface and bottom of four lakes as well as from the Churchill River and approximately 20 small ponds beside the Leaf Rapids-Ruttan mine-South Indian Lake road to determine geochemical variations related to tailings and waste rock disposal from the Ruttan Cu-Zn VHMS deposit. Using sonar profiling as a guide, grab samples and cores of sediments were also collected in Ruttan, Brehaut, Rusty, and Alto lakes to investigate the geochemical and sedimentological effects of liming the acid (pH 2.5) outflow from Ruttan Lake. Preliminary results indicate that metals anthropogenically enriched in Ruttan Lake (Zn, Cd, and Hg in particular) are scavenged and precipitated at the inflow end of Brehaut Lake as a result of adding lime solutions to the Vermilion River, midway through the 500 m reach that connects Ruttan Lake and Brehaut Lake. Zn in Ruttan Lake water (up to 17 ppm) is precipitated in the limey sediment. Zn is not enriched in waters of Rusty Lake, the next lake downstream from Brehaut Lake. Rusty Lake has Zn concentrations comparable to background water from Alto Lake (<10 ppb Zn). At present, liming appears to be controlling metal migration effectively, but a body of Zn-Cd-Hg-rich carbonate precipitate occupies the south end of Brehaut Lake which, without liming, would be receiving water of pH 2.5 from Ruttan Lake, resulting in a remobilization of metals. The related study also showed that Zn concentrations are elevated in water in contact with waste rock used to upgrade sections of the Leaf Rapids-South Indian Lake and Brehaut Lake roads.
NASA Astrophysics Data System (ADS)
Gupta, S.; Nayek, S.; Saha, R. N.; Satpati, S.
2008-08-01
The present study deals with the characterization of effluent released from sponge iron industries and distribution of heavy metals in soil and macrophytes near to effluent discharge channel. Apart from this, accumulation of heavy metals in nearby soil and vegetation system irrigated with effluent-contaminated water is also the subject of this study. Physico-chemical analysis of effluent reveals that the concentration of total suspended solids (TSS), total hardness (TH), iron (Fe2+), and oil and grease are greater than the IS (1981) norms for discharge of water into inland water body. The soil along the sides of the effluent channel also shows higher concentration of heavy metals than the background soil. The enrichment of the heavy metals are in the order of Chromium (Cr) > Iron (Fe) > Manganese (Mn) > Zinc (Zn) > Copper (Cu) > Cadmium (Cd). Macrophytes growing along the sides of the effluent channel also show significant accumulation of heavy metals almost in the same order as accumulated in soil. Higher uptake of heavy metals by these varieties reveals that these species can be used for future phytoremediation. The effluent as well as contaminated water is extensively used for irrigation for growing vegetables like tomato ( Lycopersicon esculatum) in the surrounding areas. Heavy metal accumulation in this agricultural soil are in the sequence of Cr > Fe > Mn > Zn > Cu > Cd. More or less similar type of accumulation pattern are also found in tomato plants except Fe and Zn exceeding Cr and Mn. Transfer Factor of heavy metals from soil to tomato plants (TFS) shows average value of <1, suggesting less uptake of heavy metals from soil. Among the plant parts studied, fruit shows least accumulation. Although tomato plants show some phenotypic changes, the survival of tomato plants as well as least accumulation of metals in fruit reveals their tolerance to heavy metals. Therefore it may be suggested that this plant can be grown successfully in the heavy metal contaminated soil. Further research work on in situ toxicity test will be necessary in order to identify the most resistive variety on this particular type of contaminated site.
Bioremoval of heavy metals from industrial effluent by fixed-bed column of red macroalgae.
Ibrahim, Wael M; Mutawie, Hawazin H
2013-02-01
Three different species of nonliving red algal biomass Laurancia obtusa, Geldiella acerosa and Hypnea sp. were used to build three types of fixed-bed column for the removal of toxic heavy metal ions such as Cu(2+), Zn(2+), Mn(2+) and Ni(2+) from industrial effluent. In general, the highest efficiency of metal ion bioremoval was recorded for algal column of L. obtusa followed by G. acerosa and the lowest one was recorded for Hypnea sp., with mean removal values of 94%, 85% and 71%, respectively. The obtained results showed that biological treatments of industrial effluents with these algal columns, using standard algal biotest, Pseudokirchneriella subcapitata, were capable of reducing effluent toxicities from 75% to 15%, respectively. Red algal column may be considered as an inexpensive and efficient alternative treatment for conventional removal technology, for sequestering heavy metal ions from industrial effluents.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44... of the best conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... control technology (BCT). [Reserved] 434.34 Section 434.34 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.34... of the best conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2011 CFR
2011-07-01
... control technology (BCT). [Reserved] 434.34 Section 434.34 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.34... of the best conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44... of the best conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... control technology (BCT). [Reserved] 434.44 Section 434.44 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.44... of the best conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Ferrous Casting Subcategory § 464.37 Effluent limitations guidelines representing the degree of effluent...
76 FR 4466 - Privacy Act of 1974; Report of Modified or Altered System of Records
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-25
... Records, 09-20-0149, ``Morbidity Studies in Coal Mining, Metal and Non-metal Mining and General Industry... Coal Mining, Metal and Non-metal Mining and General Industry, HHS/CDC/NIOSH.'' The purpose of this... Institute for Occupational Safety And Health (NIOSH) Morbidity Studies in Coal Mining, Metal and Non-Metal...
Electrocoagulation for the treatment of textile industry effluent--a review.
Khandegar, V; Saroha, Anil K
2013-10-15
Various techniques such as physical, chemical, biological, advanced oxidation and electrochemical are used for the treatment of industrial effluent. The commonly used conventional biological treatment processes are time consuming, need large operational area and are not effective for effluent containing toxic elements. Advanced oxidation techniques result in high treatment cost and are generally used to obtain high purity grade water. The chemical coagulation technique is slow and generates large amount of sludge. Electrocoagulation has recently attracted attention as a potential technique for treating industrial effluent due to its versatility and environmental compatibility. This technique uses direct current source between metal electrodes immersed in the effluent, which causes the dissolution of electrode plates into the effluent. The metal ions, at an appropriate pH, can form wide range of coagulated species and metal hydroxides that destabilize and aggregate particles or precipitate and adsorb the dissolved contaminants. Therefore, the objective of the present manuscript is to review the potential of electrocoagulation for the treatment of industrial effluents, mainly removal of dyes from textile effluent. © 2013 Elsevier Ltd. All rights reserved.
Soares, Eduardo V; Soares, Helena M V M
2013-08-01
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.
Code of Federal Regulations, 2013 CFR
2013-07-01
... control technology (BCT). [Reserved] 434.34 Section 434.34 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434... application of the best conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2014 CFR
2014-07-01
... control technology (BCT). [Reserved] 434.34 Section 434.34 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434... application of the best conventional pollutant control technology (BCT). [Reserved] ...
Code of Federal Regulations, 2012 CFR
2012-07-01
... control technology (BCT). [Reserved] 434.34 Section 434.34 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434... application of the best conventional pollutant control technology (BCT). [Reserved] ...
NASA Astrophysics Data System (ADS)
Capello, Marco; Tolotti, Raffaella; Bernabè, Dimitri; Carbone, Cristina; Consani, Sirio; Vagge, Greta; Cutroneo, Laura
2016-04-01
Mineral content and physico-chemical properties of the freshwaters are the main factors affecting both algal assemblages and distributions, while presence of dissolved silicon, low water conductivity, and rocky-mountain habitats host benthic diatom assemblages of high species richness. It is shown that diatoms are sensible to the freshwater acidification (used as pH indicators in acid waters), environmental and climate changes, river organic load, and heavy metal water pollution. For this characteristic, diatoms are among the major biological markers for a variety of environmental and stratigraphic applications. In particular, qualitative and quantitative analyses (assemblage analyses) together with biotic indices as well as morphological and ultrastructure parameterisation provide tools for detailed environmental control and paleo-environmental reconstructions. Severe environmental problems are typically caused by "abandoned mine" and are consequences of the cessation of the mining activity with a lack in infrastructure maintenance. The mine waters which flow into the Gromolo Torrent are almost acidic (pH varying from 2.4 to 5) and enriched in heavy metals and SO42-. This pollution is caused by Acid Mine Drainage (AMD) processes that interest the Libiola mining area, known as a typical example of active AMD processes. The aim of this work is: 1) to characterise the local benthic diatom assemblages along the acidic mine effluents that discharge from Libiola mine, the entire Gromolo torrent course, and in the marine area off the torrent mouth; 2) to identify the main diatom biomarker taxa; 3) to highlight striking situations of equilibrium-disequilibrium in the algal communities, and 4) to point out types and frequency of some teratologies affecting specific diatom taxa as a response to environmental stressors (such as metal-metalloid enrichment). A total of 17 diatom samples was collected and examined, including some marine samples. Diatoms were collected in the riverbed from the hard surface of selected cobblestone by scraping. In laboratory all the samples were washed (by digestion with hydrogen peroxide) and mounted according to the protocol used by the DISTAV Laboratories (University of Genoa). Identification and enumeration of diatom valves was performed using an LM Reichert Jung-Polyvar microscope with 1000x oil-immersion lens. Moreover, a representative subsample of each preparation was observed using SEM images providing an interesting iconographic dataset. Preliminary results show that diatom assemblages are characteristic (in both quality and quantity) in the three different environmental conditions highlighted: a) in AMD environment diatoms are quantitatively scarcely, represented by both typically pioneer and highly tolerant species; b) in the Gromolo torrent diatoms are well represented with fairly well-structured communities, but present specific types and different frequencies in teratological frustula, whereas c) in marine environment they are very poorly represented.
Sachan, Sanjay; Singh, S K; Srivastava, P C
2007-10-01
Accumulation of heavy metals in soil-water-plant continuum as a result of irrigation with metals contaminated effluent has been studied. Effluents being used for irrigating agricultural fields had normal pH 7.3-7.5, high Cr and Cl content as per the prescribed standards for irrigation. Among the heavy metals, buildup of total Iron was highest (9 times) and that of cadmium (1.3 times) was lowest in effluent irrigated soil as compared to tubewell irrigated soils. In most of the hand pump water samples, Pb, Cd and Cr were above the permissible limits for drinking. Bioaccumulation of Pb and Cr in vegetables was found to be above the critical concentrations for plant growth while Pb and Cd were above the prescribed limit in the diet of animals. Most of the heavy metals were above the maximum allowable limit in soil.
Bacterial reduction of selenium in coal mine tailings pond sediment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siddique, T.; Arocena, J.M.; Thring, R.W.
2007-05-15
Sediment from a storage facility for coal tailings solids was assessed for its capacity to reduce selenium (Se) by native bacterial community. One Se{sup 6+}-reducing bacterium Enterobacter hormaechei (Tar11) and four Se{sup 4+}-reducing bacteria, Klebsiella pneumoniae (Tar1), Pseudomonasfluorescens (Tar3), Stenotrophomonas maltophilia (Tar6), and Enterobacter amnigenus (Tar8) were isolated from the sediment. Enterobacter horinaechei removed 96% of the added Se{sup 6+} (0.92 mg L{sup -1} from the effluents when Se6+ was determined after 5 d of incubation. Analysis of the red precipitates showed that Se{sup 6+} reduction resulted in the formation of spherical particles ({lt}1.0 {mu} m) of Se 0 asmore » observed under scanning electron microscope (SEM) and confirmed by EDAX. Selenium speciation was performed to examine the fate of the added Se{sup 6+} in the sediment with or without addition of Enterobacter hormaechei cells. More than 99% of the added Se{sup 6+} (about 2.5 mg L{sup -1}) was transformed in the nonsterilized sediment (without Enterobacter hormaechei cells) as well as in the sterilized (heat-killed) sediment (with Enterobacter hormaechei cells). The results of this study suggest that the lagoon sediments at the mine site harbor Se{sup 6+}- and Se{sup 4+} -reducing bacteria and may be important sinks for soluble Se (Se{sup 6+} and Se{sup 4+}). Enterobacter hormaechei isolated from metal-contaminated sediment may have potential application in removing Se from industrial effluents.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE... contained in sodium antimonate product Antimony 44.840 20.000 Arsenic 32.650 14.530 Mercury 3.906 1.562... Maximum for any 1 day Maximum for monthly average mg/kg (pounds per million pounds) of antimony metal...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS MANUFACTURING POINT SOURCE CATEGORY Primary... sodium antimonate product Antimony 30.150 13.440 Arsenic 21.720 9.687 Mercury 2.344 0.937 (b) Fouled... any 1 day Maximum for monthly average mg/kg pounds per million pounds of antimony metal produced by...
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting... copper, lead, zinc, and total phenols. For non-continuous discharges, annual average mass limitations and... for monthly average kg/1,000 kkg (pounds per million pounds) of metal poured Copper (T) 0.0307 .0168...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Copper Casting... copper, lead, zinc, and total phenols. For non-continuous discharges, annual average mass limitations and... for monthly average kg/1,000 kkg (pounds per million pounds) of metal poured Copper (T) 0.0307 .0168...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2010 CFR
2010-07-01
... technology currently available (BPT). 434.32 Section 434.32 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.32... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2011 CFR
2011-07-01
... technology currently available (BPT). 434.32 Section 434.32 Protection of Environment ENVIRONMENTAL..., BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434.32... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available (BPT). 434.42 Section 434.42 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine Drainage § 434.42... of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Impact of Acid Mine Drainage on the hydrogeological system at Sia, Cyprus
NASA Astrophysics Data System (ADS)
Ng, Stephen; Malpas, John
2013-04-01
Discontinued mining of the volcanogenic massive sulphide ore bodies of Cyprus has left significant environmental concerns including Acid Mine Drainage. Remnant sulphide ore and tailings in waste dumps react with oxygenated rainwater to produce sulphuric acid, a process which is multiplied when metal-loving acidophilic bacteria are present. Given that Cyprus has a Mediterranean climate, characterized by its warm and dry summers and cool and wet winters, the low pH effluent with high levels of trace elements, particularly metals, is leached out of the waste tips particularly during the wet season. The Sia site includes an open mine-pit lake, waste rock and tailings dumps, a river leading to a downstream dam-lake, and a localised groundwater system. The study intends to: identify the point source and nature of contamination; analyze the mechanism and results of local acid generation; and understand how the hydrogeological system responds to seasonal variations. During two sampling campaigns, in the wet and dry seasons of 2011, water samples were collected from the mine pit lake, from upstream of the adjacent river down to the dam catchment, and from various boreholes close to the sulphide mine. The concentration of ions in waters varies between wet and dry seasons but, in both, relative amounts are directly related to pH. In the mine-pit lake, Fe, Mn, Mg, Cu, Pb, Zn, Ni, Co and Cd are found in higher concentrations in the dry season, as a result of substantial evaporation of water. The Sia River runs continuously in the wet season, and waters collected close to the waste tips have pH as low as 2.5 and higher concentrations of Al, Cu, Fe and Zn. Further downstream there is a significant decrease in trace metal contents with a concomitant rise of pH. Al and Fe dominate total cation content when pH is lower than 4. Al is derived from the weathering of clay minerals, especially during the wet season. Fe is derived from the oxidation of pyrite. Once pH's exceed 4, a white precipitate of gibbsite (Al(OH)3) settles to the stream bed removing Al from the water. This is finely laminated together with orange-brown layers of similarly precipitated Fe(OH)3. During the dry season the Sia River dries up and the mine-pit lake is greatly reduced in surface area leading to the crystallisation of a variety of multi-coloured salts, which form on the muddy substrate through capillary action. These include large amounts of gypsum and hexahydrite, and lesser amounts of chalcanthite, jarosite, wupatkiite, halotrichite, malachite, etc. These are ephemeral in nature being quickly dissolved by early rains of the wet season that, in the stream waters, produces short-lived toxic concentrations of metals. Groundwaters sampled directly at the mine site show the influence of drainage from the waste tips. Elsewhere, apart from sporadic high Boron concentrations, there is no evidence of contamination from the mine workings. The origin of Boron is a problem that arises at a number of sites throughout Cyprus, especially on the Mesaoria Plain and in the Troodos Complex.
Vasquez, Yaneth; Escobar, Maria C; Neculita, Carmen M; Arbeli, Ziv; Roldan, Fabio
2016-06-01
Biochemical passive treatment represents a promising option for the remediation of acid mine drainage. This study determined the effect of three hydraulic retention times (1, 2, and 4 days) on changes in system efficiency, reactive mixture, and microbial activity in bioreactors under upward flow conditions. Bioreactors were sacrificed in the weeks 8, 17 and 36, and the reactive mixture was sampled at the bottom, middle, and top layers. Physicochemical analyses were performed on reactive mixture post-treatment and correlated with sulfate-reducing bacteria and cellulolytic and dehydrogenase activity. All hydraulic retention times were efficient at increasing pH and alkalinity and removing sulfate (>60%) and metals (85-99% for Fe(2+) and 70-100% for Zn(2+)), except for Mn(2+). The longest hydraulic retention time (4 days) increased residual sulfides, deteriorated the quality of treated effluent and negatively impacted sulfate-reducing bacteria. Shortest hydraulic retention time (1 day) washed out biomass and increased input of dissolved oxygen in the reactors, leading to higher redox potential and decreasing metal removal efficiency. Concentrations of iron, zinc and metal sulfides were high in the bottom layer, especially with 2 day of hydraulic retention time. Sulfate-reducing bacteria, cellulolytic and dehydrogenase activity were higher in the middle layer at 4 days of hydraulic retention time. Hydraulic retention time had a strong influence on overall performance of passive reactors. Copyright © 2016 Elsevier Ltd. All rights reserved.
FIELD TESTING AND EVALUATION OF ZERPOL® AT PIONEER METAL FINISHING
The project examines the Zerpol® process. The Zerpol® process, as used in metal plating operations, captures all aqueous effluent from the manufacturing operations, conditions the effluent to remove any metal or cyanide that may be present, and permits the reuse of the ...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 434.41 Section 434.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 434.41 Section 434.41 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS COAL MINING POINT SOURCE CATEGORY BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Alkaline Mine...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 440.81 Section 440.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 440.81 Section 440.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 440.81 Section 440.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a...
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 440.81 Section 440.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 440.81 Section 440.81 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a...
Chałupnik, Stanisław; Wysocka, Małgorzata; Janson, Ewa; Chmielewska, Izabela; Wiesner, Marta
2017-05-01
According to the latest guidelines of the International Atomic Energy Agency (IAEA, 2016), coal mining is one of the most important contributors to occupational exposure. Coal mining contributes about 45% of the total annual collective dose obtained by workers due to the exposure at places of working. One of the sources of exposure in mining are formation brines with elevated concentrations of natural radionuclides, the most common are radium 226 Ra and 228 Ra. Radium isotopes often occur in formation waters in underground collieries in the Upper Silesian region (USCB) in Poland. Significant amounts of radium remain underground in the form of radioactive deposits created as a result of spontaneous deposition or water treatment. This phenomenon leads to the increase of radiation hazard for miners. The remaining activities of 226 Ra and 228 Ra are released into the rivers with mine effluents, causing the contamination of bottom sediments and river banks. The results of radioactivity monitoring of effluents and river waters are presented here to illustrate a trend of long-term changes in environmental contamination, caused by mining industry in the Upper Silesian Region. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaufmann, R.F.; Eadie, G.G.; Russell, C.R.
Ground-water contamination from uranium mining and milling results from the infiltration of radium-bearing mine, mill, and ion-exchange plant effluents. Radium, selenium, and nitrate were of most value as indicators of contamination. In recent years, mining has increased radium in mine effluents from several picocuries/liter (pCi/1) or less, to 100-150 pCi/1. The shallow aquifer in use in the vicinity of one mill was grossly contaminated with selenium, attributable to the mill tailings. Seepage from two other mill tailings ponds averaged 67,400,000 liters/year and, to date, has contributed an estimated 1.1 curies of radium to ground water. At one of these, anmore » injection well was used to dispose of over 3,400,000,000 liters of waste from 1960-1973. The wastes have not been properly monitored and have apparently migrated to more shallow, potable aquifers. No adverse impacts on municipal water quality in Paguate, Bluewater, Grants, Milan, and Gallup were observed. (GRA)« less
Pérez-Ostalé, E; Grande, J A; Valente, T; de la Torre, M L; Santisteban, M; Fernández, P; Diaz-Curiel, J
2016-01-01
In the Iberian Pyrite Belt (IPB), southwest Spain, a prolonged and intense mining activity of more than 4,500 years has resulted in almost a hundred mines scattered through the region. After years of inactivity, these mines are still causing high levels of hydrochemical degradation in the fluvial network. This situation represents a unique scenario in the world, taking into consideration its magnitude and intensity of the contamination processes. In order to obtain a benchmark regarding the degree of acid mine drainage (AMD) pollution in the aquatic environment, the relationship between the areas occupied by the sulfide mines and the characteristics of the respective effluents after rainfall was analysed. The methodology developed, which includes the design of a sampling network, analytical treatment and cluster analysis, is a useful tool for diagnosing the contamination level by AMD in an entire metallogenic province, at the scale of each mining group. The results presented the relationship between sulfate, total dissolved solids and electrical conductivity, as well as other parameters that are typically associated with AMD and the major elements that compose the polymetallic sulfides of IPB. This analysis also indicates the low level of proximity between the affectation area and the other variables.
To study the recovery of L-Cysteine using halloysite nanotubes after heavy metal removal
NASA Astrophysics Data System (ADS)
Thakur, Juhi
2016-04-01
Industrial wastes are a major source of soil and water pollution that originate from mining industries, chemical industries, metal processing industries, etc. These wastes consist of a variety of chemicals including phenolics, heavy metals, etc. Use of industrial effluent and sewage sludge on agricultural land has become a common practice in the world which results in these toxic metals being transferred and ultimately concentrate in plant tissues from water and the soil. The metals that get accumulated, prove detrimental to plants themselves and may also cause damage to the healths of animals as well as man. This is because the heavy metals become toxins above certain concentrations, over a narrow range. As a further matter, these metals negatively affect the natural microbial populations as well, that leads to the disruption of fundamental ecological processes. However, many techniques and methods have been advanced to clear the heavy metal polluted soils and waters. One important method is by removing heavy metals with the help of amino acids like L-Cysteine and L-Penicillamine. But also, economy of removal of pollutant heavy metals from soils and waters is a major concern. Present study helps in decreasing the cost for large-scale removal of heavy metals from polluted water by recovering the amino acid (L-Cysteine) after removal of nickel (Ni+2) at a fixed pH, by binding the Ni+2 with halloysite nanotubes(HNT), so that L-Cysteine can be reused again for removal of heavy metals.
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc... for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers, annual... metal poured Copper (T) 0.0344 0.0187 Lead (T) 0.0353 0.0174 Zinc (T) 0.0509 0.0192 Oil and grease 1.34...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc... for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers, annual... metal poured Copper (T) 0.0344 0.0187 Lead (T) 0.0353 0.0174 Zinc (T) 0.0509 0.0192 Oil and grease 1.34...
Kidgell, Joel T.; de Nys, Rocky; Paul, Nicholas A.; Roberts, David A.
2014-01-01
Fe-treated biochar and raw biochar produced from macroalgae are effective biosorbents of metalloids and metals, respectively. However, the treatment of complex effluents that contain both metalloid and metal contaminants presents a challenging scenario. We test a multiple-biosorbent approach to bioremediation using Fe-biochar and biochar to remediate both metalloids and metals from the effluent from a coal-fired power station. First, a model was derived from published data for this effluent to predict the biosorption of 21 elements by Fe-biochar and biochar. The modelled outputs were then used to design biosorption experiments using Fe-biochar and biochar, both simultaneously and in sequence, to treat effluent containing multiple contaminants in excess of water quality criteria. The waste water was produced during ash disposal at an Australian coal-fired power station. The application of Fe-biochar and biochar, either simultaneously or sequentially, resulted in a more comprehensive remediation of metalloids and metals compared to either biosorbent used individually. The most effective treatment was the sequential use of Fe-biochar to remove metalloids from the waste water, followed by biochar to remove metals. Al, Cd, Cr, Cu, Mn, Ni, Pb, Zn were reduced to the lowest concentration following the sequential application of the two biosorbents, and their final concentrations were predicted by the model. Overall, 17 of the 21 elements measured were remediated to, or below, the concentrations that were predicted by the model. Both metalloids and metals can be remediated from complex effluent using biosorbents with different characteristics but derived from a single feedstock. Furthermore, the extent of remediation can be predicted for similar effluents using additive models. PMID:25061756
Naik, Umesh Chandra; Srivastava, Shaili; Thakur, Indu Shekhar
2011-08-01
Electroplating industries are the main sources of heavy metals, chromium, nickel, lead, zinc, cadmium and copper. The highest concentrations of chromium (VI) in the effluent cause a direct hazards to human and animals. Therefore, there is a need of an effective and affordable biotechnological solution for removal of chromium from electroplating effluent. Bacterial strains were isolated from electroplating effluent to find out higher tolerant isolate against chromate. The isolate was identified by 16S rDNA sequence analysis. Absorbed chromium level of bacterium was determined by inductively coupled plasma-atomic emission spectrometer (ICP-AES), atomic absorption spectrophotometer (AAS), scanning electron microscope (SEM), transmission electron microscope (TEM) and energy dispersive X-ray analysis (EDX). Removal of metals by bacterium from the electroplating effluent eventually led to the detoxification of effluent confirmed by MTT assay. Conformational changes of functional groups of bacterial cell surface were studied through Fourier transform infrared spectroscopy. The chromate tolerant isolate was identified as Bacillus cereus. Bacterium has potency to remove more than 75% of chromium as measured by ICP-AES and AAS. The study indicated the accumulation of chromium (VI) on bacterial cell surface which was confirmed by the SEM-EDX and TEM analysis. The biosorption of metals from the electroplating effluent eventually led to the detoxification of effluent. The increased survivability of Huh7 cells cultured with treated effluent also confirmed the detoxification as examined by MTT assay. Isolated strain B. cereus was able to remove and detoxify chromium (VI). It would be an efficient tool of the biotechnological approach in mitigating the heavy metal pollutants.
40 CFR 440.145-440.147 - [Reserved
Code of Federal Regulations, 2014 CFR
2014-07-01
... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 440.145-440.147 Section 440.145-440.147 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory...
40 CFR 440.145-440.147 - [Reserved
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 440.145-440.147 Section 440.145-440.147 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory...
40 CFR 440.145-440.147 - [Reserved
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 440.145-440.147 Section 440.145-440.147 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory...
Copaja, S V; Muñoz, G S; Nuñez, V R; Pérez, C; Vila, I; Véliz, D
2016-07-01
In order to determine the effect of a dam on metal concentrations in riverine fish species, we studied fish inhabiting the influent (Cachapoal River) and effluent (Rapel River) of the Rapel Reservoir in central Chile. Heavy metals were quantified in gills, liver and muscle of the catfish Trichomycterus areolatus and the silverside Basilichthys microlepidotus. Also, the bioaccumulation index (BAI) was estimated by considering heavy metal concentrations obtained from water and sediment. Results showed the presence of Al, Cu, Fe, Mn, Pb and Zn in the fish organs. The analysis showed high metal concentrations in catfish inhabiting the influent compared to those collected in the effluent. These results indicate a possible filter effect of the dam for most of the metals identified in the fish organs, because metal concentrations decreased in the effluent. Finally, catfish exhibited a larger BAI for most metals analyzed.
Code of Federal Regulations, 2014 CFR
2014-07-01
... technology currently available (BPT). 434.32 Section 434.32 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2013 CFR
2013-07-01
... technology currently available (BPT). 434.32 Section 434.32 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
Code of Federal Regulations, 2012 CFR
2012-07-01
... technology currently available (BPT). 434.32 Section 434.32 Protection of Environment ENVIRONMENTAL... BPT, BAT, BCT LIMITATIONS AND NEW SOURCE PERFORMANCE STANDARDS Acid or Ferruginous Mine Drainage § 434... application of the best practicable control technology currently available (BPT). Except as provided in 40 CFR...
30 CFR 57.22102 - Smoking (I-C mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22102 Smoking (I-C mines). (a...
NASA Astrophysics Data System (ADS)
Yang, Shuran; Danek, Tomas; Cheng, Xianfeng; Huang, Qianrui
2017-12-01
This paper aims to study three main metal mining areas in Yunnan Province, to summarize and analyze the heavy metal pollution situation in each mining area, and to assess the ecological risk of the mining areas. The results showed that heavy metal pollution existed in different regions of the three mining areas with pollution elements of Cd, As, Cu, Pb, Zn. Risk level, besides Zhen Yuan mining area (class C), for the other two areas was class D, with Beichang mining area in Lanping as the most serious polluted mining area.
Carvalho, Fernando P; Oliveira, João M; Faria, Isabel
2009-11-01
Two large uranium mines, Quinta do Bispo and Cunha Baixa, district of Viseu, North of Portugal, were exploited until 1991. Sulfuric acid was used for in situ uranium leaching in Cunha Baixa mine and for heap leaching of low grade ores at both mines. Large amounts of mining and milling residues were accumulated nearby. Since closure of mines, the treatment of acid mine waters has been maintained and treated water is released into surface water lines. Analysis of radionuclides in the soluble phase and in the suspended matter of water samples from the uranium mines, from the creeks receiving the discharges of mine effluents, from the rivers and from wells in this area, show an enhancement of radioactivity levels. For example, downstream the discharge of mine effluents into Castelo Stream, the concentrations of dissolved uranium isotopes and uranium daughters were up to 14 times the concentrations measured upstream; (238)U concentration in suspended particulate matter of Castelo Stream reached 72 kBq kg(-1), which is about 170 times higher than background concentrations in Mondego River. Nevertheless, radionuclide concentrations decreased rapidly to near background values within a distance of about 7 kilometers from the discharge point. Enhancement of radioactivity in underground waters was positively correlated with a decrease in water pH and with an increase of sulfate ion concentration, pointing out to Cunha Baixa mine as the source of groundwater contamination. The radiotoxic exposure risk arising from using these well waters as drinking water and as irrigation water is discussed and implementation of environmental remediation measures is advised.
Lohner, T W; Reash, R J; Williams, M
2001-11-01
Sunfish were collected from a fly ash pond-receiving stream and an Ohio River reference site to assess biochemical responses to coal ash effluent exposure. Selenium levels in sunfish from the receiving stream were higher than toxic thresholds associated with adverse population effects and reproductive impairment. Tissue biochemistry was found to be indicative of metal exposure and effect, but varied widely. Liver glycogen was positively correlated with increased liver metal levels, indicating no adverse effect upon stored carbohydrate levels. Lipid levels decreased with increasing metals, indicating possible nutritional stress. Protein levels increased with increasing metal levels, possibly due to the synthesis of proteins to sequester the metals. ATPase, dUTPase, and alkaline phosphatase activity generally decreased with exposure to ash pond metals, but remained within normal physiological ranges. Fish condition factors and liver somatic indices were correlated with liver lipid levels, dUTPase activity, and gill ATPase and alkaline phosphatase activity. Exposure to coal ash effluents produced biochemical markers of exposure that were associated with fish condition indicators; however, the indices themselves were not significantly affected by effluent exposure.
Suspended sediment load below open-cast mines for ungauged river basin
NASA Astrophysics Data System (ADS)
Kuksina, L.
2011-12-01
Placer mines are located in river valleys along river benches or river ancient channels. Frequently the existing mining sites are characterized by low contribution of the environmental technologies. Therefore open-pit mining alters stream hydrology and sediment processes and enhances sediment transport. The most serious environmental consequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, placer mining located in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens rivers ecosystems significantly. Impact assessment is limited by the hydrological observations scarcity. Gauging network is rare and in many cases whole basins up to 200 km length miss any hydrological data. The main purpose of the work is elaboration of methods for sediment yield estimation in rivers under mining impact and implementation of corresponding calculations. Subjects of the study are rivers of the Vivenka river basin where open-cast platinum mine is situated. It's one of the largest platinum mines in Russian Federation and in the world. This mine is the most well-studied in Kamchatka (research covers a period from 2003 to 2011). Empirical - analytical model of suspended sediment yield estimation was elaborated for rivers draining mine's territories. Sediment delivery at the open-cast mine happens due to the following sediment processes: - erosion in the channel diversions; - soil erosion on the exposed hillsides; - effluent from settling ponds; - mine waste water inflow; - accident mine waste water escape into rivers. Sediment washout caused by erosion was estimated by repeated measurements of the channel profiles in 2003, 2006 and 2008. Estimation of horizontal deformation rates was carried out on the basis of erosion dependence on water discharge rates, slopes and composition of sediments. Soil erosion on the exposed hillsides was estimated taking into account precipitation of various intensity and solid material washout during this period. Effluent from settling ponds was calculated on the basis of minimum anthropogenic turbidity. Its value is difference in background turbidity and minimal turbidity caused by effluent and waste water overflow. Mine waste water inflow was estimated due to actual data on water balance of purification system. Accident mine waste water escape into rivers was estimated by duration and material washout during accidents data measured during observation period. Total suspended sediment yield of rivers draining mine's territory is the sum of its components. Total sediment supply from mining site is 24.7 % from the Vivenka sediment yield. Polluted placer-mined rivers contribute about 35.4 % of the whole sediment yield of the Vivenka river. At the same time the catchment area of these rivers is less than 0.2 % from the whole Vivenka catchment area.
An expert system for water quality modelling.
Booty, W G; Lam, D C; Bobba, A G; Wong, I; Kay, D; Kerby, J P; Bowen, G S
1992-12-01
The RAISON-micro (Regional Analysis by Intelligent System ON a micro-computer) expert system is being used to predict the effects of mine effluents on receiving waters in Ontario. The potential of this system to assist regulatory agencies and mining industries to define more acceptable effluent limits was shown in an initial study. This system has been further developed so that the expert system helps the model user choose the most appropriate model for a particular application from a hierarchy of models. The system currently contains seven models which range from steady state to time dependent models, for both conservative and nonconservative substances in rivers and lakes. The menu driven expert system prompts the model user for information such as the nature of the receiving water system, the type of effluent being considered, and the range of background data available for use as input to the models. The system can also be used to determine the nature of the environmental conditions at the site which are not available in the textual information database, such as the components of river flow. Applications of the water quality expert system are presented for representative mine sites in the Timmins area of Ontario.
40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...
40 CFR 440.145-440.147 - [Reserved
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false [Reserved] 440.145-440.147 Section 440.145-440.147 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory §§ 440.145...
40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...
40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the...
40 CFR 440.145-440.147 - [Reserved
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false [Reserved] 440.145-440.147 Section 440.145-440.147 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Gold Placer Mine Subcategory §§ 440.145...
Manzoor, S A; Mirza, S N; Zubair, M; Nouman, W; Hussain, S B; Mehmood, S; Irshad, A; Sarwar, N; Ammar, A; Iqbal, M F; Asim, A; Chattha, M U; Chattha, M B; Zafar, A; Abid, R
2015-08-14
Biofuel tree species are recognized as a promising alternative source of fuel to conventional forms. Additionally, these tree species are also effective in accumulating toxic heavy metals present in some industrial effluents. In developing countries such as Pakistan, the use of biofuel tree species is gaining popularity not only for harvesting economical and environmentally friendly biofuel, but also to sequester poisonous heavy metals from industrial wastewater. This study was aimed at evaluating the genetic potential of two biofuel species, namely, Jatropha curcas and Pongamia pinnata, to grow when irrigated with industrial effluent from the Pak-Arab Fertilizer Factory Multan, Southern Punjab, Pakistan. The growth performances of one-year-old seedlings of both species were compared in soil with adverse physiochemical properties. It was found that J. curcas was better able to withstand the toxicity of the heavy metals present in the fertilizer factory effluent. J. curcas showed maximum gain in height, diameter, and biomass production in soil irrigated with 75% concentrated industrial effluent. In contrast, P. pinnata showed a significant reduction in growth in soil irrigated with more than 50% concentrated industrial effluent, indicating that this species is less tolerant to higher toxicity levels of industrial effluent. This study identifies J. curcas as a promising biofuel tree species that can be grown using industrial wastewater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacobson, B.A.; Unz, R.F.; Dempsey, B.A.
1999-07-01
The National Pollution Discharge Elimination System (NPDES) dictates removal of manganese in mine drainage to less than 4 mg/1 daily or less than 2 mg/1 on a monthly average. Owing to its high solubility at low and circumneutral pH, removal of manganese is often the most difficult of the NPDES discharge standards. This has lead to the use of Mn(II) as a surrogate for metal removal. However, recent studies concluded that zinc or nickel may be more appropriate indicators for removal of other metals. Previous field studies showed zinc removal to be highly correlated to the removal of copper, cobalt,more » and nickel in a sulfate reducing subsurface loaded wetland, whereas manganese removal was poorly correlated. The objective of this study was to evaluate zinc and manganese retention under sulfate reducing conditions in bench scale columns containing fresh spent mushroom compost. Column effluent data were analyzed using an EPA geochemical computer model (MINTEQ) over the pH range of 6.0 to 6.8. Under these conditions, zinc and manganese displayed distinctly reactivities. Zn(II) was supersaturated with respect to ZnS{sub s} and the Zn(HS){sub 2}{degree} and Zn(HS){sub 3}{sup minus} complexes dominated solubility. Soluble zinc concentrations were inversely correlated to sulfide. Mn(II) remained as soluble Mn{sup +2}. During early column operation at pH > 7, MnCO{sup 3(s)} was supersaturated. Manganese concentrations did not correlate with pH or sulfide. Given these fundamental differences in removal mechanisms between Zn and Mn under sulfate reducing conditions, the use of manganese removal as a surrogate for heavy metal removal in passive treatment of mine drainage seems unjustified.« less
Nitrogen removal in Northern peatlands treating mine wastewaters
NASA Astrophysics Data System (ADS)
Palmer, Katharina; Karlsson, Teemu; Turunen, Kaisa; Liisa Räisänen, Marja; Backnäs, Soile
2015-04-01
Natural peatlands can be used as passive purification systems for mine wastewaters. These treatment peatlands are well-suited for passive water treatment as they delay the flow of water, and provide a large filtration network with many adsorptive surfaces on plant roots or soil particles. They have been shown to remove efficiently harmful metals and metalloids from mine waters due to variety of chemical, physical and biological processes such as adsorption, precipitation, sedimentation, oxidation and reduction reactions, as well as plant uptake. Many factors affect the removal efficiency such as inflow water quality, wetland hydrology, system pH, redox potential and temperature, the nature of the predominating purification processes, and the presence of other components such as salts. However, less attention has been paid to nitrogen (N) removal in peatlands. Thus, this study aimed to assess the efficiency of N removal and seasonal variation in the removal rate in two treatment peatlands treating mine dewatering waters and process effluent waters. Water sampling from treatment peatland inflow and outflow waters as well as pore waters in peatland were conducted multiple times during 2012-2014. Water samples were analysed for total N, nitrate-N and ammonium-N. Additionally, an YSI EXO2 device was used for continuous nitrate monitoring of waters discharged from treatment peatlands to the recipient river during summer 2014. The results showed that the oxic conditions in upper peat layer and microbial activity in treatment peatlands allowed the efficient oxidation of ammonium-N to nitrite-N and further to nitrate-N during summer time. However, the slow denitrification rate restricts the N removal as not all of the nitrate produced during nitrification is denitrified. In summer time, the removal rate of total N varied between 30-99 % being highest in late summer. N removal was clearly higher for treatment peatland treating process effluent waters than for peatland treating dewatering waters probably due to more oxidizing conditions. During winter time there is not enough microbial activity to maintain oxidation of ammonium-N to nitrate-N. However, almost 20 % of N may be removed during winter season due to nitrate denitrification.
40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the vanadium ore...
40 CFR 440.80 - Applicability; description of the vanadium ore subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vanadium ore subcategory. 440.80 Section 440.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS ORE MINING AND DRESSING POINT SOURCE CATEGORY Vanadium Ore Subcategory (Mined Alone and Not as a Byproduct) § 440.80 Applicability; description of the vanadium ore...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2011 CFR
2011-07-01
... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2010 CFR
2010-07-01
... uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent characteristic... for the extraction of uranium or from mines and mills using in situ leach methods. The Agency... Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L of this part any...
NASA Astrophysics Data System (ADS)
Jeen, S.; Bain, J. G.; Blowes, D. W.
2007-12-01
A column experiment has been conducted to evaluate the performance of three reactive mixtures which may be used in a permeable reactive barrier (PRB) for the treatment of low quality mine drainage water from a waste rock storage area in northern Saskatchewan, Canada. The key element of concern in the drainage water is dissolved Ni, which occurs at approximately 13 mg/L. The water is low pH ~4.3, oxidized, contains high concentrations of dissolved sulfate (4400-4750 mg/L), Al (45 mg/L), Zn (3 mg/L), Co (3 mg/L) and relatively low concentrations of other dissolved heavy metals and iron. Three columns, each containing one of the mixtures, were constructed: column A (peat/lime/limestone/gravel), column B (peat/zero valent iron (ZVI) filings (20%/vol)/limestone/gravel), and column C (peat/ZVI filings (10%/vol)/limestone/gravel). The experimental results have shown that the mixtures promote bacterially-mediated sulfate reduction and metal removal by precipitation of metal sulfides, metal precipitation, and adsorption under relatively high pH conditions (pH of 7 to 8). Reducing conditions (Eh of 0 to -200 mV) have developed in all of the columns, from the highly oxidized influent water (Eh of +500 to +600 mV). Hydrogen sulfide is detected in the effluent water, and dissolved sulfate concentrations decrease by several hundred mg/L. Based on sulfate removal, sulfate reduction occurs more strongly in columns B and C than column A. All of the columns are removing Ni to below the limit of detection (typically < 0.01 mg/L); however, the removal rate in column A is slower than in columns B and C and has decreased over time. Most other metals are removed to low concentrations in all of the columns. The results suggest that while the longevity of mixtures including ZVI will be much longer than mixtures containing only peat, considering economic aspects, the PRB consisting of only peat could also be an alternative option, if breakthrough time can be predicted and replacement of peat can be conducted in a timely manner. This study shows that the use of reactive mixtures that facilitate microbial activities and redox reactions in subsurface could be a valuable means to remove various metal contaminants originated from mine drainage sites.
30 CFR 57.22106 - Dust containing volatile matter (I-C mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22106...
Impact of tannery effluents on the aquatic environment of the Buriganga River in Dhaka, Bangladesh.
Asaduzzaman, Mohammad; Hasan, Imtiaj; Rajia, Sultana; Khan, Nazneen; Kabir, Kazi Ahmed
2016-06-01
This study presents an overview of the existence and effects of six heavy metals, chromium (Cr), lead (Pb), cadmium (Cd), mercury (Hg), manganese (Mn), and aluminum (Al), in tannery effluents released to the Buriganga River in Dhaka, Bangladesh. The pollutants were found in three different sources, such as effluents from tanneries, contaminated river water and three species of fish-climbing perch (Anabas testudineus), spotted snakehead (Channa punctata), and Black tilapia (Oreochromis mossambicus) caught from the river. Tannery effluents, water, and fish samples were collected from three different factories, five sample stations, and three different harvesting points, respectively. Effluents from all three factories contained significant amounts of heavy metals, especially Cr (374.19 ppm in average), whereas lesser amounts were found in the tissues of the three fish species studied. The trends in tissue elemental concentrations of fish were Cr > Pb > Al > Hg > Mn > Cd. In most cases (Cr, Cd, Mn, and Al), heavy metal concentrations were found to be greater in climbing perch than in Black tilapia and spotted snakehead. Although the river water contained high concentrations of harmful heavy metals, the fish species under study had concentrations well below the permissible Food and Agriculture Organization/World Health Organization levels for those metals and seemed to be safe for human consumption. © The Author(s) 2014.
Rai, Prabhat Kumar
2008-01-01
This review addresses the global problem of heavymetal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. Heavymetal contamination in aquatic ecosystems due to discharge of industrial effluents may pose a serious threat to human health. Alkaline precipitation, ion exchange columns, electrochemical removal, filtration, and membrane technologies are the currently available technologies for heavy metal removal. These conventional technologies are not economical and may produce adverse impacts on aquatic ecosystems. Phytoremediation of metals is a cost-effective "green" technology based on the use of specially selected metal-accumulating plants to remove toxic metals from soils and water. Wetland plants are important tools for heavy metal removal. The Ramsar convention, one of the earlier modern global conservation treaties, was adopted at Ramsar, Iran, in 1971 and became effective in 1975. This convention emphasized the wise use of wetlands and their resources. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. The extensive rhizosphere of wetland plants provides an enriched culture zone for the microbes involved in degradation. The wetland sediment zone provides reducing conditions that are conducive to the metal removal pathway. Constructed wetlands proved to be effective for the abatement of heavymetal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkali effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.
30 CFR 57.22105 - Smoking and open flames (IV mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 57.22105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22105 Smoking and open...
30 CFR 57.22104 - Open flames (I-C mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
....22104 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22104 Open flames (I-C...
Removal of phosphorus, fluoride and metals from a gypsum mining leachate using steel slag filters.
Claveau-Mallet, Dominique; Wallace, Scott; Comeau, Yves
2013-03-15
The objective of this work was to evaluate the capacity of steel slag filters to treat a gypsum mining leachate containing 11-107 mg P/L ortho-phosphates, 9-37 mg/L fluoride, 0.24-0.83 mg/L manganese, 0.20-3.3 zinc and 1.7-8.2 mg/L aluminum. Column tests fed with reconstituted leachates were conducted for 145-222 days and sampled twice a week. Two types of electric arc furnace (EAF) slags and three filter sequences were tested. The voids hydraulic retention time (HRT(v)) of columns ranged between 4.3 and 19.2 h. Precipitates of contaminants present in columns were sampled and analyzed with X-ray diffraction at the end of tests. The best removal efficiencies over a period of 179 days were obtained with sequential filters that were composed of Fort Smith EAF slag operated at a total HRT(v) of 34 h which removed 99.9% of phosphorus, 85.3% of fluoride, 98.0% of manganese and 99.3% of zinc. Mean concentration at this system's effluent was 0.04 mg P/L ortho-phosphates, 4 mg/L fluoride, 0.02 mg/L manganese, 0.02 zinc and 0.5 mg/L aluminum. Thus, slag filters are promising passive and economical systems for the remediation of mining effluents. Phosphorus was removed by the formation of apatite (hydroxyapatite, Ca(5)(PO(4))(3)OH or fluoroapatite, Ca(5)(PO(4))(3)F) as confirmed by visual and X-ray diffraction analyses. The growth rate of apatite was favored by a high phosphorus concentration. Calcite crystals were present in columns and appeared to be competing for calcium and volume needed for apatite formation. The calcite crystal growth rate was higher than that of apatite crystals. Fluoride was removed by precipitation of fluoroapatite and its removal was favored by a high ratio of phosphorus to fluoride in the wastewater. Copyright © 2012 Elsevier Ltd. All rights reserved.
Oberholster, P J; Botha, A-M; Hill, L; Strydom, W F
2017-12-01
Rising environmental pressures on water resources and resource quality associated with urbanisation, industrialisation, mining and agriculture are a global concern. In the current study the upper Olifants River catchment as case study was used, to show that acid mine drainage (AMD) and acid precipitation were the two most important drivers of possible acidification during a four-year study period. Over the study period 59% of the precipitation sampled was classified as acidic with a pH value below 5.6. Traces of acidification in the river system using aquatic organisms at different trophic levels were only evident in areas of AMD point sources. Data gathered from the ecotoxicology screening tools, revealed that discharge of untreated and partially treated domestic sewage from municipal sewage treatment works and informal housing partially mitigate any traces of acidification by AMD and acid precipitation in the main stem of the upper Olifants River. The outcome of the study using phytoplankton and macroinvertebrates as indicator organisms revealed that the high loads of sewage effluent might have played a major role in the neutralization of acidic surface water conditions caused by AMD and acid precipitation. Although previous multi-stage and microcosm studies confirmed the decrease in acidity and metals concentrations by municipal wastewater, the current study is the first to provide supportive evidence of this co-attenuation on catchment scale. These findings are important for integrated water resource management on catchment level, especially in river systems with a complex mixture of pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lee, J.-S.; Chon, H.-T.
2003-05-01
In order to assess the risk of adverse health effects on human exposure to arsenic and heavy metals influence by past mining activities, environmental geochemical survey was undertaken in the abandoned metal mine areas (Dongil Au-Ag-Cu-Zn mine, Okdong Cu-Pb-Zn mine, Myungbong Au-Ag mine). Arsenic and other heavy metals were highly elevated in the tailings from the Dongil mine (8,720 As mg/kg, 5.9 Cd mg/kg, 3,610 Cu mg/kg, 5,850 Pb mg/kg, 630 Zn mg/kg). Heavy metals except As from the Okdong mine (53.6 Cd mg/kg, 910 Cu mg/kg, 1,590 Pb mg/kg, 5,720 Zn mg/kg) and As from the Myungbong mine (5,810 As mg/kg) were also elevated. Elevated levels of As, Cd and Zn were also found in agricultural soils from these mine areas. The H.I. (hazard index) values of As and Cd from the Dongil, the Okdong and Myungbong mine areas are higher than 1.0. Therefore, toxic risk for As and Cd exist via exposure (ingestion) of contaminated soil, groundwater and rice grain in these mine areas.
Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both active and abandoned mining operations. The wastewater...
Code of Federal Regulations, 2010 CFR
2010-07-01
.../billion SCF of air scrubbed) effluent limitations for copper, lead, zinc, and total phenols. For non...) of metal poured Copper (T) 0.0129 0.0071 Lead (T) 0.0237 0.0116 Zinc (T) 0.0437 0.0165 Maximum for... Lead (T) 0.53 0.26 0.0067 Zinc (T) 0.98 0.37 0.0116 1 kg/1,000 kkg (pounds per million pounds) of metal...
Code of Federal Regulations, 2011 CFR
2011-07-01
.../billion SCF of air scrubbed) effluent limitations for copper, lead, zinc, and total phenols. For non...) of metal poured Copper (T) 0.0129 0.0071 Lead (T) 0.0237 0.0116 Zinc (T) 0.0437 0.0165 Maximum for... Lead (T) 0.53 0.26 0.0067 Zinc (T) 0.98 0.37 0.0116 1 kg/1,000 kkg (pounds per million pounds) of metal...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larsson, A.; Haux, C.; Sjoebeck, M.L.
1984-04-01
Perches (Perca fluviatilis), kept in slightly hypotonic brackish water, were exposed to dilutions of a simulated heavy-metal-containing effluent from a sulfide ore smeltery . Biochemical and hematological effects of the effluent, as well as the metal residues in liver and muscle tissues, were investigated after 12 and 27 days of exposure. The metal analyses revealed no significant uptake of metals in liver and muscle during the experiment. In spite of this, the exposed fish showed several physiological effects. Some of these, e.g., anemia, hypocalcemia, increased muscle water content, and reduced liver size, were of a transient nature, while others, suchmore » as disturbed chloride balance and hyperglycemia, seemed to be more persistent. At the end of the experiment (29-33 days of exposure), the physiological response to stress treatment (asphyxia) and a subsequent recovery were studied in exposed and unexposed fish. This stress investigation indicates that an additional stressor may strengthen the toxic effects of the heavy-metal-containing effluent. Furthermore, the secondary stress responses were more pronounced and the ability to recover from them seemed to be impaired in exposed fish as compared to unexposed fish.« less
30 CFR 57.22101 - Smoking (I-A, II-A, III, and V-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Fire Prevention and Control § 57.22101...
Degens, Bradley P; Krassoi, Rick; Galvin, Lynette; Reynolds, Brad; Micevska, Tina
2018-05-01
Measurements of potential acidity in water are used to manage aquatic toxicity risks of discharge from acid sulfate soils or acid mine drainage. Net acidity calculated from pH, dissolved metals and alkalinity is a common measurement of potential acidity but the relevance of current risk thresholds to aquatic organisms are unclear. Aquatic toxicity testing was carried out using four halophytic organisms with water from four saline sources in southern Western Australia (3 acidic drains and one alkaline river; 39-40 g TDS/L) where acidity was varied by adjusting pH to 4.5-6.5. The test species were brine shrimps (Artemia salina), locally sourced ostracods (Platycypris baueri), microalgae (Dunaliella salina) and amphipods (Allorchestes compressa). Testing found the EC 10 and IC 10 of net acidity ranged from -7.8 to 10.5 mg CaCO 3 /L with no survival or growth of any species at >47 mg CaCO 3 /L. Reduced net acidity indicated reduced whole effluent toxicity more reliably than increased pH alone with organisms tolerating pH up to 1.1 units lower in the absence of dissolved metals. Variation in toxicity indicated by net acidity was mostly attributed to reduced concentrations of dissolved Al and Fe combined with higher pH and alkalinity and some changes in speciation of Al and Fe with pH. These results indicate that rapid in-field assessments of net acidity in acidic, Al dominated waters may be an indicator of potential acute and sub-chronic impacts on aquatic organisms. Crown Copyright © 2018. Published by Elsevier Ltd. All rights reserved.
This document summarizes the results of Mine Waste Technology Project 22-Phosphate Stabilization of Heavy Metals-Contaminated Mine Waste Yard Soils. Mining, milling, and smelting of ores near Joplin, Missouri, have resulted in heavy metal contamination of the area. The Joplin s...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, P.K.
This review addresses the global problem of heavy metal pollution originating from increased industrialization and urbanization and its amelioration by using wetland plants both in a microcosm as well as natural/field condition. This review mentions salient features of wetland ecosystems, their vegetation component, and the pros and cons involved in heavy metal removal. Wetland plants are preferred over other bio-agents due to their low cost, frequent abundance in aquatic ecosystems, and easy handling. Constructed wetlands proved to be effective for the abatement of heavy metal pollution from acid mine drainage; landfill leachate; thermal power; and municipal, agricultural, refinery, and chlor-alkalimore » effluent. the physicochemical properties of wetlands provide many positive attributes for remediating heavy metals. Typha, Phragmites, Eichhornia, Azolla, Lemna, and other aquatic macrophytes are some of the potent wetland plants for heavy metal removal. Biomass disposal problem and seasonal growth of aquatic macrophytes are some limitations in the transfer of phytoremediation technology from the laboratory to the field. However, the disposed biomass of macrophytes may be used for various fruitful applications. An ecosustainable model has been developed through the author's various works, which may ameliorate some of the limitations. The creation of more areas for phytoremediation may also aid in wetlands conservation. Genetic engineering and biodiversity prospecting of endangered wetland plants are important future prospects in this regard.« less
As part of a Superfund Innovative Technology Evaluation (SITE) Program, the U.S. Environmental Protection Agency evaluated a remediation technology at the Summitville Mine Superfund site in southern Colorado. The technology evaluated was a successive alkalinity producing system ...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2013 CFR
2013-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2012 CFR
2012-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
40 CFR 440.34 - New source performance standards (NSPS).
Code of Federal Regulations, 2014 CFR
2014-07-01
... underground, that produce uranium ore, excluding mines using in situ leach methods, shall not exceed: Effluent... leach process for the extraction of uranium or from mines and mills using in situ leach methods. The... Vanadium Ores Subcategory § 440.34 New source performance standards (NSPS). Except as provided in subpart L...
Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan
2016-01-01
The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.
Harish, R; Samuel, Jastin; Mishra, R; Chandrasekaran, N; Mukherjee, A
2012-07-01
Chrome mining activity has contributed intensively towards pollution of hexavalent chromium around Sukinda Valley, Orissa, India. In an attempt to study the specific contribution of exopolysaccharides (EPS) extracted from indigenous isolates towards Cr(VI) reduction, three chromium (VI) tolerant strains were isolated from the effluent mining sludge. Based on the tolerance towards Cr(VI) and EPS production capacity, one of them was selected for further work. The taxonomic identity of the selected strain was confirmed to be Enterobacter cloacae (showing 98% similarity in BLAST search to E. cloacae) through 16S rRNA analysis. The EPS production was observed to increase with increasing Cr(VI) concentration in the growth medium, highest being 0.078 at 100 mg/l Cr(VI). The extracted EPS from Enterobacter cloacae SUKCr1D was able to reduce 31.7% of Cr(VI) at 10 mg/l concentration, which was relevant to the prevailing natural concentrations at Sukinda mine effluent sludge. The FT-IR spectral studies confirmed the surface chemical interactions of hexavalent chromium with EPS.
NASA Astrophysics Data System (ADS)
Zinabu, E.; Kelderman, P.; van der Kwast, J.; Irvine, K.
2018-04-01
Kombolcha, a city in Ethiopia, exemplifies the challenges and problems of the sub-Saharan countries where industrialization is growing fast but monitoring resources are poor and information on pollution unknown. This study monitored metals Cr, Cu, Zn, and Pb concentrations in five factories' effluents, and in the effluent mixing zones of two rivers receiving discharges during the rainy seasons of 2013 and 2014. The results indicate that median concentrations of Cr in the tannery effluents and Zn in the steel processing effluents were as high as 26,600 and 155,750 µg/L, respectively, much exceeding both the USEPA and Ethiopian emission guidelines. Cu concentrations were low in all effluents. Pb concentrations were high in the tannery effluent, but did not exceed emission guidelines. As expected, no metal emission guidelines were exceeded for the brewery, textile and meat processing effluents. Median Cr and Zn concentrations in the Leyole river in the effluent mixing zones downstream of the tannery and steel processing plant increased by factors of 52 (2660 compared with 51 µg Cr/L) and 5 (520 compared with 110 µg Zn/L), respectively, compared with stations further upstream. This poses substantial ecological risks downstream. Comparison with emission guidelines indicates poor environmental management by industries and regulating institutions. Despite appropriate legislation, no clear measures have yet been taken to control industrial discharges, with apparent mismatch between environmental enforcement and investment policies. Effluent management, treatment technologies and operational capacity of environmental institutions were identified as key improvement areas to adopt progressive sustainable development.
Soares, Eduardo V; Soares, Helena M V M
2012-05-01
The release of heavy metals into the environment, mainly as a consequence of anthropogenic activities, constitutes a worldwide environmental pollution problem. Unlike organic pollutants, heavy metals are not degraded and remain indefinitely in the ecosystem, which poses a different kind of challenge for remediation. It seems that the "best treatment technologies" available may not be completely effective for metal removal or can be expensive; therefore, new methodologies have been proposed for the detoxification of metal-bearing wastewaters. The present work reviews and discusses the advantages of using brewing yeast cells of Saccharomyces cerevisiae in the detoxification of effluents containing heavy metals. The current knowledge of the mechanisms of metal removal by yeast biomass is presented. The use of live or dead biomass and the influence of biomass inactivation on the metal accumulation characteristics are outlined. The role of chemical speciation for predicting and optimising the efficiency of metal removal is highlighted. The problem of biomass separation, after treatment of the effluents, and the use of flocculent characteristics, as an alternative process of cell-liquid separation, are also discussed. The use of yeast cells in the treatment of real effluents to bridge the gap between fundamental and applied studies is presented and updated. The convenient management of the contaminated biomass and the advantages of the selective recovery of heavy metals in the development of a closed cycle without residues (green technology) are critically reviewed.
Pierre Louis, Andro-Marc; Yu, Hui; Shumlas, Samantha L; Van Aken, Benoit; Schoonen, Martin A A; Strongin, Daniel R
2015-07-07
The effect of phospholipid on the biogeochemistry of pyrite oxidation, which leads to acid mine drainage (AMD) chemistry in the environment, was investigated. Metagenomic analyses were carried out to understand how the microbial community structure, which developed during the oxidation of pyrite-containing coal mining overburden/waste rock (OWR), was affected by the presence of adsorbed phospholipid. Using columns packed with OWR (with and without lipid adsorption), the release of sulfate (SO4(2-)) and soluble iron (FeTot) was investigated. Exposure of lipid-free OWR to flowing pH-neutral water resulted in an acidic effluent with a pH range of 2-4.5 over a 3-year period. The average concentration of FeTot and SO4(2-) in the effluent was ≥20 and ≥30 mg/L, respectively. In contrast, in packed-column experiments where OWR was first treated with phospholipid, the effluent pH remained at ∼6.5 and the average concentrations of FeTot and SO4(2-) were ≤2 and l.6 mg/L, respectively. 16S rDNA metagenomic pyrosequencing analysis of the microbial communities associated with OWR samples revealed the development of AMD-like communities dominated by acidophilic sulfide-oxidizing bacteria on untreated OWR samples, but not on refuse pretreated with phospholipid.
Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kszos, L.A.; Phipps, T.L.
1999-10-09
Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, amore » total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly from outfall to outfall but the DM:TRM ratios for Cu, Ni, and Pb did not. Through the use of the KDOW method, the total recoverable metal measured in an effluent is adjusted by the proportion of dissolved metal present. The resulting alternative total recoverable metal concentration is reported in lieu of the measured total recoverable concentration for determining compliance with permit limits. For example, the monthly average permit limit for Pb in Outfall B (3 {micro}g/L) was exceeded at the Gaseous Diffusion Plant. Through the use of the KDOW method for calculating an alternative total recoverable metal concentration, 4.98 {micro}g Pb/L in Outfall B would be reported as 3.00 {micro}g/L, a difference of > 39%. Thus, the alternative, calculated total recoverable metal concentration provides the discharger with a ''cushion'' for meeting permit limits.« less
Ahmed, Golam; Miah, M Arzu; Anawar, Hossain M; Chowdhury, Didarul A; Ahmad, Jasim U
2012-07-01
Industrial wastewater discharged into aquatic ecosystems either directly or because of inadequate treatment of process water can increase the concentrations of pollutants such as toxic metals and others, and subsequently deteriorate water quality, environmental ecology and human health in the Dhaka Export Processing Zone (DEPZ), the largest industrial belt of 6-EPZ in Bangladesh. Therefore, in order to monitor the contamination levels, this study collected water samples from composite effluent points inside DEPZ and the surrounding surface water body connected to effluent disposal sites and determined the environmental hazards by chemical analysis and statistical approach. The water samples were analysed by inductively coupled plasma mass spectrometry to determine 12 trace metals such as As, Ag, Cr, Co, Cu, Li, Ni, Pb, Se, Sr, V and Zn in order to assess the influence of multi-industrial activities on metal concentrations. The composite effluents and surface waters from lagoons were characterized by a strong colour and high concentrations of biochemical oxygen demand, chemical oxygen demand, electrical conductivity, pH, total alkalinity, total hardness, total organic carbon, Turb., Cl(-), total suspended solids and total dissolved solids, which were above the limit of Bangladesh industrial effluent standards, but dissolved oxygen concentration was lower than the standard value. The measurement of skewness and kurtosis values showed asymmetric and abnormal distribution of the elements in the respective phases. The mean trend of variation was found in a decreasing order: Zn > Cu > Sr > Pb > Ni > Cr > Li > Co > V > Se > As > Ag in composite industrial effluents and Zn > Cu > Sr > Pb > Ni > Cr > Li > V > As > Ag > Co > Se in surface waters near the DEPZ. The strong correlations between effluent and surface water metal contents indicate that industrial wastewaters discharged from DEPZ have a strong influence on the contamination of the surrounding water bodies by toxic metals. The average contamination factors were reported to be 0.70-96.57 and 2.85-1,462 for industrial effluents and surface waters, respectively. The results reveal that the surface water in the area is highly contaminated with very high concentrations of some heavy/toxic metals like Zn, Pb, Cu, Ni and Cr; their average contamination factors are 1,460, 860, 136, 74.71 and 4.9, respectively. The concentrations of the metals in effluent and surface water were much higher than the permissible limits for drinking water and the world average concentrations in surface water. Therefore, the discharged effluent and surface water may create health hazards especially for people working and living inside and in the surrounding area of DEPZ.
30 CFR 57.22002 - Definitions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in... delay connectors. [A copy of Title 49 is available at any Metal and Nonmetal Mine Safety and Health...
30 CFR 57.22002 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in... delay connectors. [A copy of Title 49 is available at any Metal and Nonmetal Mine Safety and Health...
30 CFR 57.22002 - Definitions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in... delay connectors. [A copy of Title 49 is available at any Metal and Nonmetal Mine Safety and Health...
30 CFR 57.22002 - Definitions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety Standards for Methane in... delay connectors. [A copy of Title 49 is available at any Metal and Nonmetal Mine Safety and Health...
Assessment of the quality of sewage effluents from dry weather flow channel, Calcutta.
Adhikari, S; Gupta, S K
2002-10-01
The quality of sewage effluent of Dry weather Flow channel, Calcutta in respect of salinity, sodicity, chloride, sulphate and bicarbonate toxicity and heavy metal hazards was assessed in order to utilize it for irrigation. Although raw sewage in the winter season was toxic in respect of chlorides, sulphates, bicarbonate, BOD, COD; its dilution in the monsoon decreased the toxicity hazards considerably, making it worth using for irrigation. The sewage effluents were rich in N and K, but poor in P status with marginal concentrations of micronutrients (Fe, Cu, Zn & Mn). Heavy metal contents of the soil treated with effluents were also studied.
Assessment of the quality of sewage effluents from dry weather flow channel, Calcutta.
Adhikari, S; Gupta, S K
2002-07-01
The quality of sewage effluent of Dry Weather Flow Channel, Calcutta in respect of salinity, sodicity, chlorides, sulphate and bicarbonate toxicity and heavy metal hazards was assessed in order to utilize it for irrigation. Although raw sewage in the winter season was toxic in respect of chlorides, sulphates, bicarbonate, BOD, COD; its dilution in the monsoon decreased the toxicity hazards considerably, making it worth using for irrigation. The sewage effluents were rich in N and K, but poor in P status with marginal concentrations of micronutrients (Fe, Cu, Zn & Mn). Heavy metal contents of the soil treated with effluents were also studied.
Byrne, Patrick; Reid, Ian; Wood, Paul J
2013-03-01
Contaminated drainage from metal mines is a serious water-quality problem facing nations that exploit metal mineral resources. Measurements of river hydrochemistry during baseflow are common at mine sites, whilst detailed hydrochemical information regarding stormflow is limited and often confined to a single event. This study investigates the seasonal evolution of stormflow hydrochemistry at an abandoned metal mine in central Wales, UK, and the possible sources and mechanisms of metal release. Significant flushing of metals was observed during stormflow events, resulting in concentrations that severely exceeded water-quality guidelines. The relationship between metal concentrations and river discharge suggests dissolution of efflorescent metal sulphates on the surface of the mine spoil as the principal source of the contamination. High fluxes of Pb during stormflows are linked to extended periods of dry weather prior to storm events that produced water table drawdown and encouraged oxidation of Pb sulphide in the mine spoil. However, some Pb flushing also occurred following wet antecedent conditions. It is suggested that Fe oxide reduction in mine spoil and translatory flows involving metal-rich pore waters results in flushing during wetter periods. Detailed measurements of stormflow hydrochemistry at mine sites are essential for accurate forecasting of long-term trends in metals flux to understand metal sources and mechanisms of release, to assess potential risks to water quality and instream ecology, and to gauge the potential effectiveness of remediation. In order to protect riverine and riparian ecosystems, it is suggested that routine monitoring of stormflows becomes part of catchment management in mining-impacted regions.
Heavy metals in handloom-dyeing effluents and their biosorption by agricultural byproducts.
Nahar, Kamrun; Chowdhury, Md Abul Khair; Chowdhury, Md Akhter Hossain; Rahman, Afzal; Mohiuddin, K M
2018-03-01
The Madhabdi municipality in the Narsingdi district of Bangladesh is a well-known area for textile, handloom weaving, and dyeing industries. These textile industries produce a considerable amount of effluents, sewage sludge, and solid waste materials every day that they directly discharge into surrounding water bodies and agricultural fields. This disposal poses a serious threat to the overall epidemic and socio-economic pattern of the locality. This research entailed the collection of 34 handloom-dyeing effluent samples from different handloom-dyeing industries of Madhabdi, which were then analyzed to determine the contents of the heavy metals iron (Fe), zinc (Zn), copper (Cu), chromium (Cr), manganese (Mn), lead (Pb), and cadmium (Cd). Average concentrations of Fe, Cr, Cu, Pb, Mn, and Zn were 3.81, 1.35, 1.70, 0.17, 0.75, and 0.73 mg L -1 , respectively, whereas Cd content was below the detectable limit of the atomic adsorption spectrophotometer. The concentrations of Fe, Cr, Cu, Pb, and Mn exceed the industrial effluent discharge standards (IEDS) for inland surface water and irrigation water guideline values. A biosorption experiment of the heavy metals (Fe, Cr, Cu, Mn, and Zn) was conducted without controlling for any experimental parameters (e.g., pH, temperature, or other compounds present in the effluent samples) by using four agricultural wastes or byproducts, namely rice husk, sawdust, lemon peel, and eggshell. Twenty grams of each biosorbent was added to 1 L of effluent samples and stored for 7 days. The biosorption capacity of each biosorbent is ranked as follows: eggshell, sawdust, rice husk, and lemon peel. Furthermore, the biosorption affinity of each metal ion was found in the following order: Cu and Cr (both had similar biosorption affinity), Zn, Fe, Mn. The effluents should not be discharged before treatment, and efficient treatment of effluents is possible with eggshell powder or sawdust at a rate of 20 g of biosorbent per liter of effluents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, P.L. Jr.
1983-01-01
The effects of surface mining effluents of the shaping of aquatic community structure in wetland-stream ecosystems of the western Kentucky coalfield were examined. Three variously impacted drainage systems were utilized for the investigation of cause-and-effect relationships. Clear Creek wetland-stream ecosystem had a uniformly low pH, high conductivity and high dissolved minerals load linked to the oozing of old, unreclaimed surface mine spoils. Cypress Creek wetland-stream ecosystem exhibited a slug-pulsing of mine drainage effluents tied to active surface mining limited to the headwaters region. Henderson Sloughs-Pond Creek wetland-stream ecosystem had no mining impact and was utilized as a comparison site. Macroinvertebratemore » taxa and diversity were considerably lowered in the systems receiving mine drainage. The Shannon-Weaver diversity index (H) was 0.61 for Clear Creek, 1.80 for Cypress Creek and 2.01 for Henderson Sloughs. Large numbers of chironomid larvae dominated the benthic community of Clear Creek while mayflies, caddisflies and crustaceans were the major components of the Cypress Creek community. Henderson Sloughs-Pond Creek had an even more diverse community of mayflies, caddisflies, crustaceans, molluscs and odonates. Fishes followed the same general trend, being almost absent in Clear Creek (H - 0.47), slightly depressed in Cypress Creek (H = 1.74) and generally diverse in Henderson Sloughs (H = 2.37).« less
Extended characterization of M-Area settling basin and vicinity. Technical data summary. Revision
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickett, J B
1985-10-01
The Savannah River Plant M-Area settling basin, an unlined surface impoundment, has received process effluents from the M-Area fuel and target fabrication facilities since 1958. The waste effluents have contained metal degreasing agents (chlorinated hydrocarbons), acids, caustics, and heavy metals. Data analyses are provided.
NASA Astrophysics Data System (ADS)
Chon, Hyo-Taek
2017-04-01
Heavy metals contamination in the areas of abandoned Au-Ag and base metal mines in Korea was investigated in order to assess the level of metal pollution, and to draw general summaries about the fate of toxic heavy metals in different environments. Efforts have been made to compare the level of heavy metals, chemical forms, and plant uptake of heavy metals in each mine site. In the base-metals mine areas, significant levels of Cd, Cu, Pb and Zn were found in mine dump soils developed over mine waste materials and tailings. Leafy vegetables tend to accumulate heavy metals(in particular, Cd and Zn) higher than other crop plants, and high metal concentrations in rice crops may affect the local residents' health. In the Au-Ag mining areas, arsenic would be the most characteristic contaminant in the nearby environment. Arsenic and heavy metals were found to be mainly associated with sulfide gangue minerals, and the mobility of these metals would be enhanced by the effect of continuing weathering and oxidation. According to the sequential extraction of metals in soils, most heavy metals were identified as non-residual chemical forms, and those are very susceptible to the change of ambient conditions of a nearby environment. The concept of pollution index(PI) of soils gives important information on the extent and degree of multi-element contamination, and can be applied to the evaluation of mine soils before their agricultural use and remediation. The risk assessment process comprising exposure assessment, dose-response assessment, and risk characterization was discussed, and the results of non-cancer risk of As, Cd, and Zn, and those of cancer risk of As were suggested.
40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.
Code of Federal Regulations, 2013 CFR
2013-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...
40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...
40 CFR 440.140 - Applicability; description of the gold placer mine subcategory.
Code of Federal Regulations, 2014 CFR
2014-07-01
... AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) ORE MINING AND DRESSING POINT SOURCE... that produce gold or gold bearing ores from placer deposits; and (2) The beneficiation processes which... yards (cu yd) of ore per year, or to dredges which process less than 50,000 cu yd of ore per year, or to...
Bioremediation of heavy metal-contaminated effluent using optimized activated sludge bacteria
NASA Astrophysics Data System (ADS)
Bestawy, Ebtesam El.; Helmy, Shacker; Hussien, Hany; Fahmy, Mohamed; Amer, Ranya
2013-03-01
Removal of heavy metals from contaminated domestic-industrial effluent using eight resistant indigenous bacteria isolated from acclimatized activated sludge was investigated. Molecular identification using 16S rDNA amplification revealed that all strains were Gram-negative among which two were resistant to each of copper, cadmium and cobalt while one was resistant to each of chromium and the heavy metal mixture. They were identified as Enterobacter sp. (Cu1), Enterobacter sp. (Cu2), Stenotrophomonas sp. (Cd1), Providencia sp. (Cd2), Chryseobacterium sp. (Co1), Comamonas sp. (Co2), Ochrobactrum sp. (Cr) and Delftia sp. (M1) according to their resistance pattern. Strains Cu1, Cd1, Co2 and Cr were able to resist 275 mg Cu/l, 320 mg Cd/l, 140 mg Co/l and 29 mg Cr/l respectively. The four resistant strains were used as a mixture to remove heavy metals (elevated concentrations) and reduce the organic load of wastewater effluent. Results revealed that using the proposed activated sludge with the resistant bacterial mixture was more efficient for heavy metal removal compared to the activated sludge alone. It is therefore recommended that the proposed activated sludge system augmented with the acclimatized strains is the best choice to ensure high treatment efficiency and performance under metal stresses especially when industrial effluents are involved.
30 CFR 56.19045 - Metal bonnets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Metal bonnets. 56.19045 Section 56.19045 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting...
30 CFR 57.19045 - Metal bonnets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Metal bonnets. 57.19045 Section 57.19045 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Personnel Hoisting...
30 CFR 57.19045 - Metal bonnets.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Metal bonnets. 57.19045 Section 57.19045 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Personnel Hoisting...
30 CFR 56.19045 - Metal bonnets.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Metal bonnets. 56.19045 Section 56.19045 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Personnel Hoisting...
Small mammal-heavy metal concentrations from mined and control sites
Smith, G.J.; Rongstad, O.J.
1982-01-01
Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.
Closedure - Mine Closure Technologies Resource
NASA Astrophysics Data System (ADS)
Kauppila, Päivi; Kauppila, Tommi; Pasanen, Antti; Backnäs, Soile; Liisa Räisänen, Marja; Turunen, Kaisa; Karlsson, Teemu; Solismaa, Lauri; Hentinen, Kimmo
2015-04-01
Closure of mining operations is an essential part of the development of eco-efficient mining and the Green Mining concept in Finland to reduce the environmental footprint of mining. Closedure is a 2-year joint research project between Geological Survey of Finland and Technical Research Centre of Finland that aims at developing accessible tools and resources for planning, executing and monitoring mine closure. The main outcome of the Closedure project is an updatable wiki technology-based internet platform (http://mineclosure.gtk.fi) in which comprehensive guidance on the mine closure is provided and main methods and technologies related to mine closure are evaluated. Closedure also provides new data on the key issues of mine closure, such as performance of passive water treatment in Finland, applicability of test methods for evaluating cover structures for mining wastes, prediction of water effluents from mine wastes, and isotopic and geophysical methods to recognize contaminant transport paths in crystalline bedrock.
Hasegawa, Hiroshi; Rahman, Ismail M M; Nakano, Masayoshi; Begum, Zinnat A; Egawa, Yuji; Maki, Teruya; Furusho, Yoshiaki; Mizutani, Satoshi
2011-10-15
Aminopolycarboxylate chelants (APCs) are extremely useful for a variety of industrial applications, including the treatment of toxic metal-contaminated solid waste materials. Because non-toxic matrix elements compete with toxic metals for the binding sites of APCs, an excess of chelant is commonly added to ensure the adequate sequestration of toxic metal contaminants during waste treatment operations. The major environmental impacts of APCs are related to their ability to solubilize toxic heavy metals. If APCs are not sufficiently eliminated from the effluent, the aqueous transport of metals can occur through the introduction of APCs into the natural environment, increasing the magnitude of associated toxicity. Although several techniques that focus primarily on the degradation of APCs at the pre-release step have been proposed, methods that recycle not only the processed water, but also provide the option to recover and reuse the metals, might be economically feasible, considering the high costs involved due to the chelants used in metal ion sequestration. In this paper, we propose a separation process for the recovery of metals from effluents that contain an excess of APCs. Additionally, the option of recycling the processed water using a solid phase extraction (SPE) system with an ion-selective immobilized macrocyclic material, commonly known as a molecular recognition technology (MRT) gel, is presented. Simulated effluents containing As(V), Cd(II), Cr(III), Pb(II) or Se(IV) in the presence of APCs at molar ratios of 1:50 in H2O were studied with a flow rate of 0.2 mL min(-1). The 'captured' ions in the SPE system were quantitatively eluted with HNO3. The effects of solution pH, metal-chelant stability constants and matrix elements were assessed. Better separation performance for the metals was achieved with the MRT-SPE compared to other SPE materials. Our proposed technique offers the advantage of a non-destructive separation of both metal ions and chelants compared to conventional treatment options for such effluents. Copyright © 2011 Elsevier Ltd. All rights reserved.
30 CFR 57.16013 - Working with molten metal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Materials...
30 CFR 57.16013 - Working with molten metal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 57.16013 Section 57.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Materials...
Remediation of streams influenced by mine-drainage may require removal and burial of metal-containing bed sediments. Burial of aerobic sediments into an anaerobic environment may release metals, such as through reductive dissolution of metal oxyhydroxides. Mining-impacted aerob...
Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...
Photocatalytic processes assisted by artificial solar light for soil washing effluent treatment.
Satyro, Suéllen; Race, Marco; Marotta, Raffaele; Dezotti, Márcia; Guida, Marco; Clarizia, Laura
2017-03-01
Contaminated soil has become a growing issue in recent years. The most common technique used to remove contaminants (such as metals) from the soil is the soil washing process. However, this process produces a final effluent containing chelating agents (i.e., ethylenediaminedisuccinic acid, also known as EDDS) and extracted metals (i.e., Cu, Fe, and Zn) at concentrations higher than discharge limits allowed by the Italian and Brazilian environmental law. Therefore, it is necessary to develop further treatments before its proper disposal or reuse. In the present study, soil washing tests were carried out through two sequential paths. Moreover, different artificial sunlight-driven photocatalytic treatments were used to remove Cu, Zn, Fe, and EDDS from soil washing effluents. Metal concentrations after the additional treatment were within the Brazilian and Italian regulatory limits for discharging in public sewers. The combined TiO 2 -photocatalytic processes applied were enough to decontaminate the effluents, allowing their reuse in soil washing treatment. Ecotoxicological assessment using different living organisms was carried out to assess the impact of the proposed two-step photocatalytic process on the effluent ecotoxicity. Graphical Abstract ᅟ.
Effects of mining-derived metals on riffle-dwelling benthic fishes in Southeast Missouri, USA
Allert, A.L.; Fairchild, J.F.; Schmitt, C.J.; Besser, J.M.; Brumbaugh, W.G.; Olson, S.J.
2009-01-01
We studied the ecological effects of mining-derived metals on riffle-dwelling benthic fishes at 16 sites in the Viburnum Trend lead-zinc mining district of southeast Missouri. Fish community attributes were compared to watershed features and to physical and chemical variables including metal concentrations in sediment pore water and fish. Ozark sculpin (Cottus hypselurus), rainbow darter (Etheostoma caeruleum), Ozark madtom (Noturus albater), and banded sculpin (Cottus carolinae) were the most abundant fishes collected. Species richness and density of riffle-dwelling benthic fishes were negatively correlated with metal concentrations in pore water and in fish. Sculpin densities were also negatively correlated with metal concentrations in pore water and in fish, but positively correlated with distance from mines and upstream watershed area. These findings indicate that metals associated with active lead-zinc mining adversely affect riffle-dwelling benthic fishes downstream of mining areas in the Viburnum Trend. Sculpins may be useful as a sentinel species for assessing mining-related impacts on fish communities.
30 CFR 56.16013 - Working with molten metal.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials Storage...
30 CFR 56.16013 - Working with molten metal.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Working with molten metal. 56.16013 Section 56.16013 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Materials Storage...
Accumulation of heavy metals by vegetables grown in mine wastes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cobb, G.P.; Sands, K.; Waters, M.
2000-03-01
Lead, cadmium, arsenic, and zinc were quantified in mine wastes and in soils mixed with mine wastes. Metal concentrations were found to be heterogeneous in the wastes. Iceberg lettuce, Cherry Belle radishes, Roma bush beans, and Better Boy tomatoes were cultivated in mine wastes and in waste-amended soils. Lettuce and radishes had 100% survival in the 100% mine waste treatments compared to 0% and 25% survival for tomatoes and beans, respectively. Metal concentrations were determined in plant tissues to determine uptake and distribution of metals in the edible plant parts. Individual soil samples were collected beneath each plant to assessmore » metal content in the immediate plant environment. This analysis verified heterogeneous metal content of the mine wastes. The four plant species effectively accumulated and translocated lead, cadmium, arsenic, and zinc. Tomato and bean plants contained the four metals mainly in the roots and little was translocated to the fruits. Radish roots accumulated less metals compared to the leaves, whereas lettuce roots and leaves accumulated similar concentrations of the four metals. Lettuce leaves and radish roots accumulated significantly more metals than bean and tomato fruits. This accumulation pattern suggests that consumption of lettuce leaves or radish roots from plants grown in mine wastes would pose greater risks to humans and wildlife than would consumption of beans or tomatoes grown in the same area. The potential risk may be mitigated somewhat in humans, as vegetables grown in mine wastes exhibited stunted growth and chlorosis.« less
Leachability of Arsenic and Heavy Metals from Mine Tailings of Abandoned Metal Mines
Lim, Mihee; Han, Gi-Chun; Ahn, Ji-Whan; You, Kwang-Suk; Kim, Hyung-Seok
2009-01-01
Mine tailings from an abandoned metal mine in Korea contained high concentrations of arsenic (As) and heavy metals [e.g., As: 67,336, Fe: 137,180, Cu: 764, Pb: 3,572, and Zn: 12,420 (mg/kg)]. US EPA method 6010 was an effective method for analyzing total arsenic and heavy metals concentrations. Arsenic in the mine tailings showed a high residual fraction of 89% by a sequential extraction. In Toxicity Characteristic Leaching Procedure (TCLP) and Korean Standard Leaching Test (KSLT), leaching concentrations of arsenic and heavy metals were very low [e.g., As (mg/L): 0.4 for TCLP and 0.2 for KSLT; cf. As criteria (mg/L): 5.0 for TCLP and 1.5 for KSLT]. PMID:20049231
The role of algae in mine drainage bioremediation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davison, J.
1990-06-01
The effect of mine drainage effluent on aquatic ecosystems has been abundantly documented and remediation efforts to data have always been costly and temporary at best. Bioremediation, using natural environmental microbes, to treat acid mine drainage has shown great promise as an affordable, permanent treatment. At Lambda, we used mixatrophic cultures of bacteria, algae, protozoans and fungal groups on four different jobs and it has proven effective. The role of two particular algal groups, the Euglena mutabilis and the Ochramonas sp. are particularly of phycological interest.
NASA Astrophysics Data System (ADS)
Bang, H.; Kim, J.; Hyun, S.
2016-12-01
Mine leachate derived from contaminated mine sites with metallic elements can pose serious risks on human society and environment. Only labile fraction of metallic elements in mine soils is subject to leaching and movement by rainfall. Lability of metallic element in soil is a function of bond strengths between metal and soil surfaces, which is influenced by environmental condition (e.g., rainfall intensity, duration, temperature, etc.) The purpose of this study was to elucidate the effects of various climate conditions on the leaching patterns and lability of metallic elements in mine soils. To do this, two mine soils were sampled from two abandoned mine sites located in Korea. Leaching test were conducted using batch decant-refill method. Various climatic conditions were employed in leaching test such as (1) oven drying (40oC) - wetting cycles, (2) air drying (20oC) - wetting cycle, and (3) freezing (-40oC) - thawing cycles. Duration of drying and freezing were varied from 4 days to 2 weeks. Concentration of metallic elements, pH, Eh and concentration of dissolved iron and sulfate in leachate from each leaching process was measured. To identify the changes of labile fraction in mine soils after each of drying or freezing period, sequential extraction procedure (five fraction) was used to compare labile fraction (i.e., F1 + F2) of metallic elements. The concentration of metallic elements in mine leachate was increased after drying and freezing procedure. The amounts of released metallic element from mine soils was changed depending on their drying or freezing period. In addition, labile fraction of metallic elements in soil was also changed after drying and freezing. The changes in labile fraction after drying and freezing might be due to the increased soil surface area by pore water volume expansion. Further study is therefore needed to evaluate the impact of altered physical properties of soils such as hydration of soil surface area and shrinking by drying and freezing cycles.
Basu, Niladri; Abare, Marce; Buchanan, Susan; Cryderman, Diana; Nam, Dong-Ha; Sirkin, Susannah; Schmitt, Stefan; Hu, Howard
2016-01-01
In August 2009 a combined epidemiological and ecological pilot study was conducted to investigate allegations of human rights abuses in the form of exposures to toxic metals experienced by mine workers and Indigenous Mam Mayan near the Marlin Mine in Guatemala. In the human study there were no differences in blood and urine metals when comparing five mine workers with eighteen non-mine workers, and there were no discernible relationships between metals exposures and self-reported health measures in any study group. On the other hand, individuals residing closest to the mine had significantly higher levels of certain metals (urinary mercury, copper, arsenic, zinc) when compared to those living further away. Levels of blood aluminum, manganese, and cobalt were elevated in comparison to established normal ranges in many individuals; however, there was no apparent relationship to proximity to the mine or occupation, and thus are of unclear significance. In the ecological study, several metals (aluminum, manganese, cobalt) were found significantly elevated in the river water and sediment sites directly below the mine when compared to sites elsewhere. When the results of the human and ecological results are combined, they suggest that exposures to certain metals may be elevated in sites near the mine but it is not clear if the current magnitude of these elevations poses a significant threat to health. The authors conclude that more robust studies are needed while parallel efforts to minimize the ecological and human impacts of mining proceed. This is critical particularly as the impact of the exposures found could be greatly magnified by expected increases in mining activity over time, synergistic toxicity between metals, and susceptibility for the young and those with pre-existing disease. PMID:20952048
Ferreira, Verónica; Koricheva, Julia; Duarte, Sofia; Niyogi, Dev K; Guérold, François
2016-03-01
Many streams worldwide are affected by heavy metal contamination, mostly due to past and present mining activities. Here we present a meta-analysis of 38 studies (reporting 133 cases) published between 1978 and 2014 that reported the effects of heavy metal contamination on the decomposition of terrestrial litter in running waters. Overall, heavy metal contamination significantly inhibited litter decomposition. The effect was stronger for laboratory than for field studies, likely due to better control of confounding variables in the former, antagonistic interactions between metals and other environmental variables in the latter or differences in metal identity and concentration between studies. For laboratory studies, only copper + zinc mixtures significantly inhibited litter decomposition, while no significant effects were found for silver, aluminum, cadmium or zinc considered individually. For field studies, coal and metal mine drainage strongly inhibited litter decomposition, while drainage from motorways had no significant effects. The effect of coal mine drainage did not depend on drainage pH. Coal mine drainage negatively affected leaf litter decomposition independently of leaf litter identity; no significant effect was found for wood decomposition, but sample size was low. Considering metal mine drainage, arsenic mines had a stronger negative effect on leaf litter decomposition than gold or pyrite mines. Metal mine drainage significantly inhibited leaf litter decomposition driven by both microbes and invertebrates, independently of leaf litter identity; no significant effect was found for microbially driven decomposition, but sample size was low. Overall, mine drainage negatively affects leaf litter decomposition, likely through negative effects on invertebrates. Copyright © 2015 Elsevier Ltd. All rights reserved.
BIORECOVERY OF METALS FROM ACID MINE DRAINAGE
Acid mine water is an acidic, metal-bearing wastewater generated by the oxidation of metallic sulfides by certain bacteria in both active and abandoned mining operations. The wastewaters contain substantial quantities of dissolved solids with the particular pollutants dependant u...
This fact sheet provides guidance on the Chemical Data Reporting (CDR) rule requirements related to the reporting of mined metals, intermediates, and byproducts manufactured during metal mining and related activities.
Landfill mining: Case study of a successful metals recovery project.
Wagner, Travis P; Raymond, Tom
2015-11-01
Worldwide, the generation of municipal solid waste (MSW) is increasing and landfills continue to be the dominant method for managing solid waste. Because of inadequate diversion of reusable and recoverable materials, MSW landfills continue to receive significant quantities of recyclable materials, especially metals. The economic value of landfilled metals is significant, fostering interest worldwide in recovering the landfilled metals through mining. However, economically viable landfill mining for metals has been elusive due to multiple barriers including technological challenges and high costs of processing waste. The objective of this article is to present a case study of an economically successful landfill mining operation specifically to recover metals. The mining operation was at an ashfill, which serves a MSW waste-to-energy facility. Landfill mining operations began in November 2011. Between December 2011 and March 2015, 34,352 Mt of ferrous and non-ferrous metals were recovered and shipped for recycling, which consisted of metals >125 mm (5.2%), 50-125 mm (85.9%), <50mm (3.4%), zorba (4.6%), and mixed products (0.8%). The conservative estimated value of the recovered metal was $7.42 million. Mining also increased the landfill's airspace by 10,194 m(3) extending the life of the ashfill with an estimated economic value of $267,000. The estimated per-Mt cost for the extraction of metal was $158. This case study demonstrates that ashfills can be profitably mined for metals without financial support from government. Although there are comparatively few ashfills, the results and experience obtained from this case study can help foster further research into the potential recovery of metals from raw, landfilled MSW. Copyright © 2015 Elsevier Ltd. All rights reserved.
Valencia-Avellan, Magaly; Slack, Rebecca; Stockdale, Anthony; Mortimer, Robert John George
2017-08-16
Point and diffuse pollution from metal mining has led to severe environmental damage worldwide. Mine drainage is a significant problem for riverine ecosystems, it is commonly acidic (AMD), but neutral mine drainage (NMD) can also occur. A representative environment for studying metal pollution from NMD is provided by carboniferous catchments characterised by a circumneutral pH and high concentrations of carbonates, supporting the formation of secondary metal-minerals as potential sinks of metals. The present study focuses on understanding the mobility of metal pollution associated with historical mining in a carboniferous upland catchment. In the uplands of the UK, river water, sediments and spoil wastes were collected over a period of fourteen months, samples were chemically analysed to identify the main metal sources and their relationships with geological and hydrological factors. Correlation tests and principal component analysis suggest that the underlying limestone bedrock controls pH and weathering reactions. Significant metal concentrations from mining activities were measured for zinc (4.3 mg l -1 ), and lead (0.3 mg l -1 ), attributed to processes such as oxidation of mined ores (e.g. sphalerite, galena) or dissolution of precipitated secondary metal-minerals (e.g. cerussite, smithsonite). Zinc and lead mobility indicated strong dependence on biogeochemistry and hydrological conditions (e.g. pH and flow) at specific locations in the catchment. Annual loads of zinc and lead (2.9 and 0.2 tonnes per year) demonstrate a significant source of both metals to downstream river reaches. Metal pollution results in a large area of catchment having a depleted chemical status with likely effects on the aquatic ecology. This study provides an improved understanding of geological and hydrological processes controlling water chemistry, which is critical to assessing metal sources and mobilization, especially in neutral mine drainage areas.
Charles, Jérémie; Sancey, Bertrand; Morin-Crini, Nadia; Badot, Pierre-Marie; Degiorgi, François; Trunfio, Giuseppe; Crini, Grégorio
2011-10-01
Industrial wastewater containing heavy metals is generally decontaminated by physicochemical treatment consisting in insolublizing the contaminants and separating the two phases, water and sludge, by a physical process (filtration, settling or flotation). However, chemical precipitation does not usually remove the whole pollution load and the effluent discharged into the environment can be toxic even if it comes up to regulatory standards. To assess the impact of industrial effluent from 4 different surface treatment companies, we performed standardized bioassays using seeds of the lettuce Lactuca sativa. We measured the rate of germination, and the length and mass of the lettuce plantlet. The results were used to compare the overall toxicity of the different effluents: effluents containing copper and nickel had a much higher impact than those containing zinc or aluminum. In addition, germination tests conducted using synthetic solutions confirmed that mixtures of metals have higher toxicity than the sum of their separate constituents. These biological tests are cheap, easy to implement, reproducible and highlight the effects caused by effluent treated with the methods commonly applied in industry today. They could be routinely used to check the impact of industrial discharges, even when they meet regulatory requirements for the individual metals. Copyright © 2011 Elsevier Inc. All rights reserved.
Evaluation of ionic contribution to the toxicity of a coal-mine effluent using Ceriodaphnia dubia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, A.J.; Cherry, D.S.; Zipper, C.E.
2005-08-01
The United States Environmental Protection Agency has defined national in-stream water-quality criteria (WQC) for 157 pollutants. No WQC to protect aquatic life exist for total dissolved solids (TDS). Some water-treatment processes (e.g., pH modifications) discharge wastewaters of potentially adverse TDS into freshwater systems. Strong correlations between specific conductivity, a TDS surrogate, and several biotic indices in a previous study suggested that TDS caused by a coal-mine effluent was the primary stressor. Further acute and chronic testing in the current study with Ceriodaphnia dubia in laboratory-manipulated media indicated that the majority of the effluent toxicity could be attributed to the mostmore » abundant ions in the discharge, sodium (1952 mg/L) and/or sulfate (3672 mg/L), although the hardness of the effluent (792 43 mg/L as CaCO{sub 3}) ameliorated some toxicity. Based on laboratory testing of several effluent-mimicking media, sodium- and sulfate-dominated TDS was acutely toxic at approximately 7000 {mu} S/cm (5143 mg TDS/L), and chronic toxicity occurred at approximately 3200 {mu} S/cm (2331 mg TDS/L). At a lower hardness (88 mg/L as CaCO{sub 3}), acute and chronic toxicity end-points were decreased to approximately 5000 {mu} S/cm (3663 mg TDS/L) and approximately 2000 {mu} S/cm (1443 mg TDS/L), respectively. Point-source discharges causing in-stream TDS concentrations to exceed these levels may risk impairment to aquatic life.« less
Geologic processes influence the effects of mining on aquatic ecosystems
Schmidt, Travis S.; Clements, William H.; Wanty, Richard B.; Verplanck, Philip L.; Church, Stan E.; San Juan, Carma A.; Fey, David L.; Rockwell, Barnaby W.; DeWitt, Ed H.; Klein, Terry L.
2012-01-01
Geologic processes strongly influence water and sediment quality in aquatic ecosystems but rarely are geologic principles incorporated into routine biomonitoring studies. We test if elevated concentrations of metals in water and sediment are restricted to streams downstream of mines or areas that may discharge mine wastes. We surveyed 198 catchments classified as “historically mined” or “unmined,” and based on mineral-deposit criteria, to determine whether water and sediment quality were influenced by naturally occurring mineralized rock, by historical mining, or by a combination of both. By accounting for different geologic sources of metals to the environment, we were able to distinguish aquatic ecosystems limited by metals derived from natural processes from those due to mining. Elevated concentrations of metals in water and sediment were not restricted to mined catchments; depauperate aquatic communities were found in unmined catchments. The type and intensity of hydrothermal alteration and the mineral deposit type were important determinants of water and sediment quality as well as the aquatic community in both mined and unmined catchments. This study distinguished the effects of different rock types and geologic sources of metals on ecosystems by incorporating basic geologic processes into reference and baseline site selection, resulting in a refined assessment. Our results indicate that biomonitoring studies should account for natural sources of metals in some geologic environments as contributors to the effect of mines on aquatic ecosystems, recognizing that in mining-impacted drainages there may have been high pre-mining background metal concentrations.
Directed Selection of Biochars for Amending Metal ...
Approximately 500,000 abandoned mines across the U.S. pose a considerable, pervasive risk to human health and the environment. World-wide the problem is even larger. Lime, organic matter, biosolids and other amendments have been used to decrease metal bioavailability in contaminated mine wastes and to promote the development of a mine waste stabilizing plant cover. The demonstrated properties of biochar make it a viable candidate as an amendment for remediating metal contaminated mine soils. In addition to sequestering potentially toxic metals, biochar can also be a source of plant nutrients, used to adjust soil pH, improve soil water holding characteristics, and increase soil carbon content. However, methods are needed for matching biochar beneficial properties with mine waste toxicities and soil health deficiencies. In this presentation we will report on a study in which we used mine soil from an abandoned Cu and Zn mine to develop a three-step procedure for identifying biochars that are most effective at reducing heavy metal bioavailability. Step 1: a slightly acidic extract of the mine spoil soil was produced, representing the potentially available metals, and used to identify metal removal properties of a library of 38 different biochars (e.g., made from a variety of feedstocks and pyrolysis or gasification conditions). Step 2: evaluation of how well these biochars retained (i.e., did not desorb) previously sorbed metals. Step 3: laboratory evalua
Find environmental regulatory information about the metals sector (NAICS 331 & 332), including NESHAPs for metal coatings, effluent guidelines for metal products, combustion compliance assistance, and information about foundry sand recycling.
Schaider, Laurel A.; Senn, David B.; Estes, Emily R.; Brabander, Daniel J.; Shine, James P.
2014-01-01
Heavy metal contamination of surface waters at mining sites often involves complex interactions of multiple sources and varying biogeochemical conditions. We compared surface and subsurface metal loading from mine waste pile runoff and mine drainage discharge and characterized the influence of iron oxides on metal fate along a 0.9-km stretch of Tar Creek (Oklahoma, USA), which drains an abandoned Zn/Pb mining area. The importance of each source varied by metal: mine waste pile runoff contributed 70% of Cd, while mine drainage contributed 90% of Pb, and both sources contributed similarly to Zn loading. Subsurface inputs accounted for 40% of flow and 40-70% of metal loading along this stretch. Streambed iron oxide aggregate material contained highly elevated Zn (up to 27,000 μg g−1), Pb (up to 550 μg g−1) and Cd (up to 200 μg g−1) and was characterized as a heterogeneous mixture of iron oxides, fine-grain mine waste, and organic material. Sequential extractions confirmed preferential sequestration of Pb by iron oxides, as well as substantial concentrations of Zn and Cd in iron oxide fractions, with additional accumulation of Zn, Pb, and Cd during downstream transport. Comparisons with historical data show that while metal concentrations in mine drainage have decreased by more than an order of magnitude in recent decades, the chemical composition of mine waste pile runoff has remained relatively constant, indicating less attenuation and increased relative importance of pile runoff. These results highlight the importance of monitoring temporal changes at contaminated sites associated with evolving speciation and simultaneously addressing surface and subsurface contamination from both mine waste piles and mine drainage. PMID:24867708
Development and application of biotechnologies in the metal mining industry.
Johnson, D Barrie
2013-11-01
Metal mining faces a number of significant economic and environmental challenges in the twenty-first century for which established and emerging biotechnologies may, at least in part, provide the answers. Bioprocessing of mineral ores and concentrates is already used in variously engineered formats to extract base (e.g., copper, cobalt, and nickel) and precious (gold and silver) metals in mines throughout the world, though it remains a niche technology. However, current projections of an increasing future need to use low-grade primary metal ores, to reprocess mine wastes, and to develop in situ leaching technologies to extract metals from deep-buried ore bodies, all of which are economically more amenable to bioprocessing than conventional approaches (e.g., pyrometallurgy), would suggest that biomining will become more extensively utilized in the future. Recent research has also shown that bioleaching could be used to process a far wider range of metal ores (e.g., oxidized ores) than has previously been the case. Biotechnologies are also being developed to control mine-related pollution, including securing mine wastes (rocks and tailings) by using "ecological engineering" approaches, and also to remediate and recover metals from waste waters, such as acid mine drainage. This article reviews the current status of biotechnologies within the mining sector and considers how these may be developed and applied in future years.
Yager, Douglas B.; Fey, David L.; Chapin, Thomas; Johnson, Raymond H.
2016-01-01
The Gold King mine water release that occurred on 5 August 2015 near the historical mining community of Silverton, Colorado, highlights the environmental legacy that abandoned mines have on the environment. During reclamation efforts, a breach of collapsed workings at the Gold King mine sent 3 million gallons of acidic and metal-rich mine water into the upper Animas River, a tributary to the Colorado River basin. The Gold King mine is located in the scenic, western San Juan Mountains, a region renowned for its volcano-tectonic and gold-silver-base metal mineralization history. Prior to mining, acidic drainage from hydrothermally altered areas was a major source of metals and acidity to streams, and it continues to be so. In addition to abandoned hard rock metal mines, uranium mine waste poses a long-term storage and immobilization challenge in this area. Uranium resources are mined in the Colorado Plateau, which borders the San Juan Mountains on the west. Uranium processing and repository sites along the Animas River near Durango, Colorado, are a prime example of how the legacy of mining must be managed for the health and well-being of future generations. The San Juan Mountains are part of a geoenvironmental nexus where geology, mining, agriculture, recreation, and community issues converge. This trip will explore the geology, mining, and mine cleanup history in which a community-driven, watershed-based stakeholder process is an integral part. Research tools and historical data useful for understanding complex watersheds impacted by natural sources of metals and acidity overprinted by mining will also be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ajmal, M.; Khan, A.U.
The effect of electroplating factory effluent in different concentrations (viz., 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.5, 2.0, 2.5, 3.0, and 4.0%) on the germination and growth of hyacinth beans (Dolichos lablab) and mustard seeds (Brassica compestris) was studied. The germination of seeds was delayed with the increase of effluent concentration and the germination of mustard seeds was totally inhibited at 1.5% effluent concentration while hyacinth bean seeds tolerated the effluent up to 2.5% concentration. The metal content in the hyacinth bean plants increased with increasing effluent concentration but after 1.0% effluent concentration, the concentration of all the metals (Ca,more » Mg, Na, K, Cu, Zn, Fe) decreased in the plants except Cr, which increased throughout. Percentage germination, fresh weight, dry weight, root length, and shoot length of the plants were also analyzed. Cd, Ni, Co, Mn, and Pb were not detectable in the hyacinth bean plants.« less
Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development.
Hoffman, D J; Eastin, W C
1981-09-01
Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.
Effects of industrial effluents, heavy metals, and organic solvents on mallard embryo development
Hoffman, D.J.; Eastin, W.C.
1981-01-01
Mallard eggs were externally exposed at 3 and 8 days of incubation to 7 different industrial effluents and to 7 different heavy metal, organic solvent, and petroleum solutions to screen for potential embryo-toxic effects. This route of exposure was chosen in order to simulate the transfer of pollutant from the plumage of aquatic birds to their eggs. Five of the effluents including mineral pigment, scouring effluent, sludge, and tannery effluent resulted in small but significant reductions in embryonic growth. Treatment with methyl mercury chloride solution of 50 ppm (Hg) impaired embryonic growth but much higher concentrations were required to affect survival and cause teratogenic effects. Oil used to suppress road dust was the most toxic of the pollutants tested and only 0.5 microliter/egg caused 60% mortality by 18 days of development. These findings, in combination with other studies suggest that petroleum pollutants, or effluents in combination with petroleum, may pose a hazard to birds' eggs when exposure is by this route.
Trace Analysis of Heavy Metals in Ground Waters of Vijayawada Industrial Area
ERIC Educational Resources Information Center
Tadiboyina, Ravisankar; Ptsrk, Prasada Rao
2016-01-01
In recent years, the new environmental problem are arising due to industrial hazard wastage, global climate change, ground water contamination and etc., gives an attention to protect environment.one of the major source of contamination of ground water is improper discharge of industrial effluents these effluents contains so many heavy metals which…
30 CFR 57.22230 - Weekly testing (II-A mines).
Code of Federal Regulations, 2010 CFR
2010-07-01
... 57.22230 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Safety... following locations: (1) Active mining faces and benches; (2) Main returns; (3) Returns from idle workings...
Pan, Jilang; Oates, Christopher J; Ihlenfeld, Christian; Plant, Jane A; Voulvoulis, Nikolaos
2010-04-01
Metals have been central to the development of human civilisation from the Bronze Age to modern times, although in the past, metal mining and smelting have been the cause of serious environmental pollution with the potential to harm human health. Despite problems from artisanal mining in some developing countries, modern mining to Western standards now uses the best available mining technology combined with environmental monitoring, mitigation and remediation measures to limit emissions to the environment. This paper develops risk screening and prioritisation methods previously used for contaminated land on military and civilian sites and engineering systems for the analysis and prioritisation of chemical risks from modern metal mining operations. It uses hierarchical holographic modelling and multi-criteria decision making to analyse and prioritise the risks from potentially hazardous inorganic chemical substances released by mining operations. A case study of an active platinum group metals mine in South Africa is used to demonstrate the potential of the method. This risk-based methodology for identifying, filtering and ranking mining-related environmental and human health risks can be used to identify exposure media of greatest concern to inform risk management. It also provides a practical decision-making tool for mine acquisition and helps to communicate risk to all members of mining operation teams.
Allert, A.L.; Fairchild, J.F.; DiStefano, R.J.; Schmitt, C.J.; Brumbaugh, W.G.; Besser, J.M.
2009-01-01
The Viburnum Trend mining district in southeast Missouri, USA is one of the largest producers of lead-zinc ore in the world. Previous stream surveys found evidence of increased metal exposure and reduced population densities of crayfish immediately downstream of mining sites. We conducted an in-situ 28-d exposure to assess toxicity of mining-derived metals to the woodland crayfish (Orconectes hylas). Crayfish survival and biomass were significantly lower at mining sites than at reference and downstream sites. Metal concentrations in water, detritus, macroinvertebrates, fish, and crayfish were significantly higher at mining sites, and were negatively correlated with caged crayfish survival. These results support previous field and laboratory studies that showed mining-derived metals negatively affect O. hylas populations in streams draining the Viburnum Trend, and that in-situ toxicity testing was a valuable tool for assessing the impacts of mining on crayfish populations.
Metal mining and the environment
Hudson, Travis L.; Fox, Frederick D.; Plumlee, Geoffrey S.
1999-01-01
The booklet, Metal Mining and the Environment, and the colorful companion poster offer new tools for raising awareness and understanding of the impact and issues surrounding metal mining and the environment. The 64-page full-color booklet contains a copy of the poster which includes a student activity on the back. This booklet and poster can help you: illustrate the importance of our natural and environmental resources; provide a geoscience perspective on metal mining and the environment; improve Earth science literacy; and increase student understandings of Earth resources and systems.
Hydroponics reducing effluent's heavy metals discharge.
Rababah, Abdellah; Al-Shuha, Ahmad
2009-01-01
This paper investigates the capacity of Nutrient Film Technique (NFT) to control effluent's heavy metals discharge. A commercial hydroponic system was adapted to irrigate lettuces with primary treated wastewater for studying the potential heavy metals removal. A second commercial hydroponic system was used to irrigate the same type of lettuces with nutrient solution and this system was used as a control. Results showed that lettuces grew well when irrigated with primary treated effluent in the commercial hydroponic system. The NFT-plant system heavy metals removal efficiency varied amongst the different elements, The system's removal efficiency for Cr was more than 92%, Ni more than 85%, in addition to more than 60% reduction of B, Pb, and Zn. Nonetheless, the NFT-plants system removal efficiencies for As, Cd and Cu were lower than 30%. Results show that lettuces accumulated heavy metals in leaves at concentrations higher than the maximum acceptable European and Australian levels. Therefore, non-edible plants such as flowers or pyrethrum are recommended as value added crops for the proposed NFT.
Chen, Dan; Xiao, Zhixing; Wang, Hongyu; Yang, Kai
2018-05-27
Vanadium (V) is a common heavy metal and often co-occurs with nitrate in effluents from mining and metal finishing industry. In the present study, the toxic effects of V(V) were examined in a sulfur and hydrogen based autotrophic denitrification system. This combined system achieved simultaneously microbial denitrification and V(V) reduction. High concentration of V(V) (60 and 100 mg/L) inhibited the denitrification activities, while 30 mg/L V(V) had a very slight effect. V(V) induced increases of lactate dehydrogenase release and reactive oxygen species production, which may inhibit nitrate and nitrite reductases activities and abundances of denitrifying functional genes. Moreover, the extracellular polymeric substance production was also suppressed under V(V) stress, thereby decreasing the amount of biofilm biomass. Microbial community analyses suggesting the genus Bacillus may have higher tolerance to V(V). These findings can provide scientific basis for the optimized design of treatment system to remove nitrate and V(V) simultaneously. Copyright © 2018 Elsevier Ltd. All rights reserved.
Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul
2016-07-01
Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.
Radium and barium removal through blending hydraulic fracturing fluids with acid mine drainage.
Kondash, Andrew J; Warner, Nathaniel R; Lahav, Ori; Vengosh, Avner
2014-01-21
Wastewaters generated during hydraulic fracturing of the Marcellus Shale typically contain high concentrations of salts, naturally occurring radioactive material (NORM), and metals, such as barium, that pose environmental and public health risks upon inadequate treatment and disposal. In addition, fresh water scarcity in dry regions or during periods of drought could limit shale gas development. This paper explores the possibility of using alternative water sources and their impact on NORM levels through blending acid mine drainage (AMD) effluent with recycled hydraulic fracturing flowback fluids (HFFFs). We conducted a series of laboratory experiments in which the chemistry and NORM of different mix proportions of AMD and HFFF were examined after reacting for 48 h. The experimental data combined with geochemical modeling and X-ray diffraction analysis suggest that several ions, including sulfate, iron, barium, strontium, and a large portion of radium (60-100%), precipitated into newly formed solids composed mainly of Sr barite within the first ∼ 10 h of mixing. The results imply that blending AMD and HFFF could be an effective management practice for both remediation of the high NORM in the Marcellus HFFF wastewater and beneficial utilization of AMD that is currently contaminating waterways in northeastern U.S.A.
A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.
Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei
2014-01-15
Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines. © 2013.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Copper Casting Subcategory § 464.22 Effluent limitations guidelines representing the degree of effluent... limitations for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers... metal poured Copper (T) 0.0307 0.0168 Lead (T) 0.0315 0.0156 Zinc (T) 0.0455 0.0171 Oil and grease 1.2 0...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Copper Casting Subcategory § 464.22 Effluent limitations guidelines representing the degree of effluent... limitations for copper, lead, zinc, total phenols, oil and grease, and TSS. For non-continuous dischargers... metal poured Copper (T) 0.0307 0.0168 Lead (T) 0.0315 0.0156 Zinc (T) 0.0455 0.0171 Oil and grease 1.2 0...
Code of Federal Regulations, 2010 CFR
2010-07-01
... for any 1 day Maximum for monthly average mg/troy ounce of precious metals, including silver.../troy ounce of precious metals in the granulated raw material Copper 0.819 0.390 Cyanide (total) 0.128 0... Maximum for monthly average mg/troy ounce of gold produced by cyanide stripping Copper 4.736 2.257 Cyanide...
Code of Federal Regulations, 2010 CFR
2010-07-01
... pollutant property Maximum for any 1 day Maximum for monthly average mg/troy ounce of precious metals... day Maximum for monthly average mg/troy ounce of precious metal in the granulated raw material Copper... monthly average mg/troy ounce of gold produced by cyanide stripping Copper 7.030 3.700 Cyanide (total) 1...
Hargreaves, Andrew J; Vale, Peter; Whelan, Jonathan; Constantino, Carlos; Dotro, Gabriela; Campo, Pablo; Cartmell, Elise
2017-05-01
The distribution of Cu, Pb, Ni and Zn between particulate, colloidal and truly dissolved size fractions in wastewater from a trickling filter treatment plant was investigated. Samples of influent, primary effluent, humus effluent, final effluent and sludge holding tank returns were collected and separated into particulate (i.e. > 0.45 μm), colloidal (i.e. 1 kDa to 0.45 μm), and truly dissolved (i.e. < 1 kDa) fractions using membrane filters. In the influent, substantial proportions of Cu (60%), Pb (67%), and Zn (32%) were present in the particulate fraction which was removed in conjunction with suspended particles at the works in subsequent treatment stages. In final effluent, sizeable proportions of Cu (52%), Pb (32%), Ni (44%) and Zn (68%) were found within the colloidal size fraction. Calculated ratios of soluble metal to organic carbon suggest the metal to be adsorbed to or complexed with non-humic macromolecules typically found within the colloidal size range. These findings suggest that technologies capable of removing particles within the colloidal fraction have good potential to enhance metals removal from wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.
COMPARISON OF APATITE II™ TREATMENT SYSTEM AT TWO MINES FOR METALS REMOVAL
Two abandoned lead-zinc mine sites, the Nevada Stewart Mine (NSM) and Success Mine, are located within the Coeur d'Alene Mining District, in northern Idaho. An Apatite II™ Treatment System (ATS) was implemented at each site to treat metal-laden water, mainly zinc. In the ATS, f...
The impact of tertiary wastewater treatment on copper and zinc complexation.
Constantino, C; Gardner, M; Comber, S D W; Scrimshaw, M D; Ellor, B
2015-01-01
Tightening quality standards for European waters has seen a move towards enhanced wastewater treatment technologies such as granulated organic carbon treatment and ozonation. Although these technologies are likely to be successful in degrading certain micro-organic contaminants, these may also destroy compounds which would otherwise complex and render metals significantly less toxic. This study examined the impact of enhanced tertiary treatment on the capacity of organic compounds within sewage effluents to complex copper and zinc. The data show that granulated organic carbon treatment removes a dissolved organic carbon (DOC) fraction that is unimportant to complexation such that no detrimental impact on complexation or metal bioavailability is likely to occur from this treatment type. High concentrations of ozone (>1 mg O3/mg DOC) are, however, likely to impact the complexation capacity for copper although this is unlikely to be important at the concentrations of copper typically found in effluent discharges or in rivers. Ozone treatment did not affect zinc complexation capacity. The complexation profiles of the sewage effluents show these to contain a category of non-humic ligand that appears unaffected by tertiary treatment and which displays a high affinity for zinc, suggesting these may substantially reduce the bioavailability of zinc in effluent discharges. The implication is that traditional metal bioavailability assessment approaches such as the biotic ligand model may overestimate zinc bioavailability in sewage effluents and effluent-impacted waters.
30 CFR 57.4560 - Mine entrances.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control... escapeways shall be— (a) Provided with a fire suppression system, other than fire extinguishers and water...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire Prevention and Control...) Water pipes, valves, outlets, hydrants, and hoses that are part of the mine's firefighting system shall...
30 CFR 57.6160 - Main facilities.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives Storage... facilities will not prevent escape from the mine, or cause detonation of the contents of another storage...
Sharp, David W.
1980-01-01
In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.
40 CFR 415.160 - Applicability; description of the sodium chloride production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INORGANIC CHEMICALS MANUFACTURING POINT... the production of sodium chloride by the solution brine-mining process and by the solar evaporation...
Sponza, Delia Teresa
2002-01-01
Toxicity of some organic and inorganic chemicals to microorganisms is an important consideration in assessing their environmental impact against their economic benefits. Microorganisms play an important role in several environmental processes, both natural and engineered. Some organic and inorganics at toxic levels have been detected in industrial discharges resulting in plant upsets and discharge permit violations. In addition to this, even though in some cases the effluent wastewater does not exceed the discharge limits, the results of toxicity tests show potential toxicity. Toxicity knowledge of effluents can benefit treatment plant operators in optimising plant operation, setting pre-treatment standards, and protecting receiving water quality and in establishing sewer discharge permits to safeguard the plant. In the Turkish regulations only toxicity dilution factor (TDF) with fish is part of the toxicity monitoring program of permissible wastewater discharge. In various countries, laboratory studies involving the use of different organisms and protocol for toxicity assessment was conducted involving a number of discharges. In this study, it was aimed to investigate the acute toxicity of textile and metal industry wastewaters by traditional and enrichment toxicity tests and emphasize the importance of toxicity tests in wastewater discharge regulations. The enrichment toxicity tests are novel applications and give an idea whether there is potential toxicity or growth limiting and stimulation conditions. Different organisms were used such as bacteria (Floc and Coliform bacteria) algae (Chlorella sp.). fish (Lepistes sp.) and protozoan (Vorticella sp.) to represent four tropic levels. The textile industry results showed acute toxicity for at least one organism in 8 out of 23 effluent samples. Acute toxicity for at least two organisms in 7 out of 23 effluent sampling was observed for the metal industry. The toxicity test results were assessed with chemical analyses such as COD, BOD, color and heavy metals. It was observed that the toxicity of the effluents could not be explained by using physicochemical analyses in 5 cases for metal and 4 cases for the textile industries. The results clearly showed that the use of bioassay tests produce additional information about the toxicity potential of industrial discharges and effluents.
Ferrate(VI) oxidation of weak-acid dissociable cyanides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ria A. Yngard; Virender K. Sharma; Jan Filip
2008-04-15
Cyanide is commonly found in electroplating, mining, coal gasification, and petroleum refining effluents, which require treatment before being discharged. Cyanide in effluents exists either as free cyanide or as a metal complex. The kinetics of the oxidation of weak-acid dissociable cyanides by an environmentally friendly oxidant, ferrate, were studied as a function of pH (9.1-10.5) and temperature (15-45{sup o}C) using a stopped-flow technique. The weak-acid dissociable cyanides were Cd(CN){sub 4}{sup 2-} and Ni(CN){sub 4}{sup 2-}, and the rate-laws for the oxidation may be -d(Fe(VI))/dt = k (Fe(VI))(M(CN){sub 4}{sup 2-}){sup n} where n = 0.5 and 1 for Cd(CN){sub 4}{sup 2-}more » and Ni(CN){sub 4}{sup 2-}, respectively. The rates decreased with increasing pH and were mostly related to a decrease in concentration of the reactive protonated Fe(VI) species, HFeO{sub 4}{sup -}. The stoichiometries with Fe(VI) were determined to be: 4HFeO{sub 4}{sup -} + M(CN){sub 4}{sup 2-} + 6H{sub 2}O {yields} 4Fe(OH){sub 3} + M{sup 2+} + 4NCO{sup -} + O{sub 2} + 4OH{sup -}. Mechanisms are proposed that agree with the observed reaction rate-laws and stoichiometries of the oxidation of weak-acid dissociable cyanides by Fe(VI). Results indicate that Fe(VI) is effective in removing cyanide in coke oven plant effluent, where organics are also present. 27 refs., 3 figs., 2 tabs.« less
Wynn, Jeff; Roberts, William
2009-01-01
Raw sewage and industrial waste have been dumped into sensitive estuaries, bays, and sounds for centuries. The full extents of the resulting sludge deposits are largely unknown, because they move in response to tidal and long‐shore currents, and because they are often buried by younger inert sediments. USGS field and laboratory measurements of toxic mine waste and organic effluent samples suggest that anthropogenic wastes typically contain finely‐divided metal and metal‐sulfide particles. The anoxic environment provided by anthropogenic wastes promotes the growth of anaerobic bacteria, creating a self‐reducing environment. We suggest that the finely‐divided metal and metal‐sulfide particles are the products of bacterial reduction and precipitation. The fine‐grained metallic precipitates are ideal targets for a surface‐effect electrochemical detection methodology called Induced Polarization (IP). A USGS‐patented (1998/2001) marine IP streamer technology has recently been commercialized and used to map “black smoker” sulfide deposits and their disseminated halos in the Bismarck Sea (2005), and titanium‐sand deposits offshore of South Africa (2007). The marine induced polarization system can do this mapping in three dimensions, more rapidly (it is towed at 3 knots), and with far higher resolution that land‐based measurements or vibracoring. Laboratory‐scale studies at the USGS suggest that anthropogenic wastes may display a specific multi‐frequency IP spectral signature that may be applicable to waste‐deposit mapping.
Study of heavy metals transport by runoff and sediments from an abandoned mine: Alagoa, Portugal
NASA Astrophysics Data System (ADS)
Gerardo, R.; de Lima, J. L. M. P.; de Lima, M. I. P.
2009-04-01
Over time, several studies have been designed to understand heavy metals fate and its impact on the environment and on human health. However, only a few studies have focused on the transport of heavy metals in mining areas through the various hydrological processes such as runoff, infiltration, and subsurface flow. In particular, heavy rainfall events have a great impact on the dispersion of metals existing in the soil. This problem is often more serious in abandoned and inactive mining sites causing environmental problems. In Portugal, there are 175 identified abandoned mines that continuously threaten the environment through acid drainage waters that pollute the soil as well as surface and groundwater. An example is the abandoned mine of Alagoa, located near the village of Penacova (Centre of Portugal); in this site mining activities ceased about 30 years ago. The area is characterized by very steep slopes that are confining with a small stream; the mining excavation by-products were deposited on these slopes. We have selected this mine as a case study, aiming at understanding the transport mechanisms and dispersion of heavy metals and at contributing to the definition of the most appropriate mitigation measures for this area that is contaminated by heavy metals from the mine tailings. So far a total of 30 soil samples from 3 contaminated zones were collected and analysed for pH, texture and heavy metal content, using atomic absorption spectroscopy. Results indicate that the contents of Zn and Pb in the soil samples are in the range from 95-460 mg/kg and 67-239 mg/kg, respectively, which exceed the critical limit-values defined by the Portuguese legislation. These metals are dispersed downslope and downstream from the mine tailings by storm water. The next step of this work is to investigate the transport of heavy metals by runoff, by mobilization of sediments and by subsurface flow. Three spatial scales tests will be conducted: on the mine tailings, on the slope areas, and in the laboratory, using soil flumes, which include the use of rainfall simulators. This study will allow the evaluation of several variables and processes, described above, under controlled conditions.
Bioremediation of a Complex Industrial Effluent by Biosorbents Derived from Freshwater Macroalgae
Kidgell, Joel T.; de Nys, Rocky; Hu, Yi; Paul, Nicholas A.; Roberts, David A.
2014-01-01
Biosorption with macroalgae is a promising technology for the bioremediation of industrial effluents. However, the vast majority of research has been conducted on simple mock effluents with little data available on the performance of biosorbents in complex effluents. Here we evaluate the efficacy of dried biomass, biochar, and Fe-treated biomass and biochar to remediate 21 elements from a real-world industrial effluent from a coal-fired power station. The biosorbents were produced from the freshwater macroalga Oedogonium sp. (Chlorophyta) that is native to the industrial site from which the effluent was sourced, and which has been intensively cultivated to provide a feed stock for biosorbents. The effect of pH and exposure time on sorption was also assessed. These biosorbents showed specificity for different suites of elements, primarily differentiated by ionic charge. Overall, biochar and Fe-biochar were more successful biosorbents than their biomass counterparts. Fe-biochar adsorbed metalloids (As, Mo, and Se) at rates independent of effluent pH, while untreated biochar removed metals (Al, Cd, Ni and Zn) at rates dependent on pH. This study demonstrates that the biomass of Oedogonium is an effective substrate for the production of biosorbents to remediate both metals and metalloids from a complex industrial effluent. PMID:24919058
30 CFR 57.4261 - Shaft-station waterlines.
Code of Federal Regulations, 2010 CFR
2010-07-01
....4261 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention... located at underground shaft stations and are part of the mine's fire protection system shall have at...
30 CFR 57.4131 - Surface fan installations and mine openings.
Code of Federal Regulations, 2010 CFR
2010-07-01
....4131 Section 57.4131 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and Control Prohibitions/precautions/housekeeping § 57.4131 Surface fan installations...
Mokhtari, Ahmad Reza; Feiznia, Sadat; Jafari, Mohammad; Tavili, Ali; Ghaneei-Bafghi, Mohammad-Javad; Rahmany, Farah; Kerry, Ruth
2018-03-16
The Kushk Pb-Zn mine is located in Central Iran and it has been in operation for the last 75 years. To investigate the role of wind dispersion of heavy metal pollutants from the mine area, dust samples were collected during 1 year and topsoil samples were collected around the mine. Results showed that the topsoil is polluted with Pb and Zn to about 1500 m away from the mine. It was also found that there was not a significant difference between the metal concentrations in topsoil and dust samples. The Pb and Zn concentrations in the dust samples exceeded 200 mg kg -1 and their lateral dispersion via wind was estimated to be about 4 km away from the mine. It has been shown that a combination of mining activities and mechanical dispersion via water and wind have caused lateral movement of heavy metals in this area.
Sampling and monitoring for closure
McLemore, V.T.; Russell, C.C.; Smith, K.S.
2004-01-01
The Metals Mining Sector of the Acid Drainage Technology Initiative (ADTI-MMS) addresses technical drainage-quality issues related to metal mining and related metallurgical operations, for future and active mines, as well as, for historical mines and mining districts. One of the first projects of ADTI-MMS is to develop a handbook describing the best sampling, monitoring, predicting, mitigating, and modeling of drainage from metal mines, pit lakes and related metallurgical facilities based upon current scientific and engineering practices. One of the important aspects of planning a new mine in today's regulatory environment is the philosophy of designing a new or existing mine or expansion of operations for ultimate closure. The holistic philosophy taken in the ADTI-MMS handbook maintains that sampling and monitoring programs should be designed to take into account all aspects of the mine-life cycle. Data required for the closure of the operation are obtained throughout the mine-life cycle, from exploration through post-closure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ocean discharges; (8) Incorporate alternative effluent limitations or standards where warranted by... storm water discharges associated with industrial activity from inactive mining operations may, where...
Code of Federal Regulations, 2014 CFR
2014-07-01
... ocean discharges; (8) Incorporate alternative effluent limitations or standards where warranted by... storm water discharges associated with industrial activity from inactive mining operations may, where...
Code of Federal Regulations, 2012 CFR
2012-07-01
... ocean discharges; (8) Incorporate alternative effluent limitations or standards where warranted by... storm water discharges associated with industrial activity from inactive mining operations may, where...
Code of Federal Regulations, 2013 CFR
2013-07-01
... ocean discharges; (8) Incorporate alternative effluent limitations or standards where warranted by... storm water discharges associated with industrial activity from inactive mining operations may, where...
Code of Federal Regulations, 2014 CFR
2014-07-01
... Post-Mining Areas § 434.51 [Reserved] ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false [Reserved] 434.51 Section 434.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Post-Mining Areas § 434.51 [Reserved] ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false [Reserved] 434.51 Section 434.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Post-Mining Areas § 434.51 [Reserved] ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false [Reserved] 434.51 Section 434.51 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS...
Armstead, Mindy Yeager; Bitzer-Creathers, Leah; Wilson, Mandee
2016-01-01
Salinization of freshwater ecosystems as a result of human activities has markedly increased in recent years. Much attention is currently directed at evaluating the effects of increased salinity on freshwater biota. In the Central Appalachian region of the eastern United States, specific conductance from alkaline discharges associated with mountain top mining practices has been implicated in macroinvertebrate community declines in streams receiving coal mining discharges. Whole effluent toxicity testing of receiving stream water was used to test the hypothesis that mine discharges are toxic to laboratory test organisms and further, that toxicity is related to ionic concentrations as indicated by conductivity. Chronic toxicity testing using Ceriodaphnia dubia was conducted by contract laboratories at 72 sites with a total of 129 tests over a 3.5 year period. The database was evaluated to determine the ionic composition of mine effluent dominated streams and whether discharge constituents were related to toxicity in C. dubia. As expected, sulfate was found to be the dominant anion in streams receiving mining discharges with bicarbonate variable and sometimes a substantial component of the dissolved solids. Overall, the temporal variability in conductance was low at each site which would indicate fairly stable water quality conditions. Results of the toxicity tests show no relationship between conductance and survival of C. dubia in the mining influenced streams with the traditional toxicity test endpoints. However, consideration of the entire dataset revealed a significant inverse relationship between conductivity and neonate production. While conductivity explained very little of the high variability in the offspring production (r2 = 0.1304), the average numbers of offspring were consistently less than 20 neonates at the highest conductivities. PMID:27814378
Code of Federal Regulations, 2014 CFR
2014-07-01
... Ammonia (as N) 599.900 263.700 (b) Raw material granulation. BAT Limitations for the Secondary Precious....051 Zinc 0.653 0.269 Combined metals 0.192 Palladium 0.064 Platinum 0.064 Ammonia (as N) 85.310 37.500... Combined metals 0.300 Ammonia (as N) 133.300 58.600 (d) Spent cyanide stripping solutions. BAT Limitations...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Ammonia (as N) 599.900 263.700 (b) Raw material granulation. BAT Limitations for the Secondary Precious....051 Zinc 0.653 0.269 Combined metals 0.192 Palladium 0.064 Platinum 0.064 Ammonia (as N) 85.310 37.500... Combined metals 0.300 Ammonia (as N) 133.300 58.600 (d) Spent cyanide stripping solutions. BAT Limitations...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Ammonia (as N) 599.900 263.700 (b) Raw material granulation. BAT Limitations for the Secondary Precious....051 Zinc 0.653 0.269 Combined metals 0.192 Palladium 0.064 Platinum 0.064 Ammonia (as N) 85.310 37.500... Combined metals 0.300 Ammonia (as N) 133.300 58.600 (d) Spent cyanide stripping solutions. BAT Limitations...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Ammonia (as N) 599.900 263.700 (b) Raw material granulation. BAT Limitations for the Secondary Precious....051 Zinc 0.653 0.269 Combined metals 0.192 Palladium 0.064 Platinum 0.064 Ammonia (as N) 85.310 37.500... Combined metals 0.300 Ammonia (as N) 133.300 58.600 (d) Spent cyanide stripping solutions. BAT Limitations...
Mubedi, Josué Ilunga; Devarajan, Naresh; Le Faucheur, Séverine; Mputu, John Kayembe; Atibu, Emmanuel K; Sivalingam, Periyasamy; Prabakar, Kandasamy; Mpiana, Pius T; Wildi, Walter; Poté, John
2013-10-01
Physicochemical and ecotoxicological analyses have been performed to assess the quality of sediments receiving untreated hospital effluents from Indian and Democratic Republic of Congo (DRC) hospitals. The sediments were collected monthly and characterized for grain size, organic matter, total organic carbon, total carbon, nitrogen, phosphorus, toxic metals and ecotoxicity. The results highlight the high concentration of toxic metals from the Indian hospital effluent receiving systems, especially for Cr, Cu, As, Zn and Hg. On the other hand, the metal concentrations in the sediment receiving system from DRC are low (e.g. maximum Hg and Zn concentration were 0.46 and 48.84 mg kg(-1) respectively). Ostracods exposed to sediment samples H2 (September month sample) and H3 (June and September month samples) were found dead after 6d of exposure whereas the higher mortality rate for Congo sediments was 23% but was accompanied with 33 ± 7% of growth inhibition. The results of this study show the variation of sediment composition on toxic metal levels as well as toxicity related to both, the type of hospitals and the sampling period. Additionally, hospital effluent disposal practices at the study sites can lead to the pollution of water resources and may generate risks for aquatic organisms and human health. Copyright © 2013 Elsevier Ltd. All rights reserved.
30 CFR 57.5071 - Exposure monitoring.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Air Quality, Radiation... exposure to DPM exceeds the DPM limit specified in § 57.5060. (b) The mine operator must provide affected...
30 CFR 57.4533 - Mine opening vicinity.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire Prevention and... materials; or (b) Constructed to meet a fire resistance rating of no less than one hour; or (c) Provided...
30 CFR 57.4363 - Underground evacuation instruction.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 57.4363 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Fire... and evacuation plans and procedures and fire warning signals in effect at the mine. (b) Whenever a...
Stassen, Marinke J M; Preeker, N Louise; Ragas, Ad M J; van de Ven, Max W P M; Smolders, Alfons J P; Roeleveld, Nel
2012-06-15
The Pilcomayo River is polluted by tailings and effluents from upstream mining activities, which contain high levels of metals. The Weenhayek live along this river and are likely to have elevated exposure. To assess whether the Weenhayek have increased risk of reproductive and developmental disorders related to elevated metal exposure in comparison with a reference population. We assessed reproductive and developmental outcomes, i.e. fertility, fetal loss, congenital anomalies, and walking onset by means of structured interviews. We sampled hair, water and fish to assess the relative exposure of the Weenhayek. Samples were analyzed for Pb and Cd with ICP-MS techniques. The Weenhayek communities studied had a higher prevalence of small families (OR 2.7, 95% CI 1.3-6.0) and delayed walking onset (OR 2.7, 95% CI 1.4-5.1) than the reference population. Median Pb levels in Weenhayek hair were 2-5 times higher than in the reference population, while Cd levels were not elevated. In water and fish, both Pb and Cd levels were increased in the Weenhayek area. We found indications for increased risks of small families and delayed walking onset among the Weenhayek living along the Pilcomayo River. Lactants form a high risk group for lead exposure. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Barringer, Julia L.; Wilson, Timothy P.; Szabo, Zoltan; Bonin, Jennifer L.; Fischer, Jeffrey M.; Smith, Nicholas P.
2008-01-01
Diurnal variations in particulate and dissolved As and metal concentrations were observed in mildly alkaline water from a wetlands site on the Wallkill River in northwestern New Jersey. The site, underlain by glacial sediments over dolomite bedrock, is 10 km downstream from a mined area of the Franklin Marble, host to Zn ores, also As and Mn minerals. In mid-September 2005, maxima and minima in dissolved-oxygen-concentration and pH, typically caused by photosynthesis and respiration, occurred at 2000 and 0800 hours. Concentrations of dissolved As (1.52-1.95 μg/L) peaked at dusk (2000 hours), whereas dissolved Mn and Zn concentrations (76.5-96.9 and 8.55-12.8 μg/L, respectively) were lowest at dusk and peaked at 1000 hours. These opposing cycles probably reflect sorption and desorption of As (an anion), and Mn and Zn (cations) as pH varied throughout the 24-h period. Doubly-peaked cycles of B, Cl, SO4, and nutrients also were observed; these may result from upstream discharges of septic-system effluent. Both recoverable amd particulate Al, Fe, Mn, and Zn concentrations peaked between 0200 and 0600 hours. The particulate metals cycle, with perturbations at 0400 hours, may be influenced by biological activity.
Rupert, Michael G.
2001-01-01
The upper Alamosa River Basin contains areas that are geochemically altered and have associated secondary sulfide mineralization. Occurring with this sulfide mineralization are copper, gold, and silver deposits that have been mined since the 1870's. Weathering of areas with sulfide mineralization produces runoff with anomalously low pH and high metal concentrations; mining activities exacerbate the condition. Summer rainstorms in the upper Alamosa River Basin produce a characteristic relation between streamflow and pH; streamflow suddenly increases and pH suddenly decreases (commonly by more than 1 pH unit). This report evaluates changes in pH in the upper Alamosa River Basin during July, August, and September 1995, 1996, and 1997 to examine possible adverse environmental effects due to rainstorm runoff. Ninety-three percent of the rainstorms occurring during 1995?97 produced runoff throughout the entire basin. Out of 54 storms, only 3 storms were isolated to the river reach upstream from the streamflow-gaging station Alamosa River above Wightman Fork, and only 1 storm was isolated to the river reach between the streamflow-gaging stations Alamosa River below Jasper and Alamosa River above Terrace Reservoir. Although most rainstorm runoff events occurred throughout the entire basin, pH changes were highest in parts of the basin that receive runoff from hydrothermally altered areas. The three principal altered areas within the basin are the Jasper, Stunner, and Summitville areas. Only limited mining occurred in the Stunner altered area, and yet significant decreases in pH values occur due to runoff from this area. Even after environmental restoration activities are completed at the Summitville Mine, the main stem of the Alamosa River may continue to be adversely affected by runoff from the Stunner and Jasper altered areas. A comparison of measured pH with Federal and State of Colorado water-quality standards and Toxicological Reference Values indicates pH was too low to support aquatic life in many parts of the basin for extended periods of time. Added stresses from sudden decreases in pH due to rainstorm runoff compound the adverse effects. Discharge of effluent from the Summitville Mine impoundment can significantly decrease pH in the Alamosa River downstream to Terrace Reservoir. A release of only 3 cubic feet per second from the impoundment decreased pH by at least 1 standard unit at all downstream sites. Low-flow years may pose a substantial risk to aquatic organisms within and downstream from Terrace Reservoir. During 1996, the basin had a low-flow year, and water storage and pool size of Terrace Reservoir were significantly reduced. The pH of water discharging from Terrace Reservoir was anomalously low during late August and September 1996, possibly due to geochemical interactions between sediment and the water column within the reservoir. In general, an inverse log-log relation exists between pH and the logarithm of dissolved metal concentrations, but the relations generally are not significant enough to confidently predict metal concentrations based upon measured pH values.
Mining for metals in society's waste
Smith, Kathleen S.; Plumlee, Geoffrey S.; Hageman, Philip L.
2015-01-01
Metals and minerals are natural resources that human beings have been mining for thousands of years. Contemporary metal mining is dominated by iron ore, copper and gold, with 2 billion tons of iron ore, nearly 20 million tons of copper and 2,000 tons of gold produced every year. Tens to hundreds of tons of other metals that are essential components for electronics, green energy production, and high-technology products are produced annually.
Wu, Dao Ming; Chen, Xiao Yang; Zeng, Shu Cai
2017-04-18
Miscanthus has been recognized as promising candidate for phytoremediation in abandoned mine land, because of its high tolerance to heavy metals and bioenergy potential. Miscanthus has been reported tolerant to several heavy metal elements. However, it has not been recognized as hyperaccumulator for these elements. The detailed mechanisms by which Miscanthus tolerates these heavy metal elements are still unclear. According to recent studies, several mechanisms, such as high metabolic capacity in root, an abundance of microbes in the root-rhizosphere, and high capacity of antioxidation and photosynthesis might contribute to enhance the heavy metal tolerance of Miscanthus. Miscanthus has a certain potential in the phytoremediation of abandoned mine land, because of its high suitability for the phytostabilization of heavy metals. Moreover, Miscanthus cropping is a promising practice to enhance the diversity of botanical species and soil organism, and to improve soil physical and chemical properties. Here we reviewed recent literatures on the biological characteristics and the heavy metal tolerance of Miscanthus, and its phytoremediation potential in abandoned mine land. A basic guideline for using Miscanthus in abandoned mine land phytoremediation and an outlook for further study on the mechanisms of heavy metals tolerance in Miscanthus were further proposed. We hoped to provide theoretical references for phytoremediation in abandoned mine land by using Miscanthus.
Sun, Zehang; Xie, Xiande; Wang, Ping; Hu, Yuanan; Cheng, Hefa
2018-10-15
Although metal ore mining activities are well known as an important source of heavy metals, soil pollution caused by small-scale mining activities has long been overlooked. This study investigated the pollution of surface soils in an area surrounding a recently abandoned small-scale polymetallic mining district in Guangdong province of south China. A total of 13 tailing samples, 145 surface soil samples, and 29 water samples were collected, and the concentrations of major heavy metals, including Cr, Mn, Co, Ni, Cu, Zn, As, Cd, Pb, and Se, were determined. The results show that the tailings contained high levels of heavy metals, with Cu, Zn, As, Cd, and Pb occurring in the ranges of 739-4.15 × 10 3 , 1.81 × 10 3 -5.00 × 10 3 , 118-1.26 × 10 3 , 8.14-57.7, and 1.23 × 10 3 -6.99 × 10 3 mg/kg, respectively. Heavy metals also occurred at high concentrations in the mine drainages (15.4-17.9 mg/L for Cu, 21.1-29.3 mg/L for Zn, 0.553-0.770 mg/L for Cd, and 1.17-2.57 mg/L for Pb), particularly those with pH below 3. The mean contents of Cu, Zn, As, Cd, and Pb in the surface soils of local farmlands were up to 7 times higher than the corresponding background values, and results of multivariate statistical analysis clearly indicate that Cu, Zn, Cd, and Pb were largely contributed by the mining activities. The surface soils from farmlands surrounding the mining district were moderately to seriously polluted, while the potential ecological risk of heavy metal pollution was extremely high. It was estimated that the input fluxes from the mining district to the surrounding farmlands were approximately 17.1, 59.2, 0.311, and 93.8 kg/ha/yr for Cu, Zn, Cd, and Pb, respectively, which probably occurred through transport of fine tailings by wind and runoff, and mine drainage as well. These findings indicate the significant need for proper containment of the mine tailings at small-scale metal ore mines. Copyright © 2018. Published by Elsevier B.V.
30 CFR 57.20001 - Intoxicating beverages and narcotics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 57.20001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES... permitted on the job. ...
Song, Daping; Jiang, Dong; Wang, Yong; Chen, Wei; Huang, Yaohuan; Zhuang, Dafang
2013-10-16
Metal mines release toxic substances into the environment and can therefore negatively impact the health of residents in nearby regions. This paper sought to investigate whether there was excess disease mortality in populations in the vicinity of the mining area in Suxian District, South China. The spatial distribution of metal mining and related activities from 1985 to 2012, which was derived from remote sensing imagery, was overlapped with disease mortality data. Three hotspot areas with high disease mortality were identified around the Shizhuyuan mine sites, i.e., the Dengjiatang metal smelting sites, and the Xianxichong mine sites. Disease mortality decreased with the distance to the mining and smelting areas. Population exposure to pollution was estimated on the basis of distance from town of residence to pollution source. The risk of dying according to disease mortality rates was analyzed within 7-25 km buffers. The results suggested that there was a close relationship between the risk of disease mortality and proximity to the Suxian District mining industries. These associations were dependent on the type and scale of mining activities, the area influenced by mining and so on.
Song, Daping; Jiang, Dong; Wang, Yong; Chen, Wei; Huang, Yaohuan; Zhuang, Dafang
2013-01-01
Metal mines release toxic substances into the environment and can therefore negatively impact the health of residents in nearby regions. This paper sought to investigate whether there was excess disease mortality in populations in the vicinity of the mining area in Suxian District, South China. The spatial distribution of metal mining and related activities from 1985 to 2012, which was derived from remote sensing imagery, was overlapped with disease mortality data. Three hotspot areas with high disease mortality were identified around the Shizhuyuan mine sites, i.e., the Dengjiatang metal smelting sites, and the Xianxichong mine sites. Disease mortality decreased with the distance to the mining and smelting areas. Population exposure to pollution was estimated on the basis of distance from town of residence to pollution source. The risk of dying according to disease mortality rates was analyzed within 7–25 km buffers. The results suggested that there was a close relationship between the risk of disease mortality and proximity to the Suxian District mining industries. These associations were dependent on the type and scale of mining activities, the area influenced by mining and so on. PMID:24135822
Stochastic production phase design for an open pit mining complex with multiple processing streams
NASA Astrophysics Data System (ADS)
Asad, Mohammad Waqar Ali; Dimitrakopoulos, Roussos; van Eldert, Jeroen
2014-08-01
In a mining complex, the mine is a source of supply of valuable material (ore) to a number of processes that convert the raw ore to a saleable product or a metal concentrate for production of the refined metal. In this context, expected variation in metal content throughout the extent of the orebody defines the inherent uncertainty in the supply of ore, which impacts the subsequent ore and metal production targets. Traditional optimization methods for designing production phases and ultimate pit limit of an open pit mine not only ignore the uncertainty in metal content, but, in addition, commonly assume that the mine delivers ore to a single processing facility. A stochastic network flow approach is proposed that jointly integrates uncertainty in supply of ore and multiple ore destinations into the development of production phase design and ultimate pit limit. An application at a copper mine demonstrates the intricacies of the new approach. The case study shows a 14% higher discounted cash flow when compared to the traditional approach.
30 CFR Appendix I to Subpart C of... - National Consensus Standards
Code of Federal Regulations, 2010 CFR
2010-07-01
... Subpart C of Part 56 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Fire... Standards Mine operators seeking further information in the area of fire prevention and control may consult...
Have Metals Lost Their Luster? Environmental Effects Of MIning And Remedial Options
Many miles of streams in the U.S. (and worldwide) are contaminated by mine-drainage originating from both active and abandoned mining sites [coal and metal mining]. Depending on the host-rock, the drainage might or might not be acidic. Once the drainage mixes with oxygenated st...
40 CFR 471.100 - Applicability; description of the powder metals subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... powder metals subcategory. 471.100 Section 471.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Metals Powders Subcategory § 471.100 Applicability; description of the powder metals...
40 CFR 471.100 - Applicability; description of the powder metals subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... powder metals subcategory. 471.100 Section 471.100 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Metals Powders Subcategory § 471.100 Applicability; description of the powder metals...
Historical Uses of Meteoritic Metals as Precedent for Modern In-Situ Asteroid Mining
NASA Astrophysics Data System (ADS)
Krispin, D.; Mardon, A. A.; Fawcett, B. G.
2016-08-01
The strain on earth's resources of metal and the metallic density of meteorites mean that in situ asteroid mining is advisable. This has precedent: Use of meteoritic metal dates back to ancient times.
30 CFR 56.20001 - Intoxicating beverages and narcotics.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Section 56.20001 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Miscellaneous... permitted on the job. ...
Aihemaiti, Aikelaimu; Jiang, Jianguo; Li, De'an; Liu, Nuo; Yang, Meng; Meng, Yuan; Zou, Quan
2018-05-29
High demand of Vanadium (V) in high-strength steel and battery manufacturing industry led to extensive V mining activity in China, and caused multi-metal pollution of soil around V mining area. To understand the phytoremediation potentials of native plants grown in V mining area, and the effect of soil properties and soil metal concentrations on toxic metal accumulations of native plants. Setaria viridis, Kochia scoparia and Chenopodium album were sampled from different sites in V mining area, soil properties, soil metal concentrations and metal accumulation amount of investigated plants were measured, bioaccumulation (BAF) and translocation (TF) efficiencies were calculated. Soil pH, cation exchange capacity (CEC) and available phosphorous (P) can significantly affect V and copper (Cu) uptake in the shoots of Setaria viridis while soil metal contents were lower than the permissible limits. Soil pH can significantly affect V accumulations in the roots and shoots of Kochia scoparia grown in slightly V polluted soils. Setaria viridis exhibited TF > 1 for moderately V and slightly chromium (Cr) polluted soils, and BAF>1 for slightly Cu contaminated soils respectively. Kochia scoparia and Chenopodium album showed TF > 1 and BAF>1 for slightly V polluted soils, respectively. Setaria viridis was practical for in situ phytoextractions of moderately V and slightly Cr polluted soils, and phytostabilization of slightly Cu contaminated soils. Kochia scoparia and Chenopodium album could be used as phytoextractor and phytostablizer in slightly V polluted soils in V mining area. Metal uptake of native plants grown in slightly multi-metal contaminated sites in V mining area can be manipulated by altering soil properties. Copyright © 2018. Published by Elsevier Ltd.
Heavy metal pollution in soils of abandoned mining areas (SE, Spain)
NASA Astrophysics Data System (ADS)
Martínez-Sánchez, M. J.; Pérez-Sirvent, C.; Molina, J.; Tudela, M. L.; Navarro, M. C.; García-Lorenzo, M. L.
2009-04-01
Elevated levels of heavy metals can be found in and around disused metalliferous mines due to discharge and dispersion of mine wastes into nearby agricultural soils, food crops and stream systems. Heavy metals contained in the residues from mining and metallurgical operations are often dispersed by wind and/or water after their disposal. These areas have severe erosion problems caused by wind and water runoff in which soil and mine spoil texture, landscape topography and regional and microclimate play an important role. The present study was carried out in the Cabezo Rajao (La Uni
The present environmental scenario of the Nador Lagoon (Morocco).
Ruiz, F; Abad, M; Olías, M; Galán, E; González, I; Aguilá, E; Hamoumi, N; Pulido, I; Cantano, M
2006-10-01
In this paper, we present a multivariate approach (waters, sediments, microfauna) concerning the environmental state of the Nador Lagoon (NE Morocco). The normal water quality parameters (salinity, pH, nutrients) of the dominant marine flows are altered by local fecal water effluents, urban discharges, sewages derived from a water treatment station, and residues originated in a slaughterhouse. The geochemical analyses carried out in surficial sediment samples show very high concentrations of all metals studied near an old iron mine and moderate contents between Nador and its treatment station. Ostracods are good bioindicators of these environmental impacts, with the presence of a highly brackish assemblage in the quieter, more confined areas or the appearance of opportunistic species under hypoxic conditions. In addition, these microcrustaceans are absent in polluted bottom sediments or areas with high hydrodynamic gradients, whereas they decrease in both density and diversity if the subaerial exposure increases.
Sediment processes modelling below hydraulic mining: towards environmental impact mitigation
NASA Astrophysics Data System (ADS)
Chalov, Sergey R.
2010-05-01
Placer mining sites are located in the river valleys so the rivers are influenced by mining operations. Frequently the existing mining sites are characterized by low contribution to the environmental technologies. Therefore hydraulic mining alters stream hydrology and sediment processes and increases water turbidity. The most serious environmental sequences of the sediment yield increase occur in the rivers populated by salmon fish community because salmon species prefer clean water with low turbidity. For instance, the placer mining in Kamchatka peninsula (Far East of Russia) which is regarded to be the last global gene pool of wild salmon Oncorhynchus threatens the rivers ecosystems. System of man-made impact mitigation could be done through the exact recognition of the human role in hydrological processes and sediment transport especially. Sediment budget of rivers below mining sites is transformed according to the appearance of the man-made non-point and point sediment sources. Non-point source pollution occurs due to soil erosion on the exposed hillsides and erosion in the channel diversions. Slope wash on the hillsides is absent during summer days without rainfalls and is many times increased during rainfalls and snow melting. The nearness of the sources of material and the rivers leads to the small time of suspended load increase after rainfalls. The average time of material intake from exposed hillsides to the rivers is less than 1 hour. The main reason of the incision in the channel diversion is river-channel straightening. The increase of channel slopes and transport capacity leads to the intensive incision of flow. Point source pollution is performed by effluents both from mining site (mainly brief effluents) and from settling ponds (permanent effluents), groundwater seepage from tailing pits or from quarries. High rate of groundwater runoff is the main reason of the technological ponds overfilling. Intensive filtration from channel to ponds because of their nearness determines the water mass increase inside mining site. The predictive models were suggested to assess each of the mane-made processes contribution into the total sediment budget of the rivers below mining sites. The empirical data and theoretical and laboratory-derived correlations were used to obtain the predictive models for each processes of sediment supply. It was challenging to estimate specific erosion rate of washed exposed hillsides, channel incision, water supply conditions. Climatic and anthropogenic changes of water runoff also were simulated to decrease uncertainty of the proposed model. Application of the given approach to the hydraulic platinum-mining located in the Kamchatka peninsula (Koryak plateau, tributaries of the Vivenka River) gave the sediment budget of the placer-mined rivers and the total sediment yield supplied into the ocean from river basin. Polluted placer-mined rivers contribute about 30 % of the whole sediment yield of the Vivenka River. At the same time the catchment area of these rivers is less than 0,03 % from the whole Vivenka catchment area. Based on the sediment transport modeling the decision making system for controlling water pollution and stream community preservation was developed. Due to exposed hillside erosion prevention and settling pond system optimization the total decrease of sediment yield was up to 75 %.
1993-04-01
measure the acute and sublethal effects of heavy metals ( tributyltin , copper, and zinc) and storm drain effluent on the light output from marine...heavy metals ( tributyltin , copper, and zinc) and storm drain effluent on the light output from marine bioluminescent dinoflagellates (Pyrocystis...pentahydrate and zinc sulfate heptahydrate (Aldrich Chemical Co.); tributyltin chloride (Aldrich Chemical Co.); American Society for Testing and Materials
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 Maximum for any 1 day Maximum for monthly average...
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS METAL MOLDING AND CASTING POINT SOURCE CATEGORY Zinc Casting... copper, lead, zinc, and total phenols. For non-continuous dischargers, annual average mass limitations....0187 Lead (T) 0.0237 0.0116 Zinc (T) 0.0339 0.0129 Maximum for any 1 day Maximum for monthly average...
30 CFR 57.22212 - Air flow (I-C, II-A, and V-A mines).
Code of Federal Regulations, 2011 CFR
2011-07-01
... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Air flow (I-C, II-A, and V-A mines). 57.22212 Section 57.22212 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22212 Air flow (I-C, II-A, and V-A mines...
Devarajan, Naresh; Laffite, Amandine; Ngelikoto, Patience; Elongo, Vicky; Prabakar, Kandasamy; Mubedi, Josué I; Piana, Pius T M; Wildi, Walter; Poté, John
2015-09-01
Hospital and urban effluents contain a variety of toxic and/or persistent substances in a wide range of concentrations, and most of these compounds belong to the group of emerging contaminants. The release of these substances into the aquatic ecosystem can lead to the pollution of water resources and may place aquatic organisms and human health at risk. Sediments receiving untreated and urban effluent waters from the city of Tiruchirappalli in the state of Tamil Nadu, India, are analyzed for potential environmental and human health risks. The sediment samples were collected from five hospital outlet pipes (HOP) and from the Cauvery River Basin (CRB) both of which receive untreated municipal effluent waters (Tiruchirappalli, Tamil Nadu, India). The samples were characterized for grain size, organic matter, toxic metals, and ecotoxicity. The results highlight the high concentration of toxic metals in HOP, reaching values (mg kg(-1)) of 1851 (Cr), 210 (Cu), 986 (Zn), 82 (Pb), and 17 (Hg). In contrast, the metal concentrations in sediments from CRB were lower than the values found in the HOP (except for Cu, Pb), with maximum values (mg kg(-1)) of 75 (Cr), 906 (Cu), 649 (Zn), 111 (Pb), and 0.99 (Hg). The metal concentrations in all sampling sites largely exceed the Sediment Quality Guidelines (SQGs) and the Probable Effect Concentration (PEC) for the Protection of Aquatic Life recommendation. The ecotoxicity test with ostracods exposed to the sediment samples presents a mortality rate ranging from 22 to 100 % (in sediments from HOP) and 18-87 % (in sediments from CRB). The results of this study show the variation of toxic metal levels as well as toxicity in sediment composition related to both the type of hospital and the sampling period. The method of elimination of hospital and urban effluents leads to the pollution of water resources and may place aquatic organisms and human health at risk.
Cravotta, Charles A.
2005-01-01
This report describes field, laboratory, and computational methods that could be used to assess remedial strategies for abandoned mine drainage (AMD). During April-June, 2004, the assessment process was applied to AMD from bituminous coal deposits at a test site in the Staple Bend Tunnel Unit of Allegheny Portage Railroad National Historic Site (ALPO-SBTU) in Cambria County, Pennsylvania. The purpose of this study was (1) to characterize the AMD quantity and quality within the ALPO-SBTU test site; (2) to evaluate the efficacy of limestone or steel slag for neutralization of the AMD on the basis of reaction-rate measurements; and (3) to identify possible alternatives for passive or active treatment of the AMD. The data from this case study ultimately will be used by the National Park Service (NPS) to develop a site remediation plan. The approach used in this study could be applicable at other sites subject to drainage from abandoned coal or metal mines.During April 2004, AMD from 9 sources (sites1, 1Fe, Fe, 2, 3, 3B, 5, 6, and 7) at the ALPO-SBTU test site had a combined flow rate of 1,420 gallons per minute (gal/min) and flow-weighted averages for pH of 3.3, net acidity of 55 milligrams per liter (mg/L) as CaCO3, and concentrations of dissolved sulfate, aluminum, iron, and manganese of 694 mg/L, 4.4 mg/L, 0.74 mg/L, and 1.2 mg/L, respectively. These pH, net acidity, sulfate, and aluminum values exceed effluent criteria for active mines in Pennsylvania.During April-June 2004, limestone and steel slag that were locally available were tested in the laboratory for their composition, approximate surface area, and potential to neutralize samples of the AMD. Although the substrates had a similar particle-size distribution and identical calcium content (43 percent as calcium oxide), the limestone was composed of crystalline carbonates and the slag was composed of silicate glass and minerals. After a minimum of 8 hours contact between the AMD and limestone or steel slag in closed containers (cubitainers), near-neutral effluent was produced. With prolonged contact between the AMD and limestone or steel slag, the concentrations of iron, aluminum, and most dissolved trace elements in effluent from the cubitainers declined while pH was maintained greater than 6.0 and less than 9.0. The cubitainer testing demonstrated (1) lower alkalinity production but higher pH of AMD treated with steel slag compared to limestone, and (2) predictable relations between the effluent quality, detention time, and corresponding flow rate and bulk volume for a bed of crushed limestone or steel slag in an AMD passive-treatment system.The process for evaluating AMD remedial strategies at the ALPO-SBTU test site involved the computation and ranking of the metal loadings during April 2004 for each of the AMD sources and a comparison of the data on AMD flow and chemistry (alkalinity, acidity, dissolved oxygen, ferric iron, aluminum) with published criteria for selection of passive-treatment technology. Although neutralization of the AMD by reaction with limestone was demonstrated with cubitainer tests, an anoxic limestone drain (ALD) was indicated as inappropriate for any AMD source at the test site because all had excessive concentrations of dissolved oxygen and (or) aluminum. One passive-treatment scenario that was identified for the individual or combined AMD sources involved an open limestone channel (OLC) to collect the AMD source(s), a vertical flow compost wetland (VFCW) to add alkalinity, and an aerobic wetland to facilitate iron and manganese oxidation and retention of precipitated solids. Innovative passive-system designs that direct flow upward through submerged layers of limestone and/or steel slag and that incorporate siphons for automatic flushing of solids to a pond also may warrant consideration. Alternatively, an active-treatment system with a hydraulic-powered lime doser could be employed instead of the VFCW or upflow system. Now, given these data on AMD flow and chemistry and identified remedial technologies, a resource manager can use a publicly available computer program such as "AMDTreat" to evaluate the potential sizes and costs of various remedial alternatives.
GOLD ACRES BIOLOGICAL HEAP DETOXIFICATION
Many active mine sites, mines in closure stage and some abandoned mines are and have utilized cyanidation to remove and recover precious metals. Discharges from these sites normally contain significant amounts of metal cyanide complexes and concentrations of thiocyanate, soluble...
Biochar Mechanisms of Heavy Metal Sorption and Potential Utility
NASA Astrophysics Data System (ADS)
Ippolito, J.
2015-12-01
Mining-affected lands are a global issue; in the USA alone there are an estimated 500,000 abandoned mines encompassing hundreds of thousands of hectares. Many of these sites generate acidic mine drainage that causes release of heavy metals, and subsequently degradation in environmental quality. Because of its potential liming characteristics, biochar may play a pivotal role as a soil amendment in future mine land reclamation. However, to date, most studies have focused on the use of biochar to sorb metals from solution. Previous studies suggest that metals are complexed by biochar surface function groups (leading to ion exchange, complexation), coordination with Pi electrons (C=C) of carbon, and precipitation of inorganic mineral phases. Several recent studies have focused on the use of biochar for amending mine land soils, showing that biochar can indeed reduce heavy metal lability, yet the mechanism(s) behind labile metal reduction have yet to be established. In a proof-of-concept study, we added lodgepole pine, tamarisk, and switchgrass biochar (0, 5, 10, 15% by weight; 500 oC) to four different western US mine land soils affected by various heavy metals (Cd, Cu, Mn, Pb, Zn). Extraction with 0.01M CaCl2 showed that increasing biochar application rate significantly decreased 'bioaccessible' metals in almost all instances. A concomitant increase in solution pH was observed, suggesting that metals may be rendered bio-inaccessible through precipitation as carbonate or (hydr)oxide phases, or sorbed onto mineral surfaces. However, this was only supposition and required further research. Thus, following the 0.01M CaCl2 extraction, biochar-soil mixtures were air-dried and metals were further extracted using the four-step BCR sequential removal procedure. Results from selective extraction suggest that, as compared to the controls, most metals in the biochar-amended mine land soils were associated with exchange sites, carbonate, and oxide phases. Biochar may play a pivotal role as a soil amendment in the future of mine land reclamation, although elevated pH levels should be maintained to prolong sequestration while lessening the possibility of metal resolubilization.
Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines.
Miguel-Chinchilla, Leticia; González, Eduardo; Comín, Francisco A
2014-08-01
Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services.
Bendell, L I
2011-02-15
Archived samples of blue grouse (Dendragapus obscurus) gizzard contents, inclusive of grit, collected yearly between 1959 and 1970 were analyzed for cadmium, lead, zinc, and copper content. Approximately halfway through the 12-year sampling period, an open-pit copper mine began activities, then ceased operations 2 years later. Thus the archived samples provided a unique opportunity to determine if avian gizzard contents, inclusive of grit, could reveal patterns in the anthropogenic deposition of trace metals associated with mining activities. Gizzard concentrations of cadmium and copper strongly coincided with the onset of opening and the closing of the pit mining activity. Gizzard zinc and lead demonstrated significant among year variation; however, maximum concentrations did not correlate to mining activity. The archived gizzard contents did provide a useful tool for documenting trends in metal depositional patterns related to an anthropogenic activity. Further, blue grouse ingesting grit particles during the time of active mining activity would have been exposed to toxicologically significant levels of cadmium. Gizzard lead concentrations were also of toxicological significance but not related to mining activity. This type of "pulse" toxic metal exposure as a consequence of open-pit mining activity would not necessarily have been revealed through a "snap-shot" of soil, plant or avian tissue trace metal analysis post-mining activity. Copyright © 2010 Elsevier B.V. All rights reserved.
Søndergaard, Jens
2013-08-01
This study investigated dispersion and bioaccumulation of mining-related elements from an open-pit olivine mine at Seqi in Southwest Greenland (64° N) using lichens (Flavocetraria nivalis), seaweeds (Fucus vesiculosus), mussels (Mytilus edulis) and fish (Myoxocephalus scorpius). The mine operated between 2005 and 2009, and samples were taken every year within a monitoring area 0-17 km from the mine during the period 2004-2011. A total of 46 elements were analysed in the samples. After mining began, highly elevated metal concentrations, especially nickel (Ni), chromium (Cr), iron (Fe) and cobalt (Co), were observed in lichens relative to pre-mining levels (up to a factor of 130) caused by dust dispersion from the mining activity. Elevated metal concentrations could be measured in lichens in distances up to ~5 km from the mine/ore treatment facility. Moderately elevated concentrations of Ni and Cr (up to a factor of 7) were also observed in seaweeds and mussels but only in close vicinity (<1 km) to the mine. Analyses of fish showed no significant changes in element composition. After mine closure, the elevated metal concentrations in lichens, seaweeds and mussels decreased markedly, and in 2011, significantly elevated metal concentrations could only be measured in lichens and only within a distance of 1 km from the mine.
NASA Astrophysics Data System (ADS)
Chant, Ian J.; Staines, Geoff
1997-07-01
United Nations Peacekeeping forces around the world need to transport food, personnel and medical supplies through disputed regions were land mines are in active use as road blocks and terror weapons. A method of fast, effective land mine detection is needed to combat this threat to road transport. The technique must operate from a vehicle travelling at a reasonable velocity and give warning far enough ahead for the vehicle to stop in time to avoid the land mine. There is particular interest in detecting low- metallic content land mines. One possible solutionis the use of ultra-wide-band (UWB) radar. The Australian Defence Department is investigating the feasibility of using UWB radar for land mine detection from a vehicle. A 3 GHz UWB system has been used to collect target response from a series of inert land mines and mine-like objects placed on the ground and buried in the ground. The targets measured were a subset of those in the target set described in Wong et al. with the addition of inert land mines corresponding to some of the surrogate targets in this set. The results are encouraging for the detection of metallic land mines and the larger non-metallic land mines. Smaller low-metallic- content anti-personnel land mines are less likely to be detected.
NASA Astrophysics Data System (ADS)
Nogueira, Veronica Ines Jesus Oliveira
Industrial activities are the major sources of pollution in all environments. Depending on the type of industry, various levels of organic and inorganic pollutants are being continuously discharged into the environment. Although, several kinds of physical, chemical, biological or the combination of methods have been proposed and applied to minimize the impact of industrial effluents, few have proved to be totally effective in terms of removal rates of several contaminants, toxicity reduction or amelioration of physical and chemical properties. Hence, it is imperative to develop new and innovative methodologies for industrial wastewater treatment. In this context nanotechnology arises announcing the offer of new possibilities for the treatment of wastewaters mainly based on the enhanced physical and chemical proprieties of nanomaterials (NMs), which can remarkably increase their adsorption and oxidation potential. Although applications of NMs may bring benefits, their widespread use will also contribute for their introduction into the environment and concerns have been raised about the intentional use of these materials. Further, the same properties that make NMs so appealing can also be responsible for producing ecotoxicological effects. In a first stage, with the objective of selecting NMs for the treatment of organic and inorganic effluents we first assessed the potential toxicity of nanoparticles of nickel oxide (NiO) with two different sizes (100 and 10-20 nm), titanium dioxide (TiO2, < 25 nm) and iron oxide (Fe2O3, ≈ 85x425 nm). The ecotoxicological assessment was performed with a battery of assays using aquatic organisms from different trophic levels. Since TiO2 and Fe2O3 were the NMs that presented lower risks to the aquatic systems, they were selected for the second stage of this work. Thus, the two NMs pre-selected were tested for the treatment of olive mill wastewater (OMW). They were used as catalyst in photodegradation systems (TiO2/UV, Fe2O3/UV, TiO2/H2O2/UV and Fe2O3/H2O2/UV). The treatments with TiO2 or Fe2O3 combined with H2O2 were the most efficient in ameliorating some chemical properties of the effluent. Regarding the toxicity to V. fischeri the highest reduction was recorded for the H2O2/UV system, without NMs. Afterwards a sequential treatment using photocatalytic oxidation with NMs and degradation with white-rot fungi was applied to OMW. This new approach increased the reduction of chemical oxygen demand, phenolic content and ecotoxicity to V. fischeri. However, no reduction in color and aromatic compounds was achieved after 21 days of biological treatment. The photodegradation systems were also applied to treat the kraft pulp mill and mining effluents. For the organic effluent the combination NMs and H2O2 had the best performances in reduction the chemical parameters as well in terms of toxicity reduction. However, for the mine effluent the best (TiO2/UV and Fe2O3/UV) were only able to significantly remove three metals (Zn, Al and Cd). Nonetheless the treatments were able of reducing the toxicity of the effluent. As a final stage, the toxicity of solid wastes formed during wastewater treatment with NMs was assessed with Chironomus riparius larvae, a representative species of the sediment compartment. Certain solid wastes showed the potential to negatively affect C. riparius survival and growth, depending on the type of effluent treated. This work also brings new insights to the use of NMs for the treatment of industrial wastewaters. Although some potential applications have been announced, many evaluations have to be performed before the upscaling of the chemical treatments with NMs.