Science.gov

Sample records for metal nanocrystals simple

  1. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?

    PubMed

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

  2. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?

    PubMed Central

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E.

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. The aim of this article is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Toward the end of this article, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take. PMID:19053095

  3. A simple dissolved metals mixing method to produce high-purity MgTiO{sub 3} nanocrystals

    SciTech Connect

    Pratapa, Suminar E-mail: suminar-pratapa@physics.its.ac.id; Baqiya, Malik A. E-mail: suminar-pratapa@physics.its.ac.id; Istianah, E-mail: suminar-pratapa@physics.its.ac.id; Lestari, Rina E-mail: suminar-pratapa@physics.its.ac.id; Angela, Riyan E-mail: suminar-pratapa@physics.its.ac.id

    2014-02-24

    A simple dissolved metals mixing method has been effectively used to produce high-purity MgTiO{sub 3} (MT) nanocrystals. The method involves the mixing of independently dissolved magnesium and titanium metal powders in hydrochloric acid followed by calcination. The phase purity and nanocrystallinity were determined by making use of laboratory x-ray diffraction data, to which Rietveld-based analyses were performed. Results showed that the method yielded only one type magnesium titanate powders, i.e. MgTiO{sub 3}, with no Mg{sub 2}TiO{sub 4} or MgTi{sub 2}O{sub 5} phases. The presence of residual rutile or periclase was controlled by adding excessive Mg up to 5% (mol) in the stoichiometric mixing. The method also resulted in MT nanocrystals with estimated average crystallite size of 76±2 nm after calcination at 600°C and 150±4 nm (at 800°C). A transmission electron micrograph confirmed the formation of the nanocrystallites.

  4. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  5. Shaping metal nanocrystals through epitaxial seeded growth

    SciTech Connect

    Habas, Susan E.; Lee, Hyunjoo; Radmilovic, Velimir; Somorjai,Gabor A.; Yang, Peidong

    2008-02-17

    Morphological control of nanocrystals has becomeincreasingly important, as many of their physical and chemical propertiesare highly shape-dependent. Nanocrystal shape control for both single andmultiple material systems, however, remains fairly empirical andchallenging. New methods need to be explored for the rational syntheticdesign of heterostructures with controlled morphology. Overgrowth of adifferent material on well-faceted seeds, for example, allows for the useof the defined seed morphology to control nucleation and growth of thesecondary structure. Here, we have used highly faceted cubic Pt seeds todirect the epitaxial overgrowth of a secondary metal. We demonstrate thisconcept with lattice matched Pd to produce conformal shape-controlledcore-shell particles, and then extend it to lattice mismatched Au to giveanisotropic growth. Seeding with faceted nanocrystals may havesignificant potential towards the development of shape-controlledheterostructures with defined interfaces.

  6. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.

    PubMed

    Runnerstrom, Evan L; Bergerud, Amy; Agrawal, Ankit; Johns, Robert W; Dahlman, Clayton J; Singh, Ajay; Selbach, Sverre M; Milliron, Delia J

    2016-05-11

    Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes.

  7. Defect Engineering in Plasmonic Metal Oxide Nanocrystals.

    PubMed

    Runnerstrom, Evan L; Bergerud, Amy; Agrawal, Ankit; Johns, Robert W; Dahlman, Clayton J; Singh, Ajay; Selbach, Sverre M; Milliron, Delia J

    2016-05-11

    Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes. PMID:27111427

  8. Metal halide solid-state surface treatment for nanocrystal materials

    DOEpatents

    Luther, Joseph M.; Crisp, Ryan; Beard, Matthew C.

    2016-04-26

    Methods of treating nanocrystal and/or quantum dot devices are described. The methods include contacting the nanocrystals and/or quantum dots with a solution including metal ions and halogen ions, such that the solution displaces native ligands present on the surface of the nanocrystals and/or quantum dots via ligand exchange.

  9. Silicon nanocrystal-noble metal hybrid nanoparticles.

    PubMed

    Sugimoto, H; Fujii, M; Imakita, K

    2016-06-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. PMID:27121127

  10. Hydroxyapatite nanocrystals: simple preparation, characterization and formation mechanism.

    PubMed

    Mohandes, Fatemeh; Salavati-Niasari, Masoud; Fathi, Mohammadhossein; Fereshteh, Zeinab

    2014-12-01

    Crystalline hydroxyapatite (HAP) nanoparticles and nanorods have been successfully synthesized via a simple precipitation method. To control the shape and particle size of HAP nanocrystals, coordination ligands derived from 2-hydroxy-1-naphthaldehyde were first prepared, characterized by Fourier transform infrared (FT-IR) and proton nuclear magnetic resonance ((1)H-NMR) spectroscopies, and finally applied in the synthesis process of HAP. On the other hand, the HAP nanocrystals were also characterized by several techniques including powder X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). According to the FE-SEM and TEM micrographs, it was found that the morphology and crystallinity of the HAP powders depended on the coordination mode of the ligands. PMID:25491798

  11. Silicon nanocrystal-noble metal hybrid nanoparticles

    NASA Astrophysics Data System (ADS)

    Sugimoto, H.; Fujii, M.; Imakita, K.

    2016-05-01

    We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion.We report a novel and facile self-limiting synthesis route of silicon nanocrystal (Si NC)-based colloidally stable semiconductor-metal (gold, silver and platinum) hybrid nanoparticles (NPs). For the formation of hybrid NPs, we employ ligand-free colloidal Si NCs with heavily boron (B) and phosphorus (P) doped shells. By simply mixing B and P codoped colloidal Si NCs with metal salts, hybrid NPs consisting of metal cores and Si NC shells are spontaneously formed. We demonstrate the synthesis of highly uniform and size controllable hybrid NPs. It is shown that codoped Si NCs act as a reducing agent for metal salts and also as a protecting layer to stop metal NP growth. The process is thus self-limiting. The development of a variety of Si NC-based hybrid NPs is a promising first step for the design of biocompatible multifunctional NPs with broad material choices for biosensing, bioimaging and solar energy conversion. Electronic supplementary information (ESI) available: Additional TEM images and extinction spectra of Si-metal hybrid NPs are shown in Fig. S1

  12. A Novel Thermal Electrochemical Synthesis Method for Production of Stable Colloids of "Naked" Metal (Ag) Nanocrystals

    SciTech Connect

    Hu, Michael Z.; Easterly, Clay E

    2009-01-01

    Solution synthesis of nanocrystal silver is reviewed. This paper reports a novel thermal electrochemical synthesis (TECS) for producing metal Ag nanocrystals as small as a few nanometers. The TECS method requires mild conditions (25-100oC), low voltage (1-50 V DC) on Ag electrodes, and simple water or aqueous solutions as reaction medium. Furthermore, a tubular dialysis membrane surround electrodes proves favorable to produce nanosized (<10 nm) Ag nanocrystals. Different from those nanocrystals reported in literature, our nanocrystals have several unique features: (1) small nanometer size, (2) nakedness , i.e., surfaces of metal nanocrystals are free of organic ligands or capping molecules and no need of dispersant in synthesis solutions, and (3) colloidally stable in water solutions. It was discovered that Ag nanoparticles with initially large size distribution can be homogenized into near-monodispersed system by a low power (< 15 mW) He-Ne laser exposure treatment. The combination of the TECS technique and the laser treatment could lead to a new technology that produces metal nanoparticles that are naked, stable, and uniform sized. In the presence of stabilizing agent (also as supporting electrolyte) such as polyvinyl alcohol (PVA), large yield of silver nanoparticles (<100nm) in the form of thick milky sols are produced.

  13. Shape-Controlled Metal Nanocrystals for Heterogeneous Catalysis.

    PubMed

    Ruditskiy, Aleksey; Peng, Hsin-Chieh; Xia, Younan

    2016-06-01

    The ability to control the shape of metal nanocrystals allows us to not only maneuver their physicochemical properties but also optimize their activity in a variety of applications. Heterogeneous catalysis, in particular, would benefit tremendously from the availability of metal nanocrystals with controlled shapes and well-defined facets or surface structures. The immediate benefits may include significant enhancements in catalytic activity and/or selectivity along with reductions in the materials cost. We provide a brief account of recent progress in the development of metal nanocrystals with controlled shapes and thereby enhanced catalytic performance for several reactions, including formic acid oxidation, oxygen reduction, and hydrogenation. In addition to monometallic nanocrystals, we also cover a bimetallic system, in which the two metals are formulated as alloyed, core-shell, or core-frame structures. We hope this article will provide further impetus for the development of next-generation heterogeneous catalysts essential to a broad range of applications. PMID:27023659

  14. Metal-insulator transition in films of doped semiconductor nanocrystals.

    PubMed

    Chen, Ting; Reich, K V; Kramer, Nicolaas J; Fu, Han; Kortshagen, Uwe R; Shklovskii, B I

    2016-03-01

    To fully deploy the potential of semiconductor nanocrystal films as low-cost electronic materials, a better understanding of the amount of dopants required to make their conductivity metallic is needed. In bulk semiconductors, the critical concentration of electrons at the metal-insulator transition is described by the Mott criterion. Here, we theoretically derive the critical concentration nc for films of heavily doped nanocrystals devoid of ligands at their surface and in direct contact with each other. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition.

  15. Ion irradiation effects on metallic nanocrystals

    SciTech Connect

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C.S.; Foran, G.J.; Cookson, D.J.; Byrne, A.P.; Ridgway, M.C.

    2008-04-02

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO{sub 2}. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO{sub 2} interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  16. Ion irradiation effects on metallic nanocrystals

    NASA Astrophysics Data System (ADS)

    Kluth, P.; Johannessen, B.; Giulian, R.; Schnohr, C. S.; Foran, G. J.; Cookson, D. J.; Byrne, A. P.; Ridgway, M. C.

    We have investigated structural and morphological properties of metallic nanocrystals (NCs) exposed to ion irradiation. NCs were characterized by transmission electron microscopy in combination with advanced synchrotron-based analytical techniques, in particular X-ray absorption spectroscopy and small-angle X-ray scattering. A number of different effects were observed depending on the irradiation conditions. At energies where nuclear stopping is predominant, structural disorder/amorphization followed by inverse Ostwald ripening/dissolution due to ion beam mixing was observed for Au and Cu NCs embedded in SiO2. The ion-irradiation-induced crystalline to amorphous transition in the NCs, which cannot be achieved in the corresponding bulk metals, was attributed to their initially higher structural energy as compared to bulk material and possibly preferential nucleation of the amorphous phase at the NC/SiO2 interface. At very high irradiation energies (swift heavy ion irradiation), where the energy loss is nearly entirely due to electronic stopping, a size-dependent shape transformation of the NCs from spheres to rod like shapes was apparent in Au NCs. Our preliminary results are in good agreement with considerations on melting of the NCs in the ion track as one mechanism involved in the shape transformation.

  17. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrorm, EL; Llordes, A; Milliron, DJ

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  18. Solution based synthesis of simple fcc Si nano-crystals under ambient conditions.

    PubMed

    Balcı, Mustafa H; Sæterli, Ragnhild; Maria, Jerome; Lindgren, Mikael; Holmestad, Randi; Grande, Tor; Einarsrud, Mari-Ann

    2013-02-28

    We demonstrate for the first time that simple face-centered cubic (fcc) silicon nano-crystals can be produced by a solution based bottom-up synthesis route under ambient conditions. Simple fcc Si nano-crystals (2-7 nm) were prepared at room temperature by using sodium cyclopentadienide as a reducing agent for silicon tetrachloride. Photoluminescence emission at 550 nm was observed for the fcc silicon nano-crystals upon excitation at 340 nm, indicating that fcc Si nano-crystals were exhibiting direct bandgap like semiconductor properties with very fast radiative recombination rates. The new synthesis route makes possible the production and study of simple fcc polymorphs of Si nano-crystals with an easy alteration of surface termination groups.

  19. Formation of noble metal nanocrystals in the presence of biomolecules

    NASA Astrophysics Data System (ADS)

    Burt, Justin Lockheart

    One of the most promising, yet least studied routes for producing biocompatible nanostructures involves synthesis in the presence of biomolecules. I hypothesized that globular proteins could provide a suitable framework to regulate the formation of noble metal nanocrystals. As proof of concept, I designed two novel synthesis protocols utilizing bovine serum albumin (BSA) protein to regulate the formation of gold nanocrystals. In the first case, the standard protocol for polyol reduction was modified by replacing ethylene glycol with glycerin, replacing synthetic polymers with BSA as protecting agent, and decreasing the reaction temperature. In the second case, the Brust-Schiffrin two-phase reduction was modified by replacing alkylthiols with BSA as protecting agent, which facilitated a strictly aqueous phase synthesis. Due to superior product yield and rapid reduction at room temperature, the aqueous protocol became the foundation for subsequent studies. I extended this approach to produce well-dispersed ˜2nm silver, gold, and platinum nanocrystals. Having demonstrated the feasibility of BSA-functionalized nanocrystals, some potential uses were explored. BSA-functionalized silver nanocrystals were employed in a broader study on the interaction of silver nanocrystals with HIV. BSA-functionalized gold nanocrystals were utilized for in vivo dosage of a contrast enhancing agent to bacteria. BSA-functionalized platinum nanocrystals were studied as hydrogenation catalysts. Since many intriguing uses for protein-functionalized nanocrystals involve incorporation into biosystems, I sought to enhance biocompatibility by using ascorbic acid as reducing agent. Initial experiments revealed elongated and branched nanocrystals. Such structures were not observed in previous synthesis protocols with BSA, so I hypothesized ascorbic acid was driving their formation. To test my assertion, I reduced ionic gold in an aqueous solution of ascorbic acid, thereby discovering a new method

  20. Complexity in `simple' metals

    NASA Astrophysics Data System (ADS)

    Rousseau, Bruno; Ashcroft, Neil W.

    2008-03-01

    In electronic and structural terms, the light alkalis have long been regarded as `simple systems', at least under ordinary conditions. However, when compressed they exhibit unforeseen complexity; the melting curve of sodium, for example, has a striking maximum, falling to near room temperature melting where a complex structure (CI16) is found, this being in the cubic class but with 16 atoms per unit cell [1,2]. The light alkalis have been extensively studied using ab initio methods with standard assumptions of transferability made for the key pseudopotential input information, largely atomic based. Lacking still, however, is a somewhat more intuitive and physical understanding of the developments in electronic structure with progressive increase in density. In the present work, the problem is treated with non-linear response theory and non-overlapping pseudopotentials, and the structural complexity traced to effective ion-ion interactions with features that both at short range and long display competing state dependence. [1] Gregoryanz et al., Phys. Rev. Lett. 94, 185502 (2005) [2] McMahon et al., Chem. Soc. Rev. 35, 943 (2006)

  1. Simple approach to reinforce hydrogels with cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Han, Chun-Rui; Xu, Feng; Sun, Run-Cang

    2014-05-01

    The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report

  2. Simple approach to reinforce hydrogels with cellulose nanocrystals.

    PubMed

    Yang, Jun; Han, Chun-rui; Xu, Feng; Sun, Run-cang

    2014-06-01

    The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network.

  3. Simple approach to reinforce hydrogels with cellulose nanocrystals.

    PubMed

    Yang, Jun; Han, Chun-rui; Xu, Feng; Sun, Run-cang

    2014-06-01

    The physical crosslinking of colloidal nanoparticles via dynamic and directional non-covalent interactions has led to significant advances in composite hydrogels. In this paper, we report a simple approach to fabricate tough, stretchable and hysteretic isotropic nanocomposite hydrogels, where rod-like cellulose nanocrystals (CNCs) are encapsulated by flexible polymer chains of poly(N,N-dimethylacrylamide) (PDMA). The CNC-PDMA colloidal clusters build a homogeneously cross-linked network and lead to significant reinforcing effect of the composites. Hierarchically structured CNC-PDMA clusters, from isolated particles to an interpenetrated network, are observed by transmission electron microscopy measurements. Dynamic shear oscillation measurements are applied to demystify the differences in network rheological behaviors, which were compared with network behaviors of chemically cross-linked PDMA counterparts. Tensile tests indicate that the hybrid hydrogels possess higher mechanical properties and a more efficient energy dissipation mechanism. In particular, with only 0.8 wt% of CNC loading, a 4.8-fold increase in Young's modulus, 9.2-fold increase in tensile strength, and 5.8-fold increase in fracture strain are achieved, which is ascribed to a combination of CNC reinforcement in the soft matrix and CNC-PDMA colloidal cluster conformational rearrangement under stretching. Physical interactions within networks serve as reversible sacrificial bonds that dissociate upon deformation, exhibiting large hysteresis as an energy dissipation mechanism via cluster mobility. This result contrasts with the case of chemically cross-linked PDMA counterparts where the stress relaxation is slow due to the permanent cross-links and low resistance against crack propagation within the covalent network. PMID:24763379

  4. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    PubMed

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  5. Architectural design of heterogeneous metallic nanocrystals--principles and processes.

    PubMed

    Yu, Yue; Zhang, Qingbo; Yao, Qiaofeng; Xie, Jianping; Lee, Jim Yang

    2014-12-16

    CONSPECTUS: Heterogeneous metal nanocrystals (HMNCs) are a natural extension of simple metal nanocrystals (NCs), but as a research topic, they have been much less explored until recently. HMNCs are formed by integrating metal NCs of different compositions into a common entity, similar to the way atoms are bonded to form molecules. HMNCs can be built to exhibit an unprecedented architectural diversity and complexity by programming the arrangement of the NC building blocks ("unit NCs"). The architectural engineering of HMNCs involves the design and fabrication of the architecture-determining elements (ADEs), i.e., unit NCs with precise control of shape and size, and their relative positions in the design. Similar to molecular engineering, where structural diversity is used to create more property variations for application explorations, the architectural engineering of HMNCs can similarly increase the utility of metal NCs by offering a suite of properties to support multifunctionality in applications. The architectural engineering of HMNCs calls for processes and operations that can execute the design. Some enabling technologies already exist in the form of classical micro- and macroscale fabrication techniques, such as masking and etching. These processes, when used singly or in combination, are fully capable of fabricating nanoscopic objects. What is needed is a detailed understanding of the engineering control of ADEs and the translation of these principles into actual processes. For simplicity of execution, these processes should be integrated into a common reaction system and yet retain independence of control. The key to architectural diversity is therefore the independent controllability of each ADE in the design blueprint. The right chemical tools must be applied under the right circumstances in order to achieve the desired outcome. In this Account, after a short illustration of the infinite possibility of combining different ADEs to create HMNC design

  6. How many electrons make a semiconductor nanocrystal film metallic

    NASA Astrophysics Data System (ADS)

    Reich, Konstantin; Chen, Ting; Kramer, Nicolaas; Fu, Han; Kortshagen, Uwe; Shklovskii, Boris

    For films of semiconductor nanocrystals to achieve their potential as novel, low-cost electronic materials, a better understanding of their doping to tune their conductivity is required. So far, it not known how many dopants will turn a nanocrystal film from semiconducting to metallic. In bulk semiconductors, the critical concentration nM of electrons at the metal-insulator transition is described by the famous Mott criterion: nMaB3 ~= 0 . 02 , where aB is the effective Bohr radius. We show theoretically that in a dense NC film, where NCs touch each other by small facets, the concentration of electrons nc >>nM at the metal-insulator transition satisfies the condition: ncρ3 ~= 0 . 3 , where ρ is a radius of contact facets. In the accompanying experiments, we investigate the conduction mechanism in films of phosphorus-doped, ligand-free silicon nanocrystals. At the largest electron concentration achieved in our samples, which is half the predicted nc, we find that the localization length of hopping electrons is close to three times the nanocrystals diameter, indicating that the film approaches the metal-insulator transition. This work was supported primarily by the National Science Foundation through the University of Minnesota MRSEC under Award No. DMR-1420013.

  7. Methyl oleate-capped upconverting nanocrystals: a simple and general ligand exchange strategy to render nanocrystals dispersible in aqueous and organic medium.

    PubMed

    Meesaragandla, Brahmaiah; Adusumalli, Venkata N K B; Mahalingam, Venkataramanan

    2015-05-19

    We report a simple and general ligand exchange strategy to functionalize the nanocrystals with both hydrophobic and hydrophilic ligands. This is achieved by first capping the Er/Yb-doped NaYF4 nanocrystals with a weak ligand such as methyl oleate and subsequently ligand exchanged with various organic ligands which can strongly coordinate to the surface of the nanocrystals. The method involves only a simple stirring or sonication of the nanocrystals dispersion with the ligands of interest. Dicarboxylic acids such as sebacic acid, adipic acid, succinic acid, and malonic acid-functionalized nanocrystals which are difficult to achieve via thermal decomposition method were easily prepared by this ligand exchange strategy. In addition, low boiling point ligands like hexanoic acid can easily be coated over the surface of the Er/Yb-doped NaYF4 nanocrystals. Both size and shape of the nanocrystals were preserved after the ligand exchange process. The methyl oleate-capped Er/Yb-doped NaYF4 nanocrystals display strong upconversion emission after ligand exchanged with hydrophobic and hydrophilic molecules. The high stability of the nanocrystals after ligand exchange process is verified by performing time-dependent luminescent measurements at different pH, buffers, etc.

  8. Engineering the architectural diversity of heterogeneous metallic nanocrystals.

    PubMed

    Yu, Yue; Zhang, Qingbo; Xie, Jianping; Lee, Jim Yang

    2013-01-01

    Similar to molecular engineering where structural diversity is used to create more property variations for application explorations, the architectural engineering of heterogeneous metallic nanocrystals (HMNCs) can likewise increase the versatility of metallic nanocrystals (NCs). Here we present a synthesis strategy capable of engineering the architectural diversity of HMNCs through rational and independent programming of every architecture-determining element, that is, the shape and size of the component NCs and their spatial arrangement. The strategy is based on the galvanic replacement reaction of a self-sustaining layer formed by underpotential deposition on a polyhedral NC. The selective deposition of satellite NCs on specific site of the central NC is realized by creating a geometry-dependent heterogeneous electron distribution. This site-selective deposition approach is applicable to central NCs in various polyhedral shapes and sizes. The satellite NCs can further develop their own shape and size through crystal growth kinetics control.

  9. Tunable and responsive plasmonic properties of metal oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Milliron, Delia

    2015-03-01

    Degenerately doped metal oxide semiconductors, like ITO, exhibit plasmonic resonance at near and mid-infrared wavelengths tunable by varying their composition. Nanocrystals of many such materials have now been synthesized and applications are emerging that leverage the responsiveness of their localized surface plasmon resonance (LSPR) to electronic charging and discharging. For example, electrochromic glass that can dynamically control heat loads in buildings is under development. In biological systems, plasmonic oxide nanocrystals can act as remote sensors, where changes in their optical absorption indicates biochemical redox has occurred. Nonetheless, significant fundamental questions remain open regarding the nature of the infrared optical response in these doped oxides. Dopant impurities influence the optoelectronic properties beyond simply donating free carriers. For example, the distribution of Sn in ITO was found to dramatically influence the line shape of the LSPR and the effective electron mobility. In addition, by post-synthetically modifying carrier concentrations (through photodoping or electrochemical doping), we have observed that aliovalent doping and electronic doping each modify LSPR spectra, providing access to a broad range of tunable optical properties. Heterogeneous broadening, uncovered by single nanocrystal spectroscopy, also contributes to ensemble line shapes, complicating direct interpretation of LSPR spectra. Finally, the possibility of electric field enhancement by metal oxide LSPRs is critically examined to suggest what future applications might be on the horizon.

  10. Template Synthesis of Nanostructured Metals using Cellulose Nanocrystal

    SciTech Connect

    Shin, Yongsoon; Exarhos, Gregory J.

    2009-11-01

    In this chapter, cellulose nanocrystal (CNXL) has been used as a template and reducing agent for synthesizing nanoscale inorganic solids such as metal oxide, metal carbide, and nanocrystalline metals. CNXL selectively nucleates metal or metal oxide phases in ordered arrangements commensurate with the attendant structure and chemistry of the fiber. The reaction has an analogy to the well-known Tollen’s reagent where addition of an aldehyde or glucose analyte to a glass vessel containing a soluble ammoniacal silver complex causes reduction of the silver to form a mirror on the vessel surface. For the synthesis of TiO2, CNXL produced mesoporous anatase with 5-10 nm particle sizes and 170-200 m2/g surface area after air-calcination. Silica-infiltrated CNXL produced very homogeneous SiC nanowires with 70 nm in diameter at 1400 oC in Ar. For the syntheses of metal nanoparticles, upon addition of aqueous metal ion containing solutions (Cu(II), Ni(II), Ag(I), Au(III), Pd(II), Pt(IV), or even selenite, Se(IV)) into the CNXL suspension, reduction to the metal occurs under hydrothermal conditions to form ordered metal nanostructures. Ni (II) and Cu(II) ions required high temperature (300-400 oC) to be reduced due to their low reduction potentials. However, metal ions including Ag(I), Au(III), Pt(IV), Pd(II), Se(IV) needed lower temperatures (160-200 oC) to be reduced. Enhanced catalytic activity on these templated surfaces has been demonstrated for a methylene-blue dye photo-induced decomposition (Se nanocrystals resident on crystalline cellulose).

  11. Generalized chemical route to develop fatty acid capped highly dispersed semiconducting metal sulphide nanocrystals

    SciTech Connect

    Patel, Jayesh D.; Mighri, Frej; Ajji, Abdellah

    2012-08-15

    Highlights: ► Chemical route for the synthesis of OA-capped CdS, ZnS and PbS at low temperature. ► Synthesized nanocrystals via thermolysis of their metal–oleate complexes. ► Size quantized nanocrystals were highly dispersed and stable at room temperature. -- Abstract: This work deals with the synthesis of highly dispersed semiconducting nanocrystals (NCs) of cadmium sulphide (CdS), zinc sulphide (ZnS) and lead sulphide (PbS) through a simple and generalized process using oleic acid (OA) as surfactant. To synthesize these NCs, metal–oleate (M–O) complexes were obtained from the reaction at 140 °C between metal acetates and OA in hexanes media. Subsequently, M–O complexes were sulphurized using thioacetamide at the same temperature. Transmission electron microscopy (TEM) and X-ray diffraction (XRD) characterizations show that the synthesized products are of nanoscale-size with highly crystalline cubic phase. The optical absorption of OA-capped metal sulphide NCs confirms that their size quantization induced a large shift towards visible region. Photoluminescence (PL) spectrum of CdS NCs shows a broad band-edge emission with shallow and deep-trap emissions, while PL spectrum of ZnS NCs reveals a broad emission due to defects states on the surface. The thermogravimetric analysis (TGA) and Fourier transform infrared (FTIR) spectroscopy indicate that fatty acid monolayers were bound strongly on the nanocrystal surface as a carboxylate and the two oxygen atoms of the carboxylate were coordinated symmetrically to the surface of the NCs. The strong binding between the fatty acid and the NCs surface enhances the stability of NCs colloids. In general, this generalized route has a great potential in developing nanoscale metal sulphides for opto-electronic devices.

  12. Metallic Carbon Nanotubes and Ag Nanocrystals

    SciTech Connect

    Brus, Louis E

    2014-03-04

    The goal of this DOE solar energy research was to understand how visible light interacts with matter, and how to make electric excitations evolve into separated electrons and holes in photovoltaic cells, especially in nanoparticles and nanowires. Our specific experiments focused on A) understanding plasmon enhanced spectroscopy and charge-transfer (metal-to-molecule) photochemistry on the surface of metallic particles and B) the spectroscopy and photochemistry of carbon nanotubes and graphene. I also worked closely with R. Friesner on theoretical studies of photo-excited electrons near surfaces of titanium dioxide nanoparticles; this process is relevant to the Gratzel photovoltaic cell.

  13. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.

    PubMed

    Kwon, Soon Gu; Hyeon, Taeghwan

    2008-12-01

    Nanocrystals exhibit interesting electrical, optical, magnetic, and chemical properties not achieved by their bulk counterparts. Consequently, to fully exploit the potential of nanocrystals, the synthesis of nanocrystals must focus on producing materials with uniform size and shape. Top-down physical processes can produce large quantities of nanocrystals, but controlling the size is difficult with these methods. On the other hand, colloidal chemical synthetic methods can produce uniform nanocrystals with a controlled particle size. In this Account, we present our synthesis of uniform nanocrystals of various shapes and materials, and we discuss the kinetics of nanocrystal formation. We employed four different synthetic approaches including thermal decomposition, nonhydrolytic sol-gel reactions, thermal reduction, and use of reactive chalcogen reagents. We synthesized uniform oxide nanocrystals via heat-up methods. This method involved slowly heat-up reaction mixtures composed of metal precursors, surfactants, and solvents from room temperature to high temperature. We then held reaction mixtures at an aging temperature for a few minutes to a few hours. Kinetics studies revealed a three-step mechanism for the synthesis of nanocrystals through the heat-up method with size distribution control. First, as metal precursors thermally decompose, monomers accumulate. At the aging temperature, burst nucleation occurs rapidly; at the end of this second phase, nucleation stops, but continued diffusion-controlled growth leads to size focusing to produce uniform nanocrystals. We used nonhydrolytic sol-gel reactions to synthesize various transition metal oxide nanocrystals. We employed ester elimination reactions for the synthesis of ZnO and TiO(2) nanocrystals. Uniform Pd nanoparticles were synthesized via a thermal reduction reaction induced by heating up a mixture of Pd(acac)(2), tri-n-octylphosphine, and oleylamine to the aging temperature. Similarly, we synthesized

  14. Air- and water-stable gold-coated gadolinium metal nanocrystals.

    PubMed

    Yan, Chao; Wagner, Michael J

    2013-06-12

    Gold-coated gadolinium nanocrystals, with an average diameter of 3.20 ± 0.35 nm, have been synthesized at ambient temperature by alkalide reduction. Whereas uncoated gadolinium nanoparticles react violently with air and water, the gold-coated gadolinium nanocrystals reported here show no reaction even upon long-term exposure. This is the first example of air- and water-stable lanthanide metal nanocrystals, which may allow for the development of magnetic and biomedical applications of gadolinium and other lanthanide metal and alloy nanocrystals.

  15. Nanocrystal structures

    DOEpatents

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2006-12-19

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II–VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  16. Nanocrystal structures

    SciTech Connect

    Eisler, Hans J.; Sundar, Vikram C.; Walsh, Michael E.; Klimov, Victor I.; Bawendi, Moungi G.; Smith, Henry I.

    2008-12-30

    A structure including a grating and a semiconductor nanocrystal layer on the grating, can be a laser. The semiconductor nanocrystal layer can include a plurality of semiconductor nanocrystals including a Group II-VI compound, the nanocrystals being distributed in a metal oxide matrix. The grating can have a periodicity from 200 nm to 500 nm.

  17. Galvanic Exchange in Colloidal Metal/Metal-Oxide Core/Shell Nanocrystals

    PubMed Central

    2016-01-01

    While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO2 is treated by Ag+, Pt2+, Pt4+, and Pd2+. The conversion dynamics is monitored by in situ synchrotron X-ray diffraction. The Ag+ treatment converts the Sn cores to the intermetallic AgxSn (x ∼ 4) phase, by changing the core’s crystal structure. For the analogous treatment by Pt2+, Pt4+, and Pd2+, such a galvanic exchange is not observed. This different behavior is caused by the semipermeability of the naturally formed SnO2 shell, which allows diffusion of Ag+ but protects the nanocrystal cores from oxidation by Pt and Pd ions.

  18. Galvanic Exchange in Colloidal Metal/Metal-Oxide Core/Shell Nanocrystals

    PubMed Central

    2016-01-01

    While galvanic exchange is commonly applied to metallic nanoparticles, recently its applicability was expanded to metal-oxides. Here the galvanic exchange is studied in metal/metal-oxide core/shell nanocrystals. In particular Sn/SnO2 is treated by Ag+, Pt2+, Pt4+, and Pd2+. The conversion dynamics is monitored by in situ synchrotron X-ray diffraction. The Ag+ treatment converts the Sn cores to the intermetallic AgxSn (x ∼ 4) phase, by changing the core’s crystal structure. For the analogous treatment by Pt2+, Pt4+, and Pd2+, such a galvanic exchange is not observed. This different behavior is caused by the semipermeability of the naturally formed SnO2 shell, which allows diffusion of Ag+ but protects the nanocrystal cores from oxidation by Pt and Pd ions. PMID:27635186

  19. Contact Radius and the Insulator-Metal Transition in Films Comprised of Touching Semiconductor Nanocrystals.

    PubMed

    Lanigan, Deanna; Thimsen, Elijah

    2016-07-26

    Nanocrystal assemblies are being explored for a number of optoelectronic applications such as transparent conductors, photovoltaic solar cells, and electrochromic windows. Majority carrier transport is important for these applications, yet it remains relatively poorly understood in films comprised of touching nanocrystals. Specifically, the underlying structural parameters expected to determine the transport mechanism have not been fully elucidated. In this report, we demonstrate experimentally that the contact radius, between touching heavily doped ZnO nanocrystals, controls the electron transport mechanism. Spherical nanocrystals are considered, which are connected by a circular area. The radius of this circular area is the contact radius. For nanocrystals that have local majority carrier concentration above the Mott transition, there is a critical contact radius. If the contact radius between nanocrystals is less than the critical value, then the transport mechanism is variable range hopping. If the contact radius is greater than the critical value, the films display behavior consistent with metallic electron transport. PMID:27398597

  20. Dense simple plasmas as high-temperature liquid simple metals

    NASA Technical Reports Server (NTRS)

    Perrot, F.

    1990-01-01

    The thermodynamic properties of dense plasmas considered as high-temperature liquid metals are studied. An attempt is made to show that the neutral pseudoatom picture of liquid simple metals may be extended for describing plasmas in ranges of densities and temperatures where their electronic structure remains 'simple'. The primary features of the model when applied to plasmas include the temperature-dependent self-consistent calculation of the electron charge density and the determination of a density and temperature-dependent ionization state.

  1. Encapsulation of metal oxide nanocrystals into porous carbon with ultrahigh performances in lithium-ion battery.

    PubMed

    Ming, Jun; Park, Jin-Bum; Sun, Yang-Kook

    2013-03-01

    A simple and industrial scalable approach was developed to encapsulate metal oxide nanocrystals into porous carbon (PC) with a high distribution. With this method, the composite of PC-metal oxide were prepared in a large amount with a low cost; particularly they exhibit ultrahigh performances in lithium-ion battery applications. For example, the PC-CoOx and PC-FeOx show a high capacity around 1021 mA h g(-1) and 1200 mA h g(-1) at the current density of 100 mA g(-1) respectively, together with an excellent cycling ability (>400 cycles) and rate capacity even at the high current densities of 3 A g(-1) and 5 A g(-1).

  2. Metal-free inorganic ligands for colloidal nanocrystals: S2-, HS-, Se2-, HSe-, Te2-, HTe-, TeS3(2-), OH-, and NH2- as surface ligands.

    PubMed

    Nag, Angshuman; Kovalenko, Maksym V; Lee, Jong-Soo; Liu, Wenyong; Spokoyny, Boris; Talapin, Dmitri V

    2011-07-13

    All-inorganic colloidal nanocrystals were synthesized by replacing organic capping ligands on chemically synthesized nanocrystals with metal-free inorganic ions such as S(2-), HS(-), Se(2-), HSe(-), Te(2-), HTe(-), TeS(3)(2-), OH(-) and NH(2)(-). These simple ligands adhered to the NC surface and provided colloidal stability in polar solvents. The versatility of such ligand exchange has been demonstrated for various semiconductor and metal nanocrystals of different size and shape. We showed that the key aspects of Pearson's hard and soft acids and bases (HSAB) principle, originally developed for metal coordination compounds, can be applied to the bonding of molecular species to the nanocrystal surface. The use of small inorganic ligands instead of traditional ligands with long hydrocarbon tails facilitated the charge transport between individual nanocrystals and opened up interesting opportunities for device integration of colloidal nanostructures.

  3. Floating gate memory-based monolayer MoS2 transistor with metal nanocrystals embedded in the gate dielectrics.

    PubMed

    Wang, Jingli; Zou, Xuming; Xiao, Xiangheng; Xu, Lei; Wang, Chunlan; Jiang, Changzhong; Ho, Johnny C; Wang, Ti; Li, Jinchai; Liao, Lei

    2015-01-14

    Charge trapping layers are formed from different metallic nanocrystals in MoS2 -based nanocrystal floating gate memory cells in a process compatible with existing fabrication technologies. The memory cells with Au nanocrystals exhibit impressive performance with a large memory window of 10 V, a high program/erase ratio of approximately 10(5) and a long retention time of 10 years.

  4. Hydrogen storage in Pd nanocrystals covered with a metal-organic framework

    NASA Astrophysics Data System (ADS)

    Li, Guangqin; Kobayashi, Hirokazu; Taylor, Jared M.; Ikeda, Ryuichi; Kubota, Yoshiki; Kato, Kenichi; Takata, Masaki; Yamamoto, Tomokazu; Toh, Shoichi; Matsumura, Syo; Kitagawa, Hiroshi

    2014-08-01

    Hydrogen is an essential component in many industrial processes. As a result of the recent increase in the development of shale gas, steam reforming of shale gas has received considerable attention as a major source of H2, and the more efficient use of hydrogen is strongly demanded. Palladium is well known as a hydrogen-storage metal and an effective catalyst for reactions related to hydrogen in a variety of industrial processes. Here, we present remarkably enhanced capacity and speed of hydrogen storage in Pd nanocrystals covered with the metal-organic framework (MOF) HKUST-1 (copper(II) 1,3,5-benzenetricarboxylate). The Pd nanocrystals covered with the MOF have twice the storage capacity of the bare Pd nanocrystals. The significantly enhanced hydrogen storage capacity was confirmed by hydrogen pressure-composition isotherms and solid-state deuterium nuclear magnetic resonance measurements. The speed of hydrogen absorption in the Pd nanocrystals is also enhanced by the MOF coating.

  5. Direct observation of narrow mid-infrared plasmon linewidths of single metal oxide nanocrystals

    PubMed Central

    Johns, Robert W.; Bechtel, Hans A.; Runnerstrom, Evan L.; Agrawal, Ankit; Lounis, Sebastien D.; Milliron, Delia J.

    2016-01-01

    Infrared-responsive doped metal oxide nanocrystals are an emerging class of plasmonic materials whose localized surface plasmon resonances (LSPR) can be resonant with molecular vibrations. This presents a distinctive opportunity to manipulate light–matter interactions to redirect chemical or spectroscopic outcomes through the strong local electric fields they generate. Here we report a technique for measuring single nanocrystal absorption spectra of doped metal oxide nanocrystals, revealing significant spectral inhomogeneity in their mid-infrared LSPRs. Our analysis suggests dopant incorporation is heterogeneous beyond expectation based on a statistical distribution of dopants. The broad ensemble linewidths typically observed in these materials result primarily from sample heterogeneity and not from strong electronic damping associated with lossy plasmonic materials. In fact, single nanocrystal spectra reveal linewidths as narrow as 600 cm−1 in aluminium-doped zinc oxide, a value less than half the ensemble linewidth and markedly less than homogeneous linewidths of gold nanospheres. PMID:27174681

  6. A simple route to alloyed quaternary nanocrystals Ag-In-Zn-S with shape and size control.

    PubMed

    Gabka, Grzegorz; Bujak, Piotr; Giedyk, Kamila; Ostrowski, Andrzej; Malinowska, Karolina; Herbich, Jerzy; Golec, Barbara; Wielgus, Ireneusz; Pron, Adam

    2014-05-19

    A convenient method of the preparation of alloyed quaternary Ag-In-Zn-S nanocrystals is elaborated, in which a multicomponent mixture of simple and commercially available precursors, namely, silver nitrate, indium(III) chloride, zinc stearate, 1-dodecanethiol, and sulfur, is used with 1-octadecene as a solvent. The formation of quaternary nanocrystals necessitates the use of an auxiliary sulfur precursor, namely, elemental sulfur dissolved in oleylamine, in addition to 1-dodecanethiol. Without this additional precursor binary ZnS nanocrystals are formed. The optimum reaction temperature of 180 °C was also established. In these conditions shape, size, and composition of the resulting nanocrystals can be adjusted in a controlled manner by changing the molar ratio of the precursors in the reaction mixture. For low zinc stearate contents anisotropic rodlike (ca.3 nm x 10 nm) and In-rich nanocrystals are obtained. This is caused by a significantly higher reactivity of the indium precursor as compared to the zinc one. With increasing zinc precursor content the reactivities of both precursors become more balanced, and the resulting nanocrystals are smaller (1.5-4.0 nm) and become Zn-rich as evidenced by transmission electron microscopy, X-ray diffraction, and energy-dispersive spectrometry investigations. Simultaneous increases in the zinc and sulfur precursor content result in an enlargement of nanocrystals (2.5 to 5.0 nm) and further increase in the molar ZnS content (up to 0.76). The prepared nanoparticles show stable photoluminescence with the quantum yield up to 37% for In and Zn-rich nanocrystals. Their hydrodynamic diameter in toluene dispersion, determined by dynamic light scattering, is roughly twice larger than the diameter of their inorganic core.

  7. Metal oxide nano-crystals for gas sensing.

    PubMed

    Comini, Elisabetta

    2006-05-24

    This review article is focused on the description of metal oxide single crystalline nanostructures used for gas sensing. Metal oxide nano-wires are crystalline structures with precise chemical composition, surface terminations, and dislocation-defect free. Their nanosized dimension generate properties that can be significantly different from their coarse-grained polycrystalline counterpart. Surface effects appear because of the magnification in the specific surface of nanostructures, leading to an enhancement of the properties related to that, such as catalytic activity or surface adsorption. Properties that are basic phenomenon underlying solid-state gas sensors. Their use as gas-sensing materials should reduce instabilities, suffered from their polycrystalline counterpart, associated with grain coalescence and drift in electrical properties. High degree of crystallinity and atomic sharp terminations make them very promising for better understanding of sensing principles and for development of a new generation of gas sensors. These sensing nano-crystals can be used as resistors, in FET based or optical based gas sensors. The gas experiments presented confirm good sensing properties, the possibility to use dopants and catalyser such in thin film gas sensors and the real integration in low power consumption transducers of single crystalline nanobelts prove the feasibility of large scale manufacturing of well-organized sensor arrays based on different nanostructures. Nevertheless, a greater control in the growth is required for an application in commercial systems, together with a thorough understanding of the growth mechanism that can lead to a control in nano-wires size and size distributions, shape, crystal structure and atomic termination.

  8. Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts

    SciTech Connect

    Cargnello, M; Doan-Nguyen, VVT; Gordon, TR; Diaz, RE; Stach, EA; Gorte, RJ; Fornasiero, P; Murray, CB

    2013-08-15

    Interactions between ceria (CeO2) and supported metals greatly enhance rates for a number of important reactions. However, direct relationships between structure and function in these catalysts have been difficult to extract because the samples studied either were heterogeneous or were model systems dissimilar to working catalysts. We report rate measurements on samples in which the length of the ceria-metal interface was tailored by the use of monodisperse nickel, palladium, and platinum nanocrystals. We found that carbon monoxide oxidation in ceria-based catalysts is greatly enhanced at the ceria-metal interface sites for a range of group VIII metal catalysts, clarifying the pivotal role played by the support.

  9. Dynamics of formation of Ru, Os, Ir and Au metal nanocrystals on doped graphitic surfaces.

    PubMed

    Pitto-Barry, Anaïs; Sadler, Peter J; Barry, Nicolas P E

    2016-03-11

    The fabrication of precious metal (ruthenium, osmium, gold, and iridium) nanocrystals from single atoms has been studied in real-time. The dynamics of the first stage of the metal nanocrystallisation on a doped (B,S)-graphitic surface are identified, captured, and reported. PMID:26698913

  10. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    PubMed

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-01

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  11. Template-directed assembly of metal-chalcogenide nanocrystals into ordered mesoporous networks.

    SciTech Connect

    Vamvasakis, Ioannis; Subrahmanyam, Kota S.; Kanatzidis, Mercouri G.; Armatas, Gerasimos S.

    2015-04-01

    Although great progress in the synthesis of porous networks of metal and metal oxide nanoparticles with highly accessible pore surface and ordered mesoscale pores has been achieved, synthesis of assembled 3D mesostructures of metal-chalcogenide nanocrystals is still challenging. In this work we demonstrate that ordered mesoporous networks, which comprise well-defined interconnected metal sulfide nanocrystals, can be prepared through a polymer-templated oxidative polymerization process. The resulting self-assembled mesostructures that were obtained after solvent extraction of the polymer template impart the unique combination of light-emitting metal chalcogenide nanocrystals, three-dimensional open-pore structure, high surface area, and uniform pores. We show that the pore surface of these materials is active and accessible to incoming molecules, exhibiting high photocatalytic activity and stability, for instance, in oxidation of 1-phenylethanol into acetophenone. We demonstrate through appropriate selection of the synthetic components that this method is general to prepare ordered mesoporous materials from metal chalcogenide nanocrystals with various sizes and compositions.

  12. Colloidal metal oxide nanocrystal catalysis by sustained chemically driven ligand displacement

    NASA Astrophysics Data System (ADS)

    de Roo, Jonathan; van Driessche, Isabel; Martins, José C.; Hens, Zeger

    2016-05-01

    Surface chemistry is a key enabler for colloidal nanocrystal applications. In this respect, metal oxide nanocrystals (NCs) stand out from other NCs as carboxylic acid ligands adsorb on their surface by dissociation to carboxylates and protons, the latter proving essential in electron transfer reactions. Here, we show that this binding motif sets the stage for chemically driven ligand displacement where the binding of amines or alcohols to HfO2 NCs is promoted by the conversion of a bound carboxylic acid into a non-coordinating amide or ester. Furthermore, the sustained ligand displacement, following the addition of excess carboxylic acid, provides a catalytic pathway for ester formation, whereas the addition of esters leads to NC-catalysed transesterification. Because sustained, chemically driven ligand displacement leaves the NCs--including their surface composition--unchanged and preserves colloidal stability, metal oxide nanocrystals are thus turned into effective nanocatalysts that bypass the tradeoff between colloidal stability and catalytic activity.

  13. Decoration of size-tunable CuO nanodots on TiO2 nanocrystals for noble metal-free photocatalytic H2 production

    NASA Astrophysics Data System (ADS)

    Moon, Geon Dae; Joo, Ji Bong; Lee, Ilkeun; Yin, Yadong

    2014-09-01

    We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changing their morphologies. UV irradiation of the nanocomposite solution in the presence of a hole scavenger produces photogenerated electrons which reduce CuO to metallic Cu nanodots, making them effective co-catalysts in a role similar to Pt for promoting photocatalytic H2 production. Due to the considerably high work function of Cu, the formation of a metal-semiconductor Schottky junction induces efficient charge separation and transfer. As a result, the TiO2 nanocrystals decorated with an optimal amount of CuO nanodots (1.7 wt%) could reach ~50% of the photocatalytic activity achievable by the Pt-TiO2 counterparts (1 wt%), clearly demonstrating the great potential of such composite catalysts for efficient noble metal-free photocatalytic H2 production.We report a simple yet effective approach for the decoration of the TiO2 nanocrystal surface with size-tunable CuO nanodots for high-performance noble metal-free photocatalytic H2 production. Modification with polyacrylic acid enables the surface of TiO2 nanocrystals to be selectively deposited with Cu(OH)2 nanodots, which can be subsequently converted to CuO through dehydration without changing their morphologies. UV irradiation of the nanocomposite solution in the presence of a hole scavenger produces photogenerated electrons which reduce CuO to metallic Cu nanodots, making them effective co-catalysts in a role similar to Pt for promoting photocatalytic H2 production. Due to the considerably high work function of Cu, the formation of a metal-semiconductor Schottky junction induces efficient charge separation and transfer. As a

  14. Generating tunable white light by resonance energy transfer in transparent dye-conjugated metal oxide nanocrystals.

    PubMed

    Wang, Ting; Chirmanov, Vadim; Chiu, Wan Hang M; Radovanovic, Pavle V

    2013-10-01

    We report the design and properties of hybrid white-light-emitting nanophosphors obtained by electronic coupling of defect states in colloidal Ga2O3 nanocrystals emitting in blue-green with selected organic molecules emitting in orange-red. Coupling between the two components is enabled by the nanocrystal's size-dependent resonance energy transfer, allowing the photoluminescence chromaticity to be precisely tuned by changing the nanocrystal size and selecting the complementary organic dye molecule. Using this approach, we demonstrate the generation of pure white light with quantum yield of ~30%, color rendering index up to 95, and color temperature of 5500 K. These results provide a guideline for the design of a new class of hybrid white-light-emitting nanophosphors and other multifunctional nanostructures based on transparent metal oxides.

  15. Ligand exchange and the stoichiometry of metal chalcogenide nanocrystals: spectroscopic observation of facile metal-carboxylate displacement and binding.

    PubMed

    Anderson, Nicholas C; Hendricks, Mark P; Choi, Joshua J; Owen, Jonathan S

    2013-12-11

    We demonstrate that metal carboxylate complexes (L-M(O2CR)2, R = oleyl, tetradecyl, M = Cd, Pb) are readily displaced from carboxylate-terminated ME nanocrystals (ME = CdSe, CdS, PbSe, PbS) by various Lewis bases (L = tri-n-butylamine, tetrahydrofuran, tetradecanol, N,N-dimethyl-n-butylamine, tri-n-butylphosphine, N,N,N',N'-tetramethylbutylene-1,4-diamine, pyridine, N,N,N',N'-tetramethylethylene-1,2-diamine, n-octylamine). The relative displacement potency is measured by (1)H NMR spectroscopy and depends most strongly on geometric factors such as sterics and chelation, although also on the hard/soft match with the cadmium ion. The results suggest that ligands displace L-M(O2CR)2 by cooperatively complexing the displaced metal ion as well as the nanocrystal. Removal of up to 90% of surface-bound Cd(O2CR)2 from CdSe and CdS nanocrystals decreases the Cd/Se ratio from 1.1 ± 0.06 to 1.0 ± 0.05, broadens the 1S(e)-2S(3/2h) absorption, and decreases the photoluminescence quantum yield (PLQY) from 10% to <1% (CdSe) and from 20% to <1% (CdS). These changes are partially reversed upon rebinding of M(O2CR)2 at room temperature (∼60%) and fully reversed at elevated temperature. A model is proposed in which electron-accepting M(O2CR)2 complexes (Z-type ligands) reversibly bind to nanocrystals, leading to a range of stoichiometries for a given core size. The results demonstrate that nanocrystals lack a single chemical formula, but are instead dynamic structures with concentration-dependent compositions. The importance of these findings to the synthesis and purification of nanocrystals as well as ligand exchange reactions is discussed.

  16. Design of metal/dielectric/nanocrystals core/shell/shell nano-structures for the fluorescence enhancement of cadmium-free semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Chevallier, Théo.; Le Blevennec, Gilles; Chandezon, Frédéric

    2015-10-01

    AgInS2-ZnS (ZAIS) quaternary semiconductors nanocrystals are versatile cadmium-free luminescent nanomaterials. Their broad emission spectrum and strong absorption make them ideal for the development of new white-LED devices taking advantage of nano-optical phenomena. We recently found strategies to increase the photoluminescence quantum yield of ZAIS nanocrystals up to 80%. In a second step toward high efficiency luminescent materials, we aim at increasing the net conversion efficiency of ZAIS nanocrystals by coupling them with metallic nano-antennae. Indeed, by grafting ZAIS nanocrystals onto carefully chosen metal/dielectric core/shell nanoparticles, both the absorption and emission processes can be tuned and enhanced. A finite-element simulation based on the discrete dipole approximation (DDA) was used to predict the nano-optical behavior of silver@oxide@ZAIS nanostructures. Desirable combinations of materials and geometry for the antennae were identified. A chemical method for the synthesis of the simulated nanostructures was developed. The coupling of ZAIS nanocrystals emission with the plasmonic structure is experimentally observed and is in accordance with our predictions.

  17. Process for making surfactant capped metal oxide nanocrystals, and products produced by the process

    DOEpatents

    Alivisatos, A. Paul; Rockenberger, Joerg

    2006-01-10

    Disclosed is a process for making surfactant capped nanocrystals of metal oxides which are dispersable in organic solvents. The process comprises decomposing a metal cupferron complex of the formula MXCupX, wherein M is a metal, and Cup is a N-substituted N-Nitroso hydroxylamine, in the presence of a coordinating surfactant, the reaction being conducted at a temperature ranging from about 150 to about 400.degree. C., for a period of time sufficient to complete the reaction. Also disclosed are compounds made by the process.

  18. Simple one-pot synthesis of Rh-Fe3O4 heterodimer nanocrystals and their applications to a magnetically recyclable catalyst for efficient and selective reduction of nitroarenes and alkenes.

    PubMed

    Jang, Youngjin; Kim, Seyoung; Jun, Samuel Woojoo; Kim, Byung Hyo; Hwang, Sunhwan; Song, In Kyu; Kim, B Moon; Hyeon, Taeghwan

    2011-03-28

    A simple synthesis of Rh-Fe(3)O(4) heterodimer nanocrystals was achieved by controlled one-pot thermolysis. The nanocrystals exhibited excellent activities for the selective reduction of nitroarenes and alkenes. Furthermore the nanocrystal catalyst could be easily separated by a magnet, and recycled eight times without losing the catalytic activity.

  19. Highly directional emission and photon beaming from nanocrystal quantum dots embedded in metallic nanoslit arrays.

    PubMed

    Livneh, Nitzan; Strauss, Ayelet; Schwarz, Ilai; Rosenberg, Itamar; Zimran, Adiel; Yochelis, Shira; Chen, Gang; Banin, Uri; Paltiel, Yossi; Rapaport, Ronen

    2011-04-13

    We demonstrate a directional beaming of photons emitted from nanocrystal quantum dots that are embedded in a subwavelength metallic nanoslit array with a divergence angle of less than 4°. We show that the eigenmodes of the structure result in localized electromagnetic field enhancements at the Bragg cavity resonances, which could be controlled and engineered in both real and momentum space. The photon beaming is achieved using the enhanced resonant coupling of the quantum dots to these Bragg cavity modes, which dominates the emission properties of the quantum dots. We show that the emission probability of a quantum dot into the narrow angular mode is 20 times larger than the emission probability to all other modes. Engineering nanocrystal quantum dots with subwavelength metallic nanostructures is a promising way for a range of new types of active optical devices, where spatial control of the optical properties of nanoemitters is essential, on both the single and many photons level.

  20. Fluctuant magnetism in metal oxide nanocrystals capped with surfactants

    NASA Astrophysics Data System (ADS)

    Zhang, Jianhui; Xiong, Shijie; Wu, Xinglong; Thurber, Aaron; Jones, Michael; Gu, Min; Pan, Zhongda; Tenne, Dmitri A.; Hanna, Charles B.; Du, Youwei; Punnoose, Alex

    2013-08-01

    We demonstrate experimentally that magnetism in ZnO, TiO2, CeO2, and SnO2 nanocrystals (NCs) has a fluctuant nature that varies with capping surfactant type and concentration. By developing a forced hydrolysis approach with additional postprocessing for the synthesis and surfactant capping of these NCs, we effectively avoid the influence of size, shape, and magnetic impurities on the magnetic behavior of NCs, thus revealing the systematic influence of the capping surfactants on the NC magnetism. The x-ray photoelectron spectroscopy results and theoretical calculations clearly show that the magnetism fluctuation with surfactant concentration can be attributed to the periodic variation of spins, which arises from the concentration-dependent electron transfer from surfactants to NCs. Our results not only explain the previously reported seemingly irregular magnetism induced by capping surfactants but also provide an effective approach to tune or optimize the NC magnetism.

  1. Efficient multiscale simulation of simple metallic systems

    NASA Astrophysics Data System (ADS)

    Choly, Nicholas Isaac

    2004-12-01

    The steady increase in computational resources and numerical sophistication has brought about a new approach in physical simulation. The methods that comprise this approach are known as multiscale methods, and have the defining characteristic of combining several simulation methods together, rendering tractable physical problems that no single simulation method can resolve. We have developed an approach for coupling quantum-mechanical and classical methods for the efficient simulation of multiscale problems in simple metals. The present multiscale method employs orbital-free density functional theory, in which fictitious orbitals are never introduced. We review the theory, and describe the state-of-the-art functionals associated with it. We have developed an efficient simulation code for performing orbital-free density functional theory calculations, and we describe the methods developed to treat the functional minimization problem. One of the biggest barriers hindering the widespread use of orbital-free methods is that only local pseudopotentials can be used, and hence the powerful machinery of norm-conserving pseudopotentials is inapplicable. We develop a similar machinery for local pseudopotentials, and we report on the application of these methods. We solve several problems associated with the efficient use of orbital-free density functional methods. Certain orbital-free methods are formulated in reciprocal space and are applicable to periodic systems. Incorporation of these methods in a multiscale setting requires that the effects of periodicity be absent. A direct translation of the methods to real space is extremely inefficient. Motivated by these considerations, we have developed an efficient method for applying orbital-free methods to non-periodic systems. We also overcome an algorithmic problem with the calculation of ionic forces in grid-based electronic structure methods in general. We develop and test an efficient method for computing ionic forces that

  2. Planar Heterojunction Perovskite Solar Cells Incorporating Metal-Organic Framework Nanocrystals.

    PubMed

    Chang, Ting-Hsiang; Kung, Chung-Wei; Chen, Hsin-Wei; Huang, Tzu-Yen; Kao, Sheng-Yuan; Lu, Hsin-Che; Lee, Min-Han; Boopathi, Karunakara Moorthy; Chu, Chih-Wei; Ho, Kuo-Chuan

    2015-11-25

    Zr-based porphyrin metal-organic framework (MOF-525) nanocrystals with a crystal size of about 140 nm are synthesized and incorporated into perovskite solar cells. The morphology and crystallinity of the perovskite thin film are enhanced since the micropores of MOF-525 allow the crystallization of perovskite to occur inside; this observation results in a higher cell efficiency of the obtained MOF/perovskite solar cell.

  3. Exploiting differential electrochemical stripping behaviors of Fe3O4 nanocrystals toward heavy metal ions by crystal cutting.

    PubMed

    Yao, Xian-Zhi; Guo, Zheng; Yuan, Qing-Hong; Liu, Zhong-Gang; Liu, Jin-Huai; Huang, Xing-Jiu

    2014-08-13

    This study attempts to understand the intrinsic impact of different morphologies of nanocrystals on their electrochemical stripping behaviors toward heavy metal ions. Two differently shaped Fe3O4 nanocrystals, i.e., (100)-bound cubic and (111)-bound octahedral, have been synthesized for the experiments. Electrochemical results indicate that Fe3O4 nanocrystals with different shapes show different stripping behaviors toward heavy metal ions. Octahedral Fe3O4 nanocrystals show better electrochemical sensing performances toward the investigated heavy metal ions such as Zn(II), Cd(II), Pb(II), Cu(II), and Hg(II), in comparison with cubic ones. Specifically, Pb(II) is found to have the best stripping performance on both the (100) and (111) facets. To clarify these phenomena, adsorption abilities of as-prepared Fe3O4 nanocrystals have been investigated toward heavy metal ions. Most importantly, combined with theoretical calculations, their different electrochemical stripping behaviors in view of facet effects have been further studied and enclosed at the level of molecular/atom. Finally, as a trial to find a disposable platform completely free from noble metals, the potential application of the Fe3O4 nanocrystals for electrochemical detection of As(III) in drinking water is demonstrated.

  4. Light-Induced In Situ Transformation of Metal Clusters to Metal Nanocrystals for Photocatalysis.

    PubMed

    Xiao, Fang-Xing; Zeng, Zhiping; Hsu, Shao-Hui; Hung, Sung-Fu; Chen, Hao Ming; Liu, Bin

    2015-12-30

    In situ transformation of glutathione-capped gold (Aux) clusters to gold (Au) nanocrystals under simulated solar light irradiation was achieved and utilized as a facile synthetic approach to rationally fabricate Aux/Au/TiO2 ternary and Au/TiO2 binary heterostructures. Synergistic interaction of Aux clusters and Au nanocrystals contributes to enhanced visible-light-driven photocatalysis.

  5. Metal Oleate Induced Etching and Growth of Semiconductor Nanocrystals, Nanorods, and Their Heterostructures.

    PubMed

    Oh, Nuri; Shim, Moonsub

    2016-08-24

    Unexpected etching of nanocrystals, nanorods, and their heterostructures by one of the most commonly used metal precursors, metal oleates, is reported. Zn oleate is shown to etch CdS nanorods anisotropically, where the length decreases without a significant change in the diameter. Sodium oleate enhances the etch rate, whereas oleic acid alone does not cause etching, indicating the importance of the countercation on the rate of oleate induced etching. Subsequent addition of Se precursors to the partially etched nanorods in Zn oleate solution can lead to epitaxial growth of CdSe particles rather than the expected ZnSe growth, despite an excess amount of Zn precursors being present. The composition of this epitaxial growth can be varied from CdSe to ZnSe, depending on the amount of excess oleic acid or the reaction temperature. Similar tuning of composition can be observed when starting with collinear CdSe/CdS/CdSe rod/rod/rod heterostructures and spherical CdS (or CdSe/CdS core/shell) nanocrystals. Conversion of collinear rod/rod/rod structures to barbells and interesting rod growth from nearly spherical particles among other structures can also result due to the initial etching effect of metal oleates. These observations have important implications on our understanding of nanocrystal heterostructure synthesis and open up new routes to varying the composition and morphology of these materials. PMID:27485673

  6. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel

  7. Design of a multi-coordinating polymer as a platform for functionalizing metal, metal oxide and semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Ji, Xin; Kapur, Anshika; Mattoussi, Hedi

    2016-03-01

    We introduce a new set of amphiphilic polymers as multifunctional, metal-coordinating ligands adapted to surfacefunctionalize quantum dots (QDs), iron oxide nanoparticles (IONPs) and gold nanoparticles/nanorods (AuNPs/AuNRs). The ligand design relies on the introduction of several anchoring groups, hydrophilic moieties and reactive functionalities into a polymer chain, via one-step nucleophilic addition reaction. Such synthetic scheme also allows the insertion of target biomolecules during the ligand synthesis. This functionalization strategy yields nanocrystals that exhibit long-term colloidal stability over a broad range of biological conditions, such as pH changes and when mixed with growth media. When zwitterion groups are used as hydrophilic motifs, this provides compact nanocrystals that are compatible with conjugation to proteins via metal-polyhistidine self-assembly. In addition, we show that QDs ligated with these polymers can engage in energy or charge transfer interactions. Furthermore, nanocrystals coated with folic acid-modified polymers could promote the delivery of nanoparticle-conjugates into cancer cells via folate receptormediated endocytosis.

  8. In situ capping for size control of monochalcogenides (ZnS, CdS, and SnS) nanocrystals produced by anaerobic metal-reducing bacteria

    DOE PAGESBeta

    Jang, Gyoung Gug; Jacobs, Christopher B.; Ivanov, Ilia N.; Joshi, Pooran C.; Meyer, III, Harry M.; Kidder, Michelle; Armstrong, Beth L.; Datskos, Panos G.; Graham, David E.; Moon, Ji -Won

    2015-07-24

    Metal monochalcogenide quantum dot nanocrystals of ZnS, CdS and SnS were prepared by anaerobic, metal-reducing bacteria using in situ capping by oleic acid or oleylamine. Furthermore, the capping agent preferentially adsorbs on the surface of the nanocrystal, suppressing the growth process in the early stages, thus leading to production of nanocrystals with a diameter of less than 5 nm.

  9. A Simple MO Treatment of Metal Clusters.

    ERIC Educational Resources Information Center

    Sahyun, M. R. V.

    1980-01-01

    Illustrates how a qualitative description of the geometry and electronic characteristics of homogeneous metal clusters can be obtained using semiempirical MO (molecular orbital theory) methods. Computer applications of MO methods to inorganic systems are also described. (CS)

  10. Term rules for simple metal clusters

    PubMed Central

    Yoshida, Daisuke; Raebiger, Hannes

    2015-01-01

    Hund’s term rules are only valid for isolated atoms, but have no generalization for molecules or clusters of several atoms. We present a benchmark calculation of Al2 and Al3, for which we find the high and low-spin ground states 3Πu and , respectively. We show that the relative stabilities of all the molecular terms of Al2 and Al3 can be described by simple rules pertaining to bonding structures and symmetries, which serve as guiding principles to determine ground state terms of arbitrary multi-atom clusters. PMID:26497089

  11. Metal dendrimers: synthesis of hierarchically stellated nanocrystals by sequential seed-directed overgrowth.

    PubMed

    Weiner, Rebecca G; Skrabalak, Sara E

    2015-01-19

    Hierarchically organized structures are prevalent in nature, where such features account for the adhesion properties of gecko feet and the brilliant color variation of butterfly wings. Achieving artificial structures with multiscale features is of interest for metamaterials and biomimetic applications. However, the fabrication of such structures relies heavily on lithographic approaches, although self-assembly routes to superstructures are promising. Sequential seed-directed overgrowth is now demonstrated as a route to metal dendrimers, which are hierarchically branched nanocrystals (NCs) with a three-dimensional order analogous to that of molecular dendrimers. This method was applied to a model Au/Pd NC system; in general, the principle of sequential seed-directed overgrowth should enable the synthesis of new hierarchical inorganic structures with high symmetry.

  12. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals

    NASA Astrophysics Data System (ADS)

    Bachman, Jonathan E.; Smith, Zachary P.; Li, Tao; Xu, Ting; Long, Jeffrey R.

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  13. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal-organic framework nanocrystals.

    PubMed

    Bachman, Jonathan E; Smith, Zachary P; Li, Tao; Xu, Ting; Long, Jeffrey R

    2016-08-01

    The implementation of membrane-based separations in the petrochemical industry has the potential to reduce energy consumption significantly relative to conventional separation processes. Achieving this goal, however, requires the development of new membrane materials with greater selectivity, permeability and stability than available at present. Here, we report composite materials consisting of nanocrystals of metal-organic frameworks dispersed within a high-performance polyimide, which can exhibit enhanced selectivity for ethylene over ethane, greater ethylene permeability and improved membrane stability. Our results suggest that framework-polymer interactions reduce chain mobility of the polymer while simultaneously boosting membrane separation performance. The increased stability, or plasticization resistance, is expected to improve membrane utility under real process conditions for petrochemical separations and natural gas purification. Furthermore, this approach can be broadly applied to numerous polymers that encounter aggressive environments, potentially making gas separations possible that were previously inaccessible to membranes.

  14. SEMICONDUCTOR DEVICES Density-controllable nonvolatile memory devices having metal nanocrystals through chemical synthesis and assembled by spin-coating technique

    NASA Astrophysics Data System (ADS)

    Guangli, Wang; Yubin, Chen; Yi, Shi; Lin, Pu; Lijia, Pan; Rong, Zhang; Youdou, Zheng

    2010-12-01

    A novel two-step method is employed, for the first time, to fabricate nonvolatile memory devices that have metal nanocrystals. First, size-averaged Au nanocrystals are synthesized chemically; second, they are assembled into memory devices by a spin-coating technique at room temperature. This attractive approach makes it possible to tailor the diameter and control the density of nanocrystals individually. In addition, processes at room temperature prevent Au diffusion, which is a main concern for the application of metal nanocrystal-based memory. The experimental results, both the morphology characterization and the electrical measurements, reveal that there is an optimum density of nanocrystal monolayer to balance between long data retention and a large hysteresis memory window. At the same time, density-controllable devices could also feed the preferential emphasis on either memory window or retention time. All these facts confirm the advantages and novelty of our two-step method.

  15. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals

    SciTech Connect

    Banerjee, W.; Maikap, S.; Tien, T.-C.; Li, W.-C.; Yang, J.-R.

    2011-10-01

    The impact of iridium-oxide (IrO{sub x}) nano layer thickness on the tunneling oxide and memory performance of IrO{sub x} metal nanocrystals in an n-Si/SiO{sub 2}/Al{sub 2}O{sub 3}/IrO{sub x}/Al{sub 2}O{sub 3}/IrO{sub x} structure has been investigated. A thinner (1.5 nm) IrO{sub x} nano layer has shown better memory performance than that of a thicker one (2.5 nm). Core-shell IrO{sub x} nanocrystals with a small average diameter of 2.4 nm and a high density of {approx}2 x 10{sup 12}/cm{sup 2} have been observed by scanning transmission electron microscopy. The IrO{sub x} nanocrystals are confirmed by x-ray photoelectron spectroscopy. A large memory window of 3.0 V at a sweeping gate voltage of {+-}5 V and 7.2 V at a sweeping gate voltage of {+-} 8 V has been observed for the 1.5 nm-thick IrO{sub x} nano layer memory capacitors with a small equivalent oxide thickness of 8 nm. The electrons and holes are trapped in the core and annular regions of the IrO{sub x} nanocrystals, respectively, which is explained by Gibbs free energy. High electron and hole-trapping densities are found to be 1.5 x 10{sup 13}/cm{sup 2} and 2 x 10{sup 13}/cm{sup 2}, respectively, due to the small size and high-density of IrO{sub x} nanocrystals. Excellent program/erase endurance of >10{sup 6} cycles and good retention of 10{sup 4} s with a good memory window of >1.2 V under a small operation voltage of {+-} 5 V are obtained. A large memory size of >10 Tbit/sq. in. can be designed by using the IrO{sub x} nanocrystals. This study is not only important for the IrO{sub x} nanocrystal charge-trapping memory investigation but it will also help to design future metal nanocrystal flash memory.

  16. OPAA template-directed synthesis and optical properties of metal nanocrystals

    PubMed Central

    2013-01-01

    Ag and Cu nanocrystals (NCs) were assembled into ordered porous anodic alumina (OPAA) by a single-potential-step chronoamperometry technique. The composition, morphology, microstructure, and optical property were analyzed by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and optical absorption spectroscopy. The results indicate that metallic NCs/OPAA composite possesses a significant surface plasmon resonance absorption. For continuous electrodeposition, metallic nanowires are smooth and uniform with face-centered cubic (fcc) single-crystalline structure; however, for interval electrodeposition, the nanowires are bamboo-like or pearl-chain-like with fcc polycrystalline structure. The length of the nanoparticle nanowires or the single-crystalline nanowires can be controlled well by adjusting the experimental cycle times or the continuous depositing time. The transverse dipole resonance of metallic NCs enhances and displays a blue shift with increasing electrodeposition time or experimental cycle times, which is consistent with Zong's results but contradictory to Duan's results. The formation mechanisms of the nanoparticle nanowires and the single-crystalline nanowires were discussed in detail. PMID:23866967

  17. Controllable synthesis of metal selenide heterostructures mediated by Ag2Se nanocrystals acting as catalysts

    NASA Astrophysics Data System (ADS)

    Zhou, Jiangcong; Huang, Feng; Xu, Ju; Wang, Yuansheng

    2013-09-01

    Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se-ZnSe, and even multi-segment heterostructures such as Ag2Se-CdSe-ZnSe and Ag2Se-ZnSe-CdSe, were successfully synthesized. Several interesting features were found in the Ag2Se based heterogrowth. At the initial stage of heterogrowth, a layer of the second phase forms on the surface of an Ag2Se nanosphere, with a curved junction interface between the two phases. With further growth of the second phase, the Ag2Se nanosphere tends to flatten the junction surface by modifying its shape from sphere to hemisphere in order to minimize the conjunct area and thus the interfacial energy. Notably, the crystallographic relationship of the two phases in the heterostructure varies with the lattice parameters of the second phase, in order to reduce the lattice mismatch at the interface. Furthermore, a small lattice mismatch at the interface results in a straight rod-like second phase, while a large lattice mismatch would induce a tortuous product. The reported results may provide a new route for developing novel selenide semiconductor heterostructures which are potentially applicable in optoelectronic, biomedical, photovoltaic and catalytic fields.Ag2Se nanocrystals were demonstrated to be novel semiconductor mediators, or in other word catalysts, for the growth of semiconductor heterostructures in solution. This is a result of the unique feature of Ag2Se as a fast ion conductor, allowing foreign cations to dissolve and then to heterogrow the second phase. Using Ag2Se nanocrystals as catalysts, dimeric metal selenide heterostructures such as Ag2Se-CdSe and Ag2Se

  18. X-Ray Absorption Studies of Vanadium-Containing Metal Oxide Nanocrystals

    SciTech Connect

    Hohn, Keith, L.

    2006-01-09

    Metal oxide nanocrystals offer significant potential for use as catalysts or catalyst supports due to their high surface areas and unique chemical properties that result from the high number of exposed corners and edges. However, little is known about the catalytic activity of these materials, especially as oxidation catalysts. This research focused on the preparation, characterization and use of vanadium-containing nanocrystals as selective oxidation catalysts. Three vanadium-containing nanocrystals were prepared using a modified sol-gel procedure: V/MgO, V/SiO2, and vanadium phosphate (VPO). These represent active oxidation catalysts for a number of industrially relevant reactions. The catalysts were characterized by x-ray diffraction and Raman, UV-VIS, infrared and x-ray absorption spectroscopies with the goal of determining the primary structural and chemical differences between nanocrystals and microcrystals. The catalytic activity of these catalysts was also studied in oxidative dehydrogenation of butane and methanol oxidation to formaldehyde. V/MgO nanocrystals were investigated for activity in oxidative dehydrogenation of butane and compared to conventional V/MgO catalysts. Characterization of V/MgO catalysts using Raman spectroscopy and x-ray absorption spectroscopy showed that both types of catalysts contained magnesium orthovanadate at vanadium loadings below 15 weight%, but above that loading, magnesium pyrovanadate may have been present. In general, MgO nanocrystals had roughly half the crystal size and double the surface area of the conventional MgO. In oxidative dehydrogenation of butane, nanocrystalline V/MgO gave higher selectivity to butene than conventional V/MgO at the same conversion. This difference was attributed to differences in vanadium domain size resulting from the higher surface areas of the nanocrystalline support, since characterization suggested that similar vanadium phases were present on both types of catalysts. Experiments in

  19. Nanoscale Transformations in Covellite (CuS) Nanocrystals in the Presence of Divalent Metal Cations in a Mild Reducing Environment

    PubMed Central

    2015-01-01

    We studied the structural and compositional transformations of colloidal covellite (CuS) nanocrystals (and of djurleite (Cu1.94S) nanocrystals as a control) when exposed to divalent cations, as Cd2+ and Hg2+, at room temperature in organic solvents. All the experiments were run in the absence of phosphines, which are a necessary ingredient for cation exchange reactions involving copper chalcogenides, as they strongly bind to the expelled Cu+ ions. Under these experimental conditions, no remarkable reactivity was indeed seen for both CuS and Cu1.94S nanocrystals. On the other hand, in the covellite structure 2/3 of sulfur atoms form covalent S–S bonds. This peculiarity suggests that the combined presence of electron donors and of foreign metal cations can trigger the entry of both electrons and cations in the covellite lattice, causing reorganization of the anion framework due to the rupture of the S–S bonds. In Cu1.94S, which lacks S–S bonds, this mechanism should not be accessible. This hypothesis was proven by the experimental evidence that adding ascorbic acid increased the fraction of metal ions incorporated in the covellite nanocrystals, while it had no noticeable effect on the Cu1.94S ones. Once inside the covellite particles, Cd2+ and Hg2+ cations engaged in exchange reactions, pushing the expelled Cu+ ions toward the not-yet exchanged regions in the same particles, or out to the solution, from where they could be recaptured by other covellite nanoparticles/domains. Because no good solvating agent for Cu ions was present in solution, they essentially remained in the nanocrystals. PMID:26617434

  20. Hopping conductivity and insulator-metal transition in films of touching semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Fu, Han; Reich, K. V.; Shklovskii, B. I.

    2016-03-01

    This paper is focused on the variable-range hopping of electrons in semiconductor nanocrystal (NC) films below the critical doping concentration nc at which it becomes metallic. The hopping conductivity is described by the Efros-Shklovskii law, which depends on the localization length of electrons. We study how the localization length grows with the doping concentration n in the film of touching NCs. For that we calculate the electron transfer matrix element t (n ) between neighboring NCs for two models when NCs touch by small facets or just one point. We study two sources of disorder: variations of NC diameters and random Coulomb potentials originating from random numbers of donors in NCs. We use the ratio of t (n ) to the disorder-induced NC level dispersion to find the localization length of electrons due to the multistep elastic co-tunneling process. We found three different phases at n metal" where the localization length periodically diverges. The first two phases were seen experimentally and we discuss how one can see the more exotic third one. In all three, the localization length diverges at n =nc . This allows us to find nc.

  1. Evaluation of Metal Phosphide Nanocrystals as Anode Materials for Na-ion Batteries.

    PubMed

    Walter, Marc; Bodnarchuk, Maryna I; Kravchyk, Kostiantyn V; Kovalenko, Maksym V

    2015-01-01

    Sodium-ion batteries (SIBs) are potential low-cost alternatives to lithium-ion batteries (LIBs) because of the much greater natural abundance of sodium salts. However, developing high-performance electrode materials for SIBs is a challenging task, especially due to the ∼50% larger ionic radius of the Na(+) ion compared to Li(+), leading to vastly different electrochemical behavior. Metal phosphides such as FeP, CoP, NiP(2), and CuP(2) remain unexplored as electrode materials for SIBs, despite their high theoretical charge storage capacities of 900-1300 mAh g(-1). Here we report on the synthesis of metal phosphide nanocrystals (NCs) and discuss their electrochemical properties as anode materials for SIBs, as well as for LIBs. We also compare the electrochemical characteristics of phosphides with their corresponding sulfides, using the environmentally benign iron compounds, FeP and FeS(2), as a case study. We show that despite the appealing initial charge storage capacities of up to 1200 mAh g(-1), enabled by effective nanosizing of the active electrode materials, further work toward optimization of the electrode/electrolyte pair is needed to improve the electrochemical performance upon cycling. PMID:26842319

  2. Nature of Pressure-induced Insulating States in Simple Metals

    NASA Astrophysics Data System (ADS)

    Naumov, Ivan; Hemley, Russell

    As experimentally established, all the alkali metals and heavy alkaline earth metals (Ca, Sr and Ba) become progressively less conductive on compression, at least up to some critical limit over a broad pressure range. Of these metals, Li and Na clearly undergo pressure-induced metal-insulator transitions, which may also be called reverse Mott transitions. Here, using group theory arguments and first-principles calculations, we show that such transitions can be understood in terms of band representations introduced by Zak. The valence bands in the insulating states are described by simple and composite band representations constructed from localized Wannier functions centered on points unoccupied by atoms. The character of the Wannier functions is closely related to the degree of s-p(-d) hybridization and reflects multi-center chemical bonding in these insulating states. The conditions under which an insulating state is allowed for structures having an integer number of atoms per primitive unit cell as well as re-entrant (i.e., metal-insulator-metal) transition sequences are detailed, resulting in predictions of semimetallic phases with flat surface states. The general principles developed are tested and applied to the alkali and alkaline earth metals, including elements where high-pressure insulating phases have been identified or reported (e.g., Li, Na, and Ca). This research was supported by EFree, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award DESC0001057.

  3. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage

    DOE PAGESBeta

    Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J.

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in themore » total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less

  4. The electronic properties of noble metal doped silicon nanocrystals using hybrid density functional theory

    NASA Astrophysics Data System (ADS)

    Mayfield, Cedric Leon

    One of the most challenging issues in semiconductor physics is to engineer band structures for a particular device. Contemporary photovoltaic (PV) and photoelectrochemical (PEC) devices rely on defect energy levels and nano-scaling to customize their band structures. As the length scale of a material becomes comparable to the exciton Bohr radius the free particle behavior of charge carriers transition to bound states where energy levels are quantized. In this thesis, hybrid density functional theory has been used to study the electronic properties of silicon nanocrystals (SiNCs) having 75, 150 and 300 silicon atoms. The atomic coordinates were defined by two geometries (diamond and wurtzite) of bulk phase silicon. The global minimum energy structures for both geometries at each size were found for particular variation on magnetic moments, dopant, dopant position, and surface passivation with hydrogen. We report our results on bond lengths, binding energies, formation energies, HOMO-LUMO gaps, and density of states. We also report results on electronic occupations derived from Mulliken population analysis. Our results show that the SiNCs have tunable HOMO-LUMO gaps with respect to size and that the inclusion of noble metals produces inter-gap defect levels. In addition, we have found that hydrogen passivation affected the doping behavior significantly. Contrary to the general expectation, hydrogen passivation contributed to the energy levels near the highest occupied orbital. Overall, our results suggest the SiNCs can be used to construct optimal photovoltaic applications or used individually as photocatalysts.

  5. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage

    PubMed Central

    Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J.

    2016-01-01

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments. PMID:26902901

  6. Surface passivation of lead sulfide nanocrystals with low electron affinity metals: photoluminescence and photovoltaic performance.

    PubMed

    Tavakoli, Mohammad Mahdi; Mirfasih, Mohammad Hassan; Hasanzadeh, Soheil; Aashuri, Hossein; Simchi, Abdolreza

    2016-04-28

    During the last decade, solution-processed colloidal quantum dots (CQDs) have attracted significant attention for low-cost fabrication of optoelectronic devices. In this study, lead sulfide (PbS) CQDs were synthesized via the hot injection method and the effect of doping elements with low electron affinity, including cadmium, calcium and zinc, on the passivation of trap states was investigated. A red-shift in the luminescence emission was observed by doping through passivation of lead dangling bonds. Time-resolved photoluminescence measurements showed that the lifetime of charged carriers was significantly enhanced by cadmium doping (∼80%) which is quite noticeable compared with calcium- and zinc-doped nanocrystals. External quantum efficiency measurements on thin solid films (∼300 nm) prepared by spin coating supported improved lifetime of carriers through passivation of mid-gap trap states. In order to show the potential application of the doping process, bulk heterojunction CQD solar cells were fabricated. It was found that the power conversion efficiency (PCE) was improved up to ∼40%; the highest improvement was observed with the Cd treatment. Finally, density functional theory (DFT) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of doping on the density of states. The results showed that doping with low electron affinity metals effectively reduced the deep trap states of PbS QDs.

  7. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage.

    PubMed

    Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J

    2016-02-23

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  8. Graphene oxide/metal nanocrystal multilaminates as the atomic limit for safe and selective hydrogen storage

    NASA Astrophysics Data System (ADS)

    Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J.

    2016-02-01

    Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.

  9. Synthesis and characterization of some metal oxide nanocrystals by microwave irradiation

    SciTech Connect

    Rashad, M.; Gaber, A.; Abdelrahim, M. A.; Abdel-Baset, A. M.; Moharram, A. H.

    2013-12-16

    Copper oxide and cobalt oxide (CuO, Co3O4) nanocrystals (NCs) have been successfully prepared in a short time using microwave irradiation. The resulted powders of nanocrystals (NCs) were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thermogravimetric analysis (TGA) measurements are also studied. Fourier-transform infrared (FT-IR) and UV–visible absorption spectroscopy of both kind of nanoparticels are illustrated. Optical absorption analysis indicated the direct band gap for both kinds of nanocrystals.

  10. Effect of embedded metal nanocrystals on the resistive switching characteristics in NiN-based resistive random access memory cells

    SciTech Connect

    Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok; Hyun Park, Ju; Su Jeon, Dong; Geun Kim, Tae

    2014-03-07

    The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells are formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.

  11. Tuning the Magnetic Properties of Metal Oxide Nanocrystal Heterostructures by Cation Exchange

    PubMed Central

    2013-01-01

    For three types of colloidal magnetic nanocrystals, we demonstrate that postsynthetic cation exchange enables tuning of the nanocrystal’s magnetic properties and achieving characteristics not obtainable by conventional synthetic routes. While the cation exchange procedure, performed in solution phase approach, was restricted so far to chalcogenide based semiconductor nanocrystals, here ferrite-based nanocrystals were subjected to a Fe2+ to Co2+ cation exchange procedure. This allows tracing of the compositional modifications by systematic and detailed magnetic characterization. In homogeneous magnetite nanocrystals and in gold/magnetite core shell nanocrystals the cation exchange increases the coercivity field, the remanence magnetization, as well as the superparamagnetic blocking temperature. For core/shell nanoheterostructures a selective doping of either the shell or predominantly of the core with Co2+ is demonstrated. By applying the cation exchange to FeO/CoFe2O4 core/shell nanocrystals the Neél temperature of the core material is increased and exchange-bias effects are enhanced so that vertical shifts of the hysteresis loops are obtained which are superior to those in any other system. PMID:23362940

  12. The Interaction of Hydrogen with Simple and Noble Metals Surfaces

    NASA Astrophysics Data System (ADS)

    Sprunger, Phillip T.

    The basic concepts of adsorption are illustrated by the investigation of a simple adsorbate (hydrogen) with the "simplest" metals (simple and noble metals). Theoretically tractable, these systems serve as an excellent test of our basic understanding of chemisorption. The interaction of atomic and molecular hydrogen with the surfaces of Mg(0001), Mg(1120), Li(110), K(110), Ag(110), and Ag(111) have been studied with a variety of experimental probes. In all cases, no evidence for H_2 associative or dissociative adsorption is observed at the substrate temperature investigated (>=q90 K). In the case of the simple metals below 150 K, atomic hydrogen is bound to the surfaces in a strongly chemisorbed state (hydride). For Mg and Li, the hydride is localized to the surface wherein the substrate electron density is lower than the bulk. Because of the low electron density, hydrogen is absorbed into the bulk of K at low temperatures and forms a bulk-hydride phase. However, these low-temperature phases are metastable. In the case of Mg, hydrogen moves into lower energy configuration bonding sites which are closer to or below the surface plane. However, the hydride characteristics are absent; the H atom is effectively screened because of the higher jellium density. In contrast, upon annealing, hydrogen is absorbed into the bulk of Li and K and phase separation occurs forming regions of clean metal and bulk hydride areas. The results are compared to theoretical studies; the propensity for absorption over adsorption is understood in terms of jellium-based models. In the case of silver, at 100 K, atomic hydrogen bonds in trigonal sites on both the (110) and (111) surfaces. As a function of H concentration, a sequence of lattice gas superstructures is observed; these phases are accompanied by small H-induced displacements of the substrate surface atoms. In the case of Ag(110), the low-temperature phase is metastable; upon annealing, hydrogen desorption from low energy states is

  13. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life.

    PubMed

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J; Goddard, William A; Kang, Jeung Ku

    2015-06-30

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core-shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni(2+) of the nanocrystal changes during lithiation-delithiation through Ni(0) and back to Ni(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles. PMID:26080421

  14. Rescaling of metal oxide nanocrystals for energy storage having high capacitance and energy density with robust cycle life.

    PubMed

    Jeong, Hyung Mo; Choi, Kyung Min; Cheng, Tao; Lee, Dong Ki; Zhou, Renjia; Ock, Il Woo; Milliron, Delia J; Goddard, William A; Kang, Jeung Ku

    2015-06-30

    Nanocrystals are promising structures, but they are too large for achieving maximum energy storage performance. We show that rescaling 3-nm particles through lithiation followed by delithiation leads to high-performance energy storage by realizing high capacitance close to the theoretical capacitance available via ion-to-atom redox reactions. Reactive force-field (ReaxFF) molecular dynamics simulations support the conclusion that Li atoms react with nickel oxide nanocrystals (NiO-n) to form lithiated core-shell structures (Ni:Li2O), whereas subsequent delithiation causes Ni:Li2O to form atomic clusters of NiO-a. This is consistent with in situ X-ray photoelectron and optical spectroscopy results showing that Ni(2+) of the nanocrystal changes during lithiation-delithiation through Ni(0) and back to Ni(2+). These processes are also demonstrated to provide a generic route to rescale another metal oxide. Furthermore, assembling NiO-a into the positive electrode of an asymmetric device enables extraction of full capacitance for a counter negative electrode, giving high energy density in addition to robust capacitance retention over 100,000 cycles.

  15. Assembling metal oxide nanocrystals into dense, hollow, porous nanoparticles for lithium-ion and lithium-oxygen battery application.

    PubMed

    Ming, Jun; Wu, Yingqiang; Park, Jin-Bum; Lee, Joong Kee; Zhao, Fengyu; Sun, Yang-Kook

    2013-11-01

    New dense hollow porous (DHP) metal oxide nanoparticles that are smaller than 100 nm and composed of Co3O4, FeOx, NiO and MnOx were prepared by densely assembling metal oxide nanocrystals based on the hard-template method using a carbon colloid as a sacrificial core. These nanoparticles are quite different from the traditional particles as their hollow interior originates from the stacking of nanocrystals rather than a spherical shell. The DHP nanoparticles preserve the intriguing properties of nanocrystals and possess desirable surface area and pore volume that enhance the active surface, which ultimately benefits applications such as lithium-ion batteries. The DHP Co3O4 nanoparticles demonstrated an enhanced capacity of 1168 mA h g(-1) at 100 mA g(-1)vs. 590 mA h g(-1) of powders and stable cycling performance greater than 250 cycles when used as an anode material. Most importantly, the electrochemical performance of DHP Co3O4 nanoparticles in a lithium-O2 battery was also investigated for the first time. A low charge potential of ∼4.0 V, a high discharge voltage near 2.74 V and a long cycle ability greater than 100 cycles at a delivered capacity of 2000 mA h g(-1) (current density, 200 mA g(-1)) were observed. The performances were considerably improved compared to recent results of mesoporous Co3O4, Co3O4 nanoparticles and a composite of Co3O4/RGO and Co3O4/Pd. Therefore, it would be promising to investigate such properties of DHP nanoparticles or other hollow metal (oxide) particles for the popular lithium-air battery.

  16. Tuning electronic properties of novel metal oxide nanocrystals using interface interactions: MoO3 monolayers on Au(111)

    SciTech Connect

    Quek, S; Biener, M M; Biener, J; Friend, C M; Kaxiras, E

    2004-04-20

    Metal oxide nanocrystals deposited on metal surfaces have novel electronic properties due to interface and nanoscale effects. Crystals and nanoscale ribbons of MoO{sub 3} are highly effective catalysts and field emitters. This renders MoO{sub 3} an interesting prototype. Whilst MoO{sub 3} exists as bilayers in the bulk crystal5, in this work, monolayer MoO{sub 3} nanocrystals were grown epitaxially on Au(111). Ab initio calculations reveal that Au stabilizes the MoO{sub 3} monolayer through electronic charge redistribution at the interface. The Mo-O bonds are able to rotate about one another, allowing the MoO{sub 3} monolayer to adjust to the Au lattice. As a result, the monolayer is semimetallic, unlike bulk MoO{sub 3} which is semiconducting. This remarkable flexibility of the oxide lattice suggests the possibility of tuning electronic properties of transition metal oxides via interface interactions. The overall surface pattern obtained is affected by an interplay between the Au(111) surface reconstruction and the edges of the deposited MoO{sub 3} islands.

  17. Property trends in simple metals: An empirical potential approach

    NASA Astrophysics Data System (ADS)

    Nichol, A.; Ackland, G. J.

    2016-05-01

    We demonstrate that the melting points and other thermodynamic quantities of the alkali metals can be calculated based on static crystalline properties. To do this we derive analytic interatomic potentials for the alkali metals fitted precisely to cohesive and vacancy energies, elastic moduli, the lattice parameter, and crystal stability. These potentials are then used to calculate melting points by simulating the equilibration of solid and liquid samples in thermal contact at ambient pressure. With the exception of lithium, remarkably good agreement is found with experimental values. The instability of the bcc structure in Li and Na at low temperatures is also reproduced and, unusually, is not due to a soft T1N phonon mode. No forces or finite-temperature properties are included in the fit, so this demonstrates a surprisingly high level of intrinsic transferability in the simple potentials. Currently, there are few potentials available for the alkali metals, so in addition to demonstrating trends in behavior, we expect that the potentials will be of broad general use.

  18. A tunable library of substituted thiourea precursors to metal sulfide nanocrystals

    NASA Astrophysics Data System (ADS)

    Hendricks, Mark P.; Campos, Michael P.; Cleveland, Gregory T.; Jen-La Plante, Ilan; Owen, Jonathan S.

    2015-06-01

    Controlling the size of colloidal nanocrystals is essential to optimizing their performance in optoelectronic devices, catalysis, and imaging applications. Traditional synthetic methods control size by terminating the growth, an approach that limits the reaction yield and causes batch-to-batch variability. Herein we report a library of thioureas whose substitution pattern tunes their conversion reactivity over more than five orders of magnitude and demonstrate that faster thiourea conversion kinetics increases the extent of crystal nucleation. Tunable kinetics thereby allows the nanocrystal concentration to be adjusted and a desired crystal size to be prepared at full conversion. Controlled precursor reactivity and quantitative conversion improve the batch-to-batch consistency of the final nanocrystal size at industrially relevant reaction scales.

  19. Properties of silicon dioxide layers with embedded metal nanocrystals produced by oxidation of Si:Me mixture.

    PubMed

    Novikau, Andrei; Gaiduk, Peter; Maksimova, Ksenia; Zenkevich, Andrei

    2011-02-16

    A two-dimensional layers of metal (Me) nanocrystals embedded in SiO2 were produced by pulsed laser deposition of uniformly mixed Si:Me film followed by its furnace oxidation and rapid thermal annealing. The kinetics of the film oxidation and the structural properties of the prepared samples were investigated by Rutherford backscattering spectrometry, and transmission electron microscopy, respectively. The electrical properties of the selected SiO2:Me nanocomposite films were evaluated by measuring C-V and I-V characteristics on a metal-oxide-semiconductor stack. It is found that Me segregation induced by Si:Me mixture oxidation results in the formation of a high density of Me and silicide nanocrystals in thin film SiO2 matrix. Strong evidence of oxidation temperature as well as impurity type effect on the charge storage in crystalline Me-nanodot layer is demonstrated by the hysteresis behavior of the high-frequency C-V curves.

  20. Binding of an adatom to a simple metal surface

    NASA Technical Reports Server (NTRS)

    Huntington, H. B.; Turk, L. A.; White, W. W., III

    1975-01-01

    The density functional formalism of Hohenberg and Kohn is used to investigate the energies, charge densities and forces which hold an adatom on the surface of a simple metal. The valence wavefunction of the adatom is fitted to the Herman-Skillman solutions at large distance and is simplified somewhat in the core region. The field of the ion is represented by the Ashcroft pseudopotential. For the metal the jellium model is used. Detailed calculations are carried out for a sodium adatom on a sodium surface. Simply juxtaposing adatom and surface gives a binding energy of about 1/3 eV. This value is approximately twice the surface energy per atom in the close-packed plane. Charge redistributions as determined variationally increase the binding energy by about 10%. The equilibrium distance for the adatom turns out to be 1.66 A from the surface, as compared with 1.52 A, the observed value for one-half the distance between the close-packed planes.

  1. Copper metal-organic framework nanocrystal for plane effect nonenzymatic electro-catalytic activity of glucose

    NASA Astrophysics Data System (ADS)

    Liu, Yuanying; Zhang, Youjuan; Chen, Jing; Pang, Huan

    2014-09-01

    This work describes the first demonstration of nanocrystal plane dependent nonenzymatic electro-catalytic glucose activity of [Cu3(btc)2] nanocrystals with different shapes (nanocube, truncated cube, cuboctahedron, and octahedron). From electrochemical results, the obtained [Cu3(btc)2] nanocube modified electrode shows the best nonenzymatic electro-catalytic glucose activity. Interestingly, decreasing the {100} crystal planes from cubes to octahedra, changes the nonenzymatic electro-catalytic activity from highly sensitive to general.This work describes the first demonstration of nanocrystal plane dependent nonenzymatic electro-catalytic glucose activity of [Cu3(btc)2] nanocrystals with different shapes (nanocube, truncated cube, cuboctahedron, and octahedron). From electrochemical results, the obtained [Cu3(btc)2] nanocube modified electrode shows the best nonenzymatic electro-catalytic glucose activity. Interestingly, decreasing the {100} crystal planes from cubes to octahedra, changes the nonenzymatic electro-catalytic activity from highly sensitive to general. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr03396e

  2. Surface-specific deposition of catalytic metal nanocrystals on hollow carbon nanospheres via galvanic replacement reactions of carbon-encapsulated MnO nanoparticles.

    PubMed

    Lee, Dong-Gyu; Kim, Soo Min; Jeong, Hwakyeung; Kim, Jongwon; Lee, In Su

    2014-05-27

    This paper reports the findings of our efforts toward gaining a more complete understanding and utilization of galvanic replacement reactions involving manganese oxide with noble metals. It was revealed that the site of metal deposition is significantly affected by the variable oxidation state of manganese oxide. The use of carbon-encapsulated MnO nanoparticles as a reaction template led to metal growth specifically on the outermost surfaces of the carbon shells rather than on the MnO cores, which allowed for the selective decoration of the external surfaces of hollow carbon nanospheres with catalytic nanocrystals of various noble metals, including Pt, Pd, Rh, and Ir. By rearranging the sequence between carbon-shell coating and galvanic replacement processes, the deposited metal nanocrystals could be placed on the interior surfaces of hollow carbon nanospheres and, moreover, separately on the internal and the external surfaces, which may enable the respective control of the catalytic functionalities of each specific surface.

  3. A Simple Model for Solidification of Undercooled Metallic Samples

    NASA Astrophysics Data System (ADS)

    Saleh, Abdala M.; Clemente, Roberto A.

    2004-06-01

    A simple model for reproducing temperature recalescence behaviour in spherical undercooled liquid metallic samples, undergoing crystallization transformations, is presented. The model is applied to constant heat extraction rate, uniform but time dependent temperature distribution inside the sample (even after the start of crystallization), a classical temperature dependent rate of nucleation (including contributions from different specific heats for different phases and also a catalytic factor to model the possibility of heterogeneous distributed impurities) and the solidified grain interface velocity is taken proportional to the temperature undercooling. Different assumptions are considered for the sample transformed fraction as function of the extended volume of nuclei, like the classical Kolmogoroff, Johnson-Mehl, Avrami one (corresponding to random distribution of nuclei), the Austin-Rickett one (corresponding to some kind of clusterized distribution) and also an empirical one corresponding to some ordering in the distribution of nuclei. As an example of application, a published experimental temperature curve for a zirconium sample in the electromagnetic containerless facility TEMPUS, during the 2nd International Microgravity Laboratory Mission in 1994, is modeled. Some thermo-physical parameters of interest for Zr are discussed.

  4. Nanocrystal dispersed amorphous alloys

    NASA Technical Reports Server (NTRS)

    Perepezko, John H. (Inventor); Allen, Donald R. (Inventor); Foley, James C. (Inventor)

    2001-01-01

    Compositions and methods for obtaining nanocrystal dispersed amorphous alloys are described. A composition includes an amorphous matrix forming element (e.g., Al or Fe); at least one transition metal element; and at least one crystallizing agent that is insoluble in the resulting amorphous matrix. During devitrification, the crystallizing agent causes the formation of a high density nanocrystal dispersion. The compositions and methods provide advantages in that materials with superior properties are provided.

  5. Nanocrystal-Powered Nanomotor

    SciTech Connect

    Regan, B.C.; Aloni, S.; Jensen, K.; Ritchie, R.O.; Zettl, A.

    2005-07-05

    We have constructed and operated a nanoscale linear motorpowered by a single metal nanocrystal ram sandwiched between mechanicallever arms. Low-level electrical voltages applied to the carbon nanotubelever arms cause the nanocrystal to grow or shrink in a controlledmanner. The length of the ram is adjustable from 0 to more than 150 nm,with extension speeds exceeding 1900 nm/s. The thermodynamic principlesgoverning motor operation resemble those driving frost heave, a naturalsolid-state linear motor.

  6. Metal-organic framework nanocrystals as sacrificial templates for hollow and exceptionally porous titania and composite materials.

    PubMed

    Yang, Hui; Kruger, Paul E; Telfer, Shane G

    2015-10-01

    We report a strategy that employs metal-organic framework (MOF) crystals in two roles for the fabrication of hollow nanomaterials. In the first role the MOF crystals provide a template on which a shell of material can be deposited. Etching of the MOF produces a hollow structure with a predetermined size and morphology. In combination with this strategy, the MOF crystals, including guest molecules in their pores, can provide the components of a secondary material that is deposited inside the initially formed shell. We used this approach to develop a straightforward and reproducible method for constructing well-defined, nonspherical hollow and exceptionally porous titania and titania-based composite nanomaterials. Uniform hollow nanostructures of amorphous titania, which assume the cubic or polyhedral shape of the original template, are delivered using nano- and microsized ZIF-8 and ZIF-67 crystal templates. These materials exhibit outstanding textural properties including hierarchical pore structures and BET surface areas of up to 800 m(2)/g. As a proof of principle, we further demonstrate that metal nanoparticles such as Pt nanoparticles, can be encapsulated into the TiO2 shell during the digestion process and used for subsequent heterogeneous catalysis. In addition, we show that the core components of the ZIF nanocrystals, along with their adsorbed guests, can be used as precursors for the formation of secondary materials, following their thermal decomposition, to produce hollow and porous metal sulfide/titania or metal oxide/titania composite nanostructures.

  7. Functionalization of Cellulose Nanocrystals with PEG-Metal-Chelating Diblock Copolymers via Controlled Conjugation in Aqueous Medium

    NASA Astrophysics Data System (ADS)

    Guo, Melinda

    The surface of cellulose nanocrystals (CNCs) was successfully functionalized with metal chelating diblock copolymers via HyNic-4FB conjugation. Two types of PEG-metal-chelating block polymers with hydrazinonicotinate acetone hydrazine (HyNic) end groups were synthesized: mPEG-PGlu(DTPA) 18-HyNic and mPEG-PGlu(DTPA)25-HyNic. These two polymers both had a methoxy PEG (M ˜ 2000 Da) block that differed in the mean degree of polymerization of the metal-chelating block. They were characterized by 1H NMR spectroscopy and gel-permeation chromatography (GPC). 4-Formylbenzamide (4FB) groups were introduced onto the surface of CNCs and quantified through their reaction with 2-hydrazinopyridine. The polymers were grafted onto the surface of CNCs via bis-aryl hydrazone bond formation, and the kinetics of this reaction was explored by UV/Vis spectroscopy. The CNCs were also labeled with rhodamine and Alexa FluorRTM 488 dyes. Students in our collaborator's group in Pharmacy are examining applications of these materials as radiotherapeutic agents for cancer treatment.

  8. A Simple Method for Drawing Chiral Mononuclear Octahedral Metal Complexes

    ERIC Educational Resources Information Center

    Mohamadou, Aminou; Haudrechy, Arnaud

    2008-01-01

    Octahedral transition-metal complexes are involved in a number of reactions and octahedral coordination geometry, frequently observed for metallic centers, includes important topographical stereochemistry. Depending on the number and nature of different ligands, octahedral coordination units with at least two different monodentate ligands give…

  9. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  10. Exploiting the colloidal nanocrystal library to construct electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high–dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  11. Exploiting the colloidal nanocrystal library to construct electronic devices

    NASA Astrophysics Data System (ADS)

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T.; Murray, Christopher B.; Kagan, Cherie R.

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second.

  12. Exploiting the colloidal nanocrystal library to construct electronic devices.

    PubMed

    Choi, Ji-Hyuk; Wang, Han; Oh, Soong Ju; Paik, Taejong; Sung, Pil; Sung, Jinwoo; Ye, Xingchen; Zhao, Tianshuo; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2016-04-01

    Synthetic methods produce libraries of colloidal nanocrystals with tunable physical properties by tailoring the nanocrystal size, shape, and composition. Here, we exploit colloidal nanocrystal diversity and design the materials, interfaces, and processes to construct all-nanocrystal electronic devices using solution-based processes. Metallic silver and semiconducting cadmium selenide nanocrystals are deposited to form high-conductivity and high-mobility thin-film electrodes and channel layers of field-effect transistors. Insulating aluminum oxide nanocrystals are assembled layer by layer with polyelectrolytes to form high-dielectric constant gate insulator layers for low-voltage device operation. Metallic indium nanocrystals are codispersed with silver nanocrystals to integrate an indium supply in the deposited electrodes that serves to passivate and dope the cadmium selenide nanocrystal channel layer. We fabricate all-nanocrystal field-effect transistors on flexible plastics with electron mobilities of 21.7 square centimeters per volt-second. PMID:27124455

  13. Surface properties of simple metals in a structureless pseudopotential model

    NASA Astrophysics Data System (ADS)

    Kiejna, Adam

    1993-03-01

    The structureless pseudopotential model of Perdew, Tran, and Smith [Phys. Rev. B 42, 11 627 (1990)] is applied to determine surface properties of Al, Mg, Pb, Zn, and alkali metals. Results of self-consistent Kohn-Sham calculations of surface energies, work functions, and the location of the image plane both for a flat-metal (uncorrugated) surface and for the exposed single-crystal faces are presented. In contrast to jellium, the calculated distance from the image-plane position to the uniform positive background edge increases with the decreasing mean electron density in the bulk metal. The calculated surface energies show more realistic weaker face dependence compared to the previous perturbational or variational calculations of this type and agree well with those predicted by the second-order pseudopotential perturbation theory.

  14. In Situ Formation of Metal Oxide Nanocrystals Embedded in Laser-Induced Graphene.

    PubMed

    Ye, Ruquan; Peng, Zhiwei; Wang, Tuo; Xu, Yunong; Zhang, Jibo; Li, Yilun; Nilewski, Lizanne G; Lin, Jian; Tour, James M

    2015-09-22

    Hybrid materials incorporating the advantages of graphene and nanoparticles have been widely studied. Here we develop an improved cost-effective approach for preparation of porous graphene embedded with various types of nanoparticles. Direct laser scribing on metal-complex-containing polyimide film leads to in situ formation of nanoparticles embedded in porous graphene. These materials are highly active in electrochemical oxygen reduction reactions, converting O2 into OH(-), with a low metal loading of less than 1 at. %. In addition, the nanoparticles can vary from metal oxide to metal dichalcogenides through lateral doping, making the composite active in other electrocatalytic reactions such as hydrogen evolution.

  15. A simple approach to metal hydride alloy optimization

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C. G.; Landel, R. F.

    1976-01-01

    Hildebrand-Scott (1950) solubility parameters can be obtained for metals and alloys by calculating the cohesive energy density (CED), equal to the square of the solubility parameter, and a function of the heat of sublimation and the atomic volume. It is suggested that the solubility parameter permits estimation of the hydrogen storage capacity of an alloy and that alloys with a solubility parameter approximately equal to the parameter for hydrogen will have greater hydrogen storage capacity than other alloys. Equilibrium pressure - temperature relationships for some metal hydrides are presented in conjunction with the calculated solubility parameter and correlated with characteristics which would be useful in hydrogen-powered vehicles. Alloy properties which increase the amount of nonstoichiometric reversible hydrogen absorption are discussed.

  16. A simple approach to metal hydride alloy optimization

    NASA Technical Reports Server (NTRS)

    Lawson, D. D.; Miller, C.; Landel, R. F.

    1976-01-01

    Certain metals and related alloys can combine with hydrogen in a reversible fashion, so that on being heated, they release a portion of the gas. Such materials may find application in the large scale storage of hydrogen. Metal and alloys which show high dissociation pressure at low temperatures, and low endothermic heat of dissociation, and are therefore desirable for hydrogen storage, give values of the Hildebrand-Scott solubility parameter that lie between 100-118 Hildebrands, (Ref. 1), close to that of dissociated hydrogen. All of the less practical storage systems give much lower values of the solubility parameter. By using the Hildebrand solubility parameter as a criterion, and applying the mixing rule to combinations of known alloys and solid solutions, correlations are made to optimize alloy compositions and maximize hydrogen storage capacity.

  17. New materials for tunable plasmonic colloidal nanocrystals.

    PubMed

    Comin, Alberto; Manna, Liberato

    2014-06-01

    We present a review on the emerging materials for novel plasmonic colloidal nanocrystals. We start by explaining the basic processes involved in surface plasmon resonances in nanoparticles and then discuss the classes of nanocrystals that to date are particularly promising for tunable plasmonics: non-stoichiometric copper chalcogenides, extrinsically doped metal oxides, oxygen-deficient metal oxides and conductive metal oxides. We additionally introduce other emerging types of plasmonic nanocrystals and finally we give an outlook on nanocrystals of materials that could potentially display interesting plasmonic properties.

  18. Homogeneous coating of photonic macroporous oxides with inorganic nanocrystals

    NASA Astrophysics Data System (ADS)

    Mitchell, Robert; Brydson, Rik; Douthwaite, R. E.

    2014-03-01

    A simple method to obtain homogeneous sub-monolayer coverage of metal oxide and chalcogenide nanocrystals onto porous oxide supports is described. Quantitative nanoparticle coverage was probed using photonic macroporous oxide supports. Composites of nanocrystals of TiO2, Fe3O4 or CdS dispersed onto macroporous SiO2 or ZrO2 all show a predictable linear shift in the photonic stop band position.A simple method to obtain homogeneous sub-monolayer coverage of metal oxide and chalcogenide nanocrystals onto porous oxide supports is described. Quantitative nanoparticle coverage was probed using photonic macroporous oxide supports. Composites of nanocrystals of TiO2, Fe3O4 or CdS dispersed onto macroporous SiO2 or ZrO2 all show a predictable linear shift in the photonic stop band position. Electronic supplementary information (ESI) available: Synthetic procedures, SEM, TEM, EDX, PXRD, DRUVS and BET measurements. See DOI: 10.1039/c4nr00490f

  19. A simple, general route to 2-pyridylidene transition metal complexes.

    PubMed

    Roselló-Merino, Marta; Díez, Josefina; Conejero, Salvador

    2010-12-28

    Pyridinium 2-carboxylates decompose thermally in the presence of a variety of late transition metal precursors to yield the corresponding 2-pyridylidene-like complexes. The mild reaction conditions and structural diversity that can be generated in the heterocyclic ring make this method an attractive alternative for the synthesis of 2-pyridylidene complexes. IR spectra of the Ir(i) carbonyl compounds [IrCl(NHC)(CO)(2)] indicate that these N-heterocyclic carbene ligands are among the strongest σ-electron donors.

  20. Hollow Alveolus-Like Nanovesicle Assembly with Metal-Encapsulated Hollow Zeolite Nanocrystals.

    PubMed

    Dai, Chengyi; Zhang, Anfeng; Liu, Min; Gu, Lin; Guo, Xinwen; Song, Chunshan

    2016-08-23

    Inspired by the vesicular structure of alveolus which has a porous nanovesicle structure facilitating the transport of oxygen and carbon dioxide, we designed a hollow nanovesicle assembly with metal-encapsulated hollow zeolite that would enhance diffusion of reactants/products and inhibit sintering and leaching of active metals. This zeolitic nanovesicle has been successfully synthesized by a strategy which involves a one-pot hydrothermal synthesis of hollow assembly of metal-containing solid zeolite crystals without a structural template and a selective desilication-recrystallization accompanied by leaching-hydrolysis to convert the metal-containing solid crystals into metal-encapsulated hollow crystals. We demonstrate the strategy in synthesizing a hollow nanovesicle assembly of Fe2O3-encapsulated hollow crystals of ZSM-5 zeolite. This material possesses a microporous (0.4-0.6 nm) wall of hollow crystals and a mesoporous (5-17 nm) shell of nanovesicle with macropores (about 350 nm) in the core. This hierarchical structure enables excellent Fe2O3 dispersion (3-4 nm) and resistance to sintering even at 800 °C; facilitates the transport of reactant/products; and exhibits superior activity and resistance to leaching in phenol degradation. Hollow nanovesicle assembly of Fe-Pt bimetal-encapsulated hollow ZSM-5 crystals was also prepared.

  1. Hollow Alveolus-Like Nanovesicle Assembly with Metal-Encapsulated Hollow Zeolite Nanocrystals.

    PubMed

    Dai, Chengyi; Zhang, Anfeng; Liu, Min; Gu, Lin; Guo, Xinwen; Song, Chunshan

    2016-08-23

    Inspired by the vesicular structure of alveolus which has a porous nanovesicle structure facilitating the transport of oxygen and carbon dioxide, we designed a hollow nanovesicle assembly with metal-encapsulated hollow zeolite that would enhance diffusion of reactants/products and inhibit sintering and leaching of active metals. This zeolitic nanovesicle has been successfully synthesized by a strategy which involves a one-pot hydrothermal synthesis of hollow assembly of metal-containing solid zeolite crystals without a structural template and a selective desilication-recrystallization accompanied by leaching-hydrolysis to convert the metal-containing solid crystals into metal-encapsulated hollow crystals. We demonstrate the strategy in synthesizing a hollow nanovesicle assembly of Fe2O3-encapsulated hollow crystals of ZSM-5 zeolite. This material possesses a microporous (0.4-0.6 nm) wall of hollow crystals and a mesoporous (5-17 nm) shell of nanovesicle with macropores (about 350 nm) in the core. This hierarchical structure enables excellent Fe2O3 dispersion (3-4 nm) and resistance to sintering even at 800 °C; facilitates the transport of reactant/products; and exhibits superior activity and resistance to leaching in phenol degradation. Hollow nanovesicle assembly of Fe-Pt bimetal-encapsulated hollow ZSM-5 crystals was also prepared. PMID:27429013

  2. Pulsed-Laser-Induced Simple Synthetic Route for Tb3Al5O12:Ce3+ Colloidal Nanocrystals and Their Luminescent Properties

    NASA Astrophysics Data System (ADS)

    Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto

    2009-08-01

    Cerium-doped Tb3Al5O12 (TAG:Ce3+) colloidal nanocrystals were synthesized by pulsed laser ablation (PLA) in de-ionized water and lauryl dimethylaminoacetic acid betain (LDA) aqueous solution for luminescent bio-labeling application. The influence of LDA molecules on the crystallinity, crystal morphology, crystallite size, and luminescent properties of the prepared TAG:Ce3+ colloidal nanocrystals was investigated in detail. When the LDA solution was used, smaller average crystallite size, narrower size distribution, and enhanced luminescence were observed. These characteristics were explained by the effective role of occupying the oxygen defects on the surface of TAG:Ce3+ colloidal nanocrystal because the amphoteric LDA molecules were attached by positively charged TAG:Ce3+ colloidal nanocrystals. The blue-shifted phenomena found in luminescent spectra of the TAG:Ce3+ colloidal nanocrystals could not be explained by previous crystal field theory. We discuss the 5d energy level of Ce3+ with decreased crystal size with a phenomenological model that explains the relationship between bond distance with 5d energy level of Ce3+ based on the concept of crystal field theory modified by covalency contribution.

  3. Pulsed-Laser-Induced Simple Synthetic Route for Tb(3)Al(5)O(12):Ce Colloidal Nanocrystals and Their Luminescent Properties.

    PubMed

    Mhin, Sung Wook; Ryu, Jeong Ho; Kim, Kang Min; Park, Gyeong Seon; Ryu, Han Wool; Shim, Kwang Bo; Sasaki, Takeshi; Koshizaki, Naoto

    2009-01-01

    Cerium-doped Tb(3)Al(5)O(12) (TAG:Ce(3+)) colloidal nanocrystals were synthesized by pulsed laser ablation (PLA) in de-ionized water and lauryl dimethylaminoacetic acid betain (LDA) aqueous solution for luminescent bio-labeling application. The influence of LDA molecules on the crystallinity, crystal morphology, crystallite size, and luminescent properties of the prepared TAG:Ce(3+) colloidal nanocrystals was investigated in detail. When the LDA solution was used, smaller average crystallite size, narrower size distribution, and enhanced luminescence were observed. These characteristics were explained by the effective role of occupying the oxygen defects on the surface of TAG:Ce(3+) colloidal nanocrystal because the amphoteric LDA molecules were attached by positively charged TAG:Ce(3+) colloidal nanocrystals. The blue-shifted phenomena found in luminescent spectra of the TAG:Ce(3+) colloidal nanocrystals could not be explained by previous crystal field theory. We discuss the 5d energy level of Ce(3+) with decreased crystal size with a phenomenological model that explains the relationship between bond distance with 5d energy level of Ce(3+) based on the concept of crystal field theory modified by covalency contribution. PMID:20596420

  4. Kinetic description of metal nanocrystal oxidation: a combined theoretical and experimental approach for determining morphology and diffusion parameters in hollow nanoparticles by the nanoscale Kirkendall effect

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshiki; Mowbray, Ryan W.; Rice, Katherine P.; Stoykovich, Mark P.

    2014-10-01

    The oxidation of colloidal metal nanocrystals to form hollow shells via the nanoscale Kirkendall effect has been investigated using a combined theoretical and experimental approach. A generalized kinetic model for the formation of hollow nanoparticles describes the phenomenon and, unlike prior models, is applicable to any material system and accounts for the effect of surface energies. Phase diagrams of the ultimate oxidized nanoparticle morphology and the time to achieve complete oxidation are calculated, and are found to depend significantly upon consideration of surface energy effects that destabilize the initial formation of small voids. For the oxidation of Cu nanocrystals to Cu2O nanoparticles, we find that the diffusion coefficients dictate the morphological outcomes: the ratio of ? to ? controls the void size, ? determines the time of oxidation and ? is largely irrelevant in the kinetics of oxidation. The kinetic model was used to fit experimental measurements of 11 nm diameter Cu nanocrystals oxidized in air from which temperature-dependent diffusivities of ? and ? for 100 ≤ T ≤ 200 °C were determined. In contrast to previous interpretations of the nanoscale Kirkendall effect in the Cu/Cu2O system, these results are obtained without any a priori assumptions about the relative magnitudes of ? and ?. The theoretical and experimental approaches presented here are broadly applicable to any nanoparticle system undergoing oxidation, and can be used to precisely control the final nanoparticle morphology for applications in catalysis or optical materials.

  5. a Simple Method to Prepare Nanoporous Sn:Pb Composite Metal Foam

    NASA Astrophysics Data System (ADS)

    Zandi, Majid; Amirhoseiny, Maryam; Mosayyebi, Abolghasem

    2015-03-01

    A novel and simple approach for preparing nanoporous binder free Sn:Pb composite metal foam has been demonstrated. The anodized metallic composite block was functionalized and also found a nanoporous structure. A scanning electron microscopy (SEM) result shows that the nanoflake-like arrangement has synthesized. The X-ray diffraction (XRD) results confirm the nanoporous structure of the Sn/Pb foam after etching with 6 M NaOH. The prepared Sn:Pb metal foam is able to be used as a super capacitors electrode to offer large areal capacitance with regards to the synergic integration of Sn and Pb metals and the unique nanoporous structure.

  6. A Simple Synthesis of Triangular All-Metal Aromatics Allowing Access to Isolobal All-Metal Heteroaromatics.

    PubMed

    Wang, Yanlan; Deyris, Pierre-Alexandre; Caneque, Tatiana; Blanchard, Florent; Li, Yanling; Bigi, Franca; Maggi, Raimondo; Blanchard, Sebastien; Maestri, Giovanni; Malacria, Max

    2015-08-24

    A simple synthetic method allows the one-pot assembly of C3 -symmetric, 44-core-valence-electron, triangular Pd or Pt clusters and their heterobimetallic mixed Pd/Pt analogues. These mixed metal complexes are the first examples of stable triangular all-metal heteroaromatics. In contrast to traditional heteroaromatic molecules formed combining main-group elements, they actually retain structural and electronic features of their homonuclear analogues.

  7. Aggregation Kinetics of Metal Chalcogenide Nanocrystals: Generation of Transparent CdSe(ZnS) Core(Shell) Gels

    SciTech Connect

    Korala, Lasantha; Brock, Stephanie

    2012-08-16

    Transparent CdSe (ZnS) core (shell) sol–gel materials have potential uses in optoelectronic applications such as light-emitting diodes (LEDs) due to their strong luminescence properties and the potential for charge transport through the prewired nanocrystal (NC) network of the gel. However, typical syntheses of metal chalcogenide gels yield materials with poor transparency. In this work, the mechanism and kinetics of aggregation of two sizes of CdSe (ZnS) core (shell) NCs, initiated by removal of surface thiolate ligands using tetranitromethane (TNM) as an oxidant, were studied by means of time-resolved dynamic light scattering (TRDLS); the characteristics of the resultant gels were probed by optical absorption, transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). At low concentrations of NCs (ca. 4 × 10{sup –7} M), the smaller, green-emitting NCs aggregate faster than the larger, orange-emitting NCs, for a specific oxidant concentration. The kinetics of aggregation have a significant impact on the macroscopic properties (i.e., transparency) of the resultant gels, with the transparency of the gels decreasing with the increase of oxidant concentration due the formation of larger clusters at the gel point and a shift away from a reaction-limited cluster-aggregation (RLCA) mechanism. This is further confirmed by analyses of the gel structures by SAXS and TEM. Likewise, the larger orange-emitting particles also produce larger aggregates at the gel point, leading to lower transparency. The ability to control the transparency of chalcogenide gels will enable their properties to be tuned in order to address application-specific needs in optoelectronics.

  8. Facet-dependent electrochemical properties of Co3O4 nanocrystals toward heavy metal ions

    PubMed Central

    Yu, Xin-Yao; Meng, Qiang-Qiang; Luo, Tao; Jia, Yong; Sun, Bai; Li, Qun-Xiang; Liu, Jin-Huai; Huang, Xing-Jiu

    2013-01-01

    We revealed an interesting facet-dependent electrochemical behavior toward heavy metal ions (HMIs) based on their adsorption behaviors. The (111) facet of Co3O4 nanoplates has better electrochemical sensing performance than that of the (001) facet of Co3O4 nanocubes. Adsorption measurements and density-functional theory (DFT) calculations reveals that adsorption of HMIs is responsible for the difference of electrochemical properties. Our combined experimental and theoretical studies provide a solid hint to explain the mechanism of electrochemical detection of HMIs using nanoscale metal oxides. Furthermore, this study not only suggests a promising new strategy for designing high performance electrochemical sensing interface through the selective synthesis of nanoscale materials exposed with different well-defined facets, but also provides a deep understanding for a more sensitive and selective electroanalysis at nanomaterials modified electrodes. PMID:24097175

  9. Composite materials with metal oxide attached to lead chalcogenide nanocrystal quantum dots with linkers

    DOEpatents

    Fuke, Nobuhiro; Koposov, Alexey Y; Sykora, Milan; Hoch, Laura

    2014-12-16

    Composite materials useful for devices such as photoelectrochemical solar cells include a substrate, a metal oxide film on the substrate, nanocrystalline quantum dots (NQDs) of lead sulfide, lead selenide, and lead telluride, and linkers that attach the NQDs to the metal oxide film. Suitable linkers preserve the 1s absorption peak of the NQDs. A suitable linker has a general structure A-B-C where A is a chemical group adapted for binding to a MO.sub.x and C is a chemical group adapted for binding to a NQD and B is a divalent, rigid, or semi-rigid organic spacer moiety. Other linkers that preserve the 1s absorption peak may also be used.

  10. Quantum well structures in thin metal films: simple model physics in reality?

    NASA Astrophysics Data System (ADS)

    Milun, M.; Pervan, P.; Woodruff, D. P.

    2002-02-01

    The quantum wells formed by ultra-thin metallic films on appropriate metallic substrates provide a real example of the simple undergraduate physics problem in quantum mechanics of the `particle in a box'. Photoemission provides a direct probe of the energy of the resulting quantized bound states. In this review the relationship of this simple model system to the real metallic quantum well (QW) is explored, including the way that the exact nature of the boundaries can be taken into account in a relative simple way through the `phase accumulation model'. More detailed aspects of the photoemission probe of QW states are also discussed, notably of the physical processes governing the photon energy dependence of the cross sections, of the influence of temperature, and the processes governing the observed peak widths. These aspects are illustrated with the results of experiments and theoretical studies, especially for the model systems Ag on Fe(100), Ag on V(100) and Cu on fcc Co(100).

  11. General Self-Assembly Route toward Sparsely Studded Noble-Metal Nanocrystals inside Graphene Hollow Sphere Network for Ultrastable Electrocatalyst Utilization.

    PubMed

    Lou, Xinyuan; Wu, Ping; Zhang, Anping; Zhang, Ruoqing; Tang, Yawen

    2015-09-16

    Herein, we rationally design and construct a novel type of sparsely studded noble-metal nanocrystals inside graphene hollow sphere network (abbreviated as noble-metal@G HSN) through an electrostatic-attraction-directed self-assembly approach. The formation of Pt@G and Pd@G hollow sphere networks have been illustrated as examples using SiO2 spheres as templates. Moreover, the electrocatalytic performance of the Pt@G HSN for methanol oxidation reaction has been examined as a proof-of-concept demonstration of the compositional and structural superiorities of noble-metal@G HSN toward electrocatalyst utilization. The as-prepared Pt@G HSN manifests higher catalytic activity and markedly enhanced long-term durability in comparison with commercial Pt/C catalyst. PMID:26305582

  12. Nanocrystal assembly for tandem catalysis

    DOEpatents

    Yang, Peidong; Somorjai, Gabor; Yamada, Yusuke; Tsung, Chia-Kuang; Huang, Wenyu

    2014-10-14

    The present invention provides a nanocrystal tandem catalyst comprising at least two metal-metal oxide interfaces for the catalysis of sequential reactions. One embodiment utilizes a nanocrystal bilayer structure formed by assembling sub-10 nm platinum and cerium oxide nanocube monolayers on a silica substrate. The two distinct metal-metal oxide interfaces, CeO.sub.2--Pt and Pt--SiO.sub.2, can be used to catalyze two distinct sequential reactions. The CeO.sub.2--Pt interface catalyzed methanol decomposition to produce CO and H.sub.2, which were then subsequently used for ethylene hydroformylation catalyzed by the nearby Pt--SiO.sub.2 interface. Consequently, propanal was selectively produced on this nanocrystal bilayer tandem catalyst.

  13. Very simple metallic subwavelength cell for constructing left-handed metamaterial

    NASA Astrophysics Data System (ADS)

    Wang, Zhiyu; Wang, Dongxing; Jiang, Tao; Peng, Liang; Huangfu, Jiangtao; Ran, Lixin

    2009-06-01

    In this letter, a very simple metallic subwavelength cell is designed for constructing left-handed metamaterial. The conductive current mode inside the metallic resonator of this cell imitates one reported displacement current mode inside a dielectric subwavelength resonator. We show by simulation and experiments that an artificial metamaterial composed of cells with such kind of current mode can behave simultaneously negative permittivity and permeability. The metallic cell with double negative property obtained in this letter is suitable for the applications in the high frequency band, such as in millimeter or even terahertz bands.

  14. ENHANCING DAMAGE VISIBILITY ON METALLIC BEARING SURFACES: A SIMPLE TECHNIQUE FOR PHOTOGRAPHY AND VIEWING

    PubMed Central

    Heiner, Anneliese D.; Kruger, Karen M.; Baer, Thomas E.; Brown, Thomas D.

    2012-01-01

    Damage to metallic bearing surfaces typically involves scratches, scrapes, metal transfer, and organic deposits. This damage can cause accelerated wear of the opposing surface and subsequent implant failure. Photography and viewing of metallic bearing surfaces, for documenting this damage, is hindered by optical reflectivity. This note demonstrates a simple, practical technique for metallic bearing surface photography and viewing that minimizes this reflectivity problem, that does not involve any modification of the bearing surface, and that allows for improved observation and documentation of overall damage. When the metallic bearing surface is placed within a tube of translucent material, the appearance of damage on that bearing surface is dramatically enhanced, showing up against a smooth, even background with excellent contrast and with fine detail achievable. PMID:23333257

  15. Enhancing damage visibility on metallic bearing surfaces: a simple technique for photography and viewing.

    PubMed

    Heiner, Anneliese D; Kruger, Karen M; Baer, Thomas E; Brown, Thomas D

    2013-03-01

    Damage to metallic bearing surfaces typically involves scratches, scrapes, metal transfer, and organic deposits. This damage can cause accelerated wear of the opposing surface and subsequent implant failure. Photography and viewing of metallic bearing surfaces, for documenting this damage, are hindered by optical reflectivity. This note demonstrates a simple, practical technique for metallic bearing surface photography and viewing that minimizes this reflectivity problem, that does not involve any modification of the bearing surface, and that allows for improved observation and documentation of overall damage. When the metallic bearing surface is placed within a tube of translucent material, the appearance of damage on that bearing surface is dramatically enhanced, showing up against a smooth, even background with excellent contrast and with fine detail achievable.

  16. Binding in pair potentials of liquid simple metals from nonlocality in electronic kinetic energy

    NASA Technical Reports Server (NTRS)

    Perrot, F.; March, N. H.

    1990-01-01

    The paper presents an explicit expression for the pair potential in liquid simple metals from low-order density-gradient theory when the superposition of single-center displaced charges is employed. Numerical results are presented for the gradient expansion pair interaction in liquid Na and Be. The low-order density-gradient equation for the pair potential is presented.

  17. Hollow nanocrystals and method of making

    DOEpatents

    Alivisatos, A. Paul; Yin, Yadong; Erdonmez, Can Kerem

    2011-07-05

    Described herein are hollow nanocrystals having various shapes that can be produced by a simple chemical process. The hollow nanocrystals described herein may have a shell as thin as 0.5 nm and outside diameters that can be controlled by the process of making.

  18. Structure Map for Embedded Binary Alloy Nanocrystals

    SciTech Connect

    Yuan, C.W.; Shin, S.J.; Liao, C.Y.; Guzman, J.; Stone, P.R.; Watanabe, M.; Ager III, J.W.; Haller, E.E.; Chrzan, D.C.

    2008-09-20

    The equilibrium structure of embedded nanocrystals formed from strongly segregating binary-alloys is considered within a simple thermodynamic model. The model identifies two dimensionlessinterface energies that dictate the structure, and allows prediction of the stable structure for anychoice of these parameters. The resulting structure map includes three distinct nanocrystal mor-phologies: core/shell, lobe/lobe, and completely separated spheres.

  19. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun

    2013-06-01

    Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.

  20. Seedless Growth of Palladium Nanocrystals with Tunable Structures: From Tetrahedra to Nanosheets.

    PubMed

    Zhang, Ying; Wang, Mingsong; Zhu, Enbo; Zheng, Yuebing; Huang, Yu; Huang, Xiaoqing

    2015-11-11

    Despite the great success that has been accomplished on the controlled synthesis of Pd nanocrystals with various sizes and morphologies, an efficient approach to systematic production of well-defined Pd nanocrystals without seed-mediated approaches remains a significant challenge. In this work, we have developed an efficient synthetic method to directly produce Pd nanocrystals with a highly controllable feature. Three distinct Pd nanocrystals, namely, Pd nanosheets, Pd concave tetrahedra, and Pd tetrahedra, have been selectively prepared by simply introducing a small amount of ascorbic acid (AA) and/or water without the other synthesis conditions changed. We found that the combined use of AA and water is of importance for the successful production of the unique Pd nanosheets. Detailed catalytic investigations showed that all the obtained Pd nanocrystals exhibit higher activity in the formic acid electrooxidation and styrene hydrogenation with respect to the Pd black, and their activities are highly shape-dependent with Pd nanosheets demonstrating a higher activity than both the Pd concave tetrahedra and Pd tetrahedra, which is likely due to the simple yet important feature of ultrathin thickness of Pd nanosheets. The present work highlights the importance of structures in tuning the related properties of metallic nanocrystals. PMID:26488237

  1. Formamide: an efficient solvent to synthesize water-soluble and sub-ten-nanometer nanocrystals

    NASA Astrophysics Data System (ADS)

    Xu, Biao; Zhang, Zhicheng; Wang, Xun

    2013-05-01

    Nanocrystals have drawn lots of attention in many fields. The main-stream synthetic routes usually produced hydrophobic nanocrystals (NCs). Organometallic precursors and long-alkyl-chain ligands are adopted and for further use surface modification to render them water-soluble is needed. A direct protocol to synthesize water-soluble NCs in an environmental-friendly and convenient way is still quite deficient, especially for sub-10 nm NCs. We report here a formamide solvent-system to prepare high-quality metal, metal alloy, metal sulfide, metal selenide and ternary sulfide NCs in the sub-10 nm region, with simple inorganic metal salts as precursors. The as-obtained NCs exhibit monodisperse size and can be dispersed in aqueous solution for further applications.Nanocrystals have drawn lots of attention in many fields. The main-stream synthetic routes usually produced hydrophobic nanocrystals (NCs). Organometallic precursors and long-alkyl-chain ligands are adopted and for further use surface modification to render them water-soluble is needed. A direct protocol to synthesize water-soluble NCs in an environmental-friendly and convenient way is still quite deficient, especially for sub-10 nm NCs. We report here a formamide solvent-system to prepare high-quality metal, metal alloy, metal sulfide, metal selenide and ternary sulfide NCs in the sub-10 nm region, with simple inorganic metal salts as precursors. The as-obtained NCs exhibit monodisperse size and can be dispersed in aqueous solution for further applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00643c

  2. "Nanocrystal bilayer for tandem catalysis"

    SciTech Connect

    Yamada, Yusuke; Tsung, Chia Kuang; Huang, Wenyu; Huo, Ziyang; E.Habas, Susan E; Soejima, Tetsuro; Aliaga, Cesar E; Samorjai, Gabor A; Yang, Peidong

    2011-01-24

    Supported catalysts are widely used in industry and can be optimized by tuning the composition and interface of the metal nanoparticles and oxide supports. Rational design of metal-metal oxide interfaces in nanostructured catalysts is critical to achieve better reaction activities and selectivities. We introduce here a new class of nanocrystal tandem catalysts that have multiple metal-metal oxide interfaces for the catalysis of sequential reactions. We utilized a nanocrystal bilayer structure formed by assembling platinum and cerium oxide nanocube monolayers of less than 10 nm on a silica substrate. The two distinct metal-metal oxide interfaces, CeO2-Pt and Pt-SiO2, can be used to catalyse two distinct sequential reactions. The CeO2-Pt interface catalysed methanol decomposition to produce CO and H2, which were subsequently used for ethylene hydroformylation catalysed by the nearby Pt-SiO2 interface. Consequently, propanal was produced selectively from methanol and ethylene on the nanocrystal bilayer tandem catalyst. This new concept of nanocrystal tandem catalysis represents a powerful approach towards designing high-performance, multifunctional nanostructured catalysts

  3. Iodide-mediated control of rhodium epitaxial growth on well-defined noble metal nanocrystals: synthesis, characterization, and structure-dependent catalytic properties.

    PubMed

    Sneed, Brian T; Kuo, Chun-Hong; Brodsky, Casey N; Tsung, Chia-Kuang

    2012-11-01

    Metal nanocrystals (NCs) comprising rhodium are heterogeneous catalysts for CO oxidation, NO reduction, hydrogenations, electro-oxidations, and hydroformylation reactions. It has been demonstrated that control of structure at the nanoscale can enhance the performance of a heterogeneous metal catalyst, such as Rh, but molecular-level control of NCs comprising this metal is less studied compared to gold, silver, platinum, and palladium. We report an iodide-mediated epitaxial overgrowth of Rh by using the surfaces of well-defined foreign metal crystals as substrates to direct the Rh surface structures. The epigrowth can be accomplished on different sizes, morphologies, and identities of metal substrates. The surface structures of the resulting bimetallic NCs were studied using electron microscopy, and their distinct catalytic behaviors were examined in CO stripping and the electro-oxidation of formic acid. Iodide was found to play a crucial role in the overgrowth mechanism. With the addition of iodide, the Rh epigrowth can even be achieved on gold substrates despite the rather large lattice mismatch of ~7%. Hollow Rh nanostructures have also been generated by selective etching of the core substrates. The new role of iodide in the overgrowth and the high level of control for Rh could hold the key to future nanoscale control of this important metal's architecture for use in heterogeneous catalysis.

  4. Optoperforation of Intact Plant Cells, Spectral Characterization of Alloy Disorder in InAsP Alloys, and Bimetallic Concentric Surfaces for Metal-Enhanced Fluorescence in Upconverting Nanocrystals

    NASA Astrophysics Data System (ADS)

    Merritt, Travis R.

    The techniques of optoperforation, spectral characterization of alloy disorder, and metal-enhanced uorescence were applied to previously unconsidered or disregarded systems in order to demonstrate that such applications are both feasible and consequential. These applications were the subject of three disparate works and, as such, are independently discussed. Despite being ostensibly restricted to mammalian cells, optoperforation was demonstrated in intact plant cells by means of successful femtosecond-laser-mediated infiltration of a membrane impermeable dextran-conjugated dye into cells of vital Arabidopsis seedling stems. By monitoring the rate of dye uptake, and the reaction of both CFP-expressing vacuoles and nanocellulose substrates, the intensity and exposure time of the perforating laser were adjusted to values that both preserved cell vitality and permitted the laser-assisted uptake of the uorophore. By using these calibrated laser parameters, dye was injected and later observed in targeted cells after 72 hours, all without deleteriously affecting the vital functions of those cells. In the context of alloy disorder, photoluminescence of excitonic transitions in two InAsxP1--x alloys were studied through temperature and magnetic field strength dependencies, as well as compositionally-dependent time-resolved behavior. The spectral shape, behavior of the linewidths at high magnetic fields, and the divergence of the peak positions from band gap behavior at low temperatures indicated that alloy disorder exists in the x=0.40 composition while showing no considerable presence in the x=0.13 composition. The time-resolved photoluminescence spectrum for both compositions feature a fast and slow decay, with the slow decay lifetime in x=0.40 being longer than that of x=0.13, which may be due to carrier migration between localized exciton states in x=0.40. In order to achieve broadband metal-enhanced uorescence in upconverting NaYF4:Yb,Er nanocrystals, two nanocomposite

  5. Thermophysical properties of simple liquid metals: A brief review of theory

    NASA Technical Reports Server (NTRS)

    Stroud, David

    1993-01-01

    In this paper, we review the current theory of the thermophysical properties of simple liquid metals. The emphasis is on thermodynamic properties, but we also briefly discuss the nonequilibrium properties of liquid metals. We begin by defining a 'simple liquid metal' as one in which the valence electrons interact only weakly with the ionic cores, so that the interaction can be treated by perturbation theory. We then write down the equilibrium Hamiltonian of a liquid metal as a sum of five terms: the bare ion-ion interaction, the electron-electron interaction, the bare electron-ion interaction, and the kinetic energies of electrons and ions. Since the electron-ion interaction can be treated by perturbation, the electronic part contributes in two ways to the Helmholtz free energy: it gives a density-dependent term which is independent of the arrangement of ions, and it acts to screen the ion-ion interaction, giving rise to effective ion-ion pair potentials which are density-dependent, in general. After sketching the form of a typical pair potential, we briefly enumerate some methods for calculating the ionic distribution function and hence the Helmholtz free energy of the liquid: monte Carlo simulations, molecular dynamics simulations, and thermodynamic perturbation theory. The final result is a general expression for the Helmholtz free energy of the liquid metal. It can be used to calculate a wide range of thermodynamic properties of simple metal liquids, which we enumerate. They include not only a range of thermodynamic coefficients of both metals and alloys, but also many aspects of the phase diagram, including freezing curves of pure elements and phase diagrams of liquid alloys (including liquidus and solidus curves). We briefly mention some key discoveries resulting from previous applications of this method, and point out that the same methods work for other materials not normally considered to be liquid metals (such as colloidal suspensions, in which the

  6. A Simple, Accurate Model for Alkyl Adsorption on Late Transition Metals

    SciTech Connect

    Montemore, Matthew M.; Medlin, James W.

    2013-01-18

    A simple model that predicts the adsorption energy of an arbitrary alkyl in the high-symmetry sites of late transition metal fcc(111) and related surfaces is presented. The model makes predictions based on a few simple attributes of the adsorbate and surface, including the d-shell filling and the matrix coupling element, as well as the adsorption energy of methyl in the top sites. We use the model to screen surfaces for alkyl chain-growth properties and to explain trends in alkyl adsorption strength, site preference, and vibrational softening.

  7. A simple urea-based route to ternary metal oxynitride nanoparticles

    SciTech Connect

    Gomathi, A.; Reshma, S.; Rao, C.N.R.

    2009-01-15

    Ternary metal oxynitrides are generally prepared by heating the corresponding metal oxides with ammonia for long durations at high temperatures. In order to find a simple route that avoids use of gaseous ammonia, we have employed urea as the nitriding agent. In this method, ternary metal oxynitrides are obtained by heating the corresponding metal carbonates and transition metal oxides with excess urea. By this route, ternary metal oxynitrides of the formulae MTaO{sub 2}N (M=Ca, Sr or Ba), MNbO{sub 2}N (M=Sr or Ba), LaTiO{sub 2}N and SrMoO{sub 3-x}N{sub x} have been prepared successfully. The oxynitrides so obtained were generally in the form of nanoparticles, and were characterized by various physical techniques. - Graphical abstract: Nanoparticles of ternary metal oxynitrides can be synthesized by means of urea route. Given is the TEM image of the nanoparticles of CaTaO{sub 2}N so obtained and the insets show the SAED pattern and HREM image of the nanoparticles.

  8. A simple metal-insulator criterion for the doped Mott-Hubbard materials

    NASA Astrophysics Data System (ADS)

    Gavrichkov, Vladimir A.

    2015-04-01

    A simple metal-insulator criterion for doped Mott-Hubbard materials has been derived. Its readings are closely related to the orbital and spin nature of the ground states of the unit cell. The available criterion readings (metal or insulator) in the paramagnetic phase reveal the possibility of the insulator state of doped materials with the forbidden first removal electron states. According to its physical meaning, the result is similar to the Wilson's criterion in itinerant electron systems. The application of the criterion to high-Tc cuprates is discussed.

  9. A simple evolutional model of Habitable Zone around host stars with various mass and low metallicity

    NASA Astrophysics Data System (ADS)

    Oishi, Midori; Kamaya, Hideyuki

    2016-02-01

    Habitable Zone (HZ) is defined as a life existence area, where water at the surface of the terrestrial planet is in liquid phase. This is caused by the balance of flux from the host star and effective radiative cooling with greenhouse effect of the planet. However, the flux varies according to evolutional phase of the host star. So, a simple but newest HZ model considering stellar mass range from 0.08 to 4.00 M⊙ has been proposed. It studies both at zero-age main sequence (ZAMS) and terminal-age main sequence (TMS) phases to examine persistence of HZ. By the way, it discusses the case of the metallicity like the Sun. Actually, it is interesting to study a HZ model considering host stars with low metallicity. So, we examine the effect of metallicity, following the precedent simple model. In our analysis, metallicity affects little for HZ orbital range at ZAMS, while it affects clearly in case of TMS. Since the inner and outer HZ boundaries at TMS are shifted outward especially in the mass range from 1.5 to 2.0 M⊙, we find persistent HZ is allowed above about 1.8 M⊙. The age of the universe is 13.8 Gyr, which is comparable to main sequence life time of about 0.8 M⊙ for the low metallicity case. Then, the effect of metallicity to estimate HZ of low metallicity host stars is important for the mass range from 0.8 to 1.8 M⊙.

  10. Oxide Nanocrystal Model Catalysts.

    PubMed

    Huang, Weixin

    2016-03-15

    as the active sites, respectively, to produce acrolein, propylene oxide, and CO2. Ceria rods enclosed with the {110} and {100} crystal planes, ceria cubes enclosed with the {100} crystal planes, and ceria octahedra enclosed with the {111} crystal planes exhibit distinct morphology-dependent oxygen vacancy concentrations and structures that can be well correlated with the surface compositions and structures of exposed crystal planes. Consequently, the metal-ceria interactions, structures, and catalytic performances of ceria-supported catalysts depend on the CeO2 morphology. Our results comprehensively reveal the morphology-dependent surface chemistry and catalysis of oxide nanocrystals that not only greatly deepen the fundamental understanding of oxide catalysis but also demonstrate a morphology-engineering strategy to optimize the catalytic performance of oxide catalysts. These results adequately exemplify the concept of oxide nanocrystal model catalysts for the fundamental investigations of oxide catalysis without the "materials gap" and "pressure gap". With the structure-catalytic property relationships learned from oxide nanocrystal model catalyst studies and the advancement of controlled-synthesis methods, it is promising to realize the structural design and controlled synthesis of novel efficient oxide catalysts in the future.

  11. A simple model for radial expansion reactivity in LMRs (liquid metal reactors)

    SciTech Connect

    Cheng, H.S.; Van Tuyle, G.J.

    1988-01-01

    Presented in this report is a simple analytical model developed for evaluating the radial expansion reactivity in small modular liquid metal reactors (LMRs). The present model is based on a non-leakage representation of the effective neutron multiplication factor. The resultant analytical expression for the radial expansion reactivity is simple and can be used directly in a system code for safety analyses. Applications of the present model to PRISM and SAFR resulted in a good agreement with the values reported by vendors. This agreement establishes that the large negative reactivity insertion resulting from LMR core radial expansion can be confirmed using a simple analytical approach, and thus is important in the current effort to evaluate the reactor inherent feedbacks for the PRISM and SAFR designs.

  12. Calculated distortions induced by metal-ion binding to simple oligonucleotide systems: Implications for toxicity

    SciTech Connect

    Turner, J.E.; Hingerty, B.E.; England, M.W.; Jacobson, K.B.

    1990-01-01

    We have previously published detailed results of calculations of the binding of the metal ions, Cd{sup 2+} and Ca{sup 2+}, to the dinucleoside monophosphate GpC in water. These ions, which have the same charge and radius, differ enormously in their toxicity to man and other biological systems. Our calculations showed contrasting behavior in the binding of these two metal ions to GpC. We suggest the hypothesis that structural distortions calculated for metal ions binding to simple nucleic-acid systems might serve as a indicator of an ion's potential ability to alter molecular activity and hence to be toxic to an organism. Furthermore, the degree of distortion might be correlated with the degree of toxicity as measured by some suitable criteria. The present paper reports the results of binding calculations for a number of other metal ions, of different valence states, with several dinucleoside monophosphates in water. A general trend of distortion with the type of binding of the metal ions is found. We are seeking quantitative measures of distortion to correlate with indicators of acute toxicity that we have measured for 24 metal ions using mice, Drosophila, and CHO cells. 3 refs., 3 figs.

  13. Synthesis and Doping of Silicon Nanocrystals for Versatile Nanocrystal Inks

    NASA Astrophysics Data System (ADS)

    Kramer, Nicolaas Johannes

    The impact of nanotechnology on our society is getting larger every year. Electronics are becoming smaller and more powerful, the "Internet of Things" is all around us, and data generation is increasing exponentially. None of this would have been possible without the developments in nanotechnology. Crystalline semiconductor nanoparticles (nanocrystals) are one of the latest developments in the field of nanotechnology. This thesis addresses three important challenges for the transition of silicon nanocrystals from the lab bench to the marketplace: A better understanding of the nanocrystal synthesis was obtained, the electronic properties of the nanocrystals were characterized and tuned, and novel silicon nanocrystal inks were formed and applied using simple coating technologies. Plasma synthesis of nanocrystals has numerous advantages over traditional solution-based synthesis methods. While the formation of nanoparticles in low pressure nonthermal plasmas is well known, the heating mechanism leading to their crystallization is poorly understood. A combination of comprehensive plasma characterization with a nanoparticle heating model presented here reveals the underlying plasma physics leading to crystallization. The model predicts that the nanoparticles reach temperatures as high as 900 K in the plasma as a result of heating reactions on the nanoparticle surface. These temperatures are well above the gas temperature and sufficient for complete nanoparticle crystallization. Moving the field of plasma nanoparticle synthesis to atmospheric pressures is important for lowering its cost and making the process attractive for industrial applications. The heating and charging model for silicon nanoparticles was adapted in Chapter 3 to study plasmas maintained over a wide range of pressures (10 -- 105 Pa). The model considers three collisionality regimes and determines the dominant contribution of each regime under various plasma conditions. Strong nanoparticle cooling at

  14. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction

    PubMed Central

    Cummins, Dustin R.; Martinez, Ulises; Sherehiy, Andriy; Kappera, Rajesh; Martinez-Garcia, Alejandro; Schulze, Roland K.; Jasinski, Jacek; Zhang, Jing; Gupta, Ram K.; Lou, Jun; Chhowalla, Manish; Sumanasekera, Gamini; Mohite, Aditya D.; Sunkara, Mahendra K.; Gupta, Gautam

    2016-01-01

    Hydrogen evolution reaction is catalysed efficiently with precious metals, such as platinum; however, transition metal dichalcogenides have recently emerged as a promising class of materials for electrocatalysis, but these materials still have low activity and durability when compared with precious metals. Here we report a simple one-step scalable approach, where MoOx/MoS2 core-shell nanowires and molybdenum disulfide sheets are exposed to dilute aqueous hydrazine at room temperature, which results in marked improvement in electrocatalytic performance. The nanowires exhibit ∼100 mV improvement in overpotential following exposure to dilute hydrazine, while also showing a 10-fold increase in current density and a significant change in Tafel slope. In situ electrical, gate-dependent measurements and spectroscopic investigations reveal that hydrazine acts as an electron dopant in molybdenum disulfide, increasing its conductivity, while also reducing the MoOx core in the core-shell nanowires, which leads to improved electrocatalytic performance. PMID:27282871

  15. Hybrid solar cells of conjugated polymers metal-oxide nanocrystals blends; state of the art and future research challenges in Indonesia

    NASA Astrophysics Data System (ADS)

    Bahtiar, Ayi

    2013-09-01

    Ever-increasing world energy demand, depleting non-renewable energy resources and disruptive climate change due to greenhouse gases has aroused much interest in alternative renewable energy sources. Solar energy is one of the best available alternatives, for it is both abundant and clean. Solar cell is an effective device for converting solar energy into electricity. Indonesia is located on the equator where the sunlight is always available in abundance throughout the year; therefore solar cell would become the main source of electrical energy in Indonesia. However, the high cost of inorganic solar cells in spite of their high power conversion efficiency (PCE) has been a major constrain for their mass utilization in Indonesia. The only way to reduce the cost of production and installation is to find other materials which offer low-cost and easy processing into solar cells. Polymer solar cells have been intensively investigated for high performance and low-cost solar cells. Today, 9-11% power conversion efficiency (PCE) of small area polymer solar cells and 2-4% PCE of large area or module solar cells are already achieved. However, for practical application and mass production, 10% or higher PCE of module solar cells is highly required. The main strategic issue for improving the PCE is to use blend of conjugated polymer-metal oxide nanocrystals as active materials for hybrid solar cells, due to the good combination of the versatile solution processability of conjugated polymers and high charge carrier mobility of metal-oxide nanocrystals. In this paper, current development of hybrid solar cells worldwide and future research challenges in Indonesia will be discussed.

  16. New metal phthalocyanines/metal simple hydroxide multilayers: experimental evidence of dipolar field-driven magnetic behavior.

    PubMed

    Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume

    2014-01-21

    A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT).

  17. New metal phthalocyanines/metal simple hydroxide multilayers: experimental evidence of dipolar field-driven magnetic behavior.

    PubMed

    Bourzami, Riadh; Eyele-Mezui, Séraphin; Delahaye, Emilie; Drillon, Marc; Rabu, Pierre; Parizel, Nathalie; Choua, Sylvie; Turek, Philippe; Rogez, Guillaume

    2014-01-21

    A series of new hybrid multilayers has been synthesized by insertion-grafting of transition metal (Cu(II), Co(II), Ni(II), and Zn(II)) tetrasulfonato phthalocyanines between layers of Cu(II) and Co(II) simple hydroxides. The structural and spectroscopic investigations confirm the formation of new layered hybrid materials in which the phthalocyanines act as pillars between the inorganic layers. The magnetic investigations show that all copper hydroxide-based compounds behave similarly, presenting an overall antiferromagnetic behavior with no ordering down to 1.8 K. On the contrary, the cobalt hydroxide-based compounds present a ferrimagnetic ordering around 6 K, regardless of the nature of the metal phthalocyanine between the inorganic layers. The latter observation points to strictly dipolar interactions between the inorganic layers. The amplitude of the dipolar field has been evaluated from X-band and Q-band EPR spectroscopy investigation (Bdipolar ≈ 30 mT). PMID:24400974

  18. A simple formulation for magnetoresistance in metal-insulator granular films with increased current

    NASA Astrophysics Data System (ADS)

    Boff, M. A. S.; Canto, B.; Baibich, M. N.; Pereira, L. G.

    2013-02-01

    We studied the tunnel magnetoresistance in metal/insulator granular films when the applied current is varied. The tunnel magnetoresistance shows a strong modification related to a non-Ohmic behaviour of theses materials. It was verified that spin-dependent tunnelling is the main mechanism for magnetoresistance at low applied current. However, when the current is high, another mechanism gets to be important: it is independent of the magnetization and is associated to variable range hopping between metallic grains. In this work, we propose a simple modification of Inoue and Maekawa's model for tunnelling magnetoresistance in granulars, rewriting the expression for resistance as a function of magnetic field and temperature, also taking into account the two different contributions.

  19. Simple metal under tensile stress: layer-dependent herringbone reconstruction of thin potassium films on graphite

    NASA Astrophysics Data System (ADS)

    Yin, Feng; Kulju, Sampo; Koskinen, Pekka; Akola, Jaakko; Palmer, Richard E.

    2015-05-01

    While understanding the properties of materials under stress is fundamentally important, designing experiments to probe the effects of large tensile stress is difficult. Here tensile stress is created in thin films of potassium (up to 4 atomic layers) by epitaxial growth on a rigid support, graphite. We find that this “simple” metal shows a long-range, periodic “herringbone” reconstruction, observed in 2- and 3- (but not 1- and 4-) layer films by low-temperature scanning tunneling microscopy (STM). Such a pattern has never been observed in a simple metal. Density functional theory (DFT)simulations indicate that the reconstruction consists of self-aligned stripes of enhanced atom density formed to relieve the tensile strain. At the same time marked layer-dependent charging effects lead to substantial variation in the apparent STM layer heights.

  20. Simple metal under tensile stress: layer-dependent herringbone reconstruction of thin potassium films on graphite

    PubMed Central

    Yin, Feng; Kulju, Sampo; Koskinen, Pekka; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    While understanding the properties of materials under stress is fundamentally important, designing experiments to probe the effects of large tensile stress is difficult. Here tensile stress is created in thin films of potassium (up to 4 atomic layers) by epitaxial growth on a rigid support, graphite. We find that this “simple” metal shows a long-range, periodic “herringbone” reconstruction, observed in 2- and 3- (but not 1- and 4-) layer films by low-temperature scanning tunneling microscopy (STM). Such a pattern has never been observed in a simple metal. Density functional theory (DFT)simulations indicate that the reconstruction consists of self-aligned stripes of enhanced atom density formed to relieve the tensile strain. At the same time marked layer-dependent charging effects lead to substantial variation in the apparent STM layer heights. PMID:25959681

  1. Communication: New insight into electronic shells of metal clusters: Analogues of simple molecules

    NASA Astrophysics Data System (ADS)

    Cheng, Longjiu; Yang, Jinlong

    2013-04-01

    A new concept of super valence bond is proposed, of which superatoms can share both valence pairs and nuclei for shell closure thus forming delocalized super bonding. Using Li clusters as a test case, we theoretically find that metal clusters can mimic the behavior of simple molecules in electronic shells. It is found that Li14, Li10, and Li8 clusters are analogues of F2, N2, and CH4 molecules, respectively, in molecular orbital diagrams and bonding patterns. This new concept shows new insights in understanding the stability of clusters and designing the cluster-assembling materials.

  2. Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule

    SciTech Connect

    He Jun; Yang Chen; Xu Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin Jianhua

    2009-07-15

    The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H{sub 4}DMBD) interacts with the increasingly harder metal ions of Cu{sup +}, Pb{sup 2+} and Eu{sup 3+} to form the coordination networks of Cu{sub 6}(DMBD){sub 3}(en){sub 4}(Hen){sub 6} (1), Pb{sub 2}(DMBD)(en){sub 2} (2) and Eu{sub 2}(H{sub 2}DMBD){sub 3}(DEF){sub 4} (3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu{sub 3} cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb{sup 2+} ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination. - Graphical Abstract: Molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid was reacted with Cu{sup +}, Pb{sup 2+} and Eu{sup 3+} ions to explore solid state networks with the rich structural features arising from the carboxyl-thiol combination.

  3. Building thiol and metal-thiolate functions into coordination nets: Clues from a simple molecule

    NASA Astrophysics Data System (ADS)

    He, Jun; Yang, Chen; Xu, Zhengtao; Zeller, Matthias; Hunter, Allen D.; Lin, Jianhua

    2009-07-01

    The simple and easy-to-prepare bifunctional molecule 2,5-dimercapto-1,4-benzenedicarboxylic acid (H 4DMBD) interacts with the increasingly harder metal ions of Cu +, Pb 2+ and Eu 3+ to form the coordination networks of Cu 6(DMBD) 3(en) 4(Hen) 6 ( 1), Pb 2(DMBD)(en) 2 ( 2) and Eu 2(H 2DMBD) 3(DEF) 4 ( 3), where the carboxyl and thiol groups bind with distinct preference to the hard and soft metal ions, respectively. Notably, 1 features uncoordinated carboxylate groups and Cu 3 cluster units integrated via the thiolate groups into an extended network with significant interaction between the metal centers and the organic molecules; 2 features a 2D coordination net based on the mercapto and carboxylic groups all bonded to the Pb 2+ ions; 3 features free-standing thiol groups inside the channels of a metal-carboxylate-based network. This study illustrates the rich solid state structural features and potential functions offered by the carboxyl-thiol combination.

  4. Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling

    NASA Astrophysics Data System (ADS)

    Dai, Dejian; Dong, Zhenggao; Fan, Jiyang

    2013-01-01

    We report giant fluorescence enhancement in SiC nanocrystals (NCs) embedded in a sodium dodecyl sulfonate dielectric medium by proximately contacted Ag nanoparticles. The enhancement in integrated fluorescence intensity reaches an astonishing 176-fold under 360 nm excitation (53.3-fold enhancement in emission maximum intensity). Finite-element simulation indicates that the strong resonant coupling between the excited SiC NCs and localized surface plasmons of the Ag nanoparticles plays a dominant role in determining fluorescence enhancement. In contrast, the absorption enhancement caused by light concentration around the Ag nanoparticles makes only a slight contribution to the overall enhancement. Our result opens the possibility of applications of these highly enhanced fluorescent SiC NCs in diverse areas such as sensing, optoelectronics and life sciences.

  5. Giant photoluminescence enhancement in SiC nanocrystals by resonant semiconductor exciton-metal surface plasmon coupling.

    PubMed

    Dai, Dejian; Dong, Zhenggao; Fan, Jiyang

    2013-01-18

    We report giant fluorescence enhancement in SiC nanocrystals (NCs) embedded in a sodium dodecyl sulfonate dielectric medium by proximately contacted Ag nanoparticles. The enhancement in integrated fluorescence intensity reaches an astonishing 176-fold under 360 nm excitation (53.3-fold enhancement in emission maximum intensity). Finite-element simulation indicates that the strong resonant coupling between the excited SiC NCs and localized surface plasmons of the Ag nanoparticles plays a dominant role in determining fluorescence enhancement. In contrast, the absorption enhancement caused by light concentration around the Ag nanoparticles makes only a slight contribution to the overall enhancement. Our result opens the possibility of applications of these highly enhanced fluorescent SiC NCs in diverse areas such as sensing, optoelectronics and life sciences. PMID:23238520

  6. Quantum theory of electroabsorption in semiconductor nanocrystals.

    PubMed

    Tepliakov, Nikita V; Leonov, Mikhail Yu; Baranov, Alexander V; Fedorov, Anatoly V; Rukhlenko, Ivan D

    2016-01-25

    We develop a simple quantum-mechanical theory of interband absorption by semiconductor nanocrystals exposed to a dc electric field. The theory is based on the model of noninteracting electrons and holes in an infinitely deep quantum well and describes all the major features of electroabsorption, including the Stark effect, the Franz-Keldysh effect, and the field-induced spectral broadening. It is applicable to nanocrystals of different shapes and dimensions (quantum dots, nanorods, and nanoplatelets), and will prove useful in modeling and design of electrooptical devices based on ensembles of semiconductor nanocrystals.

  7. Patterning nanocrystals using DNA

    SciTech Connect

    Williams, Shara Carol

    2003-09-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices to a length greater than

  8. Enhanced photophysical properties of plasmonic magnetic metal-alloyed semiconductor heterostructure nanocrystals: a case study for the Ag@Ni/Zn1-xMgxO system.

    PubMed

    Paul, Sumana; Ghosh, Sirshendu; Saha, Manas; De, S K

    2016-05-14

    Understanding the effect of homovalent cation alloying in wide band gap ZnO and the formation of metal-semiconductor heterostructures is very important for maximisation of the photophysical properties of ZnO. Nearly monodisperse ZnO nanopyramid and Mg alloyed ZnO nanostructures have been successfully synthesized by one pot decomposition of metal stearate by using oleylamine both as activating and capping agent. The solid solubility of Mg(ii) ions in ZnO is limited to ∼30% without phase segregation. An interesting morphology change is found on increasing Mg alloying: from nanopyramids to self-assembled nanoflowers. The morphology change is explained by the oriented attachment process. The introduction of Mg into the ZnO matrix increases the band gap of the materials and also generates new zinc interstitial (Zni) and oxygen vacancy related defects. Plasmonic magnetic Ag@Ni core-shell (Ag as core and Ni as shell) nanocrystals are used as a seed material to synthesize Ag@Ni/Zn1-xMgxO complex heterostructures. Epitaxial growth is established between Ag(111) and ZnO(110) planes in the heterostructure. An epitaxial metal-semiconductor interface is very crucial for complete electron-hole (e-h) separation and enhancement of the exciton lifetime. The alloyed semiconductor-metal heterostructure is observed to be highly photocatalytically active for dye degradation as well as photodetection. Incorporation of magnetic Ni(0) makes the photocatalyst superparamagnetic at room temperature which is found to be helpful for catalyst regeneration. PMID:27113320

  9. How simple is too simple? Computational perspective on importance of second-shell environment for metal-ion selectivity.

    PubMed

    Gutten, Ondrej; Rulíšek, Lubomír

    2015-06-14

    The metal-ion selectivity in biomolecules represents one of the most important phenomena in bioinorganic chemistry. The open question to what extent is the selectivity in the complex bioinorganic structures such as metallopeptides determined by the first-shell ligands of the metal ion is answered herein using six model peptides complexed with the set of divalent metal ions (Mn(2+), Fe(2+), Co(2+), Ni(2+), Cu(2+), Zn(2+), Cd(2+), and Hg(2+)) and their various first-shell representations. By calculating the differences among the free energies of complexation of metal ions in these peptides and their model (truncated) systems it is quantitatively shown that the definition of the first shell is paramount to this discussion and revolves around the chemical nature of the binding site. Despite the vast conceivable diversity of peptidic structures, that suggest certain fluidity of this definition, major contributing factors are identified and assessed based on their importance for capturing metal-ion selectivity. These factors include soft/hard character of ligands and various non-covalent interactions in the vicinity of the binding site. The relative importance of these factors is considered and specific suggestions for effective construction of the models are made. The relationship of first-shell models and their corresponding parent peptides is discussed thoroughly, both with respect to their chemical similarity and potential disparity introduced by generally "non-alignable" conformational flexibility of the two systems. It is concluded that, in special cases, this disparity can be negligible and that heeding the chemical factors contributing to selectivity during construction of the model can successfully result in models that retain the affinity profile for various metal ions with high fidelity. PMID:25785686

  10. Silver(I)-directed growth of metal-organic complex nanocrystals with bidentate ligands of hydroquinine anthraquinone-1,4-diyl diethers as linkers at the water-chloroform interface

    PubMed Central

    2014-01-01

    Immiscible liquid-liquid interfaces provide unique double phase regions for the design and construction of nanoscale materials. Here, we reported Ag(I)-directed growth of metal-organic complex nanocrystals by using AgNO3 as a connector in the aqueous solution and bidentate ligand of 1,4-bis(9-O-dihydroquininyl)anthraquinone [(DHQ)2AQN] and its enantiomer of (DHQD)2AQN in the chloroform solutions as linkers. The Ag-(DHQ)2AQN and Ag-(DHQD)2AQN complex nanocrystals were formed at the liquid-liquid interfaces and characterized by using UV-vis absorption and fluorescence spectroscopy and X-ray photoelectron spectroscopy, as well as by using scanning electron microscopy. Screw-like nanocrystals were formed at the initial 30 min after the interfacial coordination reaction started, then they grew into nanorods after several days, and finally became cubic microcrystals after 2 weeks. The pure ligand showed two emission bands centered at about 363 and 522 nm in the methanol solution, the second one of which was quenched and shifted to about 470 nm in the Ag-complex nanocrystals. Two couples of reversible redox waves were recorded for the Ag-complex nanocrystals; one centered at about -0.25 V (vs. Ag/AgCl) was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag - (DHQ)2AQN+, and the other one centered at about 0.2 V was designated to one electron transfer process of Ag - (DHQ)2AQN and Ag+ - (DHQ)2AQN. PMID:25246874

  11. Building robust architectures of carbon and metal oxide nanocrystals toward high-performance anodes for lithium-ion batteries.

    PubMed

    Jia, Xilai; Chen, Zheng; Cui, Xia; Peng, Yiting; Wang, Xiaolei; Wang, Ge; Wei, Fei; Lu, Yunfeng

    2012-11-27

    Design and fabrication of effective electrode structure is essential but is still a challenge for current lithium-ion battery technology. Herein we report the design and fabrication of a class of high-performance robust nanocomposites based on iron oxide spheres and carbon nanotubes (CNTs). An efficient aerosol spray process combined with vacuum filtration was used to synthesize such composite architecture, where oxide nanocrystals were assembled into a continuous carbon skeleton and entangled in porous CNT networks. This material architecture offers many critical features that are required for high-performance anodes, including efficient ion transport, high conductivity, and structure durability, therefore enabling an electrode with outstanding lithium storage performance. For example, such an electrode with a thickness of ∼35 μm could deliver a specific capacity of 994 mA h g(-1) (based on total electrode weight) and high recharging rates. This effective strategy can be extended to construct many other composite electrodes for high-performance lithium-ion batteries.

  12. Simple accurate approximations for the optical properties of metallic nanospheres and nanoshells.

    PubMed

    Schebarchov, Dmitri; Auguié, Baptiste; Le Ru, Eric C

    2013-03-28

    This work aims to provide simple and accurate closed-form approximations to predict the scattering and absorption spectra of metallic nanospheres and nanoshells supporting localised surface plasmon resonances. Particular attention is given to the validity and accuracy of these expressions in the range of nanoparticle sizes relevant to plasmonics, typically limited to around 100 nm in diameter. Using recent results on the rigorous radiative correction of electrostatic solutions, we propose a new set of long-wavelength polarizability approximations for both nanospheres and nanoshells. The improvement offered by these expressions is demonstrated with direct comparisons to other approximations previously obtained in the literature, and their absolute accuracy is tested against the exact Mie theory. PMID:23358525

  13. Cu nanocrystal growth on peptide nanotubes by biomineralization: Size control of Cu nanocrystals by tuning peptide conformation

    NASA Astrophysics Data System (ADS)

    Banerjee, Ipsita A.; Yu, Lingtao; Matsui, Hiroshi

    2003-12-01

    With recent interest in seeking new biologically inspired device-fabrication methods in nanotechnology, a new biological approach was examined to fabricate Cu nanotubes by using sequenced histidine-rich peptide nanotubes as templates. The sequenced histidine-rich peptide molecules were assembled as nanotubes, and the biological recognition of the specific sequence toward Cu lead to efficient Cu coating on the nanotubes. Cu nanocrystals were uniformly coated on the histidine-incorporated nanotubes with high packing density. In addition, the diameter of Cu nanocrystal was controlled between 10 and 30 nm on the nanotube by controlling the conformation of histidine-rich peptide by means of pH changes. Those nanotubes showed significant change in electronic structure by varying the nanocrystal diameter; therefore, this system may be developed to a conductivity-tunable building block for microelectronics and biological sensors. This simple biomineralization method can be applied to fabricate various metallic and semiconductor nanotubes with peptides whose sequences are known to mineralize specific ions.

  14. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO2 by capacitance voltage measurement on inverted metal oxide semiconductor structure

    NASA Astrophysics Data System (ADS)

    Zhang, Tian; Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-01

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO2. The ncSi thin films with high resistivity (200-400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO2/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 1018-1019 cm-3 despite their high resistivity. The saturation of doping at about 1.4 × 1019 cm-3 and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10-3 cm2/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  15. Growth and characterization of well-aligned densely-packed rutile TiO(2) nanocrystals on sapphire substrates via metal-organic chemical vapor deposition.

    PubMed

    Chen, C A; Chen, Y M; Korotcov, A; Huang, Y S; Tsai, D S; Tiong, K K

    2008-02-20

    Well-aligned densely-packed rutile TiO(2) nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC(3)H(7))(4)) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ∼33° from the normal to substrates. TEM and SAED measurements showed that the TiO(2) NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO(2) NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO(2) NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed. PMID:21817648

  16. Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrates via metal organic chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, C. A.; Chen, Y. M.; Korotcov, A.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.

    2008-02-01

    Well-aligned densely-packed rutile TiO2 nanocrystals (NCs) have been grown on sapphire (SA) (100) and (012) substrates via metal-organic chemical vapor deposition (MOCVD), using titanium-tetraisopropoxide (TTIP, Ti(OC3H7)4) as a source reagent. The surface morphology as well as structural and spectroscopic properties of the as-deposited NCs were characterized using field-emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected-area electron diffractometry (SAED), x-ray diffraction (XRD) and micro-Raman spectroscopy. FESEM micrographs reveal that vertically aligned NCs were grown on SA(100), whereas the NCs on the SA(012) were grown with a tilt angle of ~33° from the normal to substrates. TEM and SAED measurements showed that the TiO2 NCs on SA(100) with square cross section have their long axis directed along the [001] direction. The XRD results reveal TiO2 NCs with either (002) orientation on SA(100) substrate or (101) orientation on SA(012) substrate. A strong substrate effect on the alignment of the growth of TiO2 NCs has been demonstrated and the probable mechanism for the formation of these NCs has been discussed.

  17. One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution.

    PubMed

    Chen, Junze; Wu, Xue-Jun; Yin, Lisha; Li, Bing; Hong, Xun; Fan, Zhanxi; Chen, Bo; Xue, Can; Zhang, Hua

    2015-01-19

    Exploration of low-cost and earth-abundant photocatalysts for highly efficient solar photocatalytic water splitting is of great importance. Although transition-metal dichalcogenides (TMDs) showed outstanding performance as co-catalysts for the hydrogen evolution reaction (HER), designing TMD-hybridized photocatalysts with abundant active sites for the HER still remains challenge. Here, a facile one-pot wet-chemical method is developed to prepare MS2-CdS (M=W or Mo) nanohybrids. Surprisedly, in the obtained nanohybrids, single-layer MS2 nanosheets with lateral size of 4-10 nm selectively grow on the Cd-rich (0001) surface of wurtzite CdS nanocrystals. These MS2-CdS nanohybrids possess a large number of edge sites in the MS2 layers, which are active sites for the HER. The photocatalytic performances of WS2-CdS and MoS2-CdS nanohybrids towards the HER under visible light irradiation (>420 nm) are about 16 and 12 times that of pure CdS, respectively. Importantly, the MS2-CdS nanohybrids showed enhanced stability after a long-time test (16 h), and 70% of catalytic activity still remained.

  18. Determination of active doping in highly resistive boron doped silicon nanocrystals embedded in SiO{sub 2} by capacitance voltage measurement on inverted metal oxide semiconductor structure

    SciTech Connect

    Zhang, Tian Puthen-Veettil, Binesh; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Yang, Terry Chien-Jen; Conibeer, Gavin; Perez-Wurfl, Ivan

    2015-10-21

    We investigate the Capacitance-Voltage (CV) measurement to study the electrically active boron doping in Si nanocrystals (ncSi) embedded in SiO{sub 2}. The ncSi thin films with high resistivity (200–400 Ω cm) can be measured by using an inverted metal oxide semiconductor (MOS) structure (Al/ncSi (B)/SiO{sub 2}/Si). This device structure eliminates the complications from the effects of lateral current flow and the high sheet resistance in standard lateral MOS structures. The characteristic MOS CV curves observed are consistent with the effective p-type doping. The CV modeling method is presented and used to evaluate the electrically active doping concentration. We find that the highly boron doped ncSi films have electrically active doping of 10{sup 18}–10{sup 19 }cm{sup −3} despite their high resistivity. The saturation of doping at about 1.4 × 10{sup 19 }cm{sup −3} and the low doping efficiency less than 5% are observed and discussed. The calculated effective mobility is in the order of 10{sup −3} cm{sup 2}/V s, indicating strong impurity/defect scattering effect that hinders carriers transport.

  19. A simple scheme to determine potential aquatic metal toxicity from mining wastes

    USGS Publications Warehouse

    Wildeman, T.R.; Smith, K.S.; Ranville, J.F.

    2007-01-01

    A decision tree (mining waste decision tree) that uses simple physical and chemical tests has been developed to determine whether effluent from mine waste material poses a potential toxicity threat to the aquatic environment. For the chemical portion of the tree, leaching tests developed by the United States Geological Survey, the Colorado Division of Minerals and Geology (Denver, CO), and a modified 1311 toxicity characteristic leaching procedure (TCLP) test of the United States Environmental Protection Agency have been extensively used as a surrogate for readily available metals that can be released into the environment from mining wastes. To assist in the assessment, element concentration pattern graphs (ECPG) are produced that compare concentrations of selected groups of elements from the three leachates and any water associated with the mining waste. The MWDT makes a distinction between leachates or waters with pH less than or greater than 5. Generally, when the pH values are below 5, the ECPG of the solutions are quite similar, and potential aquatic toxicity from cationic metals, such as Pb, Cu, Zn, Cd, and Al, is assumed. Below pH 5, these metals are mostly dissolved, generally are not complexed with organic or inorganic ligands, and hence are more bioavailable. Furthermore, there is virtually no carbonate alkalinity at pH less than 5. All of these factors promote metal toxicity to aquatic organisms. On the other hand, when the pH value of the water or the leachates is above 5, the ECPG from the solutions are variable, and inferred aquatic toxicity depends on factors in addition to the metals released from the leaching tests. Hence, leachates and waters with pH above 5 warrant further examination of their chemical composition. Physical ranking criteria provide additional information, particularly in areas where waste piles exhibit similar chemical rankings. Rankings from physical and chemical criteria generally are not correlated. Examples of how this

  20. Simple preparation of aminothiourea-modified chitosan as corrosion inhibitor and heavy metal ion adsorbent.

    PubMed

    Li, Manlin; Xu, Juan; Li, Ronghua; Wang, Dongen; Li, Tianbao; Yuan, Maosen; Wang, Jinyi

    2014-03-01

    By a simple and convenient method of using formaldehyde as linkages, two new chitosan (CS) derivatives modified respectively with thiosemicarbazide (TSFCS) and thiocarbohydrazide (TCFCS) were synthesized. The new compounds were characterized and studied by Fourier transform infrared spectroscopy, elemental analysis, thermal gravity analysis and differential scanning calorimetry, and their surface morphologies were determined via scanning electron microscopy. These CS derivatives could form pH dependent gels. The behavior of 304 steel in 2% acetic acid containing different inhibitors or different concentrations of inhibitor had been studied by potentiodynamic polarization test. The preliminary results show that the new compound TCFCS can act as a mixed-type metal anticorrosion inhibitor in some extent; its inhibition efficiency is 92% when the concentration was 60 mg/L. The adsorption studies on a metal ion mixture aqueous solution show that two samples TSFCS and TCFCS can absorb As (V), Ni (II), Cu (II), Cd (II) and Pb (II) efficiently at pH 9 and 4.

  1. Bright White Light Emission from Ultrasmall Cadmium Selenide Nanocrystals

    SciTech Connect

    Rosson, Teresa; Claiborne, Sarah; McBride, James; Stratton, Benjamin S; Rosenthal, Sandra

    2012-01-01

    A simple treatment method using formic acid has been found to increase the fluorescence quantum yield of ultrasmall white light-emitting CdSe nanocrystals from 8% to 45%. Brighter white-light emission occurs with other carboxylic acids as well, and the magnitude of the quantum yield enhancement is shown to be dependent on the alkyl chain length. Additionally, the nanocrystal luminescence remains enhanced relative to the untreated nanocrystals over several days. This brightened emission opens the possibility for even further quantum yield improvement and potential for use of these white-light nanocrystals in solid-state lighting applications.

  2. Growth of platinum nanocrystals

    SciTech Connect

    2009-01-01

    Movie showing the growth of platinum nanocrystals in a liquid cell observed in situ using the JEOL 3010 TEM at the National Center for Electron Microscopy. This is the first ever-real time movie showing nucleation and growth by monomer attachment or by smaller nanocrystals coalescing to form larger nanocrystals. All the nanocrystals end up being roughly the same shape and size. http://newscenter.lbl.gov/feature-stories/2009/08/04/growth-spurts/

  3. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect

    Alvarado, Samuel R.; Guo, Yijun; Ruberu, T. Purnima A.; Tavasoli, Elham; Vela, Javier

    2014-03-15

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductor–metal and semiconductor–metal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  4. Tunable mid IR plasmon in GZO nanocrystals.

    PubMed

    Hamza, M K; Bluet, J-M; Masenelli-Varlot, K; Canut, B; Boisron, O; Melinon, P; Masenelli, B

    2015-07-28

    Degenerate metal oxide nanoparticles are promising systems to expand the significant achievements of plasmonics into the infrared (IR) range. Among the possible candidates, Ga-doped ZnO nanocrystals are particularly suited for mid IR, considering their wide range of possible doping levels and thus of plasmon tuning. In the present work, we report on the tunable mid IR plasmon induced in degenerate Ga-doped ZnO nanocrystals. The nanocrystals are produced by a plasma expansion and exhibit unprotected surfaces. Tuning the Ga concentration allows tuning the localized surface plasmon resonance. Moreover, the plasmon resonance is characterized by a large damping. By comparing the plasmon of nanocrystal assemblies to that of nanoparticles dispersed in an alumina matrix, we investigate the possible origins of such damping. We demonstrate that it partially results from the self-organization of the naked particles and also from intrinsic inhomogeneity of dopants.

  5. Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach

    NASA Astrophysics Data System (ADS)

    Jin, Yizheng; Yi, Qing; Ren, Yuping; Wang, Xin; Ye, Zhizhen

    2013-04-01

    Molecular mechanisms and precursor conversion pathways associated with the reactions that generate colloidal nanocrystals are crucial for the development of rational synthetic protocols. In this study, Fourier transform infrared spectroscopy technique was employed to explore the molecular mechanism associated with the formation of tin-doped indium oxide (ITO) nanocrystals. We found that the reaction pathways of the indium precursor were not consistent with simple ligand replacements proposed in the literature. The resulting understanding inspired us to design a hot-injection approach to separate the ligand replacements of indium acetate and the aminolysis processes, generating quality ITO nanocrystals with decent size distributions. The hot-injection approach was readily applied to the synthesis of ITO nanocrystals with a broad range of tin doping. Structural, chemical, and optical analyses revealed effective doping of Sn4+ ions into the host lattices, leading to characteristic and tunable near-infrared surface plasmon resonance peaks. The size control of ITO nanocrystals by multiple hot-injections of metal precursors was also demonstrated.

  6. Molecular mechanism of monodisperse colloidal tin-doped indium oxide nanocrystals by a hot-injection approach

    PubMed Central

    2013-01-01

    Molecular mechanisms and precursor conversion pathways associated with the reactions that generate colloidal nanocrystals are crucial for the development of rational synthetic protocols. In this study, Fourier transform infrared spectroscopy technique was employed to explore the molecular mechanism associated with the formation of tin-doped indium oxide (ITO) nanocrystals. We found that the reaction pathways of the indium precursor were not consistent with simple ligand replacements proposed in the literature. The resulting understanding inspired us to design a hot-injection approach to separate the ligand replacements of indium acetate and the aminolysis processes, generating quality ITO nanocrystals with decent size distributions. The hot-injection approach was readily applied to the synthesis of ITO nanocrystals with a broad range of tin doping. Structural, chemical, and optical analyses revealed effective doping of Sn4+ ions into the host lattices, leading to characteristic and tunable near-infrared surface plasmon resonance peaks. The size control of ITO nanocrystals by multiple hot-injections of metal precursors was also demonstrated. PMID:23547801

  7. All-Inorganic Germanium Nanocrystal Films by Cationic Ligand Exchange.

    PubMed

    Wheeler, Lance M; Nichols, Asa W; Chernomordik, Boris D; Anderson, Nicholas C; Beard, Matthew C; Neale, Nathan R

    2016-03-01

    We introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and (1)H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport in germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.

  8. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGESBeta

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; Anderson, Nicholas C.; Beard, Matthew C.; Neale, Nathan R.

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  9. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    NASA Astrophysics Data System (ADS)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

  10. General synthesis of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation.

    PubMed

    Yuwen, Lihui; Xu, Fei; Xue, Bing; Luo, Zhimin; Zhang, Qi; Bao, Biqing; Su, Shao; Weng, Lixing; Huang, Wei; Wang, Lianhui

    2014-06-01

    A general and facile method for water-dispersed noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets (NM-MoS2 NSs) has been developed. By using sodium carboxymethyl cellulose as a stabilizer, well-dispersed NM-MoS2 NSs with homogeneously deposited noble metal nanocrystals (NM NCs) can be synthesized in aqueous solutions. Due to the transition from the semiconducting 2H phase to the metallic 1T phase, the chemically exfoliated MoS2 (ce-MoS2) NSs have improved electrochemical activity. The partially metallic nature of the ce-MoS2 NSs and the catalytic activity of the NM NCs synergistically make NM-MoS2 NSs a potential electrochemical catalyst. For the first time, Pd-MoS2 NSs were used as an electrocatalyst for methanol oxidation in alkaline media. The results showed that Pd-MoS2 NSs have enhanced catalytic activity with 2.8-fold anodic peak current mass density compared to a commercial Pd/C catalyst, suggesting potential for application in direct methanol fuel cells (DMFCs).

  11. Synthesis and Characterization of Wurtzite Cu2ZnSnS4 Nanocrystals

    NASA Astrophysics Data System (ADS)

    Jao, Meng-Huan; Liao, Hsueh-Chung; Wu, Ming-Chung; Su, Wei-Fang

    2012-10-01

    Copper-zinc-tin-chalcogenide (CZTSSe) with earth abundant elements has attracted increasing attention due to large absorption coefficient and band gap of ˜1.5 eV which is near the optimum band gap of single-junction photovoltaic devices. In this study, we used commercially available precursors to produce wurtzite Cu2ZnSnS4 nanocrystals by simple solvothermal synthesis. Different from the typical kesterite or stannite phases of CZTS, the nanocrystals synthesized in this study are in wurtzite phase with hexagonal crystal cell. The n-dodecanethiol was used to control the reactivity of metal ions, leading to the controlled size of CZTS nanoparticle by simply varying the reaction time. Furthermore, the as synthesized CZTS nanocrystals have novel wurtzite crystal structure. As a result, a red shift of absorption band edge between the CZTS nanoparticles with different size was obtained. Our study provides an extending method of CZTS nanocrystal ink preparation awaiting for further photovoltaic device application.

  12. Simple hand-held metal detectors are an effective means of detecting cardiac pacemakers in the deceased prior to cremation.

    PubMed

    Stone, Jason Lyle; Williams, John; Fearn, Lesley

    2010-05-01

    The hazard of undetected cardiac pacemakers exploding in crematoria is well described. This short report describes the use of an affordable hand-held metal detector to detect cardiac pacemakers. Over the course of a year, the metal detector located 100% of cardiac pacemakers in a district general hospital mortuary. A simple model using pigskin and fat is also used to demonstrate the effectiveness in vitro. Commercially purchased hand-held metal detectors should be used in all mortuaries responsible for detection and removal of cardiac pacemakers prior to cremation.

  13. Formation of a new archetypal Metal-Organic Framework from a simple monatomic liquid

    SciTech Connect

    Metere, Alfredo Oleynikov, Peter; Dzugutov, Mikhail; O’Keeffe, Michael

    2014-12-21

    We report a molecular-dynamics simulation of a single-component system of particles interacting via a spherically symmetric potential that is found to form, upon cooling from a liquid state, a low-density porous crystalline phase. Its structure analysis demonstrates that the crystal can be described by a net with a topology that belongs to the class of topologies characteristic of the Metal-Organic Frameworks (MOFs). The observed net is new, and it is now included in the Reticular Chemistry Structure Resource database. The observation that a net topology characteristic of MOF crystals, which are known to be formed by a coordination-driven self-assembly process, can be reproduced by a thermodynamically stable configuration of a simple single-component system of particles opens a possibility of using these models in studies of MOF nets. It also indicates that structures with MOF topology, as well as other low-density porous crystalline structures can possibly be produced in colloidal systems of spherical particles, with an appropriate tuning of interparticle interaction.

  14. Simple and versatile molecular donors for organic photovoltaics prepared by metal-free synthesis.

    PubMed

    Diac, Andreea; Demeter, Dora; Allain, Magali; Grosu, Ion; Roncali, Jean

    2015-01-19

    Donor-acceptor molecules (D-π-A) built by connecting a diphenylhydrazone block to a dicyanovinyl acceptor group via various thiophene-based π-conjugating spacers (1-5) were synthesized from mono- or dialdehydes by a simple metal-free procedure. Cyclic voltammetry and UV/Vis absorption spectroscopy show that the extension and/or increase of the donor strength of the spacer produces a decrease of the HOMO and LUMO energy level, a red shift of the absorption spectrum and an increase of the molecular absorption coefficient. Compared to solutions, the optical spectra of spin-cast thin films of compounds 1-3 show a broadening and red shift of the absorption bands, consistent with the formation of J-aggregates. In contrast the blue shift observed for the EDOT-containing compounds 4 and 5 suggests the presence of H-aggregates. Solution-cast and vacuum-deposited films of donors 1-5 were evaluated in solar cells with fullerene C60 as acceptor. A power-conversion efficiency among the highest reported for bilayer devices of basic configuration was obtained with compound 2. On the other hand, the results obtained with 4 and 5 suggest that the presence of EDOT in the structure can have deleterious effects on the organization and performances of the donor material.

  15. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    PubMed

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature. PMID:26737365

  16. Application of metal hydride paper to simple pressure generator for use in soft actuator systems.

    PubMed

    Ino, Shuichi; Sakaki, Kouji; Hosono, Minako; Doi, Kouki; Shimada, Shigenobu; Chikai, Manabu

    2015-01-01

    Metal hydride (MH) actuators have a simple structure and a number of features that make them attractive for use in rehabilitation engineering and assistive technology. The MH actuator provides a high power-to-weight ratio, high-strain actuation, human-compatible softness, and noiseless operation, while being environmentally benign. On the other hand, there remain technical challenges to be overcome to improve the MH actuator regarding its speed of operation and energy efficiency, given the low heat conductivity of the MH powder that is used as the pressure generator for soft actuation. To overcome the issues of low heat conductivity and the handling of MH powder, we developed an MH paper, which is a special paper incorporating MH powder and carbon fiber, for use as a new pressure-generating element for a soft MH actuator system. In addition, the basic properties and structure of the proposed MH paper were investigated through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and several thermodynamic experiments. The results of these experiments showed that the hydrogen absorption and desorption rates of the MH paper were significantly higher than those of the MH powder around room temperature.

  17. One-pot synthesis of CuInS2 nanocrystals using different anions to engineer their morphology and crystal phase.

    PubMed

    Tang, Aiwei; Hu, Zunlan; Yin, Zhe; Ye, Haihang; Yang, Chunhe; Teng, Feng

    2015-05-21

    A simple one-pot colloidal method has been described to engineer ternary CuInS2 nanocrystals with different crystal phases and morphologies, in which dodecanethiol is chosen as the sulfur source and the capping ligands. By a careful choice of the anions in the metal precursors and manipulation of the reaction conditions including the reactant molar ratios and the reaction temperature, CuInS2 nanocrystals with chalcopyrite, zincblende and wurtzite phases have been successfully synthesized. The type of anion in the metal precursors has been found to be essential for determining the crystal phase and morphology of the as-obtained CuInS2 nanocrystals. In particular, the presence of Cl(-) ions plays an important role in the formation of CuInS2 nanoplates with a wurtzite-zincblende polytypism structure. In addition, the molar ratios of Cu to In precursors have a significant effect on the crystal phase and morphology, and the intermediate Cu2S-CuInS2 heteronanostructures are formed which are critical for the anisotropic growth of CuInS2 nanocrystals. Furthermore, the optical absorption results of the as-obtained CuInS2 nanocrystals exhibit a strong dependence on the crystal phase and size.

  18. Quantitative tunneling spectroscopy of nanocrystals

    SciTech Connect

    First, Phillip N; Whetten, Robert L; Schaaff, T Gregory

    2007-05-25

    The proposed goals of this collaborative work were to systematically characterize the electronic structure and dynamics of 3-dimensional metal and semiconducting nanocrystals using scanning tunneling microscopy/spectroscopy (STM/STS) and ballistic electron emission spectroscopy (BEES). This report describes progress in the spectroscopic work and in the development of methods for creating and characterizing gold nanocrystals. During the grant period, substantial effort also was devoted to the development of epitaxial graphene (EG), a very promising materials system with outstanding potential for nanometer-scale ballistic and coherent devices ("graphene" refers to one atomic layer of graphitic, sp2 -bonded carbon atoms [or more loosely, few layers]). Funding from this DOE grant was critical for the initial development of epitaxial graphene for nanoelectronics

  19. Ultrasonic cavitation induced water in vegetable oil emulsion droplets--a simple and easy technique to synthesize manganese zinc ferrite nanocrystals with improved magnetization.

    PubMed

    Sivakumar, Manickam; Towata, Atsuya; Yasui, Kyuichi; Tuziuti, Toru; Kozuka, Teruyuki; Iida, Yasuo; Maiorov, Michail M; Blums, Elmars; Bhattacharya, Dipten; Sivakumar, Neelagesi; Ashok, M

    2012-05-01

    In the present investigation, synthesis of manganese zinc ferrite (Mn(0.5)Zn(0.5)Fe(2)O(4)) nanoparticles with narrow size distribution have been prepared using ultrasound assisted emulsion (consisting of rapeseed oil as an oil phase and aqueous solution of Mn(2+), Zn(2+) and Fe(2+) acetates) and evaporation processes. The as-prepared ferrite was nanocrystalline. In order to remove the small amount of oil present on the surface of the ferrite, it was subjected to heat treatment at 300 °C for 3h. Both the as-prepared and heat treated ferrites have been characterized by X-ray diffraction (XRD), infrared spectroscopy (IR), TGA/DTA, transmission electron microscopy (TEM) and energy dispersion X-ray spectroscopy (EDS) techniques. As-prepared ferrite is of 20 nm, whereas the heat treated ferrite shows the size of 33 nm. In addition, magnetic properties of the as-prepared as well as the heat treated ferrites have also been carried out and the results of which show that the spontaneous magnetization (σ(s)) of the heat treated sample (24.1 emu/g) is significantly higher than that of the as-synthesized sample (1.81 emu/g). The key features of this method are avoiding (a) the cumbersome conditions that exist in the conventional methods; (b) usage of necessary additive components (stabilizers or surfactants, precipitants) and (c) calcination requirements. In addition, rapeseed oil as an oil phase has been used for the first time, replacing the toxic and troublesome organic nonpolar solvents. As a whole, this simple straightforward sonochemical approach results in more phase pure system with improved magnetization.

  20. Process for making surfactant capped nanocrystals

    DOEpatents

    Alivisatos, A Paul; Rockenberger, Joerg

    2002-01-01

    Disclosed is a process for making surfactant capped nanocrystals of transition metal oxides. The process comprises reacting a metal cupferron complex of the formula M Cup, wherein M is a transition metal, and Cup is a cupferron, with a coordinating surfactant, the reaction being conducted at a temperature ranging from about 250 to about 300 C., for a period of time sufficient to complete the reaction.

  1. Rational design and synthesis of excavated trioctahedral Au nanocrystals

    NASA Astrophysics Data System (ADS)

    Chen, Qiaoli; Jia, Yanyan; Shen, Wei; Xie, Shuifen; Yang, Yanan; Cao, Zhenming; Xie, Zhaoxiong; Zheng, Lansun

    2015-06-01

    Excavated polyhedral nanostructures, possessing the features of high surface area and well-defined surface structure with a specific crystal facet and avoidance of aggregation, could be one of the best choices for the purpose of reducing consumption and improving performance of noble metals in many application fields. However, the formation of the excavated structures is thermodynamically unfavourable and its rational synthesis is far beyond our knowledge. In this work, taking overgrowth of Pd onto trioctahedral Au nanocrystals as a model, we present a deep insight study for synthesizing an excavated structure relying on the protection role of surfactants under suitable crystal growth kinetics. Based on the abovementioned understanding, we designed a simple and effective strategy to synthesize Au nanocrystals with excavated trioctahedral structure in one step. Due to the novel feature of the excavated structure and exposed high energy {110} facets, excavated trioctahedral Au NCs exhibited optical extinction at the near-infrared region and showed high catalytic activity towards the reduction of p-nitrophenol. Moreover, the synthetic strategy can be extended to the synthesis of excavated Au-Pd alloys.Excavated polyhedral nanostructures, possessing the features of high surface area and well-defined surface structure with a specific crystal facet and avoidance of aggregation, could be one of the best choices for the purpose of reducing consumption and improving performance of noble metals in many application fields. However, the formation of the excavated structures is thermodynamically unfavourable and its rational synthesis is far beyond our knowledge. In this work, taking overgrowth of Pd onto trioctahedral Au nanocrystals as a model, we present a deep insight study for synthesizing an excavated structure relying on the protection role of surfactants under suitable crystal growth kinetics. Based on the abovementioned understanding, we designed a simple and effective

  2. Self-Assembled Organic Nanocrystals with Strong Nonlinear Optical Response.

    PubMed

    Rosenne, Shaked; Grinvald, Eran; Shirman, Elijah; Neeman, Lior; Dutta, Sounak; Bar-Elli, Omri; Ben-Zvi, Regev; Oksenberg, Eitan; Milko, Petr; Kalchenko, Vyacheslav; Weissman, Haim; Oron, Dan; Rybtchinski, Boris

    2015-11-11

    Facile molecular self-assembly affords a new family of organic nanocrystals that, unintuitively, exhibit a significant nonlinear optical response (second harmonic generation, SHG) despite the relatively small molecular dipole moment of the constituent molecules. The nanocrystals are self-assembled in aqueous media from simple monosubstituted perylenediimide (PDI) molecular building blocks. Control over the crystal dimensions can be achieved via modification of the assembly conditions. The combination of a simple fabrication process with the ability to generate soluble SHG nanocrystals with tunable sizes may open new avenues in the area of organic SHG materials.

  3. Germanium nanocrystals: Synthesis, characterization, and applications

    NASA Astrophysics Data System (ADS)

    Gerung, Henry

    The aim of this work was to demonstrate a simple synthesis route of Ge nanostructures (nanoparticles and nanowires), to characterize the physical and optical properties of Ge nanocrystal, and to demonstrate their biological and optoelectronics applications. The appropriate organometallic Ge 2+ precursors for the synthesis of Ge nanocrystals were identified. These precursors were used to develop a simple route that produced high quality Ge nanocrystals in high yield under mild conditions without using potentially contaminating catalysts and forming byproducts. The particle size was varied from 1 to 10 nm, depending on the reaction parameters. The relatively low-temperature, low-pressure nanocrystal synthesis condition allowed the use of organic solvents and surfactants. We also demonstrated morphological control over Ge nanocrystals via Ge2+ precursor reactivity modification. During synthesis, the surfactants passivate the nanocrystal surface and minimize surface oxidation. This synthesis method allowed optical characterization of Ge nanocrystals decoupled from contamination and oxidation. When excited with photons, Ge nanoparticles exhibit quantum confinement effect in both infrared and ultraviolet regions, as well as optical nonlinearity by the presence of two-photon absorption. These free-standing Ge nanocrystals could be further become integral elements in various optoelectronic devices. Herein, the production of water-soluble Ge nanoparticles was demonstrated as a proof of the effectiveness of our synthesis method. Addition of secondary layer surfactants such as cationic cetyltrimethylammonium bromide (CTAB) or functionalized polyethylene glycol (PEG), transforms the Ge nanoparticles to become water-soluble. The biocompatible, functionalized, water-soluble Ge nanoparticles were bound to extracellular receptors and also incorporated into the cells as a proof-of-concept demonstration for potential biomarker applications. In expectation of forming a 3-D

  4. Fabrication and electronic transport studies of single nanocrystal systems

    SciTech Connect

    Klein, D L

    1997-05-01

    Semiconductor and metallic nanocrystals exhibit interesting electronic transport behavior as a result of electrostatic and quantum mechanical confinement effects. These effects can be studied to learn about the nature of electronic states in these systems. This thesis describes several techniques for the electronic study of nanocrystals. The primary focus is the development of novel methods to attach leads to prefabricated nanocrystals. This is because, while nanocrystals can be readily synthesized from a variety of materials with excellent size control, means to make electrical contact to these nanocrystals are limited. The first approach that will be described uses scanning probe microscopy to first image and then electrically probe surfaces. It is found that electronic investigations of nanocrystals by this technique are complicated by tip-sample interactions and environmental factors such as salvation and capillary forces. Next, an atomic force microscope technique for the catalytic patterning of the surface of a self assembled monolayer is described. In principle, this nano-fabrication technique can be used to create electronic devices which are based upon complex arrangements of nanocrystals. Finally, the fabrication and electrical characterization of a nanocrystal-based single electron transistor is presented. This device is fabricated using a hybrid scheme which combines electron beam lithography and wet chemistry to bind single nanocrystals in tunneling contact between closely spaced metallic leads. In these devices, both Au and CdSe nanocrystals show Coulomb blockade effects with characteristic energies of several tens of meV. Additional structure is seen the transport behavior of CdSe nanocrystals as a result of its electronic structure.

  5. Nanocrystal doped matrixes

    SciTech Connect

    Parce, J. Wallace; Bernatis, Paul; Dubrow, Robert; Freeman, William P.; Gamoras, Joel; Kan, Shihai; Meisel, Andreas; Qian, Baixin; Whiteford, Jeffery A.; Ziebarth, Jonathan

    2010-01-12

    Matrixes doped with semiconductor nanocrystals are provided. In certain embodiments, the semiconductor nanocrystals have a size and composition such that they absorb or emit light at particular wavelengths. The nanocrystals can comprise ligands that allow for mixing with various matrix materials, including polymers, such that a minimal portion of light is scattered by the matrixes. The matrixes of the present invention can also be utilized in refractive index matching applications. In other embodiments, semiconductor nanocrystals are embedded within matrixes to form a nanocrystal density gradient, thereby creating an effective refractive index gradient. The matrixes of the present invention can also be used as filters and antireflective coatings on optical devices and as down-converting layers. Processes for producing matrixes comprising semiconductor nanocrystals are also provided. Nanostructures having high quantum efficiency, small size, and/or a narrow size distribution are also described, as are methods of producing indium phosphide nanostructures and core-shell nanostructures with Group II-VI shells.

  6. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals

    PubMed Central

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-01-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp2 nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g. PMID:27149405

  7. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals

    NASA Astrophysics Data System (ADS)

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-05-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp2 nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g.

  8. Encapsulation of redox polysulphides via chemical interaction with nitrogen atoms in the organic linkers of metal-organic framework nanocrystals.

    PubMed

    Park, Jung Hyo; Choi, Kyung Min; Lee, Dong Ki; Moon, Byeong Cheul; Shin, Sang Rim; Song, Min-Kyu; Kang, Jeung Ku

    2016-01-01

    Lithium polysulphides generated during discharge in the cathode of a lithium-sulphur redox cell are important, but their dissolution into the electrolyte from the cathode during each redox cycle leads to a shortened cycle life. Herein, we use in situ spectroelectrochemical measurements to demonstrate that sp(2) nitrogen atoms in the organic linkers of nanocrystalline metal-organic framework-867 (nMOF-867) are able to encapsulate lithium polysulphides inside the microcages of nMOF-867, thus helping to prevent their dissolution into the electrolyte during discharge/charge cycles. This encapsulation mechanism of lithiated/delithiated polysulphides was further confirmed by observations of shifted FTIR spectra for the C = N and C-N bonds, the XPS spectra for the Li-N bonds from nMOF-867, and a visualization method, demonstrating that nMOF-867 prevents lithium polysulphides from being dissolved in the electrolyte. Indeed, a cathode fabricated using nMOF-867 exhibited excellent capacity retention over a long cycle life of 500 discharge/charge cycles, with a capacity loss of approximately 0.027% per cycle from a discharge capacity of 788 mAh/g at a high current rate of 835 mA/g. PMID:27149405

  9. Simple formula for the interspaces of periodic grating structures self-organized on metal surfaces by femtosecond laser ablation

    SciTech Connect

    Hashida, Masaki; Ikuta, Yoshinobu; Miyasaka, Yasuhiro; Tokita, Shigeki; Sakabe, Shuji

    2013-04-29

    Self-organized grating structures formed on Mo and Ti metal surfaces irradiated with femtosecond laser pulses at wavelengths of 800 and 400 nm are investigated by electron microscopy. We observe the formation of the self-organized grating structures on the metals irradiated with 400-nm laser pulses at low laser fluence in narrow fluence ranges. The interspaces of the grating structure depend on the wavelength and fluence of the laser. We find that the dependence of the grating interspaces on laser fluence can be explained by a simple formula for induction of a surface-plasma wave through the parametric decay of laser light.

  10. Intermediate-range order in simple metal-phosphate glasses: The effect of metal cations on the phosphate anion distribution

    SciTech Connect

    Sales, B.C.; Boatner, L.A.; Ramey, J.O.

    1997-06-01

    The technique of high-performance liquid chromatography (HPLC) has been used to probe the phosphate anion distribution in a variety of metal phosphate glasses including glasses made with trivalent metal cations (Al, In, Ga, La). The composition of each glass was chosen so that the average phosphate chain length was between 2 and 4 PO{sub 4} tetrahedra. The widths of the resulting phosphate anion distributions were determined directly from an analysis of the HPLC chromatograms. Literature values for the free energy of formation of the crystalline metal-orthophosphate compounds with respect to P{sub 2}O{sub 5} and the metal oxide, were compared to the chromatogram widths. It was found that the smaller the energy of formation, the wider the distribution of phosphate chains, and the greater the ease of glass formation.

  11. Electrochemical and optical properties of two dimensional electrostatic assembly of Au nanocrystals.

    PubMed

    Kakkassery, Joseph J; Abid, Jean-Pierre; Carrara, Michel; Fermín, David J

    2004-01-01

    The spectroscopic and electrochemical properties of two-dimensional electrostatic assembly of Au nanocrystals are examined on poly-L-lysine (pLys) modified gold electrodes. The surface preparation for the nanoparticle deposition involved the self-assembly of a monolayer of 11-mercaptoundecanoic acid on the electrode surface, followed by the electrostatic deposition of pLys from aqueous solution. The polyelectrolyte layer acts as the electrostatic anchor for the Au particles. Electrostatically stabilised Au particles were prepared by homogeneous reduction in the presence of citrate, yielding monodispersed colloidal suspension with an average diameter of 18 +/- 2 nm. After 4 h of deposition, the citrate-stabilised particles reach a maximum surface density of (8.2 +/- 0.1) x 10(10) particles cm(-2), with an average edge-to-edge distance of 25 nm. The particle surface density was estimated from scanning electron micrographs. Kelvin probe measurements were employed for examining changes in surface dipole introduced by the 2D array of nanocrystals. From simple electrostatic arguments, the apparent static dipole moment per particle was estimated of the order of 2700 D. The strong interaction between the nanocrystals and the pLys layer is responsible for the surface charge displacement, leading to changes in the surface dipole of 0.35 eV. These electrostatic interactions also manifest itself by the red shift of the plasmon resonance of the assembly with respect to the aqueous colloidal suspension. Analysis of the spectral broadening was attempted within the framework of the so-called coherent-potential approximation. Finally, electrochemical studies in 1,2-dichloroethane show a large electronic overlap between the nanocrystals and the metal substrate. Results obtained from electrochemical impedance spectroscopy strongly suggest that the electrostatic assembly of nanocrystal behaves like a 2D array of randomly distributed spherical nanoelectrodes.

  12. Simple Methods for Production of Nanoscale Metal Oxide Films from Household Sources

    ERIC Educational Resources Information Center

    Campbell, Dean J.; Baliss, Michelle S.; Hinman, Jordan J.; Ziegenhorn, John W.; Andrews, Mark J.; Stevenson, Keith J.

    2013-01-01

    Production of thin metal oxide films was recently explored as part of an outreach program with a goal of producing nanoscale structures with household items. Household items coated with various metals or titanium compounds can be heated to produce colorful films with nanoscale thicknesses. As part of a materials chemistry laboratory experiment…

  13. Nanocrystal Bioassembly: Asymmetry, Proximity, and Enzymatic Manipulation

    SciTech Connect

    Claridge, Shelley A.

    2008-05-01

    Research at the interface between biomolecules and inorganic nanocrystals has resulted in a great number of new discoveries. In part this arises from the synergistic duality of the system: biomolecules may act as self-assembly agents for organizing inorganic nanocrystals into functional materials; alternatively, nanocrystals may act as microscopic or spectroscopic labels for elucidating the behavior of complex biomolecular systems. However, success in either of these functions relies heavily uponthe ability to control the conjugation and assembly processes.In the work presented here, we first design a branched DNA scaffold which allows hybridization of DNA-nanocrystal monoconjugates to form discrete assemblies. Importantly, the asymmetry of the branched scaffold allows the formation of asymmetric2assemblies of nanocrystals. In the context of a self-assembled device, this can be considered a step toward the ability to engineer functionally distinct inputs and outputs.Next we develop an anion-exchange high performance liquid chromatography purification method which allows large gold nanocrystals attached to single strands of very short DNA to be purified. When two such complementary conjugates are hybridized, the large nanocrystals are brought into close proximity, allowing their plasmon resonances to couple. Such plasmon-coupled constructs are of interest both as optical interconnects for nanoscale devices and as `plasmon ruler? biomolecular probes.We then present an enzymatic ligation strategy for creating multi-nanoparticle building blocks for self-assembly. In constructing a nanoscale device, such a strategy would allow pre-assembly and purification of components; these constructs can also act as multi-label probes of single-stranded DNA conformational dynamics. Finally we demonstrate a simple proof-of-concept of a nanoparticle analog of the polymerase chain reaction.

  14. A flexible method for depositing dense nanocrystal thin films: impaction of germanium nanocrystals

    SciTech Connect

    Holman, Zachary C.; Kortshagen, Uwe R.

    2010-07-27

    Nanomaterials are exciting candidates for use in new optical and electronic devices ranging from solar cells to gas sensors. However, to reach their full potential, nanomaterials must be deposited as dense thin films on flexible substrates using inexpensive processing technologies such as roll-to-roll printing. We report a new, flexible technique for depositing aerosolized nanocrystals that lends itself to roll-to-roll processes. Germanium nanocrystals produced in a plasma are accelerated through a slit orifice by a supersonic gas jet and are impacted onto a translated substrate. A uniform nanocrystal film is quickly deposited over large areas, and features as small as 2 µm can then be patterned using conventional lift-off photolithography. The density of a deposited film depends on the pressures upstream and downstream of the orifice, their ratio, and the distance between the orifice and the substrate. Nanocrystal film densities exceeding 50% of the density of bulk germanium are routinely achieved with several sizes of nanocrystals, approaching the theoretical limit for randomly packed spheres. A simple model is presented that shows that the calculated nanocrystal velocity upon impaction is strongly correlated with the resulting film density.

  15. Biomineralization: Nanocrystals by design

    NASA Astrophysics Data System (ADS)

    Shang, Li; Nienhaus, Gerd Ulrich

    2015-10-01

    Nanocrystals with precisely defined structures offer promise as components of advanced materials yet they are challenging to create. Now, a nanocrystal made up of seven cadmium and twelve chloride ions has been synthesized via a biotemplating approach that uses a de novo designed protein.

  16. Gold nanocrystals with DNA-directed morphologies

    PubMed Central

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-01-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology. PMID:27633935

  17. Self-Organized Ultrathin Oxide Nanocrystals

    SciTech Connect

    Huo, Ziyang; Tsung, Chia-kuang; Huang, Wenyu; Fardy, Melissa; Yan, Ruoxue; Li, Yadong; Yang, Piedong; Zhang, Xiaofeng

    2009-01-08

    Sub-2-nm (down to one-unit cell) uniform oxide nanocrystals and highly ordered superstructures were obtained in one step using oleylamine and oleic acid as capping and structure directing agents. The cooperative nature of the nanocrystal growth and assembly resulted in mesoscopic one-dimensional ribbon-like superstructures made of these ultrathin nanocrystals. The process reported here is general and can be readily extended to the production of many other transition metal (TiO2, ZnO, Nb2O5) and rare earth oxide (Eu2O3, Sm2O3, Er2O3, Y2O3, Tb2O3, and Yb2O3) systems.

  18. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-01-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  19. Gold nanocrystals with DNA-directed morphologies

    NASA Astrophysics Data System (ADS)

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun

    2016-09-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.

  20. Gold nanocrystals with DNA-directed morphologies.

    PubMed

    Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun

    2016-01-01

    Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology. PMID:27633935

  1. a Simple Interpretation of the Rice Spectral Indices Space for Assessment of Heavy Metal Stress

    NASA Astrophysics Data System (ADS)

    Wang, P.; Huang, F.; Liu, X. N.

    2016-06-01

    Heavy metal stress will induce the change of the bio-parameters like chlorophyll, nitrogen and water content of rice. In this paper, we analyzed the traditional spectral index which has strong relationship in general with the three bio-parameters using hyperspectral data acquired by ASD. It is found that some indies do not work well when the heavy metal stress exists, however, some indies still has ability to estimate the above three bio-parameters. A new interpretation is proposed to classify the stress level based on both the physical mechanism analysis and the statistic model after we describe and discuss studies on the expression of spectral indices of rice under heavy metal stress. The 3-axes spectral indices spaces, which are constructed of 3 spectral indices sensitive to rice's chlorophyll concentration, nitrogen concentration and water concentration respectively, are used to visualize the linkage between heavy metal stress and spectrum of rice canopy.

  2. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes.

    PubMed

    Uhl, Jonathan T; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A W; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R; Liaw, P K; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A

    2015-01-01

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or "quakes". We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects "tuned critical" behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. PMID:26572103

  3. Rational design and synthesis of excavated trioctahedral Au nanocrystals.

    PubMed

    Chen, Qiaoli; Jia, Yanyan; Shen, Wei; Xie, Shuifen; Yang, Yanan; Cao, Zhenming; Xie, Zhaoxiong; Zheng, Lansun

    2015-06-28

    Excavated polyhedral nanostructures, possessing the features of high surface area and well-defined surface structure with a specific crystal facet and avoidance of aggregation, could be one of the best choices for the purpose of reducing consumption and improving performance of noble metals in many application fields. However, the formation of the excavated structures is thermodynamically unfavourable and its rational synthesis is far beyond our knowledge. In this work, taking overgrowth of Pd onto trioctahedral Au nanocrystals as a model, we present a deep insight study for synthesizing an excavated structure relying on the protection role of surfactants under suitable crystal growth kinetics. Based on the abovementioned understanding, we designed a simple and effective strategy to synthesize Au nanocrystals with excavated trioctahedral structure in one step. Due to the novel feature of the excavated structure and exposed high energy {110} facets, excavated trioctahedral Au NCs exhibited optical extinction at the near-infrared region and showed high catalytic activity towards the reduction of p-nitrophenol. Moreover, the synthetic strategy can be extended to the synthesis of excavated Au-Pd alloys.

  4. One-step electrochemical synthesis of preferentially oriented (111) Pd nanocrystals supported on graphene nanoplatelets for formic acid electrooxidation

    NASA Astrophysics Data System (ADS)

    Chen, Qing-Song; Xu, Zhong-Ning; Peng, Si-Yan; Chen, Yu-Min; Lv, Dong-Mei; Wang, Zhi-Qiao; Sun, Jing; Guo, Guo-Cong

    2015-05-01

    Pd nanocrystals supported on graphene nanoplatelets (Pd/GNP) have been successfully synthesized by simultaneously electrochemical milling of Pd wire and graphite rod. It should be stressed that without the assistance of graphite rod, the Pd nanocrystals are unable to be obtained individually from Pd wire under the same conditions. Investigations of SEM and TEM demonstrate that Pd/GNP are preferentially decorated with (111) faceted nanocrystals. XPS studies confirm the strong metal-support interaction in Pd/GNP and reveal the surface is almost composed of Pd(0) species. Electrochemical measurements show that the prepared Pd based catalyst exhibits superior electrocatalytic activity towards formic acid oxidation, which may be attributed to the combined effects involving the preferentially oriented (111) surface structure, specific electronic structure and high dispersion of Pd nanocrystals as well as the support effects of graphene nanoplatelets. The synthesis method is simple and effective to prepare excellent new carbon-supported electrocatalysts, which is of great significance for direct organic molecule fuel cell.

  5. Green and scalable production of colloidal perovskite nanocrystals and transparent sols by a controlled self-collection process

    NASA Astrophysics Data System (ADS)

    Liu, Shuangyi; Huang, Limin; Li, Wanlu; Liu, Xiaohua; Jing, Shui; Li, Jackie; O'Brien, Stephen

    2015-07-01

    Colloidal perovskite oxide nanocrystals have attracted a great deal of interest owing to the ability to tune physical properties by virtue of the nanoscale, and generate thin film structures under mild chemical conditions, relying on self-assembly or heterogeneous mixing. This is particularly true for ferroelectric/dielectric perovskite oxide materials, for which device applications cover piezoelectrics, MEMs, memory, gate dielectrics and energy storage. The synthesis of complex oxide nanocrystals, however, continues to present issues pertaining to quality, yield, % crystallinity, purity and may also suffer from tedious separation and purification processes, which are disadvantageous to scaling production. We report a simple, green and scalable ``self-collection'' growth method that produces uniform and aggregate-free colloidal perovskite oxide nanocrystals including BaTiO3 (BT), BaxSr1-xTiO3 (BST) and quaternary oxide BaSrTiHfO3 (BSTH) in high crystallinity and high purity. The synthesis approach is solution processed, based on the sol-gel transformation of metal alkoxides in alcohol solvents with controlled or stoichiometric amounts of water and in the stark absence of surfactants and stabilizers, providing pure colloidal nanocrystals in a remarkably low temperature range (15 °C-55 °C). Under a static condition, the nanoscale hydrolysis of the metal alkoxides accomplishes a complete transformation to fully crystallized single domain perovskite nanocrystals with a passivated surface layer of hydroxyl/alkyl groups, such that the as-synthesized nanocrystals can exist in the form of super-stable and transparent sol, or self-accumulate to form a highly crystalline solid gel monolith of nearly 100% yield for easy separation/purification. The process produces high purity ligand-free nanocrystals excellent dispersibility in polar solvents, with no impurity remaining in the mother solution other than trace alcohol byproducts (such as isopropanol). The afforded stable

  6. Jingle-bell-shaped ferrite hollow sphere with a noble metal core: Simple synthesis and their magnetic and antibacterial properties

    SciTech Connect

    Li Siheng; Wang Enbo Tian Chungui; Mao Baodong; Kang Zhenhui; Li Qiuyu; Sun Guoying

    2008-07-15

    In this paper, a simple strategy is developed for rational fabrication of a class of jingle-bell-shaped hollow structured nanomaterials marked as Ag(MFe{sub 2}O{sub 4}) (M=Ni, Co, Mg, Zn), consisting of ferrite hollow shells and metal nanoparticle cores, using highly uniform colloidal Ag(C) microspheres as template. The final composites were obtained by direct adsorption of metal cations Fe{sup 3+} and M{sup 2+} on the surface of the Ag(C) spheres followed by calcination process to remove the middle carbon shell and transform the metal ions into pure phase ferrites. The as-prepared composites were characterized by X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray analysis (EDX), X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis spectroscopy and SQUID magnetometer. The results showed that the composites possess the magnetic property of the ferrite shell and the optical together with antibacterial property of the Ag core. - Graphical abstract: MFe{sub 2}O{sub 4} (M=Ni, Co, Mg, Zn) hollow spheres with a noble metal nanoparticle core were successfully prepared by using colloidal metal(C) core-shell spheres as templates with no need of surface modification. The shell thickness and magnetic properties of the ferrite hollow spheres could be controlled by varying the synthetic parameters.

  7. Formation of hollow nanocrystals through the nanoscale kirkendall effect

    SciTech Connect

    Yin, Yadong; Rioux, Robert M.; Erdonmez, Can K.; Hughes, Steven; Somorjai, Gabor A.; Alivisatos, A. Paul

    2004-03-11

    We demonstrate that hollow nanocrystals can be synthesized through a mechanism analogous to the Kirkendall Effect, in which pores form due to the difference in diffusion rates between two components in a diffusion couple. Cobalt nanocrystals are chosen as a primary example to show that their reaction in solution with oxygen, sulfur or selenium leads to the formation of hollow nanocrystals of the resulting oxide and chalcogenides. This process provides a general route to the synthesis of hollow nanostructures of large numbers of compounds. A simple extension of this process yields platinum-cobalt oxide yolk-shell nanostructures which may serve as nanoscale reactors in catalytic applications.

  8. A simple model for large-scale simulations of fcc metals with explicit treatment of electrons

    NASA Astrophysics Data System (ADS)

    Mason, D. R.; Foulkes, W. M. C.; Sutton, A. P.

    2010-01-01

    The continuing advance in computational power is beginning to make accurate electronic structure calculations routine. Yet, where physics emerges through the dynamics of tens of thousands of atoms in metals, simplifications must be made to the electronic Hamiltonian. We present the simplest extension to a single s-band model [A.P. Sutton, T.N. Todorov, M.J. Cawkwell and J. Hoekstra, Phil. Mag. A 81 (2001) p.1833.] of metallic bonding, namely, the addition of a second s-band. We show that this addition yields a reasonable description of the density of states at the Fermi level, the cohesive energy, formation energies of point defects and elastic constants of some face-centred cubic (fcc) metals.

  9. Nanocrystal powered nanomotor

    DOEpatents

    Regan, Brian C.; Zettl, Alexander K.; Aloni, Shaul

    2011-01-04

    A nanoscale nanocrystal which may be used as a reciprocating motor is provided, comprising a substrate having an energy differential across it, e.g. an electrical connection to a voltage source at a proximal end; an atom reservoir on the substrate distal to the electrical connection; a nanoparticle ram on the substrate distal to the atom reservoir; a nanolever contacting the nanoparticle ram and having an electrical connection to a voltage source, whereby a voltage applied between the electrical connections on the substrate and the nanolever causes movement of atoms between the reservoir and the ram. Movement of the ram causes movement of the nanolever relative to the substrate. The substrate and nanolever preferably comprise multiwalled carbon nanotubes (MWNTs) and the atom reservoir and nanoparticle ram are preferably metal (e.g. indium) deposited as small particles on the MWNTs. The substrate may comprise a silicon chip that has been fabricated to provide the necessary electrodes and other electromechanical structures, and further supports an atomic track, which may comprise an MWNT.

  10. On Ultrasmall Nanocrystals

    PubMed Central

    McBride, James R.; Dukes, Albert D.; Schreuder, Michael A.; Rosenthal, Sandra J.

    2010-01-01

    Ultrasmall nanocrystals are a growing sub-class of traditional nanocrystals that exhibit new properties at diameters typically below 2 nm. In this review, we define what constitutes an ultrasmall nanoparticle while distinguishing between ultrasmall and magic-size nanoparticles. After a brief overview of ultrasmall nanoparticles, including ultrasmall gold clusters, our recent work is presented covering the optical properties, structure, and application of ultrasmall CdSe nanocrystals. This unique material has potential application in solid state lighting due to its balanced white emission. This section is followed by a discussion on the blurring boundary between what can be considered a nanoparticle and a molecule. PMID:21132106

  11. Lack of mirror symmetry between x-ray absorption and emission edges of simple metals

    NASA Astrophysics Data System (ADS)

    Bruhwiler, P. A.; Livins, Peteris; Schnatterly, S. E.

    1989-03-01

    We have calculated core emission and absorption spectra for a free-electron metal, using a determinantal method. The results indicate that the Mahan-Nozières-De Dominicis model is accurate near threshold to the extent testable with experimental data. Experimental data however, analyzed using the energy range justified above, indicate that the expected mirror symmetry rarely exists. Furthermore, Na core photoemission line shapes are incompatible with absorption and emission. We suggest a possible explanation for these discrepancies.

  12. A simple composite protective layer coating that enhances the cycling stability of lithium metal batteries

    NASA Astrophysics Data System (ADS)

    Lee, Hongkyung; Lee, Dong Jin; Kim, Yun-Jung; Park, Jung-Ki; Kim, Hee-Tak

    2015-06-01

    Metallic lithium is the most promising negative electrode for high-energy rechargeable batteries due to its extremely high specific capacity and its extremely low redox potential. However, the low cycle efficiency and lithium dendrite formation during the charge/discharge processes consistently hinder its practical application. In this report, we present a stabilized Li electrode on which a Li+ ion conductive inorganic/organic composite protective layer (CPL) is coated. With the introduction of the CPL, the Li dendrite growth and electrolyte decomposition are effectively suppressed; consequently, stable Li plating/stripping at high current densities up to 10 mA cm-2 is possible. Nanoindentation tests demonstrate that the shear modulus of the CPL at narrow indentations is 1.8 times higher than that of the Li metal, which provides a theoretical understanding for its efficacy. Moreover, the LiCoO2/Li cell incorporating CPL exhibits excellent cycling stability up to 400 cycles at 1 mA cm-2 (1 C-rate), which demonstrates practical applicability in Li ion batteries through replacing the graphite anode with a CPL-coated Li metal anode.

  13. A simple approach to obtain hybrid Au-loaded polymeric nanoparticles with a tunable metal load

    NASA Astrophysics Data System (ADS)

    Luque-Michel, Edurne; Larrea, Ane; Lahuerta, Celia; Sebastian, Víctor; Imbuluzqueta, Edurne; Arruebo, Manuel; Blanco-Prieto, María J.; Santamaría, Jesús

    2016-03-01

    A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading efficiency. In situ reduction of Au ions inside the polymeric NPs was achieved on demand by using heat to activate the reductive effect of citrate ions. In addition, we show that the loading of the resulting Au NPs inside the PLGA NPs is highly dependent on the surfactant used. Electron microscopy, laser irradiation, UV-Vis and fluorescence spectroscopy characterization techniques confirm the location of Au nanoparticles. These promising results indicate that these hybrid nanomaterials could be used in theranostic applications or as contrast agents in dark-field imaging and computed tomography.A new strategy to nanoengineer multi-functional polymer-metal hybrid nanostructures is reported. By using this protocol the hurdles of most of the current developments concerning covalent and non-covalent attachment of polymers to preformed inorganic nanoparticles (NPs) are overcome. The strategy is based on the in situ reduction of metal precursors using the polymeric nanoparticle as a nanoreactor. Gold nanoparticles and poly(dl-lactic-co-glycolic acid), PLGA, are located in the core and shell, respectively. This novel technique enables the production of PLGA NPs smaller than 200 nm that bear either a single encapsulated Au NP or several smaller NPs with tunable sizes and a 100% loading

  14. Simple analytical embedded-atom-potential model including a long-range force for fcc metals and their alloys

    NASA Astrophysics Data System (ADS)

    Cai, J.; Ye, Y. Y.

    1996-09-01

    A simple analytical embedded-atom method (EAM) model is developed. The model includes a long-range force. In this model, the electron-density function is taken as a decreasing exponential function, the two-body potential is defined as a function like a form given by Rose et al. [Phys. Rev. B 33, 7983 (1986)], and the embedding energy is assumed to be an universal form recently suggested by Banerjea and Smith. The embedding energy has a positive curvature. The model is applied to seven fcc metals (Al, Ag, Au, Cu, Ni, Pd, and Pt) and their binary alloys. All the considered properties, whether for pure metal systems or for alloy systems, are predicted to be satisfactory at least qualitatively. The model resolves the problems of Johnson's model for predicting the properties of the alloys involving metal Pd. However, more importantly, (i) by investigating the structure stability of seven fcc metals using the present model, we found that the stability energy is dominated by both the embedding energy and the pair potential for fcc-bcc stability while the pair potential dominates and is underestimated for fcc-hcp stability; and (ii) we find that the predicted total energy as a function of lattice parameter is in good agreement with the equation of state of Rose et al. for all seven fcc metals, and that this agreement is closely related to the electron density, i.e., the lower the contribution from atoms of the second-nearest neighbor to host density, the better the agreement becomes. We conclude the following: (i) for an EAM, where angle force is not considered, the long-range force is necessary for a prediction of the structure stability; or (ii) the dependence of the electron density on angle should be considered so as to improve the structure-stability energy. The conclusions are valid for all EAM models where an angle force is not considered.

  15. A simple criterion for the onset of discontinuous plastic deformation in metals at very low temperatures

    NASA Astrophysics Data System (ADS)

    Burns, T. J.

    1994-05-01

    THE METHOD of small strain-rate-sensitivity asymptotics, which is the analogue of high-activation-energy asymptotics in the mathematical theory of combustion, is used to simplify a model of discontinuous plastic deformation in metals during tensile loading at cryogenic temperatures. The procedure is analogous to what has been used to derive the ignition problem in combustion theory. It is shown that a degenerate Poincaré-Andronov-Hopf bifurcation occurs in the simplified model as a control parameter which is proportional to the applied strain rate is increased. The bifurcation point is shown to correspond closely to the onset of " serrations" in the load-displacement response predicted by the original model.

  16. A simple route to diverse noble metal-decorated iron oxide nanoparticles for catalysis

    NASA Astrophysics Data System (ADS)

    Walker, Joan M.; Zaleski, Jeffrey M.

    2016-01-01

    Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic activity for the reduction of 4-nitrophenol (knorm = 2 × 107 s-1 mol(Pd)-1 5 × 106 s-1 mol(Au)-1 5 × 105 s-1 mol(PtAg)-1 7 × 105 s-1 mol(Ag)-1). These rates are the highest reported for nano-sized comparables, and are competitive with mesoparticles of similar composition. Due to their magnetic response, the particles are also suitable for magnetic recovery and maintain >99% conversion for at least four cycles. Using this synthetic route, Fe3O4@SiO2-M particles show great promise for further development as a precursor to complicated anisotropic materials or for applications ranging from nanocatalysis to biomedical sensing.Developing facile synthetic routes to multifunctional nanoparticles combining the magnetic properties of iron oxides with the optical and catalytic utility of noble metal particles remains an important goal in realizing the potential of hybrid nanomaterials. To this end, we have developed a single route to noble metal-decorated magnetic nanoparticles (Fe3O4@SiO2-M M = Au, Pd, Ag, and PtAg) and characterized them by HRTEM and STEM/EDX imaging to reveal their nanometer size (16 nm Fe3O4 and 1-5 nm M seeds) and uniformity. This represents one of the few examples of genuine multifunctional particles on the nanoscale. We show that these hybrid structures have excellent catalytic

  17. Photodissociation Studies of Metal-Containing Clusters and Complexes

    NASA Astrophysics Data System (ADS)

    Pilgrim, Jeffrey Scott

    1995-01-01

    There have been two major areas of investigation for researchers working with laser ablation in molecular beams. The first area is the study of weakly-bound complexes. These complexes are bound by electrostatic interactions. In the present study the weakly bound interactions of the rare gases with the magnesium ion are investigated with electronic spectroscopy. The second major area is the study of metal and metal-containing clusters. Examples of previous investigations are the alkali metal clusters and the fullerenes. The present investigation is on metal -carbon clusters. The so-called metallo-carbohedrenes and metal-carbon nanocrystals are studied. Resonance enhanced photodissociation spectroscopy is used to obtain electronic excitation spectra of the Mg^+-rare gas species in the ultraviolet region. This investigation is facilitated by a reflectron time-of-flight mass spectrometer. The interaction of the rare gas with the metal ion is attributed to a "solvation" of the atomic ion transition. Simple bonding arguments predict that the excited state is more bound than the ground state for these complexes. This will result in a shift of the complex vibronic origin to lower energy from the atomic ion transition. This is exactly what is observed in the experiment with progressively larger shifts for the heavier rare gases. The electronic excitation spectra allow the vibrational frequencies and anharmonicities for these complexes to be obtained for the excited state. In turn, the excited state bond dissociation energies can be determined. Finally, conservation of energy allows calculation of the ground state bond dissociation energies. In the metal-carbon systems the stability of the metallo-carbohedrene, met-car, stoichiometry is shown to extend into the transition period at least to the iron group. Photodissociation with a 532 nm laser causes a loss of metal atoms for met-cars formed with first row transition metals and a loss of metal-carbon units for met

  18. Simple and low cost method for metal-based micro-capillary channels for heat exchanger use

    NASA Astrophysics Data System (ADS)

    Ogbonnaya, E.; Champagne, C.; Weiss, L.

    2013-11-01

    In this work, we present an alternative, low cost method for the fabrication of a heat exchanger utilizing metal-based microchannels using the UV-LiGA technique. Lithography is used to pattern dry film negative photoresist (Ordyl P-50100) on the substrate. The resist is laminated over the substrate and exposed with a UV source. The use of dry film resist allows for simple and inexpensive microchannel patterns without requiring advanced cleanroom equipment. Following the lithography process, electrodeposition of metals is used to fill the recesses patterned in the resist. In this work, nickel has been electroplated into the bounding resist structure. After electroplating, the remaining resist is dissolved leaving free standing metal structures. The fabricated exchanger is then evaluated based on thermal absorption of simulated waste heat sources and capillary action of the metal channels themselves. Channels are fabricated to heights of 60, 70 and 90 μm respectively on copper substrate using these methods. Working fluid mass transfer rate from the heated microchannel heat exchanger (MHE) is utilized as a basic metric of operation. The mass transfer rate recorded from the nickel-based MHE is 2.19, 2.81 and 3.20 mg s-1 respectively for the different channel heights. This implies an effective thermal power consumption rate of 1.66, 2.13 and 2.42 kW m-2 respectively. By contrast, an MHE fabricated with 115 and 142 μm tall channels on silicon substrate is shown to evaporate up to 2.84 and 3.04 mg s-1 respectively, giving an effective thermal power consumption of 2.15 and 2.31 kW m-2 respectively. An investigation of working fluid contact angle with the electroplated nickel surface is also presented. The surface is found to be a porous structure stemming from the electroplating process.

  19. Inhibition of palm oil oxidation by zeolite nanocrystals.

    PubMed

    Tan, Kok-Hou; Awala, Hussein; Mukti, Rino R; Wong, Ka-Lun; Rigaud, Baptiste; Ling, Tau Chuan; Aleksandrov, Hristiyan A; Koleva, Iskra Z; Vayssilov, Georgi N; Mintova, Svetlana; Ng, Eng-Poh

    2015-05-13

    The efficiency of zeolite X nanocrystals (FAU-type framework structure) containing different extra-framework cations (Li(+), Na(+), K(+), and Ca(2+)) in slowing the thermal oxidation of palm oil is reported. The oxidation study of palm oil is conducted in the presence of zeolite nanocrystals (0.5 wt %) at 150 °C. Several characterization techniques such as visual analysis, colorimetry, rheometry, total acid number (TAN), FT-IR spectroscopy, (1)H NMR spectroscopy, and Karl Fischer analyses are applied to follow the oxidative evolution of the oil. It was found that zeolite nanocrystals decelerate the oxidation of palm oil through stabilization of hydroperoxides, which are the primary oxidation product, and concurrently via adsorption of the secondary oxidation products (alcohols, aldehydes, ketones, carboxylic acids, and esters). In addition to the experimental results, periodic density functional theory (DFT) calculations are performed to elucidate further the oxidation process of the palm oil in the presence of zeolite nanocrystals. The DFT calculations show that the metal complexes formed with peroxides are more stable than the complexes with alkenes with the same ions. The peroxides captured in the zeolite X nanocrystals consequently decelerate further oxidation toward formation of acids. Unlike the monovalent alkali metal cations in the zeolite X nanocrystals (K(+), Na(+), and Li(+)), Ca(2+) reduced the acidity of the oil by neutralizing the acidic carboxylate compounds to COO(-)(Ca(2+))1/2 species.

  20. Individual and collective electronic properties of Ag nanocrystals

    SciTech Connect

    Kim, S.H.; Medeiros-Ribeiro, G.; Ohlberg, D.A.A.; Williams, R.S.; Heath, J.R.

    1999-11-25

    The authors report on the electronic transport properties of individual alkanethiol-passivated Ag nanocrystals and their superlattices. Isolated Ag particles with diameters in the range of 2.7--4.8 nm supported by a metallic substrate passivated with an organic layer show a Coulomb gap. Monolayer films of Ag particles exhibit four distinct electronic signatures, two of which have not been previously reported, depending on their structures. In two-dimensional ordered superlattices of octanethiol-capped 4.8 nm diameter nanocrystals on graphite, the strong interparticle electronic coupling produces metallic films. A disordered monolayer of dodecanethiol-capped 6.6 nm diameter nanocrystals exhibits a temperature-dependent differential conductance, which is attributed to the localized states formed by the disorder in the lattice. For two-dimensional ordered superlattices of pentanethiol- and hexanethiol-capped 2.7 nm diameter Ag particles. It was shown that the films are insulating, and individual nanocrystals maintain their individual electronic identity. Two different types of insulating films have been observed: one with electronically homogeneous nanocrystals in a close-packed lattice and the other with sublattices of electronically distinct monocrystals within a square lattice. The relationship of the Coulomb blockade and nanocrystal ordering to the electronic behavior of this class of architectonic materials are discussed.

  1. Plasmonic engineering of spontaneous emission from silicon nanocrystals

    PubMed Central

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells. PMID:24037020

  2. Plasmonic engineering of spontaneous emission from silicon nanocrystals.

    PubMed

    Goffard, Julie; Gérard, Davy; Miska, Patrice; Baudrion, Anne-Laure; Deturche, Régis; Plain, Jérôme

    2013-01-01

    Silicon nanocrystals offer huge advantages compared to other semi-conductor quantum dots as they are made from an abundant, non-toxic material and are compatible with silicon devices. Besides, among a wealth of extraordinary properties ranging from catalysis to nanomedicine, metal nanoparticles are known to increase the radiative emission rate of semiconductor quantum dots. Here, we use gold nanoparticles to accelerate the emission of silicon nanocrystals. The resulting integrated hybrid emitter is 5-fold brighter than bare silicon nanocrystals. We also propose an in-depth analysis highlighting the role of the different physical parameters in the photoluminescence enhancement phenomenon. This result has important implications for the practical use of silicon nanocrystals in optoelectronic devices, for instance for the design of efficient down-shifting devices that could be integrated within future silicon solar cells.

  3. Analysis of simple 2-D and 3-D metal structures subjected to fragment impact

    NASA Technical Reports Server (NTRS)

    Witmer, E. A.; Stagliano, T. R.; Spilker, R. L.; Rodal, J. J. A.

    1977-01-01

    Theoretical methods were developed for predicting the large-deflection elastic-plastic transient structural responses of metal containment or deflector (C/D) structures to cope with rotor burst fragment impact attack. For two-dimensional C/D structures both, finite element and finite difference analysis methods were employed to analyze structural response produced by either prescribed transient loads or fragment impact. For the latter category, two time-wise step-by-step analysis procedures were devised to predict the structural responses resulting from a succession of fragment impacts: the collision force method (CFM) which utilizes an approximate prediction of the force applied to the attacked structure during fragment impact, and the collision imparted velocity method (CIVM) in which the impact-induced velocity increment acquired by a region of the impacted structure near the impact point is computed. The merits and limitations of these approaches are discussed. For the analysis of 3-d responses of C/D structures, only the CIVM approach was investigated.

  4. A simple method for understanding the triangular growth patterns of transition metal dichalcogenide sheets

    SciTech Connect

    Zhu, Siya; Wang, Qian

    2015-10-15

    Triangular nanoflake growth patterns have been commonly observed in synthesis of transition metal dichalcogenide sheets and their hybrid structures. Triangular nanoflakes not only show exceptional properties, but also can serve as building blocks for two or three dimensional structures. In this study, taking the MoS{sub 2} system as a test case, we propose a Matrix method to understand the mechanism of such unique growth pattern. Nanoflakes with different edge types are mathematically described with configuration matrices, and the total formation energy is calculated as the sum of the edge formation energies and the chemical potentials of sulfur and molybdenum. Based on energetics, we find that three triangular patterns with the different edge configurations are energetically more favorable in different ranges of the chemical potential of sulfur, which are in good agreement with experimental observations. Our algorithm has high efficiency and can deal with nanoflakes in microns which are beyond the ability of ab-initio method. This study not only elucidates the mechanism of triangular nanoflake growth patterns in experiment, but also provides a clue to control the geometric configurations in synthesis.

  5. Theory of electron emission stimulated by charged particle reflection from simple metals; glancing incidence

    NASA Astrophysics Data System (ADS)

    Mills, D. L.

    1993-09-01

    Recent experiments by Rau and his colleagues [Phys. Rev. Lett. 64 (1990) 1441; DIET V (Springer, New York, 1992); Ionization of Solids by Heavy Particles (Plenum, New York, 1992)] explore the energy spectrum of electrons emitted from metal surfaces, in response to the reflection of positive ions reflected from the surface, at grazing incidence. We develop a theory of the emission process wherein the Coulomb field of the ion excites particle-hole pairs in the substrate, taken here to be jellium. We obtain a general expression for the energy and angle variation of the emitted electrons, for an ion trajectory which may penetrate into the substrate before reflecting off the planes of substrate nuclei. The result is expressed as an integral over the density-density response functions χ( zz'; Q∥ω) of the substrate. Special limits are explored, with emphasis on glancing incidence. We do not consider Auger processes, in which the ion is neutralized through acquisition of a substrate electron.

  6. Ir Spectroscopy of First-Row Transition Metal Clusters and Their Complexes with Simple Molecules

    NASA Astrophysics Data System (ADS)

    Kiawi, D. M.; Bakker, J.; Oomens, J.; Buma, W. J.; Waters, L. B. F. M.

    2014-06-01

    Iron is an important element in the formation of solids in space. Spectroscopic observations of interstellar iron shows that its atomic gas-phase abundance is strongly depleted with respect to that of hydrogen. In contrast, sulfur is mostly found in the gas phase in low-density regions of interstellar space, but is highly depleted in regions of star- and planet formation. Furthermore, the dominant source of sulfur in our solar system is solid FeS, as found in primitive meteorites, implying an efficient chemical pathway to convert sulphur or sulphur containing compounds into solid FeS during the (early phases of) the star formation process. We address the evolution of iron and sulfur in space on a molecular level by studying metal nanoclusters and their interaction with ligands using IR action spectroscopy. Clusters are formed through laser ablation of solid precursor materials and brought into a molecular beam environment. Complexes with ligands are obtained by directing the beam through a reaction channel containing low-pressure reactant gas. Mass-selected IR action spectra are recorded by irradiating the clusters using the Free Electron Laser for Infrared eXperiments (FELIX). Experimental spectra are then compared with DFT predictions which enables us to determine the structure of the selected cluster and its binding interactions with ligands. As part of this project, we here present IR action spectra of size-selected Fe clusters and the chemically closely related Co clusters, and their complexes with relevant ligands.

  7. Synthesis of single-crystalline anisotropic gold nano-crystals via chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Manna, Sohini; Kim, Jong Woo; Takahashi, Yukiko; Shpyrko, Oleg G.; Fullerton, Eric E.

    2016-05-01

    We report on a novel one-step catalyst-free, thermal chemical vapor deposition procedure to synthesize gold nanocrystals on silicon substrates. This approach yields single-crystal nanocrystals with various morphologies, such as prisms, icosahedrons, and five-fold twinned decahedrons. Our approach demonstrates that high-quality anisotropic crystals composed of fcc metals can be produced without the need for surfactants or templates. Compared with the traditional wet chemical synthesis processes, our method enables direct formation of highly pure and single crystalline nanocrystals on solid substrates which have applications in catalysis. We investigated the evolution of gold nanocrystals and established their formation mechanism.

  8. Recent Progress in Photocatalysis Mediated by Colloidal II-VI Nanocrystals.

    PubMed

    Wilker, Molly B; Schnitzenbaumer, Kyle J; Dukovic, Gordana

    2012-12-01

    The use of photoexcited electrons and holes in semiconductor nanocrystals as reduction and oxidation reagents is an intriguing way of harvesting photon energy to drive chemical reactions. This review focuses on recent research efforts to understand and control the photocatalytic processes mediated by colloidal II-VI nanocrystalline materials, such as cadmium and zinc chalcogenides. First, we highlight how nanocrystal properties govern the rates and efficiencies of charge-transfer processes relevant to photocatalysis. We then describe the use of nanocrystal catalyst heterostructures for fuel-forming reactions, most commonly H2 generation. Finally, we review the use of nanocrystal photocatalysis as a synthetic tool for metal-semiconductor nano-heterostructures.

  9. From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces.

    PubMed

    De Roo, J; De Keukeleere, K; Hens, Z; Van Driessche, I

    2016-09-14

    Surface chemistry bridges the gap between nanocrystal synthesis and their applications. In this respect, the discovery of complex ligand binding motifs on semiconductor quantum dots and metal oxide nanocrystals opens a gateway to new areas of research. The implications are far-reaching, from catalytic model systems to the performance of solar cells. PMID:27461488

  10. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

    DOE PAGESBeta

    Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; Watkins, Thomas R.; Babu, Sudarsanam Suresh; Dehoff, Ryan R.; Duty, Chad E.; Lorenz, M.; Ovchinnikova, O. S.

    2015-01-10

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work hasmore » shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.« less

  11. Comparison of residual stresses in Inconel 718 simple parts made by electron beam melting and direct laser metal sintering

    SciTech Connect

    Kolbus, Lindsay M.; Payzant, E. Andrew; Cornwell, Paris A.; Watkins, Thomas R.; Babu, Sudarsanam Suresh; Dehoff, Ryan R.; Duty, Chad E.; Lorenz, M.; Ovchinnikova, O. S.

    2015-01-10

    Residual stress profiles were mapped using neutron diffraction in two simple prism builds of Inconel 718: one fabricated with electron beam melting and the other with direct laser sintering. Spatially indexed stress-free cubes were obtained by EDM sectioning equivalent prisms of similar shape. The (311) interplanar spacing examined for the EDM sectioned sample was compared to the interplanar spacings calculated to fulfill force and moment balance. We have shown that Applying force and moment balance is a necessary supplement to the measurements for the stress-free cubes with respect to accurate stress calculations in additively manufactured components. Furthermore, our work has shown that residual stresses in electron beam melting parts are much smaller than that of direct laser metal sintering parts.

  12. Nanocrystal Solar Cells

    SciTech Connect

    Gur, Ilan

    2006-01-01

    This dissertation presents the results of a research agenda aimed at improving integration and stability in nanocrystal-based solar cells through advances in active materials and device architectures. The introduction of 3-dimensional nanocrystals illustrates the potential for improving transport and percolation in hybrid solar cells and enables novel fabrication methods for optimizing integration in these systems. Fabricating cells by sequential deposition allows for solution-based assembly of hybrid composites with controlled and well-characterized dispersion and electrode contact. Hyperbranched nanocrystals emerge as a nearly ideal building block for hybrid cells, allowing the controlled morphologies targeted by templated approaches to be achieved in an easily fabricated solution-cast device. In addition to offering practical benefits to device processing, these approaches offer fundamental insight into the operation of hybrid solar cells, shedding light on key phenomena such as the roles of electrode-contact and percolation behavior in these cells. Finally, all-inorganic nanocrystal solar cells are presented as a wholly new cell concept, illustrating that donor-acceptor charge transfer and directed carrier diffusion can be utilized in a system with no organic components, and that nanocrystals may act as building blocks for efficient, stable, and low-cost thin-film solar cells.

  13. A simple synthesis method to produce metal oxide loaded carbon paper using bacterial cellulose gel and characterization of its electrochemical behavior in an aqueous electrolyte

    NASA Astrophysics Data System (ADS)

    Miyajima, Naoya; Jinguji, Ken; Matsumura, Taiyu; Matsubara, Toshihiro; Sakane, Hideto; Akatsu, Takashi; Tanaike, Osamu

    2016-04-01

    A simple synthetic chemical process to produce metal oxide loaded carbon papers was developed using bacterial cellulose gel, which consisted of nanometer-sized fibrous cellulose and water. Metal ions were successfully impregnated into the gel via aqueous solution media before drying and carbonization methods resulting in metal oxide contents that were easy to control through variations in the concentration of aqueous solutions. The papers loaded by molybdenum oxides were characterized as pseudocapacitor electrodes preliminary, and the large redox capacitance of the oxides was followed by a conductive fibrous carbon substrate, suggesting that a binder and carbon black additive-free electrode consisting of metal oxides and carbon paper was formed.

  14. Electron-Phonon Coupling and Energy Flow in a Simple Metal beyond the Two-Temperature Approximation

    NASA Astrophysics Data System (ADS)

    Waldecker, Lutz; Bertoni, Roman; Ernstorfer, Ralph; Vorberger, Jan

    2016-04-01

    The electron-phonon coupling and the corresponding energy exchange are investigated experimentally and by ab initio theory in nonequilibrium states of the free-electron metal aluminium. The temporal evolution of the atomic mean-squared displacement in laser-excited thin freestanding films is monitored by femtosecond electron diffraction. The electron-phonon coupling strength is obtained for a range of electronic and lattice temperatures from density functional theory molecular dynamics simulations. The electron-phonon coupling parameter extracted from the experimental data in the framework of a two-temperature model (TTM) deviates significantly from the ab initio values. We introduce a nonthermal lattice model (NLM) for describing nonthermal phonon distributions as a sum of thermal distributions of the three phonon branches. The contributions of individual phonon branches to the electron-phonon coupling are considered independently and found to be dominated by longitudinal acoustic phonons. Using all material parameters from first-principles calculations except the phonon-phonon coupling strength, the prediction of the energy transfer from electrons to phonons by the NLM is in excellent agreement with time-resolved diffraction data. Our results suggest that the TTM is insufficient for describing the microscopic energy flow even for simple metals like aluminium and that the determination of the electron-phonon coupling constant from time-resolved experiments by means of the TTM leads to incorrect values. In contrast, the NLM describing transient phonon populations by three parameters appears to be a sufficient model for quantitatively describing electron-lattice equilibration in aluminium. We discuss the general applicability of the NLM and provide a criterion for the suitability of the two-temperature approximation for other metals.

  15. Synthesis of Doped Semiconductor Nanocrystals and Conductive Coatings

    NASA Astrophysics Data System (ADS)

    Wills, Andrew Wilke

    measurements reveal that the nanocrystal Fermi level rises with increasing Al content. The third thrust is achieved by the use of primary dithiocarbamates as ligands to stabilize CdSe, and PbSe / CdSe core/shell nanoparticles. Primary dithiocarbamates bind well to metals but include a weak chemical bond that can be broken with gentle heating. This enables us to bind them to nanoparticles, process the particles into devices, then remove the ligand via gentle heating. Characterization of the ligand-particle interactions show excellent ligand binding to the particle surface and easy ligand removal with heating. After ligand removal, the inter-particle spacing shrinks. Transistor measurements reveal that this reduces the barrier to interparticle electron transport, enhancing the conductivity of the film.

  16. What is the work function of a small nanocrystal?

    NASA Astrophysics Data System (ADS)

    Gao, Lingyuan; Souto, Jaime; Demkov, Alex; Chelikowsky, James

    2015-03-01

    The work function is defined as the difference between the electrostatic potential energy (-e ϕ) of an electron in the vacuum near the metal surface and the metal's Fermi energy. For a single crystal metal, the measured work function typically depends on the orientation of the metal surface. This seems counterintuitive, as the Fermi energy is the same across the metal sample, and the vacuum energy is also expected not to depend on the direction. The problem becomes even more interesting for a metallic nanocrystal, where facets of different orientation meet. We investigate this problem using the real space first-principles method PARSEC and consider aluminum nanocrystals as a test system. The real space nature of the code doesn't require periodic boundary conditions and enables calculations of nanocrystals with realistic dimensions. We compare our nanocrystal results for (001), (110) and (111) Al surfaces with those obtained from standard slab calculations and available photoemission and electrical data. We acknowledge supports from SciDAC program, Department of Energy, Office of Science, Advanced Scientific Computing Research and Basic Energy Sciences. This work is supported through grant DE-SC0008877

  17. The surface structure of silver-coated gold nanocrystals and its influence on shape control

    SciTech Connect

    Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; Duchesne, Paul N.; Jiang, De-en; Mirkin, Chad A.; Zhang, Peng

    2015-07-08

    Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A unique approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.

  18. The surface structure of silver-coated gold nanocrystals and its influence on shape control

    DOE PAGESBeta

    Padmos, J. Daniel; Personick, Michelle L.; Tang, Qing; Duchesne, Paul N.; Jiang, De-en; Mirkin, Chad A.; Zhang, Peng

    2015-07-08

    Understanding the surface structure of metal nanocrystals with specific facet indices is important due to its impact on controlling nanocrystal shape and functionality. However, this is particularly challenging for halide-adsorbed nanocrystals due to the difficulty in analysing interactions between metals and light halides (for example, chloride). Here we uncover the surface structures of chloride-adsorbed, silver-coated gold nanocrystals with {111}, {110}, {310} and {720} indexed facets by X-ray absorption spectroscopy and density functional theory modelling. The silver–chloride, silver–silver and silver–gold bonding structures are markedly different between the nanocrystal surfaces, and are sensitive to their formation mechanism and facet type. A uniquemore » approach of combining the density functional theory and experimental/simulated X-ray spectroscopy further verifies the surface structure models and identifies the previously indistinguishable valence state of silver atoms on the nanocrystal surfaces. Overall, this work elucidates the thus-far unknown chloride–metal nanocrystal surface structures and sheds light onto the halide-induced growth mechanism of anisotropic nanocrystals.« less

  19. Synthesis and applications of heterostructured semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Khon, Elena

    Semiconductor nanocrystals (NCs) have been of great interest to researchers for several decades due to their unique optoelectronic properties. These nanoparticles are widely used for a variety of different applications. However, there are many unresolved issues that lower the efficiency and/or stability of devices which incorporate these NCs. Our research is dedicated to addressing these issues by identifying potential problems and resolving them, improving existing systems, generating new synthetic strategies, and/or building new devices. The general strategies for the synthesis of different nanocrystals were established in this work, one of which is the colloidal growth of gold domains onto CdS semiconductor nanocrystals. Control of shape and size was achieved simply by adjusting the temperature and the time of the reaction. Depending on the exact morphology of Au and CdS domains, fabricated nano-composites can undergo evaporation-induced self-assembly onto a substrate, which is very useful for building devices. CdS/Au heterostructures can assemble in two different ways: through end-to-end coupling of Au domains, resulting in the formation of one-dimensional chains; and via side-by-side packing of CdS nanorods, leading to the onset of two-dimensional superlattices. We investigated the nature of exciton-plasmon interactions in Au-tipped CdS nanorods using femtosecond transient absorption spectroscopy. The study demonstrated that the key optoelectronic properties of electrically coupled metal and semiconductor domains are significantly different from those observed in systems with weak inter-domain coupling. In particular, strongly-coupled nanocomposites promote mixing of electronic states at semiconductor-metal domain interfaces, which causes a significant suppression of both plasmon and exciton carrier excitations. Colloidal QDs are starting to replace organic molecules in many different applications, such as organic light emmiting diods (OLEDs), due to their

  20. Static and Dynamical Structural Investigations of Metal-Oxide Nanocrystals by Powder X-ray Diffraction: Colloidal Tungsten Oxide as a Case Study.

    PubMed

    Caliandro, Rocco; Sibillano, Teresa; Belviso, B Danilo; Scarfiello, Riccardo; Hanson, Jonathan C; Dooryhee, Eric; Manca, Michele; Cozzoli, P Davide; Giannini, Cinzia

    2016-03-01

    We have developed a general X-ray powder diffraction (XPD) methodology for the simultaneous structural and compositional characterization of inorganic nanomaterials. The approach is validated on colloidal tungsten oxide nanocrystals (WO3-x NCs), as a model polymorphic nanoscale material system. Rod-shaped WO3-x NCs with different crystal structure and stoichiometry are comparatively investigated under an inert atmosphere and after prolonged air exposure. An initial structural model for the as-synthesized NCs is preliminarily identified by means of Rietveld analysis against several reference crystal phases, followed by atomic pair distribution function (PDF) refinement of the best-matching candidates (static analysis). Subtle stoichiometry deviations from the corresponding bulk standards are revealed. NCs exposed to air at room temperature are monitored by XPD measurements at scheduled time intervals. The static PDF analysis is complemented with an investigation into the evolution of the WO3-x NC structure, performed by applying the modulation enhanced diffraction technique to the whole time series of XPD profiles (dynamical analysis). Prolonged contact with ambient air is found to cause an appreciable increase in the static disorder of the O atoms in the WO3-x NC lattice, rather than a variation in stoichiometry. The time behavior of such structural change is identified on the basis of multivariate analysis. PMID:26756645

  1. Stabilizing Agents for Drug Nanocrystals: Effect on Bioavailability

    PubMed Central

    Tuomela, Annika; Hirvonen, Jouni; Peltonen, Leena

    2016-01-01

    Drug nanocrystals are a versatile option for drug delivery purposes, and while the number of poorly soluble drug materials is all the time increasing, more research in this area is performed. Drug nanocrystals have a simple structure—a solid drug core is surrounded by a layer of stabilizing agent. However, despite the considerably simple structure, the selection of an appropriate stabilizer for a certain drug can be challenging. Mostly, the stabilizer selection is based purely on the requirement of physical stability, e.g., maintaining the nanosized particle size as long as possible after the formation of drug nanocrystals. However, it is also worth taking into account that stabilizer can affect the bioavailability in the final formulation via interactions with cells and cell layers. In addition, formation of nanocrystals is only one process step, and for the final formulation, more excipients are often added to the composition. The role of the stabilizers in the final formulation can be more than only stabilizing the nanocrystal particle size. A good example is the stabilizer’s role as cryoprotectant during freeze drying. In this review, the stabilizing effect, role of stabilizers in final nanocrystalline formulations, challenges in reaching in vitro–in vivo correlation with nanocrystalline products, and stabilizers’ effect on higher bioavailability are discussed. PMID:27213435

  2. Wide-range photoabsorption cross-sections of simple metals: large basis-set OPW calculations for sodium.

    PubMed

    Kitamura, Hikaru

    2013-02-13

    Photoabsorption cross-sections of simple metals are formulated through a solid-state band theory based on the orthogonalized-plane-wave (OPW) method in Slater's local-exchange approximation, where interband transitions of core and conduction electrons are evaluated up to the soft x-ray regime by using large basis sets. The photoabsorption cross-sections of a sodium crystal are computed for a wide photon energy range from 3 to 1800 eV. It is found that the numerical results reproduce the existing x-ray databases fairly well for energies above the L(2,3)-edge (31 eV), verifying a consistency between solid-state and atomic models for inner-shell photoabsorption; additional oscillatory structures in the present spectra manifest solid-state effects. Our computed results in the vacuum ultraviolet regime (6-30 eV) are also in better agreement with experimental data compared to earlier theories, although some discrepancies remain in the range of 20-30 eV. The influence of the core eigenvalues on the absorption spectra is examined. PMID:23334229

  3. X-ray diffraction and Raman scattering study of thermal-induced phase transformation in vertically aligned TiO 2 nanocrystals grown on sapphire(1 0 0) via metal organic vapor deposition

    NASA Astrophysics Data System (ADS)

    Chen, C. A.; Chen, K. Y.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.; Chien, F. Z.

    2008-07-01

    We report a detailed study of thermal-induced phase transformation in TiO 2 nanocrystals (NCs) via X-ray diffraction (XRD) and Raman scattering (RS) spectroscopy. Vertically aligned anatase TiO 2(1 1 0) NCs were grown on the sapphire (SA)(1 0 0) substrate at 550 °C by metal organic chemical vapor deposition, using titanium-tetraisopropoxide (TTIP, Ti[OCH(CH 3) 2] 4), as the source reagent. The effects of thermal annealing of TiO 2 NCs in oxygen atmosphere between 600 and 1000 °C were investigated. XRD and RS spectra showed the onset of the phase transformation process from the as-grown anatase TiO 2(1 1 0) NCs into rutile TiO 2(0 0 1) at the annealing temperature of 800 °C. At annealing temperature higher than 900 °C, pure rutile phase of TiO 2(0 0 1) NCs were formed and the crystalline quality of TiO 2 NCs could be further improved upon higher annealing temperature.

  4. Atomically precise gold nanocrystal molecules with surface plasmon resonance.

    PubMed

    Qian, Huifeng; Zhu, Yan; Jin, Rongchao

    2012-01-17

    Since Faraday's pioneering work on gold colloids, tremendous scientific research on plasmonic gold nanoparticles has been carried out, but no atomically precise Au nanocrystals have been achieved. This work reports the first example of gold nanocrystal molecules. Mass spectrometry analysis has determined its formula to be Au(333)(SR)(79) (R = CH(2)CH(2)Ph). This magic sized nanocrystal molecule exhibits fcc-crystallinity and surface plasmon resonance at approximately 520 nm, hence, a metallic nanomolecule. Simulations have revealed that atomic shell closing largely contributes to the particular robustness of Au(333)(SR)(79), albeit the number of free electrons (i.e., 333 - 79 = 254) is also consistent with electron shell closing based on calculations using a confined free electron model. Guided by the atomic shell closing growth mode, we have also found the next larger size of extraordinarily stability to be Au(~530)(SR)(~100) after a size-focusing selection--which selects the robust size available in the starting polydisperse nanoparticles. This work clearly demonstrates that atomically precise nanocrystal molecules are achievable and that the factor of atomic shell closing contributes to their extraordinary stability compared to other sizes. Overall, this work opens up new opportunities for investigating many fundamental issues of nanocrystals, such as the formation of metallic state, and will have potential impact on condensed matter physics, nanochemistry, and catalysis as well.

  5. 2009 Clusters, Nanocrystals & Nanostructures GRC

    SciTech Connect

    Lai-Sheng Wang

    2009-07-19

    For over thirty years, this Gordon Conference has been the premiere meeting for the field of cluster science, which studies the phenomena that arise when matter becomes small. During its history, participants have witnessed the discovery and development of many novel materials, including C60, carbon nanotubes, semiconductor and metal nanocrystals, and nanowires. In addition to addressing fundamental scientific questions related to these materials, the meeting has always included a discussion of their potential applications. Consequently, this conference has played a critical role in the birth and growth of nanoscience and engineering. The goal of the 2009 Gordon Conference is to continue the forward-looking tradition of this meeting and discuss the most recent advances in the field of clusters, nanocrystals, and nanostructures. As in past meetings, this will include new topics that broaden the field. In particular, a special emphasis will be placed on nanomaterials related to the efficient use, generation, or conversion of energy. For example, we anticipate presentations related to batteries, catalysts, photovoltaics, and thermoelectrics. In addition, we expect to address the controversy surrounding carrier multiplication with a session in which recent results addressing this phenomenon will be discussed and debated. The atmosphere of the conference, which emphasizes the presentation of unpublished results and lengthy discussion periods, ensures that attendees will enjoy a valuable and stimulating experience. Because only a limited number of participants are allowed to attend this conference, and oversubscription is anticipated, we encourage all interested researchers from academia, industry, and government institutions to apply as early as possible. An invitation is not required. We also encourage all attendees to submit their latest results for presentation at the poster sessions. We anticipate that several posters will be selected for 'hot topic' oral

  6. Sorting fluorescent nanocrystals with DNA

    SciTech Connect

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  7. A one-step green route to synthesize copper nanocrystals and their applications in catalysis and surface enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Zhang, Pinhua; Sui, Yongming; Wang, Chao; Wang, Yingnan; Cui, Guangliang; Wang, Chunzhong; Liu, Bingbing; Zou, Bo

    2014-04-01

    A nontoxic, simple, inexpensive, and reproducible strategy, which meets the standard of green chemistry, is introduced for the synthesis of copper nanocrystals (Cu NCs) with olive oil as both reducing agent and capping agent. By changing the reaction parameters, the shape, size and surface structure of the Cu NCs can be well controlled. The obtained Cu nanocubes show excellent catalytic properties for the catalytic reduction of dyes and CO oxidation. Moreover, the prepared Cu nanocubes as substrates exhibit surface enhanced Raman scattering (SERS) activity for 4-mercaptopyridine (4-Mpy). Therefore, this facile route provides a useful platform for the fabrication of Cu NCs which have the potential to replace noble metals for certain applications.A nontoxic, simple, inexpensive, and reproducible strategy, which meets the standard of green chemistry, is introduced for the synthesis of copper nanocrystals (Cu NCs) with olive oil as both reducing agent and capping agent. By changing the reaction parameters, the shape, size and surface structure of the Cu NCs can be well controlled. The obtained Cu nanocubes show excellent catalytic properties for the catalytic reduction of dyes and CO oxidation. Moreover, the prepared Cu nanocubes as substrates exhibit surface enhanced Raman scattering (SERS) activity for 4-mercaptopyridine (4-Mpy). Therefore, this facile route provides a useful platform for the fabrication of Cu NCs which have the potential to replace noble metals for certain applications. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00412d

  8. Selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes

    SciTech Connect

    Martis, P.; Venugopal, B.R.; Delhalle, J.; Mekhalif, Z.

    2011-05-15

    A simple route to selective decoration of nickel and nickel oxide nanocrystals on multiwalled carbon nanotubes (MWCNTs) using nickel acetylacetonate (NAA) was successfully achieved for the first time. The homogeneously decorated nanocrystals on MWCNTs were investigated for their structure and morphology by various techniques, such as powder X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, field emission scanning electron microscopy and thermogravimetric analysis. It was found that the size distributions of the nanocrystals on MWCNTs ranged from 8 to 15 nm and they were well resolved. The precursor, NAA, was effectively employed to impregnate the MWCNTs, which on calcination at suitable temperatures and in the presence of hydrogen and nitrogen atmosphere gave rise to nickel and nickel oxide nanocrystals, respectively. -- Graphical abstract: Nickel and nickel oxide nanocrystals were selectively and homogeneously decorated on multiwalled carbon nanotubes using nickel acetylacetonate, as a precursor in a simple and efficient route. Display Omitted Highlights: {yields} A simple route for decoration of nickel and nickel oxide nanocrystals on MWCNTs. {yields} Nickel acetylacetonate used as nickel source for the first time to impregnate on MWCNTs. {yields} Selective decoration was achieved by calcination in hydrogen and nitrogen atmospheres. {yields} The as-decorated nickel and nickel oxide nanocrystals are in the range of 8-15 nm.

  9. Nanocrystal waveguide (NOW) laser

    DOEpatents

    Simpson, John T.; Simpson, Marcus L.; Withrow, Stephen P.; White, Clark W.; Jaiswal, Supriya L.

    2005-02-08

    A solid state laser includes an optical waveguide and a laser cavity including at least one subwavelength mirror disposed in or on the optical waveguide. A plurality of photoluminescent nanocrystals are disposed in the laser cavity. The reflective subwavelength mirror can be a pair of subwavelength resonant gratings (SWG), a pair of photonic crystal structures (PC), or a distributed feedback structure. In the case of a pair of mirrors, a PC which is substantially transmissive at an operating wavelength of the laser can be disposed in the laser cavity between the subwavelength mirrors to improve the mode structure, coherence and overall efficiency of the laser. A method for forming a solid state laser includes the steps of providing an optical waveguide, creating a laser cavity in the optical waveguide by disposing at least one subwavelength mirror on or in the waveguide, and positioning a plurality of photoluminescent nanocrystals in the laser cavity.

  10. Atomic Structure of Self-Assembled Monolayer of Thiolates on a Tetragonal Au92 Nanocrystal.

    PubMed

    Zeng, Chenjie; Liu, Chong; Chen, Yuxiang; Rosi, Nathaniel L; Jin, Rongchao

    2016-07-20

    Unveiling the ligand binding mode on the crystalline surfaces is important for deciphering the long-standing structural enigma in self-assembled monolayers (SAMs). Here, the binding and patterning structures of thiolates (SR) on the Au(100) crystalline facet are revealed on the basis of the atomic structure of a highly regular, single crystalline Au92(SR)44 nanocrystal. The six exposed facets of this tetragonal nanocrystal give rise to six pieces of "nanoSAMs". We found that thiolates bind to the planar (100) facets of the nanocrystal via a simple bridge-like mode and are assembled into an overlayer with c(2 × 2) symmetry. The Au-S binding mode and translational symmetry in the kernel and on the surface of the Au92 nanocrystal can be generalized infinitely to construct the bulk two-dimensional SAMs and various tetragonal nanocrystals.

  11. Growth of gold nanoclusters and nanocrystals induced by lysozyme protein in thin film conformation

    NASA Astrophysics Data System (ADS)

    Bhowal, Ashim Chandra; Kundu, Sarathi

    2016-08-01

    Structures and growth behavior of gold nanoclusters and nanocrystals have been explored on thin films of globular protein lysozyme by using UV-vis and photoluminescence spectroscopy, X-ray diffraction (XRD) and atomic force microscopy (AFM). A simple and one-step environment friendly method has been used to grow nanocrystals on protein surface from HAuCl4 solution. It has been found that if different interaction times are provided between lysozyme films and HAuCl4 solution, then initially formed tiny gold nanoclusters on protein surface transform into nanocrystals with the passage of time. XRD analysis shows the formation of faced-centered cubic lattice along (1 1 1) crystalline direction and AFM images confirm the presence of circular, rod-like, triangular and hexagonal crystal structures. Langmuir-like growth behavior has been identified for both the gold nanoclusters and nanocrystals formation induced by the lysozyme films, however, nanocrystal growth is relatively slower than nanocluster.

  12. Preliminary design of a simple passive toe exercise apparatus with a flexible metal hydride actuator for pressure ulcer prevention.

    PubMed

    Ino, Shuichi; Sato, Mitsuru; Hosono, Minako; Nakajima, Sawako; Yamashita, Kazuhiko; Izumi, Takashi

    2010-01-01

    In an aging society, social demands for home-based rehabilitation and assistive technologies by healthcare and welfare services are globally increasing. The progress of quality-of-life technologies and rehabilitation science is a very important and urgent issue for elderly and disabled individuals as well as for their caregivers. Thus, there is a substantial need to develop simple bedside apparatuses for both continuous exercise of joints and for power assistance for standing to prevent and manage disuse syndromes (e.g., pressure ulcers, joint contractures and muscular atrophy). Unfortunately, there are currently no commercially-available actuators compatible with the human requirements of flexibility, quietness, lightness and a high power-to-weight ratio. To fulfill the above demands, we have developed a novel actuation device using a metal hydride (MH) alloy and a laminate film, called the flexible MH actuator, as a human-friendly force generator for healthcare and welfare services. In this paper, we show the basic structure and characteristics of the flexible MH actuator used to create a passive exercise system for preventing disuse syndromes. To evaluate the efficiency of passive exercise for bedsore prevention, subcutaneous blood flow during passive exercise at common pressure-ulcer sites is measured by a laser blood flow meter. The force and range-of-motion angle required for a passive exercise apparatus is also examined with the help of a professional physical therapist. Based on these findings, a prototype of a passive exercise apparatus is fabricated using the flexible MH actuator technology, and its operation characteristics are preliminarily verified using a thermoelectric control system.

  13. Photodoping of Colloidal Nanocrystals

    NASA Astrophysics Data System (ADS)

    Cohn, Alicia W.

    This dissertation addresses various aspects of photodoping colloidal nanocrystals. Photodoped ZnO nanocrystals were found to be versatile tuneable reducers using both quantum confinement and band-gap engineering with Mg2+ doping to change the conduction band potential. Using photoluminescence of the visible trap and magnetic circular dichroism spectroscopy of Mg2+ and Mn2+ co-doped ZnO, Mg2+ was shown to change the potential of both the conduction and valence band in a ratio of 0.68:0.32. The hole scavenging reaction using ethanol as the hole scavenger was investigated using continuous-wave and time resolved photoluminescence of the visible trap state of ZnO. The reaction was found to occur between the valence band hole and with a rate of > 15 ps-1. Quenching of the ZnO visible trap luminescence upon photodoping was shown to be due to trap/electron Auger process while the concomitant enhancement of the UV band-gap emission was hypothesized to be due to a reduction in non-radiative processes due to extra electrons in the conduction-band. The trap/electron Auger process in ZnO nanocrystals was further characterized by a size-dependence and shown to scale with R2. Another previously unknown Auger size dependence was measured in CdSe/ZnS trions and shown to scale with R4.3.

  14. Polycatenar Ligand Control of the Synthesis and Self-Assembly of Colloidal Nanocrystals.

    PubMed

    Diroll, Benjamin T; Jishkariani, Davit; Cargnello, Matteo; Murray, Christopher B; Donnio, Bertrand

    2016-08-24

    Hydrophobic colloidal nanocrystals are typically synthesized and manipulated with commercially available ligands, and surface functionalization is therefore typically limited to a small number of molecules. Here, we report the use of polycatenar ligands derived from polyalkylbenzoates for the direct synthesis of metallic, chalcogenide, pnictide, and oxide nanocrystals. Polycatenar molecules, branched structures bearing diverging chains in which the terminal substitution pattern, functionality, and binding group can be independently modified, offer a modular platform for the development of ligands with targeted properties. Not only are these ligands used for the direct synthesis of monodisperse nanocrystals, but nanocrystals coated with polycatenar ligands self-assemble into softer bcc superlattices that deviate from conventional harder close-packed structures (fcc or hcp) formed by the same nanocrystals coated with commercial ligands. Self-assembly experiments demonstrate that the molecular structure of polycatenar ligands encodes interparticle spacings and attractions, engineering self-assembly, which is tunable from hard sphere to soft sphere behavior. PMID:27472457

  15. Formation of Si nanocrystals utilizing a Au nanoscale island etching mask

    SciTech Connect

    Kang, Y.M.; Lee, S.J.; Kim, D.Y. . E-mail: dykim@dongguk.edu; Kim, T.W.; Woo, Y.-D.; Wang, K.L.

    2005-01-04

    Si nanocrystals were formed by using a Au nanoscale island etching mask. A high-resolution transmission electron microscopy image showed that the Si nanocrystals were created on a SiO{sub x} layer, and the luminescence peak related to Si nanocrystals was observed in the cathodoluminescence spectrum. Capacitance-voltage measurements demonstrate a metal-insulator-semiconductor behavior with a flatband voltage shift for the Al/SiO{sub 2}/nanocrystalline Si/SiO{sub 2}/p-Si structures, indicative of the existence of the Si nanocrystals embedded into the SiO{sub x} layer. These results indicate that Si nanocrystals embedded into the SiO{sub x} layer can be formed by using a Au island etching mask.

  16. Broadband enhancement of infrared absorption in microbolometers using Ag nanocrystals

    SciTech Connect

    Hyun, Jerome K.; Ahn, Chi Won; Kim, Woo Choong; Kim, Tae Hyun; Hyun, Moon Seop; Kim, Hee Yeoun E-mail: jhpark@nnfc.re.kr; Park, Jae Hong E-mail: jhpark@nnfc.re.kr; Lee, Won-Oh

    2015-12-21

    High performance microbolometers are widely sought for thermal imaging applications. In order to increase the performance limits of microbolometers, the responsivity of the device to broadband infrared (IR) radiation needs to be improved. In this work, we report a simple, quick, and cost-effective approach to modestly enhance the broadband IR response of the device by evaporating Ag nanocrystals onto the light entrance surface of the device. When irradiated with IR light, strong fields are built up within the gaps between adjacent Ag nanocrystals. These fields resistively generate heat in the nanocrystals and underlying substrate, which is transduced into an electrical signal via a resistive sensing element in the device. Through this method, we are able to enhance the IR absorption over a broadband spectrum and improve the responsivity of the device by ∼11%.

  17. Broadband enhancement of infrared absorption in microbolometers using Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Hyun, Jerome K.; Ahn, Chi Won; Kim, Woo Choong; Kim, Tae Hyun; Hyun, Moon Seop; Lee, Won-Oh; Kim, Hee Yeoun; Park, Jae Hong

    2015-12-01

    High performance microbolometers are widely sought for thermal imaging applications. In order to increase the performance limits of microbolometers, the responsivity of the device to broadband infrared (IR) radiation needs to be improved. In this work, we report a simple, quick, and cost-effective approach to modestly enhance the broadband IR response of the device by evaporating Ag nanocrystals onto the light entrance surface of the device. When irradiated with IR light, strong fields are built up within the gaps between adjacent Ag nanocrystals. These fields resistively generate heat in the nanocrystals and underlying substrate, which is transduced into an electrical signal via a resistive sensing element in the device. Through this method, we are able to enhance the IR absorption over a broadband spectrum and improve the responsivity of the device by ˜11%.

  18. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2012-06-12

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites

  19. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Petruska, Melissa A.; Klimov, Victor L.

    2007-06-05

    The present invention is directed to solid composites including colloidal nanocrystals within a sol-gel host or matrix and to processes of forming such solid composites. The present invention is further directed to alcohol soluble colloidal nanocrystals useful in formation of sol-gel based solid composites.

  20. Method of synthesizing pyrite nanocrystals

    SciTech Connect

    Wadia, Cyrus; Wu, Yue

    2013-04-23

    A method of synthesizing pyrite nanocrystals is disclosed which in one embodiment includes forming a solution of iron (III) diethyl dithiophosphate and tetra-alkyl-ammonium halide in water. The solution is heated under pressure. Pyrite nanocrystal particles are then recovered from the solution.

  1. Surface modification of cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Eyley, Samuel; Thielemans, Wim

    2014-06-01

    Chemical modification of cellulose nanocrystals is an increasingly popular topic in the literature. This review analyses the type of cellulose nanocrystal modification reactions that have been published in the literature thus far and looks at the steps that have been taken towards analysing the products of the nanocrystal modifications. The main categories of reactions carried out on cellulose nanocrystals are oxidations, esterifications, amidations, carbamations and etherifications. More recently nucleophilic substitutions have been used to introduce more complex functionality to cellulose nanocrystals. Multi-step modifications are also considered. This review emphasizes quantification of modification at the nanocrystal surface in terms of degree of substitution and the validity of conclusions drawn from different analysis techniques in this area. The mechanisms of the modification reactions are presented and considered with respect to the effect on the outcome of the reactions. While great strides have been made in the quality of analytical data published in the field of cellulose nanocrystal modification, there is still vast scope for improvement, both in data quality and the quality of analysis of data. Given the difficulty of surface analysis, cross-checking of results from different analysis techniques is fundamental for the development of reliable cellulose nanocrystal modification techniques.

  2. Electronic spectra of semiconductor nanocrystals

    SciTech Connect

    Alivisatos, A.P.

    1993-12-31

    Semiconductor nanocrystals smaller than the bulk exciton show substantial quantum confinement effects. Recent experiments including Stark effect, resonance Raman, valence band photoemission, and near edge X-ray adsorption will be used to put together a picture of the nanocrystal electronic states.

  3. Photoemission studies of semiconductor nanocrystals

    SciTech Connect

    Hamad, K. S.; Roth, R.; Alivisatos, A. P.

    1997-04-01

    Semiconductor nanocrystals have been the focus of much attention in the last ten years due predominantly to their size dependent optical properties. Namely, the band gap of nanocrystals exhibits a shift to higher energy with decreasing size due to quantum confinement effects. Research in this field has employed primarily optical techniques to study nanocrystals, and in this respect this system has been investigated extensively. In addition, one is able to synthesize monodisperse, crystalline particles of CdS, CdSe, Si, InP, InAs, as well as CdS/HgS/CdS and CdSe/CdS composites. However, optical spectroscopies have proven ambiguous in determining the degree to which electronic excitations are interior or surface admixtures or giving a complete picture of the density of states. Photoemission is a useful technique for understanding the electronic structure of nanocrystals and the effects of quantum confinement, chemical environments of the nanocrystals, and surface coverages. Of particular interest to the authors is the surface composition and structure of these particles, for they have found that much of the behavior of nanocrystals is governed by their surface. Previously, the authors had performed x-ray photoelectron spectroscopy (XPS) on CdSe nanocrystals. XPS has proven to be a powerful tool in that it allows one to determine the composition of the nanocrystal surface.

  4. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals.

  5. Potentiometric Titrations for Measuring the Capacitance of Colloidal Photodoped ZnO Nanocrystals.

    PubMed

    Brozek, Carl K; Hartstein, Kimberly H; Gamelin, Daniel R

    2016-08-24

    Colloidal semiconductor nanocrystals offer a unique opportunity to bridge molecular and bulk semiconductor redox phenomena. Here, potentiometric titration is demonstrated as a method for quantifying the Fermi levels and charging potentials of free-standing colloidal n-type ZnO nanocrystals possessing between 0 and 20 conduction-band electrons per nanocrystal, corresponding to carrier densities between 0 and 1.2 × 10(20) cm(-3). Potentiometric titration of colloidal semiconductor nanocrystals has not been described previously, and little precedent exists for analogous potentiometric titration of any soluble reductants involving so many electrons. Linear changes in Fermi level vs charge-carrier density are observed for each ensemble of nanocrystals, with slopes that depend on the nanocrystal size. Analysis indicates that the ensemble nanocrystal capacitance is governed by classical surface electrical double layers, showing no evidence of quantum contributions. Systematic shifts in the Fermi level are also observed with specific changes in the identity of the charge-compensating countercation. As a simple and contactless alternative to more common thin-film-based voltammetric techniques, potentiometric titration offers a powerful new approach for quantifying the redox properties of colloidal semiconductor nanocrystals. PMID:27444048

  6. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-01

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof.

  7. Photocatalytic Applications of Colloidal Heterostructured Nanocrystals: What's Next?

    PubMed

    Razgoniaeva, Natalia; Moroz, Pavel; Lambright, Scott; Zamkov, Mikhail

    2015-11-01

    Recent progress in the colloidal synthesis of inorganic nanocrystals has led to the realization of complex, multidomain nanoparticle morphologies that give rise to advanced optoelectronic properties. Such nanocomposites are particularly appealing for photocatalytic applications where tunable absorption, extensive charge separation, and large surface-to-volume ratios are important. To date, heterostructured nanocrystals featuring a metal catalyst and a semiconductor "chromophore" component have shown compelling efficiencies in photoreduction reactions, including sacrificial hydrogen production. Time-resolved optical studies have attributed their success to a near-complete separation of photoinduced charges across dissimilar nanoparticle domains. The spectroscopy approach has also identified the key performance-limiting factors of nanocrystal catalysts that arise from inefficient extraction of photoinduced charges to catalytic sites. Along these lines, the main scope of present-day efforts targets the improvement of interstitial charge transfer pathways across the chromophore-catalyst assembly through the design of high-quality stoichiometric interfaces.

  8. 1D nanocrystals with precisely controlled dimensions, compositions, and architectures.

    PubMed

    Pang, Xinchang; He, Yanjie; Jung, Jaehan; Lin, Zhiqun

    2016-09-16

    The ability to synthesize a diverse spectrum of one-dimensional (1D) nanocrystals presents an enticing prospect for exploring nanoscale size- and shape-dependent properties. Here we report a general strategy to craft a variety of plain nanorods, core-shell nanorods, and nanotubes with precisely controlled dimensions and compositions by capitalizing on functional bottlebrush-like block copolymers with well-defined structures and narrow molecular weight distributions as nanoreactors. These cylindrical unimolecular nanoreactors enable a high degree of control over the size, shape, architecture, surface chemistry, and properties of 1D nanocrystals. We demonstrate the synthesis of metallic, ferroelectric, upconversion, semiconducting, and thermoelectric 1D nanocrystals, among others, as well as combinations thereof. PMID:27634531

  9. Cobalt Nanocrystals as Starting Materials for Shape Modificationand Assembly Formation

    SciTech Connect

    Erdonmez, Can Kerem

    2005-01-01

    Surfactant-coated cobalt nanocrystals can be prepared with areasonable degree of control over particle size and shape using athermolytic route. The small crystallite size, enhanced reactivity andtunable interparticle interactions enable use of this material asstarting material for demonstration of achievement of novel structuresusing extremely simple solution-based approaches. In particular,formation of hollow cobalt sulfide nanocrystals upon chemicalmodification and emergence of long-range orientational order upondrying-mediated assembly of cobalt nanocrystals is reportedhere.Colloidal preparation of Co nanocrystals has been well-studied.Here, we emphasize general principles and crystallographic/morphologicalcharacterization of disk-shaped hcp-Co nanocrystals. Use of surfactantmolecules enables achievement of multiple morphologies in one syntheticsystem.Formation of hollow structures upon in-solution sulfidation of Conanocrystals is presented and discussed. A Kirkendall-type effect,involving dominant outward mass transport during formation of the ionicshell material explains the results naturally. It is expected that thisphenomenon will generalize extensively to formation of hollow structuresof an enormous variety of compositions. Detailed study of particlemorphology as a function of reaction conditions suggest phenomena likelyto be generally relevant to use of this approach. A short report ofcrystallographic co-alignment into vortex-like structures is alsoprovided. Our current best picture of this process involves an interplayof packing and magnetic interactions between facetedparticles.

  10. Mechanical Properties of Nanocrystal Supercrystals

    SciTech Connect

    Tam, Enrico; Podsiadlo, Paul; Shevchenko, Elena; Ogletree, D. Frank; Delplancke-Ogletree, Marie-Paule; Ashby, Paul D.

    2009-12-30

    Colloidal nanocrystals attract significant interest due to their potential applications in electronic, magnetic, and optical devices. Nanocrystal supercrystals (NCSCs) are particularly appealing for their well ordered structure and homogeneity. The interactions between organic ligands that passivate the inorganic nanocrystal cores critically influence their self-organization into supercrystals, By investigating the mechanical properties of supercrystals, we can directly characterize the particle-particle interactions in a well-defined geometry, and gain insight into both the self-assembly process and the potential applications of nanocrystal supercrystals. Here we report nanoindentation studies of well ordered lead-sulfide (Pbs) nanocrystal supercrystals. Their modulus and hardness were found to be similar to soft polymers at 1.7 GPa and 70 MPa respectively and the fractures toughness was 39 KPa/m1/2, revealing the extremely brittle nature of these materials.

  11. Germanium Nanocrystals Embedded in Sapphire

    SciTech Connect

    Xu, Q.; Sharp, I.D.; Liao, C.Y.; Yi, D.O.; Ager III, J.W.; Beeman, J.W.; Yu, K.M.; Chrzan, D.C.; Haller, E.E.

    2005-04-15

    {sup 74}Ge nanocrystals are formed in a sapphire matrix by ion implantation followed by damage. Embedded nanocrystals experience large compressive stress relative to bulk, as embedded in sapphire melt very close to the bulk melting point (Tm = 936 C) whereas experience considerably lower stresses. Also, in situ TEM reveals that nanocrystals ion-beam-synthesized nanocrystals embedded in silica are observed to be spherical and measured by Raman spectroscopy of the zone center optical phonon. In contrast, reveals that the nanocrystals are faceted and have a bi-modal size distribution. Notably, the matrix remains crystalline despite the large implantation dose and corresponding thermal annealing. Transmission electron microscopy (TEM) of as-grown samples those embedded in silica exhibit a significant melting point hysteresis around T{sub m}.

  12. Nanocrystal/sol-gel nanocomposites

    DOEpatents

    Klimov, Victor L.; Petruska, Melissa A.

    2010-05-25

    The present invention is directed to a process for preparing a solid composite having colloidal nanocrystals dispersed within a sol-gel matrix, the process including admixing colloidal nanocrystals with an amphiphilic polymer including hydrophilic groups selected from the group consisting of --COOH, --OH, --SO.sub.3H, --NH.sub.2, and --PO.sub.3H.sub.2 within a solvent to form an alcohol-soluble colloidal nanocrystal-polymer complex, admixing the alcohol-soluble colloidal nanocrystal-polymer complex and a sol-gel precursor material, and, forming the solid composite from the admixture. The present invention is also directed to the resultant solid composites and to the alcohol-soluble colloidal nanocrystal-polymer complexes.

  13. Enhanced Luminescent Stability through Particle Interactions in Silicon Nanocrystal Aggregates.

    PubMed

    Miller, Joseph B; Dandu, Naveen; Velizhanin, Kirill A; Anthony, Rebecca J; Kortshagen, Uwe R; Kroll, Daniel M; Kilina, Svetlana; Hobbie, Erik K

    2015-10-27

    Close-packed assemblies of ligand-passivated colloidal nanocrystals can exhibit enhanced photoluminescent stability, but the origin of this effect is unclear. Here, we use experiment, simulation, and ab initio computation to examine the influence of interparticle interactions on the photoluminescent stability of silicon nanocrystal aggregates. The time-dependent photoluminescence emitted by structures ranging in size from a single quantum dot to agglomerates of more than a thousand is compared with Monte Carlo simulations of noninteracting ensembles using measured single-particle blinking data as input. In contrast to the behavior typically exhibited by the metal chalcogenides, the measured photoluminescent stability shows an enhancement with respect to the noninteracting scenario with increasing aggregate size. We model this behavior using time-dependent density functional theory calculations of energy transfer between neighboring nanocrystals as a function of nanocrystal size, separation, and the presence of charge and/or surface-passivation defects. Our results suggest that rapid exciton transfer from "bright" nanocrystals to surface trap states in nearest-neighbors can efficiently fill such traps and enhance the stability of emission by promoting the radiative recombination of slowly diffusing excited electrons.

  14. Excavated Cubic Platinum-Tin Alloy Nanocrystals Constructed from Ultrathin Nanosheets with Enhanced Electrocatalytic Activity.

    PubMed

    Chen, Qiaoli; Yang, Yanan; Cao, Zhenming; Kuang, Qin; Du, Guifen; Jiang, Yaqi; Xie, Zhaoxiong; Zheng, Lansun

    2016-07-25

    Excavated polyhedral noble-metal materials that were built by the orderly assembly of ultrathin nanosheets have both large surface areas and well-defined facets, and therefore could be promising candidates for diverse important applications. In this work, excavated cubic Pt-Sn alloy nanocrystals (NCs) with {110} facets were constructed from twelve nanosheets by a simple co-reduction method with the assistance of the surface regulator polyvinylpyrrolidone. The specific surface area of the excavated cubic Pt-Sn NCs is comparable to that of commercial Pt black despite their larger particle size. The excavated cubic Pt-Sn NCs exhibited superior electrocatalytic activity in terms of both the specific area current density and the mass current density towards methanol oxidation. PMID:27325395

  15. Roles of aromatic side chains and template effects of the hydrophobic cavity of a self-assembled peptide nanoarchitecture for anisotropic growth of gold nanocrystals.

    PubMed

    Tomizaki, Kin-ya; Kishioka, Kohei; Kobayashi, Hiroki; Kobayashi, Akitsugu; Yamada, Naoki; Kataoka, Shunsuke; Imai, Takahito; Kasuno, Megumi

    2015-11-15

    decreasing the mole fraction of [Ant(6)]-RU006 against the total concentration of [Ant(6)]-RU006 and [Phe(6)]-RU006: absorption spectra similar to that for RU006 were obtained. Differences in the redox properties of the anthracene and naphthalene moieties scarcely affected morphology. We propose that construction of an appropriate hydrophobic cavity is important for templating gold nanocrystal architectures by peptide self-assembly. This mechanism would be applicable for developing simple, low toxicity, mild synthetic methods for constructing metallic nanomaterials for therapeutic use.

  16. Roles of aromatic side chains and template effects of the hydrophobic cavity of a self-assembled peptide nanoarchitecture for anisotropic growth of gold nanocrystals.

    PubMed

    Tomizaki, Kin-ya; Kishioka, Kohei; Kobayashi, Hiroki; Kobayashi, Akitsugu; Yamada, Naoki; Kataoka, Shunsuke; Imai, Takahito; Kasuno, Megumi

    2015-11-15

    decreasing the mole fraction of [Ant(6)]-RU006 against the total concentration of [Ant(6)]-RU006 and [Phe(6)]-RU006: absorption spectra similar to that for RU006 were obtained. Differences in the redox properties of the anthracene and naphthalene moieties scarcely affected morphology. We propose that construction of an appropriate hydrophobic cavity is important for templating gold nanocrystal architectures by peptide self-assembly. This mechanism would be applicable for developing simple, low toxicity, mild synthetic methods for constructing metallic nanomaterials for therapeutic use. PMID:26521037

  17. A simple laminate theory using the orthotropic viscoplasticity theory based on overstress. I - In-plane stress-strain relationships for metal matrix composites

    NASA Technical Reports Server (NTRS)

    Krempl, Erhard; Hong, Bor Zen

    1989-01-01

    A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.

  18. Nanocrystal assembly for bottom-up plasmonic materials

    NASA Astrophysics Data System (ADS)

    Tao, Andrea Rae

    2007-12-01

    Plasmonic materials are emerging as key platforms for applications that rely on the manipulation of light at small length scales. Materials that possess sub-wavelength metallic features support either localized or propagating surface plasmons that can induce huge local electromagnetic fields at the metal surface, facilitating a host of extraordinary optical phenomena. For many of the breakthrough photonic, spectroscopic, and optoelectronic applications of plasmonics, the bottom-up fabrication of these materials from low-dimensional structures has yet to be explored. Because colloidal metal nanostructures can be readily synthesized with controlled shapes and sizes, and because these structures also generate plasmon-mediated evanescent fields near their surfaces when irradiated with light, Ag nanocrystals and nanowires are ideal building blocks for rationally designed plasmonic materials. This dissertation addresses three major challenges: (1) the synthesis of Ag polyhedral nanocrystals and nanowires, (2) the bottom-up organization of these nanostructures into one-, two-, and three-dimensional assemblies, and (3) the application of these assemblies as spectroscopic sensing platforms. Faceted Ag colloids were synthesized in high yield and with remarkable monodispersity using the polyol process, where Ag+ is reduced in the presence of a polymer capping agent that serves to regulate nucleation and crystallographic growth direction. The resulting nanocrystals and nanowires are bound exclusively by {100} and {111} crystal planes, where nanowires possess pentagonal cross-sections and nanocrystals possess octahedral symmetry. Because allowed plasmon modes are explicitly dictated by geometric considerations, each shape exhibits a unique scattering spectrum in the optical wavelengths. These shaped colloidal building blocks were assembled into ordered groupings and superlattices to achieve controlled electromagnetic coupling between individual nanostructures. Of particular

  19. Application of precipitation methods for the production of water-insoluble drug nanocrystals: production techniques and stability of nanocrystals.

    PubMed

    Xia, Dengning; Gan, Yong; Cui, Fude

    2014-01-01

    This review focuses on using precipitation (bottom-up) method to produce water-insoluble drug nanocrystals, and the stability issues of nanocrystals. The precipitation techniques for production of ultra-fine particles have been widely researched for last few decades. In these techniques, precipitation of solute is achieved by addition of a non-solvent for solute called anti-solvent to decrease the solvent power for the solute dissolved in a solution. The anti-solvent can be water, organic solvents or supercritical fluids. In this paper, efforts have been made to review the precipitation techniques involving the anti-solvent precipitation by simple mixing, impinging jet mixing, multi-inlet vortex mixing, the using of high-gravity, ultrasonic waves and supercritical fluids. The key to the success of yielding stable nanocrystals in these techniques is to control the nucleation kinetics and particle growth through mixing during precipitation based on crystallization theories. The stability issues of the nanocrystals, such as sedimentation, Ostwald ripening, agglomeration and cementing of crystals, change of crystalline state, and the approaches to stabilizing nanocrystals are also discussed in detail.

  20. Size-Controlled TiO2 nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids.

    PubMed

    Yan, Wen-Yuan; Zhou, Qi; Chen, Xing; Yang, Yong; Zhang, Yong; Huang, Xing-Jiu; Wu, Yu-Cheng

    2016-08-15

    Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO2/graphene nanocomposites (N-RGO/TiO2) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO2 nanocrystals and graphene, but also the nitrogen dopant for TiO2 nanocrystals and graphene. During the hydrothermal process, facets of TiO2 nanocrystals were modulated with addition of HF, and sizes of TiO2 nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH2). The obtained N-RGO/TiO2 nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO2 samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO2 catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO2-N/F (61%) in 3h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance. PMID:27107234

  1. Size-Controlled TiO2 nanocrystals with exposed {001} and {101} facets strongly linking to graphene oxide via p-Phenylenediamine for efficient photocatalytic degradation of fulvic acids.

    PubMed

    Yan, Wen-Yuan; Zhou, Qi; Chen, Xing; Yang, Yong; Zhang, Yong; Huang, Xing-Jiu; Wu, Yu-Cheng

    2016-08-15

    Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO2/graphene nanocomposites (N-RGO/TiO2) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO2 nanocrystals and graphene, but also the nitrogen dopant for TiO2 nanocrystals and graphene. During the hydrothermal process, facets of TiO2 nanocrystals were modulated with addition of HF, and sizes of TiO2 nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH2). The obtained N-RGO/TiO2 nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO2 samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO2 catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO2-N/F (61%) in 3h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance.

  2. Silicon nanocrystal inks, films, and methods

    SciTech Connect

    Wheeler, Lance Michael; Kortshagen, Uwe Richard

    2015-09-01

    Silicon nanocrystal inks and films, and methods of making and using silicon nanocrystal inks and films, are disclosed herein. In certain embodiments the nanocrystal inks and films include halide-terminated (e.g., chloride-terminated) and/or halide and hydrogen-terminated nanocrystals of silicon or alloys thereof. Silicon nanocrystal inks and films can be used, for example, to prepare semiconductor devices.

  3. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

    SciTech Connect

    Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.

    2015-11-17

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stressdependent cutoff function. In conclusion, the results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.

  4. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

    NASA Astrophysics Data System (ADS)

    Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; Leblanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.

    2015-11-01

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes.

  5. Universal Quake Statistics: From Compressed Nanocrystals to Earthquakes

    PubMed Central

    Uhl, Jonathan T.; Pathak, Shivesh; Schorlemmer, Danijel; Liu, Xin; Swindeman, Ryan; Brinkman, Braden A. W.; LeBlanc, Michael; Tsekenis, Georgios; Friedman, Nir; Behringer, Robert; Denisov, Dmitry; Schall, Peter; Gu, Xiaojun; Wright, Wendelin J.; Hufnagel, Todd; Jennings, Andrew; Greer, Julia R.; Liaw, P. K.; Becker, Thorsten; Dresen, Georg; Dahmen, Karin A.

    2015-01-01

    Slowly-compressed single crystals, bulk metallic glasses (BMGs), rocks, granular materials, and the earth all deform via intermittent slips or “quakes”. We find that although these systems span 12 decades in length scale, they all show the same scaling behavior for their slip size distributions and other statistical properties. Remarkably, the size distributions follow the same power law multiplied with the same exponential cutoff. The cutoff grows with applied force for materials spanning length scales from nanometers to kilometers. The tuneability of the cutoff with stress reflects “tuned critical” behavior, rather than self-organized criticality (SOC), which would imply stress-independence. A simple mean field model for avalanches of slipping weak spots explains the agreement across scales. It predicts the observed slip-size distributions and the observed stress-dependent cutoff function. The results enable extrapolations from one scale to another, and from one force to another, across different materials and structures, from nanocrystals to earthquakes. PMID:26572103

  6. One-step solid-state thermolysis of a metal-organic framework: a simple and facile route to large-scale of multiwalled carbon nanotubes.

    PubMed

    Chen, Linyun; Bai, Junfeng; Wang, Chunzhao; Pan, Yi; Scheer, Manfred; You, Xiaozeng

    2008-04-01

    We report a simple and facile solid-state approach to large-scale synthesis of multiwalled carbon nanotubes (MCNTs), for the first time, by one-step direct thermolysis of a metal-organic framework [Ni(3)(btc)(2).12H(2)O] (btc = benzene-1,3,5-tricarboxylato) in a one-end closed conventional horizontal tube furnace under relatively low temperature without using any additional carrier gas or catalyst.

  7. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials.

    PubMed

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-09-28

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive overview on toxicity studies concerning all types of quantum dots. Section 3 aims at providing the reader with the basic concepts of nanocrystal synthesis. It starts with the concepts currently used to describe the nucleation and growth of monodisperse particles and next takes a closer look at the chemistry of the inorganic core and its interactions with surface ligands. Section 4 reviews in more detail the synthesis of different families of semiconductor nanocrystals, namely elemental group IV compounds (carbon nanodots, Si, Ge), III-V compounds (e.g., InP, InAs), and binary and multinary metal chalcogenides. Finally, the authors' view on the perspectives in this field is given. PMID:27391095

  8. Synthesis of Semiconductor Nanocrystals, Focusing on Nontoxic and Earth-Abundant Materials.

    PubMed

    Reiss, Peter; Carrière, Marie; Lincheneau, Christophe; Vaure, Louis; Tamang, Sudarsan

    2016-09-28

    We review the synthesis of semiconductor nanocrystals/colloidal quantum dots in organic solvents with special emphasis on earth-abundant and toxic heavy metal free compounds. Following the Introduction, section 2 defines the terms related to the toxicity of nanocrystals and gives a comprehensive overview on toxicity studies concerning all types of quantum dots. Section 3 aims at providing the reader with the basic concepts of nanocrystal synthesis. It starts with the concepts currently used to describe the nucleation and growth of monodisperse particles and next takes a closer look at the chemistry of the inorganic core and its interactions with surface ligands. Section 4 reviews in more detail the synthesis of different families of semiconductor nanocrystals, namely elemental group IV compounds (carbon nanodots, Si, Ge), III-V compounds (e.g., InP, InAs), and binary and multinary metal chalcogenides. Finally, the authors' view on the perspectives in this field is given.

  9. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    PubMed

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications. PMID:23728083

  10. Biopolymer coated gold nanocrystals prepared using the green chemistry approach and their shape-dependent catalytic and surface-enhanced Raman scattering properties.

    PubMed

    Chou, Chih-Wei; Hsieh, Hui-Hsuan; Hseu, You-Cheng; Chen, Ko-Shao; Wang, Gou-Jen; Chang, Hsien-Chang; Pan, Yong-Li; Wei, Yi-Syuan; Chang, Ko Hsin; Harn, Yeu-Wei

    2013-07-21

    This study deals with the preparation of multi-shaped nanoscale gold crystals under synthetically simple, green, and efficient conditions using a seed-mediated growth approach in the presence of hyaluronic acid (HA). These highly biocompatible multi-shaped gold nanocrystals were examined to evaluate their catalytic and surface enhanced Raman scattering (SERS) properties. The results show that the size and shape of the nanocrystals are mainly correlated to the amount of seed, seed size, HA concentration, and reaction temperature. Gold seeds accelerate the reduction of the gold precursor to form gold nanocrystals using HA. The HA serves as a reducing agent and a growth template for the reduction of Au(III) and nanocrystal stabilization. The multi-shaped gold nanocrystals showed superior catalytic properties and higher SERS performance. The simple, green approach efficiently controls the nanocrystals and creates many opportunities for future applications.

  11. Synthesis and characterizations of nanoribbons and monodispersed nanocrystals of CuBr

    SciTech Connect

    Yang Ming; Zhu Junjie . E-mail: jjzhu@nju.edu.cn

    2005-02-15

    Nanoribbons and monodispersed nanocrystals of CuBr have been prepared by a simple reaction between CuO suspension, NH{sub 2}OH.HCl and KBr in the presence of deionized gelatin at 10 deg. C. The products were characterized by X-ray powder diffraction, transmission electron microscopy and UV-vis absorption spectroscopy. The sizes of the monodispersed nanocrystals of CuBr were estimated by Debye-Scherrer formula according to XRD spectrum.

  12. A facile one-pot route to cationic cellulose nanocrystals

    NASA Astrophysics Data System (ADS)

    Jasmani, Latifah; Eyley, Samuel; Wallbridge, Rachel; Thielemans, Wim

    2013-10-01

    Pyridinium-grafted-cellulose nanocrystals were prepared by a simple one-pot reaction using 4-(1-bromoethyl/bromomethyl)benzoic acid, pyridine and cellulose nanocrystals (CNCs). The grafting consists of an esterification reaction between 4-(1-bromoethyl/bromomethyl)benzoic acid and CNCs and a nucleophilic attack on the C-Br bond of 4-(1-bromoethyl/bromomethyl)benzoic acid by pyridine. This reaction simplifies existing cationization methods, which leads to a higher grafting density while retaining the CNC crystallinity.Pyridinium-grafted-cellulose nanocrystals were prepared by a simple one-pot reaction using 4-(1-bromoethyl/bromomethyl)benzoic acid, pyridine and cellulose nanocrystals (CNCs). The grafting consists of an esterification reaction between 4-(1-bromoethyl/bromomethyl)benzoic acid and CNCs and a nucleophilic attack on the C-Br bond of 4-(1-bromoethyl/bromomethyl)benzoic acid by pyridine. This reaction simplifies existing cationization methods, which leads to a higher grafting density while retaining the CNC crystallinity. Electronic supplementary information (ESI) available: Experimental description, FTIR, XPS and XRD spectra and detailed characterisation results of all compounds. See DOI: 10.1039/c3nr03456a

  13. Biomolecular Assembly of Gold Nanocrystals

    SciTech Connect

    Micheel, Christine Marya

    2005-05-20

    Over the past ten years, methods have been developed to construct discrete nanostructures using nanocrystals and biomolecules. While these frequently consist of gold nanocrystals and DNA, semiconductor nanocrystals as well as antibodies and enzymes have also been used. One example of discrete nanostructures is dimers of gold nanocrystals linked together with complementary DNA. This type of nanostructure is also known as a nanocrystal molecule. Discrete nanostructures of this kind have a number of potential applications, from highly parallel self-assembly of electronics components and rapid read-out of DNA computations to biological imaging and a variety of bioassays. My research focused in three main areas. The first area, the refinement of electrophoresis as a purification and characterization method, included application of agarose gel electrophoresis to the purification of discrete gold nanocrystal/DNA conjugates and nanocrystal molecules, as well as development of a more detailed understanding of the hydrodynamic behavior of these materials in gels. The second area, the development of methods for quantitative analysis of transmission electron microscope data, used computer programs written to find pair correlations as well as higher order correlations. With these programs, it is possible to reliably locate and measure nanocrystal molecules in TEM images. The final area of research explored the use of DNA ligase in the formation of nanocrystal molecules. Synthesis of dimers of gold particles linked with a single strand of DNA possible through the use of DNA ligase opens the possibility for amplification of nanostructures in a manner similar to polymerase chain reaction. These three areas are discussed in the context of the work in the Alivisatos group, as well as the field as a whole.

  14. Simple Machines Made Simple.

    ERIC Educational Resources Information Center

    St. Andre, Ralph E.

    Simple machines have become a lost point of study in elementary schools as teachers continue to have more material to cover. This manual provides hands-on, cooperative learning activities for grades three through eight concerning the six simple machines: wheel and axle, inclined plane, screw, pulley, wedge, and lever. Most activities can be…

  15. High-Index Facets in Gold Nanocrystals Elucidated by Coherent Electron Diffraction

    PubMed Central

    Shah, Amish B.; Sivapalan, Sean T.; DeVetter, Brent M.; Yang, Timothy K.; Wen, Jianguo; Bhargava, Rohit; Murphy, Catherine J.; Zuo, Jian-Min

    2013-01-01

    Characterization of high index facets in noble metal nanocrystals for plasmonics and catalysis has been a challenge due to their small sizes and complex shapes. Here, we present an approach to determine the high index facets of nanocrystals using streaked Bragg reflections in coherent electron diffraction patterns, and provide a comparison of high index facets on unusual nanostructures such as trisoctahedra. We report new high index facets in trisoctahedra and previous unappreciated diversity in facet sharpness. PMID:23484620

  16. Pyramidal and Chiral Groupings of Gold Nanocrystals Assembled Using DNA Scaffolds

    SciTech Connect

    Mastroianni, Alexander; Claridge, Shelley; Alivisatos, A. Paul

    2009-03-30

    Nanostructures constructed from metal and semiconductor nanocrystals conjugated to, and organized by DNA are an emerging class of material with collective optical properties. We created discrete pyramids of DNA with gold nanocrystals at the tips. By taking small angle X-ray scattering (SAXS) measurments from solutions of these pyramids we confirmed that this pyramidal geometry creates structures which are more rigid in solution than linear DNA. We then took advantage of the tetrahedral symmetry to demonstrate construction of chiral nanostructures.

  17. ``Dirty nanostructures'': aerosol-assisted synthesis of temperature stable mesoporous metal oxide semiconductor spheres comprising hierarchically assembled zinc oxide nanocrystals controlled via impurities

    NASA Astrophysics Data System (ADS)

    Lehr, Daniela; Großmann, Dennis; Grünert, Wolfgang; Polarz, Sebastian

    2014-01-01

    Structural disintegration or the loss of accessible surfaces of functional nanostructures due to processes involving mass transport (e.g. sintering) is a serious problem for any application of these materials at elevated temperatures, like in heterogeneous catalysis or chemical sensing. Phases with low sintering temperatures, e.g. some metals or metal oxides like zinc oxide (ZnO), are very sensitive in this respect. Therefore, it is not only relevant to prepare important materials with refined morphologies, but the desired features need to be stable under real conditions. In this study, we describe the preparation of mesoporous ZnO nano-/microspheres by means of a template-assisted aerosol technique. Furthermore, by intentional introduction of impurity elements as dopants, specific surface areas and porosities of the prepared materials can be increased significantly. The impurities also strongly improve the thermal stability of the described ZnO nanostructures against thermal sintering. Although the pure ZnO material suffers from a complete loss of porosity, the structures of the impure (''dirty'') materials change only negligibly. Even at 500 °C morphology and porosity are preserved. The latter advantageous property was used for testing the novel nanocatalysts in heterogeneous catalysis.Structural disintegration or the loss of accessible surfaces of functional nanostructures due to processes involving mass transport (e.g. sintering) is a serious problem for any application of these materials at elevated temperatures, like in heterogeneous catalysis or chemical sensing. Phases with low sintering temperatures, e.g. some metals or metal oxides like zinc oxide (ZnO), are very sensitive in this respect. Therefore, it is not only relevant to prepare important materials with refined morphologies, but the desired features need to be stable under real conditions. In this study, we describe the preparation of mesoporous ZnO nano-/microspheres by means of a template

  18. Si nanocrystals and nanocrystal interfaces studied by positron annihilation

    NASA Astrophysics Data System (ADS)

    Kujala, J.; Slotte, J.; Tuomisto, F.; Hiller, D.; Zacharias, M.

    2016-10-01

    Si nanocrystals embedded in a SiO 2 matrix were studied with positron annihilation and photoluminescence spectroscopies. Analysis of the S- and W-parameters for the sample annealed at 800 °C reveals a positron trap at the interface between the amorphous nanodots and the surrounding matrix. Another trap state is observed in the 1150 °C heat treated samples where nanodots are in a crystalline form. Positrons are most likely trapped to defects related to dangling bonds at the surface of the nanocrystals. Passivation of the samples results on one hand in the decrease of the S-parameter implying a decrease in the open volume of the interface state and, on the other hand, in the strengthening of the positron annihilation signal from the interface. The intensity of the photoluminescence signal increases with the formation of the nanocrystals. Passivation of samples strengthens the photoluminescence signal, further indicating a successful deactivation of luminescence quenching at the nanocrystal surface. Strengthening of the positron annihilation signal and an increase in the photoluminescence intensity in passivated silicon nanocrystals suggests that the positron trap at the interface does not contribute to a significant extent to the exciton recombination in the nanocrystals.

  19. Electronic states of lead salt nanocrystal and nanocrystal assemblies

    NASA Astrophysics Data System (ADS)

    Yang, Jun

    With the development of new synthetic methods, semiconductor nanocrystals of various morphologies and dimensions have been created. This changes their electro-optical properties, and brings new questions in understanding. At the same time, more and more research is now focused on nanocrystal assemblies, in particular nanocrystal superlattices with atomically coherent lattices, with the potential for various optoelectronic device applications. This thesis examines, in both theory and experiment, a number of nanocrystal systems, with the stress on dimensionality and morphology. In particular, in 1D and 2D systems, due to the anisotropic quantum connenment, the electrons and holes will form a tightly bond excitons, even at room temperature, in contrast to 0D and 3D systems, where either quantum connenment or coulomb interaction completely dominates. We'll also look into nanocrystal assemblies, both amorphous and atomically coherent, and study the effect of the inherent disorder in the structure on their electronic properties, with the goal of charge transportation through delocalized states. Last, we'll examine the ne structure in these nanocrystals.

  20. Early stage of nanocrystal growth

    SciTech Connect

    2012-01-01

    Berkeley Lab researchers at the Molecular Foundry have elucidated important mechanisms behind oriented attachment, the phenomenon that drives biomineralization and the growth of nanocrystals. This electron microscopy movie shows the early stage of nanocrystal growth. Nanoparticles make transient contact at many points and orientations until their lattices are perfectly matched. The particles then make a sudden jump-to-contact to form attached aggregates. (Movie courtesy of Jim DeYoreo)

  1. Nanocrystal Optoelectronic Devices in Plasmonic Nanojunctions

    NASA Astrophysics Data System (ADS)

    Evans, Kenneth Mellinger

    Optical trapping is an important tool for studying and manipulating nanoscale objects. Recent experiments have shown that subwavelength control of nanoparticles is possible by using patterned plasmonic nanostructures, rather than using a laser directly, to generate the electric fields necessary for particle trapping. In this thesis we present a theoretical model and experimental evidence for plasmonic optical trapping in nanoscale metal junctions. Further, we examine the use of the resultant devices as ultrasmall photodectors. Electromigrated nanojunctions, or "nanogaps", have a well-established plasmon resonance in the near-IR, leading to electric field enhancements large enough for single-molecule sensitivity in Surface-Enhance Raman (SERS) measurements. While molecule-based devices have been carefully studied, optically and electrically prob- ing individual quantum dots in nanoscale metal junctions remains relatively unex- plored. Plasmon-based optical trapping of quantum dots into prefabricated struc- tures could allow for inexpensive, scalable luminescent devices which are fully integrable into established silicon-based fabrication techniques. Additionally, these metal-nanocrystal-metal structures are ideal candidates to study optoelectronics in ultrasmall nanocrystals-based structures, as well as more exotic nanoscale phenom- ena such as blinking, plasmon-exciton interactions, and surface-enhanced fluorescence (SEF). We present experimental data supporting plasmon-based optical trapping in the nanogap geometry, and a corresponding numerical model of the electric field-generated forces in the nanogap geometry. Further, we give proof-of-concept measurements of photoconductance in the resultant quantum dot-based devices, as well as challenges and improvements moving forward.

  2. Mixed semiconductor nanocrystal compositions

    DOEpatents

    Maskaly, Garry R.; Schaller, Richard D.; Klimov, Victor I.

    2011-02-15

    Composition comprising one or more energy donors and one or more energy acceptors, wherein energy is transferred from the energy donor to the energy acceptor and wherein: the energy acceptor is a colloidal nanocrystal having a lower band gap energy than the energy donor; the energy donor and the energy acceptor are separated by a distance of 40 nm or less; wherein the average peak absorption energy of the acceptor is at least 20 meV greater than the average peak emission energy of the energy donor; and wherein the ratio of the number of energy donors to the number of energy acceptors is from about 2:1 to about 1000:1.

  3. Assemblies of Cellulose Nanocrystals

    NASA Astrophysics Data System (ADS)

    Kumacheva, Eugenia

    The entropically driven coassembly of nanorods (cellulose nanocrystals, CNCs) and different types of nanoparticles (NPs), including dye-labeled latex NPs, carbon dots and plasmonic NPs was experimentally studied in aqueous suspensions and in solid films. In mixed CNC-NP suspensions, phase separation into an isotropic NP-rich and a chiral nematic CNC-rich phase took place; the latter contained a significant amount of NPs. Drying the mixed suspension resulted in CNC-NP films with planar disordered layers of NPs, which alternated with chiral nematic CNC-rich regions. In addition, NPs were embedded in the chiral nematic domains. The stratified morphology of the films, together with a random distribution of NPs in the anisotropic phase, led to the films having close-to-uniform fluorescence, birefringence, and circular dichroism properties.

  4. Luminescent nanocrystal stress gauge

    PubMed Central

    Choi, Charina L.; Koski, Kristie J.; Olson, Andrew C. K.; Alivisatos, A. Paul

    2010-01-01

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe-CdS core-shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution. PMID:21098301

  5. Diffraction by nanocrystals II.

    PubMed

    Chen, Joe P J; Millane, Rick P

    2014-08-01

    Nanocrystals with more than one molecule in the unit cell will generally crystallize with incomplete unit cells on the crystal surface. Previous results show that the ensemble-averaged diffraction by such crystals consists of a usual Bragg component and two other Bragg-like components due to the incomplete unit cells. Using an intrinsic flexibility in the definition of the incomplete-unit-cell part of a crystal, the problem is formulated such that the magnitude of the Bragg-like components is minimized, which leads to a simpler and more useful interpretation of the diffraction. Simulations show the nature of the relative magnitudes of the diffraction components in different regions of reciprocal space and the effect of crystal faceting. PMID:25121528

  6. Effects of aqueous stable fullerene nanocrystal (nC60) on copper (trace necessary nutrient metal): Enhanced toxicity and accumulation of copper in Daphnia magna.

    PubMed

    Tao, Xianji; He, Yiliang; Fortner, John D; Chen, Yongsheng; Hughes, Joseph B

    2013-08-01

    Our focus herein is to evaluate the potential interaction between nC60 and copper, a trace necessary metal, in light of the impact on toxicity. The non-observable effects concentration (NOEC) of nC60 was confirmed as 100μgL(-1) before. When Daphnia magna was exposed to the mixture of copper solution and nC60 suspension (100μgL(-1)), LC50 of 48h was lower than that when they were exposed to copper solution alone. This result clearly showed the decrease in NOEC of copper at the presence of nC60. Cu(2+)-ATPase activity was enhanced at the presence of nC60, indicating that copper transport involved with the uptake, distribution and depuration in body was increased. We further conducted experiments on accumulation of copper in D. magna. The observed equilibrium copper concentration in D. magna in the mixture of 100μgL(-1) nC60 and 1μgL(-1) copper solution reached 131μg (kg wet weight)(-1), which was more than twice that in copper solution only: 60μg (kg wet weight)(-1). This result demonstrated that the accumulation of copper in D. magna was significantly enhanced at the presence of even low nC60 concentration. Experiments also showed that copper was quickly adsorbed onto nC60. The absorption of copper onto D. magna was statistically correlated to the absorption of nC60 onto D. magna; this might be caused by nC60 facilitating the transfer of copper into D. magna. The absorption and desorption of copper to nC60 (pH=5.0) reached equilibrium quickly, which may be involved with the co-bioaccumulation and decrease in NOEC of Cu(2+) and nC60.

  7. Simple apparatus for trace analysis of toxic heavy metals. Determination of cadmium and lead by manual D.C. polarography.

    PubMed

    Hsieh, S A; Wong, G J; Ma, T S

    1976-01-01

    A simple manual d.c. polarographic apparatus is described which can be assembled from ordinary laboratory equipment. The sensitivity of this apparatus can reach +/-0.5 mV in voltage and +/-0.005 muA in current. Using this set up, trace amounts of cadium and lead in foods and beverages can be determined at the ppm region.

  8. Metal-free transannulation reaction of indoles with nitrostyrenes: a simple practical synthesis of 3-substituted 2-quinolones†

    PubMed Central

    Aksenov, Alexander V.; Smirnov, Alexander N.; Aksenov, Nicolai A.; Aksenova, Inna V.; Frolova, Liliya V.; Kornienko, Alexander; Magedov, Igor V.; Rubin, Michael

    2016-01-01

    3-Substituted 2-quinolones are obtained via a novel, metal-free transannulation reaction of 2-substituted indoles with 2-nitroalkenes in polyphosphoric acid. The reaction can be used in conjunction with the Fisher indole synthesis offering a practical three-component heteroannulation methodology to produce 2-quinolones from arylhydrazines, 2-nitroalkenes and acetophenone. PMID:23999797

  9. Preparation of ZnSe Nanocrystals Using Water-in-Oil Microemulsions

    NASA Astrophysics Data System (ADS)

    Kim, Hyun Soo; Kim, Jong Sung; Park, Sang Joon

    2010-06-01

    ZnSe nanocrystals were prepared using a safe and simple synthetic method by employing a sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water/oil microemulsion system with aqueous ZnSO4 and Se2- solutions, and characterized by X-ray diffraction (XRD) analysis, photoluminescence (PL) spectroscopy, and transmission electron microscopy (TEM). To control the diameter of nanocrystals in the quantum confinement region, the synthesis was performed with different oil phases (heptane and cyclohexane) and various water-to-surfactant ratios, W ([H2O]/[surfactant]). Cubic zinc blende ZnSe nanocrystals were synthesized and their size was controlled in the range from 2.5 to 17 nm. The maximum PL efficiency was 14% for the smallest ZnSe nanocrystal.

  10. A simple solution combustion route for the preparation of metal-doped TiO2 nanoparticles and their photocatalytic degradation properties.

    PubMed

    Ni, Yonghong; Zhu, Yan; Ma, Xiang

    2011-04-14

    In this paper, we report the successful synthesis of metal ion-doped TiO(2) nanoparticles via a simple solution combustion method employing a mixture of ethanol and ethyleneglycol (v/v = 30/20) as the solvent, tetra-n-butyl titanate [Ti(OC(4)H(9))(4), TBOT] as the titanium source and oxygen gas in the atmosphere as the oxygen source, in the presence of small amounts of metal ions such as Cu(2+), Mn(2+), Ce(3+) and Sn(4+). The as-obtained products were characterized by means of powder X-ray diffraction (XRD), energy dispersive X-ray spectrometry (EDS) and scanning electron microscopy (SEM). The UV-vis diffuse reflectance spectra (DRS) and photoluminescence (PL) spectra of various metal ion-doped products were investigated. Experiments showed that the metal ion-doped TiO(2) nanoparticles presented a stronger photocatalytic ability for the degradation of organic dyes, including Pyronine B, Safranine T and Methylene blue (MB), under visible light/254 nm UV light irradiation than commercial P25 within the same time.

  11. Semiconductor nanocrystal-based phagokinetic tracking

    DOEpatents

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  12. Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals.

    PubMed

    Mastronardi, Melanie L; Maier-Flaig, Florian; Faulkner, Daniel; Henderson, Eric J; Kübel, Christian; Lemmer, Uli; Ozin, Geoffrey A

    2012-01-11

    Size-selective precipitation was used to successfully separate colloidally stable allylbenzene-capped silicon nanocrystals into several visible emitting monodisperse fractions traversing the quantum size effect range of 1-5 nm. This enabled the measurement of the absolute quantum yield and lifetime of photoluminescence of allylbenzene-capped silicon nanocrystals as a function of size. The absolute quantum yield and lifetime are found to monotonically decrease with decreasing nanocrystal size, which implies that nonradiative vibrational and surface defect effects overwhelm spatial confinement effects that favor radiative relaxation. Visible emission absolute quantum yields as high as 43% speak well for the development of "green" silicon nanocrystal color-tunable light emitting diodes that can potentially match the performance of their toxic heavy metal chalcogenide counterparts.

  13. Efficient thermolysis route to monodisperse Cu₂ZnSnS₄ nanocrystals with controlled shape and structure.

    PubMed

    Zhang, Xiaoyan; Guo, Guobiao; Ji, Cheng; Huang, Kai; Zha, Chenyang; Wang, Yifeng; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2014-01-01

    Monodisperse Cu2ZnSnS4 (CZTS) nanocrystals with tunable shape, crystalline phase, and composition are synthesized by efficient thermolysis of a single source precursor of mixed metal-oleate complexes in hot organic solvents with dissolved sulfur sources. Suitable tuning of the synthetic conditions and the Cu/(Zn + Sn) ratio of the precursor has enabled precise control of the crystalline phase in the form of kesterite, or a newly observed wurtzite structure. Nanocrystals with morphology in the form of spherical, rice-like, or rod-like shapes are obtained over a wide range of compositions (0.5 ≤ Cu/(Zn + Sn) ≤ 1.2). Both the final products and intermediates for each shape exhibit consistent composition and structure, indicating homogenous nucleation and growth of single-phase nanocrystals. Thin films prepared from colloidal nanocrystal suspensions display interesting shape-dependent photoresponse behavior under white light illumination from a solar simulator. PMID:24866987

  14. Simple prostatectomy

    MedlinePlus

    Prostatectomy - simple; Suprapubic prostatectomy; Retropubic simple prostatectomy; Open prostatectomy; Millen procedure ... prostate and what caused your prostate to grow. Open simple prostatectomy is often used when the prostate ...

  15. Mapping the exciton diffusion in semiconductor nanocrystal solids.

    PubMed

    Kholmicheva, Natalia; Moroz, Pavel; Bastola, Ebin; Razgoniaeva, Natalia; Bocanegra, Jesus; Shaughnessy, Martin; Porach, Zack; Khon, Dmitriy; Zamkov, Mikhail

    2015-03-24

    Colloidal nanocrystal solids represent an emerging class of functional materials that hold strong promise for device applications. The macroscopic properties of these disordered assemblies are determined by complex trajectories of exciton diffusion processes, which are still poorly understood. Owing to the lack of theoretical insight, experimental strategies for probing the exciton dynamics in quantum dot solids are in great demand. Here, we develop an experimental technique for mapping the motion of excitons in semiconductor nanocrystal films with a subdiffraction spatial sensitivity and a picosecond temporal resolution. This was accomplished by doping PbS nanocrystal solids with metal nanoparticles that force the exciton dissociation at known distances from their birth. The optical signature of the exciton motion was then inferred from the changes in the emission lifetime, which was mapped to the location of exciton quenching sites. By correlating the metal-metal interparticle distance in the film with corresponding changes in the emission lifetime, we could obtain important transport characteristics, including the exciton diffusion length, the number of predissociation hops, the rate of interparticle energy transfer, and the exciton diffusivity. The benefits of this approach to device applications were demonstrated through the use of two representative film morphologies featuring weak and strong interparticle coupling.

  16. Linearly arranged polytypic CZTSSe nanocrystals

    PubMed Central

    Fan, Feng-Jia; Wu, Liang; Gong, Ming; Chen, Shi You; Liu, Guang Yao; Yao, Hong-Bin; Liang, Hai-Wei; Wang, Yi-Xiu; Yu, Shu-Hong

    2012-01-01

    Even colloidal polytypic nanostructures show promising future in band-gap tuning and alignment, researches on them have been much less reported than the standard nano-heterostructures because of the difficulties involved in synthesis. Up to now, controlled synthesis of colloidal polytypic nanocrsytals has been only realized in II-VI tetrapod and octopod nanocrystals with branched configurations. Herein, we report a colloidal approach for synthesizing non-branched but linearly arranged polytypic I2-II-IV-VI4 nanocrystals, with a focus on polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystals. Each synthesized polytypic non-stoichiometric Cu2ZnSnSxSe4−x nanocrystal is consisted of two zinc blende-derived ends and one wurtzite-derived center part. The formation mechanism has been studied and the phase composition can be tuned through adjusting the reaction temperature, which brings a new band-gap tuning approach to Cu2ZnSnSxSe4-x nanocrystals. PMID:23233871

  17. A Radiation-Tolerant, Low-Power Non-Volatile Memory Based on Silicon Nanocrystal Quantum Dots

    NASA Technical Reports Server (NTRS)

    Bell, L. D.; Boer, E. A.; Ostraat, M. L.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.; deBlauwe, J.; Green, M. L.

    2001-01-01

    Nanocrystal nonvolatile floating-gate memories are a good candidate for space applications - initial results suggest they are fast, more reliable and consume less power than conventional floating gate memories. In the nanocrystal based NVM device, charge is not stored on a continuous polysilicon layer (so-called floating gate), but instead on a layer of discrete nanocrystals. Charge injection and storage in dense arrays of silicon nanocrystals in SiO2 is a critical aspect of the performance of potential nanocrystal flash memory structures. The ultimate goal for this class of devices is few- or single-electron storage in a small number of nanocrystal elements. In addition, the nanocrystal layer fabrication technique should be simple, 8-inch wafer compatible and well controlled in program/erase threshold voltage swing was seen during 100,000 program and erase cycles. Additional near-term goals for this project include extensive testing for radiation hardness and the development of artificial layered tunnel barrier heterostructures which have the potential for large speed enhancements for read/write of nanocrystal memory elements, compared with conventional flash devices. Additional information is contained in the original extended abstract.

  18. Relaxation of the structure of simple metal ion complexes in aqueous solutions at up to supercritical conditions

    USGS Publications Warehouse

    Mayanovic, Robert A.; Jayanetti, Sumedha; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2003-01-01

    Recently x-ray absorption fine structure (XAFS) studies of various ions in aqueous solutions showed a variation of cation-ligand bond lengths, often coupled with other structure changes, with increasing temperatures. Thus, the variations of the structure of several metal ion complexes with temperature based on observations from the X-ray absorption fine structure (XAFS) studies in the hope that it will stimulate the development of either first- principles theory or molecular dynamics simulations that might adequately describes these results are discussed.

  19. Efficacy of Simple Short-Term in Vitro Assays for Predicting the Potential of Metal Oxide Nanoparticles to Cause Pulmonary Inflammation

    PubMed Central

    Lu, Senlin; Duffin, Rodger; Poland, Craig; Daly, Paul; Murphy, Fiona; Drost, Ellen; MacNee, William; Stone, Vicki; Donaldson, Ken

    2009-01-01

    Background There has been concern regarding risks from inhalation exposure to nanoparticles (NPs). The large number of particles requiring testing means that alternative approaches to animal testing are needed. Objectives We set out to determine whether short-term in vitro assays that assess intrinsic oxidative stress potential and membrane-damaging potency of a panel of metal oxide NPs can be used to predict their inflammogenic potency. Methods For a panel of metal oxide NPs, we investigated intrinsic free radical generation, oxidative activity in an extracellular environment, cytotoxicity to lung epithelial cells, hemolysis, and inflammation potency in rat lungs. All exposures were carried out at equal surface area doses. Results Only nickel oxide (NiO) and alumina 2 caused significant lung inflammation when instilled into rat lungs at equal surface area, suggesting that these two had extra surface reactivity. We observed significant free radical generation with 4 of 13 metal oxides, only one of which was inflammogenic. Only 3 of 13 were significantly hemolytic, two of which were inflammogenic. Conclusions Potency in generating free radicals in vitro did not predict inflammation, whereas alumina 2 had no free radical activity but was inflammogenic. The hemolysis assay was correct in predicting the proinflammatory potential of 12 of 13 of the particles examined. Using a battery of simple in vitro tests, it is possible to predict the inflammogenicity of metal oxide NPs, although some false-positive results are likely. More research using a larger panel is needed to confirm the efficacy and generality of this approach for metal oxide NPs. PMID:19270794

  20. A GREENER SYNTHESIS OF CORE (FE, CU)-SHELL (AU, PT, PD AND AG) NANOCRYSTALS USING AQUEOUS VITAMIN C

    EPA Science Inventory

    A greener method to fabricate the novel core (Fe and Cu)-shell (noble metals) metal nanocrystals using aqueous ascorbic acid (vitamin C) is described. Transition metal salts such as Cu and Fe were reduced using ascorbic acid, a benign naturally available antioxidant, and then add...

  1. Hydrothermal Gelation of Aqueous Cellulose Nanocrystal Suspensions.

    PubMed

    Lewis, Lev; Derakhshandeh, Maziar; Hatzikiriakos, Savvas G; Hamad, Wadood Y; MacLachlan, Mark J

    2016-08-01

    We report the facile preparation of gels from the hydrothermal treatment of suspensions of cellulose nanocrystals (CNCs). The properties of the hydrogels have been investigated by rheology, electron microscopy, and spectroscopy with respect to variation in the temperature, time, and CNC concentration used in preparation. Desulfation of the CNCs at high temperature appears to be responsible for the gelation of the CNCs, giving highly porous networks. The viscosity and storage modulus of the gels was shown to increase when samples were prepared at higher treatment temperature. Considering the wide natural abundance and biocompatibility of CNCs, this simple, green approach to CNC-based hydrogels is attractive for producing materials that can be used in drug delivery, insulation, and as tissue scaffolds. PMID:27467200

  2. Aqueous Based Semiconductor Nanocrystals.

    PubMed

    Jing, Lihong; Kershaw, Stephen V; Li, Yilin; Huang, Xiaodan; Li, Yingying; Rogach, Andrey L; Gao, Mingyuan

    2016-09-28

    This review summarizes traditional and recent nonconventional, bioinspired, methods for the aqueous synthesis of colloidal semiconductor quantum dots (QDs). The basic chemistry concepts are critically emphasized at the very beginning as these are strongly correlated with the selection of ligands and the optimal formation of aqueous QDs and their more sophisticated structures. The synergies of biomimetic and biosynthetic methods that can combine biospecific reactivity with the robust and strong optical responses of QDs have also resulted in new approaches to the synthesis of the nanoparticles themselves. A related new avenue is the recent extension of QD synthesis to form nanoparticles endowed with chiral optical properties. The optical characteristics of QD materials and their advanced forms such as core/shell heterostructures, alloys, and doped QDs are discussed: from the design considerations of optical band gap tuning, the control and reduction of the impact of surface traps, the consideration of charge carrier processes that affect emission and energy and charge transfer, to the impact and influence of lattice strain. We also describe the considerable progress in some selected QD applications such as in bioimaging and theranostics. The review concludes with future strategies and identification of key challenges that still need to be resolved in reaching very attractive, scalable, yet versatile aqueous syntheses that may widen the scope of commercial applications for semiconductor nanocrystals. PMID:27586892

  3. A simple method to make an electrical connection between ZnO microwire and substrate through nanoscale metal evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Hakseong; Lee, Jinkyung; Yun, Hoyeol; Lee, Sang; Nano Electonics and Nano Mechanics Team

    2013-03-01

    We developed a simple method to make an electrical connection with nanoscale electrodes on microscale wire using suspended Poly(methyl methacrylate) (PMMA) strings. Less than 90 nm height of Ti/Au made a complete electrical connection on the ZnO microwires of which diameter is around 2 μm. A cross linked PMMA string was bridged between ZnO microwire and substrate for making good electrical connection. The contact resistance of ZnO microwire fabricated by this method was much lower than that of device fabricated by standard E-beam lithography and evaporation. This fabrication method is readily extendible to prepare nano scale electrodes on various micro sized materials and serves as a pathway for studying their mesoscopic transport phenomena. This work is supported by WCU, BK21 and NRF.

  4. Injected nanocrystals for targeted drug delivery

    PubMed Central

    Lu, Yi; Li, Ye; Wu, Wei

    2016-01-01

    Nanocrystals are pure drug crystals with sizes in the nanometer range. Due to the advantages of high drug loading, platform stability, and ease of scaling-up, nanocrystals have been widely used to deliver poorly water-soluble drugs. Nanocrystals in the blood stream can be recognized and sequestered as exogenous materials by mononuclear phagocytic system (MPS) cells, leading to passive accumulation in MPS-rich organs, such as liver, spleen and lung. Particle size, morphology and surface modification affect the biodistribution of nanocrystals. Ligand conjugation and stimuli-responsive polymers can also be used to target nanocrystals to specific pathogenic sites. In this review, the progress on injected nanocrystals for targeted drug delivery is discussed following a brief introduction to nanocrystal preparation methods, i.e., top-down and bottom-up technologies. PMID:27006893

  5. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  6. Building Structural Complexity in Semiconductor Nanocrystals through Chemical Transformations

    SciTech Connect

    Sadtler, Bryce F

    2009-05-01

    Methods are presented for synthesizing nanocrystal heterostructures comprised of two semiconductor materials epitaxially attached within individual nanostructures. The chemical transformation of cation exchange, where the cations within the lattice of an ionic nanocrystal are replaced with a different metal ion species, is used to alter the chemical composition at specific regions ofa nanocrystal. Partial cation exchange was performed in cadmium sulfide (CdS) nanorods of well-defined size and shape to examine the spatial organization of materials within the resulting nanocrystal heterostructures. The selectivity for cation exchange to take place at different facets of the nanocrystal plays an important role in determining the resulting morphology of the binary heterostructure. The exchange of copper (I) (Cu+) cations in CdS nanorods occurs preferentially at the ends of the nanorods. Theoretical modeling of epitaxial attachments between different facets of CdS and Cu2S indicate that the selectivity for cation exchange at the ends of the nanorods is a result of the low formation energy of the interfaces produced. During silver (I) (Ag+) cation exchange in CdS nanorods, non-selective nucleation of silver sulfide (Ag2S), followed by partial phase segregation leads to significant changes in the spatial arrangement of CdS and Ag2S regions at the exchange reaction proceeds through the nanocrystal. A well-ordered striped pattern of alternating CdS and Ag2S segments is found at intermediate fractions of exchange. The forces mediating this spontaneous process are a combination of Ostwald ripening to reduce the interfacial area along with a strain-induced repulsive interaction between Ag2S segments. To elucidate why Cu+ and Ag+ cation exchange with CdS nanorods produce different morphologies, models for epitaxial attachments between various facets of CdS with Cu2S or

  7. Development of CuInSe2 nanocrystal and nanoring inks for low-cost solar cells.

    PubMed

    Guo, Qijie; Kim, Suk Jun; Kar, Mahaprasad; Shafarman, William N; Birkmire, Robert W; Stach, Eric A; Agrawal, Rakesh; Hillhouse, Hugh W

    2008-09-01

    The creation of a suitable inorganic colloidal nanocrystal ink for use in a scalable coating process is a key step in the development of low-cost solar cells. Here, we present a facile solution synthesis of chalcopyrite CuInSe 2 nanocrystals and demonstrate that inks based on these nanocrystals can be used to create simple solar cells, with our first cells exhibiting an efficiency of 3.2% under AM1.5 illumination. We also report the first solution synthesis of uniform hexagonal shaped single crystals CuInSe 2 nanorings by altering the synthesis parameter.

  8. Geometric and electronic effects on hydrogenation of cinnamaldehyde over unsupported Pt-based nanocrystals.

    PubMed

    Oduro, William O; Cailuo, Nick; Yu, Kai Man K; Yang, Hongwei; Tsang, Shik Chi

    2011-02-21

    It is reported that catalytic hydrogenation of cinnamaldehyde to cinnamyl alcohol is a structural sensitive reaction dependent on size and type of metal doper of unsupported platinum nanocrystals used. Smaller sizes of platinum nanocrystals are found to give lower selectivity to cinnamyl alcohol, which suggests the high index Pt sites are undesirable for the terminal aldehyde hydrogenation. A plot of reaction selectivity across the first row of transition metals as dopers gives a typical volcano shape curve, the apex of which depicts that a small level of cobalt on platinum nanocrystals can greatly promote the reaction selectivity. The selectivity towards cinnamyl alcohol over the cobalt doped Pt nanocrystals can reach over 99.7%, following the optimization in reaction conditions such as temperature, pressure and substrate concentration. Detailed studies of XRD, CO chemisorption (for FTIR), TEM, SEM, AES and XPS of the nanostructure catalyst clearly reveal that the decorated cobalt atoms not only block the high index sites of Pt nanocrystals (sites for Co deposition) but also exert a strong electronic influence on reaction pathways. The d-band centre theory is invoked to explain the volcano plot of selectivity versus metal doper.

  9. Metal colloids and quantum dots: linear and nonlinear optical properties

    SciTech Connect

    Henderson, Don O.

    1997-05-12

    Nanophase materials have found a wide application in a variety of technological areas which include ultrafast optical switching high density information storage and retrieval, electronics, and catalysts, to mention a few. Nanocrystal science has also drawn considerable interest from the fundamental perspective engaging physicists, chemists, and material scientists into this area of rapidly expanding and challenging research. Basic questions concerning how matter evolves from atomic like behavior to molecular and onto bulk lie at the center nanocrystal research. In addition, because of the high surface to volume ratio of the nanocrystals, the interaction potential between a nanocrystal and its surrounding environment becomes an important issue in determining its properties. While significant progress has been made in nanocrystal research, there are many problems concerned with their fabrication. In particular, the difficulty of incorporating nanocrystals into a matrix that is appropriate for ultimate device development has hindered some aspects of nanocrystal research. Ion implantation is a method that is now established as a technique for fabricating metal and semiconductor nanocrystals. It is highly versatile in that one may select nearly any host material for incorporating the nanocrystals of interest. The flexibility of being able to select the host matrix is also interesting from the point of view that it opens the opportunity to investigate matrix-nanocrystal interactions. We summarize in the following sections results on metal and semiconductor nanocrystals formed by ion implantation into dielectric hosts.

  10. Near-Monodisperse Ni-Cu Bimetallic Nanocrystals of Variable Composition: Controlled Synthesis and Catalytic Activity for H2 Generation

    SciTech Connect

    Zhang, Yawen; Huang, Wenyu; Habas, Susan E.; Kuhn, John N.; Grass, Michael E.; Yamada, Yusuke; Yang, Peidong; Somorjai, Gabor A.

    2008-07-22

    Near-monodisperse Ni{sub 1-x}Cu{sub x} (x = 0.2-0.8) bimetallic nanocrystals were synthesized by a one-pot thermolysis approach in oleylamine/1-octadecene, using metal acetylacetonates as precursors. The nanocrystals form large-area 2D superlattices, and display a catalytic synergistic effect in the hydrolysis of NaBH{sub 4} to generate H{sub 2} at x = 0.5 in a strongly basic medium. The Ni{sub 0.5}Cu{sub 0.5} nanocrystals show the lowest activation energy, and also exhibit the highest H{sub 2} generation rate at 298 K.

  11. Human Health Risk Assessment Based on Toxicity Characteristic Leaching Procedure and Simple Bioaccessibility Extraction Test of Toxic Metals in Urban Street Dust of Tianjin, China

    PubMed Central

    Yu, Binbin; Wang, Yu; Zhou, Qixing

    2014-01-01

    The potential ecological and human health risk related with urban street dust from urban areas of Tianjin, China was quantitatively analyzed using the method of toxicity characteristic leaching procedure (TCLP) and simple bioaccessibility extraction test (SBET). In the study, Hakason index, Nemerow index (P), the hazard index (HI) and the cancer risk index (RI) were calculated to assess the potential risk. The sequence of potential ecological risk based on Hakason index was arsenic (As) > cadmium (Cd) > lead (Pb) > copper (Cu) > chromium (Cr), in particular, As and Cd were regarded as high polluted metals. While the results of extraction of TCLP were assessed using P, the sequence was As > Pb > Cd > Cr > Cu, which mean that As and Pb should be low polluted, and Cd, Cr and Cu would barely not polluted. For human health, total carcinogenic risk for children and adults was 2.01×10−3 and 1.05×10−3, respectively. This could be considered to be intolerable in urban street dust exposure. The sequence in the hazard quotient (HQ) of each element was As > Cr > Pb > Cu > Cd. The HI value of these toxic metals in urban street dust for children and adults was 5.88×10−1 and 2.80×10−1, respectively. According to the characters of chemistry, mobility, and bioavailability of metals in urban street dust, we estimated the hazards on the environment and human health, which will help us to get more reasonable information for risk management of metals in urban environment. PMID:24651129

  12. Directing the self-assembly of polyhedral silver nanocrystals

    NASA Astrophysics Data System (ADS)

    Gruenwald, Michael; Henzie, Joel; Widmer-Cooper, Asaph; Geissler, Phillip; Yang, Peidong

    2011-03-01

    Self-assembly of nanocrystals with complex shapes requires precise control of nanoscale interactions and driving forces. Here we show with experiment and simulation that large 3D supercrystals with exceptional order can be assembled by tuning the shape and attraction between polyhedral building blocks. When passivated with adsorbing polymer, Ag nano-polyhedra can behave as quasi-hard particles, and assemble into their densest known packings under a simple gravitational driving force. Excess polymer in solution induces depletion attractions that can stabilize less dense, ordered packings. In the case of octahedra, controlling polymer concentration allows us to tune between the well-known Minkowski lattice, and a novel packing with complex helical motifs. Such large-scale ordered arrangements of Ag nanocrystals provide many possibilities for designing scalable 3D plasmonic metamaterials with applications including chemical and biological sensing, nanophotonics and photocatalysis.

  13. Dispersing upconversion nanocrystals in a single silicon microtube

    PubMed Central

    Li, Hanyang; Wang, Yan; Li, Hui; Zhang, Yundong; Yang, Jun

    2016-01-01

    Nanocrystals of Ln3+ (Ln = Yb, Tm and Ho) doped β-NaLuF4 with average diameter about 200 nm are dispersed in silica-based microtube (MT) by a simple flame heating method. The fabricated microtube has a diameter range from 2 μm to 30 μm and lengths up to hundreds microns. The fluorescence of upconversion nanocrystals (UCNCs) can propagate along a single MT and couple into another MT through evanescent field. The guiding performance of the single UCNCs doped MT is measured to prove that it can be used as an active waveguide. Moreover, optical temperature sensing based on the single UCNCs-MT is also demonstrated, and the sensitivity of UCNCs-MT is significantly enough for thermometry applications in the range of 298–383 K. PMID:27779210

  14. Solvothermal synthesis of well-dispersed NaMgF3 nanocrystals and their optical properties.

    PubMed

    Zhang, Xiaoming; Quan, Zewei; Yang, Jun; Yang, Piaoping; Lian, Hongzhou; Lin, Jun

    2009-01-01

    Complex metal fluoride NaMgF(3) nanocrystals were successfully synthesized via a solvothermal method at a relatively low temperature with the presence of oleic acid, and characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectra, photoluminescence (PL) excitation and emission spectra, respectively. In the synthetic process, oleic acid as a surfactant played a crucial role in confining the growth and solubility of the NaMgF(3) nanocrystals. The as-prepared NaMgF(3) nanocrystals have quasi-spherical shape with a narrow distribution. A possible formation mechanism of the nanocrystals was proposed based on the effect of oleic acid. The as-prepared NaMgF(3) nanocrystals are highly crystalline and well-dispersed in cyclohexane to form stable and clear colloidal solutions, which demonstrate a strong emission band centered at 400 nm in photoluminescence (PL) spectra compared with the cyclohexane solvent. The PL properties of the colloidal solutions of the as-prepared nanocrystals can be ascribed to the trap states of surface defects.

  15. A Simple Hydrogen Electrode

    ERIC Educational Resources Information Center

    Eggen, Per-Odd

    2009-01-01

    This article describes the construction of an inexpensive, robust, and simple hydrogen electrode, as well as the use of this electrode to measure "standard" potentials. In the experiment described here the students can measure the reduction potentials of metal-metal ion pairs directly, without using a secondary reference electrode. Measurements…

  16. A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arijit Kumar; Sarkar, Raj Kumar; Prasun Chattopadhyay, Asoke; Aich, Pulakesh; Chakraborty, Ruchira; Basu, Tarakdas

    2012-03-01

    A method for preparation of copper nanoparticles (Cu-NPs) was developed by simple reduction of CuCl2 in the presence of gelatin as a stabilizer and without applying stringent conditions like purging with nitrogen. The NPs were characterized by spectrophotometry, dynamic light scattering, x-ray diffraction, transmission electron microscopy, atomic force microscopy and x-ray photoelectron spectroscopy. The particles were about 50-60 nm in size and highly stable. The antibacterial activity of this Cu-NP on Gram-negative Escherichia coli was demonstrated by the methods of agar plating, flow cytometry and phase contrast microscopy. The minimum inhibitory concentration (3.0 µg ml-1), minimum bactericidal concentration (7.5 µg ml-1) and susceptibility constant (0.92) showed that this Cu-NP is highly effective against E. coli at a much lower concentration than that reported previously. Treatment with Cu-NPs made E. coli cells filamentous. The higher the concentration of Cu-NPs, the greater the population of filamentous cells; average filament size varied from 7 to 20 µm compared to the normal cell size of ˜2.5 µm. Both filamentation and killing of cells by Cu-NPs (7.5 µg ml-1) also occurred in an E. coli strain resistant to multiple antibiotics. Moreover, an antibacterial effect of Cu-NPs was also observed in Gram-positive Bacillus subtilis and Staphylococcus aureus, for which the values of minimum inhibitory concentration and minimum bactericidal concentration were close to that for E. coli.

  17. Synthesis and thermal stability of W-doped VO{sub 2} nanocrystals

    SciTech Connect

    Kong, F.Y.; Li, M.; Pan, S.S.; Zhang, Y.X.; Li, G.H.

    2011-11-15

    Highlights: {yields} The VO{sub 2} nanocrystals with a nearly spherical morphology with size ranging from 50 to 100 nm were synthesized by using V{sub 2}O{sub 5} and oxalic acid as precursors via a thermolysis method. {yields} The W dopant is in the W{sup 6+} form, and there is a small amount of V{sup 3+} in the VO{sub 2} nanocrystals. VO{sub 2} (R) nanocrystals with phase transition temperature at room temperature were obtained with 2.5 at% W-doing. {yields} A high stability upon heating-cooling cycles was observed with respect to MIT temperature, peak temperature and latent heat of the phase transition due to both the size effect and the existence of V{sup 3+} in the VO{sub 2} nanocrystals. -- Abstract: Pure and W-doped vanadium dioxide nanocrystals have been synthesized by using V{sub 2}O{sub 5} and oxalic acid as precursors via a thermolysis method. The VO{sub 2} nanocrystals have a nearly spherical morphology with size ranging from 50 to 100 nm. The metal-insulator transition (MIT) temperature of the nanocrystals decreases with increasing W-doping content. The successive heat-induced fatigue character of the MIT in W-doped VO{sub 2} nanocrystals was investigated by DSC analysis together with structural study, and a high stability upon heating-cooling cycles was found with respect to MIT temperature, peak temperature and latent heat of the phase transition.

  18. Tailoring lanthanide nanocrystals for nanomedicine

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Tan, Timothy T. Y.

    2013-02-01

    Lanthanide nanocrystals have demonstrated strong potentials in nanomedicine due to its up-conversion and strong magnetic properties, and low toxicity. This talk will focus on strategies in lanthanide nanostructure tailoring to achieve up-conversion color emission tuning, MRI T1 and T2 contrast tuning, and the use of up-conversion fluorescence in drug delivery and cancer cells ablation.

  19. Wet chemical synthesis of intermetallic Pt3Zn nanocrystals via weak reduction reaction together with UPD process and their excellent electrocatalytic performances

    NASA Astrophysics Data System (ADS)

    Chen, Qiaoli; Zhang, Jiawei; Jia, Yanyan; Jiang, Zhiyuan; Xie, Zhaoxiong; Zheng, Lansun

    2014-05-01

    Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C.Platinum based alloy nanocrystals are promising catalysts for a variety of important practical process. However, it remains a great challenge to synthesize platinum-based intermetallic compound nanocrystals with well-defined surface structures. In this communication, taking the synthesis of concave cubic intermetallic Pt3Zn nanocrystals with {hk0} facets as an example, we proposed a new synthesis strategy for intermetallic compounds by reduction of noble metal precursors via a slow reduction process and reduction of transition metal ions via an underpotential deposition (UPD) process in wet chemical synthesis. The as-prepared intermetallic Pt3Zn nanocrystals exhibited superior CO poisoning tolerance and high electro-catalytic activity in both methanol and formic acid oxidation reactions in comparison with solid solution Pt3Zn nanocrystals and Pt/C. Electronic supplementary information (ESI) available: Additional characterization data. See DOI: 10.1039/c4nr00313f

  20. A facile arrested precipitation method for synthesis of pure wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals using thiourea as a sulfur source

    SciTech Connect

    Li, Chunya; Ha, Enna; Wong, Wing-Leung; Li, Cuiling; Ho, Kam-Piu; Wong, Kwok-Yin

    2012-11-15

    Graphical abstract: High-resolution TEM image of wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals. Highlights: ► Wurtzite Cu{sub 2}ZnSnS{sub 4} nanocrystals were synthesized by arrested precipitation method. ► XRD, EDX, TEM demonstrate that the CZTS nanocrystals are purely wurtzite structure. ► The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. ► The estimated direct bandgap energy is 1.56 eV for wurtzite CZTS nanocrystals. ► The electrical resistivity of the wurtzite CZTS nanocrystals is low. -- Abstract: A facile route for the synthesis of wurtzite Cu{sub 2}ZnSnS{sub 4} (CZTS) nanocrystals was developed by an arrested precipitation method at 240 °C under simple reaction conditions with diethanolamine as the solvent and thiourea as sulfur source. The structure and morphology of the CZTS nanocrystals were characterized by X-ray diffraction and transmission electron microscopy. Control experiments demonstrated that CZTS nanocrystals which are purely wurtzite structure are readily obtained. The average diameter of the bulk CZTS products is found to be 10 ± 1.1 nm. The estimated direct bandgap energy is 1.56 eV, which indicates that the CZTS nanocrystals produced by this method possess promising applications in photovoltaic devices.

  1. Additive-assisted synthesis of boride, carbide, and nitride micro/nanocrystals

    SciTech Connect

    Chen, Bo; Yang, Lishan; Heng, Hua; Chen, Jingzhong; Zhang, Linfei; Xu, Liqiang; Qian, Yitai; Yang, Jian

    2012-10-15

    General and simple methods for the syntheses of borides, carbides and nitrides are highly desirable, since those materials have unique physical properties and promising applications. Here, a series of boride (TiB{sub 2}, ZrB{sub 2}, NbB{sub 2}, CeB{sub 6}, PrB{sub 6}, SmB{sub 6}, EuB{sub 6}, LaB{sub 6}), carbide (SiC, TiC, NbC, WC) and nitride (TiN, BN, AlN, MgSiN{sub 2}, VN) micro/nanocrystals were prepared from related oxides and amorphous boron/active carbon/NaN{sub 3} with the assistance of metallic Na and elemental S. In-situ temperature monitoring showed that the reaction temperature could increase quickly to {approx}850 Degree-Sign C, once the autoclave was heated to 100 Degree-Sign C. Such a rapid temperature increase was attributed to the intense exothermic reaction between Na and S, which assisted the formation of borides, carbides and nitrides. The as-obtained products were characterized by XRD, SEM, TEM, and HRTEM techniques. Results in this report will greatly benefit the future extension of this approach to other compounds. - Graphical abstract: An additive-assisted approach is successfully developed for the syntheses of borides, carbides and nitrides micro/nanocrystals with the assistance of the exothermic reaction between Na and S. Highlights: Black-Right-Pointing-Pointer An additive-assisted synthesis strategy is developed for a number of borides, carbides and nitrides. Black-Right-Pointing-Pointer The reaction mechanism is demonstrated by the case of SiC nanowires. Black-Right-Pointing-Pointer The formation of SiC nanowires is initiated by the exothermic reaction of Na and S.

  2. Nanocrystals Research for Energy Efficient and Clean Energy Technologies:

    SciTech Connect

    Rosenthal, Sandra J

    2013-12-17

    Efforts centered on: nanocrystal photovoltaic fabrication, ultrafast dynamics and aberration-corrected STEM characterization of II-VI core, core/shell and alloyed nanocrystals, and fundamental investigation and applications of ultrasmall white light-emitting CdSe nanocrystal.

  3. Simple, fast and selective detection of adenosine triphosphate at physiological pH using unmodified gold nanoparticles as colorimetric probes and metal ions as cross-linkers.

    PubMed

    Deng, Dehua; Xia, Ning; Li, Sujuan; Xu, Chunying; Sun, Ting; Pang, Huan; Liu, Lin

    2012-11-06

    We report a simple, fast and selective colorimetric assay of adenosine triphosphate (ATP) using unmodified gold nanoparticles (AuNPs) as probes and metal ions as cross-linkers. ATP can be assembled onto the surface of AuNPs through interaction between the electron-rich nitrogen atoms and the electron-deficient surface of AuNPs. Accordingly, Cu2+ ions induce a change in the color and UV/Vis absorbance of AuNPs by coordinating to the triphosphate groups and a ring nitrogen of ATP. A detection limit of 50 nM was achieved, which is comparable to or lower than that achievable by the currently used electrochemical, spectroscopic or chromatographic methods. The theoretical simplicity and high selectivity reported herein demonstrated that AuNPs-based colorimetric assay could be applied in a wide variety of fields by rationally designing the surface chemistry of AuNPs. In addition, our results indicate that ATP-modified AuNPs are less stable in Cu2+, Cd2+ or Zn2+-containing solutions due to the formation of the corresponding dimeric metal-ATP complexes.

  4. Cellulose nanocrystals: synthesis, functional properties, and applications.

    PubMed

    George, Johnsy; Sabapathi, S N

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  5. Cellulose nanocrystals: synthesis, functional properties, and applications

    PubMed Central

    George, Johnsy; Sabapathi, SN

    2015-01-01

    Cellulose nanocrystals are unique nanomaterials derived from the most abundant and almost inexhaustible natural polymer, cellulose. These nanomaterials have received significant interest due to their mechanical, optical, chemical, and rheological properties. Cellulose nanocrystals primarily obtained from naturally occurring cellulose fibers are biodegradable and renewable in nature and hence they serve as a sustainable and environmentally friendly material for most applications. These nanocrystals are basically hydrophilic in nature; however, they can be surface functionalized to meet various challenging requirements, such as the development of high-performance nanocomposites, using hydrophobic polymer matrices. Considering the ever-increasing interdisciplinary research being carried out on cellulose nanocrystals, this review aims to collate the knowledge available about the sources, chemical structure, and physical and chemical isolation procedures, as well as describes the mechanical, optical, and rheological properties, of cellulose nanocrystals. Innovative applications in diverse fields such as biomedical engineering, material sciences, electronics, catalysis, etc, wherein these cellulose nanocrystals can be used, are highlighted. PMID:26604715

  6. Phase transitions and doping in semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Sahu, Ayaskanta

    Colloidal semiconductor nanocrystals are a promising technological material because their size-dependent optical and electronic properties can be exploited for a diverse range of applications such as light-emitting diodes, bio-labels, transistors, and solar cells. For many of these applications, electrical current needs to be transported through the devices. However, while their solution processability makes these colloidal nanocrystals attractive candidates for device applications, the bulky surfactants that render these nanocrystals dispersible in common solvents block electrical current. Thus, in order to realize the full potential of colloidal semiconductor nanocrystals in the next-generation of solid-state devices, methods must be devised to make conductive films from these nanocrystals. One way to achieve this would be to add minute amounts of foreign impurity atoms (dopants) to increase their conductivity. Electronic doping in nanocrystals is still very much in its infancy with limited understanding of the underlying mechanisms that govern the doping process. This thesis introduces an innovative synthesis of doped nanocrystals and aims at expanding the fundamental understanding of charge transport in these doped nanocrystal films. The list of semiconductor nanocrystals that can be doped is large, and if one combines that with available dopants, an even larger set of materials with interesting properties and applications can be generated. In addition to doping, another promising route to increase conductivity in nanocrystal films is to use nanocrystals with high ionic conductivities. This thesis also examines this possibility by studying new phases of mixed ionic and electronic conductors at the nanoscale. Such a versatile approach may open new pathways for interesting fundamental research, and also lay the foundation for the creation of novel materials with important applications. In addition to their size-dependence, the intentional incorporation of

  7. Aqueous based synthesis of N-acetyl-L-cysteine capped ZnSe nanocrystals with intense blue emission

    NASA Astrophysics Data System (ADS)

    Soheyli, Ehsan; Sahraei, Reza; Nabiyouni, Gholamreza

    2016-10-01

    In this work a very simple reflux route for preparation of ZnSe nanocrystals with minor modification and faster preparation over conventional ones is introduced. X-ray diffraction analysis indicated that the ZnSe nanocrystals have a cubic structure. The complete disappearance of the S-H band in FT-IR spectrum of N-acetyl-L-cysteine capped ZnSe nanocrystals was an indication over formation of Zn-thiol covalent bonds at the surface of the nanocrystals which results in passivation of small nanocrystals. The strong size-quantization regime was responsible of significant blue shift in absorption/emission spectra. Using the well-known calculations, band gap and Urbach energy of the ZnSe nanocrystals were measured and their average size was estimated optically to be around 4.6 nm along with the TEM image. A dark blue emission with higher relative intensity of excitonic to trap emissions (compared to conventional method), very narrow excitonic emission peak of about 16 nm and remarkable stability was obtained from the ZnSe nanocrystals.

  8. Facile Synthesis of Curcumin Nanocrystals and Validation of Its Antioxidant Activity Against Circulatory Toxicity in Wistar Rats.

    PubMed

    Rajasekar, A; Devasena, T

    2015-06-01

    Our investigation was carried out in two phases. First we synthesized curcumin nanocrystals using a simple precipitation method and characterized their absorbance, crystallinity, size, and morphology by UV-visible spectroscopy, X-ray diffraction (XRD) spectroscopy, High Resolution Transmission Electron Microscopy (HRTEM) and Particle size Analyzer (PSA), in comparison with bulk curcumin. Characterization studies revealed that the protocol we standardized resulted in Curcumin nanocrystals with 10-200 nm size which was fairly soluble in water in contrast to bulk curcumin. Due to its crystallinity, nanocurcumin that we synthesized was also referred as Curcumin Nanocrystals. In Phase 2, we have assessed the comparative antioxidant efficacy of Curcumin nanocrystals and bulk Curcumin in the circulation of 1,2-dimethyl hydrazine-treated rats by investigating lipid peroxidation, antioxidant enzymes (superoxide dismutase, catalase), GSH and GSH-dependent detoxification enzymes (glutathione peroxidase, gIutathione-S-transferase). Curcumin nanocrystals exerted its antioxidant effect by decreasing lipid peroxidation, and by enhancing the activities of antioxidant and detoxification enzymes studied. Curcumin nanocrystals exhibited its antioxidant action at 40 mg dose whereas the bulk curcumin exerted its effect at 80 mg dose. This may be due to enhanced solubility, dispersibility, and crystallinity of the nanocrystals, which might have enhanced its bioavailability when compared to poorly soluble bulk curcumin. PMID:26369020

  9. Dual fluorescent labelling of cellulose nanocrystals for pH sensing.

    PubMed

    Nielsen, Lise Junker; Eyley, Samuel; Thielemans, Wim; Aylott, Jonathan W

    2010-12-21

    Cellulose nanocrystals were converted into ratiometric pH-sensing nanoparticles by dual fluorescent labelling employing a facile one-pot procedure. A simple and versatile three-step procedure was also demonstrated extending the number of fluorophores available for grafting. In this method an amine group was introduced via esterification followed by a thiol-ene click reaction.

  10. Synthesis and photocatalytic properties of multi-morphological AuCu3-ZnO hybrid nanocrystals

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Chen, Yuanzhi; Peng, Jian; Xie, Qingshui; Peng, Dong-Liang

    2015-10-01

    Noble metal-semiconductor hybrid nanocrystals represent an important class of materials for many potential applications, especially for photocatalysis. The utilization of transition metals to form alloys with noble metals can not only reduce the preparation costs, but may also offer tunable optical and catalytic properties for a broader range of applications. In this study, we report on the solution synthesis of AuCu3-ZnO hybrid nanocrystals with three interesting morphologies, including urchin-like, flower-like and multipod-like nanocrystals. In the synthetic strategy, Au-Cu bimetallic alloy seeds formed in situ are used to induce the heteroepitaxial growth of ZnO nanocrystals on the surface of bimetallic alloy cores; thus different types of morphologies can be achieved by controlling the reaction conditions. Through high-resolution transmission electron microscopy observations, well-defined interfaces between ZnO and AuCu3 are observed, which indicate that ZnO has a (0001) orientation and prefers to grow on AuCu3 {111} facets. The as-prepared hybrid nanocrystals demonstrate morphology- and composition-dependent surface plasmon resonance (SPR) absorption bands. In addition, much higher photocatalytic efficiency than pure ZnO nanocrystals is observed for the hybrid nanocrystals in the degradation of methylene blue. In particular, the multipod-like AuCu3-ZnO hybrid nanocrystals show the highest catalytic performance, as well as more than three times higher photocurrent density than the pure ZnO sample. The reported synthetic strategy provides a facile route to the effective combination of a plasmonic alloy with semiconductor components at the nanoscale in a controlled manner.

  11. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy

    DOE PAGESBeta

    Chen, Qian; Cho, Hoduk; Manthiram, Karthish; Yoshida, Mark; Ye, Xingchen; Alivisatos, A. Paul

    2015-03-23

    We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power ofmore » this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.« less

  12. Interaction Potentials of Anisotropic Nanocrystals from the Trajectory Sampling of Particle Motion using in Situ Liquid Phase Transmission Electron Microscopy

    PubMed Central

    2015-01-01

    We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power of this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics. PMID:27162944

  13. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.

    PubMed

    Swisher, Sarah L; Volkman, Steven K; Subramanian, Vivek

    2015-05-20

    Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solution-processed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nanocrystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 × 10(6). These results outperform previous air-stable nanocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics.

  14. Cu₂Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange.

    PubMed

    Casu, Alberto; Genovese, Alessandro; Manna, Liberato; Longo, Paolo; Buha, Joka; Botton, Gianluigi A; Lazar, Sorin; Kahaly, Mousumi Upadhyay; Schwingenschloegl, Udo; Prato, Mirko; Li, Hongbo; Ghosh, Sandeep; Palazon, Francisco; De Donato, Francesco; Mozo, Sergio Lentijo; Zuddas, Efisio; Falqui, Andrea

    2016-02-23

    Among the different synthesis approaches to colloidal nanocrystals, a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, postsynthetic treatments, such as thermally activated solid-state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se or Cu nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu "acceptor" phases represented by rod- and wire-shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu(2-x)Se nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu "donor" and "acceptor" particles were not always in direct contact with each other; hence, the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state and helps to shed light on the intermediate steps involved in such reactions. PMID:26816347

  15. Tailoring indium oxide nanocrystal synthesis conditions for air-stable high-performance solution-processed thin-film transistors.

    PubMed

    Swisher, Sarah L; Volkman, Steven K; Subramanian, Vivek

    2015-05-20

    Semiconducting metal oxides (ZnO, SnO2, In2O3, and combinations thereof) are a uniquely interesting family of materials because of their high carrier mobilities in the amorphous and generally disordered states, and solution-processed routes to these materials are of particular interest to the printed electronics community. Colloidal nanocrystal routes to these materials are particularly interesting, because nanocrystals may be formulated with tunable surface properties into stable inks, and printed to form devices in an additive manner. We report our investigation of an In2O3 nanocrystal synthesis for high-performance solution-deposited semiconductor layers for thin-film transistors (TFTs). We studied the effects of various synthesis parameters on the nanocrystals themselves, and how those changes ultimately impacted the performance of TFTs. Using a sintered film of solution-deposited In2O3 nanocrystals as the TFT channel material, we fabricated devices that exhibit field effect mobility of 10 cm(2)/(V s) and an on/off current ratio greater than 1 × 10(6). These results outperform previous air-stable nanocrystal TFTs, and demonstrate the suitability of colloidal nanocrystal inks for high-performance printed electronics. PMID:25915094

  16. Cu2Se and Cu Nanocrystals as Local Sources of Copper in Thermally Activated In Situ Cation Exchange

    PubMed Central

    2016-01-01

    Among the different synthesis approaches to colloidal nanocrystals, a recently developed toolkit is represented by cation exchange reactions, where the use of template nanocrystals gives access to materials that would be hardly attainable via direct synthesis. Besides, postsynthetic treatments, such as thermally activated solid-state reactions, represent a further flourishing route to promote finely controlled cation exchange. Here, we report that, upon in situ heating in a transmission electron microscope, Cu2Se or Cu nanocrystals deposited on an amorphous solid substrate undergo partial loss of Cu atoms, which are then engaged in local cation exchange reactions with Cu “acceptor” phases represented by rod- and wire-shaped CdSe nanocrystals. This thermal treatment slowly transforms the initial CdSe nanocrystals into Cu2–xSe nanocrystals, through the complete sublimation of Cd and the partial sublimation of Se atoms. Both Cu “donor” and “acceptor” particles were not always in direct contact with each other; hence, the gradual transfer of Cu species from Cu2Se or metallic Cu to CdSe nanocrystals was mediated by the substrate and depended on the distance between the donor and acceptor nanostructures. Differently from what happens in the comparably faster cation exchange reactions performed in liquid solution, this study shows that slow cation exchange reactions can be performed at the solid state and helps to shed light on the intermediate steps involved in such reactions. PMID:26816347

  17. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    NASA Astrophysics Data System (ADS)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  18. Size distributions of chemically synthesized Ag nanocrystals

    NASA Astrophysics Data System (ADS)

    Thøgersen, Annett; Bonsak, Jack; Fosli, Carl Huseby; Muntingh, Georg

    2011-08-01

    Silver nanocrystals made by a chemical reduction of silver salts (AgNO3) by sodium borohydride (NaBH4) were studied using transmission electron microscopy and light scattering simulations. For various AgNO3/NaBH4 molar ratios, the size distributions of the nanocrystals were found to be approximately log-normal. In addition, a linear relation was found between the mean nanocrystal size and the molar ratio. In order to relate the size distribution of Ag nanocrystals of the various molar ratios to the scattering properties of Ag nanocrystals in solar cell devices, light scattering simulations of Ag nanocrystals in Si, SiO2, SiN, and Al2O3 matrices were carried out using MiePlot. These light scattering spectra for the individual nanocrystal sizes were combined into light scattering spectra for the fitted size distributions. The evolution of these scattering spectra with respect to an increasing mean nanocrystal size was then studied. From these findings, it is possible to find the molar ratio for which the corresponding nanocrystal size distribution has maximum scattering at a particular wavelength in the desired matrix.

  19. Controlled Crystallinity and Fundamental Coupling Interactions in Nanocrystals

    NASA Astrophysics Data System (ADS)

    Ouyang, Min

    2009-03-01

    Metal and semiconductor nanocrystals show many unusual properties and functionalities, and can serve as model system to explore fundamental quantum and classical coupling interactions as well as building blocks of many practical applications. However, because of their small size, these nanoparticles typically exhibit different crystalline properties as compared with their bulk counterpart, and controlling crystallinity (and structural defects) within nanoparticles has posed significant technical challenges. In this talk, I will firstly apply silver metal nanoparticles as an example and present a novel chemical synthetic technique to achieve unprecedented crystallinity control at the nanoscale. This engineering of nanocrystallinity enables manipulation of intrinsic chemical functionalities, physical properties as well as nano-device performance [1]. For example, I will highlight that electron- phonon coupling constant can be significantly reduced by about four times and elastic modulus is increased ˜40% in perfect single crystalline silver nanoparticles as compared with those in disordered twinned nanoparticles. One important application of metal nanoparticles is nanoscale sensors. I will thus demonstrate that performance of nanoparticles based molecular sensing devices can be optimized with three times improvement of figure-of-merit if perfect single crystalline nanoparticles are applied. Lastly, I will present our related studies on semiconductor nanocrystals as well as their hybrid heterostructures. These discussions should offer important implications for our understanding of the fundamental properties at nanoscale and potential applications of metal nanoparticles. [4pt] [1] Yun Tang and Min Ouyang, Nature Materials, 6, 754, 2007.

  20. Implantation conditions for diamond nanocrystal formation in amorphous silica

    SciTech Connect

    Buljan, Maja; Radovic, Iva Bogdanovic; Desnica, Uros V.; Ivanda, Mile; Jaksic, Milko; Saguy, Cecile; Kalish, Rafi; Djerdj, Igor; Tonejc, Andelka; Gamulin, Ozren

    2008-08-01

    We present a study of carbon ion implantation in amorphous silica, which, followed by annealing in a hydrogen-rich environment, leads to preferential formation of carbon nanocrystals with cubic diamond (c-diamond), face-centered cubic (n-diamond), or simple cubic (i-carbon) carbon crystal lattices. Two different annealing treatments were used: furnace annealing for 1 h and rapid thermal annealing for a brief period, which enables monitoring of early nucleation events. The influence of implanted dose and annealing type on carbon and hydrogen concentrations, clustering, and bonding were investigated. Rutherford backscattering, elastic recoil detection analysis, infrared spectroscopy, transmission electron microscopy, selected area electron diffraction, ultraviolet-visible absorption measurements, and Raman spectroscopy were used to study these carbon formations. These results, combined with the results of previous investigations on similar systems, show that preferential formation of different carbon phases (diamond, n-diamond, or i-carbon) depends on implantation energy, implantation dose, and annealing conditions. Diamond nanocrystals formed at a relatively low carbon volume density are achieved by deeper implantation and/or lower implanted dose. Higher volume densities led to n-diamond and finally to i-carbon crystal formation. This observed behavior is related to damage sites induced by implantation. The optical properties of different carbon nanocrystal phases were significantly different.

  1. The surface plasmon modes of self-assembled gold nanocrystals

    NASA Astrophysics Data System (ADS)

    Barrow, Steven J.; Wei, Xingzhan; Baldauf, Julia S.; Funston, Alison M.; Mulvaney, Paul

    2012-12-01

    The three-dimensional (3D) self-assembly of nanocrystals constitutes one of the most important challenges in materials science. A key milestone is the synthesis of simple, regular structures, such as platonic solids, composed of nanocrystal building blocks. Such objects are predicted to have unique optical and electronic properties such as polarization-independent light-scattering and intense local fields. Here we present a two-stage process for fabricating well-defined and highly symmetric, 3D gold nanocrystal structures, including tetrahedra, 3D pentamers and 3D hexamers. Polarized scattering spectra are used to elucidate the plasmon modes present in each structure, and these are compared with computational models. We conclude that self-assembly of highly symmetric, polarization-independent structures with interparticle spacings of order 0.5 nm can now be fabricated. Drastically, enhanced local fields, 1000 times higher than the incident field strength, are produced within the interstices. Fano resonances are generated if the symmetry is broken.

  2. Lead sulphide nanocrystal photodetector technologies

    NASA Astrophysics Data System (ADS)

    Saran, Rinku; Curry, Richard J.

    2016-02-01

    Light detection is the underlying principle of many optoelectronic systems. For decades, semiconductors including silicon carbide, silicon, indium gallium arsenide and germanium have dominated the photodetector industry. They can show excellent photosensitivity but are limited by one or more aspects, such as high production cost, high-temperature processing, flexible substrate incompatibility, limited spectral range or a requirement for cryogenic cooling for efficient operation. Recently lead sulphide (PbS) nanocrystals have emerged as one of the most promising new materials for photodetector fabrication. They offer several advantages including low-cost manufacturing, solution processability, size-tunable spectral sensitivity and flexible substrate compatibility, and they have achieved figures of merit outperforming conventional photodetectors. We review the underlying concepts, breakthroughs and remaining challenges in photodetector technologies based on PbS nanocrystals.

  3. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Salemizadeh Parizi, Saman; Caruntu, Gabriel

    2015-07-01

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent

  4. Tunable luminescence and energy transfer of TbPO4:Eu3+ nanocrystals

    NASA Astrophysics Data System (ADS)

    Lü, Jiantao; Fan, Ting; Xie, Jianing; Chen, Guojie

    2013-01-01

    We report the synthesis of Tb(1-x)PO4:xEu3+ (x=0-1) nanophosphors directly by a simple hydrothermal method with citric acid (CA) as the organic additive and without further sintering treatment. The nanocrystals are well-faceted and show a highly symmetrical structure. The energy transfer between Tb3+ and Eu3+ in TbPO4 nanocrystal was investigated, and tunable emission wavelengths were realized in the materials by changing the doping concentration of Eu3+. The increase of Eu3+ concentration can lead to the interaction between neighboring Eu3+, which results in concentration quenching.

  5. Size-Dependent Photon Emission from Organometal Halide Perovskite Nanocrystals Embedded in an Organic Matrix

    PubMed Central

    2015-01-01

    In recent years, organometal halide perovskite materials have attracted significant research interest in the field of optoelectronics. Here, we introduce a simple and low-temperature route for the formation of self-assembled perovskite nanocrystals in a solid organic matrix. We demonstrate that the size and photoluminescence peak of the perovskite nanocrystals can be tuned by varying the concentration of perovskite in the matrix material. The physical origin of the blue shift of the perovskite nanocrystals’ emission compared to its bulk phase is also discussed. PMID:25949773

  6. Enhanced visible and near infrared emissions via Ce(3+) to Ln(3+) energy transfer in Ln(3+)-doped CeF3 nanocrystals (Ln = Nd and Sm).

    PubMed

    Samanta, Tuhin; Sarkar, Shyam; Adusumalli, Venkata N K B; Praveen, Athma E; Mahalingam, Venkataramanan

    2016-01-01

    We report the enhancement of both visible and near infrared (NIR) emissions from Nd(3+) ions via Ce(3+) sensitization in colloidal nanocrystals for the first time. This is achieved in citrate capped Nd(3+)-doped CeF3 nanocrystals under ultraviolet (UV) irradiation (λex = 282 nm). The lasing transition ((4)F3/2 → (4)I11/2) at 1064 nm from Nd(3+)-doped CeF3 nanocrystals has much higher emission intensity via Ce(3+) ion sensitization compared to the direct excitation of Nd(3+) ions. The nanocrystals were prepared using a simple microwave irradiation route. Moreover, the study has been extended to Sm(3+)-doped CeF3 nanocrystals which show strong characteristic emissions of Sm(3+) ions via energy transfer from Ce(3+) ions. The energy transfer mechanism from Ce(3+) to Nd(3+) and Sm(3+) ions is proposed.

  7. Inorganic colloidal nanocrystals: Synthesis and bioapplications

    NASA Astrophysics Data System (ADS)

    Wu, Huimeng

    Nanocrystals (NCs) are very small particles, which contain from a few hundred to thousands of atoms depending on the size of NCs. Because of their special properties compared with the bulk materials, NCs have found many promising applications in areas, such as biomedical diagnosis, catalysis, plasmonics, high-density data storage and solar energy conversion. This dissertation presents studies on the syntheses of metal oxide NCs and hybrid NCs, the surface functionalization of NCs by dual-interaction ligands, and gold-NC-based assay for the detection of beta-galactosidase. Monodisperse colloidal uranium dioxide NCs (UO2 NCs) were synthesized by decomposition of uranyl acetylacetonate. By changing the amount of added surfactant, the sizes of the NCs could vary from 2 ˜ 8 nm. Mechanistic studies of the formation of UO2 NCs showed that the condensation product (amide) of oleic acid and oleylamine plays an important role in controlling the particle size. Normally, high-quality NCs are synthesized in organic phase, but most of NC-based bio-applications require water-soluble NCs. To convert these hydrophobic NCs to hydrophilic particles, surface modification is employed. Here dual interaction ligands based on the Tween-derivatives (TDs) were synthesized. Stability tests on TD-capped NCs showed that these dual interaction ligands can significantly increase the stability of NCs compared to single interaction ligands. Further, These TD-capped QDs were further tested as fluorescent labels to detect virusprotein expression in cells. To exploit bio-applications of nanocrystals, gold nanocrystal-based assay to detect enzyme activity was designed. The optical properties of Au-NCs are not only dependent on the particle sizes and shapes, but also the distances between the particles. Here, Lipoic acid-tyramine-beta-galactopyranosyl (LTbeta-gal) was synthesized, as ligands, to cap Au-NCs; and the resultant LTbeta-gal-capped Au-NCs could disperse in water. After the hydrolysis of the

  8. Nonhydrolytic Synthesis and Electronic Structure of Ligand-Capped CeO2-.delta. and CeOCl Nanocrystals

    SciTech Connect

    Depner, S.; Kort, K; Jaye, C; Fischer, D; Banerjee, S

    2009-01-01

    A novel and versatile nonhydrolytic approach is developed for the synthesis of ligand-passivated CeO2-5 and CeOCl nanocrystals soluble in nonpolar organic solvents based on the condensation of cerium alkoxides with cerium halides. The alkyl group on the metal alkoxides and the specific halide used in the synthesis are observed to considerably influence the composition and size of the obtained nanocrystals. The obtained nanocrystals are <3 nm in diameter and, owing to their surface-capping groups, yield homogeneous and clear solutions in nonpolar organic solvents with no evidence of agglomeration. The electronic structure of the obtained CeO2-5 nanocrystals has been studied using optical absorption spectroscopy and near-edge X-ray absorption fine structure spectroscopy at Ce M- and O K-edges. The latter technique provides detailed insight into the metal valence, geometric structure, and atom-projected density of states in these nanocrystals. Finally, this synthesis method has been expanded to explore the doping of La to form solid-solution CexLa1-xO2-5 nanocrystals.

  9. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents

    NASA Astrophysics Data System (ADS)

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-07-01

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve ``unity in diversity'' on the preparation of nanocrystal-graphene hybrids.Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal

  10. Efficient Thermolysis Route to Monodisperse Cu2ZnSnS4 Nanocrystals with Controlled Shape and Structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyan; Guo, Guobiao; Ji, Cheng; Huang, Kai; Zha, Chenyang; Wang, Yifeng; Shen, Liming; Gupta, Arunava; Bao, Ningzhong

    2014-05-01

    Monodisperse Cu2ZnSnS4 (CZTS) nanocrystals with tunable shape, crystalline phase, and composition are synthesized by efficient thermolysis of a single source precursor of mixed metal-oleate complexes in hot organic solvents with dissolved sulfur sources. Suitable tuning of the synthetic conditions and the Cu/(Zn + Sn) ratio of the precursor has enabled precise control of the crystalline phase in the form of kesterite, or a newly observed wurtzite structure. Nanocrystals with morphology in the form of spherical, rice-like, or rod-like shapes are obtained over a wide range of compositions (0.5 <= Cu/(Zn + Sn) <= 1.2). Both the final products and intermediates for each shape exhibit consistent composition and structure, indicating homogenous nucleation and growth of single-phase nanocrystals. Thin films prepared from colloidal nanocrystal suspensions display interesting shape-dependent photoresponse behavior under white light illumination from a solar simulator.

  11. Cytotoxicity and cellular uptake of ZnS:Mn nanocrystals biofunctionalized with chitosan and aminoacids

    NASA Astrophysics Data System (ADS)

    Sajimol Augustine, M.; Anas, Abdulaziz; Das, Ani V.; Sreekanth, S.; Jayalekshmi, S.

    2015-02-01

    Highly luminescent, manganese doped, zinc sulphide (ZnS:Mn) nanocrystals biofunctionalized with chitosan and various aminoacids such as L-citrulline, L-lysine, L-arginine, L-serine, L-histidine and glycine were synthesized by chemical capping co-precipitation method at room temperature, which is a simple and cost effective technique. The synthesized nanocrystals were structurally characterized by TEM, XRD, EDXS and FT-IR spectroscopy techniques. They possess high colloidal stability with strong orange red photoluminescence emission at 598 nm. The intensity of orange red emission has been observed to be maximum in L-citrulline capped ZnS:Mn nanocrystals in which the emission at 420 nm is effectively quenched by surface passivation due to capping. Taking into consideration the prospects of these highly luminescent, bio-compatible ZnS:Mn nanocrystals in bio-imaging applications, cytotoxicity studies were conducted to identify the capping combination which would accomplish minimum toxic effects. ZnS:Mn nanocrystals biofunctionalized with chitosan, L-citrulline, glycine, L-artginine, L-serine and L-histidine showed least toxicity up to 10 nM concentrations in mouse fibroblast L929 cells, which further confirms their cytocompatibility. Also the ZnS:Mn nanocrystals biofunctionalized with L-arginine showed maximum uptake in in vitro studies carried out in human embryonic kidney cells, HEK-293T, which shows the significant role of this particular amino acid in fetoplacental nutrition. The present study highlights the suitability of aminoacid conjugated ZnS:Mn nanocrystals, as promising candidates for biomedical applications.

  12. Faceting of Nanocrystals during Chemical Transformation: FromSolid Silver Spheres to Hollow Gold Octahedra

    SciTech Connect

    Yin, Yadong; Erdonmez, Can; Alivisatos, A. Paul

    2006-06-23

    Sustained progress in nanocrystal synthesis has enabled recent use of these materials as inorganic, macromolecular precursors that can be chemically transformed into new nanostructures. The literature now contains several cases with chemical transformations being accompanied by varying degrees of modification of properties, including crystal structure and particle shape. As a recent example, we demonstrated that as-synthesized metallic nanocrystals yield, upon oxidation, nanostructures with modified morphologies such as hollow particles. This morphological change derives from directional material flows due to differing diffusivities for the reacting atomic species, in a nanoscale version of the well-known Kirkendall Effect. This general methodology has since been extended by other groups to produce nanostructures with various compositions and shapes. We demonstrate that performing a replacement reaction on single crystalline Ag nanospheres of {approx}10 nm in diameter in an organic solvent produces hollow Au nanocrystals with an octahedral shape. Different from those Au shells made by starting with Ag particles about one order of magnitude larger, which largely reproduce that of the sacrificial Ag counterparts, the hollow nanocrystals obtained in this work show significant changes in the external morphology from the spherical Ag precursors. This evolution of a faceted external morphology during chemical transformation is made possible by the enhanced role of surface effects in our smaller nanocrystals. The competition between the Au atom deposition and Ag atom dissolution on various nanocrystal surfaces is believed to determine the final octahedral shape of the hollow Au nanocrystals. Simultaneous achievement of surface-mediated shape control and a hollow morphology in a one-pot, single-step synthetic procedure in this study promises an avenue to finer tuning of particle morphology, and thus physical properties such as surface plasmon resonance.

  13. Analytical modeling of localized surface plasmon resonance in heterostructure copper sulfide nanocrystals

    SciTech Connect

    Caldwell, Andrew H.; Ha, Don-Hyung; Robinson, Richard D.; Ding, Xiaoyue

    2014-10-28

    Localized surface plasmon resonance (LSPR) in semiconductor nanocrystals is a relatively new field of investigation that promises greater tunability of plasmonic properties compared to metal nanoparticles. A novel process by which the LSPR in semiconductor nanocrystals can be altered is through heterostructure formation arising from solution-based cation exchange. Herein, we describe the development of an analytical model of LSPR in heterostructure copper sulfide-zinc sulfide nanocrystals synthesized via a cation exchange reaction between copper sulfide (Cu{sub 1.81}S) nanocrystals and Zn ions. The cation exchange reaction produces dual-interface, heterostructure nanocrystals in which the geometry of the copper sulfide phase can be tuned from a sphere to a thin disk separating symmetrically-grown sulfide (ZnS) grains. Drude model electronic conduction and Mie-Gans theory are applied to describe how the LSPR wavelength changes during cation exchange, taking into account the morphology evolution and changes to the local permittivity. The results of the modeling indicate that the presence of the ZnS grains has a significant effect on the out-of-plane LSPR mode. By comparing the results of the model to previous studies on solid-solid phase transformations of copper sulfide in these nanocrystals during cation exchange, we show that the carrier concentration is independent of the copper vacancy concentration dictated by its atomic phase. The evolution of the effective carrier concentration calculated from the model suggests that the out-of-plane resonance mode is dominant. The classical model was compared to a simplified quantum mechanical model which suggested that quantum mechanical effects become significant when the characteristic size is less than ∼8 nm. Overall, we find that the analytical models are not accurate for these heterostructured semiconductor nanocrystals, indicating the need for new model development for this emerging field.

  14. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes

    NASA Astrophysics Data System (ADS)

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H.; Fortner, John D.

    2016-08-01

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8–40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (<10%), is demonstrated to be a function of precursor concentrations and through the addition of different cosurfactants and/or additives, cubic, octahedral, potato-like, and flower-like iron oxide nanocrystals can be reproducibly synthesized through simple one-pot thermal decomposition methods. High resolution transmission electron microscope, x-ray diffraction, and superconducting quantum interference device were used to characterize the size, structure and magnetic properties of the resulting nanocrystals. For aqueous applications, materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s).

  15. Shape and size controlled synthesis of uniform iron oxide nanocrystals through new non-hydrolytic routes

    NASA Astrophysics Data System (ADS)

    Li, Wenlu; Lee, Seung Soo; Wu, Jiewei; Hinton, Carl H.; Fortner, John D.

    2016-08-01

    New, non-hydrolytic routes to synthesize highly crystalline iron oxide nanocrystals (8-40 nm, magnetite) are described in this report whereby particle size and morphology were precisely controlled through reactant (precursor, e.g. (FeO(OH)) ratios, co-surfactant and organic additive, and/or reaction time. Particle size, with high monodispersivity (<10%), is demonstrated to be a function of precursor concentrations and through the addition of different cosurfactants and/or additives, cubic, octahedral, potato-like, and flower-like iron oxide nanocrystals can be reproducibly synthesized through simple one-pot thermal decomposition methods. High resolution transmission electron microscope, x-ray diffraction, and superconducting quantum interference device were used to characterize the size, structure and magnetic properties of the resulting nanocrystals. For aqueous applications, materials synthesized/purified in organic solvents are broadly water dispersible through a variety of phase (aqueous) transfer method(s).

  16. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  17. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  18. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  19. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  20. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    SciTech Connect

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  1. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOEpatents

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  2. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    SciTech Connect

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  3. Bistable Magnetoresistance Switching in Exchange-Coupled CoFe2O4-Fe3O4 Binary Nanocrystal Superlattices by Self-Assembly and Thermal Annealing

    SciTech Connect

    Chen, J; Ye, XC; Oh, SJ; Kikkawa, JM; Kagan, CR; Murray, CB

    2013-02-01

    Self-assembly of multicomponent nanocrystal superlattices provides a modular approach to the design of metamaterials by choosing constituent nanocrystal building blocks with desired physical properties and engineering the interparticle coupling. In this work, we report the self-assembly of binary nanocrystal superlattices composed of magnetically hard CoFe2O4 nanocrystals and magnetically soft Fe3O4 nanocrystals. Both NaZn13- and MgZn2-type CoFe2O4-Fe3O4 binary nanocrystal superlattices have been formed by the liquid-air interfacial assembly approach. Exchange coupling is achieved in both types of binary superlattices after thermal annealing under vacuum at 400 degrees C. The exchange-coupled CoFe2O4-Fe3O4 binary nanocrystal superlattices show single-phase magnetization switching behavior and magnetoresistance switching behavior below 200 K. The NaZn13-type CoFe2O4-Fe3O4 binary nanocrystal superlattices annealed at 500 degrees C even exhibit bistable magnetoresistance switching behavior at room temperature constituting a simple nonvolatile memory function.

  4. Plasmon dynamics in colloidal Cu₂-xSe nanocrystals.

    PubMed

    Scotognella, Francesco; Della Valle, Giuseppe; Srimath Kandada, Ajay Ram; Dorfs, Dirk; Zavelani-Rossi, Margherita; Conforti, Matteo; Miszta, Karol; Comin, Alberto; Korobchevskaya, Kseniya; Lanzani, Guglielmo; Manna, Liberato; Tassone, Francesco

    2011-11-01

    The optical response of metallic nanostructures after intense excitation with femtosecond-laser pulses has recently attracted increasing attention: such response is dominated by ultrafast electron-phonon coupling and offers the possibility to achieve optical modulation with unprecedented terahertz bandwidth. In addition to noble metal nanoparticles, efforts have been made in recent years to synthesize heavily doped semiconductor nanocrystals so as to achieve a plasmonic behavior with spectrally tunable features. In this work, we studied the dynamics of the localized plasmon resonance exhibited by colloidal Cu(2-x)Se nanocrystals of 13 nm in diameter and with x around 0.15, upon excitation by ultrafast laser pulses via pump-probe experiments in the near-infrared, with ∼200 fs resolution time. The experimental results were interpreted according to the two-temperature model and revealed the existence of strong nonlinearities in the plasmonic absorption due to the much lower carrier density of Cu(2-x)Se compared to noble metals, which led to ultrafast control of the probe signal with modulation depth exceeding 40% in transmission. PMID:21939261

  5. Plasmon dynamics in colloidal Cu₂-xSe nanocrystals.

    PubMed

    Scotognella, Francesco; Della Valle, Giuseppe; Srimath Kandada, Ajay Ram; Dorfs, Dirk; Zavelani-Rossi, Margherita; Conforti, Matteo; Miszta, Karol; Comin, Alberto; Korobchevskaya, Kseniya; Lanzani, Guglielmo; Manna, Liberato; Tassone, Francesco

    2011-11-01

    The optical response of metallic nanostructures after intense excitation with femtosecond-laser pulses has recently attracted increasing attention: such response is dominated by ultrafast electron-phonon coupling and offers the possibility to achieve optical modulation with unprecedented terahertz bandwidth. In addition to noble metal nanoparticles, efforts have been made in recent years to synthesize heavily doped semiconductor nanocrystals so as to achieve a plasmonic behavior with spectrally tunable features. In this work, we studied the dynamics of the localized plasmon resonance exhibited by colloidal Cu(2-x)Se nanocrystals of 13 nm in diameter and with x around 0.15, upon excitation by ultrafast laser pulses via pump-probe experiments in the near-infrared, with ∼200 fs resolution time. The experimental results were interpreted according to the two-temperature model and revealed the existence of strong nonlinearities in the plasmonic absorption due to the much lower carrier density of Cu(2-x)Se compared to noble metals, which led to ultrafast control of the probe signal with modulation depth exceeding 40% in transmission.

  6. PdCuPt Nanocrystals with Multibranches for Enzyme-Free Glucose Detection.

    PubMed

    Fu, Shaofang; Zhu, Chengzhou; Song, Junhua; Engelhard, Mark; Xia, Haibing; Du, Dan; Lin, Yuehe

    2016-08-31

    By carefully controlling the synthesis condition, branched PtCu bimetallic templates were synthesized in aqueous solution. After the galvanic replacement reaction between PtCu templates and the Pt precursors, PdCuPt trimetallic nanocrystals with branched structures were obtained. Owing to the open structure and the optimized composition, the electrochemical experimental results reveal that the PdCuPt trimetallic nanocrystals possess high electrocatalytic activity, selectivity and stability for the oxidation of glucose in alkaline solution. In detail, a detection limit of 1.29 μM and a sensitivity of 378 μA/mM/cm(2) are achieved. The good electrocatalytic performance should be attributed to the unique branched nanostructure as well as the synergistic effect among metals. The superior catalytic properties suggest that these nanocrystals are promising for enzyme-free detection of glucose. PMID:27494365

  7. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    SciTech Connect

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; Cohen, Bruce E.; Urban, Jeffrey J.; Ogletree, D. Frank; Milliron, Delia J.; Prendergast, David; Helms, Brett A.

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons is readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.

  8. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE PAGESBeta

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; et al

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  9. Tailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals

    PubMed Central

    Wang, Ya-Lan; Mohammadi Estakhri, Nasim; Johnson, Amber; Li, Hai-Yang; Xu, Li-Xiang; Zhang, Zhenyu; Alù, Andrea; Wang, Qu-Quan; Shih, Chih-Kang (Ken)

    2015-01-01

    By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb3+/Er3+ nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emission wavelength, an upconversion enhancement factor ~5 is obtained. However, when the plasmonic resonance is tuned to 980 nm, matching the nanocrystal absorption wavelength, we achieve an enhancement factor of ~22 folds. The precise geometric arrangement between fluorescent nanoparticles and silver nanoplatelets allows us to make, for the first time, a comparative analysis between experimental results and numerical simulations, yielding a quantitative agreement at the single particle level. Such a comparison lays the foundations for a rational design of hybrid metal-fluorescent nanocrystals to harness the upconversion enhancement for biosensing and light harvesting applications. PMID:25976870

  10. Formation of Ru nanocrystals by plasma enhanced atomic layer deposition for nonvolatile memory applications

    SciTech Connect

    Yim, Sung-Soo; Lee, Moon-Sang; Kim, Ki-Su; Kim, Ki-Bum

    2006-08-28

    The formation of Ru nanocrystals is demonstrated on a SiO{sub 2} substrate by plasma enhanced atomic layer deposition using diethylcyclopentadienyl ruthenium and NH{sub 3} plasma. The island growth of Ru was observed at the initial stages of the film formation up to a nominal thickness of 11.1 nm. A maximum Ru nanocrystal spatial density of 9.7x10{sup 11} /cm{sup 2} was achieved with an average size of 3.5 nm and standard deviation of the size of 20%. Electron charging/discharging effect in the Ru nanocrystals is demonstrated by measuring the flatband voltage shift in the capacitance-voltage measurement of metal-oxide-semiconductor memory capacitor structure.

  11. Giant enhancement of light emission from Au nanocrystals into a porous matrix integrated with silicon platform.

    PubMed

    Kisner, Alexandre; de Aguiar, Marina Rodrigues; Kubota, Lauro T

    2009-04-01

    Integration of metal nanoparticle-dielectric films with silicon technology is emerging as a promising candidate for sub-wavelength optoelectronics and correlated devices. A giant enhancement of the luminescence intensity of gold nanocrystals directly prepared on a nanoporous template of anodized aluminium oxide is evaluated herewith, for the first time in literature, as a favourable substrate for integrating silicon-based optoelectronics. The size and lateral separation between adjacent particles are controlled by the geometry of the dielectric matrix and on-chip-integration is achieved during the nanoparticle growth, requiring no further steps. A more pronounced photoresponse is observed with embedded nanocrystals as small as 12 nm and the high emission is attributed to the light confinement associated to the increase of the local field effect on the surface plasmon hybridization waves. The demonstrated ability to control the assemble of the nanocrystals and the intense light emission indicate that the embedded gold nanostructures have a high potential for plasmonic device applications.

  12. Photochemical Charge Separation in Nanocrystal Photocatalyst Films: Insights from Surface Photovoltage Spectroscopy.

    PubMed

    Zhao, Jing; Osterloh, Frank E

    2014-03-01

    Photochemical charge generation, separation, and transport at nanocrystal interfaces are central to photoelectrochemical water splitting, a pathway to hydrogen from solar energy. Here, we use surface photovoltage spectroscopy to probe these processes in nanocrystal films of HCa2Nb3O10, a proven photocatalyst. Charge injection from the nanoparticles into the gold support can be observed, as well as oxidation and reduction of methanol and oxygen adsorbates on the nanosheet films. The measured photovoltage depends on the illumination intensity and substrate material, and it varies with illumination time and with film thickness. The proposed model predicts that the photovoltage is limited by the built-in potential of the nanosheet-metal junction, that is, the difference of Fermi energies in the two materials. The ability to measure and understand these light-induced charge separation processes in easy-to-fabricate films will promote the development of nanocrystal applications in photoelectrochemical cells, photovoltaics, and photocatalysts.

  13. Multi-branched CdSe nanocrystals stabilized by weak ligand for hybrid solar cell application.

    PubMed

    Liu, Jincheng; Tao, Hong; Cao, Yong; Ackermann, Jorg

    2014-04-01

    In this article, multi-branched CdSe nanocrystals were produced by a facile colloidal approach stabilized by oleylamine at a relative low temperature. The as-prepared multi-branched CdSe nanocrystals after simple washing process were used in the fabrication of poly(3-hexylthiophene)/CdSe bulk heterojunction photovoltaic device. The effective charge separation in the poly(3-hexylthiophene)/ CdSe nanocomposites have been confirmed by the strong photoluminescence quenching. The films of the blends of P3HT and simply-washed CdSe nanocrystals show more uniform morphology and flatter surface than the film of the bends of P3HT and pyridine-refluxed CdSe nanocrystals. The corresponding power conversion efficiency under 1 sun is about 0.66% for the P3HT/pyridine-washed CdSe hybrid device. Our work did a preliminary study in the hybrid solar cell application of branched blenze CdSe nanocrystals prepared by an easier way, and will be interesting and helpful for making the high-efficiency hybrid solar cells with branched CdSe acceptors.

  14. Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites

    PubMed Central

    Yakunin, Sergii; Protesescu, Loredana; Krieg, Franziska; Bodnarchuk, Maryna I.; Nedelcu, Georgian; Humer, Markus; De Luca, Gabriele; Fiebig, Manfred; Heiss, Wolfgang; Kovalenko, Maksym V.

    2015-01-01

    Metal halide semiconductors with perovskite crystal structures have recently emerged as highly promising optoelectronic materials. Despite the recent surge of reports on microcrystalline, thin-film and bulk single-crystalline metal halides, very little is known about the photophysics of metal halides in the form of uniform, size-tunable nanocrystals. Here we report low-threshold amplified spontaneous emission and lasing from ∼10 nm monodisperse colloidal nanocrystals of caesium lead halide perovskites CsPbX3 (X=Cl, Br or I, or mixed Cl/Br and Br/I systems). We find that room-temperature optical amplification can be obtained in the entire visible spectral range (440–700 nm) with low pump thresholds down to 5±1 μJ cm−2 and high values of modal net gain of at least 450±30 cm−1. Two kinds of lasing modes are successfully observed: whispering-gallery-mode lasing using silica microspheres as high-finesse resonators, conformally coated with CsPbX3 nanocrystals and random lasing in films of CsPbX3 nanocrystals. PMID:26290056

  15. Copper selenide nanocrystals for photothermal therapy.

    PubMed

    Hessel, Colin M; Pattani, Varun P; Rasch, Michael; Panthani, Matthew G; Koo, Bonil; Tunnell, James W; Korgel, Brian A

    2011-06-01

    Ligand-stabilized copper selenide (Cu(2-x)Se) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near-infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 10(7) cm(-1) M(-1) at 980 nm. When excited with 800 nm light, the Cu(2-x)Se nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu(2-x)Se nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 min of laser irradiation at 33 W/cm(2), demonstrating the viabilitiy of Cu(2-x)Se nanocrystals for photothermal therapy applications. PMID:21553924

  16. Copper Selenide Nanocrystals for Photothermal Therapy

    PubMed Central

    Hessel, Colin M.; Pattani, Varun; Rasch, Michael; Panthani, Matthew G.; Koo, Bonil; Tunnell, James W.; Korgel, Brian A.

    2011-01-01

    Ligand-stabilized copper selenide (Cu2−xSe) nanocrystals, approximately 16 nm in diameter, were synthesized by a colloidal hot injection method and coated with amphiphilic polymer. The nanocrystals readily disperse in water and exhibit strong near infrared (NIR) optical absorption with a high molar extinction coefficient of 7.7 × 107 cm−1 M−1 at 980 nm. When excited with 800 nm light, the Cu2−xSe nanocrystals produce significant photothermal heating with a photothermal transduction efficiency of 22%, comparable to nanorods and nanoshells of gold (Au). In vitro photothermal heating of Cu2−xSe nanocrystals in the presence of human colorectal cancer cell (HCT-116) led to cell destruction after 5 minutes of laser irradiation at 33 W/cm2, demonstrating the viabilitiy of Cu2−xSe nanocrystals for photothermal therapy applications. PMID:21553924

  17. Nanocrystal technology, drug delivery and clinical applications

    PubMed Central

    Junghanns, Jens-Uwe A H; Müller, Rainer H

    2008-01-01

    Nanotechnology will affect our lives tremendously over the next decade in very different fields, including medicine and pharmacy. Transfer of materials into the nanodimension changes their physical properties which were used in pharmaceutics to develop a new innovative formulation principle for poorly soluble drugs: the drug nanocrystals. The drug nanocrystals do not belong to the future; the first products are already on the market. The industrially relevant production technologies, pearl milling and high pressure homogenization, are reviewed. The physics behind the drug nanocrystals and changes of their physical properties are discussed. The marketed products are presented and the special physical effects of nanocrystals explained which are utilized in each market product. Examples of products in the development pipelines (clinical phases) are presented and the benefits for in vivo administration of drug nanocrystals are summarized in an overview. PMID:18990939

  18. Influence of dopant distribution on the plasmonic properties of indium tin oxide nanocrystals.

    PubMed

    Lounis, Sebastien D; Runnerstrom, Evan L; Bergerud, Amy; Nordlund, Dennis; Milliron, Delia J

    2014-05-14

    Doped metal oxide nanocrystals represent an exciting frontier for colloidal synthesis of plasmonic materials, displaying unique optoelectronic properties and showing promise for a variety of applications. However, fundamental questions about the nature of doping in these materials remain. In this article, the strong influence of radial dopant distribution on the optoelectronic properties of colloidal indium tin oxide nanocrystals is reported. Comparing elemental depth-profiling by X-ray photoelectron spectroscopy (XPS) with detailed modeling and simulation of the optical extinction of these nanocrystals using the Drude model for free electrons, a correlation between surface segregation of tin ions and the average activation of dopants is observed. A strong influence of surface segregation of tin on the line shape of the localized surface plasmon resonance (LSPR) is also reported. Samples with tin segregated near the surface show a symmetric line shape that suggests weak or no damping of the plasmon by ionized impurities. It is suggested that segregation of tin near the surface facilitates compensation of the dopant ions by electronic defects and oxygen interstitials, thus reducing activation. A core-shell model is proposed to explain the observed differences in line shape. These results demonstrate the nuanced role of dopant distribution in determining the optoelectronic properties of semiconductor nanocrystals and suggest that more detailed study of the distribution and structure of defects in plasmonic colloidal nanocrystals is warranted.

  19. Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent.

    PubMed

    Wu, Jianbo; Gross, Adam; Yang, Hong

    2011-02-01

    The shape of metal alloy nanocrystals plays an important role in catalytic performances. Many methods developed so far in controlling the morphologies of nanocrystals are however limited by the synthesis that is often material and shape specific. Here we show using a gas reducing agent in liquid solution (GRAILS) method, different Pt alloy (Pt-M, M = Co, Fe, Ni, Pd) nanocrystals with cubic and octahedral morphologies can be prepared under the same kind of reducing reaction condition. A broad range of compositions can also be obtained for these Pt alloy nanocrystals. Thus, this GRAILS method is a general approach to the preparation of uniform shape and composition-controlled Pt alloy nanocrystals. The area-specific oxygen reduction reaction (ORR) activities of Pt(3)Ni catalysts at 0.9 V are 0.85 mA/cm(2)(Pt) for the nanocubes, and 1.26 mA/cm(2)(Pt) for the nanooctahedra. The ORR mass activity of the octahedral Pt(3)Ni catalyst reaches 0.44 A/mg(Pt).

  20. Structure-Dependent Spin Polarization in Polymorphic CdS:Y Semiconductor Nanocrystals.

    PubMed

    Wang, Pan; Xiao, Bingxin; Zhao, Rui; Ma, Yanzhang; Zhang, Mingzhe

    2016-03-01

    Searching for the polymorphic semiconductor nanocrystals would provide precise and insightful structure-spin polarization correlations and meaningful guidance for designing and synthesizing high spin-polarized spintronic materials. Herein, the high spin polarization is achieved in polymorphic CdS:Y semiconductor nanocrystals. The high-pressure polymorph of rock-salt CdS:Y nanocrystals has been recovered at ambient conditions synthesized by the wurtzite CdS:Y nanocrystals as starting material under 5.2 GPa and 300 °C conditions. The rock-salt CdS:Y polymorph displays more robust room-temperature ferromagnetism than wurtzite sample, which can reach the ferromagnetic level of conventional semiconductors doped with magnetic transition-metal ions, mainly due to the significantly enhanced spin configuration and defect states. Therefore, crystal structure directly governs the spin configuration, which determines the degree of spin polarization. This work can provide experimental and theoretical methods for designing the high spin-polarized semiconductor nanocrystals, which is important for applications in semiconductor spintronics. PMID:26905093

  1. Influence of Dopant Distribution on the Plasmonic Properties of Indium Tin Oxide Nanocrystals

    SciTech Connect

    Lounis, SD; Runnerstrom, EL; Bergerud, A; Nordlund, D; Milliron, DJ

    2014-05-14

    Doped metal oxide nanocrystals represent an exciting frontier for colloidal synthesis of plasmonic materials, displaying unique optoelectronic properties and showing promise for a variety of applications. However, fundamental questions about the nature of doping in these materials remain. In this article, the strong influence of radial dopant distribution on the optoelectronic properties of colloidal indium tin oxide nanocrystals is reported. Comparing elemental depth-profiling by X-ray photoelectron spectroscopy (XPS) with detailed modeling and simulation of the optical extinction of these nanocrystals using the Drude model for free electrons, a correlation between surface segregation of tin ions and the average activation of dopants is observed. A strong influence of surface segregation of tin on the line shape of the localized surface plasmon resonance (LSPR) is also reported. Samples with tin segregated near the surface show a symmetric line shape that suggests weak or no damping of the plasmon by ionized impurities. It is suggested that segregation of tin near the surface facilitates compensation of the dopant ions by electronic defects and oxygen interstitials, thus reducing activation. A core shell model is proposed to explain the observed differences in line shape. These results demonstrate the nuanced role of dopant distribution in determining the optoelectronic properties of semiconductor nanocrystals and suggest that more detailed study of the distribution and structure of defects in plasmonic colloidal nanocrystals is warranted.

  2. Molybdenum and Tungsten Sulfide Ligands for Versatile Functionalization of All-Inorganic Nanocrystals.

    PubMed

    Ban, Hyeong Woo; Park, Sangmin; Jeong, Hyewon; Gu, Da Hwi; Jo, Seungki; Park, Sung Hoon; Park, Jongnam; Son, Jae Sung

    2016-09-15

    We report a strategy toward the synthesis of colloidal nanocrystals capped with inorganic molybdenum and tungsten sulfide ligands. MoS4(2-) and WS4(2-) thiometalates were utilized to replace organic ligands capping a wide range of nanocrystals such as metals, semiconductors, and well-conserved primary properties of nanocrystals in polar media. Especially, MoS4(2-)- and WS4(2-)-capped CdSe nanocryatals showed the dramatic enhancement of photoluminescence properties by the photo-oxidation treatment, which originated from the preferential formation of MoSxOy layers on the CdSe surface. The highest quantum yield reached up to 51%. Furthermore, we studied the charge-transport properties of MoS4(2-)-capped PbS nanocryatals by the fabrication of a field-effect transistor and photodetectors. Finally, MoS4(2-)- and WS4(2-)-capped nanocrystals were used for the production of two-dimensional MoS2 and WS2 thin layers on nanostructures by heat treatment. Such versatility of these thiometalate ligands offers an additional degree of control over the functionality of nanocrystals for optoelectronic and catalytic applications. PMID:27571033

  3. Structure-Dependent Spin Polarization in Polymorphic CdS:Y Semiconductor Nanocrystals.

    PubMed

    Wang, Pan; Xiao, Bingxin; Zhao, Rui; Ma, Yanzhang; Zhang, Mingzhe

    2016-03-01

    Searching for the polymorphic semiconductor nanocrystals would provide precise and insightful structure-spin polarization correlations and meaningful guidance for designing and synthesizing high spin-polarized spintronic materials. Herein, the high spin polarization is achieved in polymorphic CdS:Y semiconductor nanocrystals. The high-pressure polymorph of rock-salt CdS:Y nanocrystals has been recovered at ambient conditions synthesized by the wurtzite CdS:Y nanocrystals as starting material under 5.2 GPa and 300 °C conditions. The rock-salt CdS:Y polymorph displays more robust room-temperature ferromagnetism than wurtzite sample, which can reach the ferromagnetic level of conventional semiconductors doped with magnetic transition-metal ions, mainly due to the significantly enhanced spin configuration and defect states. Therefore, crystal structure directly governs the spin configuration, which determines the degree of spin polarization. This work can provide experimental and theoretical methods for designing the high spin-polarized semiconductor nanocrystals, which is important for applications in semiconductor spintronics.

  4. Structural Characterization of Bimetallic Nanocrystal Electrocatalysts

    SciTech Connect

    Cullen, David A

    2016-01-01

    Late transition metal nanocrystals find applications in heterogeneous catalysis such as plasmon-enhanced catalysis and as electrode materials for fuel cells, a zero-emission and sustainable energy technology. Their commercial viability for automotive transportation has steadily increased in recent years, almost exclusively due to the discovery of more efficient bimetallic nanocatalysts for the oxygen reduction reaction (ORR) at the cathode. Despite improvements to catalyst design, achieving high activity while maintaining durability is essential to further enhance their performance for this and other important applications in catalysis. Electronic effects arising from the generation of metal-metal interfaces, from plasmonic metals, and from lattice distortions, can vastly improve sorption properties at catalytic surfaces, while increasing durability.[1] Multimetallic lattice-strained nanoparticles are thus an interesting opportunity for fundamental research.[2,3] A colloidal synthesis approach is demonstrated to produce AuPd alloy and Pd@Au core-shell nanoicosahedra as catalysts for electro-oxidations. The nanoparticles are characterized using aberration-corrected scanning transmission electron microscopy (ac-STEM) and large solid angle energy dispersive X-ray spectroscopy (EDS) on an FEI Talos 4-detector STEM/EDS system. Figure 1 shows bright-field (BF) and high-angle annular dark-field (HAADF) ac-STEM images of the alloy and core-shell nanoicosahedra together with EDS line-scans and elemental maps. These structures are unique in that the presence of twin boundaries, alloying, and core-shell morphology could create highly strained surfaces and interfaces. The shell thickness of the core-shell structures observed in HAADF-STEM images is tuned by adjusting the ratio between metal precursors (Figure 2a-f) to produce shells ranging from a few to several monolayers. Specific activity was measured in ethanol electro-oxidation to examine the effect of shell thickness on

  5. ZnS nanocrystals and nanoflowers synthesized by a green chemistry approach: rare excitonic photoluminescence achieved by the tunable molar ratio of precursors.

    PubMed

    Xiao, Ningru; Dai, Quanqin; Wang, Yingnan; Ning, Jiajia; Liu, Bingbing; Zou, Guangtian; Zou, Bo

    2012-04-15

    In the present work, we demonstrated a simple and green synthesis route for shape-controlled ZnS nanocrystals, where only environmentally benign chemicals, namely sulfur, zinc oxide and olive oil, were employed. By controlling the experimental conditions, we were able to tune the band edge and trap state photoluminescences of ZnS nanocrystals and obtain pure excitonic photoluminescence that was rarely observed in literature. The trap state emission was derived from sulfur vacancies and would be eliminated when an excess of sulfur was used during the synthesis. Additionally, the morphology of ZnS nanocrystals could be tuned to appear like flowers, where the formation mechanism was systematically discussed.

  6. Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites.

    PubMed

    Choi, YongJae; Simonsen, John

    2006-03-01

    Polymer nanocomposites are one of the important application areas for nanotechnology. Naturally derived organic nanophase materials are of special interest in the case of polymer nanocomposites. Carboxymethyl cellulose is a polyelectrolyte derived from natural materials. It has been extensively studied as a hydrogel polymer. Methods to modify the mechanical properties of gels and films made from CMC are of interest in our lab and in the commercial marketplace. The effect of nano-sized fillers on the properties of CMC-based composites is of interest in the development of novel or improved applications for hydrogel polymers in general and CMC in particular. This project investigated cellulose nanocrystals (CNXLs) as a filler in CMC and compared the effects to microcrystalline cellulose (MCC). The composite material was composed of CMC, MCC or CNXL, with glycerin as a plasticizer. CNXL and MCC concentrations ranged from 5% to 30%. Glycerin concentrations were kept constant at 10%. CNXLs improved the strength and stiffness of the resulting composite compared to MCC. In addition, a simple heat treatment was found to render the nanocomposite water resistant.

  7. Laser-induced growth of nanocrystals embedded in porous materials

    PubMed Central

    2013-01-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  8. Laser-induced growth of nanocrystals embedded in porous materials

    NASA Astrophysics Data System (ADS)

    Capoen, Bruno; Chahadih, Abdallah; El Hamzaoui, Hicham; Cristini, Odile; Bouazaoui, Mohamed

    2013-06-01

    Space localization of the linear and nonlinear optical properties in a transparent medium at the submicron scale is still a challenge to yield the future generation of photonic devices. Laser irradiation techniques have always been thought to structure the matter at the nanometer scale, but combining them with doping methods made it possible to generate local growth of several types of nanocrystals in different kinds of silicate matrices. This paper summarizes the most recent works developed in our group, where the investigated nanoparticles are either made of metal (gold) or chalcogenide semiconductors (CdS, PbS), grown in precursor-impregnated porous xerogels under different laser irradiations. This review is associated to new results on silver nanocrystals in the same kind of matrices. It is shown that, depending on the employed laser, the particles can be formed near the sample surface or deep inside the silica matrix. Photothermal and/or photochemical mechanisms may be invoked to explain the nanoparticle growth, depending on the laser, precursor, and matrix. One striking result is that metal salt reduction, necessary to the production of the corresponding nanoparticles, can efficiently occur due to the thermal wrenching of electrons from the matrix itself or due to multiphoton absorption of the laser light by a reducer additive in femtosecond regime. Very localized semiconductor quantum dots could also be generated using ultrashort pulses, but while PbS nanoparticles grow faster than CdS particles due to one-photon absorption, this better efficiency is counterbalanced by a sensitivity to oxidation. In most cases where the reaction efficiency is high, particles larger than the pores have been obtained, showing that a fast diffusion of the species through the interconnected porosity can modify the matrix itself. Based on our experience in these techniques, we compare several examples of laser-induced nanocrystal growth in porous silica xerogels, which allows

  9. Nanocrystal-based Optoelectronic Devices

    NASA Astrophysics Data System (ADS)

    Evans, Kenneth; Herzog, Joseph; Ward, Daniel; Natelson, Douglas

    2012-02-01

    Optoelectronic devices capable of detecting and emitting light on a scale well below its wavelength could have a profound impact on basic and applied experimental research in light-based electronics, on-demand photon generation, and for studying poorly understood quantum phenomena such as blinking and spectral wandering. We present a fabrication procedure for ultrasmall, nanocrystal optoelectronic devices based on self-assembled layers of quantum dots in plasmonically-active gold nanogaps. We provide preliminary experimental results which examine the possibility for surfaced-enhanced fluorescence, subwavelength detection and emission of light as well as plasmon-based optical trapping in these systems.

  10. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    PubMed

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-01

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  11. Bioaccumulation and biomarker responses of cubic and octahedral Cu2O micro/nanocrystals in Daphnia magna.

    PubMed

    Fan, Wenhong; Shi, Zhiwei; Yang, Xiuping; Cui, Minming; Wang, Xiaolong; Zhang, Dongfeng; Liu, Hong; Guo, Lin

    2012-11-15

    Great progress has been made in the controlled fabrication of nanomaterials with given sizes, shapes, and geometries. However, how such changes in structure potentially affect the bioavailability and toxicity of metal nanoparticles to aquatic organisms remains mostly unknown. The present study reports the different behaviors of two types of Cu(2)O micro/nanocrystals (micro/nano-Cu(2)O) with different shapes (cubic and octahedral) and crystallographies (with exposed surfaces as {100} or {111}). The bioaccumulation, median lethal concentration, and biomarker responses of Daphnia magna exposed to the two micro/nanocrystals are also investigated. The Cu accumulation, production of metallothionein (MT), and inhibition ratio of D. magna increased gradually with increasing micro/nano-Cu(2)O concentration. The two crystals showed slight Cu accumulation differences toward D. magna, and their biomarker responses and toxicities to D. magna differed significantly as well. The octahedral Cu(2)O micro/nanocrystals were more toxic to D. magna compared with the cubic micro/nanocrystals probably because of the higher surface activities of the {111} facets compared with those of the {100} facets for cuprites. Food ingestion was the main entry pathway of the micro/nanocrystals into organisms, and toxicity was consequently determined based on the dissolution behavior of the micro/nanocrystals in vivo.

  12. FeCo/graphitic-shell nanocrystals as advanced magnetic-resonance-imaging and near-infrared agents

    NASA Astrophysics Data System (ADS)

    Seo, Won Seok; Lee, Jin Hyung; Sun, Xiaoming; Suzuki, Yoriyasu; Mann, David; Liu, Zhuang; Terashima, Masahiro; Yang, Philip C.; McConnell, Michael V.; Nishimura, Dwight G.; Dai, Hongjie

    2006-12-01

    Nanocrystals with advanced magnetic or optical properties have been actively pursued for potential biological applications, including integrated imaging, diagnosis and therapy. Among various magnetic nanocrystals, FeCo has superior magnetic properties, but it has yet to be explored owing to the problems of easy oxidation and potential toxicity. Previously, FeCo nanocrystals with multilayered graphitic carbon, pyrolytic carbon or inert metals have been obtained, but not in the single-shelled, discrete, chemically functionalized and water-soluble forms desired for biological applications. Here, we present a scalable chemical vapour deposition method to synthesize FeCo/single-graphitic-shell nanocrystals that are soluble and stable in water solutions. We explore the multiple functionalities of these core-shell materials by characterizing the magnetic properties of the FeCo core and near-infrared optical absorbance of the single-layered graphitic shell. The nanocrystals exhibit ultra-high saturation magnetization, r1 and r2 relaxivities and high optical absorbance in the near-infrared region. Mesenchymal stem cells are able to internalize these nanoparticles, showing high negative-contrast enhancement in magnetic-resonance imaging (MRI). Preliminary in vivo experiments achieve long-lasting positive-contrast enhancement for vascular MRI in rabbits. These results point to the potential of using these nanocrystals for integrated diagnosis and therapeutic (photothermal-ablation) applications.

  13. Synthesis and Near-infrared Luminescent Properties of NaGdF4:Nd3+@NaGdF4 Core/Shell Nanocrystals with Different Shell Thickness.

    PubMed

    Li, Xinke; You, Fangtian; Peng, Hongshang; Huang, Shihua

    2016-04-01

    The near-infrared to near-infrared (NIR-to-NIR) photoluminescence of nanocrystals has outstanding advantages in biological imaging. NaGdF4:Nd3+ core nanocrystals and NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with different shell thicknesses were synthesized by a simple solvothermal method. The obtained nanocrystals were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The phase of all nanocrystals is hexagonal. NaGdF4:Nd3+ core nanocrystals have an average size of 6 nm. By controlling core-shell ratio for 1:2 and 1:3, we obtained NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with average sizes of 10 nm and 11 nm, respectively. When excited at 808 nm, strong NIR emission was observed. The emission peaks at -860 nm, -1060 nm and -1330 nm correspond to the transitions from the 4F3/2 state to the 4I9/2, 4I1/2 and 4I13/2 state of Nd3+ ions, respectively. The emission intensity of NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals is stronger than that of the core. The intensity increases with the increase of shell thickness. The shell improves the luminous efficiency by reducing surface defects. The decay time of Nd3+ emission in NaGdF4:Nd3+@NaGdF4 core/shell nanocrystal is longer than that in NaGdF4:Nd3+ core, indicating that the shell isolates effectively the emitting ions (Nd3+) from the quenching defects. With the increase of shell thickness, the decay time becomes longer. Within a certain range of shell thickness, thicker shell can protect the emitting Nd3+ ions on the surface of core nanocrystals more effectively.

  14. Synthesis and Near-infrared Luminescent Properties of NaGdF4:Nd3+@NaGdF4 Core/Shell Nanocrystals with Different Shell Thickness.

    PubMed

    Li, Xinke; You, Fangtian; Peng, Hongshang; Huang, Shihua

    2016-04-01

    The near-infrared to near-infrared (NIR-to-NIR) photoluminescence of nanocrystals has outstanding advantages in biological imaging. NaGdF4:Nd3+ core nanocrystals and NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with different shell thicknesses were synthesized by a simple solvothermal method. The obtained nanocrystals were characterized by transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis. The phase of all nanocrystals is hexagonal. NaGdF4:Nd3+ core nanocrystals have an average size of 6 nm. By controlling core-shell ratio for 1:2 and 1:3, we obtained NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals with average sizes of 10 nm and 11 nm, respectively. When excited at 808 nm, strong NIR emission was observed. The emission peaks at -860 nm, -1060 nm and -1330 nm correspond to the transitions from the 4F3/2 state to the 4I9/2, 4I1/2 and 4I13/2 state of Nd3+ ions, respectively. The emission intensity of NaGdF4:Nd3+@NaGdF4 core/shell nanocrystals is stronger than that of the core. The intensity increases with the increase of shell thickness. The shell improves the luminous efficiency by reducing surface defects. The decay time of Nd3+ emission in NaGdF4:Nd3+@NaGdF4 core/shell nanocrystal is longer than that in NaGdF4:Nd3+ core, indicating that the shell isolates effectively the emitting ions (Nd3+) from the quenching defects. With the increase of shell thickness, the decay time becomes longer. Within a certain range of shell thickness, thicker shell can protect the emitting Nd3+ ions on the surface of core nanocrystals more effectively. PMID:27451742

  15. Controlling upconversion nanocrystals for emerging applications

    NASA Astrophysics Data System (ADS)

    Zhou, Bo; Shi, Bingyang; Jin, Dayong; Liu, Xiaogang

    2015-11-01

    Lanthanide-doped upconversion nanocrystals enable anti-Stokes emission with pump intensities several orders of magnitude lower than required by conventional nonlinear optical techniques. Their exceptional properties, namely large anti-Stokes shifts, sharp emission spectra and long excited-state lifetimes, have led to a diversity of applications. Here, we review upconversion nanocrystals from the perspective of fundamental concepts and examine the technical challenges in relation to emission colour tuning and luminescence enhancement. In particular, we highlight the advances in functionalization strategies that enable the broad utility of upconversion nanocrystals for multimodal imaging, cancer therapy, volumetric displays and photonics.

  16. Progress in the study of drug nanocrystals.

    PubMed

    Shi, Jing; Guo, Fei; Zheng, Aiping; Zhang, Xiaoyan; Sun, Jianxu

    2015-12-01

    The poor water solubility of many candidate drugs remains a major obstacle to their development and clinical use, especially for oral drug delivery. Nanocrystal technology can improve the solubility and dissolution rates of many poorly water-soluble drugs very effectively, significantly improving their oral bioavailability and decreasing the food effect. For this reason, this technology is becoming a key area of drug delivery research. This review presents much of the recent progress in nanocrystal drug pharmaceuticals, including the characteristics, composition, preparation technology, and clinical applications of these drugs. Finally, the effect of nanocrystal technology on insoluble drugs is quantified and described. PMID:26817271

  17. Generalized syntheses of nanocrystal-graphene hybrids in high-boiling-point organic solvents.

    PubMed

    Pang, Danny Wei-Ping; Yuan, Fang-Wei; Chang, Yan-Cheng; Li, Guo-An; Tuan, Hsing-Yu

    2012-08-01

    Nanocrystal-graphene have been proposed as a new kind of promising hybrid for a wide range of application areas including catalysts, electronics, sensors, biomedicine, and energy storage, etc. Although a variety of methods have been developed for the preparation of hybrids, a facile and general synthetic approach is still highly required. In this study, nanocrystal-graphene hybrids were successfully synthesized in high-boiling-point organic solvents. Graphene oxide (GO) nanosheets were modified by oleylamine (OLA) to form a OLA-GO complex in order to be readily incorporated into hydrophobic synthesis. A rich library of highly crystalline nanocrystals, with types including noble metal, metal oxide, magnetic material and semiconductor were successfully grown on chemically converted graphene (CCG), which is simultaneously reduced from GO during the synthesis. High boiling-point solvents afford sufficient thermal energy to assure the high-quality crystalline nature of NCs, therefore the post-annealing process is obviated. Controlled experiments revealed that OLA-GO triggers heterogeneous nucleation and serves as excellent nuclei anchorage media. The protocol developed here brings one step closer to achieve "unity in diversity" on the preparation of nanocrystal-graphene hybrids.

  18. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals.

    PubMed

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Parizi, Saman Salemizadeh; Caruntu, Gabriel

    2015-08-14

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent

  19. Synthesis of Co-based bimetallic nanocrystals with one-dimensional structure for selective control on syngas conversion

    NASA Astrophysics Data System (ADS)

    Ba, Rongbin; Zhao, Yonghui; Yu, Lujing; Song, Jianjun; Huang, Shuangshuang; Zhong, Liangshu; Sun, Yuhan; Zhu, Yan

    2015-07-01

    Co-based bimetallic nanocrystals with one-dimensional (1D) branches were synthesized by the heterogeneous nucleation of Co atoms onto prenucleated seeds, such as Pd or Cu, through a facile wet-chemical route. The peripheral branches (rod-like) of the Co-Pd and Co-Cu nanocrystals were outspread along the (001) direction and were enclosed by (101) facets. By switching the prenucleated metals to form robust Co-Pd or Co-Cu bimetallic nanocatalysts, the selectivity of CO hydrogenation could be adjusted purposely towards heavy paraffins, light olefins or oxygenates. The Anderson-Schulz-Flory chain-lengthening probabilities for products were up to 0.9 over Co-Pd nanocrystals, showing that long-chain hydrocarbons can be formed with high selectivity using the targeted design of Co-Pd nanocrystal catalysts. These Co-based bimetallic nanocrystals with a 1D structure exhibited superior catalytic activities over the corresponding Co-based nanoparticles for synthesis gas conversion.Co-based bimetallic nanocrystals with one-dimensional (1D) branches were synthesized by the heterogeneous nucleation of Co atoms onto prenucleated seeds, such as Pd or Cu, through a facile wet-chemical route. The peripheral branches (rod-like) of the Co-Pd and Co-Cu nanocrystals were outspread along the (001) direction and were enclosed by (101) facets. By switching the prenucleated metals to form robust Co-Pd or Co-Cu bimetallic nanocatalysts, the selectivity of CO hydrogenation could be adjusted purposely towards heavy paraffins, light olefins or oxygenates. The Anderson-Schulz-Flory chain-lengthening probabilities for products were up to 0.9 over Co-Pd nanocrystals, showing that long-chain hydrocarbons can be formed with high selectivity using the targeted design of Co-Pd nanocrystal catalysts. These Co-based bimetallic nanocrystals with a 1D structure exhibited superior catalytic activities over the corresponding Co-based nanoparticles for synthesis gas conversion. Electronic supplementary

  20. Adsorption of alkali, alkaline-earth, simple and 3d transition metal, and nonmetal atoms on monolayer MoS{sub 2}

    SciTech Connect

    Li, X. D.; Fang, Y. M.; Wu, S. Q. E-mail: wsq@xmu.edu.cn; Zhu, Z. Z. E-mail: wsq@xmu.edu.cn

    2015-05-15

    Single adsorption of different atoms on pristine two-dimensional monolayer MoS{sub 2} have been systematically investigated by using density functional calculations with van der Waals correction. The adatoms cover alkali metals, alkaline earth metals, main group metal, 3d-transition metals, coinage metal and nonmetal atoms. Depending on the adatom type, metallic, semimetallic or semiconducting behavior can be found in direct bandgap monolayer MoS{sub 2}. Additionally, local or long-range magnetic moments of two-dimensional MoS{sub 2} sheet can also attained through the adsorption. The detailed atomic-scale knowledge of single adsorption on MoS{sub 2} monolayer is important not only for the sake of a theoretical understanding, but also device level deposition technological application.

  1. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  2. Size-Dependent Raman Shifts for nanocrystals

    PubMed Central

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-01-01

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size. PMID:27102066

  3. Bonding pathways of gold nanocrystals in solution.

    PubMed

    Aabdin, Zainul; Lu, Jingyu; Zhu, Xi; Anand, Utkarsh; Loh, N Duane; Su, Haibin; Mirsaidov, Utkur

    2014-11-12

    Nanocrystal bonding is an important phenomenon in crystal growth and nanoscale welding. Here, we show that for gold nanocrystals bonding in solution can follow two distinct pathways: (1) coherent, defect-free bonding occurs when two nanocrystals attach with their lattices aligned to within a critical angle; and (2) beyond this critical angle, defects form at the interfaces where the nanocrystals merge. The critical misalignment angle for ∼10 nm crystals is ∼15° in both in situ experiments and full-atom molecular dynamics simulations. Understanding the origin of this critical angle during bonding may help us predict and manage strain profiles in nanoscale assemblies and inspire techniques toward reproducible and extensible architectures using only basic crystalline blocks.

  4. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  5. Resonant tunneling of carriers in silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Derbenyova, N. V.; Konakov, A. A.; Burdov, V. A.

    2016-10-01

    The rates of resonant and nearly resonant tunnel transitions have been calculated within the envelope function approximation for electrons and holes in silicon nanocrystals embedded in a silicon dioxide matrix. It is shown that, if the nanocrystals are close enough, the rates of resonant tunneling reach the values of the order of 1012-1014 s-1, which considerably exceed the rates of radiative recombination and other basic non-radiative processes, such as the Auger recombination and capture on surface defects. The transition rate is found to be very sensitive to inter-crystallite distance, crystallite size, and effective mass of the carriers in the oxide matrix. Electron tunneling turns out to be faster than the hole one, especially, at greater distances between the nanocrystals. Thus, the tunnel migration in a dense ensemble of nanocrystals is mainly electronic.

  6. Colloidal nanocrystals and method of making

    SciTech Connect

    Kahen, Keith

    2015-10-06

    A tight confinement nanocrystal comprises a homogeneous center region having a first composition and a smoothly varying region having a second composition wherein a confining potential barrier monotonically increases and then monotonically decreases as the smoothly varying region extends from the surface of the homogeneous center region to an outer surface of the nanocrystal. A method of producing the nanocrystal comprises forming a first solution by combining a solvent and at most two nanocrystal precursors; heating the first solution to a nucleation temperature; adding to the first solution, a second solution having a solvent, at least one additional and different precursor to form the homogeneous center region and at most an initial portion of the smoothly varying region; and lowering the solution temperature to a growth temperature to complete growth of the smoothly varying region.

  7. Size-Dependent Raman Shifts for nanocrystals.

    PubMed

    Gao, Yukun; Zhao, Xinmei; Yin, Penggang; Gao, Faming

    2016-04-22

    Raman spectroscopy is a very sensitive tool for probing semiconductor nanocrystals. The underlying mechanism behind the size-dependent Raman shifts is still quite controversial. Here we offer a new theoretical method for the quantum confinement effects on the Raman spectra of semiconductor nanocrystals. We propose that the shift of Raman spectra in nanocrystals can result from two overlapping effects: the quantum effect shift and surface effect shift. The quantum effect shift is extracted from an extended Kubo formula, the surface effect shift is determined via the first principles calculations. Fairly good prediction of Raman shifts can be obtained without the use of any adjustable parameter. Closer analysis shows that the size-dependent Raman shifts in Si nanocrystals mainly result from the quantum effect shifts. For nanodiamond, the proportion of surface effect shift in Raman shift is up to about 40%. Such model can also provide a good baseline for using Raman spectroscopy as a tool to measure size.

  8. Zirconia nanocrystals as submicron level biological label

    NASA Astrophysics Data System (ADS)

    Smits, K.; Liepins, J.; Gavare, M.; Patmalnieks, A.; Gruduls, A.; Jankovica, D.

    2012-08-01

    Inorganic nanocrystals are of increasing interest for their usage in biology and pharmacology research. Our interest was to justify ZrO2 nanocrystal usage as submicron level biological label in baker's yeast Saccharomyces cerevisia culture. For the first time (to our knowledge) images with sub micro up-conversion luminescent particles in biologic media were made. A set of undoped as well as Er and Yb doped ZrO2 samples at different concentrations were prepared by sol-gel method. The up-conversion luminescence for free standing and for nanocrystals with baker's yeast cells was studied and the differences in up-conversion luminescence spectra were analyzed. In vivo toxic effects of ZrO2 nanocrystals were tested by co-cultivation with baker's yeast.

  9. Tunable plasmonic lattices of silver nanocrystals

    NASA Astrophysics Data System (ADS)

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2007-07-01

    Silver nanocrystals are ideal building blocks for plasmonic materials that exhibit a wide range of unique and potentially useful optical phenomena. Individual nanocrystals display distinct optical scattering spectra and can be assembled into hierarchical structures that couple strongly to external electromagnetic fields. This coupling, which is mediated by surface plasmons, depends on the shape and arrangement of the nanocrystals. Here we demonstrate the bottom-up assembly of polyhedral silver nanocrystals into macroscopic two-dimensional superlattices using the Langmuir-Blodgett technique. Our ability to control interparticle spacing, density and packing symmetry allows for tunability of the optical response over the entire visible range. This assembly strategy offers a new, practical approach to making novel plasmonic materials for application in spectroscopic sensors, subwavelength optics and integrated devices that utilize field-enhancement effects.

  10. Tunable plasmonic lattices of silver nanocrystals.

    PubMed

    Tao, Andrea; Sinsermsuksakul, Prasert; Yang, Peidong

    2007-07-01

    Silver nanocrystals are ideal building blocks for plasmonic materials that exhibit a wide range of unique and potentially useful optical phenomena. Individual nanocrystals display distinct optical scattering spectra and can be assembled into hierarchical structures that couple strongly to external electromagnetic fields. This coupling, which is mediated by surface plasmons, depends on the shape and arrangement of the nanocrystals. Here we demonstrate the bottom-up assembly of polyhedral silver nanocrystals into macroscopic two-dimensional superlattices using the Langmuir-Blodgett technique. Our ability to control interparticle spacing, density and packing symmetry allows for tunability of the optical response over the entire visible range. This assembly strategy offers a new, practical approach to making novel plasmonic materials for application in spectroscopic sensors, subwavelength optics and integrated devices that utilize field-enhancement effects.

  11. Lifetime blinking in nonblinking nanocrystal quantum dots

    NASA Astrophysics Data System (ADS)

    Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A.; Htoon, Han; Klimov, Victor I.

    2012-06-01

    Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes.

  12. Lifetime blinking in nonblinking nanocrystal quantum dots.

    PubMed

    Galland, Christophe; Ghosh, Yagnaseni; Steinbrück, Andrea; Hollingsworth, Jennifer A; Htoon, Han; Klimov, Victor I

    2012-06-19

    Nanocrystal quantum dots are attractive materials for applications as nanoscale light sources. One impediment to these applications is fluctuations of single-dot emission intensity, known as blinking. Recent progress in colloidal synthesis has produced nonblinking nanocrystals; however, the physics underlying blinking suppression remains unclear. Here we find that ultra-thick-shell CdSe/CdS nanocrystals can exhibit pronounced fluctuations in the emission lifetimes (lifetime blinking), despite stable nonblinking emission intensity. We demonstrate that lifetime variations are due to switching between the neutral and negatively charged state of the nanocrystal. Negative charging results in faster radiative decay but does not appreciably change the overall emission intensity because of suppressed nonradiative Auger recombination for negative trions. The Auger process involving excitation of a hole (positive trion pathway) remains efficient and is responsible for charging with excess electrons, which occurs via Auger-assisted ionization of biexcitons accompanied by ejection of holes.

  13. Gas phase grown silicon germanium nanocrystals

    NASA Astrophysics Data System (ADS)

    Mohan, A.; Tichelaar, F. D.; Kaiser, M.; Verheijen, M. A.; Schropp, R. E. I.; Rath, J. K.

    2016-09-01

    We report on the gas phase synthesis of highly crystalline and homogeneously alloyed Si1-xGex nanocrystals in continuous and pulsed plasmas. Agglomerated nanocrystals have been produced with remarkable control over their composition by altering the precursor GeH4 gas flow in a continuous plasma. We specially highlight that in the pulsed plasma mode, we obtain quantum-sized free standing alloy nanocrystals with a mean size of 7.3 nm. The presence of Si1-xGex alloy particles is confirmed with multiple techniques, i.e. Raman spectroscopy, XRD (Xray diffraction) and HRTEM (high resolution transmission electron microscopy) studies, with each of these methods consistently yielding the same composition. The nanocrystals synthesized here have potential applications in band-gap engineering for multijunction solar cells.

  14. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2010-04-06

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties.

  15. Composite material including nanocrystals and methods of making

    DOEpatents

    Bawendi, Moungi G.; Sundar, Vikram C.

    2008-02-05

    Temperature-sensing compositions can include an inorganic material, such as a semiconductor nanocrystal. The nanocrystal can be a dependable and accurate indicator of temperature. The intensity of emission of the nanocrystal varies with temperature and can be highly sensitive to surface temperature. The nanocrystals can be processed with a binder to form a matrix, which can be varied by altering the chemical nature of the surface of the nanocrystal. A nanocrystal with a compatibilizing outer layer can be incorporated into a coating formulation and retain its temperature sensitive emissive properties

  16. Tailorable, Visible Light Emission From Silicon Nanocrystals

    SciTech Connect

    Samara, G.A.; Wilcoxon, J.P.

    1999-07-20

    J. P. Wilcoxon and G. A. Samara Crystalline, size-selected Si nanocrystals in the size range 1.8-10 nm grown in inverse micellar cages exhibit highly structured optical absorption and photoluminescence (PL) across the visible range of the spectrum. The most intense PL for the smallest nanocrystals produced This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. to induce a useful level of visible photoluminescence (PL) from silicon (Si). The approaches understood. Visible PL has been observed from Si nanocrystals, or quantum dots, produced by a variety of techniques including aerosols,2 colloids,3 and ion implantation.4 However, all of The optical absorption spectra of our nanocrystals are much richer in spectral features spectrum of bulk Si where the spectral features reflect the details of the band structure shown in nanocrystals estimated to have a Si core diameter of 1-2 nm. These measured quantum those in the spectrum of bulk Si in Fig. 1 are striking indicating that nanocrystals of this size 8-Room temperature PL results on an HPLC size-selected, purified 2 nm nanocrystals but blue shifted by -0.4 eV due to quantum confinement. Excitation at 245 nm yields

  17. Optical refrigeration of Yb3+:YAG nanocrystals

    NASA Astrophysics Data System (ADS)

    Nemova, Galina; Kashyap, Raman

    2015-03-01

    We have theoretically investigated the laser cooling process in Yb3+:YAG nanocrystals. We have developed an approach, which permits not only estimate the cooling process in Yb3+:YAG nanocrystals but compare this process with the laser cooling of the Yb3+:YAG bulk samples. The temperature dependences of all parameters of the system are taken into account. The cooperative effects such as re-absorption, the energy migration and cooperative luminescence have been considered.

  18. New self-assembled nanocrystal micelles for biolabels and biosensors.

    SciTech Connect

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  19. A luminescent nanocrystal stress gauge

    SciTech Connect

    Choi, Charina; Koski, Kristie; Olson, Andrew; Alivisatos, Paul

    2010-10-25

    Microscale mechanical forces can determine important outcomes ranging from the site of material fracture to stem cell fate. However, local stresses in a vast majority of systems cannot be measured due to the limitations of current techniques. In this work, we present the design and implementation of the CdSe/CdS core/shell tetrapod nanocrystal, a local stress sensor with bright luminescence readout. We calibrate the tetrapod luminescence response to stress, and use the luminescence signal to report the spatial distribution of local stresses in single polyester fibers under uniaxial strain. The bright stress-dependent emission of the tetrapod, its nanoscale size, and its colloidal nature provide a unique tool that may be incorporated into a variety of micromechanical systems including materials and biological samples to quantify local stresses with high spatial resolution.

  20. Polyimide Cellulose Nanocrystal Composite Aerogels

    NASA Technical Reports Server (NTRS)

    Nguyen, Baochau N.; Meador, Mary Ann; Rowan, Stuart; Cudjoe, Elvis; Sandberg, Anna

    2014-01-01

    Polyimide (PI) aerogels are highly porous solids having low density, high porosity and low thermal conductivity with good mechanical properties. They are ideal for various applications including use in antenna and insulation such as inflatable decelerators used in entry, decent and landing operations. Recently, attention has been focused on stimuli responsive materials such as cellulose nano crystals (CNCs). CNCs are environmentally friendly, bio-renewable, commonly found in plants and the dermis of sea tunicates, and potentially low cost. This study is to examine the effects of CNC on the polyimide aerogels. The CNC used in this project are extracted from mantle of a sea creature called tunicates. A series of polyimide cellulose nanocrystal composite aerogels has been fabricated having 0-13 wt of CNC. Results will be discussed.

  1. Solution synthesis of germanium nanocrystals

    DOEpatents

    Gerung, Henry; Boyle, Timothy J.; Bunge, Scott D.

    2009-09-22

    A method for providing a route for the synthesis of a Ge(0) nanometer-sized material from. A Ge(II) precursor is dissolved in a ligand heated to a temperature, generally between approximately 100.degree. C. and 400.degree. C., sufficient to thermally reduce the Ge(II) to Ge(0), where the ligand is a compound that can bond to the surface of the germanium nanomaterials to subsequently prevent agglomeration of the nanomaterials. The ligand encapsulates the surface of the Ge(0) material to prevent agglomeration. The resulting solution is cooled for handling, with the cooling characteristics useful in controlling the size and size distribution of the Ge(0) materials. The characteristics of the Ge(II) precursor determine whether the Ge(0) materials that result will be nanocrystals or nanowires.

  2. Interaction potentials of anisotropic nanocrystals from the trajectory sampling of particle motion using in situ liquid phase transmission electron microscopy

    SciTech Connect

    Chen, Qian; Cho, Hoduk; Manthiram, Karthish; Yoshida, Mark; Ye, Xingchen; Alivisatos, A. Paul

    2015-03-23

    We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power of this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.

  3. Lanthanide-doped nanocrystals: synthesis, optical-magnetic properties, and applications.

    PubMed

    Wang, Guofeng; Peng, Qing; Li, Yadong

    2011-05-17

    . These binary nanoparticles can be hybridized with a third DNA (target DNA) molecule and separated with the assistance of a magnetic field. In addition, a novel fluorescence resonance energy transfer (FRET) method for nonenzymatic glucose determination has been developed by using the glucose-modified LaF(3):Ce(3+)/Tb(3+) nanocrystals. By using bioconjugated NaYF(4):Yb(3+)/Er(3+) nanoparticles as the energy donor and bioconjugated gold nanoparticles as the energy acceptor, we successfully developed a simple and sensitive fluorescence resonance energy transfer (FRET) biosensor for avidin. Meanwhile, we also carried out preliminary studies to investigate possible applications of lanthanide-doped nanocrystals in catalysis and in dye-sensitized solar cells. PMID:21395256

  4. Synthesis of nanocrystals and nanocrystal self-assembly

    NASA Astrophysics Data System (ADS)

    Chen, Zhuoying

    Chapter 1. A general introduction is presented on nanomaterials and nanoscience. Nanoparticles are discussed with respect to their structure and properties. Ferroelectric materials and nanoparticles in particular are highlighted, especially in the case of the barium titanate, and their potential applications are discussed. Different nanocrystal synthetic techniques are discussed. Nanoparticle superlattices, the novel "meta-materials" built from self-assembly at the nanoscale, are introduced. The formation of nanoparticle superlattices and the importance and interest of synthesizing these nanostructures is discussed. Chapter 2. Advanced applications for high k dielectric and ferroelectric materials in the electronics industry continues to demand an understanding of the underlying physics in decreasing dimensions into the nanoscale. The first part of this chapter presents the synthesis, processing, and electrical characterization of nanostructured thin films (thickness ˜100 nm) of barium titanate BaTiO3 built from uniform nanoparticles (<20 nm in diameter) in diameter. Essential to our approach is an understanding of the nanoparticle as a building block, combined with an ability to integrate them into thin films that have uniform and characteristic electrical properties. We observe the BaTiO3 nanocrystals crystallize with evidence of tetragonality. Electric field dependent polarization measurements show spontaneous polarization and hysteresis, indicating ferroelectric behavior for the BaTiO 3 nanocrystalline films with grain sizes in the range of 10--30 nm. Dielectric measurements of the films show dielectic constants in the range of 85--90 over the 1 kHz--100 kHz, with low loss. We present nanocrystals as initial building blocks for the preparation of thin films which exhibit uniform nanostructured morphologies and grain sizes. In the second part of this chapter, a nonhydrolytic alcoholysis route to study the preparation of well-crystallized size-tunable BaTiO3

  5. Solvothermal synthesis and controlled self-assembly of monodisperse titanium-based perovskite colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Caruntu, Daniela; Rostamzadeh, Taha; Costanzo, Tommaso; Salemizadeh Parizi, Saman; Caruntu, Gabriel

    2015-07-01

    The rational design of monodisperse ferroelectric nanocrystals with controlled size and shape and their organization into hierarchical structures has been a critical step for understanding the polar ordering in nanoscale ferroelectrics, as well as the design of nanocrystal-based functional materials which harness the properties of individual nanoparticles and the collective interactions between them. We report here on the synthesis and self-assembly of aggregate-free, single-crystalline titanium-based perovskite nanoparticles with controlled morphology and surface composition by using a simple, easily scalable and highly versatile colloidal route. Single-crystalline, non-aggregated BaTiO3 colloidal nanocrystals, used as a model system, have been prepared under solvothermal conditions at temperatures as low as 180 °C. The shape of the nanocrystals was tuned from spheroidal to cubic upon changing the polarity of the solvent, whereas their size was varied from 16 to 30 nm for spheres and 5 to 78 nm for cubes by changing the concentration of the precursors and the reaction time, respectively. The hydrophobic, oleic acid-passivated nanoparticles exhibit very good solubility in non-polar solvents and can be rendered dispersible in polar solvents by a simple process involving the oxidative cleavage of the double bond upon treating the nanopowders with the Lemieux-von Rudloff reagent. Lattice dynamic analysis indicated that regardless of their size, BaTiO3 nanocrystals present local disorder within the perovskite unit cell, associated with the existence of polar ordering. We also demonstrate for the first time that, in addition to being used for fabricating large area, crack-free, highly uniform films, BaTiO3 nanocubes can serve as building blocks for the design of 2D and 3D mesoscale structures, such as superlattices and superparticles. Interestingly, the type of superlattice structure (simple cubic or face centered cubic) appears to be determined by the type of solvent

  6. Surface treatment of nanocrystal quantum dots after film deposition

    DOEpatents

    Sykora, Milan; Koposov, Alexey; Fuke, Nobuhiro

    2015-02-03

    Provided are methods of surface treatment of nanocrystal quantum dots after film deposition so as to exchange the native ligands of the quantum dots for exchange ligands that result in improvement in charge extraction from the nanocrystals.

  7. Efficiency of the coherent biexciton admixture mechanism for multiple exciton generation in InAs nanocrystals

    NASA Astrophysics Data System (ADS)

    Kowalski, Piotr; Machnikowski, Paweł

    2015-12-01

    We study the coherent mixing between two-particle (single exciton) and four-particle (biexciton) states of a semiconductor nanocrystal resulting from the Coulomb coupling between states with different numbers of electron-hole pairs. Using a simple model of the nanocrystal wave functions and an envelope function approach, we estimate the efficiency of the multiple exciton generation (MEG) process resulting from such coherent admixture mechanism, including all the relevant states in a very broad energy interval. We show that in a typical ensemble of nanocrystals with an average radius of 3nm, the onset of the MEG process appears about 1 eV above the lower edge of the biexciton density of states. This is due to the angular momentum conservation that imposes selection rules and limits the available MEG pathways, thus taking over the role of momentum conservation that hinders this process in bulk. The efficiency of the MEG process reaches 50% for photon energies around 5 eV. The MEG onset shifts to lower energies and therefore the efficiency increases in a certain energy range as the radius grows. The energy dependence of the MEG efficiency differs considerably between ensembles with small and large inhomogeneity of nanocrystal sizes.

  8. Assessment of a nanocrystal 3-D morphology by the analysis of single HAADF-HRSTEM images

    PubMed Central

    2013-01-01

    This work presents the morphological characterization of CeO2 nanocrystals by the analysis of single unfiltered high-angle annular dark-field (HAADF)-high-resolution scanning transmission electron microscopy (HRSTEM) images. The thickness of each individual atomic column is estimated by the classification of its HAADF integrated intensity using a Gaussian mixture model. The resulting thickness maps obtained from two example nanocrystals with distinct morphology were analyzed with aid of the symmetry from the CeO2 crystallographic structure, providing an approximation for their 3-D morphology with high spatial resolution. A confidence level of ±1 atom per atomic column along the viewing direction on the thickness estimation is indicated by the use of multislice image simulation. The described characterization procedure stands out as a simple approach for retrieving morphological parameters of individual nanocrystals, such as volume and specific surface areas for different crystalline planes. The procedure is an alternative to the tilt-series tomography technique for a number of nanocrystalline systems, since its application does not require the acquisition of multiple images from the same nanocrystal along different zone axes. PMID:24225330

  9. Conjugated polymers/semiconductor nanocrystals hybrid materials--preparation, electrical transport properties and applications.

    PubMed

    Reiss, Peter; Couderc, Elsa; De Girolamo, Julia; Pron, Adam

    2011-02-01

    This critical review discusses specific preparation and characterization methods applied to hybrid materials consisting of π-conjugated polymers (or oligomers) and semiconductor nanocrystals. These materials are of great importance in the quickly growing field of hybrid organic/inorganic electronics since they can serve as active components of photovoltaic cells, light emitting diodes, photodetectors and other devices. The electronic energy levels of the organic and inorganic components of the hybrid can be tuned individually and thin hybrid films can be processed using low cost solution based techniques. However, the interface between the hybrid components and the morphology of the hybrid directly influences the generation, separation and transport of charge carriers and those parameters are not easy to control. Therefore a large variety of different approaches for assembling the building blocks--conjugated polymers and semiconductor nanocrystals--has been developed. They range from their simple blending through various grafting procedures to methods exploiting specific non-covalent interactions between both components, induced by their tailor-made functionalization. In the first part of this review, we discuss the preparation of the building blocks (nanocrystals and polymers) and the strategies for their assembly into hybrid materials' thin films. In the second part, we focus on the charge carriers' generation and their transport within the hybrids. Finally, we summarize the performances of solar cells using conjugated polymer/semiconductor nanocrystals hybrids and give perspectives for future developments.

  10. Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure

    NASA Astrophysics Data System (ADS)

    Tong, Xiao-Lin; Xia, Xiao-Zhi; Li, Qing-Xia

    2015-06-01

    The development of solution strategies for Zinc oxide (ZnO) quantum dots provides a pathway to utilizing ZnO nanocrystal thin films in optoelectronic devices. In this work, quasi-spherical ZnO quantum dots with a diameter of 5 nm are synthesized by using ethanol as a solvent. ZnO nanocrystal thin film is obtained by spin-coating ZnO quantum dots on a Au interdigital electrode (IDE)/Al2O3 substrate and annealing at different temperatures in order to yield the optimal photosensitive on/off ratio of ZnO. For further enhancing the responsivity, ion sputtering is utilized to deposit Pt nanoparticles on the surface of ZnO nanocrystal thin film, the responsivity of the ZnO/Pt bilayer nanostructure increases from 0.07 A/W to 54 A/W, showing that the metal/inorganic nanocrystal bilayer nanostructure can be used to improve the performance of optoelectronic devices. The excellent properties of ZnO/Pt bilayer nanostructure have important applications in future electronic and optoelectronic devices. Project supported by the National Natural Science Foundation of China (Grant No. 41176156).

  11. A Route to Phase Controllable Cu2ZnSn(S1−xSex)4 Nanocrystals with Tunable Energy Bands

    PubMed Central

    Ji, Shulin; Shi, Tongfei; Qiu, Xiaodong; Zhang, Jian; Xu, Guoping; Chen, Chao; Jiang, Zheng; Ye, Changhui

    2013-01-01

    Cu2ZnSn(S1−xSex)4 nanocrystals are an emerging family of functional materials with huge potential of industrial applications, however, it is an extremely challenging task to synthesize Cu2ZnSn(S1−xSex)4 nanocrystals with both tunable energy band and phase purity. Here we show that a green and economic route could be designed for the synthesis of Cu2ZnSn(S1−xSex)4 nanocrystals with bandgap tunable in the range of 1.5–1.12 eV. Consequently, conduction band edge shifted from −3.9 eV to −4.61 eV (relative to vacuum energy) is realized. The phase purity of Cu2ZnSn(S1−xSex)4 nanocrystals is substantiated with in-depth combined optical and structural characterizations. Electrocatalytic and thermoelectric performances of Cu2ZnSn(S1−xSex)4 nanocrystals verify their superior activity to replace noble metal Pt and materials containing heavy metals. This green and economic route will promote large-scale application of Cu2ZnSn(S1−xSex)4 nanocrystals as solar cell materials, electrocatalysts, and thermoelectric materials. PMID:24061108

  12. Optical properties of colloidal germanium nanocrystals

    SciTech Connect

    WILCOXON,JESS P.; PROVENCIO,PAULA P.; SAMARA,GEORGE A.

    2000-05-01

    Highly crystalline germanium (Ge) nanocrystals in the size range 2--10 nm were grown in inverse micelles and purified and size-separated by high pressure liquid chromatography with on-line optical and electrical diagnostics. The nanocrystals retain the diamond structure of bulk Ge down to at least 2.0 nm (containing about 150 Ge atoms). The background- and impurity-free extinction and photoluminescence (PL) spectra of these nanocrystals revealed rich structure which was interpreted in terms of the bandstructure of Ge shifted to higher energies by quantum confinement. The shifts ranged from {minus}0.1 eV to over 1 eV for the various transitions. PL in the range 350--700 nm was observed from nanocrystals 2--5 nm in size. The 2.0 nm nanocrystals yielded the most intense PL (at 420 nm) which is believed to be intrinsic and attributed to direct recombination at {Gamma}. Excitation at high energy (250 nm) populates most of the conduction bands resulting in competing recombination channels and the observed broad PL spectra.

  13. Field-effect electroluminescence in silicon nanocrystals.

    PubMed

    Walters, Robert J; Bourianoff, George I; Atwater, Harry A

    2005-02-01

    There is currently worldwide interest in developing silicon-based active optical components in order to leverage the infrastructure of silicon microelectronics technology for the fabrication of optoelectronic devices. Light emission in bulk silicon-based devices is constrained in wavelength to infrared emission, and in efficiency by the indirect bandgap of silicon. One promising strategy for overcoming these challenges is to make use of quantum-confined excitonic emission in silicon nanocrystals. A critical challenge for silicon nanocrystal devices based on nanocrystals embedded in silicon dioxide has been the development of a method for efficient electrical carrier injection. We report here a scheme for electrically pumping dense silicon nanocrystal arrays by a field-effect electroluminescence mechanism. In this excitation process, electrons and holes are both injected from the same semiconductor channel across a tunnelling barrier in a sequential programming process, in contrast to simultaneous carrier injection in conventional pn-junction light-emitting-diode structures. Light emission is strongly correlated with the injection of a second carrier into a nanocrystal that has been previously programmed with a charge of the opposite sign.

  14. Dual-functional CeO2:Eu3+ nanocrystals for performance-enhanced dye-sensitized solar cells.

    PubMed

    Roh, Jongmin; Hwang, Sun Hye; Jang, Jyongsik

    2014-11-26

    Single-crystalline, octahedral CeO2:Eu3+ nanocrystals, successfully prepared using a simple hydrothermal method, were investigated to determine their photovoltaic properties in an effort to enhance the light-harvesting efficiency of dye-sensitized solar cells (DSSCs). The size of the CeO2:Eu3+ nanocrystals (300-400 nm), as well as their mirrorlike facets, significantly improved the diffuse reflectance of visible light. Excitation of the CeO2:Eu3+ nanocrystal with 330 nm ultraviolet light was re-emitted via downconversion photoluminescence (PL) from 570 to 672 nm, corresponding to the 5D0→7FJ transition in the Eu3+ ions. Downconversion PL was dominant at 590 nm and had a maximum intensity for 1 mol % Eu3+. The CeO2:Eu3+ nanocrystal-based DSSCs exhibited a power conversion efficiency of 8.36%, an increase of 14%, compared with conventional TiO2 nanoparticle-based DSSCs, because of the strong light-scattering and downconversion PL of the CeO2:Eu3+ nanocrystals.

  15. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  16. Colloidal synthesis of Cu-ZnO and Cu@CuNi-ZnO hybrid nanocrystals with controlled morphologies and multifunctional properties

    NASA Astrophysics Data System (ADS)

    Zeng, Deqian; Gong, Pingyun; Chen, Yuanzhi; Zhang, Qinfu; Xie, Qingshui; Peng, Dong-Liang

    2016-06-01

    Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications. The utilization of low-cost non-noble metals to construct novel metal-semiconductor hybrid nanocrystals is important and meaningful for their large-scale applications. In this study, a facile solution approach is developed for the synthesis of Cu-ZnO hybrid nanocrystals with well-controlled morphologies, including nanomultipods, core-shell nanoparticles, nanopyramids and core-shell nanowires. In the synthetic strategy, Cu nanocrystals formed in situ serve as seeds for the heterogeneous nucleation and growth of ZnO, and it eventually forms various Cu-ZnO hetero-nanostructures under different reaction conditions. These hybrid nanocrystals possess well-defined and stable heterostructure junctions. The ultraviolet-visible-near infrared spectra reveal morphology-dependent surface plasmon resonance absorption of Cu and the band gap absorption of ZnO. Furthermore, we construct a novel Cu@CuNi-ZnO ternary hetero-nanostructure by incorporating the magnetic metal Ni into the pre-synthesized colloidal Cu nanocrystals. Such hybrid nanocrystals possess a magnetic Cu-Ni intermediate layer between the ZnO shell and the Cu core, and exhibit ferromagnetic/superparamagnetic properties which expand their functionalities. Finally, enhanced photocatalytic activities are observed in the as-prepared non-noble metal-ZnO hybrid nanocrystals. This study not only provides an economical way to prepare high-quality morphology-controlled Cu-ZnO hybrid nanocrystals for potential applications in the fields of photocatalysis and photovoltaic devices, but also opens up new opportunities in designing ternary non-noble metal-semiconductor hybrid nanocrystals with multifunctionalities.Metal-semiconductor hybrid nanocrystals have received extensive attention owing to their multiple functionalities which can find wide technological applications

  17. Influence of reaction conditions on the properties of solution-processed Cu2ZnSnS4 nanocrystals

    NASA Astrophysics Data System (ADS)

    Qu, Yongtao; Zoppi, Guillaume; Miles, Robert W.; Beattie, Neil S.

    2014-12-01

    Cu2ZnSnS4 nanocrystals were fabricated by hot injection of sulphur into a solution of metallic precursors. By careful control of the reaction conditions it was possible to control the elemental composition of the nanocrystals such that they are suitable for earth abundant photovoltaic absorbers. When the reaction temperature increased from 195 °C to 240 °C the energy band gap of the nanocrystals decreased from 1.65 eV to 1.39 eV. This variation is explained by the identification of a mixed wurtzite-kesterite phase at lower reaction temperatures and secondary phase Cu2SnS3 at higher temperatures. Moreover, the existence of wurtzite structure depends critically on the reaction cooling rate. The reaction time was also found to have a strong effect on the nanocrystals which became increasingly copper poor and zinc rich as the reaction evolved. As the reaction time increase from 15 min to 60 min, the energy band gap increased from 1.42 eV to 1.84 eV. This variation is discussed in terms of the sample doping. The results demonstrate the importance of optimizing the reaction conditions to produce high quality Cu2ZnSnS4 nanocrystals.

  18. Mixed Cu-simple metal dimers and trimers - CuLi, CuLi2, CuNa, CuK, CuBe, CuBe2, Cu2Be, CuAl, and CuAl2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Walch, Stephen P.

    1987-01-01

    Theoretical studies of selected diatomic and triatomic molecules containing copper and the simple metals Li, Na, K, Be, and Al are presented, with emphasis on elucidating the nature of the bonding in mixed transition metal-simple metal systems. Large Gaussian basis sets are used in the diatomic calculations, and are used to calibrate the triatomic calculations, in which somewhat smaller Gaussian basis sets are employed. Electron correlation is incorporated using both the single-reference singles plus doubles configuration interaction and coupled pair functional methods. It is found that alkali atoms form very polar sigma bonds with copper, and that the ionicity increases with the inclusion of higher excitations because they improve the electron affinity of copper, which in turn allows a larger negative charge on copper. Aluminum is found to form stronger bonds than beryllium, since it does not have to undergo sp hybridization. Some of the trimers bond by forming three-center three-electron bonds. These multicenter bonds are quite strong even when compared to the two-electron bonds in the dimers or to other bonding mechanisms in the trimers.

  19. High-performance thermoelectric nanocomposites from nanocrystal building blocks

    NASA Astrophysics Data System (ADS)

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu

    2016-03-01

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  20. High-performance thermoelectric nanocomposites from nanocrystal building blocks.

    PubMed

    Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu

    2016-03-07

    The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.

  1. Prospects of nanoscience with nanocrystals

    SciTech Connect

    Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu; Hens, Zeger; Talapin, Dmitri V.; Kagan, Cherie R.; Klimov, Victor I.; Rogach, Andrey L.; Reiss, Peter; Milliron, Delia J.; Guyot-Sionnnest, Philippe; Konstantatos, Gerasimos; Parak, Wolfgang J.; Hyeon, Taeghwan; Korgel, Brian A.; Murray, Christopher B.; Heiss, Wolfgang

    2015-01-22

    Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today's strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. Furthermore, the performance of inorganic NC-based photovoltaic and lightemitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where very few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In our Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.

  2. Prospects of nanoscience with nanocrystals

    DOE PAGESBeta

    Kovalenko, Maksym V.; Manna, Liberato; Cabot, Andreu; Hens, Zeger; Talapin, Dmitri V.; Kagan, Cherie R.; Klimov, Victor I.; Rogach, Andrey L.; Reiss, Peter; Milliron, Delia J.; et al

    2015-01-22

    Colloidal nanocrystals (NCs, i.e., crystalline nanoparticles) have become an important class of materials with great potential for applications ranging from medicine to electronic and optoelectronic devices. Today's strong research focus on NCs has been prompted by the tremendous progress in their synthesis. Impressively narrow size distributions of just a few percent, rational shape-engineering, compositional modulation, electronic doping, and tailored surface chemistries are now feasible for a broad range of inorganic compounds. Furthermore, the performance of inorganic NC-based photovoltaic and lightemitting devices has become competitive to other state-of-the-art materials. Semiconductor NCs hold unique promise for near- and mid-infrared technologies, where verymore » few semiconductor materials are available. On a purely fundamental side, new insights into NC growth, chemical transformations, and self-organization can be gained from rapidly progressing in situ characterization and direct imaging techniques. New phenomena are constantly being discovered in the photophysics of NCs and in the electronic properties of NC solids. In our Nano Focus, we review the state of the art in research on colloidal NCs focusing on the most recent works published in the last 2 years.« less

  3. Designer Nanocrystal Materials for Photovoltaics

    NASA Astrophysics Data System (ADS)

    Kagan, Cherie

    Advances in synthetic methods allow a wide range of semiconductor nanocrystals (NCs) to be tailored in size and shape and to be used as building blocks in the design of NC solids. However, the long, insulating ligands commonly employed in the synthesis of colloidal NCs inhibit strong interparticle coupling and charge transport once NCs are assembled into the solids state as NC arrays. We will describe the range of short, compact ligand chemistries we employ to exchange the long, insulating ligands used in synthesis and to increase interparticle coupling. These ligand exchange processes can have a dramatic influence on NC surface chemistry as well as NC organization in the solids, showing examples of short-range order. Synergistically, we use 1) thermal evaporation and diffusion and 2) wet-chemical methods to introduce extrinsic impurities and non-stoichiometry to passivate surface traps and dope NC solids. NC coupling and doping provide control over the density of states and the carrier type, concentration, mobility, and lifetime, which we characterize by a range of electronic and spectroscopic techniques. We will describe the importance of engineering device interfaces to design NC materials for solar photovoltaics.

  4. Incorporation of Cu Acceptors in ZnO Nanocrystals

    SciTech Connect

    Oo, W.M.H.; Mccluskey, Matthew D.; Huso, Jesse; Morrison, J.; Bergman, Leah; Engelhard, Mark H.; Saraf, Laxmikant V.

    2010-09-16

    Doping of semiconductor nanocrystals is an important problem in nanomaterials research. Using infrared (IR) and x-ray photoelectron spectroscopy (XPS), we have observed Cu acceptor dopants that were intentionally introduced into ZnO nanocrystals. The incorporation of Cu2+ dopants increased as the diameter of the nanocrystals was increased from ~3 to 5 nm. Etching the nanocrystals with acetic acid revealed a core-shell structure, where a 2-nm lightly doped core is surrounded by a heavily doped shell. These observations are consistent with the trapped dopant model, in which dopant atoms stick to the surface of the core and are overgrown by the nanocrystal material.

  5. Picosecond dynamics of photoexcited carriers in interacting silicon nanocrystals

    NASA Astrophysics Data System (ADS)

    Kořínek, Miroslav; Trojánek, František; Hiller, Daniel; Gutsch, Sebastian; Zacharias, Margit; Kübel, Christian; Malý, Petr

    2016-07-01

    The non-radiative Auger carrier recombination plays an important role in physics and the application of semiconductor nanocrystals. Here we report on the effect of inter-nanocrystal carrier interaction on Auger recombination. We prepared a special set of samples containing silicon nanocrystals embedded in silicon oxide with well-defined geometry. The picosecond carrier recombination rate measured by femtosecond pump and probe technique was found to be strongly dependent on the inter-nanocrystal separation. The observed decrease of the decay rate with nanocrystal separation on the nanometer scale is interpreted in terms of the wave function overlap appearing in the relevant matrix element describing the recombination process.

  6. Developing New Nanoprobes from Semiconductor Nanocrystals

    SciTech Connect

    Fu, Aihua

    2006-01-01

    In recent years, semiconductor nanocrystal quantum dots havegarnered the spotlight as an important new class of biological labelingtool. Withoptical properties superior to conventional organicfluorophores from many aspects, such as high photostability andmultiplexing capability, quantum dots have been applied in a variety ofadvanced imaging applications. This dissertation research goes along withlarge amount of research efforts in this field, while focusing on thedesign and development of new nanoprobes from semiconductor nanocrystalsthat are aimed for useful imaging or sensing applications not possiblewith quantum dots alone. Specifically speaking, two strategies have beenapplied. In one, we have taken advantage of the increasing capability ofmanipulating the shape of semiconductor nanocrystals by developingsemiconductor quantum rods as fluorescent biological labels. In theother, we have assembled quantum dots and gold nanocrystals into discretenanostructures using DNA. The background information and synthesis,surface manipulation, property characterization and applications of thesenew nanoprobes in a few biological experiments are detailed in thedissertation.

  7. The structure and morphology of semiconductor nanocrystals

    SciTech Connect

    Kadavanich, A V

    1997-11-01

    Colloidal semiconductor nanocrystals were studied using High Resolution Transmission Electron Microscopy (HRTEM). Organically capped nanocrystals were found to have faceted shapes consistent with Wulff polyhedra after the effects of capping ligands on surface energies were taken into account. The basic shape thus derived for wurtzite (WZ) structure CdSe nanocrystals capped by tri-octyl phosphine oxide (TOPO) was a truncated hexagonal prism, elongated alone the <001> axis with (100) and (002) facets. This structure has C{sub 3v} point group symmetry. The main defect in this structure is a stacking fault (a single layer of zinc blende type stacking), which does not significantly affect the shape (does not alter the point group).

  8. Spectroelectrochemistry of Silver Deposition on Single Gold Nanocrystals.

    PubMed

    Chirea, Mariana; Collins, Sean S E; Wei, Xingzhan; Mulvaney, Paul

    2014-12-18

    We report the electrodeposition of metallic silver onto gold nanostars adsorbed to ITO electrodes. The electrochemical process was studied at the single particle level by correlated in situ dark field spectroscopy and scanning electron microscopy (SEM). Underpotential deposition avoids bulk silver formation on the ITO substrates. SEM proves that deposition occurs on all surfaces of the gold nanostars when polyvinylpyrrolidone (PVP) is stabilizing the nanostars or preferentially at the nanostar tips when the ligand is removed. The surface plasmon resonance blue-shifts by more than 100 nm following the formation of a 5 nm Ag film on PVP stabilized gold nanostars, moving the scattered color from the near-infrared to red or orange. The spectral shifts can be accurately modeled using finite element simulations. These results demonstrate that the morphology and composition of individual bimetallic nanocrystals can be engineered electrochemically. PMID:26273983

  9. Metallic 1T-LixMoS2 Cocatalyst Significantly Enhanced the Photocatalytic H2 Evolution over Cd0.5Zn0.5S Nanocrystals under Visible Light Irradiation.

    PubMed

    Du, Hong; Guo, Hong-Li; Liu, Ya-Nan; Xie, Xiao; Liang, Kuang; Zhou, Xiao; Wang, Xin; Xu, An-Wu

    2016-02-17

    In the present work, metallic 1T-LixMoS2 is utilized as a novel cocatalyst for Cd0.5Zn0.5S photocatalyst. The obtained LixMoS2/Cd0.5Zn0.5S hybrids show excellent photocatalytic performance for H2 generation from aqueous solution containing Na2S and Na2SO3 under splitting visible light illumination (λ ≥ 420 nm) without precious metal cocatalysts. It turns out that a certain amount of intercalating Li(+) ions ultimately drives the transition of MoS2 crystal from semiconductor triagonal phase (2H phase) to metallic phase (1T phase). The distinct properties of 1T-LixMoS2 promote the efficient separation of photoexcited electrons and holes when used as cocatalyst for Cd0.5Zn0.5S photocatalyst. As compared to 2H-MoS2 nanosheets only having edge active sites, photoinduced electrons not only transfer to the edge sites of 1T-LixMoS2, but also to the plane active sites of 1T-LixMoS2 nanosheets. The content of LixMoS2 in hybrid photocatalysts influences the photocatalytic activity. The optimal 1T-LixMoS2 (1.0 wt %)/Cd0.5Zn0.5S nanojunctions display the best activity for hydrogen production, achieving a hydrogen evolution rate of 769.9 μmol h(-1), with no use of noble metal loading, which is about 3.5 times higher than that of sole Cd0.5Zn0.5S, and 2 times higher than that of 2H-MoS2 (1.0 wt %)/Cd0.5Zn0.5S samples. Our results demonstrate that Li(+)-intercalated MoS2 nanosheets with high conductivity, high densities of active sites, low cost, and environmental friendliness are a prominent H2 evolution cocatalyst that might substitute for noble metal for potential hydrogen energy applications.

  10. Metallic 1T-LixMoS2 Cocatalyst Significantly Enhanced the Photocatalytic H2 Evolution over Cd0.5Zn0.5S Nanocrystals under Visible Light Irradiation.

    PubMed

    Du, Hong; Guo, Hong-Li; Liu, Ya-Nan; Xie, Xiao; Liang, Kuang; Zhou, Xiao; Wang, Xin; Xu, An-Wu

    2016-02-17

    In the present work, metallic 1T-LixMoS2 is utilized as a novel cocatalyst for Cd0.5Zn0.5S photocatalyst. The obtained LixMoS2/Cd0.5Zn0.5S hybrids show excellent photocatalytic performance for H2 generation from aqueous solution containing Na2S and Na2SO3 under splitting visible light illumination (λ ≥ 420 nm) without precious metal cocatalysts. It turns out that a certain amount of intercalating Li(+) ions ultimately drives the transition of MoS2 crystal from semiconductor triagonal phase (2H phase) to metallic phase (1T phase). The distinct properties of 1T-LixMoS2 promote the efficient separation of photoexcited electrons and holes when used as cocatalyst for Cd0.5Zn0.5S photocatalyst. As compared to 2H-MoS2 nanosheets only having edge active sites, photoinduced electrons not only transfer to the edge sites of 1T-LixMoS2, but also to the plane active sites of 1T-LixMoS2 nanosheets. The content of LixMoS2 in hybrid photocatalysts influences the photocatalytic activity. The optimal 1T-LixMoS2 (1.0 wt %)/Cd0.5Zn0.5S nanojunctions display the best activity for hydrogen production, achieving a hydrogen evolution rate of 769.9 μmol h(-1), with no use of noble metal loading, which is about 3.5 times higher than that of sole Cd0.5Zn0.5S, and 2 times higher than that of 2H-MoS2 (1.0 wt %)/Cd0.5Zn0.5S samples. Our results demonstrate that Li(+)-intercalated MoS2 nanosheets with high conductivity, high densities of active sites, low cost, and environmental friendliness are a prominent H2 evolution cocatalyst that might substitute for noble metal for potential hydrogen energy applications. PMID:26844371

  11. Plasmonic Properties of Silicon Nanocrystals Doped with Boron and Phosphorus.

    PubMed

    Kramer, Nicolaas J; Schramke, Katelyn S; Kortshagen, Uwe R

    2015-08-12

    Degenerately doped silicon nanocrystals are appealing plasmonic materials due to silicon's low cost and low toxicity. While surface plasmonic resonances of boron-doped and phosphorus-doped silicon nanocrystals were recently observed, there currently is poor understanding of the effect of surface conditions on their plasmonic behavior. Here, we demonstrate that phosphorus-doped silicon nanocrystals exhibit a plasmon resonance immediately after their synthesis but may lose their plasmonic response with oxidation. In contrast, boron-doped nanocrystals initially do not exhibit plasmonic response but become plasmonically active through postsynthesis oxidation or annealing. We interpret these results in terms of substitutional doping being the dominant doping mechanism for phosphorus-doped silicon nanocrystals, with oxidation-induced defects trapping free electrons. The behavior of boron-doped silicon nanocrystals is more consistent with a strong contribution of surface doping. Importantly, boron-doped silicon nanocrystals exhibit air-stable plasmonic behavior over periods of more than a year.

  12. Cloning nanocrystal morphology with soft templates

    NASA Astrophysics Data System (ADS)

    Thapa, Dev Kumar; Pandey, Anshu

    2016-08-01

    In most template directed preparative methods, while the template decides the nanostructure morphology, the structure of the template itself is a non-general outcome of its peculiar chemistry. Here we demonstrate a template mediated synthesis that overcomes this deficiency. This synthesis involves overgrowth of silica template onto a sacrificial nanocrystal. Such templates are used to copy the morphologies of gold nanorods. After template overgrowth, gold is removed and silver is regrown in the template cavity to produce a single crystal silver nanorod. This technique allows for duplicating existing nanocrystals, while also providing a quantifiable breakdown of the structure - shape interdependence.

  13. Silicon and germanium nanocrystals: properties and characterization

    PubMed Central

    Carvalho, Alexandra; Coutinho, José

    2014-01-01

    Summary Group-IV nanocrystals have emerged as a promising group of materials that extends the realm of application of bulk diamond, silicon, germanium and related materials beyond their traditional boundaries. Over the last two decades of research, their potential for application in areas such as optoelectronic applications and memory devices has been progressively unraveled. Nevertheless, new challenges with no parallel in the respective bulk material counterparts have arisen. In this review, we consider what has been achieved and what are the current limitations with regard to growth, characterization and modeling of silicon and germanium nanocrystals and related materials. PMID:25383290

  14. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.

    PubMed

    Wu, Min; Cui, Yi; Fu, Yongzhu

    2015-09-30

    Lithium sulfide (Li2S) with a high theoretical capacity of 1166 mAh g(-1) is a promising cathode material for Li-S batteries as it allows for the use of lithium-free anodes. However, a large overpotential (~1 V) is usually needed to activate microsized Li2S particles due to their low electronic and ionic conductivities. Here, nano-Li2S/carbon paper electrodes are developed via a simple Li2S solution filtration method. Li2S nanocrystals with a size less than 10 nm are formed uniformly in the pores of carbon paper network. These electrodes show an unprecedented low potential difference (0.1 V) in the first and following charges, also show high discharge capacities, good rate capability, and excellent cycling performance. More specifically, the nano-Li2S/carbon nanotube paper electrodes show a reversible capacity of 634 mAh g(-1) with a capacity retention of 92.4% at 1C rate from the 4th to 100th cycle, corresponding to a low capacity fading rate of 0.078% per cycle. These results demonstrate a facile and scalable electrode fabrication process for making high performance nano-Li2S/carbon paper electrodes, and the superior performance makes them promising for use with lithium metal-free anodes in rechargeable Li-S batteries for practical applications. PMID:26349017

  15. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals.

    PubMed

    Bodnarchuk, Maryna I; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V

    2015-12-09

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 10(11) Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  16. Host-guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    NASA Astrophysics Data System (ADS)

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-12-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host-guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs.

  17. Host–guest chemistry for tuning colloidal solubility, self-organization and photoconductivity of inorganic-capped nanocrystals

    PubMed Central

    Bodnarchuk, Maryna I.; Yakunin, Sergii; Piveteau, Laura; Kovalenko, Maksym V.

    2015-01-01

    Colloidal inorganic nanocrystals (NCs), functionalized with inorganic capping ligands, such as metal chalcogenide complexes (MCCs), have recently emerged as versatile optoelectronic materials. As-prepared, highly charged MCC-capped NCs are dispersible only in highly polar solvents, and lack the ability to form long-range ordered NC superlattices. Here we report a simple and general methodology, based on host–guest coordination of MCC-capped NCs with macrocyclic ethers (crown ethers and cryptands), enabling the solubilization of inorganic-capped NCs in solvents of any polarity and improving the ability to form NC superlattices. The corona of organic molecules can also serve as a convenient knob for the fine adjustment of charge transport and photoconductivity in films of NCs. In particular, high-infrared-photon detectivities of up to 3.3 × 1011 Jones with a fast response (3 dB cut-off at 3 kHz) at the wavelength of 1,200 nm were obtained with films of PbS/K3AsS4/decyl-18-crown-6 NCs. PMID:26647828

  18. Seed-Mediated Hot-Injection Synthesis of Tiny Ag Nanocrystals on Nanoscale Solid Supports and Reaction Mechanism.

    PubMed

    Barhoum, Ahmed; Rehan, Mohamed; Rahier, Hubert; Bechelany, Mikhael; Van Assche, Guy

    2016-04-27

    Controlling the size and shape of noble Ag nanocrystals (NCs) is of great interest because of their unique size- and shape-dependent properties, especially below 20 nm, and because of interesting applications in drug delivery, sensing, and catalysis. However, the high surface energy and tendency of these tiny NCs to aggregate deteriorates their unique properties and limits their applications. To avoid the aggregation of Ag NCs and improve their performance, we report a seed-mediated hot injection approach to synthesize highly dispersed tiny Ag NCs on a nanosized solid CaCO3 support. This simple, low-cost, and effective chemical approach allows for synthesizing highly uniform Ag NCs (∼10 nm) on the surface of presynthesized CaCO3 single NCs (∼52 nm) without any aggregation of the Ag NCs. Viscose fibers were coated with the Ag@CaCO3 composite nanoparticles (NPs) produced, as well as with ∼126 nm Ag NPs for reference. The Ag@CaCO3 composite NPs show excellent UV protection and antibacterial activity against Escherichia coli. In addition, they give a satin sheen gold to a dark gold color to the viscose fibers, while the Ag NPs (∼126 nm) result in a silver color. The proposed synthesis approach is highly versatile and applicable for many other noble metals, like Au or Pt. PMID:27025589

  19. Metal flux and dynamic speciation at (bio)interfaces. Part V: The roles of simple, fulvic and aggregate complexes on Pb flux in freshwater ligand mixtures, computed at planar consuming interfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Zeshi; Buffle, Jacques

    2009-03-01

    The computations of metal flux in aquatic systems, at consuming interfaces like oganism membranes are of major importance in ecotoxicology and dynamic risk assessment. In this paper, the flux of Pb(II), at a planar consuming interface in natural waters, is studied. The system includes (a) simple ligands (OH -, CO32-); (b) fulvics and (c) aggregates, as complexants, i.e. those which may play the major roles in controlling the metal flux in aquatic media. The effects of various physico-chemical factors, in particular, the diffusion layer thickness, the stability constants of fulvic and aggregate complexes, the complexing site distribution of fulvics and the size distribution of aggregates, are studied in details.

  20. Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene.

    PubMed

    Pan, Guohua; Zhu, Jia; Ma, Shulan; Sun, Genban; Yang, Xiaojing

    2013-12-11

    Cobalt is a promising soft metallic magnetic material used for important applications in the field of absorbing stealth technology, especially for absorbing centimeter waves. However, it frequently presents a weak dielectric property because of its instability, aggregation, and crystallographic form. A method for enhancing the electromagnetic property of metal Co via phase-controlled synthesis of Co nanostructures grown on graphene (GN) networks has been developed. Hexagonal close-packed cobalt (α-Co) nanocrystals and face-centered cubic cobalt (β-Co) nanospheres with uniform size and high dispersion have been successfully assembled on GN nanosheets via a facile one-step solution-phase strategy under different reaction conditions in which the exfoliated graphite oxide (graphene oxide, GO) nanosheets were reduced along with the formation of Co nanocrystals. The as-synthesized Co/GN nanocomposites showed excellent microwave absorbability in comparison with the corresponding Co nanocrystals or GN, especially for the nanocomposites of GN and α-Co nanocrystals (the reflection loss is -47.5 dB at 11.9 GHz), which was probably because of the special electrical properties of the cross-linked GN nanosheets and the perfect electromagnetic match in their microstructure as well as the small particle size of Co nanocrystals. The approach is convenient and effective. Some magnetic metal or alloy materials can also be prepared via this route because of its versatility. PMID:24266516