Science.gov

Sample records for metal organometallic chemistry

  1. Molecular metal catalysts on supports: organometallic chemistry meets surface science.

    PubMed

    Serna, Pedro; Gates, Bruce C

    2014-08-19

    -support bonding and structure, which identify the supports as ligands with electron-donor properties that influence reactivity and catalysis. Each of the catalyst design variables has been varied independently, illustrated by mononuclear and tetranuclear iridium on zeolite HY and on MgO and by isostructural rhodium and iridium (diethylene or dicarbonyl) complexes on these supports. The data provide examples resolving the roles of the catalyst design variables and place the catalysis science on a firm foundation of organometallic chemistry linked with surface science. Supported molecular catalysts offer the advantages of characterization in the absence of solvents and with surface-science methods that do not require ultrahigh vacuum. Families of supported metal complexes have been made by replacement of ligands with others from the gas phase. Spectroscopically identified catalytic reaction intermediates help to elucidate catalyst performance and guide design. The methods are illustrated for supported complexes and clusters of rhodium, iridium, osmium, and gold used to catalyze reactions of small molecules that facilitate identification of the ligands present during catalysis: alkene dimerization and hydrogenation, H-D exchange in the reaction of H2 with D2, and CO oxidation. The approach is illustrated with the discovery of a highly active and selective MgO-supported rhodium carbonyl dimer catalyst for hydrogenation of 1,3-butadiene to give butenes.

  2. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  3. Organometallic Chemistry of Molybdenum.

    ERIC Educational Resources Information Center

    Lucas, C. Robert; Walsh, Kelly A.

    1987-01-01

    Suggests ways to avoid some of the problems students have learning the principles of organometallic chemistry. Provides a description of an experiment used in a third-year college chemistry laboratory on molybdenum. (TW)

  4. Organometallic Neptunium Chemistry.

    PubMed

    Arnold, Polly L; Dutkiewicz, Michał S; Walter, Olaf

    2017-09-13

    Fifty years have passed since the foundation of organometallic neptunium chemistry, and yet only a handful of complexes have been reported, and even fewer have been fully characterized. Yet, increasingly, combined synthetic/spectroscopic/computational studies are demonstrating how covalently bonding, soft, carbocyclic organometallic ligands provide an excellent platform for advancing the fundamental understanding of the differences in orbital contributions and covalency in f-block metal-ligand bonding. Understanding the subtleties is the key to the safe handling and separations of the highly radioactive nuclei. This review describes the complexes that have been synthesized to date and presents a critical assessment of the successes and difficulties in their analysis and the bonding information they have provided. Because of increasing recent efforts to start new Np-capable air-sensitive inorganic chemistry laboratories, the importance of radioactivity, the basics of Np decay and its ramifications (including the radiochemical synthesis of one organometallic compound), and the available anhydrous starting materials are also surveyed. The review also highlights a range of instances in which important differences in the chemical behavior between Np and its closest neighbors, uranium and plutonium, are found.

  5. An organometallic guide to the chemistry of hydrocarbon moieties on transition metal surfaces

    SciTech Connect

    Zaera, F.

    1995-12-01

    In this review what is known about the chemistry of hydrocarbon molecules on transition metal surfaces will be surveyed. Here the authors discuss the results reported to date on the structure and reactivity of the different types of hydrocarbon moieties that form on transition metal surfaces. One of the goals of this review is to provide an organometallic guide for the possible interactions of hydrocarbons with transition metals with the idea of examining their relation to the corresponding surface chemistry. The authors however limit the review of the organometallic literature to the information relevant to the surface systems, and also narrow the field to cover only molecules with carbon and hydrogen atoms; compounds containing other atoms (O, S, N) will be excluded. The present review is organized in the following manner. First, a brief discussion of the experimental techniques used to characterize both organometallic and surface systems is presented. A discussion of the coordination and structure of the different types of organic moieties, first in organometallic compounds and then on metal surfaces, follows. Here the systems are classified according to the type of bonding between the molecules and the metals. Next, the different elementary steps that such systems can undergo are summarized: C-H and C-C bond-breaking and bond-forming reactions, isomerizations, and others. Again, the chemistry of organometallic compounds is discussed first, and the surface chemistry is presented subsequently. A brief description of a few key nonelementary reactions is also given, including some catalytic processes. Lastly, a brief discussion on the main similarities and differences found so far between surface and organometallic systems, and on possible future directions for this field, is offered.

  6. Organometallic Chemistry and catalysis on gold metal surfaces

    SciTech Connect

    Angelici, Robert J.

    2007-11-21

    As in transition metal complexes, C{triple_bond}N-R ligands adsorbed on powdered gold undergo attack by amines to give putative diaminocarbene groups on the gold surface. This reaction forms the basis for the discovery of a gold metal-catalyzed reaction of C{triple_bond}N-R, primary amines (R{prime}NH{sub 2}) and O{sub 2} to give carbodiimides (R{prime}-N{double_bond}C{double_bond}N-R). An analogous reaction of C{triple_bond}O, RNH{sub 2}, and O{sub 2} gives isocyanates (R-N{double_bond}C{double_bond}O), which react with additional amine to give urea (RNH){sub 2}C{double_bond}O products. The gold-catalyzed reaction of C{triple_bond}N-R with secondary amines (HNR{prime}{sub 2}) and O{sub 2} gives mixed ureas RNH(CO)NR{prime}{sub 2}. In another type of gold-catalyzed reaction, secondary amines HN(CH{sub 2}R){sub 2} react with O{sub 2} to undergo dehydrogenation to the imine product, RCH{double_bond}N(CH{sub 2}R). Of special interest is the high catalytic activity of gold powder, which is otherwise well-known for its poor catalytic properties.

  7. Patterns in Organometallic Chemistry with Application in Organic Synthesis.

    ERIC Educational Resources Information Center

    Schwartz, Jeffrey; Labinger, Jay A.

    1980-01-01

    Of interest in this discussion of organometallic complexes are stoichiometric or catalytic reagents for organic synthesis in the complex transformations observed during synthesis for transition metal organometallic complexes. Detailed are general reaction types from which the chemistry or many transition metal organometallic complexes can be…

  8. Organometallic Chemistry. Final Progress Report

    SciTech Connect

    2003-07-14

    The Gordon Research Conference (GRC) on Organometallic Chemistry was held at Salve Regina, Newport, Rhode Island, 7/21-26/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  9. 2012 Gordon Research Conference, Organometallic Chemistry, 8-13 2012

    SciTech Connect

    Hillhouse, Gregory

    2012-07-13

    The 2012 Organometallic Chemistry Gordon Research Conference will highlight new basic science and fundamental applications of organometallic chemistry in industrial, academic, and national lab settings. Scientific themes of the conference will include chemical synthesis, reactivity, catalysis, polymer chemistry, bonding, and theory that involve transition-metal (and main-group) interactions with organic moieties.

  10. Organometallic chemistry in non-classical environments.

    PubMed

    Dyson, Paul J

    2011-01-01

    A summary of our on-going research on organometallic chemistry is provided with an emphasis on the function, reactivity and mechanisms of organometallic compounds in water, ionic liquids and in living systems. The role of organometallic compounds in both catalysis and medicinal chemistry are briefly described.

  11. Chemistry related to semiconductor growth involving organometallics

    NASA Astrophysics Data System (ADS)

    Husk, G. R.; Jones, K. A.; Paur, R. J.; Prater, J. T.

    1990-05-01

    OMVPE (OrganoMetallic Vapor-Phase Epitaxy) technology requirements for III-V compounds and chemistry related to semiconductor growth involving organometallics are discussed. The following subject areas are covered: semiconductor device requirements; Army II-VI deposition program/MOMBE (Metal Organic Molecular Beam Epitaxy) for IR detector applications; epitaxial growth of III-V's and II-VI's using organometallics; electrical device requirements; environmental and safety issues in MOVPE; quantum chemistry of vapor phase; carbon doping and selective epitaxy (tailoring growth chemistry in MOVPE); TBA/TBP precursors in GaAs and InP MOCVD; single source precursors for III-V OMCVD (OrganoMetallic Chemical Vapor Deposition) growth; alternate sources for MOMBE of AlGaAs; mechanism of incorporation of impurities and analysis of carbon contamination; growth on nonplanar and patterned substrates; CBE growth mechanisms; TriMethylamine Alane (a new robust precursor for MOMBE growth of AlGaAs); real-time determinations of OMCVD growth kinetics on GaAs by reflectance-difference spectroscopy; photoreflectance measurements; growth and doping mechanisms for HgCdTe; photoassisted CBE (Chemical Beam Epitaxy) of CdTe and HgCdTe alloys; in-situ analysis of ZnSe growth by OMCVD using X-ray scattering; biodegradation of GaAs IC chips and wafers; detailed models of compound semiconductor growth by MOCVD; gas phase probes of GaAs cluster chemistry; photodecomposition of organometallic compounds at 193 nm; manufacturing issues in MOCVD compound semiconductor technology.

  12. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  13. Modules for Introducing Organometallic Reactions: A Bridge between Organic and Inorganic Chemistry

    ERIC Educational Resources Information Center

    Schaller, Chris P.; Graham, Kate J.; Johnson, Brian J.

    2015-01-01

    Transition metal organometallic reactions have become increasingly important in the synthesis of organic molecules. A new approach has been developed to introduce organometallic chemistry, along with organic and inorganic chemistry, at the foundational level. This change highlights applications of organometallic chemistry that have dramatically…

  14. Organometallic chemistry and the interstellar medium: experimental evidence of coordination between metal cations and polycyclic hydrocarbons in the gas phase

    NASA Astrophysics Data System (ADS)

    Boissel, P.

    1994-05-01

    The possible importance of organometallic chemistry in the interstellar medium (ISM) has been recently pointed out (Serra et al. 1992, Chaudret et al. 1991). However, quantitative evaluation of its implications suffers from a lack of experimental data concerning coordination complexes between polycyclic aromatic hydrocarbons (PAHs) and metals. Up to now, among the PAH family, gas phase studies of such complexes are limited to metal^+^-benzene (Hettich et al. 1986, Wiley et al. 1992) and Si^+^-naphthalene (Bohme et al. 1989). The present paper reports experimental observation of coordination between metal cations and larger PAHs. Using an ion trap, formation and destruction of Fe(PAH)^+^ and Fe(PAH)_2_^+^ complexes have been studied. These complexes are shown to be stable under collision free conditions. Orders of magnitude for the formation cross section and the dissociation barrier that can be drawn from this preliminary experiment are not in disagreement with those used in astrophysical models.

  15. Organometallic Chemistry and Catalysis in Industry.

    ERIC Educational Resources Information Center

    Parshall, George W.; Putscher, Richard E.

    1986-01-01

    Traces the growth in the industrial usage of organometallic chemistry from 1950 to 1977, pointing out that this growth involved the production of commodity chemicals. Indicates that one of the early successes of organometallic chemistry was the discovery of ethylene polymerization catalysts. (JN)

  16. Perfluorinated Ligands in Organometallic Chemistry

    DTIC Science & Technology

    1989-12-12

    Decacarbonyldimanganese. Organometallics, 1986, 1,2391. W.P. Henry and R.P. Hughes, Organic Synthesis Using Carbon Monoxide. Regiospecific Cobalt Mediated...Pentamethylcyclopentadiene with Decacarbonyldi manganese. Organometalllcs, 1986, 1,2391. 4. W.P. Henry and R.P. Hughes, Organic Synthesis Using Carbon

  17. Supported organometallic complexes, surface chemistry, spectroscopy, and catalysis

    SciTech Connect

    Marks, T.J.

    1993-04-01

    Goal is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. Nature of adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecule-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  18. Organometallic chemistry: A new metathesis

    NASA Astrophysics Data System (ADS)

    Hennessy, Elisabeth T.; Jacobsen, Eric N.

    2016-08-01

    Carbonyls and alkenes, two of the most common functional groups in organic chemistry, generally do not react with one another. Now, a simple Lewis acid has been shown to catalyse metathesis between alkenes and ketones in a new carbonyl olefination reaction.

  19. Metal alkoxides: templates for organometallic chemistry and catalysis. Final technical report on DE FG 02-86ER13570

    SciTech Connect

    Chisholm, Malcolm H.

    2002-11-01

    The physical properties and chemical reactivities of a series of alkoxide, fluoroalkoxide and thiolate compounds of molybdenum and tungsten having M{triple_bond}M or M{triple_bond}N bonds have been examined which reveal the influence of the pi-donor properties of the ligands: RO > R{sub f}O{approx}RS. Single-site metal alkoxide catalysts for the ring-opening polymerization of lactides have been prepared for the metals magnesium, zinc, and aluminum.

  20. A golden future in medicinal inorganic chemistry: the promise of anticancer gold organometallic compounds.

    PubMed

    Bertrand, Benoît; Casini, Angela

    2014-03-21

    From wedding rings on fingers to stained glass windows, by way of Olympic medals, gold has been highly prized for millennia. Nowadays, organometallic gold compounds occupy an important place in the field of medicinal inorganic chemistry due to their unique chemical properties with respect to gold coordination compounds. In fact, several studies have proved that they can be used to develop highly efficient metal-based drugs with possible applications in the treatment of cancer. This Perspective summarizes the results obtained for different families of bioactive organometallic gold compounds including cyclometallated gold(iii) complexes with C,N-donor ligands, gold(I) and gold(I/III) N-heterocyclic (NHC) carbene complexes, as well as gold(I) alkynyl complexes, with promising anticancer effects. Most importantly, we will focus on recent developments in the field and discuss the potential of this class of organometallic compounds in relation to their versatile chemistry and innovative mechanisms of action.

  1. A "Classic Papers" Approach to Teaching Undergraduate Organometallic Chemistry

    NASA Astrophysics Data System (ADS)

    Duncan, Andrew P.; Johnson, Adam R.

    2007-03-01

    We have structured an upper-level undergraduate course in organometallic chemistry on a selection of "classic" publications in the field. This approach offers students a richly contextual introduction to many of the fundamental tenets of the discipline. After a brief introduction to the field led by the faculty, the students themselves are responsible for researching and presenting selected papers to their classmates for analysis and discussion. Beyond mastery of basic organometallic principles, course goals for the students include improved proficiency in using the primary chemical literature and increased experience and confidence in researching, preparing, and delivering an informative oral presentation in individual and collaborative settings. Student performance is assessed based on performance on open-ended, take-home exams, quality of presentations, and contribution to in-class discussions. Student end-of-term survey responses indicate that this class model is successful as an introduction to organometallic chemistry.

  2. Advanced polymer chemistry of organometallic anions

    SciTech Connect

    Chamberlin, R.M.; Abney, K.D.; Balaich, G.J.; Fino, S.A.

    1997-11-01

    This is the final report of a one-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The objective of the project was to prepare and characterize new polymers incorporating cobalt dicarbollide. Specific goals were to prepare polymerizable cobalt dicarbollide monomers using the nucleophilic substitution route discovered in laboratories and to establish the reaction conditions required to form polymers from these complexes. This one-year project resulted in two publications (in press), and provided the foundation for further investigations into polymer synthesis and characterization using cobalt dicarbollide and other metallocarboranes. Interest in synthesizing organometallic polymers containing the cobalt bis(dicarbollide) anion is motivated by their possible application as cation exchange materials for the remediation of cesium-137 and strontium-90 from nuclear wastes.

  3. Half-metallicity in 2D organometallic honeycomb frameworks

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-01

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule—CN—noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  4. Half-metallicity in 2D organometallic honeycomb frameworks.

    PubMed

    Sun, Hao; Li, Bin; Zhao, Jin

    2016-10-26

    Half-metallic materials with a high Curie temperature (T C) have many potential applications in spintronics. Magnetic metal free two-dimensional (2D) half-metallic materials with a honeycomb structure contain graphene-like Dirac bands with π orbitals and show excellent aspects in transport properties. In this article, by investigating a series of 2D organometallic frameworks with a honeycomb structure using first principles calculations, we study the origin of forming half-metallicity in this kind of 2D organometallic framework. Our analysis shows that charge transfer and covalent bonding are two crucial factors in the formation of half-metallicity in organometallic frameworks. (i) Sufficient charge transfer from metal atoms to the molecules is essential to form the magnetic centers. (ii) These magnetic centers need to be connected through covalent bonding, which guarantee the strong ferromagnetic (FM) coupling. As examples, the organometallic frameworks composed by (1,3,5)-benzenetricarbonitrile (TCB) molecules with noble metals (Au, Ag, Cu) show half-metallic properties with T C as high as 325 K. In these organometallic frameworks, the strong electronegative cyano-groups (CN groups) drive the charge transfer from metal atoms to the TCB molecules, forming the local magnetic centers. These magnetic centers experience strong FM coupling through the d-p covalent bonding. We propose that most of the 2D organometallic frameworks composed by molecule-CN-noble metal honeycomb structures contain similar half metallicity. This is verified by replacing TCB molecules with other organic molecules. Although the TCB-noble metal organometallic framework has not yet been synthesized, we believe the development of synthesizing techniques and facility will enable the realization of them. Our study provides new insight into the 2D half-metallic material design for the potential applications in nanotechnology.

  5. Supported organometallic complexes, surface chemistry, spectroscopy, and catalysis. Progress report, September 15, 1992--November 14, 1993

    SciTech Connect

    Marks, T.J.

    1993-04-01

    Goal is to elucidate and understand the surface chemistry and catalytic properties of well-defined, highly-reactive organometallic molecules (principally based upon abundant actinide, lanthanide, and early transition elements) adsorbed on metal oxides and halides. Nature of adsorbed species is probed by a battery of chemical and physicochemical techniques, to understand the nature of the molecule-surface coordination chemistry and how this can give rise to extremely high catalytic activity. A complementary objective is to delineate the scope and mechanisms of the heterogeneous catalytic reactions, as well as to relate them both conceptually and functionally to model systems generated in solution.

  6. Organometallic chemistry: Fused ferrocenes come full circle

    NASA Astrophysics Data System (ADS)

    Musgrave, Rebecca A.; Manners, Ian

    2016-09-01

    Chemists have long been fascinated by electron delocalization, from both a fundamental and applied perspective. Macrocyclic oligomers containing fused ferrocenes provide a new structural framework -- containing strongly interacting metal centres -- that is capable of supporting substantial charge delocalization.

  7. 2011 Organometallic Chemistry (July 10-15, 2011, Salve Regina University, Newport, RI)

    SciTech Connect

    Dr. Emilio Bunel

    2011-07-15

    Organometallic chemistry has played and will continue to play a significant role in helping us understand the way bonds are made or broken in the presence of a transition metal complex. Current challenges range from the efficient exploitation of energy resources to the creative use of natural and artificial enzymes. Most of the new advances in the area are due to our extended understanding of processes at a molecular level due to new mechanistic studies, techniques to detect reaction intermediates and theory. The conference will bring the most recent advances in the field including nanocatalysis, surface organometallic chemistry, characterization techniques, new chemical reactivity and theoretical approaches along with applications to organic synthesis and the discovery of new materials. The Conference will bring together a collection of investigators who are at the forefront of their field, and will provide opportunities for junior scientists and graduate students to present their work in poster format and exchange ideas with leaders in the field. Six outstanding posters will be selected for short talks. The collegial atmosphere of this Conference, with programmed discussion sessions as well as opportunities for informal gatherings in the afternoons and evenings, provides an avenue for scientists from different disciplines to brainstorm and promotes cross-disciplinary collaborations in the various research areas represented. Graduate students and postdoctoral fellows should also consider participating in the Gordon Research Seminar on Organometallic Chemistry (July 9-10, same location) which is specially designed to promote interaction and discussion between junior scientists.

  8. Reactivity of seventeen- and nineteen-valence electron complexes in organometallic chemistry

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Tyler, David R.

    1986-01-01

    A guideline to the reactivity of 17- and 19-valence electron species in organometallic chemistry is proposed which the authors believe will supersede all others. The thesis holds that the reactions of 17-electron metal radicals are associatively activated with reactions proceeding through a 19-valence electron species. The disparate reaction chemistry of the 17-electron metal radicals are unified in terms of this associative reaction pathway, and the intermediacy of 19-valence electron complexes in producing the observed products is discussed. It is suggested that related associatively activated pathways need to be considered in some reactions that are thought to occur by more conventional routes involving 16- and 18-electron intermediates. The basic reaction chemistry and electronic structures of these species are briefly discussed.

  9. Reactivity of seventeen- and nineteen-valence electron complexes in organometallic chemistry

    NASA Technical Reports Server (NTRS)

    Stiegman, Albert E.; Tyler, David R.

    1986-01-01

    A guideline to the reactivity of 17- and 19-valence electron species in organometallic chemistry is proposed which the authors believe will supersede all others. The thesis holds that the reactions of 17-electron metal radicals are associatively activated with reactions proceeding through a 19-valence electron species. The disparate reaction chemistry of the 17-electron metal radicals are unified in terms of this associative reaction pathway, and the intermediacy of 19-valence electron complexes in producing the observed products is discussed. It is suggested that related associatively activated pathways need to be considered in some reactions that are thought to occur by more conventional routes involving 16- and 18-electron intermediates. The basic reaction chemistry and electronic structures of these species are briefly discussed.

  10. Detection of Metal and Organometallic Compounds with Bioluminescent Bacterial Bioassays.

    PubMed

    Durand, M J; Hua, A; Jouanneau, S; Cregut, M; Thouand, G

    2015-10-17

    Chemical detection of metal and organometallic compounds is very specific and sensitive, but these techniques are time consuming and expensive. Although these techniques provide information about the concentrations of compounds, they fail to inform us about the toxicity of a sample. Because the toxic effects of metals and organometallic compounds are influenced by a multitude of environmental factors, such as pH, the presence of chelating agents, speciation, and organic matter, bioassays have been developed for ecotoxicological studies. Among these bioassays, recombinant luminescent bacteria have been developed over the past 20 years, and many of them are specific for the detection of metals and metalloids. These bioassays are simple to use, are inexpensive, and provide information on the bioavailable fraction of metals and organometals. Thus, they are an essential complementary tool for providing information beyond chemical analysis. In this chapter, we propose to investigate the detection of metals and organometallic compounds with bioluminescent bacterial bioassays and the applications of these bioassays to environmental samples. Graphical Abstract.

  11. Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen.

    PubMed

    Jia, Hong-Peng; Quadrelli, Elsje Alessandra

    2014-01-21

    Dinitrogen cleavage and hydrogenation by transition-metal centers to produce ammonia is central in industry and in Nature. After an introductory section on the thermodynamic and kinetic challenges linked to N2 splitting, this tutorial review discusses three major classes of transition-metal systems (homogeneous, heterogeneous and biological) capable of achieving dissociation and hydrogenation of dinitrogen. Molecular complexes, solid-state Haber-Bosch catalytic systems, silica-supported tantalum hydrides and nitrogenase will be discussed. Emphasis is focused on the reaction mechanisms operating in the process of dissociation and hydrogenation of dinitrogen, and in particular on the key role played by metal hydride bonds and by dihydrogen in such reactions.

  12. Zirconocene and Si-tethered diynes: a happy match directed toward organometallic chemistry and organic synthesis.

    PubMed

    Zhang, Wen-Xiong; Zhang, Shaoguang; Xi, Zhenfeng

    2011-07-19

    Characterizing reactive organometallic intermediates is critical for understanding the mechanistic aspects of metal-mediated organic reactions. Moreover, the isolation of reactive organometallic intermediates can often result in the ability to design new synthetic methods. In this Account, we outline synthetic methods that we developed for a variety of diverse Zr/Si organo-bimetallic compounds and Si/N heteroatom-organic compounds through the detailed study of zirconacyclobutene-silacyclobutene fused compounds. Two basic components are involved in this chemistry. The first is the Si-tethered diyne, which owes its rich reactive palette to the combination of the Si-C bond and the C≡C triple bond. The second is the low-valent zirconocene species Cp(2)Zr(II), which has proven very useful in organic synthesis. The reaction of these two components affords the zirconacyclobutene-silacyclobutene fused compound, which is the key reactive Zr/Si organo-bimetallic intermediate discussed here. We discuss the three types of reactions that have been developed for the zirconacyclobutene-silacyclobutene fused intermediate. The reaction with nitriles (the C≡N triple bond) is introduced in the first section. In this one-pot reaction, up to four different components can be combined: the Si-tethered diyne can be reacted with three identical nitriles, with differing nitriles, or with a nitrile and other unsaturated organic substrates such as formamides, isocyanides, acid chlorides, aldehydes, carbodiimides, and azides. Several unexpected multiring, fused Zr/Si organo-bimetallic intermediates were isolated and characterized. A wide variety of N-heterocycles, such as 5-azaindole, pyrrole, and pyrroloazepine derivatives, were obtained. We then discuss the reaction with alkynes (the C≡C triple bond). A consecutive skeletal rearrangement, differing from that observed in the reactions with nitriles, takes place in this reaction. Finally, we discuss the reaction with the C═X substrates

  13. Half metal in two-dimensional hexagonal organometallic framework.

    PubMed

    Hu, Hao; Wang, Zhengfei; Liu, Feng

    2014-12-01

    Two-dimensional (2D) hexagonal organometallic framework (HOMF) made of triphenyl-metal molecules bridged by metal atoms has been recently shown to exhibit exotic electronic properties, such as half-metallic and topological insulating states. Here, using first-principles calculations, we investigate systematically the structural, electronic, and magnetic properties of such HOMFs containing 3d transition metal (TM) series (Sc to Cu). Two types of structures are found for these HOMFs: a buckled structure for those made of TMs with less half-filled 3d band and a twisted structure otherwise. The HOMFs show both ferromagnetic and antiferromagnetic properties, as well as nonmagnetic properties, due to the electronic configuration of the TM atoms. The V, Mn, and Fe lattices are ferromagnetic half metals with a large band gap of more than 1.5 eV in the insulating spin channel, making them potential 2D materials for spintronics application.

  14. Sulfur-bonded thiophenes in organometallic rhenium complexes and adsorption of isocyanides on gold

    SciTech Connect

    Robertson, Mitchell Joe

    1993-08-01

    This dissertation contains results of research conducted in two different areas: (1) organometallic synthesis and reactivity, and (2) organometallic surface chemistry. In the synthesis and reactivity studies, sulfur coordination of thiophene and benzo[b]thiophene to the metal center in organometallic rhenium complexes is examined. In the surface chemistry studies, diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) is used to analyze the adsorption of several isocyanides on the surface of gold powder. Results are compared and contrasted to known organometallic chemistry.

  15. The organometallic fluorine chemistry of palladium and rhodium: studies toward aromatic fluorination.

    PubMed

    Grushin, Vladimir V

    2010-01-19

    Although springing from two established fields, organometallic chemistry and fluorine chemistry, organometallic fluorine chemistry is still in its early stages. However, developments in this area are expected to provide new tools for the synthesis of selectively fluorinated organic compounds that have been in high demand. Selectively fluorinated organic molecules currently account for up to 40% of all agrochemicals and 20% of all pharmaceuticals on the market. Our research efforts have been focused on the development of new organometallic and catalytic methods for the selective introduction of fluorine and the CF(3) group into the aromatic ring. Monofluorinated and trifluoromethylated aromatic compounds are still made by the old technologies that employ stoichiometric quantities of hazardous and costly materials. In this Account, we describe our studies toward the development of safe, catalytic alternatives to these methods. We have synthesized, characterized, and studied the reactivity of the first aryl palladium(II) fluoride complexes. We have demonstrated for the first time that a Pd-F bond can be formed in a soluble and isolable molecular complex: this bond is more stable than previously thought. Toward the goal of fluoroarene formation via Ar-F reductive elimination, we have studied a number of sigma-aryl Pd(II) fluorides stabilized by various P, N, and S ligands. It has been established that numerous conventional tertiary phosphine ligands, most popular in Pd catalysis, are unlikely to be useful for the desired C-F bond formation at the metal center because of the competing, kinetically preferred P-F bond-forming reaction. A metallophosphorane mechanism has been demonstrated for the P-F bond-forming processes at Rh(I) and Pd(II), which rules out the possibility of controlling these reactions by varying the amount of phosphine in the system, a most common and often highly efficient technique in homogeneous catalysis. The novel F/Ph rearrangement of the fluoro

  16. CNET of France uses organo-metallic epitaxy for laser

    NASA Astrophysics Data System (ADS)

    1985-11-01

    CNET's Bagneux laboratory has just determine the characteristics of the first 1.3 microns GaInAsP laser chips produced by means of organo-metallic epitaxy on InP at atmospheric pressure. The results of the first complete after test (pulsed threshold current density of 1,200 A/sq cm at room temperature for laser 100 microns wide and 500 microns long; low feature dispersion, high quantity yield) are encouraging. They seem to indicate that with appropriate structures (for example, embedded ribbon lasers), it may be possible to construct direct current lasers that function at room temperature with threshold currents of 30 to 100 mA. The results are among the best in the world (CNET's threshold current is only 40% greater than the Thomson record achieved with a reduced-pressure organo-metallic epitaxial method) and are comparable to those recently publilshed by Bell Labs (3,600 A/sq cm at 1.36 microns, the first to have determined the characteristics of lasers made using the same method.

  17. An Organometallic Future in Green and Energy Chemistry?

    SciTech Connect

    Crabtree, Robert H

    2011-01-10

    The title topic is reviewed with selected examples taken from recent work, such as: the 'hydrogen borrowing' amine alkylation by alcohols; the dehydrogenative coupling of amine and alcohol to give amide; Ru complexes as solar cell photosensitizers; Ir organometallics as water oxidation catalyst precursors and as OLED emitters; as well as recent hydrogen storage strategies involving catalytic dehydrogenation of ammonia-borane and of organic heterocycles.

  18. Pyrazine-based organometallic complex: synthesis, characterization, and supramolecular chemistry.

    PubMed

    Bhowmick, Sourav; Chakraborty, Sourav; Das, Atanu; Rajamohanan, P R; Das, Neeladri

    2015-03-16

    The design, synthesis, and characterization of a new pyrazine-based ditopic platinum(II) organometallic complex are reported. The molecular structure of the organoplatinum pyrazine dipod was determined by single-crystal X-ray crystallography. The potential utility of this organometallic ditopic acceptor as a building block in the construction of neutral metallasupramolecular macrocycles containing the pyrazine motif was explored. Pyrazine motifs containing supramolecules were characterized by multinuclear NMR (including (1)H DOSY), mass spectrometry, and elemental analysis. The geometry of each supramolecular framework was optimized by employing the PM6 semiempirical molecular orbital method to predict its shape and size. The ability of the pyrazine-based organoplatinum complex to act as a host for nitroaromatic guest (2,4-dinitrotoluene and PA) molecules was explored by isothermal titration calorimetry (ITC). The binding stoichiometry and thermodynamic parameters of these host-guest complexation reactions were evaluated using ITC. Theoretical calculations were performed to obtain insight into the binding pattern between the organometallic host and nitroaromatic guests. The preferable binding propensity of the binding sites of complex 1 for both nitroaromatics (PA and 2,4-dinitrotoluene) determined by molecular simulation studies corroborates well with the experimental results as obtained by ITC experiments.

  19. Modular self-assembly, characterization, and host-guest chemistry of nanoscale organometallic architectures

    SciTech Connect

    Manna, J.; Kuehl, C.J.; Stang, P.J.; Muddiman, D.C.; Smith, R.D.

    1997-12-31

    The supramolecular synthesis and chemistry of organic macrocycles has been the focus of considerable study for over thirty years. In contrast, the chemistry of analogous inorganic and organometallic macrocycles is in it infancy; little is know about the stability, spectroscopic and physical properties, and chemistry of these species. We will report on the design of several unique supramolecular macrocycles and the characterization of these species by a range of spectroscopic techniques, including electrospray-ionization Fourier transform ion cyclotron resonance spectrometry. Preliminary data concerning the host-guest chemistry of these macrocycles will also be presented.

  20. Organometallic chemistry meets crystal engineering to give responsive crystalline materials.

    PubMed

    Bacchi, A; Pelagatti, P

    2016-01-25

    Dynamically porous crystalline materials have been obtained by engineering organometallic molecules. This feature article deals with organometallic wheel-and-axle compounds, molecules with two relatively bulky groups (wheels) connected by a linear spacer. The wheels are represented by half-sandwich Ru(ii) moieties, while the spacer can be covalent or supramolecular in character. Covalent spacers are obtained using divergent bidentate ligands connecting two [(arene)RuX2] groups. Supramolecular spacers are instead obtained by exploiting the dimerization of COOH or C(O)NH2 groups appended to N-based ligands. A careful choice of ligand functional groups and X ligands leads to the isolation of crystalline materials with remarkable host-guest properties, evidenced by the possibility of reversibly capturing/releasing volatile guests through heterogenous solid-gas reactions. Structural correlations between the crystalline arrangement of the apohost and the host-guest compounds allow us to envisage the structural path followed by the system during the exchange processes.

  1. Probing the chemistry, electronic structure and redox energetics in pentavalent organometallic actinide complexes

    SciTech Connect

    Graves, Christopher R; Vaughn, Anthony E; Morris, David E; Kiplinger, Jaqueline L

    2008-01-01

    Complexes of the early actinides (Th-Pu) have gained considerable prominence in organometallic chemistry as they have been shown to undergo chemistries not observed with their transition- or lanthanide metal counterparts. Further, while bonding in f-element complexes has historically been considered to be ionic, the issue of covalence remains a subject of debate in the area of actinide science, and studies aimed at elucidating key bonding interactions with 5f-orbitals continue to garner attention. Towards this end, our interests have focused on the role that metal oxidation state plays in the structure, reactivity and spectral properties of organouranium complexes. We report our progress in the synthesis of substituted U{sup V}-imido complexes using various routes: (1) Direct oxidation of U{sup IV}-imido complexes with copper(I) salts; (2) Salt metathesis with U{sup V}-imido halides; (3) Protonolysis and insertion of an U{sup V}-imido alkyl or aryl complex with H-N{double_bond}CPh{sub 2} or N{triple_bond}C-Ph, respectively, to form a U{sup V}-imido ketimide complex. Further, we report and compare the crystallographic, electrochemical, spectroscopic and magnetic characterization of the pentavalent uranium (C{sub 5}Me{sub 5}){sub 2}U({double_bond}N-Ar)(Y) series (Y = OTf, SPh, C{triple_bond}C-Ph, NPh{sub 2}, OPh, N{double_bond}CPh{sub 2}) to further interrogate the molecular, electronic, and magnetic structures of this new class of uranium complexes.

  2. Organometallic complexes: new tools for chemotherapy.

    PubMed

    Chavain, N; Biot, C

    2010-01-01

    The importance of organometallics can be noticed by their presence in all life organisms. The most known natural organometallic molecule is vitamin B12, a porphyrin containing a cobalt atom, useful for several enzymatic transformations. Based on the remarkable properties of this class of compounds, a new area of medicinal research was developed. Gérard Jaouen was the first to introduce the term of "bioorganometallic chemistry" in 1985 although the first organometallic therapeutical was Salvarsan®, discovered by Paul Ehrlich (Nobel Prize in Medicine in 1908). Bioorganometallic chemistry consists of the synthesis and the study of organometallic complexes, complexes with at least one metal-carbon bond, in a biological and medicinal interest. This field of research was accentuated by the discovery of the ferrocene in 1951 by Pauson and Kealy, confirmed in 1952 by Wilkinson (Nobel Prize in 1973). Today, bioorganometallic chemistry includes 5 main domains: (1) organometallic therapeuticals, (2) toxicology and environment, (3) molecular recognition in aqueous phases, (4) enzymes, proteins and peptides, (5) bioanalysis and pharmaceutical sensors. In this review, we focused on organometallic therapeuticals. The exceptional properties of organometallics are first described and then, an overview on the main organometallic complexes used for drug design is presented. This review gives an idea how organometallics can be used for the rational design of new drugs.

  3. Surface organometallic chemistry on metals: Evidence for a new surface organometallic material Rh(Sn(C{sub 4}H{sub 9}){sub x}){sub y} obtained by controlled hydrogenolysis of Sn(C{sub 4}H{sub 9}){sub 4} on Rh/SiO{sub 2}

    SciTech Connect

    Didillon, B.; Clause, O.; Lefevbre, F.; Lamb, H.; Houtman, C.; Shay, T.; Candy, J.P.; Basset, J.M.

    1993-12-31

    It is shown that it is possible to graft organometallic fragments, namely Sn(C{sub 4}H{sub 9}){sub x}(x=1,2,3) at the surface of a rhodium particle supported on silica. These organometallic fragments are obtained by selective hydrogenolysis of Sn(C{sub 4}H{sub 9}){sub 4} on a Rhodium/silica catalyst. They are thermally stable on the particle up to a temperature of 423 K. The surface organometallic fragments have been characterized by micro-analytical data. Electron microscopy (CTEM and STEM), infrared spectroscopy, XPS Analysis, Moessbauer spectroscopy, MAS{sup 13}C NMR, EXAFS and molecular modeling. Depending on experimental conditions, it is possible to propose various surface structures for the organometallic fragments. However, the most likely fragment can be represented by the general formula: Rh{sub 8}Sn[Sn(C{sub 4}H{sub 9}){sub 3}]{sub 2}.

  4. Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis

    SciTech Connect

    Casey, Charles P

    2012-11-14

    Mechanistic Studies at the Interface Between Organometallic Chemistry and Homogeneous Catalysis Charles P. Casey, Principal Investigator Department of Chemistry, University of Wisconsin - Madison, Madison, Wisconsin 53706 Phone 608-262-0584 FAX: 608-262-7144 Email: casey@chem.wisc.edu http://www.chem.wisc.edu/main/people/faculty/casey.html Executive Summary. Our goal was to learn the intimate mechanistic details of reactions involved in homogeneous catalysis and to use the insight we gain to develop new and improved catalysts. Our work centered on the hydrogenation of polar functional groups such as aldehydes and ketones and on hydroformylation. Specifically, we concentrated on catalysts capable of simultaneously transferring hydride from a metal center and a proton from an acidic oxygen or nitrogen center to an aldehyde or ketone. An economical iron based catalyst was developed and patented. Better understanding of fundamental organometallic reactions and catalytic processes enabled design of energy and material efficient chemical processes. Our work contributed to the development of catalysts for the selective and mild hydrogenation of ketones and aldehydes; this will provide a modern green alternative to reductions by LiAlH4 and NaBH4, which require extensive work-up procedures and produce waste streams. (C5R4OH)Ru(CO)2H Hydrogenation Catalysts. Youval Shvo described a remarkable catalytic system in which the key intermediate (C5R4OH)Ru(CO)2H (1) has an electronically coupled acidic OH unit and a hydridic RuH unit. Our efforts centered on understanding and improving upon this important catalyst for reduction of aldehydes and ketones. Our mechanistic studies established that the reduction of aldehydes by 1 to produce alcohols and a diruthenium bridging hydride species occurs much more rapidly than regeneration of the ruthenium hydride from the diruthenium bridging hydride species. Our mechanistic studies require simultaneous transfer of hydride from ruthenium to

  5. 2001 Gordon Research Conference on Organometallic Chemistry. Final progress report [agenda and attendee list

    SciTech Connect

    Burns, Carol

    2001-07-27

    The Gordon Research Conference on Organometallic Chemistry was held at Salve Regina University, Newport, Rhode Island, July 22-27, 2001. The conference had 133 participants. The attendees represented the spectrum of endeavor in this field, coming from academia, industry, and government laboratories, and included US and foreign scientists, senior researchers, young investigators, and students. Emphasis was place on current unpublished research and discussion of the future target areas in this field. There was a conscious effort to stimulate lively discussion about the key issues in the field today. Time for formal presentations was limited in the interest of group discussions; poster sessions were held.

  6. Organo-metallic thin film for erasable optical recording medium

    NASA Astrophysics Data System (ADS)

    Shu, Juping; Zhou, Jian P.; Xu, Shi Z.

    1991-11-01

    An erasable optical recording medium was made by vacuum deposition of copper tetra cyanoquino dimethane organometallic materials writable and erasable with an He-Ne laser. With He-Ne laser output power of 13 mW at 632 nm, the threshold pulse width was 0.2 - 2 microsecond(s) . The readout signal contrast was 29%. The write-erase cycles were observed under optimum condition.

  7. Metal-organometallic polymers and frameworks derived from facially metalated arylcarboxylates

    NASA Astrophysics Data System (ADS)

    Kumalah Robinson, Sayon A.

    The interest in coordination polymers, also known as metal-organic frameworks, has risen drastically over the past 2 decades. In this time, the field has matured and given rise to a diverse range of crystalline structures possessing various functionalities. Coordination polymers are typically formed from the self assembly of metal ions which serve as nodes and organic ligands which act as bridges. By the careful selection of the organic ligand and the metal ion, the overall physical properties of the material may be tuned. In this work, the use of organometallic bridging ligands are explored using facially metalated aryl carboxylates ligands to synthesize metal-organometallic frameworks (MOMFs). Therefore, with the aim of synthesizing [CpM]+-functionalized (M = FeII, RuII; Cp = cyclopentadienyl) coordination polymers and metal organic frameworks, various [CpFe]+and [CpRu] + functionalized aryl carboxylates were synthesized and characterized. In particular, the [CpFe]+-functionalized benzoic, terephthalic and trimesic acids as well as the [CpRu]+-functionalized terephthalic acid were made. Using the [CpFe]+ complexes of the benzoic and terephthalic acid as bridging ligands, a number of 1D and 2D coordination polymers were synthesized. For instance, the reaction of [CpFe]+-functionalized benzoic acid with CdCl2 yielded the 1D chain of [Cd(benzoate)Cl 2]˙H2O whilst the reaction of [CpFe]+-functionalized terephthalic acid with Cu(NO3)2˙6H2O yielded a 2D square grid sheet. Using the [CpFe]+-functionalized terephthalic acid, a series of polymorphic, 3D metal-organometallic frameworks of the general formula [M3(terephthalate)4(mu-H2O)2(H 2O)2][NO3]2˙xsolvent (M = Co II, NiII ; solvent = EtOH, DMF, H2O) were synthesized and fully characterized. The polymorphic nature of these frameworks may be attributed to the different orientations that the [CpFe]+ moiety may adapt within the cavities in the 3D frameworks. The selectivity of the desolvated forms of the polymorphs for

  8. Soluble Two-Dimensional Covalent Organometallic Polymers by (Arene)Ruthenium-Sulfur Chemistry.

    PubMed

    Coraux, Johann; Hourani, Wael; Müller, Valentin L; Lamare, Simon; Kamaruddin, Danial Aiman; Magaud, Laurence; Bendiab, Nedjma; Den Hertog, Martien; Leynaud, Olivier; Palmino, Frank; Salut, Roland; Chérioux, Frédéric

    2017-08-16

    A class of two-dimensional (2D) covalent organometallic polymers, with nanometer-scale crosslinking, was obtained by arene(ruthenium) sulfur chemistry. Their ambivalent nature, with positively charged crosslinks and lypophylic branches is the key to the often sought-for and usually hard-to-achieve solubility of 2D polymers in various kinds of solvents. Solubility is here controlled by the planarity of the polymer, which in turn controls Coulomb interactions between the polymer layers. High planarity is achieved for high symmetry crosslinks and short, rigid branches. Owing to their solubility, the polymers are easily processable, and can be handled as powder, deposited on surfaces by mere spin-coating, or suspended across membranes by drop-casting. The novel 2D materials are potential candidates as flexible membranes for catalysis, cancer therapy, and electronics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The solid-state synthesis of metal nanoparticles from organometallic precursors.

    PubMed

    Wostek-Wojciechowska, Dorota; Jeszka, Jeremiasz K; Amiens, Catherine; Chaudret, Bruno; Lecante, Pierre

    2005-07-01

    Nanoparticles (NPs), average size of 2-5 nm, of ruthenium, cobalt, and rhodium have been prepared by an original method, namely the solid-state decomposition under dihydrogen of an organometallic precursor either dispersed in polymer films or directly as nanocrystals. The NPs dispersion, size, and morphology are investigated by transmission electron microscopy, and their structure by wide angle X-ray scattering. Infrared spectroscopy, after adsorption of carbon monoxide on the metal NPs surfaces, evidences a nonoxidized surface of high reactivity.

  10. Organometallic mechanisms: Measuring up with the early metals

    NASA Astrophysics Data System (ADS)

    Tonks, Ian A.

    2017-09-01

    Mathematically modelling metal-ligand bonding in late transition-metal complexes has been an important tool in catalyst development -- although lacking for early transition metals such as Cr and Ti. Now, a simple method for measuring ligand donor properties promises to elevate high-valent early transition metal catalysis to the same level.

  11. Stabilized metal nanoparticles from organometallic precursors for low temperature fuel cells.

    PubMed

    Ramirez-Meneses, E; Dominguez-Crespo, M A; Torres-Huerta, A M

    2013-01-01

    In this work, a review of articles and patents related to the utilization of colloidal metal nanoparticles produced by the decomposition of organometallic precursors as supported electrocatalysts in different electrochemical reactions including hydrogen evolution reaction (HER), oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) is discussed. In the case of stabilized metal nanoparticles, the kind of functional group contained in the stabilizer as well as the metal/stabilizer ratio, to evaluate the effect of particle size on the electrochemical performance, were also debated. Potential applications and perspectives of these electrocatalysts in proton exchange membrane fuel cells (PEMFC) are contended with reference to the role played by the coordination compounds and costs.

  12. N-Heterocyclic carbene metal complexes in medicinal chemistry.

    PubMed

    Oehninger, Luciano; Rubbiani, Riccardo; Ott, Ingo

    2013-03-14

    Metal complexes with N-heterocyclic carbene (NHC) ligands are widely used in chemistry due to their catalytic properties and applied for olefin metathesis among other reactions. The enhanced application of this type of organometallics has over the last few years also triggered a steadily increasing number of studies in the fields of medicinal chemistry, which take advantage of the fascinating chemical properties of these complexes. In fact it has been demonstrated that metal NHC complexes can be used to develop highly efficient metal based drugs with possible applications in the treatment of cancer or infectious diseases. Complexes of silver and gold have been biologically evaluated most frequently but also platinum or other transition metals have demonstrated promising biological properties.

  13. New Twists and Turns for Actinide Chemistry: Organometallic Infinite Coordination Polymers of Thorium Diazide.

    PubMed

    Monreal, Marisa J; Seaman, Lani A; Goff, George S; Michalczyk, Ryszard; Morris, David E; Scott, Brian L; Kiplinger, Jaqueline L

    2016-03-07

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge.

  14. Computational design of organometallic oligomers featuring 1,3-metal-carbon bonding and planar tetracoordinate carbon atoms.

    PubMed

    Zhao, Xue-Feng; Yuan, Cai-Xia; Wang, Xiang; Li, Jia-Jia; Wu, Yan-Bo; Wang, Xiaotai

    2016-01-15

    Density functional theory computations (B3LYP) have been used to explore the chemistry of titanium-aromatic carbon "edge complexes" with 1,3-metal-carbon (1,3-MC) bonding between Ti and planar tetracoordinate Cβ . The titanium-coordinated, end-capping chlorides are replaced with OH or SH groups to afford two series of difunctional monomers that can undergo condensation to form oxide- and sulfide-bridged oligomers. The sulfide-linked oligomers have less molecular strain and are more exergonic than the corresponding oxide-linked oligomers. The HOMO-LUMO gap of the oligomers varies with their composition and decreases with growing oligomer chain. This theoretical study is intended to enrich 1,3-MC bonding and planar tetracoordinate carbon chemistry and provide interesting ideas to experimentalists. Organometallic complexes with the TiE2 (E = OH and SH) decoration on the edge of aromatic hydrocarbons have been computationally designed, which feature 1,3-metal-carbon (1,3-MC) bonding between titanium and planar tetracoordinate β-carbon. Condensation of these difunctional monomers by eliminating small molecules (H2O and H2S) produce chain-like oligomers. The HOMO-LUMO gaps of the oligomers decreases with growing oligomer chain, a trend that suggests possible semiconductor properties for oligomers with longer chains.

  15. Organometallic neptunium(III) complexes.

    PubMed

    Dutkiewicz, Michał S; Farnaby, Joy H; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G; Love, Jason B; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on U(III) and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to Np(IV). Here we report the synthesis of three new Np(III) organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that Np(III) complexes could act as single-molecule magnets, and that the lower oxidation state of Np(II) is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key Np(III) orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  16. Organometallic neptunium(III) complexes

    NASA Astrophysics Data System (ADS)

    Dutkiewicz, Michał S.; Farnaby, Joy H.; Apostolidis, Christos; Colineau, Eric; Walter, Olaf; Magnani, Nicola; Gardiner, Michael G.; Love, Jason B.; Kaltsoyannis, Nikolas; Caciuffo, Roberto; Arnold, Polly L.

    2016-08-01

    Studies of transuranic organometallic complexes provide a particularly valuable insight into covalent contributions to the metal-ligand bonding, in which the subtle differences between the transuranium actinide ions and their lighter lanthanide counterparts are of fundamental importance for the effective remediation of nuclear waste. Unlike the organometallic chemistry of uranium, which has focused strongly on UIII and has seen some spectacular advances, that of the transuranics is significantly technically more challenging and has remained dormant. In the case of neptunium, it is limited mainly to NpIV. Here we report the synthesis of three new NpIII organometallic compounds and the characterization of their molecular and electronic structures. These studies suggest that NpIII complexes could act as single-molecule magnets, and that the lower oxidation state of NpII is chemically accessible. In comparison with lanthanide analogues, significant d- and f-electron contributions to key NpIII orbitals are observed, which shows that fundamental neptunium organometallic chemistry can provide new insights into the behaviour of f-elements.

  17. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  18. Determining the Quantum Efficiency for Activation of an Organometallic Photoinitiator for Cationic Polymerization: An Experiment for the Physical or Inorganic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hayes, David M.; Mahar, Maura; Schnabel, R. Chris; Shah, Paras; Lees, Alistair J.; Jakubek, Vladimir

    2007-01-01

    We present a new laboratory experiment on the photochemistry of organometallic [eta][superscript 5],[eta][superscript 6]-mixed-sandwich compounds, which is suitable for both the physical chemistry and inorganic chemistry laboratory. Specifically, students use 1,10-phenanthroline to trap the intermediate formed when…

  19. Femtosecond Time-Resolved Infrared Spectra of Organometallic Complexes Bound to a Dinuclear Metal Center

    NASA Astrophysics Data System (ADS)

    Brown-Xu, Samantha E.; Durr, Christopher B.

    2012-06-01

    Compounds of the form M2L2L'2, where M2 is a quadruply bonded metal center (M = Mo or W) and L and L' are conjugated organic ligands, are known to show interesting photophysical properties and exhibit intense metal-to-ligand charge transfer (MLCT) transitions throughout the visible spectrum. Recently, we have modified one of the ligands to incorporate a transition metal carbonyl complex bound to an organic moiety. Following excitation into the MLCT band, the vibrational modes of the organometallic ligand can be observed by fs time-resolved infrared (TRIR) spectroscopy. This allows for a visualization of where the electron density resides in the excited states, which provides useful information for designing new materials that could later be incorporated into solar devices.

  20. Synthesis and chemistry of yttrium and lanthanide metal complexes

    SciTech Connect

    Evans, W.J.

    1991-09-01

    The objective of this research project is to determine the special features of complexes of yttrium and the lanthanide metals which will allow the design and synthesis of materials with unique chemical, physical, and catalytic properties. Past studies of yttrium and lanthanide metal alkyl and hydride complexes stabilized by cyclopentadienyl co-ligands have shown that a substantial, often singular, organometallic chemistry is available via these metals. More extensive utilization of the chemical opportunities available through yttrium and the lanthanides would be possible, however, if stabilizing ancillary ligand systems less sensitive to oxidation and protonolysis than cyclopentadienides could be developed. Alkoxide ligands are attractive in this regard and our recent research had focused on alkoxides and the special opportunities they can provide to these metals. 6 refs., 10 figs.

  1. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors

    NASA Astrophysics Data System (ADS)

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-10-01

    Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases.Nanocrystalline tin dioxide (SnO2) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO2 films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H2 and CO gases, these layers led to highly sensitive, reversible and reproducible

  2. Organometallic Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Alberto, Roger

    Although molecular imaging agents have to be synthesized ultimately from aqueous solutions, organometallic complexes are becoming more and more important as flexible yet kinetically stable building blocks for radiopharmaceutical drug discovery. The diversity of ligands, targets, and targeting molecules related to these complexes is an essential base for finding novel, noninvasive imaging agents to diagnose and eventually treat widespread diseases such as cancer. This review article covers the most important findings toward these objectives accomplished during the past 3-4 years. The two major available organometallic building blocks will be discussed in the beginning together with constraints for market introduction as imposed by science and industry. Since targeting radiopharmaceuticals are a major focus of current research in molecular imaging, attempts toward so-called technetium essential radiopharmaceuticals will be briefly touched in the beginning followed by the main discussion about the labeling of targeting molecules such as folic acid, nucleosides, vitamins, carbohydrates, and fatty acids. At the end, some new strategies for drug discovery will be introduced together with results from organometallic chemistry in water. The majority of the new results have been achieved with the [99mTc(OH2)3(CO)3]+ complex which will, though not exclusively, be a focus of this review.

  3. Synthesis of organometallic complexes containing Group 13 elements and transition metals

    SciTech Connect

    Kong, G.

    1993-01-01

    New organometallic complexes containing Group 13 elements and transition metals were synthesized characterized by X-ray diffraction methods. (C[sub 5]H[sub 5])[sub 2]W[l brace]In(CH[sub 3])[sub 2][r brace][sub 2], (C[sub 5]H[sub 5])[sub 2]Mo[l brace]In(CH[sub 3])[sub 2][r brace][sub 2], and (C[sub 5]H[sub 5])[sub 2]W(I)[l brace]In(CH[sub 3])[sub 2][r brace] were synthesized by alkane elimination reactions between trimethylindium and metal hydride complexes (C[sub 5]H[sub 5])[sub 2]MH[sub 2] (M = W, Mo). [K]-[In[l brace]Fe[sub 2] (CO[sub 8])[r brace][sub 2

  4. Nanoscaled tin dioxide films processed from organotin-based hybrid materials: an organometallic route toward metal oxide gas sensors.

    PubMed

    Renard, Laetitia; Babot, Odile; Saadaoui, Hassan; Fuess, Hartmut; Brötz, Joachim; Gurlo, Aleksander; Arveux, Emmanuel; Klein, Andreas; Toupance, Thierry

    2012-11-07

    Nanocrystalline tin dioxide (SnO(2)) ultra-thin films were obtained employing a straightforward solution-based route that involves the calcination of bridged polystannoxane films processed by the sol-gel process from bis(triprop-1-ynylstannyl)alkylene and -arylene precursors. These films have been thoroughly characterized by FTIR, contact angle measurements, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and scanning electron (SEM) microscopies. Annealing at a high temperature gave 30-35 nm thick cassiterite SnO(2) films with a mean crystallite size ranging from 4 to 7 nm depending on the nature of the organic linker in the distannylated compound used as a precursor. In the presence of H(2) and CO gases, these layers led to highly sensitive, reversible and reproducible responses. The sensing properties were discussed in regard to the crystallinity and porosity of the sensing body that can be tuned by the nature of the precursor employed. Organometallic chemistry combined with the sol-gel process therefore offers new possibilities toward metal oxide nanostructures for the reproducible and sensitive detection of combustible and toxic gases.

  5. The organometallic chemical vapor deposition of transition metal carbides: The use of homoleptic alkyls

    SciTech Connect

    Healy, M.D.; Smith, D.C.; Springer, R.W.; Rubiano, R.R.; Springer, R.W.; Parmeter, J.E.

    1993-12-31

    The organometallic chemical vapor deposition of transition metal carbides (M = Ti, Zr, Hf, and Cr) from tetraneopentyl-metal precursors has been carried out. Metal carbides can be deposited on Si, Al{sub 2}O{sub 3}, and stainless steel substrates from M[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} at temperatures in the range of 300 to 750 C and pressures from 10{sup {minus}2} to 10{sup {minus}4} Torr. Thin films have also been grown using a carrier gas (Ar, H{sub 2}). The effects of variation of the metal center, deposition conditions, and reactor design on the resulting material have been examined by SEM, XPS, XRD, ERD and AES. Hydrocarbon fragments generated in the deposition chamber have been studied in by in-situ mass spectrometry. Complementary studies examining the UHV surface decomposition of Zr[CH{sub 2}C(CH{sub 3}){sub 3}]{sub 4} have allowed for a better understanding of the mechanism leading to film growth.

  6. CLUSTER CHEMISTRY

    SciTech Connect

    Muetterties, Earl L.

    1980-05-01

    Metal cluster chemistry is one of the most rapidly developing areas of inorganic and organometallic chemistry. Prior to 1960 only a few metal clusters were well characterized. However, shortly after the early development of boron cluster chemistry, the field of metal cluster chemistry began to grow at a very rapid rate and a structural and a qualitative theoretical understanding of clusters came quickly. Analyzed here is the chemistry and the general significance of clusters with particular emphasis on the cluster research within my group. The importance of coordinately unsaturated, very reactive metal clusters is the major subject of discussion.

  7. Synthesis of polystyrene microspheres and functionalization with Pd(0) nanoparticles to perform bioorthogonal organometallic chemistry in living cells.

    PubMed

    Unciti-Broceta, Asier; Johansson, Emma M V; Yusop, Rahimi M; Sánchez-Martín, Rosario M; Bradley, Mark

    2012-05-31

    We have developed miniaturized heterogeneous Pd(0)-catalysts (Pd(0)-microspheres) with the ability to enter cells, stay harmlessly within the cytosol and mediate efficient bioorthogonal organometallic chemistries (e.g., allylcarbamate cleavage and Suzuki-Miyaura cross-coupling). This approach is a major addition to the toolbox available for performing chemical reactions within cells. Here we describe a full protocol for the synthesis of the Pd(0)-microspheres from readily available starting materials (by the synthesis of size-controlled amino-functionalized polystyrene microspheres), as well as for their characterization (electron microscopy and palladium quantitation) and functional validation ('in solution' and 'in cytoplasm' conversions). From the beginning of the synthesis to functional evaluation of the catalytic device requires 5 d of work.

  8. Synthesis of organometallic compounds: Final technical report

    SciTech Connect

    Parker, J.

    1987-01-28

    The object of this project is the establishment of procedures which would allow the practical production of solutions of organometallic compounds suitable for the deposition of conductive metal films at temperatures below 250/sup 0/C. Purdue University's Turner Laboratory developed the basic chemistry for the synthesis of these ''oxygen bridge'' organometallic compounds. A solution of a metal salt is combined with a solution of an ammonium (or amine) soap of an appropriate organic acid. The resulting product precipitate is cleaned, dried and dissolved in xylene. Control of reaction pH and reagent purity was essential in producing useful quantities of the organometallic compounds in better than 75% yields and at reasonable costs. Processes were developed for silver, bismuth, platinum, nickel, and gold organometallic products. The processes for the gold and platinum products remained difficult, giving low yields and evidence of poor product stability. It is anticipated that improvement in the removal of inorganic impurities from the product would enhance its stability. Thermal analyses were applied to the products to determine their decomposition characteristics, and rough cost studies were made to aid in comparisons with conventional metallization methods.

  9. Method of Continuous Variations: Applications of Job Plots to the Study of Molecular Associations in Organometallic Chemistry[**

    PubMed Central

    Renny, Joseph S.; Tomasevich, Laura L.; Tallmadge, Evan H.; Collum, David B.

    2014-01-01

    Applications of the method of continuous variations—MCV or the Method of Job—to problems of interest to organometallic chemists are described. MCV provides qualitative and quantitative insights into the stoichiometries underlying association of m molecules of A and n molecules of B to form AmBn. Applications to complex ensembles probe associations that form metal clusters and aggregates. Job plots in which reaction rates are monitored provide relative stoichiometries in rate-limiting transition structures. In a specialized variant, ligand- or solvent-dependent reaction rates are dissected into contributions in both the ground states and transition states, which affords insights into the full reaction coordinate from a single Job plot. Gaps in the literature are identified and critiqued. PMID:24166797

  10. Formation of vesicles with an organometallic amphiphile bilayer by supramolecular arrangement of metal carbonyl metallosurfactants.

    PubMed

    Parera, Elisabet; Comelles, Francesc; Barnadas, Ramon; Suades, Joan

    2011-04-21

    Metallo-vesicles are formed in water medium as a result of the supramolecular arrangement of molybdenum carbonyl metallosurfactants. These new kind of surfactants contain a hydrophobic metal carbonyl fragment and are easily prepared from surfactant phosphine ligands. © The Royal Society of Chemistry 2011

  11. Nanometre-sized GaAs wires grown by organo-metallic vapour-phase epitaxy

    NASA Astrophysics Data System (ADS)

    Hiruma, Kenji; Haraguchi, Keiichi; Yazawa, Masamitsu; Madokoro, Yuuichi; Katsuyama, Toshio

    2006-06-01

    We grew GaAs wires as thin as 20 nm on a GaAs(111)B substrate using organo-metallic vapour-phase epitaxy (OMVPE), with Au as a growth catalyst. To investigate the growth characteristics, we compared two methods of depositing Au. In the first, Au was deposited by vacuum evaporation, and the deposition thickness was varied to form a planar Au layer. We found that an Au layer thickness of 1 nm was best for forming cylindrical shaped wires. Next, a new method of injecting Au onto an area of a few micrometres was tested using a focused ion beam (FIB), and this method was found to be effective for growing wires as thin as 30-80 nm. However, the wire width did not depend on the injected density of Au. We based our analysis of the results on an ion implantation model. GaAs wires with a p-n junction along the \\langle 111\\rangle \\mathrm {B} direction were formed by changing dopants from silicon to carbon during growth. We observed an optical emission with a peak intensity at the wavelength of 910-920 nm during continuous current injection into the wires at 300 K. A spectral blue-shift in the light emission and a polarization along the wire growth direction were also revealed at 77 K.

  12. Preparation of nanocrystalline metal oxides and intermetallic phases by controlled thermolysis of organometallic coordination polymers

    NASA Astrophysics Data System (ADS)

    Rehbein, Marcus; Epple, Matthias; Fischer, R. Dieter

    2000-06-01

    Organometallic coordination polymers of the super-Prussian blue type [(Me 3Sn) nM(CN) 6] (Me=CH 3; n=3, 4; M=Fe, Co, Ru) were subjected to thermolysis in different atmospheres (air, argon, hydrogen/nitrogen). In air, oxides were found: Fe 2O 3/SnO 2 (crystalline and nanocrystalline), Co 2SnO 4 and RuO 2. In argon and in hydrogen, the intermetallic phases FeSn 2, CoSn 2, Ru 3Sn 7 and Fe 3SnC were obtained. A detailed mechanistic study was carried out using thermogravimetry (TG), X-ray diffraction (XRD), X-ray absorption spectroscopy (EXAFS) at Fe, Co, Ru and Sn K-edges, infrared spectroscopy (IR) and elemental analysis. Below 250°C, Me 3SnCN and (CN) 2 are released, whereas above 250°C oxidation or pyrolysis leads to the corresponding oxides or intermetallic phases. Polymeric cyanides containing at least two metals have turned out to be suitable precursors to prepare well-defined oxides and intermetallic phases at comparatively low temperature.

  13. Magnetically-induced electric polarization in an organo-metallic magnet

    SciTech Connect

    Zapf, W S; Fabris, F W; Balakirev, F F; Francoual, S M; Kenzelmann, M; Chen, Y

    2009-01-01

    The coupling between magnetic order and ferroelectricity has been under intense investigation in a wide range of transition metal oxides. The strongest coupling is obtained in so-called magnetically induced multiferroics where ferroelectricity arises directly from magnetic order that breaks inversion symmetry. However, it has been difficult to find non-oxide based materials in which these effects occur. Here we present a study of copper dimethyl sulfoxide dichloride (CDC), an organometallic quantum magnet containing S =1/1 Cu spins, in which a switchable electric polarization arises from field-tuned magnetic order. Fast magnetic field pulses allow us to perform sensitive measurements of the electric polarization and demonstrate that the electric state is present only if the magnetic order is non-collinear. Furthermore, we show that the electric polarization can be switched in a stunning hysteretic fashion. Because the magnetic order in CDC is mediated by large organic molecules, our study shows that magnetoelectric interactions can exist in this important class of materials, opening the road to designing magnetoelectrics and multiferroics using large molecules as building blocks. Further, we demonstrate that CDC undergoes a magnetoelectric quantum phase transition -the first of its kind, where both ferroelectric and magnetic order emerge simultaneously as a function of magnetic field at very low temperatures.

  14. The Deposition of Metal Thin Films in Vacuum from the Decomposition of Selected Organometallic Compounds.

    NASA Astrophysics Data System (ADS)

    Stauf, Gregory Thomas

    The deposition of thin metal films is of great importance in a variety of technological areas. A method which is gaining increasing attention is Organometallic Chemical Vapor Deposition (MOCVD or OMVPE). Despite widespread use of CVD, little systematic work has been done to evaluate new source complexes. Thermodynamic studies are particularly important, since these factors control whether the compound will decompose in such a way as to give a desired coating with low levels of contamination. In this work we have used (Mn(CO)_5 ) _2(mu -SiH_2) to deposit Mn_2 Si, Pd(eta-C_5 H_5)(eta -C_3H_5) to deposit Pd, Fe(eta-C_5 H_5)_2 to deposit Fe, and Ni(eta-C _5H_5)_2 to deposit Ni. We first studied the gas-phase decomposition thermodynamics of these compounds, as well as Pt(eta-C_3H _5)(eta-C _5H_5), by electron and photon impact mass spectroscopy, and photoabsorption. We then made coatings by pyrolysis and laser photolysis, and analyzed them by scanning electron microscopy and x-ray electron spectroscopy, as well as in some cases Auger electron spectroscopy, Rutherford backscattering spectroscopy, x -ray diffraction and transmission electron microscopy. Several conclusions can be drawn relating the thermodynamic results and the coating outcomes. The methods for thermodynamic studies discussed herein are seen to allow some prediction of contamination levels and coating feasibility with these compounds.

  15. Chromocene in porous polystyrene: an example of organometallic chemistry in confined spaces.

    PubMed

    Estephane, Jane; Groppo, Elena; Vitillo, Jenny G; Damin, Alessandro; Lamberti, Carlo; Bordiga, Silvia; Zecchina, Adriano

    2009-04-07

    In this work, we present an innovative approach to investigate the structure and the reactivity of a molecularly dispersed organometallic compound. The poly(4-ethylstyrene-co-divinylbenzene) microporous system (PS) is used as "solid solvent" able to molecularly disperse CrCp2, allowing: (i) its full characterization by means of spectroscopic techniques; (ii) the pressure and temperature dependent study of its interaction towards simple molecules like CO freely diffusing through the pores; (iii) the accurate determination of the reaction enthalpies by both direct microcalorimetric measurements and by an indirect spectroscopic approach. The experimental results are compared with quantum-mechanical calculations adopting the DFT approximation with two different functionals (namely BP86 and B3-LYP), showing the limitations and the potentialities of DFT methods in predicting the properties of open shell systems. It is concluded that modern DFT methods are able to give a coherent view of the vibrational properties of the CrCp2 molecule (and of the complex formed upon CO adsorption) that well match the experimental results, while the energetic predictions should be taken with care as they are significantly dependent on the functionals used.

  16. The role of transition metal ions chemistry on multiphase chemistry

    NASA Astrophysics Data System (ADS)

    Deguillaume, L.; Leriche, M.; Monod, A.; Chaumerliac, N.

    2003-04-01

    A modelling study of the role of transition metal ions chemistry on cloud chemistry is presented. First, new developments of the Model of Multiphase Cloud Chemistry (M2C2) are described: the transition metal ions reactivity and variable photolysis in the aqueous phase. Secondly, three summertime scenarios describing urban, remote and marine conditions are simulated. First, comparisons between results from M2C2 and from CAPRAM2.3 models for the same scenarios (Herrmann et al., 2000) show a good agreement between the two models with respect to their different chemical mechanisms. Secondly, chemical regimes in cloud are analysed to understand the role of transition metal ions chemistry on cloud chemistry. This study focuses on HOx chemistry, which afterwards influences the sulphur and the VOCs chemistry in droplets. The ratio of Fe(II)/Fe(III) exhibits a diurnal variation with values in agreement with the few measurements of Fe speciation available. In the polluted case, sensitivity tests with and without TMI chemistry, show an enhancement of OH concentration in the aqueous phase when TMI chemistry is considered. This implies a more important oxidation of VOCs in droplets, which produces the HO2 radical, the hydrogen peroxide precursor. In fact, the HO2 radical is mainly converted into hydrogen peroxide by reactions between HO2/O2- radicals with Fe(II). This production of hydrogen peroxide leads to a rapid conversion of S(IV) into S(VI) at the beginning of the simulation.

  17. Organometallic single source precursors for chemical vapor deposition of metal chalcogenides

    NASA Astrophysics Data System (ADS)

    Seidler, Dean Jerry

    The group 14--16 compounds with the general formula (Bn2SnE)3, (Bn3Sn)2E, and Bn 2Sn(EBn)2, where E = S or Se, were synthesized and investigated as potential single-source precursors for the preparation of tin chalcogenides. Each precursor was pyrolyzed under an inert atmosphere. Decomposition took place at relatively mild conditions (<400°C). The cyclic molecules, (Bn2SnS)3 and (Bn2SnSe)3, produced tin sulfide and tin selenide, respectively. The samples were XRD phase pure, and combustion analysis indicated less than 1% carbon present in the final product. The acyclic precursors, (Bn3Sn)2S and (Bn 3Sn)2Se, yielded a mixture of the tin chalcogenide and elemental tin with carbon content <1%. The pyrolysis of Bn2Sn(SBn) 2 and Bn2Sn(SeBn)2 produced SnS2 and SnSe2, respectively, with carbon contamination <3%. The only volatile by-product detected from the pyrolysis of these compounds was bibenzyl, indicating all of the tin and chalcogen were left behind in the solid state product. Solid solutions could be generated by combining (Bn 2SnS)3 and (Bn2SnSe)3, and pyrolyzing the mixture. Combinations of Bn2Sn(SBn)2 and Bn 2Sn(SeBn)2 yielded products with some solid solution character; however, some phase separation was indicated in the XRD patterns. Bn3SnSBn and (tert-Bu2SnS)2 were pyrolyzed to produce bulk samples of SnS and also used as single-source precursors for the chemical vapor deposition of thin films of SnS on glass and halite substrates. The composition and morphology of the products, both as bulk materials and thin films, were influenced by the structure of the organometallic precursor, the nature of the leaving group attached to the metal (or chalcogen), and the nature of the film substrate.

  18. Incorporation of radiohalogens via versatile organometallic reactions: applications in radiopharmaceutical chemistry

    SciTech Connect

    Srivastava, P.C.; Goodman, M.M.; Knapp, F.F. Jr.

    1985-01-01

    Factors that must be considered for the design of radiohalogenated radio-pharmaceuticals include the stability and availability of the substrate, the physical half-life of the radiohalogen and the in vivo stability of the radiolabel. Vinyl and phenyl radiohalogen bonds show more in vivo stability than the alkyl radiohalogen bonds. Consequently, a variety of methods suitable for the synthesis of tissue specific radiopharmaceuticals bearing a vinyl or phenyl radiohalogen have been developed involving the synthesis and halogenation of metallovinyl and phenyl intermediates. The halogens and metallation reactions include iodine and bromine and alanation, boronation, mercuration, stannylation, and thallation, respectively. 19 refs., 1 fig., 1 tab.

  19. Surface chemistry of liquid metals

    NASA Technical Reports Server (NTRS)

    Mann, J. Adin, Jr.; Peebles, Henry; Peebles, Diamond; Rye, Robert; Yost, Fred

    1993-01-01

    The fundamental surface chemistry of the behavior of liquid metals spreading on a solid substrate is not at all well understood. Each of these questions involves knowing the details of the structure of interfaces and their dynamics. For example the structure of a monolayer of tin oxide on pure liquid tin is unknown. This is in contrast to the relatively large amount of data available on the structure of copper oxide monolayers on solid, pure copper. However, since liquid tin has a vapor pressure below 10(exp -10)torr for a reasonable temperature range above its melting point, it is possible to use the techniques of surface science to study the geometric, electronic and vibrational structures of these monolayers. In addition, certain techniques developed by surface chemists for the study of liquid systems can be applied to the ultra-high vacuum environment. In particular we have shown that light scattering spectroscopy can be used to study the surface tension tensor of these interfaces. The tin oxide layer in particular is very interesting in that the monolayer is rigid but admits of bending. Ellipsometric microscopy allows the visualization of monolayer thick films and show whether island formation occurs at various levels of dosing.

  20. Organometallic Chemistry of Carbon Dioxide. Final Report for June 1, 1986 - March 31, 2002

    SciTech Connect

    Gibson, D. H.

    2002-09-26

    Research focused on C{sub 1} transition metal complexes that are relevant to CO{sub 2} activation and fixation. First, we prepared and studied new metallocarboxylic acids, a class of compounds proposed as intermediates in the Water Gas Shift reaction and CO{sub 2} reductions, and the corresponding metallocarboxylate anions. Next, we prepared and structurally characterized a large number of CO{sub 2}-bridged bimetallic compounds (models for metal surface-bound CO{sub 2}) and established structure-spectra correlations for the three general types of compounds identified. The next phase involved the synthesis and studies of putative catalytic intermediates derived from rhenium and ruthenium polypyridyl complexes in order to establish their fundamental reaction characteristics. Finally, we progressed to the design of a possible catalytic sequence which could account for C{sub 2} products formed in ruthenium-catalyzed CO{sub 2} reductions and to the synthesis, characterization and studies of the reactions of expected intermediates in the catalytic sequence.

  1. Soil washing: Chelation chemistry boosts metals recovery

    SciTech Connect

    1996-03-01

    Treatment options for soils contaminated by heavy metals range from extraction and recycling, to stabilization and long-term disposal. Tallon, Inc. (Princeton, N.J.) has developed a new technology that combines soil washing with metals-extraction processes used in the mining industry. The continuous process integrates three key stages -- physical removal of oversized materials, organics recovery and metals recovery. Metals are extracted using chelation chemistry. Solid-phase chelating agents -- dubbed chelating adsorbents -- are added to the soil, along with leaching acids. Once the metals have been leached, the chelating adsorbents bind them. The Tallon system can treat a range of metals, including copper zinc, cadmium, lead nickel and mercury.

  2. Separations chemistry of toxic metals

    SciTech Connect

    Smith, P.; Barr, M.; Barrans, R.

    1996-04-01

    Sequestering and removing toxic metal ions from their surroundings is an increasingly active area of research and is gaining importance in light of current environmental contamination problems both within the DOE complex and externally. One method of separating metal ions is to complex them to a molecule (a ligand or chelator) which exhibits specific binding affinity for a toxic metal, even in the presence of other more benign metals. This approach makes use of the sometimes subtle differences between toxic and non-toxic metals resulting from variations in size, charge and shape. For example, toxic metals such as chromium, arsenic, and technetium exist in the environment as oxyanions, negatively charged species with a characteristic tetrahedral shape. Other toxic metals such as actinides and heavy metals are positively charged spheres with specific affinities for particular donor atoms such as oxygen (for actinides) and nitrogen (for heavy metals). In most cases the toxic metals are found in the presence of much larger quantities of less toxic metals such as sodium, calcium and iron. The selectivity of the chelators is critical to the goal of removing the toxic metals from their less toxic counterparts. The approach was to build a ligand framework that complements the unique characteristics of the toxic metal (size, charge and shape) while minimizing interactions with non-toxic metals. The authors have designed ligands exhibiting specificity for the target metals; they have synthesized, characterized and tested these ligands; and they have shown that they exhibit the proposed selectivity and cooperative binding effects.

  3. Spectroscopic studies of organometallic compounds on single crystal metal surfaces: Surface acetylides of silver (110)

    NASA Astrophysics Data System (ADS)

    Madix, Robert J.

    The nature of compounds formed by the reaction of organic molecules with metal surfaces can be studied with a battery of analytical methods based on both physicals and chemical understanding. In this paper the application of UPS, XPS, LEED and EELS as well as temperature programmed reaction spectroscopy (TPRS) and chemical titration methods to the characterization of surface complexes is discussed. Particular emphasis is given to the reaction of acetylene with a single crystal surface of silver, Ag(110). Previous work has shown that this surface, when clean, is unreactive to hydrocarbons, alcohols and carboxylic acids under ultra high vacuum conditions. Preadsorption of oxygen, however, renders the surface reactive, and a wide variety of organometallic surface compounds can be formed. As expected then, no stable adsorption state and no reaction was observed with clean Ag(110) following room temperature exposure to acetylene. Following exposure at 150 K, however, a weekly bound chemisorption state was observed to desorb at 195 K, indicating a binding energy to the surface of approximately 12 kcal/gmole. Reaction with preadsorbed oxygen gave water formulation upon dosing and produced surface intermediates which yeilded two acetylene desorption states at 195 and 175 K. Heating above 300 K to completely desorb the higher temperature state produced new, well-defined LEED Features due to residual surface carbon which disappeared when the surface was heated above 550 K. Clearly, there were distinc changes in the nature of the absorbed layer at 195, 300 and 550 K. These changes were reflected in XPS. For the weakly chemisorbed acetylene a large C(ls) peak at 285.6 eV with a small, broad, indistinc shoulder at higher binding energy (288.2) was observed. The spectrum of the species following acetylene desorption at 275 K, however, showed the formulation of a large C(ls) peak at 283.6 eV in addition to peaks characteristics of the weakly chemisorbed state. This result

  4. s-Block organometallics: analysis of ion-association and noncovalent interactions on structure and function in benzyl-based compounds.

    PubMed

    Torvisco, Ana; Ruhlandt-Senge, Karin

    2011-12-19

    The organometallic chemistry of alkali and alkaline-earth metals has been marred by synthetic setbacks because of their high reactivity. Advances in their synthesis and a better understanding of the stabilization effects of ligands and coligands have resulted in the revolution of s-block organometallics. Among those, benzyl-based derivatives have played a key role in developing this chemistry because factors such as the ligand size, charge delocalization, and introduction of electronic parameters along with metal effects can be analyzed. This article will focus on s-block benzylates and di- and triphenylmethanide derivatives with specific emphasis on the factors that stabilize the highly reactive metal species.

  5. Structure investigations of group 13 organometallic carboxylates.

    PubMed

    Justyniak, Iwona; Prochowicz, Daniel; Tulewicz, Adam; Bury, Wojciech; Goś, Piotr; Lewiński, Janusz

    2017-01-17

    The octet-compliant group 13 organometallics with highly polarized bonds in the metal coordination sphere exhibit a significant tendency to maximize their coordination number through the formation of adducts with a wide range of neutral donor ligands or by self-association to give aggregates containing tetrahedral and higher coordinated aluminium centres, and even in some cases molecular complexes equilibrate with ionic species of different coordination numbers of the metal centre. This work provides a comprehensive overview of the structural chemistry landscape of the group 13 carboxylates. Aside from a more systematic approach to the general structural chemistry of the title compounds, the structure investigations of [R2M(μ-O2CPh)]2-type benzoate complexes (where M = B, Al and Ga) and their Lewis acid-base adducts [(R2M)(μ-O2CPh)(py-Me)] are reported. DFT calculations were also performed to obtain a more in-depth understanding of both the changes in the bonding of group 13 organometallic carboxylate adducts with a pyridine ligand.

  6. Chemistry in acetone complexes of metal dications: a remarkable ethylene production pathway.

    PubMed

    Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung Soo; Shvartsburg, Alexandre A

    2007-06-07

    Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of representative divalent metals (Ca, Mn, Co, Ni, and Cu), comparing the results of collision-induced dissociation with the predictions of density functional theory. As for other solvated dications, channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, like in DMSO and acetonitrile complexes. Of primary interest is the unanticipated neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca and Mn. We focus on understanding that process in the context of competing dissociation pathways, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving two intermediates. These results suggest that chemistry in microsolvated multiply charged ions may still hold major surprises.

  7. Volatile organometallic complexes suitable for use in chemical vapor depositions on metal oxide films

    DOEpatents

    Giolando, Dean M.

    2003-09-30

    Novel ligated compounds of tin, titanium, and zinc are useful as metal oxide CVD precursor compounds without the detriments of extreme reactivity yet maintaining the ability to produce high quality metal oxide coating by contact with heated substrates.

  8. A comparative topological study of different metal-metal and metal-ligand interactions in polynuclear organometallic clusters

    SciTech Connect

    Van der Maelen, Juan F.; García-Granda, Santiago

    2015-01-22

    The existence and characterization of a bond between the Zn atoms in the recently synthesized complex [Zn{sub 2}(η{sup 5}−C{sub 5}Me{sub 5}){sub 2}] (I), as well as between two of the three Ru atoms in [Ru{sub 3}(μ−H){sub 2}(μ{sub 3}−MeImCH)(CO{sub 9}] (Me{sub 2}Im = 1,3-dimethylimidazolin-2-ylidene) (II), are firmly based on low temperature X-ray synchrotron diffraction experiments. The multipolar refinement of the experimental electron densities and their topological analyses by means of the Atoms in Molecules (AIM) theory reveal the details of the Zn-Zn and Ru-Ru bonds, such as their open-shell intermediate character. The results are consistent with a typical metal-metal single σ bond for the former, whereas a delocalized kind of bond involving 5c-6e is present in the latter. In addition, experimental results are compared with theoretical ab initio calculations of the DFT (density functional theory) and MP2 (Mo/ller-Plesset perturbation theory) electron densities, giving a coherent view of the bonding in both complexes. Many other topological properties of both compounds are also studied, in particular the different metal-ligand interactions.

  9. A comparative topological study of different metal-metal and metal-ligand interactions in polynuclear organometallic clusters

    NASA Astrophysics Data System (ADS)

    Van der Maelen, Juan F.; García-Granda, Santiago

    2015-01-01

    The existence and characterization of a bond between the Zn atoms in the recently synthesized complex [Zn2(η5- C5Me5)2] (I), as well as between two of the three Ru atoms in [Ru3(μ- H )2(μ3- MeImCH )( CO9] (Me2Im = 1,3-dimethylimidazolin-2-ylidene) (II), are firmly based on low temperature X-ray synchrotron diffraction experiments. The multipolar refinement of the experimental electron densities and their topological analyses by means of the Atoms in Molecules (AIM) theory reveal the details of the Zn-Zn and Ru-Ru bonds, such as their open-shell intermediate character. The results are consistent with a typical metal-metal single σ bond for the former, whereas a delocalized kind of bond involving 5c-6e is present in the latter. In addition, experimental results are compared with theoretical ab initio calculations of the DFT (density functional theory) and MP2 (Mo/ller-Plesset perturbation theory) electron densities, giving a coherent view of the bonding in both complexes. Many other topological properties of both compounds are also studied, in particular the different metal-ligand interactions.

  10. Medicinal Radiopharmaceutical Chemistry of Metal Radiopharmaceuticals

    NASA Astrophysics Data System (ADS)

    Saw, Maung Maung

    2012-06-01

    Metal complexes have been used as medicinal compounds. Metals have advantageous features over organic compounds. Significant applications of metal complexes are in the field of nuclear medicine. Radiopharmaceuticals are drugs containing radioisotopes used for diagnostic and therapeutic purposes. The generalized targeting strategy for molecular imaging probe consists of three essential parts: (i) reporter unit or payload, (ii) carrier, and (iii) targeting system. Medicinal radiopharmaceutical chemistry pays special consideration to radioisotopes, as a reporter unit for diagnostic application or as a payload for therapeutic application. Targeting is achieved by a few approaches but the most common is the bifunctional chelator approach. While designing a radiopharmaceutical, a range of issues needs to be considered including properties of metal radioisotopes, bifunctional chelators, linkers, and targeting molecules. Designing radiopharmaceuticals requires consideration of two key words: "compounds of biological interest" and "fit for intended use." The ultimate goal is the development of new diagnostic methods and treatment. Diagnostic metal radiopharmaceuticals are used for SPECT and PET applications. Technetium chemistry constitutes a major portion of SPECT and gallium chemistry constitutes a major portion of PET. Therapeutic radiopharmaceuticals can be constructed by using alpha-, beta minus-, or Auger electron-emitting radiometals. Special uses of medicinal radiopharmaceuticals include internal radiation therapy, brachytherapy, immunoPET, radioimmunotherapy, and peptide receptor radionuclide imaging and therapy.

  11. Inorganic and Organometallic Polymers

    NASA Astrophysics Data System (ADS)

    Chandrasekhar, Vadapalli

    This textbook is intended to give an understanding of the basic principles that constitute the field of non-conventional polymers containing inorganic and organometalic units as the repeating units. Each chapter will be self-explanatory with a good background so that it can be easily understood at the senior undergraduate level. The principles involved in the preparation of these polymers, their characterisation and their applications will be discussed. Basic inorganic chemistry required for the understanding of each topic is presented so that the content of the chapter is readily understood.

  12. Bioinorganic Chemistry of the Alkali Metal Ions.

    PubMed

    Kim, Youngsam; Nguyen, Thuy-Tien T; Churchill, David G

    2016-01-01

    The common Group 1 alkali metals are indeed ubiquitous on earth, in the oceans and in biological systems. In this introductory chapter, concepts involving aqueous chemistry and aspects of general coordination chemistry and oxygen atom donor chemistry are introduced. Also, there are nuclear isotopes of importance. A general discussion of Group 1 begins from the prevalence of the ions, and from a comparison of their ionic radii and ionization energies. While oxygen and water molecule binding have the most relevance to biology and in forming a detailed understanding between the elements, there is a wide range of basic chemistry that is potentially important, especially with respect to biological chelation and synthetic multi-dentate ligand design. The elements are widely distributed in life forms, in the terrestrial environment and in the oceans. The details about the workings in animal, as well as plant life are presented in this volume. Important biometallic aspects of human health and medicine are introduced as well. Seeing as the elements are widely present in biology, various particular endogenous molecules and enzymatic systems can be studied. Sodium and potassium are by far the most important and central elements for consideration. Aspects of lithium, rubidium, cesium and francium chemistry are also included; they help in making important comparisons related to the coordination chemistry of Na(+) and K(+). Physical methods are also introduced.

  13. Theoretical approaches to metal chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W.; Langhoff, Stephen R.; Partridge, Harry; Halicioglu, Timur; Taylor, Peter R.

    1987-01-01

    Theoretical calculations on metals ranging from very accurate ab initio studies of diatomic and triatomic systems to model studies of larger clusters are presented. Recent improvements in the representation of one-particle and n-particle spaces have made possible the prediction that Al2 has a 3Pi(u) ground state, even though the 3Sigma(-)g state lies within 200/cm. Results suggest that cluster geometry varies dramatically with cluster size, and that rather large clusters are required before the bulk structure becomes optimal. Al cluster studies show that three-body terms are needed for quantitative agreement with ab initio calculations.

  14. N-heterocyclic carbene metal complexes as bio-organometallic antimicrobial and anticancer drugs.

    PubMed

    Patil, Siddappa A; Patil, Shivaputra A; Patil, Renukadevi; Keri, Rangappa S; Budagumpi, Srinivasa; Balakrishna, Geetha R; Tacke, Matthias

    2015-01-01

    Late transition metal complexes that bear N-heterocyclic carbene (NHC) ligands have seen a speedy growth in their use as both, metal-based drug candidates and potentially active homogeneous catalysts in a plethora of C-C and C-N bond forming reactions. This review article focuses on the recent developments and advances in preparation and characterization of NHC-metal complexes (metal: silver, gold, copper, palladium, nickel and ruthenium) and their biomedical applications. Their design, syntheses and characterization have been reviewed and correlated to their antimicrobial and anticancer efficacies. All these initial discoveries help validate the great potential of NHC-metal derivatives as a class of effective antimicrobial and anticancer agents.

  15. Introducing deep eutectic solvents to polar organometallic chemistry: chemoselective addition of organolithium and Grignard reagents to ketones in air.

    PubMed

    Vidal, Cristian; García-Álvarez, Joaquín; Hernán-Gómez, Alberto; Kennedy, Alan R; Hevia, Eva

    2014-06-02

    Despite their enormous synthetic relevance, the use of polar organolithium and Grignard reagents is greatly limited by their requirements of low temperatures in order to control their reactivity as well as the need of dry organic solvents and inert atmosphere protocols to avoid their fast decomposition. Breaking new ground on the applications of these commodity organometallics in synthesis under more environmentally friendly conditions, this work introduces deep eutetic solvents (DESs) as a green alternative media to carry out chemoselective additions of ketones in air at room temperature. Comparing their reactivities in DES with those observed in pure water suggest that a kinetic activation of the alkylating reagents is taking place, favoring nucleophilic addition over the competitive hydrolysis, which can be rationalized through formation of halide-rich magnesiate or lithiate species. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Synthesis and chemistry of yttrium and lanthanide metal complexes. Progress report, March 15, 1991--March 14, 1992

    SciTech Connect

    Evans, W.J.

    1991-09-01

    The objective of this research project is to determine the special features of complexes of yttrium and the lanthanide metals which will allow the design and synthesis of materials with unique chemical, physical, and catalytic properties. Past studies of yttrium and lanthanide metal alkyl and hydride complexes stabilized by cyclopentadienyl co-ligands have shown that a substantial, often singular, organometallic chemistry is available via these metals. More extensive utilization of the chemical opportunities available through yttrium and the lanthanides would be possible, however, if stabilizing ancillary ligand systems less sensitive to oxidation and protonolysis than cyclopentadienides could be developed. Alkoxide ligands are attractive in this regard and our recent research had focused on alkoxides and the special opportunities they can provide to these metals. 6 refs., 10 figs.

  17. Chemistry in Acetone Complexes of Metal Dications: A Remarkable Ethylene Production Pathway

    SciTech Connect

    Wu, Jianhua; Liu, Dan; Zhou, Jian-Ge; Hagelberg, Frank; Park, Sung S.; Shvartsburg, Alexandre A.

    2007-05-16

    Electrospray ionization can generate microsolvated multiply charged metal ions for various metals and ligands, allowing exploration of chemistry within such clusters. The finite size of these systems permits comparing experimental results with accurate calculations, creating a natural laboratory to research ion solvation. Mass spectrometry has provided much insight into the stability and dissociation of ligated metal cations. While solvated singly charged ions tend to shrink by ligand evaporation, solvated polycations below a certain size exhibit charge reduction and/or ligand fragmentation due to organometallic reactions. Here we investigate the acetone complexes of typical divalent metals (Ca, Mn, Fe, Co, Ni, Zn, and Cu), comparing the results of collision-induced dissociation with the predictions from density functional theory. As for other solvated dications, dissociation channels involving proton or electron transfer compete with ligand loss and become dominant for smaller complexes. The heterolytic C-C bond cleavage is common, as one would expect from previous work on DMSO and acetonitrile complexes. Of primary interest is the highly unintuitive neutral ethylene loss, found for all metals studied except Cu and particularly intense for Ca, Mn, and Fe. We focus on understanding that process in the context of competing dissociation channels, as a function of metal identity and number of ligands. According to first-principles modeling, ethylene elimination proceeds along a complex path involving a rearrangement of two acetone ligands and multiple transition states.

  18. Emission and fs/ns-TRANSIENT Absorption of Organometallic Complexes Bound to a Dinuclear Metal Center

    NASA Astrophysics Data System (ADS)

    Durr, Christopher B.; Brown-Xu, Samantha E.; Chisholm, Malcolm H.

    2012-06-01

    Compounds containing a MM quadruple bond (M = Mo or W) of the form M2L2L'2, where L and L' are conjugated organic ligands, show interesting photophysical properties along with a metal-to-ligand charge transfer (MLCT) band that is tunable throughout the UV-Vis-NIR spectra. Recently, our attention has shifted towards ligands that incorporate a secondary transition metal complex bound to an organic moiety. Along with allowing for a second tunable MLCT band for better coverage of the solar spectrum, these hybrid molecules show unique spectroscopic properties that were explored using fs/ns-transient absorption and UV-Vis/NIR emission. These techniques allow for the elucidation of the electronic character of the excited states as well as their lifetimes. This knowledge will be put to use in the design of new materials that could later be incorporated into next generation photovoltaic devices.

  19. Organo-metallic crystalline polymer of molybdenum carboxylate and bidentate ligand

    SciTech Connect

    Kerby, M.C.; Eichhorn, B.W.

    1990-10-23

    This patent describes a novel organo metallic polymer useful as a metathesis catalyst and having the formula 1{sub {infinity}} (Mo{sub 2}(O{sub 2}CR){sub 4}((CH{sub 3}){sub 2}XCH{sub 2}CH{sub 2}X(CH{sub 3}){sub 2})). It is formed by reacting a carboxylate salt such as dimolybdenum tetraacetate with either tetra methyl ethylene diamine or dimethyl phosphino ethane and crystallizing the polymer.

  20. Design of a flexible organometallic tecton: host-guest chemistry with picric acid and self-assembly of platinum macrocycles.

    PubMed

    Jana, Achintya; Bhowmick, Sourav; Kaur, Supreet; Kashyap, Hemant K; Das, Neeladri

    2017-02-14

    The synthesis and characterization of a new pyrazine-based "flexible" and ditopic platinum(ii) organometallic molecule (3) is being reported. Flexibility in this molecule is due to the presence of ether functional groups that bridge the rigid core and periphery. Due to the presence of square planar Pt(ii) centers at the two ends, the molecule's potential to act as an acceptor building block in the construction of metallamacrocycles was tested. Upon reaction of 3 with various dicarboxylates in a 1 : 1 stoichiometric ratio, [2 + 2] self-assembled neutral metallacycles (M1-M3) were obtained in high yields. M1-M3 were characterized using multinuclear NMR, high resolution mass spectrometry and elemental analyses. The shape and dimensions of these supramolecular structures were also confirmed by optimizing the geometry using the density functional theory (DFT) approach. Computational studies suggest that M1-M3 are nanoscalar macrocyles. Furthermore, using isothermal titration calorimetry (ITC), it was shown that 3 can bind with picric acid (PA) to yield a 3·(PA)2 host-guest complex. The magnitude of the binding constant indicates that 3 has significant affinity for PA.

  1. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  2. Science Update: Inorganic Chemistry.

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1981-01-01

    Describes areas of inorganic chemistry which have changed dramatically in the past year or two, including photochemistry, electrochemistry, organometallic complexes, inorganic reaction theory, and solid state chemistry. (DS)

  3. Metal oxide chemistry in solution: the early transition metal polyoxoanions.

    PubMed

    Day, V W; Klemperer, W G

    1985-05-03

    Many of the early transition elements form large polynuclear metal-oxygen anions containing up to 200 atoms or more. Although these polyoxoanions have been investigated for more than a century, detailed studies of structure and reactivity were not possible until the development of modern x-ray crystallographic and nuclear magnetic resonance spectroscopic techniques. Systematic studies of small polyoxoanions in inert, aprotic solvents have clarified many of the principles governing their structure and reactivity, and also have made possible the preparation of entirely new types of covalent derivatives such as CH(2)Mo(4)O(15)H(3-), C(5)H(5)TiMo(5)O(18)(3-), and (OC)(3)Mn(Nb(2)W(4)O(19))(3-). Since most early transition metal polyoxoanions have structures based on close-packed oxygen arrays containing interstitial metal centers, their chemistry offers a rare opportunity to study chemical transformations in detail on well-defined metal oxide surfaces.

  4. The Surface Chemistry of Metal Chalcogenide Nanocrystals

    NASA Astrophysics Data System (ADS)

    Anderson, Nicholas Charles

    The surface chemistry of metal chalcogenide nanocrystals is explored through several interrelated analytical investigations. After a brief discussion of the nanocrystal history and applications, molecular orbital theory is used to describe the electronic properties of semiconductors, and how these materials behave on the nanoscale. Quantum confinement plays a major role in dictating the optical properties of metal chalcogenide nanocrystals, however surface states also have an equally significant contribution to the electronic properties of nanocrystals due to the high surface area to volume ratio of nanoscale semiconductors. Controlling surface chemistry is essential to functionalizing these materials for biological imaging and photovoltaic device applications. To better understand the surface chemistry of semiconducting nanocrystals, three competing surface chemistry models are presented: 1.) The TOPO model, 2.) the Non-stoichiometric model, and 3.) the Neutral Fragment model. Both the non-stoichiometric and neutral fragment models accurately describe the behavior of metal chalcogenide nanocrystals. These models rely on the covalent bond classification system, which divides ligands into three classes: 1.) X-type, 1-electron donating ligands that balance charge with excess metal at the nanocrystal surface, 2.) L-type, 2-electron donors that bind metal sites, and 3.) Z-type, 2-electron acceptors that bind chalcogenide sites. Each of these ligand classes is explored in detail to better understand the surface chemistry of metal chalcogenide nanocrystals. First, chloride-terminated, tri-n-butylphosphine (Bu 3P) bound CdSe nanocrystals were prepared by cleaving carboxylate ligands from CdSe nanocrystals with chlorotrimethylsilane in Bu3P solution. 1H and 31P{1H} nuclear magnetic resonance spectra of the isolated nanocrystals allowed assignment of distinct signals from several free and bound species, including surface-bound Bu3P and [Bu3P-H]+[Cl]- ligands as well as a Bu

  5. Metal centre effects on HNO binding in porphyrins and the electronic origin: metal's electronic configuration, position in the periodic table, and oxidation state.

    PubMed

    Yang, Liu; Fang, Weihai; Zhang, Yong

    2012-04-21

    HNO binds to many different metals in organometallic and bioinorganic chemistry. To help understand experimentally observed metal centre effects, a quantum chemical investigation was performed, revealing clear general binding trends with respect to metal centre characteristics and the electronic origin for the first time. This journal is © The Royal Society of Chemistry 2012

  6. Effect of Structure, Temperature, and Metal Work Function on Performance of Organometallic Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Hossain, M. I.; Aïssa, B.

    2017-01-01

    The impact of hole transport materials (HTMs) on the performance of methylammonium lead halide (CH3NH3PbI3)-based perovskite solar cells has been investigated using computational analysis. The main objective is to replace the HTM with the aim of enhancing the lifetime and decreasing the overall cost of the device. As the CH3NH3PbI3 absorber layer shows an absorption coefficient as high as 105/cm, all photons with incident energy larger the material bandgap are absorbed within only a 400-nm-thick layer. Also, all the electronic and optical properties of such an absorber layer are suitable for use in photovoltaic (PV) devices. Hence, the effects of the HTM thickness, operating temperature, incident light spectrum, and metal electrode work function on the charge collection were studied numerically. For a cell with Cu2O as HTM, efficiency exceeding 25% is predicted for a 350-nm-thick absorber layer. Also, a fully optimized device architecture without HTM shows the possibility of fabricating a perovskite solar cell with PV efficiency exceeding 15%. We expect considerable minimization of the energy loss in this structure due to charge transfer across the heterojunction. Moreover, the effect of temperature on perovskite solar cells and potential electrodes with different work functions has been investigated. Our results are believed to help open an experimental avenue to achieve optimum results for perovskite solar cells with various structures.

  7. Effect of Structure, Temperature, and Metal Work Function on Performance of Organometallic Perovskite Solar Cells

    NASA Astrophysics Data System (ADS)

    Hossain, M. I.; Aïssa, B.

    2017-03-01

    The impact of hole transport materials (HTMs) on the performance of methylammonium lead halide (CH3NH3PbI3)-based perovskite solar cells has been investigated using computational analysis. The main objective is to replace the HTM with the aim of enhancing the lifetime and decreasing the overall cost of the device. As the CH3NH3PbI3 absorber layer shows an absorption coefficient as high as 105/cm, all photons with incident energy larger the material bandgap are absorbed within only a 400-nm-thick layer. Also, all the electronic and optical properties of such an absorber layer are suitable for use in photovoltaic (PV) devices. Hence, the effects of the HTM thickness, operating temperature, incident light spectrum, and metal electrode work function on the charge collection were studied numerically. For a cell with Cu2O as HTM, efficiency exceeding 25% is predicted for a 350-nm-thick absorber layer. Also, a fully optimized device architecture without HTM shows the possibility of fabricating a perovskite solar cell with PV efficiency exceeding 15%. We expect considerable minimization of the energy loss in this structure due to charge transfer across the heterojunction. Moreover, the effect of temperature on perovskite solar cells and potential electrodes with different work functions has been investigated. Our results are believed to help open an experimental avenue to achieve optimum results for perovskite solar cells with various structures.

  8. Metals in the mesosphere: chemistry and change

    NASA Astrophysics Data System (ADS)

    Plane, John; Marsh, Daniel; Höffner, Josef; Janches, Diego; Dawkins, Erin; Gomez-Martin, Juan Carlos; Bones, David; Feng, Wuhu; Chipperfield, Martyn

    2016-07-01

    The meteoric metal layers (e.g. Na, Fe, K and Ca) - which form as a result of the ablation of incoming meteors - act as unique tracers for chemical and dynamical processes that occur within the upper mesosphere/lower thermosphere region. This presentation examines whether these metal layers are sensitive indicators of longer-term changes within the upper atmosphere. Output from the Whole Atmosphere Community Climate Model (WACCM) is used to assess the response of the Na, K and Fe layers across a 50-year period (1955-2005), while both model and observational data (satellite and lidar) is used to assess the response of the Na and K layers to the 11-year solar cycle extending between 2004-2013. On short time-scales, the K layer exhibits a very different seasonal behaviour compared to the other metals. This unusual behaviour is also exhibited at longer time-scales (both the 11-yr solar cycle and 50-yr periods); K displays a much more pronounced response to atmospheric changes at a 50-yr time scale than either Na or Fe. Underpinning this modelling work are two new laboratory systems developed at Leeds. First, a time-of-flight mass spectrometer with laser photo-ionization has been used to study the reactions of neutral metallic compounds in the gas phase which are not detectable by conventional spectroscopic probes. This has enabled significant advances in Na layer chemistry to be made. The second is a flowing afterglow/laser ablation experiment which has been used to study the dissociative recombination of metallic ions such as FeO ^{+} and CaO ^{+} with electrons; these processes are particularly important for modelling the phenomenon of sporadic metal layers.

  9. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  10. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  11. Evaluation of the catalytic decomposition of H2O2 through use of organo-metallic complexes--a potential link to the luminol presumptive blood test.

    PubMed

    Soderquist, Thomas J; Chesniak, Olivia M; Witt, Matthew R; Paramo, Alan; Keeling, Victoria A; Keleher, Jason J

    2012-06-10

    Forensic scientists use several presumptive tests to detect latent blood stains at crime scenes; one of the most recognizable being the luminol reagent. Luminol, under basic conditions, reacts with an oxidizing species which, with the help of a transition metal catalyst facilitates a luminescent response. The typical oxidizing species used in the luminol reaction is hydrogen peroxide (H(2)O(2)). While the luminol reaction has been studied since its inception, the mechanistic pathway is still an area of great debate. Previous work suggests that the luminol reaction with latent blood stains possesses a correlation to the Fenton-Decomposition reaction mechanism, which decomposes H(2)O(2) into the strongly oxidizing hydroxyl radical (*OH) species. This work seeks to understand the luminol reaction on a mechanistic level and to determine if a synergy exists between the chemiluminescence observed in the reaction and the production of the hydroxyl radical via Fenton-like processes. Results indicate that organo-metallic complexes produce hydroxyl radicals at different rates and different concentrations. These findings appear to be related to structural differences in the organo-metallic complex, which conform to the 18 electron rule or are one electron rich/deficient. Furthermore, the production of *OH is controlled by the chemical environment which governs complex stability at high pH conditions, reflective of the luminol process. Model hemoglobin systems reveal a strong correlation between the rate of *OH production via the Fenton-like pathway and maximum chemiluminescent intensity. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Organometallic Polymers.

    ERIC Educational Resources Information Center

    Carraher, Charles E., Jr.

    1981-01-01

    Reactions utilized to incorporate a metal-containing moiety into a polymer chain (addition, condensation, and coordination) are considered, emphasizing that these reactions also apply to smaller molecules. (JN)

  13. Spinning around in Transition-Metal Chemistry.

    PubMed

    Swart, Marcel; Gruden, Maja

    2016-12-20

    The great diversity and richness of transition metal chemistry, such as the features of an open d-shell, opened a way to numerous areas of scientific research and technological applications. Depending on the nature of the metal and its environment, there are often several energetically accessible spin states, and the progress in accurate theoretical treatment of this complicated phenomenon is presented in this Account. The spin state energetics of a transition metal complex can be predicted theoretically on the basis of density functional theory (DFT) or wave function based methodology, where DFT has advantages since it can be applied routinely to medium-to-large-sized molecules and spin-state consistent density functionals are now available. Additional factors such as the effect of the basis set, thermochemical contributions, solvation, relativity, and dispersion, have been investigated by many researchers, but challenges in unambiguous assignment of spin states still remain. The first DFT studies showed intrinsic spin-state preferences of hybrid functionals for high spin and early generalized gradient approximation functionals for low spin. Progress in the development of density functional approximations (DFAs) then led to a class of specially designed DFAs, such as OPBE, SSB-D, and S12g, and brought a very intriguing and fascinating observation that the spin states of transition metals and the SN2 barriers of organic molecules are somehow intimately linked. Among the many noteworthy results that emerged from the search for the appropriate description of the complicated spin state preferences in transition metals, we mainly focused on the examination of the connection between the spin state and the structures or coordination modes of the transition metal complexes. Changes in spin states normally lead only to changes in the metal-ligand bond lengths, but to the best of our knowledge, the dapsox ligand showed the first example of a transition-metal complex where a

  14. Sizable band gap in organometallic topological insulator

    NASA Astrophysics Data System (ADS)

    Derakhshan, V.; Ketabi, S. A.

    2017-01-01

    Based on first principle calculation when Ceperley-Alder and Perdew-Burke-Ernzerh type exchange-correlation energy functional were adopted to LSDA and GGA calculation, electronic properties of organometallic honeycomb lattice as a two-dimensional topological insulator was calculated. In the presence of spin-orbit interaction bulk band gap of organometallic lattice with heavy metals such as Au, Hg, Pt and Tl atoms were investigated. Our results show that the organometallic topological insulator which is made of Mercury atom shows the wide bulk band gap of about ∼120 meV. Moreover, by fitting the conduction and valence bands to the band-structure which are produced by Density Functional Theory, spin-orbit interaction parameters were extracted. Based on calculated parameters, gapless edge states within bulk insulating gap are indeed found for finite width strip of two-dimensional organometallic topological insulators.

  15. Early metal bis(phosphorus-stabilised)carbene chemistry.

    PubMed

    Liddle, Stephen T; Mills, David P; Wooles, Ashley J

    2011-05-01

    Since the discovery of covalently-bound mid- and late-transition metal carbenes there has been a spectacular explosion of interest in their chemistry, but their early metal counterparts have lagged behind. In recent years, bis(phosphorus-stabilised)carbenes have emerged as valuable ligands for metals across the periodic table, and their use has in particular greatly expanded covalently-bound early metal carbene chemistry. In this tutorial review we introduce the reader to bis(phosphorus-stabilised)carbenes, and cover general preparative methods, structure and bonding features, and emerging reactivity studies of early metal derivatives (groups 1-4 and the f-elements).

  16. [Mechanistic examination of organometallic electron transfer reactions: Annual report, 1989

    SciTech Connect

    Not Available

    1989-12-31

    Our mechanistic examination of electron transfer reactions between organometallic complexes has required data from our stopped-flow infrared spectrophotometer that was constructed in the first year. Our research on organometallic electron transfer reaction mechanisms was recognized by an invitation to the Symposium on Organometallic Reaction Mechanisms at the National ACS meeting in Miami. We have obtained a reasonable understanding of the electron transfer reactions between metal cations and anions and between metal carbonyl anions and metal carbonyl dimers. In addition we have begun to obtain data on the outer sphere electron transfer between metal carbonyl anions and coordination complexes and on reactions involving cluster anions.

  17. Supramolecular Organometallic Polymer Chemistry: Self-Assembly of a Novel Poly(ferrocene)-b-polysiloxane-b-poly(ferrocene) Triblock Copolymer in Solution.

    PubMed

    Resendes; Massey; Dorn; Power; Winnik; Manners

    1999-09-01

    Micelles with unprecedented flowerlike arrangements of the poly(ferrocene) cores (shown in the TEM image) are among the supramolecular architectures generated in the self-assembly of a novel organometallic triblock copolymer from silicon-bridged [1]ferrocenophane monomers and [Me(2)SiO](3) in hexane, a solvent selective for the central polysiloxane block.

  18. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  19. An Alternative Approach to the Teaching of Systematic Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Hathaway, Brian

    1979-01-01

    Presents an alternative approach to teaching Systematic Transition Metal Chemistry with the transition metal chemistry skeleton features of interest. The "skeleton" is intended as a guide to predicting the chemistry of a selected compound. (Author/SA)

  20. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  1. Science Update: Inorganic Chemistry

    ERIC Educational Resources Information Center

    Rawls, Rebecca

    1978-01-01

    This first in a series of articles describing the state of the art of various branches of chemistry reviews inorganic chemistry, including bioinorganic, photochemistry, organometallic, and solid state chemistries. (SL)

  2. Organometallics in High Energy Chemistry.

    DTIC Science & Technology

    1983-10-31

    in monomeric form even in nonpolar solvents, unlike similar aluminum alkyls and alkoxides. Compounds 2 through 4 form 1:1 complexes with xanthone. The...alkoxy group oxygen, as shown in reaction (6). AL(Owo2) 3 + 3CH2N2 Al(CH2 0% 0 ) 3 + 3N2 (6) This insertion reaction was found to occur in the alkyl and...addition of an aluminum alkyl to a double bond, as shown in reactions (7) and (8). Our Al(iBu) 3 + CH2 =CHCH 2CH3 (iBu) 2Al(CH 2) 3CH 3 + (7) ’. 2 CH3

  3. New electron correlation theories for transition metal chemistry.

    PubMed

    Marti, Konrad H; Reiher, Markus

    2011-04-21

    Electronic structure theory faces many computational challenges in transition metal chemistry. Usually, density functional theory is the method of choice for theoretical studies on transition metal complexes and clusters mostly because it is the only feasible one, although its results are not systematically improvable. By contrast, multireference ab initio methods could provide a correct description of the electronic structure, but are limited to small molecules because of the tremendous computational resources required. In recent years, conceptually new ab initio methods emerged that turned out to be promising for theoretical coordination chemistry. We review and discuss two efficient parametrization schemes for the electronic wave function, the matrix product states and the complete-graph tensor network states. Their advantages are demonstrated at example transition metal complexes. Especially, tensor network states might provide the key to accurately describe strongly correlated and magnetic molecular systems in transition metal chemistry.

  4. A study of transition-metal organometallic complexes combining 35Cl solid-state NMR spectroscopy and 35Cl NQR spectroscopy and first-principles DFT calculations.

    PubMed

    Johnston, Karen E; O'Keefe, Christopher A; Gauvin, Régis M; Trébosc, Julien; Delevoye, Laurent; Amoureux, Jean-Paul; Popoff, Nicolas; Taoufik, Mostafa; Oudatchin, Konstantin; Schurko, Robert W

    2013-09-09

    A series of transition-metal organometallic complexes with commonly occurring metal-chlorine bonding motifs were characterized using (35)Cl solid-state NMR (SSNMR) spectroscopy, (35)Cl nuclear quadrupole resonance (NQR) spectroscopy, and first-principles density functional theory (DFT) calculations of NMR interaction tensors. Static (35)Cl ultra-wideline NMR spectra were acquired in a piecewise manner at standard (9.4 T) and high (21.1 T) magnetic field strengths using the WURST-QCPMG pulse sequence. The (35)Cl electric field gradient (EFG) and chemical shielding (CS) tensor parameters were readily extracted from analytical simulations of the spectra; in particular, the quadrupolar parameters are shown to be very sensitive to structural differences, and can easily differentiate between chlorine atoms in bridging and terminal bonding environments. (35)Cl NQR spectra were acquired for many of the complexes, which aided in resolving structurally similar, yet crystallographically distinct and magnetically inequivalent chlorine sites, and with the interpretation and assignment of (35)Cl SSNMR spectra. (35)Cl EFG tensors obtained from first-principles DFT calculations are consistently in good agreement with experiment, highlighting the importance of using a combined approach of theoretical and experimental methods for structural characterization. Finally, a preliminary example of a (35)Cl SSNMR spectrum of a transition-metal species (TiCl4) diluted and supported on non-porous silica is presented. The combination of (35)Cl SSNMR and (35)Cl NQR spectroscopy and DFT calculations is shown to be a promising and simple methodology for the characterization of all manner of chlorine-containing transition-metal complexes, in pure, impure bulk and supported forms. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chromo- and Fluorogenic Organometallic Sensors

    NASA Astrophysics Data System (ADS)

    Fletcher, Nicholas C.; Lagunas, M. Cristina

    Compounds that change their absorption and/or emission properties in the presence of a target ion or molecule have been studied for many years as the basis for optical sensing. Within this group of compounds, a variety of organometallic complexes have been proposed for the detection of a wide range of analytes such as cations (including H+), anions, gases (e.g. O2, SO2, organic vapours), small organic molecules, and large biomolecules (e.g. proteins, DNA). This chapter focuses on work reported within the last few years in the area of organometallic sensors. Some of the most extensively studied systems incorporate metal moieties with intense long-lived metal-to-ligand charge transfer (MLCT) excited states as the reporter or indicator unit, such as fac-tricarbonyl Re(I) complexes, cyclometallated Ir(III) species, and diimine Ru(II) or Os(II) derivatives. Other commonly used organometallic sensors are based on Pt-alkynyls and ferrocene fragments. To these reporters, an appropriate recognition or analyte-binding unit is usually attached so that a detectable modification on the colour and/or the emission of the complex occurs upon binding of the analyte. Examples of recognition sites include macrocycles for the binding of cations, H-bonding units selective to specific anions, and DNA intercalating fragments. A different approach is used for the detection of some gases or vapours, where the sensor's response is associated with changes in the crystal packing of the complex on absorption of the gas, or to direct coordination of the analyte to the metal centre.

  6. Chemistry of soluble β-diketiminatoalkaline-earth metal complexes with M-X bonds (M=Mg, Ca, Sr; X=OH, Halides, H).

    PubMed

    Sarish, Sankaranarayana Pillai; Nembenna, Sharanappa; Nagendran, Selvarajan; Roesky, Herbert W

    2011-03-15

    Victor Grignard's Nobel Prize-winning preparation of organomagnesium halides (Grignard reagents) marked the formal beginning of organometallic chemistry with alkaline earth metals. Further development of this invaluable synthetic route, RX+Mg→RMgX, with the heavier alkaline earth metals (Ca and Sr) was hampered by limitations in synthetic methodologies. Moreover, the lack of suitable ligands for stabilizing the reactive target molecules, particularly with the more electropositive Ca and Sr, was another obstacle. The absence in the literature, until just recently, of fundamental alkaline earth metal complexes with M-H, M-F, and M-OH (where M is the Group 2 metal Mg, Ca, or Sr) bonds amenable for organometallic reactions is remarkable. The progress in isolating various unstable compounds of p-block elements with β-diketiminate ligands was recently applied to Group 2 chemistry. The monoanionic β-diketiminate ligands are versatile tools for addressing synthetic challenges, as amply demonstrated with alkaline earth complexes: the synthesis and structural characterization of soluble β-diketiminatocalcium hydroxide, β-diketiminatostrontium hydroxide, and β-diketiminatocalcium fluoride are just a few examples of our contribution to this area of research. To advance the chemistry beyond synthesis, we have investigated the reactivity and potential for applications of these species, for example, through the demonstration of dip coating surfaces with CaCO(3) and CaF(2) with solutions of the calcium hydroxide and calcium fluoride complexes, respectively. In this Account, we summarize some recent developments in alkaline earth metal complex chemistry, particularly of Mg, Ca, and Sr, through the utilization of β-diketiminate ligands. We focus on results generated in our laboratory but give due mention to work from other groups as well. We also highlight the closely related chemistry of the Group 12 element Zn, as well as the important chemistry developed by other groups

  7. Crystal Chemistry of Ceramic/Metal Systems.

    DTIC Science & Technology

    2007-11-02

    temperature thermal expansion of alkali halides, rare earth oxides, group IV elements, fcc metals, bcc metals, SiC , III-V and II-VI compounds. Analytical...to high pressure thermal expansion of MgO , NaCl, Group IV elements, and W. The bulk modulus and self-diffusion for W and Ta have been predicted to their melting points.

  8. Naturally Efficient Emitters: Luminescent Organometallic Complexes Derived from Natural Products

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hua; Young, David J.

    2013-08-01

    Naturally occurring molecules offer intricate structures and functionality that are the basis of modern medicinal chemistry, but are under-represented in materials science. Herein, we review recent literature describing the use of abundant and relatively inexpensive, natural products for the synthesis of ligands for luminescent organometallic complexes used for organic light emitting diodes (OLEDs) and related technologies. These ligands are prepared from the renewable starting materials caffeine, camphor, pinene and cinchonine and, with the exception of caffeine, impart performance improvements to the emissive metal complexes and resulting OLED devices, with emission wavelengths that span the visible spectrum from blue to red. The advantages of these biologically-derived molecules include improved solution processibility and phase homogeneity, brighter luminescence, higher quantum efficiencies and lower turn-on voltages. While nature has evolved these carbon-skeletons for specific purposes, they also offer some intriguing benefits in materials science and technology.

  9. Omar Yaghi on Chemistry and Metal Organic Frameworks

    ScienceCinema

    Omar Yaghi

    2016-07-12

    In this edited version of the hour long talk, Omar Yaghi, director of the Molecular Foundry, sat down in conversation with Jeff Miller, head of Public Affairs, on July 11th, 2012 to discuss his fascination with the hidden world of chemistry and his work on Metal Organic Frameworks.

  10. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  11. Omar Yaghi on Chemistry and Metal Organic Frameworks

    SciTech Connect

    Omar Yaghi

    2012-07-23

    In this edited version of the hour long talk, Omar Yaghi, director of the Molecular Foundry, sat down in conversation with Jeff Miller, head of Public Affairs, on July 11th, 2012 to discuss his fascination with the hidden world of chemistry and his work on Metal Organic Frameworks.

  12. Polymeric, Metallic, and Other Glasses in Introductory Chemistry

    ERIC Educational Resources Information Center

    Hawkes, Stephen J.

    2008-01-01

    Non-ceramic glasses are not adequately discussed in introductory chemistry. Such glasses include polycarbonate, which many corrective lenses are made of, amber, enamel, gelatin, hard candy, coal, refrigerated glycerol, and metallic glasses that have been marketed in recent decades. What is usually discussed in elementary texts is siliceous glass,…

  13. USSR Report, Chemistry.

    DTIC Science & Technology

    2007-11-02

    This chemistry Report from the USSR contains articles mainly on Adsorption, Analytical Chemistry, Biochemistry, Catalysis, Chemical Industry, Coal ... Gasification , Electrochemistry, Fertilizers, Food Technology, Inorganic Compounds, Nitrogen Compounds and Organometallic Compounds.

  14. Metal-free heterogeneous catalysis for sustainable chemistry.

    PubMed

    Su, Dang Sheng; Zhang, Jian; Frank, Benjamin; Thomas, Arne; Wang, Xinchen; Paraknowitsch, Jens; Schlögl, Robert

    2010-02-22

    The current established catalytic processes used in chemical industries use metals, in many cases precious metals, or metal oxides as catalysts. These are often energy-consuming and not highly selective, wasting resources and producing greenhouse gases. Metal-free heterogeneous catalysis using carbon or carbon nitride is an interesting alternative to some current industrialized chemical processes. Carbon and carbon nitride combine environmental acceptability with inexhaustible resources and allow a favorable management of energy with good thermal conductivity. Owing to lower reaction temperatures and increased selectivity, these catalysts could be candidates for green chemistry with low emission and an efficient use of the chemical feedstock. This Review highlights some recent promising activities and developments in heterogeneous catalysis using only carbon and carbon nitride as catalysts. The state-of-the-art and future challenges of metal-free heterogeneous catalysis are also discussed.

  15. Exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology.

    PubMed

    Ojima, Iwao

    2013-07-05

    Over the last three decades, my engagement in "fluorine chemistry" has evolved substantially because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of "fluorine chemistry" in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology, and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy.

  16. Metal centre effects on HNO binding in porphyrins and the electronic origin: Metal’s electronic configuration, position in the periodic table, and oxidation state

    PubMed Central

    Yang, Liu

    2014-01-01

    HNO binds with many different metals in organometallic and bioinorganic chemistry. To help understand experimentally observed metal centre effects, a quantum chemical investigation was performed, revealing clear general binding trends with respect to metal centre characteristics and the electronic origin for the first time. PMID:22437041

  17. The coordination chemistry of silyl-substituted allyl ligands.

    PubMed

    Solomon, Sophia A; Layfield, Richard A

    2010-03-14

    Metal allyl complexes in which the ligands carry bulky silyl substituents frequently show stability that cannot be achieved with unsubstituted analogues. As a result, it has been possible to characterize a large family of structurally diverse metal silyl-allyls from the s-, p-, d- and f-blocks of the Periodic Table, and to study the coordination chemistry of compounds that often have no counterparts without bulky substituents. The fact that the majority of compounds discussed in this Perspective have been published since 2000 reflects the newness of the area, and the article summarizes the main developments in the structural chemistry of metal silyl-allyls and also selected synthetic and catalytic applications. Although organometallic chemistry is often regarded as transcending traditional boundaries between 'organic' and 'inorganic' chemistry, an understanding persists that those working in the field can be labelled 'inorganic organometallic' chemists or 'organic organometallic' chemists. It is hoped that chemists from a broad range of backgrounds will be able to use this review as an entry point to an exciting new direction in metal allyl chemistry.

  18. Bioremediation of organometallic compounds by bacterial degradation.

    PubMed

    Shah, Jay; Dahanukar, Neelesh

    2012-06-01

    The use of organometallic compounds in the environment is constantly increasing with increased technology and progress in scientific research. But since these compounds are fairly stable, as metallic bonds are stable, they are difficult to degrade or decompose naturally. The aim of this work was to isolate and characterize heterotrophic bacteria that can degrade organometallic compounds (in this case 'ferrocene' and its derivatives). A Gram-negative coccobacillus was isolated from a rusting iron pipe draining into a freshwater lake, which could utilize ferrocene as a sole source of carbon. Phylogenetic analysis based on 16S rDNA sequence suggested that the isolated organism resembled an environmental isolate of Bordetella. Ferrocene degradation was confirmed by plotting the growth curve of the bacterium in a medium with ferrocene as the sole source of carbon. Further confirmation of degradation of ferrocene and its derivatives was done using Gas Chromatography Mass Spectroscopy. Since the bacterium degraded organometallic compounds and released the metal in liquid medium, it could be suggested that this organism can also be used for extracting metal ions from organo-metal containing wastes.

  19. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  20. Ab Initio Calculations Applied to Problems in Metal Ion Chemistry

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    Electronic structure calculations can provide accurate spectroscopic data (such as molecular structures) vibrational frequencies, binding energies, etc.) that have been very useful in explaining trends in experimental data and in identifying incorrect experimental measurements. In addition, ab initio calculations. have given considerable insight into the many interactions that make the chemistry of transition metal systems so diverse. In this review we focus on cases where calculations and experiment have been used to solve interesting chemical problems involving metal ions. The examples include cases where theory was used to differentiate between disparate experimental values and cases where theory was used to explain unexpected experimental results.

  1. The chemistry and physics of transition metal clusters

    SciTech Connect

    Parks, E.K.; Jellinek, J.; Knickelbein, M.B.; Riley, S.J.

    1994-06-01

    In this program the authors study the fundamental properties of isolated clusters of transition metal atoms. Experimental studies of cluster chemistry include determination of cluster structure, reactivity, and the nature of cluster-adsorbate interactions. Studies of physical properties include measurements of cluster ionization potentials and photoabsorption cross sections. Theoretical studies focus on the structure and dynamics of clusters, including isomers, phases and phase changes, interactions with molecules, and fragmentation process.

  2. Alkali Metal Suboxometalates-Structural Chemistry between Salts and Metals.

    PubMed

    Wörsching, Matthias; Hoch, Constantin

    2015-07-20

    The crystal structures of the new cesium-poor alkali metal suboxometalates Cs10MO5 (M = Al, Ga, Fe) show both metallic and ionic bonding following the formal description (Cs(+))10(MO4(5-))(O(2-))·3e(-). Comparable to the cesium-rich suboxometalates Cs9MO4 (M = Al, Ga, In, Fe, Sc) with ionic subdivision (Cs(+))9(MO4(5-))·4e(-), they contain an oxometalate anion [M(III)O4](5-) embedded in a metallic matrix of cesium atoms. Columnlike building units form with prevalent ionic bonding inside and metallic bonding on the outer surface. In the cesium-rich suboxometalates Cs9MO4, additional cesium atoms with no contact to any anion are inserted between columns of the formal composition [Cs8MO4]. In the cesium-poor suboxometalates Cs10MO5, the same columns are extended by face-sharing [Cs6O] units, and no additional cesium atoms are present. The terms "cesium-rich" and "cesium-poor" here refer to the Cs:O ratio. The new suboxometalates Cs10MO5 crystallize in two modifications with new structure types. The orthorhombic modification adopts a structure with four formula units per unit cell in space group Pnnm with a = 11.158(3) Å, b = 23.693(15) Å, and c = 12.229(3) Å for Cs10AlO5. The monoclinic modification crystallizes with eight formula units per unit cell in space group C2/c with a = 21.195(3) Å, b = 12.480(1) Å, c = 24.120(4) Å, and β = 98.06(1)° for Cs10AlO5. Limits to phase formation are given by the restriction that the M atoms must be trivalent and by geometric size restrictions for the insertion of [Cs6O] blocks in Cs10MO5. All of the suboxometalate structures show similar structural details and form mixed crystal series with statistical occupation for the M elements following the patterns Cs9(M(1)xM(2)1-x)O4 and Cs10(M(1)xM(2)1-x)O5. The suboxometalates are a new example of ordered intergrowth of ionic and metallic structure elements, allowing for the combination of properties related to both ionic and metallic materials.

  3. Metallogels from Coordination Complexes, Organometallic, and Coordination Polymers.

    PubMed

    Dastidar, Parthasarathi; Ganguly, Sumi; Sarkar, Koushik

    2016-09-20

    A supramolecular gel results from the immobilization of solvent molecules on a 3D network of gelator molecules stabilized by various supramolecular interactions that include hydrogen bonding, π-π stacking, van der Waals interactions, and halogen bonding. In a metallogel, a metal is a part of the gel network as a coordinated metal ion (in a discrete coordination complex), as a cross-linking metal node with a multitopic ligand (in coordination polymer), and as metal nanoparticles adhered to the gel network. Although the field is relatively new, research into metallogels has experienced a considerable upsurge owing to its fundamental importance in supramolecular chemistry and various potential applications. This focus review aims to provide an insight into the development of designing metallogelators. Because of the limited scope, discussions are confined to examples pertaining to metallogelators derived from discrete coordination complexes, organometallic gelators, and coordination polymers. This review is expected to enlighten readers on the current development of designing metallogelators of the abovementioned class of molecules. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Non-metallocene organometallic complexes and related methods and systems

    DOEpatents

    Agapie, Theodor; Golisz, Suzanne Rose; Tofan, Daniel; Bercaw, John E.

    2010-12-07

    A non-metallocene organometallic complex comprising a tridentate ligand and a metal bonded to a tridentate ligand, wherein two substituted aryl groups in the tridentate ligand are connected to a cyclic group at the ortho position via semi-rigid ring-ring linkages, and selected so to provide the resulting non-metallocene organometallic complex with a C.sub.S geometry, a C.sub.1 geometry, a C.sub.2 geometry or a C.sub.2v geometry. Method for performing olefin polymerization with a non-metallocene organometallic complex as a catalyst, related catalytic systems, tridentate ligand and method for providing a non-metallocene organometallic complex.

  5. Molecular dynamics simulation of organometallic reaction dynamics, and, Enhancing achievement in chemistry for African American students through innovations in pedagogy aligned with supporting assessment and curriculum and integrated under an alternative research paradigm

    NASA Astrophysics Data System (ADS)

    Mebane, Sheryl Dee

    Part I. Molecular dynamics simulation of organometallic reaction dynamics. To study the interplay of solute and solvent dynamics, large-scale molecular dynamics simulations were employed. Lennard-Jones and electrostatic models of potential energies from solvent-only studies were combined with solute potentials generated from ab-initio calculations. Radial distribution functions and other measures revealed the polar solvent's response to solute dynamics following CO dissociation. In future studies, the time-scale for solvent coordination will be confirmed with ultrafast spectroscopy data. Part II. Enhancing achievement in chemistry for African American students through innovations in pedagogy aligned with supporting assessment and curriculum and integrated under an alternative research paradigm. Much progress has been made in the area of research in education that focuses on teaching and learning in science. Much effort has also centered on documenting and exploring the disparity in academic achievement between underrepresented minority students and students comprising a majority in academic circles. However, few research projects have probed educational inequities in the context of mainstream science education. In order to enrich this research area and to better reach underserved learning communities, the educational experience of African American students in an ethnically and academically diverse high school science class has been examined throughout one, largely successful, academic year. The bulk of data gathered during the study was obtained through several qualitative research methods and was interpreted using research literature that offered fresh theoretical perspectives on equity that may better support effective action.

  6. The Systematic Study of the Organotransition Metal Compounds.

    ERIC Educational Resources Information Center

    Carriedo, Gabino A.

    1990-01-01

    Discussed is an extension of the conventional method for studying the organometallic chemistry of transition metals that may be useful to show how the various existing types of low-valence complexes can be constructed. This method allows students to design new types of complexes that may still be nonexistent. (CW)

  7. The Systematic Study of the Organotransition Metal Compounds.

    ERIC Educational Resources Information Center

    Carriedo, Gabino A.

    1990-01-01

    Discussed is an extension of the conventional method for studying the organometallic chemistry of transition metals that may be useful to show how the various existing types of low-valence complexes can be constructed. This method allows students to design new types of complexes that may still be nonexistent. (CW)

  8. Surface modification, organometallic and polyaryl polymer coatings, and flame spray technologies for preventing corrosion of metals. Final report

    SciTech Connect

    Sugama, T.

    1995-07-01

    To improve adherent properties of electrogalvanized steel (EGS) to polymeric topcoats, the surfaces of EGS were modified by polyelectrolyte-modified zinc phosphating solution. The electrochemical reaction between phosphating solution and EGS led to the complete coverage with fully grown hopeite crystals after only 5 sec treatment, thereby improving adhesion to topcoating and providing protection of EGS against corrosion. To evaluate the ability of polyphenylene sulfide (PPS) polyaryl thermoplastic coatings to protect zinc phosphate (Zn{center_dot}Ph)treated steels from corrosion in a wet, harsh environment ( 1.0 wt % H{sub 2}SO{sub 4}, 3.0 wt % NaCl and 96.0 wt % water at temperatures from 25{degrees} to 200{degree}C), we exposed them in an autoclave to attempt heating-cooling cyclic fatigue tests (1 cycle = 12 hr at 200{degrees}C + 12 hr at 25{degrees}C) up to 90 times. The major chemical reaction at the interface between the PPS and Zn in the Zn-Ph layer during cycling led to the formation of ZnS reaction product, which enhanced the Zn-Ph-to-PPS adhesive bond; correspondingly, there were no signs of peeling and separation of the coating after 90 cycles. organometallosiloxane polymer (OMSP) was synthesized through the hydrolysis-condensation reaction of the mixed precursor solutions of the N-[3-(triethoxysily)propyl]-4,5,-dihydroimidazole and {Beta}-trimethoxysilylethyl-2-pyridine sols in liquor medium and the metal alkoxides and metallocene dichloride dissolved in water or tetrahydrofurane. The OMSP films (thickness, 0. 5 to 1. 0 {mu}m) deposited by simple dip-withdrawing coating methods to aluminum alloys displayed the impedance of > 10{sup 6} ohm-cm {sup 2} after exposure for 40 days in 0.5 N NaCl solution at 25{degrees}C and the 3000 hr-salt spray resistance. Using a flame spray coating process, the methacrylic acid-modified polyethylene copolymer was overlaid onto cold rolled steel surfaces.

  9. Workshop on: Chemistry of Metals in Medicine - The Industrial Perspective

    PubMed Central

    1997-01-01

    The Workshop was attended by 61 participants from 20 countries. Most of the speakers were industrialists and the Chairpersons and Discussion Leaders were academics. The area “Chemistry of Metals in Medicine” has the potential for producing innovative, high quality, and original research. This is a new and emerging area of biomedical chemistry. Small firms are already being established which are devoted to the new elemental medicine. Major pharmaceutical and healthcare industries too are becoming aware of the major impact which metal chemistry is likely to have on traditional organic pharmacology and of the new opportunities which it presents for advances including the development of metalloenzyme-specific inhibitors, targeted radionuclide complexes for diagnosis and therapy, contrast agents for magnetic resonance imaging, safer mineral and vitamin supplements, new agents for the treatment of neurological, gastrointestinal and cardiovascular disease, skin conditions, cancer, and microbial and viral infections. The European scientific and technological research base in this area is potentially attractive for business. Industrial collaboration and cooperation can be accommodated within the COST framework. PMID:18475781

  10. Workshop on: Chemistry of Metals in Medicine - The Industrial Perspective.

    PubMed

    Sadler, P J

    1997-01-01

    The Workshop was attended by 61 participants from 20 countries. Most of the speakers were industrialists and the Chairpersons and Discussion Leaders were academics.The area "Chemistry of Metals in Medicine" has the potential for producing innovative, high quality, and original research.This is a new and emerging area of biomedical chemistry. Small firms are already being established which are devoted to the new elemental medicine. Major pharmaceutical and healthcare industries too are becoming aware of the major impact which metal chemistry is likely to have on traditional organic pharmacology and of the new opportunities which it presents for advances including the development of metalloenzyme-specific inhibitors, targeted radionuclide complexes for diagnosis and therapy, contrast agents for magnetic resonance imaging, safer mineral and vitamin supplements, new agents for the treatment of neurological, gastrointestinal and cardiovascular disease, skin conditions, cancer, and microbial and viral infections.The European scientific and technological research base in this area is potentially attractive for business. Industrial collaboration and cooperation can be accommodated within the COST framework.

  11. The Renaissance of Metal-Pyrimidine Nucleobase Coordination Chemistry.

    PubMed

    Lippert, Bernhard; Sanz Miguel, Pablo J

    2016-08-16

    The significance of metal ions for the function and properties of DNA and RNA, long seen primarily under biological aspects and medicinal uses, has recently gained a renewed momentum. This is a consequence of the advent of novel applications in the fields of materials science, biotechnology, and analytical sensor chemistry that relate to the designed incorporation of transition metal ions into nucleic acid base pairs. Ag(+) and Hg(2+) ions, binding to pyrimidine (pym) nucleobases, represent major players in this development. Interestingly, these metal ions were the ones that some 60 years ago started the field! At the same time, the mentioned metal ions had demonstrated a "special relationship" with the pym nucleobases cytosine, thymine, and uracil! Parallel work conducted with oligonucleotides and model nucleobases fostered numerous significant details of these interactions, in particular when X-ray crystallography was involved, correcting earlier views occasionally. Our own activities during the past three to four decades have focused on, among others, the coordination chemistry of transition and main-group metal ions with pym model nucleobases, with an emphasis on Pt(II) and Pd(II). It has always been our goal to deduce, if possible, the potential relevance of our findings for biological processes. It is interesting to put our data, in particular for trans-a2Pt(II) (a = NH3 or amine), into perspective with those of other metal ions, notably Ag(+) and Hg(2+). Irrespective of major differences in kinetics and lability/inertness between d(8) and d(10) metal ions, there is also a lot of similarity in structural aspects as a result of the preferred linear coordination geometry of these species. Moreover, the apparent clustering of metal ions to the pym nucleobases, which is presumably essential for the formation of nanoclusters on oligonucleotide scaffolds, is impressively reflected in model systems, as are reasons for inter-nucleobase cross-links containing more

  12. A primer on trace metal-sediment chemistry

    USGS Publications Warehouse

    Horowitz, Arthur J.

    1985-01-01

    In most aquatic systems, concentrations of trace metals in suspended sediment and the top few centimeters of bottom sediment are far greater than concentrations of trace metals dissolved in the water column. Consequently, the distribution, transport, and availability of these constituents can not be intelligently evaluated, nor can their environmental impact be determined or predicted solely through the sampling and analysis of dissolved phases. This Primer is designed to acquaint the reader with the basic principles that govern the concentration and distribution of trace metals associated with bottom and suspended sediments. The sampling and analysis of suspended and bottom sediments are very important for monitoring studies, not only because trace metal concentrations associated with them are orders of magnitude higher than in the dissolved phase, but also because of several other factors. Riverine transport of trace metals is dominated by sediment. In addition, bottom sediments serve as a source for suspended sediment and can provide a historical record of chemical conditions. This record will help establish area baseline metal levels against which existing conditions can be compared. Many physical and chemical factors affect a sediment's capacity to collect and concentrate trace metals. The physical factors include grain size, surface area, surface charge, cation exchange capacity, composition, and so forth. Increases in metal concentrations are strongly correlated with decreasing grain size and increasing surface area, surface charge, cation exchange capacity, and increasing concentrations of iron and manganese oxides, organic matter, and clay minerals. Chemical factors are equally important, especially for differentiating between samples having similar bulk chemistries and for inferring or predicting environmental availability. Chemical factors entail phase associations (with such sedimentary components as interstitial water, sulfides, carbonates, and organic

  13. Colloidal nickel/gallium nanoalloys obtained from organometallic precursors in conventional organic solvents and in ionic liquids: noble-metal-free alkyne semihydrogenation catalysts

    NASA Astrophysics Data System (ADS)

    Schütte, Kai; Doddi, Adinarayana; Kroll, Clarissa; Meyer, Hajo; Wiktor, Christian; Gemel, Christian; van Tendeloo, Gustaaf; Fischer, Roland A.; Janiak, Christoph

    2014-04-01

    Efforts to replace noble-metal catalysts by low-cost alternatives are of constant interest. The organometallic, non-aqueous wet-chemical synthesis of various hitherto unknown nanocrystalline Ni/Ga intermetallic materials and the use of NiGa for the selective semihydrogenation of alkynes to alkenes are reported. Thermal co-hydrogenolysis of the all-hydrocarbon precursors [Ni(COD)2] (COD = 1,5-cyclooctadiene) and GaCp* (Cp* = pentamethylcyclopentadienyl) in high-boiling organic solvents mesitylene and n-decane in molar ratios of 1 : 1, 2 : 3 and 3 : 1 yields the nano-crystalline powder materials of the over-all compositions NiGa, Ni2Ga3 and Ni3Ga, respectively. Microwave induced co-pyrolysis of the same precursors without additional hydrogen in the ionic liquid [BMIm][BF4] (BMIm = 1-butyl-3-methyl-imidazolium) selectively yields the intermetallic phases NiGa and Ni3Ga from the respective 1 : 1 and 3 : 1 molar ratios of the precursors. The obtained materials are characterized by transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDX), IR, powder X-ray diffraction (PXRD) and atomic absorption spectroscopy (AAS). The single-source precursor [Ni(GaCp*)(PMe3)3] with a fixed Ni : Ga stoichiometry of 1 : 1 was employed as well. In comparison with the co-hydrogenolytic dual precursor source approach it turned out to be less practical due to inefficient nickel incorporation caused by the parasitic formation of stable [Ni(PMe3)4]. The use of ionic liquid [BMIm][BF4] as a non-conventional solvent to control the reaction and stabilize the nanoparticles proved to be particularly advantageous and stable colloids of the nanoalloys NiGa and Ni3Ga were obtained. A phase-selective Ni/Ga colloid synthesis in conventional solvents and in the presence of surfactants such as hexadecylamine (HDA) was not feasible due to the undesired reactivity of HDA with GaCp* leading to inefficient gallium incorporation. Recyclable NiGa nanoparticles selectively

  14. Syntheses and characterization of dichlorozirconium porphyrin complexes and their novel organometallic derivatives. X-ray structure of Zr(TPP)Cl[sub 2](THF)

    SciTech Connect

    Heejoon Kim; Dongmok Whang; Kimoon Kim ); Youngkyu Do )

    1993-02-03

    The chemistry of early transition metal porphyrin complexes, especially, that of the second- and third-row metal complexes has not been developed much due in part to their high oxophilicity. The authors have been interested in exploring zirconium and hafnium porphyrin complexes because they may show a rich organometallic chemistry as zirconocene derivatives do. The key entry to the organometallic zirconium porphyrin complexes would be Zr(porphyrin)Cl[sub 2], analogous to ZrCp[sub 2]Cl[sub 2]. The dichloride complex may be converted to organometallic [sigma]-complexes such as dialkyl complexes by the reactions with alkyllithium or Grignard reagents. It may also form organometallic [tau]-complexes by replacing the two chlorides with a cyclooctatetraenyl dianion or a dicarbollide dianion. Indeed, the authors have succeeded in preparing Zr(por)Cl[sub 2] (por = OEP, TPP) and their organometallic derivatives Zr(TPP)Me[sub 2] and Zr(OEP)([eta][sup 5]-C[sub 2]B[sub 9]H[sub 11]). They have presented the preliminary results on their syntheses and characterization by spectroscopy but have been unable to grow X-ray-quality crystals of either of the organometallic complexes until recently. When they finished the structural characterization of Zr(OEP)([eta][sup 5]C[sub 2]B[sub 9]H[sub 11]) by X-ray crystallography, however, Arnold and co-workers published the synthesis and characterization of Zr(OEP)Cl[sub 2] and several organometallic complexes derived from it, including Zr(OEP)(CH[sub 2]SiMe[sub 3])[sub 2] and Zr(OEP)([eta][sup 5]-C[sub 2]B[sub 9]H[sub 11]). Here they present their results on the syntheses and characterization of Zr(por)Cl[sub 2] (por = OEP, TPP), Zr(TPP)Me[sub 2], and Zr(OEP)([eta][sup 5]-C[sub 2]B[sub 9]H[sub 11]) and the X-ray structure of Zr(TPP)Cl[sub 2](THF). 22 refs., 2 tabs.

  15. Chemistry and Properties of Complex Intermetallics from Metallic Fluxes

    SciTech Connect

    Kanatzidis, Mercouri G.

    2015-03-28

    This project investigated the reaction chemistry and synthesis of new intermetallic materials with complex compositions and structures using metallic fluxes as solvents. It was found that the metallic fluxes offer several key advantages in facilitating the formation and crystal growth of new materials. The fluxes mostly explored were liquid aluminum, gallium and indium. The main purpose of this project was to exploit the potential of metallic fluxes as high temperature solvent for materials discovery in the broad class of intermetallics. This work opened new paths to compound formation. We discovered many new Si (or Ge)-based compounds with novel structures, bonding and physicochemical properties. We created new insights about the reaction chemistry that is responsible for stabilizing the new materials. We also studied the structural and compositional relationships to understand their properties. We investigated the use of Group-13 metals Al, Ga and In as solvents and have generated a wide variety of new results including several new ternary and quaternary materials with fascinating structures and properties as well as new insights as to how these systems are stabilized in the fluxes. The project focused on reactions of metals from the rare earth element family in combination with transition metals with Si and Ge. For example molten gallium has serves both as a reactive and non-reactive solvent in the preparation and crystallization of intermetallics in the system RE/M/Ga/Ge(Si). Molten indium behaves similarly in that it too is an excellent reaction medium, but it gives compounds that are different from those obtained from gallium. Some of the new phase identified in the aluminide class are complex phases and may be present in many advanced Al-matrix alloys. Such phases play a key role in determining (either beneficially or detrimentally) the mechanical properties of advanced Al-matrix alloys. This project enhanced our basic knowledge of the solid state chemistry

  16. [Progress of organometallic complexes and their application to organic electroluminescent materials].

    PubMed

    Zhou, Rui; An, Zhong-Wei; Chai, Sheng-Yong

    2004-08-01

    Organic electroluminescent (EL) material is one of most prospective display materials in flat panel display. Organometallic complexes, which have five or six member ring structures, with high stability, high melting point and high fluorescence quantum efficiency, are widely applied in organic EL devices. The recent progress in organometallic complexes is summarized in terms of the electroluminescence of ligands and metal atoms.

  17. Chemistry of precious metal oxides relevant to heterogeneous catalysis.

    PubMed

    Kurzman, Joshua A; Misch, Lauren M; Seshadri, Ram

    2013-10-01

    The platinum group metals (PGMs) are widely employed as catalysts, especially for the mitigation of automotive exhaust pollutants. The low natural abundance of PGMs and increasing demand from the expanding automotive sector necessitates strategies to improve the efficiency of PGM use. Conventional catalysts typically consist of PGM nanoparticles dispersed on high surface area oxide supports. However, high PGM loadings must be used to counter sintering, ablation, and deactivation of the catalyst such that sufficient activity is maintained over the operating lifetime. An appealing strategy for reducing metal loading is the substitution of PGM ions into oxide hosts: the use of single atoms (ions) as catalytic active sites represents a highly atom-efficient alternative to the use of nanoparticles. This review addresses the crystal chemistry and reactivity of oxide compounds of precious metals that are, or could be relevant to developing an understanding of the role of precious metal ions in heterogeneous catalysis. We review the chemical conditions that facilitate stabilization of the notoriously oxophobic precious metals in oxide environments, and survey complex oxide hosts that have proven to be amenable to reversible redox cycling of PGMs.

  18. Chemistry of the actinide elements. Second edition

    SciTech Connect

    Katz, J.J.; Seaborg, G.T.; Morss, L.R.

    1987-01-01

    This is an exhaustive, updated discourse on the chemistry of Actinides, Volume 1 contains a systematic coverage of the elements Ac, Th, Pa, U, Np, and Pu, which constitutes Part 1 of the work. The characterization of each element is discussed in terms of its nuclear properties, occurrence, preparation, atomic and metallic properties, chemistry of specific compounds, and solution chemistry. The first part of Volume 2 follows the same format as Volume 1 but is confined to the elements Am, Cm, Bk, Cf, and Es, plus a more condensed coverage of the Transeinsteinium elements (Fm, Md, No, Lw, and 104-109). Part 2 of this volume is devoted to a discussion of the actinide elements in general, with a specific focus on electronic spectra, thermodynamic and magnetic properties, the metallic state, structural chemistry, solution kinetics, organometallic chemistry for /sigma/- and /pi/-bonded compounds, and some concluding remarks on the superheavy elements.

  19. Exploration of Fluorine Chemistry at the Multidisciplinary Interface of Chemistry and Biology

    PubMed Central

    Ojima, Iwao

    2013-01-01

    Over the last three decades, my engagement in “fluorine chemistry” has evolved substantially, because of the multidisciplinary nature of the research programs. I began my research career as a synthetic chemist in organometallic chemistry and homogeneous catalysis directed toward organic synthesis. Then, I was brought into a very unique world of “fluorine chemistry” in the end of 1970s. I started exploring the interface of fluorine chemistry and transition metal homogeneous catalysis first, which was followed by amino acids, peptides, and peptidomimetics for medicinal chemistry. Since then, I have been exploring the interfaces of fluorine chemistry and multidisciplinary fields of research involving medicinal chemistry, chemical biology, cancer biology and molecular imaging. This perspective intends to cover my fruitful endeavor in the exploration of fluorine chemistry at the multidisciplinary interface of chemistry and biology in a chronological order to show the evolution of my research interest and strategy. PMID:23614876

  20. Quantum Chemistry for Surface Segregation in Metal Alloys

    SciTech Connect

    Sholl, David

    2006-08-31

    Metal alloys are vital materials for the fabrication of high-flux, high-selectivity hydrogen separation membranes. A phenomenon that occurs in alloys that does not arise in pure metals is surface segregation, where the composition of the surface differs from the bulk composition. Little is known about the strength of surface segregation in the alloys usually considered for hydrogen membranes. Despite this lack of knowledge, surface segregation may play a decisive role in the ability of appropriately chosen alloys to be resistant to chemical poisoning, since membrane poisoning is controlled by surface chemistry. The aim of this Phase I project is to develop quantum chemistry approaches to assess surface segregation in a prototypical hydrogen membrane alloy, fcc Pd{sub 75}Cu{sub 25}. This alloy is known experimentally to have favorable surface properties as a poison resistant H{sub 2} purification membrane (Kamakoti et al., Science 307 (2005) 569-573), but previous efforts at modeling surfaces of this alloy have ignored the possible role of surface segregation (Alfonso et al., Surf. Sci. 546 (2003) 12-26).

  1. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  2. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY (LAKE BUENA VISTA, FL)

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  3. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY (LAKE BUENA VISTA, FL)

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  4. Surface chemistry of the atomic layer deposition of metals and group III oxides

    NASA Astrophysics Data System (ADS)

    Goldstein, David Nathan

    Atomic Layer Deposition (ALD) is a thin-film growth technique offering precise control of film thickness and the ability to coat high-aspect-ratio features such as trenches and nanopowders. Unlike other film growth techniques, ALD does not require harsh processing conditions and is not limited by line-of-sight deposition. Emerging applications for ALD materials include semiconductor devices, gas sensors, and water-diffusion barriers. The chemistry behind ALD involves understanding how the precursors interact with surfaces to deposit the desired material. All ALD precursors need to be stable on the substrate to ensure self-limiting behavior yet reactive enough to be easily removed with the second reagent. Recent precursor development has provided many volatile organometallic compounds for most of the periodic table. As the number of precursors increases, proper precursor choice becomes crucial. This is because the film properties, growth rates, and growth temperature vary widely between the precursors. Many of the above traits can be predicted with knowledge of the precursor reaction mechanisms. This thesis aims to link surface reaction mechanisms to observed growth and nucleation trends in metal and oxide ALD systems. The first portion of this thesis explores the mechanisms of two ALD oxide systems. First, I examine the mechanism of ALD alumina with ozone. Ozone is used as an oxidant in the semiconductor industry because the deposited Al 2O3 films possess better insulating properties and ozone is easier to purge from a vacuum system. FT-IR analysis reveals a complicated array of surface intermediates such as formate, carbonate, and methoxy groups that form during Al2O3 growth with ozone. Next, a new method to deposit thin films of Ga2O3 is introduced. Gallium oxide is a transparent conducting oxide that needs expensive solid precursors to be deposited by ALD. I show that trimethylgallium is a good high-temperature ALD precursor that deposits films of Ga2O 3 with

  5. Toward Gas Chemistry in Low Metallicity Starburst Galaxies

    NASA Astrophysics Data System (ADS)

    Meier, David S.; Anderson, Crystal N.; Turner, Jean; Ott, Juergen; Beck, Sara C.

    2017-01-01

    Dense gas, which is intimately connected with star formation, is key to understanding star formation. Though challenging to study, dense gas in low metallicity starbursts is important given these system's often extreme star formation and their potential implications for high redshift analogs. High spatial resolution (~50 pc) ALMA observations of several key probes of gas chemistry, including HCN(1-0), HCO+(1-0), CS(2-1), CCH(1-0;3/2-1/2) and SiO(2-1), towards the nearby super star-cluster (SSC) forming, sub-solar metallicity galaxy NGC 5253 are discussed. Dense gas is observed to be extended well beyond the current compact starburst, reaching into the apparently infalling molecular streamer. The faintness of HCN, the standard dense gas tracer, is extreme both in an absolute sense relative to high metallicity starbursts of a similar intensity and in a relative sense, with the HCO+/HCN ratio being one of the most elevated observed. UV-irradiated molecular gas, traced by CCH, is also extended over the mapped region, not being strongly correlated with the SSC. Despite the accretion of molecular gas from the halo and the intense burst of star formation, chemical signatures of shocked gas, traced by SiO (and HNCO), are not obvious. By placing NGC 5253 in context with other local starbursts, like 30 Doradus in the Large Magellanic Clouds and the high metallicity proto-typical starburst NGC 253, it is suggested that a combination of gas excitation and abundance changes associated with the sub solar metallicity may explain these anomalous dense gas properties.

  6. The Spectroscopy and Reaction Kinetics of Coordinated Unsaturated Metal Carbonyls.

    DTIC Science & Technology

    1985-10-20

    liquid disso- ciation. I. Martyn Poliakoff and Eric Weitz, to be published in "Advances in Organo- metallic Chemistry" (1985). 2. A. J. Ouderkirk, P... Poliakoff and Eric Weitz, to be published in Annual Review of Organometallic Chemistry, 1985. c) Gas Phase Infrared Spectroscopy and Recombination Kinetics...support of this work by the 7.. 7 donors of the Petroleum Research Fund, administered by the American Chemical * -Society. We thank Dr. Martyn Poliakoff

  7. Electrophilic Metal Alkyl Chemistry in New Ligand Environments

    SciTech Connect

    Jordan, Richard F.

    2013-06-30

    The goals of this project were to design new electrophilic metal alkyl complexes and to exploit these systems in fundamental studies of olefin polymerization and other important and new catalytic reactions. A key target reaction is insertion copolymerization of olefins and polar CH2=CHX vinyl monomers such as vinyl halides and vinyl ethers. During the period covered by this report we (i) investigated the properties of ortho-alkoxy-arylphosphine ligands in Ni-based olefin polymerization catalysts, (ii) studied the synthesis of double-end-capped polyethylene using group 4 metal catalysts that contain tris-pyrazolylborate ligands, (iii) explored the ethylene insertion reactivity of group 4 metal tris-pyrazolyl-borate complexes, (iv) showed that (α-diimine)PdMe{sup +} species undergo multiple insertion of silyl vinyl ethers, (v) synthesized and explored the reactivity of base-free Ni benzyl complexes that contain ortho-phosphino-arene sulfonate ligands, (vi) established the mechanism of the reaction of vinyl chloride with (α-diimine)PdMe{sup +} catalysts, (vii) explored the role of cationic polymerization and insertion chemistry in the reactions of vinyl ethers with (α-diimine)PdMe{sup +} species, (viii) discovered a new class of self-assembled tetranuclear Pd catalysts that produce high molecular weight linear polyethylene and copolymerize ethylene and vinyl fluoride, and (ix) developed model systems that enabled investigation of cis-trans isomerization of {phosphine-sulfonate}Pd(II) complexes.

  8. Inorganic and Organometallic Molecular Wires for Single-Molecule Devices.

    PubMed

    Tanaka, Yuya; Kiguchi, Manabu; Akita, Munetaka

    2017-04-06

    Recent developments of single-molecule conductance measurements allow us to understand fundamental conducting properties of molecular wires. While a wide variety of organic molecular wires have been studied so far, inorganic and organometallic molecular wires have received much less attention. However, molecular wires with transition-metal atoms show interesting features and functions distinct from those of organic wires. These properties originate mainly from metal-ligand dπ-pπ interactions and metal-metal d-d interactions. Thanks to the rich combination of metal atoms and supporting ligands, frontier orbital energies of the molecular wires can be finely tuned to lead to highly conducting molecular wires. Moreover, the unique electronic structures of metal complexes are susceptible to subtle environmental changes, leading to potential functional molecular devices. This article reviews recent advances in the single-molecule conductance study of inorganic and organometallic molecular wires. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Applications of superatom theory in metal cluster chemistry

    NASA Astrophysics Data System (ADS)

    Tofanelli, Marcus A.

    One of the largest modern scientific debates is understanding the size dependent properties of a metal. While much effort has been performed on understanding metal particles from the top down to much less work has been accomplished from the bottom up. This has lead to a great deal of interest in metal clusters. Metal clusters containing 20 to 200 metal atoms are similar yet strikingly different to both to normal coordination chemistry and continuous bulk systems, therefore neither a classical understanding for bulk or molecular systems appears to be appropriate. Superatom theory has emerged as a useful concept for describing the properties of a metal cluster in this size range. In this model a new set of 'superatomic' orbitals arises from the valence electrons of all the metals in a cluster. From superatom theory the properties of a metal cluster, such as stability, ionization energy, reactivity, and magnetism, should depend on valence of the superatomic orbitals, similar to a normal atom. However superatom theory has largely been used to describe the high stabilities of metal clusters with completed electronic configurations. Thus many features of superatom theory have remained largely untested and the extent that the superatom model truly applies has remained in question for many years. Over the past decade increases in synthetic and analytical techniques have allowed for the isolation of a series of stable monodisperse gold thiolate monolayer protected clusters (MPCs) containing from 10 to 500 gold atoms. The wide range in sizes and high stability of gold thiolate clusters provides an instrumental system for understanding superatom theory and the transition from molecular-like cluster to bulk-like system. In the first part of this thesis the effects of the superatomic valence is investigated under superatomic assumptions. Au25(SR)18 (where SR= any thiolate) can be synthesized in 3 different oxidation states without any major distortions to the geometry of the

  10. Photogeneration of Reactive Organometallic Species.

    DTIC Science & Technology

    1981-06-08

    0880 Reichel _ SPERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK Department of Chemistry, Rm. 6-335 AREA & WORK UNIT NUMBERS...that certain binary carbonyl systems can be prepared by metal atom/CO co-condensation, (Ref. 3 & 4) the rational synthesis of complexes containing both...CO and other ligands by metal atom/CO/L co-condensation leads, at best, to mixtures, and in some cases it does not appear that any synthesis other than

  11. Gas phase studies of the Pesci decarboxylation reaction: synthesis, structure, and unimolecular and bimolecular reactivity of organometallic ions.

    PubMed

    O'Hair, Richard A J; Rijs, Nicole J

    2015-02-17

    CONSPECTUS: Decarboxylation chemistry has a rich history, and in more recent times, it has been recruited in the quest to develop cheaper, cleaner, and more efficient bond-coupling reactions. Thus, over the past two decades, there has been intense investigation into new metal-catalyzed reactions of carboxylic substrates. Understanding the elementary steps of metal-mediated transformations is at the heart of inventing new reactions and improving the performance of existing ones. Fortunately, during the same time period, there has been a convergence in mass spectrometry (MS) techniques, which allows these catalytic processes to be examined efficiently in the gas phase. Thus, electrospray ionization (ESI) sources have been combined with ion-trap mass spectrometers, which in turn have been modified to either accept radiation from tunable OPO lasers for spectroscopy based structural assignment of ions or to allow the study of ion-molecule reactions (IMR). The resultant "complete" gas-phase chemical laboratories provide a platform to study the elementary steps of metal-catalyzed decarboxylation reactions in exquisite detail. In this Account, we illustrate how the powerful combination of ion trap mass spectrometry experiments and DFT calculations can be systematically used to examine the formation of organometallic ions and their chemical transformations. Specifically, ESI-MS allows the transfer of inorganic carboxylate complexes, [RCO2M(L)n](x), (x = charge) from the condensed to the gas phase. These mass selected ions serve as precursors to organometallic ions [RM(L)n](x) via neutral extrusion of CO2, accessible by slow heating in the ion trap using collision induced dissociation (CID). This approach provides access to an array of organometallic ions with well-defined stoichiometry. In terms of understanding the decarboxylation process, we highlight the role of the metal center (M), the organic group (R), and the auxiliary ligand (L), along with cluster nuclearity, in

  12. Group 9 organometallic compounds for therapeutic and bioanalytical applications.

    PubMed

    Ma, Dik-Lung; Chan, Daniel Shiu-Hin; Leung, Chung-Hang

    2014-12-16

    CONSPECTUS: Compared with organic small molecules, metal complexes offer several distinct advantages as therapeutic agents or biomolecular probes. Carbon atoms are typically limited to linear, trigonal planar, or tetrahedral geometries, with a maximum of two enantiomers being formed if four different substituents are attached to a single carbon. In contrast, an octahedral metal center with six different substituents can display up to 30 different stereoisomers. While platinum- and ruthenium-based anticancer agents have attracted significant attention in the realm of inorganic medicinal chemistry over the past few decades, group 9 complexes (i.e., iridium and rhodium) have garnered increased attention in therapeutic and bioanalytical applications due to their adjustable reactivity (from kinetically liable to substitutionally inert), high water solubility, stability to air and moisture, and relative ease of synthesis. In this Account, we describe our efforts in the development of group 9 organometallic compounds of general form [M(C(∧)N)2(N(∧)N)] (where M = Ir, Rh) as therapeutic agents against distinct biomolecular targets and as luminescent probes for the construction of oligonucleotide-based assays for a diverse range of analytes. Earlier studies by researchers had focused on organometallic iridium(III) and rhodium(III) half-sandwich complexes that show promising anticancer activity, although their precise mechanisms of action still remain unknown. More recently, kinetically-inert group 9 complexes have arisen as fascinating alternatives to organic small molecules for the specific targeting of enzyme activity. Research in our laboratory has shown that cyclometalated octahedral rhodium(III) complexes were active against Janus kinase 2 (JAK2) or NEDD8-activating enzyme (NAE) activity, or against NO production leading to antivasculogenic activity in cellulo. At the same time, recent interest in the development of small molecules as modulators of protein

  13. Rational design of an organometallic glutathione transferase inhibitor

    SciTech Connect

    Ang, W.H.; Parker, L.J.; De Luca, A.; Juillerat-Jeanneret, L.; Morton, C.J.; LoBello, M.; Parker, M.W.; Dyson, P.J.

    2010-08-17

    A hybrid organic-inorganic (organometallic) inhibitor was designed to target glutathione transferases. The metal center is used to direct protein binding, while the organic moiety acts as the active-site inhibitor. The mechanism of inhibition was studied using a range of biophysical and biochemical methods.

  14. Combinatorial sythesis of organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-07-16

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  15. The crystal chemistry of inorganic metal borohydrides and their relation to metal oxides.

    PubMed

    Černý, Radovan; Schouwink, Pascal

    2015-12-01

    The crystal structures of inorganic homoleptic metal borohydrides are analysed with respect to their structural prototypes found amongst metal oxides in the inorganic databases such as Pearson's Crystal Data [Villars & Cenzual (2015). Pearson's Crystal Data. Crystal Structure Database for Inorganic Compounds, Release 2014/2015, ASM International, Materials Park, Ohio, USA]. The coordination polyhedra around the cations and the borohydride anion are determined, and constitute the basis of the structural systematics underlying metal borohydride chemistry in various frameworks and variants of ionic packing, including complex anions and the packing of neutral molecules in the crystal. Underlying nets are determined by topology analysis using the program TOPOS [Blatov (2006). IUCr CompComm. Newsl. 7, 4-38]. It is found that the Pauling rules for ionic crystals apply to all non-molecular borohydride crystal structures, and that the latter can often be derived by simple deformation of the close-packed anionic lattices c.c.p. and h.c.p., by partially removing anions and filling tetrahedral or octahedral sites. The deviation from an ideal close packing is facilitated in metal borohydrides with respect to the oxide due to geometrical and electronic considerations of the BH4(-) anion (tetrahedral shape, polarizability). This review on crystal chemistry of borohydrides and their similarity to oxides is a contribution which should serve materials engineers as a roadmap to design new materials, synthetic chemists in their search for promising compounds to be prepared, and materials scientists in understanding the properties of novel materials.

  16. Hypervalent Iodine Reagents in High Valent Transition Metal Chemistry.

    PubMed

    Sousa E Silva, Felipe Cesar; Tierno, Anthony F; Wengryniuk, Sarah E

    2017-05-12

    Over the last 20 years, high valent metal complexes have evolved from mere curiosities to being at the forefront of modern catalytic method development. This approach has enabled transformations complimentary to those possible via traditional manifolds, most prominently carbon-heteroatom bond formation. Key to the advancement of this chemistry has been the identification of oxidants that are capable of accessing these high oxidation state complexes. The oxidant has to be both powerful enough to achieve the desired oxidation as well as provide heteroatom ligands for transfer to the metal center; these heteroatoms are often subsequently transferred to the substrate via reductive elimination. Herein we will review the central role that hypervalent iodine reagents have played in this aspect, providing an ideal balance of versatile reactivity, heteroatom ligands, and mild reaction conditions. Furthermore, these reagents are environmentally benign, non-toxic, and relatively inexpensive compared to other inorganic oxidants. We will cover advancements in both catalysis and high valent complex isolation with a key focus on the subtle effects that oxidant choice can have on reaction outcome, as well as limitations of current reagents.

  17. All-metal clusters that mimic the chemistry of halogens.

    PubMed

    Zhao, Tianshan; Li, Yawei; Wang, Qian; Jena, Puru

    2013-10-07

    Owing to their s(2)p(5) electronic configuration, halogen atoms are highly electronegative and constitute the anionic components of salts. Whereas clusters that contain no halogen atoms, such as AlH(4), mimic the chemistry of halogens and readily form salts (e.g., Na(+)(AlH(4))(-)), clusters that are solely composed of metal atoms and yet behave in the same manner as a halogen are rare. Because coinage-metal atoms (Cu, Ag, and Au) only have one valence electron in their outermost electronic shell, as in H, we examined the possibility that, on interacting with Al, in particular as AlX(4) (X=Cu, Ag, Au), these metal atoms may exhibit halogen-like properties. By using density functional theory, we show that AlAu(4) not only mimics the chemistry of halogens, but also, with a vertical detachment energy (VDE) of 3.98 eV in its anionic form, is a superhalogen. Similarly, analogous to XHX superhalogens (X=F, Cl, Br), XAuX species with VDEs of 4.65, 4.50, and 4.34 eV in their anionic form, respectively, also form superhalogens. In addition, Au can also form hyperhalogens, a recently discovered species that show electron affinities (EAs) that are even higher than those of their corresponding superhalogen building blocks. For example, the VDEs of M(AlAu(4))(2)(-) (M=Na and K) and anionic (FAuF)Au(FAuF) range from 4.06 to 5.70 eV. Au-based superhalogen anions, such as AlAu(4)(-) and AuF(2)(-), have the additional advantage that they exhibit wider optical absorption ranges than their H-based analogues, AlH(4)(-) and HF(2)(-). Because of the catalytic properties and the biocompatibility of Au, Au-based superhalogens may be multifunctional. However, similar studies that were carried out for Cu and Ag atoms have shown that, unlike AlAu(4), AlX(4) (X=Cu, Ag) clusters are not superhalogens, a property that can be attributed to the large EA of the Au atom.

  18. Ultrafast studies of organometallic photochemistry: The mechanism of carbon-hydrogen bond activation in solution

    SciTech Connect

    Bromberg, S.E.

    1998-05-01

    When certain organometallic compounds are photoexcited in room temperature alkane solution, they are able to break or activate the C-H bonds of the solvent. Understanding this potentially practical reaction requires a detailed knowledge of the entire reaction mechanism. Because of the dynamic nature of chemical reactions, time-resolved spectroscopy is commonly employed to follow the important events that take place as reactants are converted to products. For the organometallic reactions examined here, the electronic/structural characteristics of the chemical systems along with the time scales for the key steps in the reaction make ultrafast UV/Vis and IR spectroscopy along with nanosecond Step-Scan FTIR spectroscopy the ideal techniques to use for this study. An initial study of the photophysics of (non-activating) model metal carbonyls centering on the photodissociation of M(CO){sub 6} (M = Cr, W, Mo) was carried out in alkane solutions using ultrafast IR spectroscopy. Next, picosecond UV/vis studies of the C-H bond activation reaction of Cp{sup *}M(CO){sub 2} (M = Rh, Ir), conducted in room temperature alkane solution, are described in an effort to investigate the origin of the low quantum yield for bond cleavage ({approximately}1%). To monitor the chemistry that takes place in the reaction after CO is lost, a system with higher quantum yield is required. The reaction of Tp{sup *}Rh(CO){sub 2} (Tp{sup *} = HB-Pz{sub 3}{sup *}, Pz{sup *} = 3,5-dimethylpyrazolyl) in alkanes has a quantum yield of {approximately}30%, making time resolved spectroscopic measurements possible. From ultrafast IR experiments, two subsequently formed intermediates were observed. The nature of these intermediates are discussed and the first comprehensive reaction mechanism for a photochemical C-H activating organometallic complex is presented.

  19. The Spectroscopy and Reaction Kinetics of Coordinated Unsaturated Metal Carbonyls.

    DTIC Science & Technology

    1986-10-28

    dissociation.14 l% 5 1. Martyn Poliakoff and Eric Weitz, to be published in "Advances in Organometallic Chemistry" (1985). 2. A. J. Ouderkirk, P...Detection of Transient Organometallic Species by Fast Time-Resolved IR Spectroscopy. M. Poliakoff and E. Weitz Advances in Organometallic Chemistry 25

  20. Hydrogen-atom transfer in open-shell organometallic chemistry: the reactivity of Rh(II)(cod) and Ir(II)(cod) radicals.

    PubMed

    Hetterscheid, Dennis G H; Klop, Martijn; Kicken, Reinout J N A M; Smits, Jan M M; Reijerse, Eduard J; de Bruin, Bas

    2007-01-01

    A series of new metalloradical rhodium and iridium complexes [M(II)(cod)(N-ligand)](2+) in the uncommon oxidation state +II were synthesized by one-electron oxidation of their [M(I)(cod)(N-ligand)](+) precursors (M=Rh, Ir; cod=(Z,Z)-1,5-cyclooctadiene; and N-ligand is a podal bis(pyridyl)amine ligand: N,N-bis(2-pyridylmethyl)amine (dpa), N-(2-pyridylmethyl)-N-(6-methyl-2-pyridylmethyl)amine (pla), or N-benzyl-N,N-bis(6-methyl-2-pyridylmethyl)amine (Bn-dla). EPR spectroscopy, X-ray diffraction, and DFT calculations reveal that each of these [M(II)(cod)(N-ligand)](2+) species adopts a square-pyramidal geometry with the two cod double bonds and the two pyridine fragments in the basal plane and the N(amine) donor at the apical position. The unpaired electron of these species mainly resides at the metal center, but the apical N(amine) donor also carries a considerable fraction of the total spin density (15-18 %). Density functional calculations proved a valuable tool for the analysis and simulation of the experimental EPR spectra. Whereas the M(II)(olefin) complexes are quite stable as solids, in solution they spontaneously transform into a 1:1 mixture of M(III)(allyl) species and protonated M(I)(olefin) complexes (in the forms [M(I)(olefin)(protonated N-ligand)](2+) for M=Rh and [M(III)(H)(olefin)(N-ligand)](2+) for M=Ir). Similar reactions were observed for the related propene complex [M(II)(propene)(Me(2)tpa)](2+) (Me(2)tpa=N,N,N-tris(6-methyl-2-pyridylmethyl)amine). The decomposition rate of the [M(II)(cod)(N-ligand)](2+) species decreases with increasing N-ligand bulk in the following order: dpa>pla>Bn-dla. Decomposition of the most hindered [M(II)(cod)(Bn-dla)](2+) complexes proceeds by a second-order process. The kinetic rate expression v=k(obs)[M(II)](2) in acetone with k(obs)=k'[H(+)][S], where [S] is the concentration of additional coordinating reagents (MeCN), is in agreement with ligand-assisted dissociation of one of the pyridine donors. Solvent

  1. Late transition metal m-or chemistry and D6 metal complex photoeliminations

    SciTech Connect

    Sharp, Paul

    2015-07-31

    With the goal of understanding and controlling photoreductive elimination reactions from d6 transition metal complexes as part of a solar energy storage cycle we have investigated the photochemistry of Pt(IV) bromo, chloro, hydroxo, and hydroperoxo complexes. Photoreductive elimination reactions occur for all of these complexes and appear to involve initial Pt-Br, Pt-Cl, or Pt-O bond fission. In the case of Pt-OH bond fission, the subsequent chemistry can be controlled through hydrogen bonding to the hydroxo group.

  2. Transparent, conducting ATO thin films by epoxide-initiated sol-gel chemistry: a highly versatile route to mixed-metal oxide films.

    PubMed

    Koebel, Matthias M; Nadargi, Digambar Y; Jimenez-Cadena, Giselle; Romanyuk, Yaroslav E

    2012-05-01

    A robust synthesis approach to transparent conducting oxide (TCO) materials using epoxide assisted sol-gel chemistry is reported. The new route utilizes simple tin and antimony chloride precursors in aqueous solution, thus eliminating the need for organometallic precursors. Propylene oxide acts as a proton scavenger and drives metal hydroxide formation and subsequent polycondensation reactions. Thin films of antimony-doped tin oxide (ATO) were prepared by dip-coating of mixed metal oxide sols. After annealing at 600 °C in air, structural, electrical and optical properties of undoped and Sb-doped tin oxide films were characterized. Single layer films with 5 mol % Sb doping exhibited an optical transparency which was virtually identical to that of the plain glass substrate and an electrical resistivity of 2.8 × 10(-2) Ω cm. SEM and AFM analysis confirmed the presence of surface defects and cracks which increased with increasing Sb dopant concentration. Multiple depositions of identical ATO films showed a roughly 1 order of magnitude decrease in the film resistivity after the third layer, with typical values below 5 × 10(-3) Ω cm. This suggests that a second and third deposition fill up residual cracks and defects in the first layer and thus brings out the full performance of the ATO material. The epoxide-assisted sol chemistry is a promising technique for the preparation of mixed oxide thin film materials. Its superiority over conventional alkoxide and metal salt-based methods is explained in the context of a general description of the reaction mechanism.

  3. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    SciTech Connect

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  4. In –Situ Spectroscopic Investigation of Immobilized Organometallic Catalysts

    SciTech Connect

    Davis, Robert, J.

    2007-11-14

    Immobilized organometallic catalysts, in principle, can give high rates and selectivities like homogeneous catalysts with the ease of separation enjoyed by heterogeneous catalysts. However, the science of immobilized organometallics has not been developed because the field lies at the interface between the homogeneous and heterogeneous catalysis communities. By assembling an interdisciplinary research team that can probe all aspects of immobilized organometallic catalyst design, the entire reacting system can be considered, where the transition metal complex, the complex-support interface and the properties of the support can all be considered simultaneously from both experimental and theoretical points of view. Researchers at Georgia Tech and the University of Virginia are studying the fundamental principles that can be used to understand and design future classes of immobilized organometallic catalysts. In the framework of the overall collaborative project with Georgia Tech, our work focused on (a) the X-ray absorption spectroscopy of an immobilized Pd-SCS-O complex (b) the mode of metal leaching from supported Pd catalysts during Heck catalysis and (c) the mode of deactivation of Jacobsen’s Co-salen catalysts during the hydrolytic kinetic resolution of terminal epoxides. Catalysts containing supported Pd pincer complexes, functionalized supports containing mercapto and amine groups, and oligomeric Co-salen catalysts were synthesized at Georgia Tech and sent to the University of Virginia. Incorporation of Pd onto several different kinds of supports (silica, mercapto-functionalized silica, zeolite Y) was performed at the University of Virginia.

  5. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  6. Filtrates & Residues: Hemoglobinometry--A Biochemistry Experiment that Utilizes the Principles of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Giuliano, Vincenzo; Rieck, John Paul

    1987-01-01

    Describes a chemistry experiment dealing with hemoglobinometry that can apply to transition metal chemistry, colorimetry, and biochemistry. Provides a detailed description of the experimental procedure, including discussions of the preparation of the cyanide reagent, colorimetric measurements, and waste disposal and treatment. (TW)

  7. Progress towards bioorthogonal catalysis with organometallic compounds.

    PubMed

    Völker, Timo; Dempwolff, Felix; Graumann, Peter L; Meggers, Eric

    2014-09-22

    The catalysis of bioorthogonal transformations inside living organisms is a formidable challenge--yet bears great potential for future applications in chemical biology and medicinal chemistry. We herein disclose highly active organometallic ruthenium complexes for bioorthogonal catalysis under biologically relevant conditions and inside living cells. The catalysts uncage allyl carbamate protected amines with unprecedented high turnover numbers of up to 270 cycles in the presence of water, air, and millimolar concentrations of thiols. By live-cell imaging of HeLa cells and with the aid of a caged fluorescent probe we could reveal a rapid development of intense fluorescence within the cellular cytoplasm and therefore support the proposed bioorthogonality of the catalysts. In addition, to illustrate the manifold applications of bioorthogonal catalysis, we developed a method for catalytic in-cell activation of a caged anticancer drug, which efficiently induced apoptosis in HeLa cells. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Technetium chemistry

    SciTech Connect

    Burns, C.; Bryan, J.; Cotton, F.; Ott, K.; Kubas, G.; Haefner, S.; Barrera, J.; Hall, K.; Burrell, A.

    1996-04-01

    Technetium chemistry is a young and developing field. Despite the limited knowledge of its chemistry, technetium is the workhorse for nuclear medicine. Technetium is also a significant environmental concern because it is formed as a byproduct of nuclear weapons production and fission-power generators. Development of new technetium radio-pharmaceuticals and effective environmental control depends strongly upon knowledge of basic technetium chemistry. The authors performed research into the basic coordination and organometallic chemistry of technetium and used this knowledge to address nuclear medicine and environmental applications. This is the final report of a three-year Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

  9. Chemistry Related to Semiconductor Growth Involving Organometallics

    DTIC Science & Technology

    1990-05-11

    Alternatively, the universality of MBE is compromised by its inability to grow P-containing films in a reproducible manner due to the allotropic nature of...The Alcatel pump exhausts into an Emcore toxic gas scrubber filled with a sulfur impregnated activated charcoal capable of absorbing up to 40 percent

  10. Organometallic chemistry: A shortcut to molecular complexity

    NASA Astrophysics Data System (ADS)

    Murakami, Masahiro; Ishida, Naoki

    2017-03-01

    A unique transformation for the site-selective cleavage of one C-C single bond and two C-H bonds in sequence has now been developed. This enables a simple carbon skeleton to be reorganized into a significantly more complex form with remarkable efficiency.

  11. Organometallic chemistry: Heavyweight isomer brings stability

    NASA Astrophysics Data System (ADS)

    Scheschkewitz, David

    2016-11-01

    Due to its high reactivity, vinylidene -- the sole 'electron-precise' isomer of acetylene -- is only known to exist in the gas phase. Now, a stable base-free digermanium version of a vinylidene has been isolated by the clever use of suitable substituents.

  12. An Advanced Organometallic Lab Experiment with Biological Implications: Synthesis and Characterization of Fe[subscript 2](µ-S[subscript 2])(C0)[subscript 6

    ERIC Educational Resources Information Center

    Barrett, Jacob; Spentzos, Ariana; Works, Carmen

    2015-01-01

    The organometallic complex Fe[subscript 2](µ-S[subscript 2])(CO)[subscript 6] has interesting biological implications. The concepts of bio-organometallic chemistry are rarely discussed at the undergraduate level, but this experiment can start such a conversation and, in addition, teach valuable synthetic techniques. The lab experiment takes a…

  13. An Advanced Organometallic Lab Experiment with Biological Implications: Synthesis and Characterization of Fe[subscript 2](µ-S[subscript 2])(C0)[subscript 6

    ERIC Educational Resources Information Center

    Barrett, Jacob; Spentzos, Ariana; Works, Carmen

    2015-01-01

    The organometallic complex Fe[subscript 2](µ-S[subscript 2])(CO)[subscript 6] has interesting biological implications. The concepts of bio-organometallic chemistry are rarely discussed at the undergraduate level, but this experiment can start such a conversation and, in addition, teach valuable synthetic techniques. The lab experiment takes a…

  14. Spectroscopy of Organometallic Radicals

    SciTech Connect

    Morse, Michael D.

    2015-12-14

    In this grant, we have been mainly concerned with characterization of the chemical bond between transition metals and carbon, although some work has also been directed toward understanding the bonding between transition metals and other main group elements. We have also undertaken some studies on the actinide metals, U and Th.

  15. Zintl cluster chemistry in the alkali-metal-gallium systems

    SciTech Connect

    Henning, Robert

    1998-03-27

    Previous research into the alkali-metal-gallium systems has revealed a large variety of networked gallium deltahedra. The clusters are analogues to borane clusters and follow the same electronic requirements of 2n+2 skeletal electrons for closo-deltahedra. This work has focused on compounds that do not follow the typical electron counting rules. The first isolated gallium cluster was found in Cs8Ga11. The geometry of the Ga117- unit is not deltahedral but can be described as a penta-capped trigonal prism. The reduction of the charge from a closo-Ga1113- to Ga117- is believed to be the driving force of the distortion. The compound is paramagnetic because of an extra electron but incorporation of a halide atom into the structure captures the unpaired electron and forms a diamagnetic compound. A second isolated cluster has been found in Na10Ga10Ni where the tetra-capped trigonal prismatic gallium is centered by nickel. Stabilization of the cluster occurs through Ni-Ga bonding. A simple two-dimensional network occurs in the binary K2Ga3 Octahedra are connected through four waist atoms to form a layered structure with the potassium atoms sitting between the layers. Na30.5Ga60-xAgx is nonstoichiometric and needs only a small amount of silver to form (x ~ 2-6). The structure is composed of three different clusters which are interconnected to form a three-dimensional structure. The RbGa3-xAux system is also nonstoichiometric with a three-dimensional structure composed of Ga8 dodecahedra and four-bonded gallium atoms. Unlike Na30.5Ga60-xAgx, the RbGa3 binary is also stable. The binary is formally a Zintl phase but the ternary is not. Some chemistry in the alkali-metal-indium system also has been explored. A new potassium-indium binary

  16. Chemistry of Two-Dimensional Transition Metal Carbides (MXenes)

    NASA Astrophysics Data System (ADS)

    Mashtalir, Olha

    With consumer trends pushing toward smaller, faster, more flexible, multitasking devices, researchers striving to meet these needs have targeted two-dimensional (2D) materials---and graphene in particular---as holding the most promise for use in advanced applications. But in 2011, a significant interest has been triggered by a newly discovered family of novel 2D materials---layered transitional metal carbides and carbonitrides, named MXenes. Those compounds were of general formula Mn+1 XnTx, where M stands for metal atom, X is C and/or N, n = 1, 2 or 3, and Tx represents surface groups. Being initially suggested as a material for electrical energy storage systems, MXenes' properties and their potential applications have not been explored. This work is the first complete study of MXenes' chemistry that sheds light on the chemical composition, structure and properties of these novel materials and possible routes of its modification. The research was focused on 2D titanium carbide, Ti3C2Tx, chosen as the representative of the MXene family. The kinetic study of Ti 3C2Tx synthesis discovered the main synthesis parameters, viz. temperature, time and particle size, that affect the etching process and define the quality of final product. MXenes were found to be able to spontaneously accommodate various ions and small organic molecules between the layers leading to preopening of the structure. A major challenge of large scale production of delaminated, atomically thin 2D MXene layers was solved with two delamination techniques involving dimethyl sulfoxide and isopropyl amine pre-intercalation followed by sonication in water. Ti3C2Tx was also found to possess adsorptive and photocatalytic properties, revealing its potential for environmental applications. It also showed limited stability in water and in the presence of oxygen, providing important practical information on proper handling and storage of MXene materials. Completion of this work allowed the performance of energy

  17. 2013 Gordon Research Conference on metals in biology and seminar on bioinorganic chemistry

    SciTech Connect

    Rosenzweig, Amy C.

    2013-01-25

    Typical topics for lectures and posters include: biochemical and biophysical characterization of new metal containing proteins, enzymes, nucleic acids, factors, and chelators from all forms of life; synthesis, detailed characterization, and reaction chemistry of biomimetic compounds; novel crystal and solution structures of biological molecules and synthetic metal-chelates; discussions of the roles that metals play in medicine, maintenance of the environment, and biogeochemical processes; metal homeostasis; application of theory and computations to the structure and mechanism of metal-containing biological systems; and novel applications of spectroscopy to metals in biological systems.

  18. Strategies to prepare and use functionalized organometallic reagents.

    PubMed

    Klatt, Thomas; Markiewicz, John T; Sämann, Christoph; Knochel, Paul

    2014-05-16

    Polyfunctional zinc and magnesium organometallic reagents occupy a central position in organic synthesis. Most organic functional groups are tolerated by zinc organometallic reagents, and Csp(2)-centered magnesium organometallic reagents are compatible with important functional groups, such as the ester, aryl ketone, nitro, cyano, and amide functions. This excellent chemoselectivity gives zinc- and magnesium-organometallic reagents a central position in modern organic synthesis. Efficient and general preparations of these organometallic reagents, as well as their most practical and useful reactions, are presented in this Perspective. As starting materials, a broad range of organic halides (iodides, bromides, and also to some extent chlorides) can be used for the direct insertion of magnesium or zinc powder; the presence of LiCl very efficiently promotes such insertions. Alternatively, aromatic or heterocyclic bromides also undergo a smooth bromine-magnesium exchange when treated with i-PrMgCl·LiCl. Alternative precursors of zinc and magnesium reagents are polyfunctionalized aryl and heteroaryl molecules, which undergo directed metalations with sterically hindered TMP bases (TMP = 2,2,6,6-tetramethylpiperide) of magnesium and zinc. This powerful C-H functionalization method gives access to polyfunctional heterocyclic zinc and magnesium reagents, which undergo efficient reactions with numerous electrophiles. The compatibility of the strong TMP-bases with BF3·OEt2 (formation of frustrated Lewis pairs) dramatically increases the scope of these metalations, giving for example, a practical access to magnesiated pyridines and pyrazines, which can be used as convenient building blocks for the preparation of biologically active molecules.

  19. ISM chemistry in metal-rich environments: molecular tracers of metallicity

    NASA Astrophysics Data System (ADS)

    Davis, Timothy A.; Bayet, Estelle; Crocker, Alison; Topal, Selçuk; Bureau, Martin

    2013-08-01

    In this paper we use observations of molecular tracers in metal-rich and α-enhanced galaxies to study the effect of abundance changes on molecular chemistry. We selected a sample of metal-rich spiral and star-bursting objects from the literature, and present here new data for a sample of early-type galaxies (ETGs) previously studied by Crocker et al. We conducted the first survey of carbon monosulphide (CS) and methanol emission in ETGs, detecting seven objects in at least one CS transition, and methanol emission in five ETGs. We find that ETGs whose gas is dominated by ionization from star formation have enhanced CS emission, compared to their hydrogen cyanide (HCN) emission, supporting the hypothesis that CS is a better tracer of dense star-forming gas than HCN. We suggest that the methanol emission in these sources is driven by dust mantle destruction due to ionization from high-mass star formation in dense molecular clouds, but cannot rule out a component due to shocks dominating in some sources. We construct rotation diagrams for each early-type source where at least two transitions of a given species were detected. The rotational temperatures we derive for linear molecules vary between 3 and 9 K, with the majority of sources having rotational temperatures around 5 K. Despite the large uncertainty inherent in this method, the derived source-averaged CS and methanol column densities are similar to those found by other authors for normal spiral and starburst galaxies. This may suggest dense clouds are little affected by the differences between early- and late-type galaxies. Finally, we used the total column density ratios for both our ETG and literature galaxy sample to show for the first time that some molecular tracers do seem to show systematic variations that appear to correlate with metallicity, and that these variations roughly match those predicted by chemical models. Using this fact, the chemical models of Bayet et al. and assumptions about the optical

  20. Chemistry and electrochemistry associated with the electroplating of Group VIA transition metals

    SciTech Connect

    White, S.H.; Twardoch, U.M.

    1987-01-01

    An overview of the requirements for the electroplating of refractory metals from molten salts is presented, followed by a discussion of recent electrochemical studies that have been carried out to delineate the solution chemistry of alkali-metal-halide plating baths. New results for halide baths involving chromium and molybdenum are presented and considered from the view of both solution chemistry and electrocrystallization processes of these metals. Advantages and disadvantages of these electrolytes are discussed in the context of plating-cell development and pulse-modulated plating techniques.

  1. Organometallic-inorganic hybrid electrodes for lithium-ion batteries

    DOEpatents

    Huang, Qian; Lemmon, John P.; Choi, Daiwon; Cosimbescu, Lelia

    2016-09-13

    Disclosed are embodiments of active materials for organometallic and organometallic-inorganic hybrid electrodes and particularly active materials for organometallic and organometallic-inorganic hybrid cathodes for lithium-ion batteries. In certain embodiments the organometallic material comprises a ferrocene polymer.

  2. Tutorial on the Role of Cyclopentadienyl Ligands in the Discovery of Molecular Complexes of the Rare-Earth and Actinide Metals in New Oxidation States

    DOE PAGES

    Evans, William J.

    2016-09-15

    A fundamental aspect of any element is the range of oxidation states accessible for useful chemistry. This tutorial describes the recent expansion of the number of oxidation states available to the rare-earth and actinide metals in molecular complexes that has resulted through organometallic chemistry involving the cyclopentadienyl ligand. These discoveries demonstrate that the cyclopentadienyl ligand, which has been a key component in the development of organometallic chemistry since the seminal discovery of ferrocene in the 1950s, continues to contribute to the advancement of science. Lastly, we present background information on the rare-earth and actinide elements, as well as the sequencemore » of events that led to these unexpected developments in the oxidation state chemistry of these metals.« less

  3. Convergent study of Ru-ligand interactions through QTAIM, ELF, NBO molecular descriptors and TDDFT analysis of organometallic dyes

    NASA Astrophysics Data System (ADS)

    Sánchez-Coronilla, Antonio; Sánchez-Márquez, Jesús; Zorrilla, David; Martín, Elisa I.; de los Santos, Desireé M.; Navas, Javier; Fernández-Lorenzo, Concha; Alcántara, Rodrigo; Martín-Calleja, Joaquín

    2014-08-01

    We report a theoretical study of a series of Ru complexes of interest in dye-sensitised solar cells, in organic light-emitting diodes, and in the war against cancer. Other metal centres, such as Cr, Co, Ni, Rh, Pd, and Pt, have been included for comparison purposes. The metal-ligand trends in organometallic chemistry for those compounds are shown synergistically by using three molecular descriptors: quantum theory of atoms in molecules (QTAIM), electron localisation function (ELF) and second-order perturbation theory analysis of the natural bond orbital (NBO). The metal-ligand bond order is addressed through both delocalisation index (DI) of QTAIM and fluctuation index (λ) of ELF. Correlation between DI and λ for Ru-N bond in those complexes is introduced for the first time. Electron transfer and stability was also assessed by the second-order perturbation theory analysis of the NBO. Electron transfer from the lone pair NBO of the ligands toward the antibonding lone pair NBO of the metal plays a relevant role in stabilising the complexes, providing useful insights into understanding the effect of the 'expanded ligand' principle in supramolecular chemistry. Finally, absorption wavelengths associated to the metal-to-ligand charge transfer transitions and the highest occupied molecular orbital (HOMO)--lowest unoccupied molecular orbital (LUMO) characteristics were studied by time-dependent density functional theory.

  4. Organic topological insulators in organometallic lattices.

    PubMed

    Wang, Z F; Liu, Zheng; Liu, Feng

    2013-01-01

    Topological insulators are a recently discovered class of materials having insulating bulk electronic states but conducting boundary states distinguished by nontrivial topology. So far, several generations of topological insulators have been theoretically predicted and experimentally confirmed, all based on inorganic materials. Here, based on first-principles calculations, we predict a family of two-dimensional organic topological insulators made of organometallic lattices. Designed by assembling molecular building blocks of triphenyl-metal compounds with strong spin-orbit coupling into a hexagonal lattice, this new classes of organic topological insulators are shown to exhibit nontrivial topological edge states that are robust against significant lattice strain. We envision that organic topological insulators will greatly broaden the scientific and technological impact of topological insulators.

  5. From Metalloproteins to Coordination Chemistry: A Learning Exercise to Teach Transition Metal Chemistry

    ERIC Educational Resources Information Center

    Reglinski, John; Graham, Duncan; Kennedy, Alan R.; Gibson, Lorraine T.

    2004-01-01

    An exercise is organized to reinforce the fundamental rules of coordination chemistry through a biological study of metalloproteins. The work, which is divided into four well-defined activities, involves a major application of computer databases to address chemical problems.

  6. From Metalloproteins to Coordination Chemistry: A Learning Exercise to Teach Transition Metal Chemistry

    ERIC Educational Resources Information Center

    Reglinski, John; Graham, Duncan; Kennedy, Alan R.; Gibson, Lorraine T.

    2004-01-01

    An exercise is organized to reinforce the fundamental rules of coordination chemistry through a biological study of metalloproteins. The work, which is divided into four well-defined activities, involves a major application of computer databases to address chemical problems.

  7. Unique reactivity of fluorinated molecules with transition metals.

    PubMed

    Catalán, Silvia; Munoz, Sócrates B; Fustero, Santos

    2014-01-01

    Organofluorine and organometallic chemistry by themselves constitute two potent areas in organic synthesis. Thus, the combination of both offers many chemical possibilities and represents a powerful tool for the design and development of new synthetic methodologies leading to diverse molecular structures in an efficient manner. Given the importance of the selective introduction of fluorine atoms into organic molecules and the effectiveness of transition metals in C-C and C-heteroatom bond formation, this review represents an interesting read for this aim.

  8. Use of ionic liquids as coordination ligands for organometallic catalysts

    DOEpatents

    Li, Zaiwei; Tang, Yongchun; Cheng; Jihong

    2009-11-10

    Aspects of the present invention relate to compositions and methods for the use of ionic liquids with dissolved metal compounds as catalysts for a variety of chemical reactions. Ionic liquids are salts that generally are liquids at room temperature, and are capable of dissolving a many types of compounds that are relatively insoluble in aqueous or organic solvent systems. Specifically, ionic liquids may dissolve metal compounds to produce homogeneous and heterogeneous organometallic catalysts. One industrially-important chemical reaction that may be catalyzed by metal-containing ionic liquid catalysts is the conversion of methane to methanol.

  9. Defect Chemistry and Plasmon Physics of Colloidal Metal Oxide Nanocrystals.

    PubMed

    Lounis, Sebastien D; Runnerstrom, Evan L; Llordés, Anna; Milliron, Delia J

    2014-05-01

    Plasmonic nanocrystals of highly doped metal oxides have seen rapid development in the past decade and represent a class of materials with unique optoelectronic properties. In this Perspective, we discuss doping mechanisms in metal oxides and the accompanying physics of free carrier scattering, both of which have implications in determining the properties of localized surface plasmon resonances (LSPRs) in these nanocrystals. The balance between activation and compensation of dopants limits the free carrier concentration of the most common metal oxides, placing a ceiling on the LSPR frequency. Furthermore, because of ionized impurity scattering of the oscillating plasma by dopant ions, scattering must be treated in a fundamentally different way in semiconductor metal oxide materials when compared with conventional metals. Though these effects are well-understood in bulk metal oxides, further study is needed to understand their manifestation in nanocrystals and corresponding impact on plasmonic properties, and to develop materials that surpass current limitations in free carrier concentration.

  10. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    DTIC Science & Technology

    2015-06-23

    Rh, as well as those of vanadium oxides. In synthetic experiments, metal oxide clusters are captured from the gas phase into solution, stabilized with... clusters . Additional work has examined vanadium carbide clusters as well as metal-silicon clusters of several transition metals. These ultra-small... clusters are studied with laser desorption and electrospray ionization mass spectrometry, optical spectroscopy methods (IR, surface-enhanced Raman, UV

  11. Prebiotic Organometallic Catalysis

    NASA Astrophysics Data System (ADS)

    Peters, J. W.; Cody, G.; Russell, M.; Ferry, J. G.; Schoonen, M. A. A.

    2010-04-01

    We are at the beginning of a renaissance period where integrated efforts can provide rapid advances in the our understanding of the relationships between abiocatalysis and biocatalysis by transition metal sulfide clusters/minerals in the context of the origin of life.

  12. Analytical chemistry methods for metallic core components: Revision March 1985

    SciTech Connect

    Not Available

    1985-03-01

    This standard provides analytical chemistry methods for the analysis of alloys used to fabricate core components. These alloys are 302, 308, 316, 316-Ti, and 321 stainless steels and 600 and 718 Inconels and they may include other 300-series stainless steels.

  13. Metal Transport across Biomembranes: Emerging Models for a Distinct Chemistry*

    PubMed Central

    Argüello, José M.; Raimunda, Daniel; González-Guerrero, Manuel

    2012-01-01

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models. PMID:22389499

  14. Metal transport across biomembranes: emerging models for a distinct chemistry.

    PubMed

    Argüello, José M; Raimunda, Daniel; González-Guerrero, Manuel

    2012-04-20

    Transition metals are essential components of important biomolecules, and their homeostasis is central to many life processes. Transmembrane transporters are key elements controlling the distribution of metals in various compartments. However, due to their chemical properties, transition elements require transporters with different structural-functional characteristics from those of alkali and alkali earth ions. Emerging structural information and functional studies have revealed distinctive features of metal transport. Among these are the relevance of multifaceted events involving metal transfer among participating proteins, the importance of coordination geometry at transmembrane transport sites, and the presence of the largely irreversible steps associated with vectorial transport. Here, we discuss how these characteristics shape novel transition metal ion transport models.

  15. Organometallic polymerization catalysts

    SciTech Connect

    Waymouth, R.M.

    1993-12-31

    Well-defined transition metal catalysts have resulted in exciting new opportunities in polymer synthesis. The stereochemistry of vinyl polymers can be rationally controlled with choice of the appropriate catalysts. Studies with optically active catalyst precursors have revealed considerable information on the absolute stereochemistry of olefin polymerization and have led to the synthesis of novel chiral polyolefins. The development of homogeneous olefin metathesis catalysts has also led to a variety of well-defined new polymer structures with controlled molecular weight and molecular weight distribution. Recent advances in understanding the mechanisms and stereochemistry of homogeneous transition metal catalyzed polymerization will be discussed. The ability to control polymer structure through catalyst design presents exciting opportunities in the synthesis of {open_quotes}tailor-made{close_quotes} macromolecules.

  16. Metal chemistry differences between digested and undigested sludges

    SciTech Connect

    Gibbs, R.J.; Angelidis, M.

    1988-01-01

    In a study of digested and undigested sludge chemical phases metal partitioning differences were found. The anaerobic digested sludges contained relatively more metals in the oxidizable phase but, in general, the chemical partitioning was similar for both the aerobic and anaerobic sludges. Conversely, the undigested sludge, although containing one-and-a-half times more organic carbon than the digested, did not contain a high metal concentration in the oxidizable phase as did the digested sludge. The microbial activity and physicochemical changes that occur during digestion were considered as the reasons for this difference.

  17. The N-heterocyclic carbene chemistry of transition-metal carbonyl clusters.

    PubMed

    Cabeza, Javier A; García-Álvarez, Pablo

    2011-11-01

    In the last decade, chemists have dedicated many efforts to investigate the coordination chemistry of N-heterocyclic carbenes (NHCs). Although most of that research activity has been devoted to mononuclear complexes, transition-metal carbonyl clusters have not escaped from these investigations. This critical review, which is focussed on the reactivity of NHCs (or their precursors) with transition-metal carbonyl clusters (mostly are of ruthenium and osmium) and on the transformations underwent by the NHC-containing species initially formed in those reactions, shows that the polynuclear character of these metallic compounds or, more precisely, the close proximity of one or more metal atoms to that which is or can be attached to the NHC ligand, is responsible for reactivity patterns that have no parallel in the NHC chemistry of mononuclear complexes (74 references).

  18. Unveiling the chemistry behind the green synthesis of metal nanoparticles.

    PubMed

    Santos, Sónia A O; Pinto, Ricardo J B; Rocha, Sílvia M; Marques, Paula A A P; Pascoal Neto, Carlos; Silvestre, Armando J D; Freire, Carmen S R

    2014-09-01

    Nanobiotechnology has emerged as a fundamental domain in modern science, and metallic nanoparticles (NPs) are one of the largest classes of NPs studied because of their wide spectrum of possible applications in several fields. The use of plant extracts as reducing and stabilizing agents in their synthesis is an interesting and reliable alternative to conventional methodologies. However, the role of the different components of such extracts in the reduction/stabilization of metal ions has not yet been understood clearly. Here we studied the behavior of the main components of a Eucalyptus globulus Labill. bark aqueous extract during metal-ion reduction followed by advanced chromatographic techniques, which allowed us to establish their specific role in the process. The obtained results showed that phenolic compounds, particularly galloyl derivatives, are mainly responsible for the metal-ion reduction, whereas sugars are essentially involved in the stabilization of the NPs.

  19. Issue Paper on the Environmental Chemistry of Metals

    EPA Pesticide Factsheets

    EPA has identified three types of regulatory risk assessments where information regarding speciation of metals is useful and desirable: national hazard/risk ranking and characterization, site-specific assessments, and National Regulatory Assessments.

  20. Fundamental organometallic reactions: Applications on the CYBER 205

    NASA Technical Reports Server (NTRS)

    Rappe, A. K.

    1984-01-01

    Two of the most challenging problems of Organometallic chemistry (loosely defined) are pollution control with the large space velocities needed and nitrogen fixation, a process so capably done by nature and so relatively poorly done by man (industry). For a computational chemist these problems are on the fringe of what is possible with conventional computers (large models needed and accurate energetics required). A summary of the algorithmic modification needed to address these problems on a vector processor such as the CYBER 205 and a sketch of findings to date on deNOx catalysis and nitrogen fixation are presented.

  1. Wildfires and water chemistry: effect of metals associated with wood ash.

    PubMed

    Cerrato, José M; Blake, Johanna M; Hirani, Chris; Clark, Alexander L; Ali, Abdul-Mehdi S; Artyushkova, Kateryna; Peterson, Eric; Bixby, Rebecca J

    2016-08-10

    The reactivity of metals associated with ash from wood collected from the Valles Caldera National Preserve, Jemez Mountains, New Mexico, was assessed through a series of laboratory experiments. Microscopy, spectroscopy, diffraction, and aqueous chemistry measurements were integrated to determine the chemical composition of wood ash and its effect on water chemistry. Climate change has caused dramatic impacts and stresses that have resulted in large-scale increases in wildfire activity in semi-arid areas of the world. Metals and other constituents associated with wildfire ash can be transported by storm event runoff and negatively affect the water quality in streams and rivers. Differences among ash from six tree species based on total concentrations of metals such as Ca, Al, Mg, Fe, and Mn were identified using non-metric multidimensional analysis. Metal-bearing carbonate and oxide phases were quantified by X-ray diffraction analyses and X-ray spectroscopy analyses. These metal-bearing carbonate phases were readily dissolved in the first 30 minutes of reaction with 18 MΩ water and 10 mM HCO3(-) in laboratory batch experiments which resulted in the release of metals and carbonates in the ash, causing water alkalinity to increase. However, metal concentrations decreased over the course of the experiment, suggesting that metals re-adsorb to ash. Our results suggest that the dissolution of metal-bearing carbonate and oxide phases in ash and metal re-adsorption to ash are relevant processes affecting water chemistry after wildfire events. These results have important implications to better understand the impact of wildfire events on water quality.

  2. Single-Molecule Fluorescence Imaging for Studying Organic, Organometallic, and Inorganic Reaction Mechanisms

    SciTech Connect

    Blum, Suzanne A.

    2016-05-24

    The reactive behavior of individual molecules is seldom observed, because we usually measure the average properties of billions of molecules. What we miss is important: the catalytic activity of less than 1% of the molecules under observation can dominate the outcome of a chemical reaction seen at a macroscopic level. Currently available techniques to examine reaction mechanisms (such as nuclear magnetic resonance spectroscopy and mass spectrometry) study molecules as an averaged ensemble. These ensemble techniques are unable to detect minor components (under ~1%) in mixtures or determine which components in the mixture are responsible for reactivity and catalysis. In the field of mechanistic chemistry, there is a resulting heuristic device that if an intermediate is very reactive in catalysis, it often cannot be observed (termed “Halpern’s Rule” ). Ultimately, the development of single-molecule imaging technology could be a powerful tool to observe these “unobservable” intermediates and active catalysts. Single-molecule techniques have already transformed biology and the understanding of biochemical processes. The potential of single-molecule fluorescence microscopy to address diverse chemical questions, such as the chemical reactivity of organometallic or inorganic systems with discrete metal complexes, however, has not yet been realized. In this respect, its application to chemical systems lags significantly behind its application to biophysical systems. This transformative imaging technique has broad, multidisciplinary impact with the potential to change the way the chemistry community studies reaction mechanisms and reactivity distributions, especially in the core area of catalysis.

  3. Selective Bifunctional Modification of a Non-catenated Metal-Organic Framework Material via 'Click' Chemistry

    SciTech Connect

    Gadzikwa, Tendai; Farha, Omar K.; Malliakas, Christos D.; Kanatzidis, Mercouri G.; Hupp, Joseph T.; Nguyen, SonBinh T.; NWU

    2009-12-01

    A noncatenated, Zn-based metal-organic framework (MOF) material bearing silyl-protected acetylenes was constructed and postsynthetically modified using 'click' chemistry. Using a solvent-based, selective deprotection strategy, two different organic azides were 'clicked' onto the MOF crystals, resulting in a porous material whose internal and external surfaces are differently functionalized.

  4. Coloring a Superabsorbent Polymer with Metal Ions: An Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Yaung, Jing-Fun; Chen, Yueh-Huey

    2009-01-01

    A novel undergraduate chemistry experiment involving superabsorbent polymers commonly used in diapers and other personal care products is described. Students observe the removal of divalent transition-metal ions from aqueous solutions by the polymers. With the procedures provided, students are able to color the superabsorbent polymers with metal…

  5. Coloring a Superabsorbent Polymer with Metal Ions: An Undergraduate Chemistry Experiment

    ERIC Educational Resources Information Center

    Yaung, Jing-Fun; Chen, Yueh-Huey

    2009-01-01

    A novel undergraduate chemistry experiment involving superabsorbent polymers commonly used in diapers and other personal care products is described. Students observe the removal of divalent transition-metal ions from aqueous solutions by the polymers. With the procedures provided, students are able to color the superabsorbent polymers with metal…

  6. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  7. Quantitative Ultrasound-Assisted Extraction for Trace-Metal Determination: An Experiment for Analytical Chemistry

    ERIC Educational Resources Information Center

    Lavilla, Isela; Costas, Marta; Pena-Pereira, Francisco; Gil, Sandra; Bendicho, Carlos

    2011-01-01

    Ultrasound-assisted extraction (UAE) is introduced to upper-level analytical chemistry students as a simple strategy focused on sample preparation for trace-metal determination in biological tissues. Nickel extraction in seafood samples and quantification by electrothermal atomic absorption spectrometry (ETAAS) are carried out by a team of four…

  8. Valence-Bond Concepts in Coordination Chemistry and the Nature of Metal-Metal Bonds.

    ERIC Educational Resources Information Center

    Pauling, Linus; Herman, Zelek S.

    1984-01-01

    Discusses the valence-bond method, applying it to some coordination compounds of metals, especially those involving metal-metal bonds. Suggests that transition metals can form as many as nine covalent bonds, permitting valence-theory to be extended to transition metal compounds in a more effective way than has been possible before. (JN)

  9. Valence-Bond Concepts in Coordination Chemistry and the Nature of Metal-Metal Bonds.

    ERIC Educational Resources Information Center

    Pauling, Linus; Herman, Zelek S.

    1984-01-01

    Discusses the valence-bond method, applying it to some coordination compounds of metals, especially those involving metal-metal bonds. Suggests that transition metals can form as many as nine covalent bonds, permitting valence-theory to be extended to transition metal compounds in a more effective way than has been possible before. (JN)

  10. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry.

    PubMed

    Adil, Syed Farooq; Assal, Mohamed E; Khan, Mujeeb; Al-Warthan, Abdulrahman; Siddiqui, Mohammed Rafiq H; Liz-Marzán, Luis M

    2015-06-07

    The immense importance of nanoparticles and their applications is a strong motivation for exploring new synthetic techniques. However, due to strict regulations that manage the potential environmental impacts greener alternatives for conventional synthesis are the focus of intense research. In the scope of this perspective, a concise discussion about the use of green reducing and stabilizing agents toward the preparation of metal nanoparticles is presented. Reports on the synthesis of noble metal nanoparticles using plant extracts, ascorbic acid and sodium citrate as green reagents are summarized and discussed, pointing toward an urgent need of understanding the mechanistic aspects of the involved reactions.

  11. The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer.

    PubMed

    Jaouen, Gérard; Top, Siden; Vessières, Anne; Leclercq, G; McGlinchey, Michael J

    2004-09-01

    In the overall scheme of the future development of new drugs for the treatment of breast cancer, specially tamoxifen resistant tumours, we have explored the unprecedented use of organometallic SERMs. The initial idea is to enhance the efficacy of the current standard, i.e. tamoxifen, by modifying the structure through judicious incorporation of an organometallic moiety possessing novel properties. Results have been varied, justifying a systematic approach that has proved to be full of surprised. The following differing situations were observed (a) the anti-proliferative effect is due to the vector and the organometallic moiety does not improve the effects of the SERM, no matter what concentration is used. In particular, this is the case for the hydroxytamoxifen derivative bearing a CpRe(CO)3 group, which behaves almost identically to hydroxytamoxifen. These stable species have future promise for use with radionucleides of Re and Tc (b) the effect of the organometallic moiety counteracts the anti-estrogenic behaviour of the vector and leads to species with proliferative activity; this is the case with Cp2TiCl2 entity, which when attached to tamoxifen behaves as a powerful estrogen, probably due to in situ release of Ti(IV) (c) a synergy exists between the cytotoxic organometallic moiety and its organic vector, leading to unique anti-proliferative effects on breast cancer cells classed ER+ and ER-. This result opens a new window on organometallic oncology. It is also clear that the range of possibilities is broad, varied and currently unpredictable. A systematic study combining organometallic chemistry and biology is the only option in the search for new SERMs with novel properties.

  12. Evaluation of two- and three-dimensional electrode platforms for the electrochemical characterization of organometallic catalysts incorporated in non-conducting metal-organic frameworks.

    PubMed

    Mijangos, Edgar; Roy, Souvik; Pullen, Sonja; Lomoth, Reiner; Ott, Sascha

    2017-04-11

    The development of a reliable platform for the electrochemical characterization of a redox-active molecular diiron complex, [FeFe], immobilized in a non-conducting metal organic framework (MOF), UiO-66, based on glassy-carbon electrodes is reported. Voltammetric data with appreciable current responses can be obtained by the use of multiwalled carbon nanotubes (MWCNT) or mesoporous carbon (CB) additives that function as conductive scaffolds to interface the MOF crystals in "three-dimensional" electrodes. In the investigated UiO-66-[FeFe] sample, the low abundance of [FeFe] in the MOF and the intrinsic insulating properties of UiO-66 prevent charge transport through the framework, and consequently, only [FeFe] units that are in direct physical contact with the electrode material are electrochemically addressable.

  13. EPR study of the onset of long-range order in the 2D organo-metallic magnet Cu(pyz)2(pyo)2(PF6)2

    SciTech Connect

    Mcdonald, Ross D; Ayala - Valenzuela, Oscar E; Singleton, John; Goddard, Paul A; Franke, I; Manson, J. L.

    2011-01-14

    The spin (S) 1/2 two-dimensional (2D) square-lattice quantum Heisenberg antiferromagnet system has long been interesting to theoretical physicists due to the variety of transitions that can arise. Moreover, the role of S = 1/2 fluctuations on a square lattice in the mechanism for cuprate superconductivity is hotly debated. Low dimensional metal-organic magnets, such as Cu(pyz){sub 2}(pyo){sub 2}(PF{sub 6}){sub 2}, offer the possibility to readily control the exchange parameters in a 20 system by changing chemical composition, thus creating spin architectures with desirable properties 'to order'. For a perfectly 20 system, long range magnetic order would not occur at finite temperature. However, in the metal-organic systems, interlayer coupling gives rise to a finite Neel temperature. For these quasi-2D systems the ordering temperature is dominated by the weakest (the interlayer) exchange interaction, whereas the saturation magnetic field is dominated by the strongest exchange interactions, thus providing a means of estimating the spatial exchange anisotropy in the system. It should be noted that the more 2D the system, the wider the temperature (T) range, T{sub N} < T < J/k{sub B}, over which magnetic fluctuations dominate. As evident by the ratio of magnetic saturation field, H{sub sat} {approx} 30 T, to the Neel temperature, T{sub N} = 1.72 K, Cu(pyz){sub 2}(pyo){sub 2}(PF{sub 6}){sub 2} is a good example of a 2D system with the anisotropy between inplane and interplane exchange interactions being of the order of 10{sup 3}.

  14. Presidential Green Chemistry Challenge: 2007 Academic Award

    EPA Pesticide Factsheets

    Presidential Green Chemistry Challenge 2007 award winner, Professor Michael J. Krische, developed selective C-C bond-forming hydrogenation without organometallic reagents, eliminating hazardous reagents and hazardous waste.

  15. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. The highest conductivities reported (approximately 4/Scm) were achieved with polythiophene in a polystyrene host polymer. The best films using a polyamide as base polymer were four orders of magnitude less conductive than the polystyrene films. The authors suggested that this was because polyimides were unable to swell sufficiently for infiltration of monomer as in the polystyrene. It was not clear, however, if the different conductivities obtained were merely the result of differing oxidation conditions. Oxidation time, temperature and oxidant concentration varied widely among the studies.

  16. Prebiotic coordination chemistry: The potential role of transition-metal complexes in the chemical evolution

    NASA Technical Reports Server (NTRS)

    Beck, M.

    1979-01-01

    In approaching the extremely involved and complex problem of the origin of life, consideration of the coordination chemistry appeared not only as a possibility but as a necessity. The first model experiments appear to be promising because of prebiotic-type synthesis by means of transition-metal complexes. It is especially significant that in some instances various types of vitally important substances (nucleic bases, amino acids) are formed simultaneously. There is ground to hope that systematic studies in this field will clarify the role of transition-metal complexes in the organizatorial phase of chemical evolution. It is obvious that researchers working in the fields of the chemistry of cyano and carbonyl complexes, and of the catalytic effect of transition-metal complexes are best suited to study these aspects of the attractive and interesting problem of the origin of life.

  17. Tuning exchange interactions in organometallic semiconductors

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane W.; Hua, Kim-Ngan; Headrick, Randall L.; Cherian, Judy G.; Bishop, Michael M.; McGill, Stephen A.; Furis, Madalina I.

    2015-09-01

    Organic semiconductors are emerging as a leading area of research as they are expected to overcome limitations of inorganic semiconductor devices for certain applications where low cost manufacturing, device transparency in the visible range or mechanical flexibility are more important than fast switching times. Solution processing methods produce thin films with millimeter sized crystalline grains at very low cost manufacturing prices, ideally suited for optical spectroscopy investigations of long range many-body effects in organic systems. To this end, we synthesized an entire family of organosoluble 3-d transition metal Pc's and successfully employed a novel solution-based pen-writing deposition technique to fabricate long range ordered thin films of mixtures of metal-free (H2Pc) molecule and organometallic phthalocyanines (MPc's). Our previous studies on the parent MPc crystalline thin films identified different electronic states mediating exchange interactions in these materials. This understanding of spin-dependent exchange interaction between delocalized π-electrons with unpaired d spins enabled the further tuning of these interactions by mixing CoPc and H2Pc in different ratios ranging from 1:1 to 1000:1 H2Pc:MPc. The magnitude of the exchange is also tunable as a function of the average distance between unpaired spins in these materials. Furthermore, high magnetic field (B < 25T) MCD and magneto-photoluminescence show evidence of spin-polarized band-edge excitons in the same materials.

  18. Lithium metal doped electrodes for lithium-ion rechargeable chemistry

    DOEpatents

    Liu, Gao; Battaglia, Vince; Wang, Lei

    2016-09-13

    An embodiment of the invention combines the superior performance of a polyvinylidene difluoride (PVDF) or polyethyleneoxide (POE) binder, the strong binding force of a styrene-butadiene (SBR) binder, and a source of lithium ions in the form of solid lithium metal powder (SLMP) to form an electrode system that has improved performance as compared to PVDF/SBR binder based electrodes. This invention will provide a new way to achieve improved results at a much reduced cost.

  19. Two-Center/Three-Electron Sigma Half-Bonds in Main Group and Transition Metal Chemistry.

    PubMed

    Berry, John F

    2016-01-19

    First proposed in a classic Linus Pauling paper, the two-center/three-electron (2c/3e) σ half-bond challenges the extremes of what may or may not be considered a chemical bond. Two electrons occupying a σ bonding orbital and one electron occupying the antibonding σ* orbital results in bond orders of ∼0.5 that are characteristic of metastable and exotic species, epitomized in the fleetingly stable He2(+) ion. In this Account, I describe the use of coordination chemistry to stabilize such fugacious three-electron bonded species at disparate ends of the periodic table. A recent emphasis in the chemistry of metal-metal bonds has been to prepare compounds with extremely short metal-metal distances and high metal-metal bond orders. But similar chemistry can be used to explore metal-metal bond orders less than one, including 2c/3e half-bonds. Bimetallic compounds in the Ni2(II,III) and Pd2(II,III) oxidation states were originally examined in the 1980s, but the evidence collected at that time suggested that they did not contain 2c/3e σ bonds. Both classes of compounds have been re-examined using EPR spectroscopy and modern computational methods that show the unpaired electron of each compound to occupy a M-M σ* orbital, consistent with 2c/3e Ni-Ni and Pd-Pd σ half-bonds. Elsewhere on the periodic table, a seemingly unrelated compound containing a trigonal bipyramidal Cu3S2 core caused a stir, leaving prominent theorists at odds with one another as to whether the compound contains a S-S bond. Due to my previous experience with 2c/3e metal-metal bonds, I suggested that the Cu3S2 compound could contain a 2c/3e S-S σ half-bond in the previously unknown oxidation state of S2(3-). By use of the Cambridge Database, a number of other known compounds were identified as potentially containing S2(3-) ligands, including a noteworthy set of cyclopentadienyl-supported compounds possessing diamond-shaped Ni2E2 units with E = S, Se, and Te. These compounds were subjected to

  20. Photoredox Catalysis Unlocks Single-Electron Elementary Steps in Transition Metal Catalyzed Cross-Coupling

    PubMed Central

    2016-01-01

    Since initial reports, cross-coupling technologies employing photoredox catalysts to access novel reactivity have developed with increasing pace. In this Outlook, prominent examples from the recent literature are organized on the basis of the elementary transformation enabled by photoredox catalysis and are discussed in the context of relevant historical precedent in stoichiometric organometallic chemistry. This treatment allows mechanistic similarities inherent to odd-electron transition metal reactivity to be generalized to a set of lessons for future reaction development. PMID:27280163

  1. Investigation of Chemical Bonding in In Situ Cryocrystallized Organometallic Liquids.

    PubMed

    Sirohiwal, Abhishek; Hathwar, Venkatesha R; Dey, Dhananjay; Chopra, Deepak

    2017-08-02

    This Communication presents the crystal structure of the organometallic complexes (η(4) -1,3-cyclohexadiene) iron tricarbonyl (I) and (methyl cyclopentadienyl) manganese tricarbonyl (II) which are both liquid at room temperature. The crystal structures were determined using a state-of-the-art in situ cryocrystallization technique. The bonding features were elucidated using topological analysis of charge density in the framework of quantum theory of atoms in molecules (QTAIM) and theoretical charge density analysis (multipolar refinement), to decipher the metal-carbonyl, metal-olefin and metal-carbocyclic ligand interactions in these complexes. Complex I displayed a simultaneous interplay of a "synergic effect" (σ-donation and π-back-bonding in the metal and an end-on coordinated carbonyl interaction) as well as consistency with the Dewar-Chatt-Duncanson (DCD) model (metal and side-on coordinated π-ligand interactions). © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Organometallic Polymeric Conductors

    NASA Technical Reports Server (NTRS)

    Youngs, Wiley J.

    1997-01-01

    For aerospace applications, the use of polymers can result in tremendous weight savings over metals. Suitable polymeric materials for some applications like EMI shielding, spacecraft grounding, and charge dissipation must combine high electrical conductivity with long-term environmental stability, good processability, and good mechanical properties. Recently, other investigators have reported hybrid films made from an electrically conductive polymer combined with insulating polymers. In all of these instances, the films were prepared by infiltrating an insulating polymer with a precursor for a conductive polymer (either polypyrrole or polythiophene), and oxidatively polymerizing the precursor in situ. The resulting composite films have good electrical conductivity, while overcoming the brittleness inherent in most conductive polymers. Many aerospace applications require a combination of properties. Thus, hybrid films made from polyimides or other engineering resins are of primary interest, but only if conductivities on the same order as those obtained with a polystyrene base could be obtained. Hence, a series of experiments was performed to optimize the conductivity of polyimide-based composite films. The polyimide base chosen for this study was Kapton. 3-MethylThiophene (3MT) was used for the conductive phase. Three processing variables were identified for producing these composite films, namely time, temperature, and oxidant concentration for the in situ oxidation. Statistically designed experiments were used to examine the effects of these variables and synergistic/interactive effects among variables on the electrical conductivity and mechanical strength of the films. Multiple linear regression analysis of the tensile data revealed that temperature and time have the greatest effect on maximum stress. The response surface of maximum stress vs. temperature and time (for oxidant concentration at 1.2 M) is shown. Conductivity of the composite films was measured for

  3. The surface chemistry of metal-organic frameworks.

    PubMed

    McGuire, Christina V; Forgan, Ross S

    2015-03-28

    Metal-organic frameworks (MOFs) have received particular attention over the last 20 years as a result of their attractive properties offering potential applications in a number of areas. Typically, these characteristics are tuned by functionalisation of the bulk of the MOF material itself. This Feature Article focuses instead on modification of MOF particles at their surfaces only, which can also offer control over the bulk properties of the material. The differing surface modification techniques available to the synthetic chemist will be discussed, with a focus on the effect of surface modification of MOFs on their fundamental properties and application in adsorption, catalysis, drug delivery and other areas.

  4. Metal/Ceramic Interfaces: Relationships Between Structure and Chemistry

    DTIC Science & Technology

    1992-12-31

    IT 5AI&A sof 120 I 5TRIIDUTION WOE 13 . AU I HAUT (MaXimUm 200 WOrdM) SEE ATTACHED EXECUTIVE SUMMARY 14. bU•U..UlI IiHM5 I. NUM-N UIO PA(I. Metal...mental routes such as diffusion bonding [9, 10, 16], internal oxidation [ 13 -15], and epitaxial growth of niobium overlayers on A120 3 substrates [1-8, 11...or epitaxial relationships develop after internal oxidation or epitax- ial growth respectively. Mader [ 13 , 14] and Kuwabara et al. [15] observed that

  5. (Comparison of group transfer, inner sphere and outer sphere electron transfer mechanisms of organometallic complexes: Progress report)

    SciTech Connect

    Atwood, J.

    1990-01-01

    We have constructed an infrared stopped-flow spectrophotometer and initiated a study of the mechanisms of reactions that involve a change in the oxidation state of organometallic complexes. In this summary we highlight our results on reactions (1) that formally involve exchange of a charged species between two metal carbonyl anions, (2) that involve addition of an electron to, or removal of an electron from organometallic complexes that contain a metal-metal bond, and (3) between coordination complexes and metal carbonyl anions.

  6. [Comparison of group transfer, inner sphere and outer sphere electron transfer mechanisms of organometallic complexes: Progress report

    SciTech Connect

    Atwood, J.

    1990-12-31

    We have constructed an infrared stopped-flow spectrophotometer and initiated a study of the mechanisms of reactions that involve a change in the oxidation state of organometallic complexes. In this summary we highlight our results on reactions (1) that formally involve exchange of a charged species between two metal carbonyl anions, (2) that involve addition of an electron to, or removal of an electron from organometallic complexes that contain a metal-metal bond, and (3) between coordination complexes and metal carbonyl anions.

  7. Multistep soft chemistry method for valence reduction in transition metal oxides with triangular (CdI2-type) layers.

    PubMed

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2014-03-14

    Transition metal (M) oxides with MO2 triangular layers demonstrate a variety of physical properties depending on the metal oxidation states. In the known compounds, metal oxidation states are limited to either 3+ or mixed-valent 3+/4+. A multistep soft chemistry synthetic route for novel phases with M(2+/3+)O2 triangular layers is reported.

  8. Electrophilic metal alkyl chemistry in new ligand environments

    SciTech Connect

    Jordan, Richard F.

    2002-09-11

    Cationic group 4 and actinide Cp{sub 2}MR{sup +} metallocenes, and isolobal neutral group 3 and lanthanide Cp{sub 2}MR analogs, are exceptionally reactive in insertion and {sigma}-bond metathesis processes, and have been exploited extensively in catalysis and synthesis, most notably single-site olefin polymerization. The objectives of recent work were to design new electrophilic metal alkyls based on non-Cp{sub 2}M structures, and to exploit these systems in fundamental and applied studies related to olefin polymerization and other catalytic reactions. Key results are reported in the following areas: discrete non-metallocene cationic group 4 alkyls, activation of non-metallocene compounds with methylalumoxane, and cationic aluminum alkyl compounds. Numerous structural formulas are included.

  9. USSR Report, Chemistry, No. 105

    DTIC Science & Technology

    2007-11-02

    This USSR Report contains articles on Chemistry. Some of the topics covered are Alkaloids, Catalysis, Analytical Chemistry, Chemical Industry, Coal Gasification , Combustion, Electrochemistry, Fertilizers, Free Radials, Nitrogen Compounds, Organometallic Compounds, Organophosphorus Compounds, Pesticides, Petroleum Processing Technology, Polymers and Polymerization and Rubber and Elastomers.,

  10. Surface chemistry of metal-organic frameworks at the liquid-solid interface.

    PubMed

    Zacher, Denise; Schmid, Rochus; Wöll, Christof; Fischer, Roland A

    2011-01-03

    Metal-organic frameworks (MOFs) are a fascinating class of novel inorganic-organic hybrid materials. They are essentially based on classic coordination chemistry and hold much promise for unique applications ranging from gas storage and separation to chemical sensing, catalysis, and drug release. The evolution of the full innovative potential of MOFs, in particular for nanotechnology and device integration, however requires a fundamental understanding of the formation process of MOFs. Also necessary is the ability to control the growth of thin MOF films and the positioning of size- and shape-selected crystals as well as MOF heterostructures on a given surface in a well-defined and oriented fashion. MOFs are solid-state materials typically formed by solvothermal reactions and their crystallization from the liquid phase involves the surface chemistry of their building blocks. This Review brings together various key aspects of the surface chemistry of MOFs.

  11. Conjugated organometallic materials containing tungsten centers

    NASA Astrophysics Data System (ADS)

    Jones, Marya

    Our group is interested in the optical and electronic properties of organometallic analogues of conjugated organic compounds. Specifically, in this thesis we will discuss the properties of complexes in which W≡C moieties replace C≡C fragments within the framework of oligo(phenyleneethynylenes) and a C4-polyyne. A family of derivatives of the type Ph(C≡CC6H4 )m(L)4W≡C(C6H 4C≡C)nPh (m = 0, 1; n = 0, 1, 2) have been prepared and characterized by X-ray crystallography, electronic-absorption spectroscopy, and electrochemistry. This substitution has allowed us to directly compare the electronic and optical properties of these organometallic complexes with those of their organic analogues. We found that while these systems exhibit redox and spectroscopic properties similar to those of their organic counterparts they also exhibit new characteristics that are due to the incorporation of the metal center. The design of these compounds has also allowed us to address how the position of the metal within the backbone affects the electronic and optical properties of these compounds. We found that the position of the metal is important in controlling the electronic structure of the material, thus suggesting that the properties of these compounds can be further tuned by changing the position of the metal within the conjugated carbon chain. In addition, we have appended sulfur and isocyanide functionalities to oligo(phenyleneethynylene) analogues. A family of compounds of the type Cl(dppe) 2W(≡CC6H4-4-(C≡CC6H 4)m-4'-R) (m = l, 2; R = N≡C, SCH2CH 2Si(CH3)3) have been prepared and characterized by electronic-absorption spectroscopy and electrochemistry. Differences between the sulfur and isocyanide functionalities are examined, along with the effects of extending conjugation along the arylidyne chain. Evidence that the sulfur-containing arylidyne complexes form self-assembled monolayers on Au and Pt electrodes is presented. In addition, the electron-transfer rates for

  12. Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Cotton, F. Albert; Chisholm, Malcolm H.

    1982-01-01

    Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)

  13. Bonds Between Metal Atoms: A New Mode of Transition Metal Chemistry.

    ERIC Educational Resources Information Center

    Cotton, F. Albert; Chisholm, Malcolm H.

    1982-01-01

    Discusses polynuclear metal clusters (containing two or more metal atoms bonded to one another as well as to nonmetallic elements), including their formation and applications. Studies of bonds between metal atoms reveal superconductors, organic-reaction catalysts, and photosensitive complexes that may play a role in solar energy. (JN)

  14. [Co(η5-P5){η2-P2H(mes)}]2-: a phospha-organometallic complex obtained by the transition-metal-mediated activation of the heptaphosphide trianion.

    PubMed

    Knapp, Caroline M; Westcott, Bethan H; Raybould, Melissa A C; McGrady, John E; Goicoechea, Jose M

    2012-09-03

    A carbon copy: The chemical activation of the heptaphosphide trianion with [Co(PEt(2)Ph)(2)(mes)(2)] (see picture; 1) yields the novel phospha-organometallic complex [Co(η(5)-P(5)){η(2)-P(2)H(mes)}](2-) (2). The reaction product maintains the nuclearity of the parent cluster, but extensive cage fragmentation takes place to yield a diamagnetic "inorganometallic" cobalt complex. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Thermochemistry and Geometries for Transition-Metal Chemistry from the Random Phase Approximation.

    PubMed

    Waitt, Craig; Ferrara, Nashali M; Eshuis, Henk

    2016-11-08

    Performance of the random phase approximation (RPA) is tested for thermochemistry and geometries of transition-metal chemistry using various benchmarks obtained either computationally or experimentally. Comparison is made to popular (semi)local meta- and hybrid density functionals as well as to the second-order Møller-Plesset perturbation theory (MP2) and its spin-component-scaled derivatives. The benchmark sets include reaction energies, barrier heights, and dissociation energies of prototype bond-activation reactions, dissociation energies for a set of large transition-metal complexes, bond lengths and dissociation energies of metal hydride ions, and bond lengths and angles of a set of closed-shell first-row transition-metal complexes. The emphasis is on first-row transition-metal chemistry, though for energies, elements beyond the first-row are included. Attention is paid to the basis set convergence of RPA. For thermochemistry, RPA performs on par or better than the density functional theory (DFT) functionals presented and is significantly more accurate than MP2. The largest errors are observed in dissociation energies where the electronic environment is altered substantially. For structural parameters, very good results were obtained, and RPA meets the high quality of structures from DFT. In most cases, well-converged structures are obtained with basis sets of triple-zeta quality. MP2 optimized values can often not be obtained and are on average of inferior quality. Though chemical accuracy is not reached, the RPA method is a step forward toward a systematic, parameter-free, all-round method to describe transition-metal chemistry.

  16. Atomic scale characterization and surface chemistry of metal modified titanate nanotubes and nanowires

    NASA Astrophysics Data System (ADS)

    Kukovecz, Ákos; Kordás, Krisztián; Kiss, János; Kónya, Zoltán

    2016-10-01

    Titanates are salts of polytitanic acid that can be synthesized as nanostructures in a great variety concerning crystallinity, morphology, size, metal content and surface chemistry. Titanate nanotubes (open-ended hollow cylinders measuring up to 200 nm in length and 15 nm in outer diameter) and nanowires (solid, elongated rectangular blocks with length up to 1500 nm and 30-60 nm diameter) are the most widespread representatives of the titanate nanomaterial family. This review covers the properties and applications of these two materials from the surface science point of view. Dielectric, vibrational, electron and X-ray spectroscopic results are comprehensively discussed first, then surface modification methods including covalent functionalization, ion exchange and metal loading are covered. The versatile surface chemistry of one-dimensional titanates renders them excellent candidates for heterogeneous catalytic, photocatalytic, photovoltaic and energy storage applications, therefore, these fields are also reviewed.

  17. Some aspects of metallic ion chemistry and dynamics in the mesosphere and thermosphere

    NASA Technical Reports Server (NTRS)

    Mathews, J. D.

    1987-01-01

    The relationship between the formation of sporadic layers of metallic ion and the dumping of these ions into the upper mesosphere is discussed in terms of the tidal wind, classical (i.e., windshear) and other more complex, perhaps highly nonlinear layer formation mechanisms, and a possible circulation mechanism for these ions. Optical, incoherent scatter radar, rocket, and satellite derived evidence for various layer formation mechanisms and for the metallic ion circulation system is reviewed. The results of simple one dimensional numerical model calculations of sporadic E and intermediate layer formation are presented along with suggestions for more advanced models of intense or blanketing sporadic E. The flux of metallic ions dumped by the tidal wind system into the mesosphere is estimated and compared with estimates of total particle flux of meteoric origin. Possible effects of the metallic ion flux and of meteoric dust on D region ion chemistry are discussed.

  18. Structural modifications due to interface chemistry at metal-nitride interfaces

    NASA Astrophysics Data System (ADS)

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X.-Y.

    2015-11-01

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. Corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  19. Coordination chemistry insights into the role of alkali metal promoters in dinitrogen reduction.

    PubMed

    Connor, Gannon P; Holland, Patrick L

    2017-05-15

    The Haber-Bosch process is a major contributor to fixed nitrogen that supports the world's nutritional needs and is one of the largest-scale industrial processes known. It has also served as a testing ground for chemists' understanding of surface chemistry. Thus, it is significant that the most thoroughly developed catalysts for N2 reduction use potassium as an electronic promoter. In this review, we discuss the literature on alkali metal cations as promoters for N2 reduction, in the context of the growing knowledge about cooperative interactions between N2, transition metals, and alkali metals in coordination compounds. Because the structures and properties are easier to characterize in these compounds, they give useful information on alkali metal interactions with N2. Here, we review a variety of interactions, with emphasis on recent work on iron complexes by the authors. Finally, we draw conclusions about the nature of these interactions and areas for future research.

  20. Structural modifications due to interface chemistry at metal-nitride interfaces.

    PubMed

    Yadav, S K; Shao, S; Wang, J; Liu, X-Y

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. Corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  1. Structural modifications due to interface chemistry at metal-nitride interfaces

    PubMed Central

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X.-Y.

    2015-01-01

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. Corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces. PMID:26611639

  2. Structural modifications due to interface chemistry at metal-nitride interfaces

    DOE PAGES

    Yadav, S. K.; Shao, S.; Wang, J.; ...

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energiesmore » of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.« less

  3. Structural modifications due to interface chemistry at metal-nitride interfaces

    SciTech Connect

    Yadav, S. K.; Shao, S.; Wang, J.; Liu, X. -Y.

    2015-11-27

    Based on accurate first principles density functional theory (DFT) calculations, an unusual phenomenon of interfacial structural modifications, due to the interface chemistry influence is identified at two metal-nitride interfaces with strong metal-nitrogen affinity, Al/TiN {111} and Al/VN {111} interfaces. It is shown that at such interfaces, a faulted stacking structure is energetically preferred on the Al side of the interface. And both intrinsic and extrinsic stacking fault energies in the vicinity Al layers are negligibly small. However, such phenomenon does not occur in Pt/TiN and Pt/VN interfaces because of the weak Pt-N affinity. As a result, corresponding to structural energies of metal-nitride interfaces, the linear elasticity analysis predicts characteristics of interfacial misfit dislocations at metal-nitride interfaces.

  4. Molecular tectonics: heterometallic coordination networks based on a Pt(II) organometallic metallatecton.

    PubMed

    Zigon, Nicolas; Kyritsakas, Nathalie; Hosseini, Mir Wais

    2015-08-28

    Combinations of a neutral organometallic tecton based on a square planar Pt(ii) complex bearing two triphenylphosphine groups and two 4-ethynylpyridyl coordinating moieties in trans positions, with various metal halides (MX2, M = Co(ii), Ni(ii), Cd(ii), X = Cl(-) or Br(-)) lead to the formation of 2D grid type heterobimetallic coordination networks in the crystalline phase.

  5. Synthesis and initial transition metal chemistry of the first PGeP pincer-type germylene.

    PubMed

    Álvarez-Rodríguez, Lucía; Brugos, Javier; Cabeza, Javier A; García-Álvarez, Pablo; Pérez-Carreño, Enrique; Polo, Diego

    2017-01-16

    A PGeP pincer-type germylene, Ge(NCH2P(t)Bu2)2C6H4, which contains two phosphane groups hanging from the N atoms of an N-heterocyclic germylene fragment, has been isolated for the first time. This compound has already furnished a rich transition metal derivative chemistry (Co, Rh, and Pd) that includes complexes containing bridging P,Ge,P-, chelating P,Ge- and pincer P,Ge,P-ligands.

  6. Organic or organometallic template mediated clay synthesis

    SciTech Connect

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1992-12-31

    A method is given for incorporating diverse varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and LiF for 2 days with an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by US patent No. 3,887,454 issued to Hickson, June 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have water-solubility, positive charge, and thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  7. Combinatorial screening of inorganic and organometallic materials

    DOEpatents

    Schultz, Peter G.; Xiang, Xiaodong; Goldwasser, Isy

    2002-01-01

    Methods and apparatus for the preparation and use of a substrate having an array of diverse materials in predefined regions thereon. A substrate having an array of diverse materials thereon is generally prepared by delivering components of materials to predefined regions on a substrate, and simultaneously reacting the components to form at least two materials. Materials which can be prepared using the methods and apparatus of the present invention include, for example, covalent network solids, ionic solids and molecular solids. More particularly, materials which can be prepared using the methods and apparatus of the present invention include, for example, inorganic materials, intermetallic materials, metal alloys, ceramic materials, organic materials, organometallic materials, non-biological organic polymers, composite materials (e.g., inorganic composites, organic composites, or combinations thereof), etc. Once prepared, these materials can be screened for useful properties including, for example, electrical, thermal, mechanical, morphological, optical, magnetic, chemical, or other properties. Thus, the present invention provides methods for the parallel synthesis and analysis of novel materials having useful properties.

  8. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, Kathleen C.; Winans, Randall E.; Botto, Robert E.

    1994-01-01

    A method for incorporating diverse Varieties of intercalants or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalant or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalants or templates may be introduced. The intercalants or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays.

  9. Organic or organometallic template mediated clay synthesis

    DOEpatents

    Gregar, K.C.; Winans, R.E.; Botto, R.E.

    1994-05-03

    A method is described for incorporating diverse varieties of intercalates or templates directly during hydrothermal synthesis of clays such as hectorite or montmorillonite-type layer-silicate clays. For a hectorite layer-silicate clay, refluxing a gel of silica sol, magnesium hydroxide sol and lithium fluoride for two days in the presence of an organic or organometallic intercalate or template results in crystalline products containing either (a) organic dye molecules such as ethyl violet and methyl green, (b) dye molecules such as alcian blue that are based on a Cu(II)-phthalocyannine complex, or (c) transition metal complexes such as Ru(II)phenanthroline and Co(III)sepulchrate or (d) water-soluble porphyrins and metalloporphyrins. Montmorillonite-type clays are made by the method taught by U.S. Pat. No. 3,887,454 issued to Hickson, Jun. 13, 1975; however, a variety of intercalates or templates may be introduced. The intercalates or templates should have (i) water-solubility, (ii) positive charge, and (iii) thermal stability under moderately basic (pH 9-10) aqueous reflux conditions or hydrothermal pressurized conditions for the montmorillonite-type clays. 22 figures.

  10. Interfacial chemistry at metal/CdTe contacts as probed by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Lin, W.-Y.; Wei, C.; Rajeshwar, K.

    1994-10-01

    All four possible chemical reactivity patterns, namely, outdiffusion of Te (metal-Cd alloy formation), Cd outdiffusion (metal telluride compound formation), comparable chemical reactivity of the metal towards both Cd and Te (no Cd or Te outdiffusion), and chemical inertness of the metal towards CdTe, were differentiated via the differential scanning calorimetry (DSC) technique from a study of the interaction of nine different metals toward CdTe powder. The fusion signatures of free Cd or Te, exotherms due to compound or alloy formation, along with the thermal transitions of the metal telluride and/or the intermetallic were used for this purpose. These reactivity patterns are discussed within the framework of two different thermodynamic models. Both virgin and chemically etched CdTe surfaces were examined, and found to exhibit rather different reactivity trends towards the metal. The ramifications of these results in terms of the electronic properties of metal/CdTe contacts are discussed. Finally, DSC is shown to be useful for probing alterations in the CdTe surface chemistry as a result of the etch treatment.

  11. Exploring Undergraduates' Understanding of Transition Metals Chemistry with the Use of Cognitive and Confidence Measures

    ERIC Educational Resources Information Center

    Sreenivasulu, Bellam; Subramaniam, R.

    2014-01-01

    Compared to studies on school students' understanding of various topics in the sciences, studies involving university students have received relatively less attention in the science education literature. In this study, we investigated university students' understanding of transition metals chemistry, a topic in inorganic chemistry, which…

  12. Exploring Undergraduates' Understanding of Transition Metals Chemistry with the Use of Cognitive and Confidence Measures

    ERIC Educational Resources Information Center

    Sreenivasulu, Bellam; Subramaniam, R.

    2014-01-01

    Compared to studies on school students' understanding of various topics in the sciences, studies involving university students have received relatively less attention in the science education literature. In this study, we investigated university students' understanding of transition metals chemistry, a topic in inorganic chemistry, which…

  13. Magnetic Exchange Interactions in Long Range Ordered Diluted Organometallic Semiconductors

    NASA Astrophysics Data System (ADS)

    Rawat, Naveen; Manning, Lane; Furis, Madalina

    2015-03-01

    Exchange Interactions in diluted organometallic crystalline thin films of Phthalocyanines made of a mixture of organo-soluble derivatives of metal-free (H2Pc) molecule and MnPc is investigated. The tuning of optical and magnetic properties in organometallics is driven by their emergence in optoelectronic applications involving flexible electronics. Thin films with metal to metal-free Pc ratios ranging from 1: 1 to 1:10 were fabricated using solution processing that produces macroscopic grains. In the case of Mn-Pc, our previos measurements showed enhanced hybridization of ligand π-electronic states with the Mn d-orbitals as well as indirect exchange interaction similar to that of RKKY type exchange. The evolution of Zeeman splitting of specific MCD-active states resulted in enhanced effective π-electrons g-factors, analogous to diluted magnetic semiconductors (DMS) systems. Recent Variable temperature Magnetic Circular Dichroism (VTVH-MCD) measurements has now revealed that the exchange interaction is Antiferromagnetic. Recent MCD data for mixed derivatives will be presented along with their temperature dependance that further probes this exchange interaction. NSF award 1056589

  14. Ceramics Derived from Organo-Metallic Precursors

    DTIC Science & Technology

    1991-10-01

    rates are desired to allow the film and the substrate to adjust to the thermal expansion mismatch. An extended soaking period from 4000 to 620’C...normal alkoxide-derived coatings. Organic modification enables the refractive index, microhardness and thermal expansion coefficient of the film as...composition and thermal history in the Bi-Ca-Sr-Cu-O system. The system was selected for detailed investigation because of the attractive high temperature

  15. Synthesis of Some "Cobaloxime" Derivatives: A Demonstration of "Umpolung" in the Reactivity of an Organometallic Complex

    NASA Astrophysics Data System (ADS)

    Jameson, Donald L.; Grzybowski, Joseph J.; Hammels, Deb E.; Castellano, Ronald K.; Hoke, Molly E.; Freed, Kimberly; Basquill, Sean; Mendel, Angela; Shoemaker, William J.

    1998-04-01

    This article describes a four-reaction sequence for the synthesis of two organometallic "cobaloxime" derivatives. The concept of "Umpolung" or reversal of reactivity is demonstrated in the preparation of complexes. The complex Co(dmgH)2(4-t-BuPy)Et is formed by the reaction of a cobalt (I) intermediate (cobalt in the role of nucleophile) with ethyl iodide. The complex Co(dmgH)2(4-t-BuPy)Ph is formed by the reaction of PhMgBr with a cobalt (III) intermediate (cobalt in the role of electrophile). All the products contain cobalt in the diamagnetic +3 oxidation state and are readily characterized by proton and carbon NMR. The four reaction sequence may be completed in two 4-hour lab periods. Cobaloximes are well known as model complexes for Vitamin B-12 and the experiment exposes students to aspects of classical coordination chemistry, organometallic chemistry and bioinorganic chemistry. The experiment also illustrates an important reactivity parallel between organic and organometallic chemistry.

  16. Transition metal coordination chemistry ofN,N-bis(2-{pyrid-2-ylethyl})hydroxylamine.

    PubMed

    Belock, Christopher W; Cetin, Anil; Barone, Natalie V; Ziegler, Christopher J

    2008-08-18

    Although directly relevant to metal mediated biological nitrification as well as the coordination chemistry of peroxide, the metal complexes of hydroxylamines and their functionalized variants remain largely unexplored. The chelating hydroxylamine ligand N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine can be readily generated via a solvent free reaction in high purity; however, the ligand is prone to decomposition which can hamper metal reaction. N,N-bis(2-{pyrid-2-ylethyl})hydroxylamine forms stable complexes with chromium(III), manganese(II), nickel(II), and cadmium(II) ions, coordinating in a side-on mode in the case of chromium and via the nitrogen in the case of the latter three metal ions. The hydroxylamine ligand can also be reduced to form N,N-bis(2-{pyrid-2-ylethyl})amine upon exposure to a stoichiometric amount of the metal salts cobalt(II) nitrate, vanadium(III) chloride, and iron(II) chloride. In the reaction with cobalt nitrate, the reduced ligand then chelates to the metal to form [N,N-bis(2-{pyrid-2-ylethyl})amine]dinitrocobalt(II). Upon reaction with vanadium(III) chloride and iron(III) chloride, the reduced ligand is isolated as the protonated free base, resulting from a metal-mediated decomposition reaction.

  17. Correlation of inclusion size and chemistry with weld metal composition and microstructure arc weldments of high strength steels

    NASA Astrophysics Data System (ADS)

    Eakes, Mark W.

    1994-12-01

    Non-metallic inclusions are crucial to the development of acicular ferrite, the desired microstructure for optimal strength and toughness in weld metal. This study focused on obtaining correlation between the size and chemistry of inclusions and weld metal properties, especially the amount of acicular ferrite, in Gas Metal Arc (GMA) and Submerged Arc (SA) weldments in HY-100 and HSLA-100 steel. A strong correlation was found between the amount of acicular ferrite, flux basicity and inclusion composition and volume fraction in SAW weld metal samples. An index developed to consider the effect of chemistry and volume fraction of inclusions on acicular ferrite showed good correlation. The GMA weld samples were found to contain less acicular ferrite than the SAW samples, principally because of their lower oxygen content. However, it was again found possible to correlate inclusion chemistry and volume fraction with acicular ferrite formation. Unfortunately, the large amount of data scatter precluded the development of an index in this case.

  18. The chemistry of metal-organic frameworks for CO2 capture, regeneration and conversion

    NASA Astrophysics Data System (ADS)

    Trickett, Christopher A.; Helal, Aasif; Al-Maythalony, Bassem A.; Yamani, Zain H.; Cordova, Kyle E.; Yaghi, Omar M.

    2017-08-01

    The carbon dioxide challenge is one of the most pressing problems facing our planet. Each stage in the carbon cycle — capture, regeneration and conversion — has its own materials requirements. Recent work on metal-organic frameworks (MOFs) demonstrated the potential and effectiveness of these materials in addressing this challenge. In this Review, we identify the specific structural and chemical properties of MOFs that have led to the highest capture capacities, the most efficient separations and regeneration processes, and the most effective catalytic conversions. The interior of MOFs can be designed to have coordinatively unsaturated metal sites, specific heteroatoms, covalent functionalization, other building unit interactions, hydrophobicity, porosity, defects and embedded nanoscale metal catalysts with a level of precision that is crucial for the development of higher-performance MOFs. To realize a total solution, it is necessary to use the precision of MOF chemistry to build more complex materials to address selectivity, capacity and conversion together in one material.

  19. Development of Li-Metal Battery Cell Chemistries at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Lvovich, Vadim F.

    2015-01-01

    State-of-the-Art lithium-ion battery technology is limited by specific energy and thus not sufficiently advanced to support the energy storage necessary for aerospace needs, such as all-electric aircraft and many deep space NASA exploration missions. In response to this technological gap, our research team at NASA Glenn Research Center has been active in formulating concepts and developing testing hardware and components for Li-metal battery cell chemistries. Lithium metal anodes combined with advanced cathode materials could provide up to five times the specific energy versus state-of-the-art lithium-ion cells (1000 Whkg versus 200 Whkg). Although Lithium metal anodes offer very high theoretical capacity, they have not been shown to successfully operate reversibly.

  20. Orbitals in inorganic chemistry: metal rings and clusters, hydronitrogens, and heterocyles.

    PubMed

    Inagaki, Satoshi

    2010-01-01

    A chemical orbital theory is useful in inorganic chemistry. Some applications are described for understanding and designing of inorganic molecules. Among the topics included are: (1) valence electron rules to predict stabilities of three- and four-membered ring metals and for those of regular octahedral M(6) metal clusters solely by counting the number of valence electrons; (2) pentagon stability (stability of five- relative to six-membered rings in some classes of molecules), predicted and applied for understanding and designing saturated molecules of group XV elements; (3) properties of unsaturated hydronitrogens N( m )H( n ) in contrast to those of hydrocarbons C( m )H( n ); (4) unusually short nonbonded distances between metal atoms in cyclic molecules.

  1. Old acid, new chemistry. Negative metal anions generated from alkali metal oxalates and others.

    PubMed

    Curtis, Sharon; Renaud, Justin; Holmes, John L; Mayer, Paul M

    2010-11-01

    A brief search in Sci Finder for oxalic acid and oxalates will reward the researcher with a staggering 129,280 hits. However, the generation of alkali metal and silver anions via collision-induced dissociation of the metal oxalate anion has not been previously been reported, though Tian and coworkers recently investigated the dissociation of lithium oxalate. The exothermic decomposition of alkali metal oxalate anion to carbon dioxide in the collision cell of a triple quadrupole mass spectrometer leaves no place for the electron to reside, resulting in a double electron-transfer reaction to produce an alkali metal anion. This reaction is facilitated by the negative electron affinity of carbon dioxide and, as such, the authors believe that metal oxalates are potentially unique in this respect. The observed dissociation reactions for collision with argon gas (1.7-1.8 × 10(-3) mbar) for oxalic acid and various alkali metal oxalates are discussed and summarized. Silver oxalate is also included to demonstrate the propensity of this system to generate transition-metal anions, as well.

  2. Capturing snapshots of post-synthetic metallation chemistry in metal-organic frameworks

    NASA Astrophysics Data System (ADS)

    Bloch, Witold M.; Burgun, Alexandre; Coghlan, Campbell J.; Lee, Richmond; Coote, Michelle L.; Doonan, Christian J.; Sumby, Christopher J.

    2014-10-01

    Post-synthetic metallation is employed strategically to imbue metal-organic frameworks (MOFs) with enhanced performance characteristics. However, obtaining precise structural information for metal-centred reactions that take place within the pores of these materials has remained an elusive goal, because of issues with high symmetry in certain MOFs, lower initial crystallinity for some chemically robust MOFs, and the reduction in crystallinity that can result from carrying out post-synthetic reactions on parent crystals. Here, we report a new three-dimensional MOF possessing pore cavities that are lined with vacant di-pyrazole groups poised for post-synthetic metallation. These metallations occur quantitatively without appreciable loss of crystallinity, thereby enabling examination of the products by single-crystal X-ray diffraction. To illustrate the potential of this platform to garner fundamental insight into metal-catalysed reactions in porous solids we use single-crystal X-ray diffraction studies to structurally elucidate the reaction products of consecutive oxidative addition and methyl migration steps that occur within the pores of the Rh-metallated MOF, 1·[Rh(CO)2][Rh(CO)2Cl2].

  3. Exploring Undergraduates' Understanding of Transition Metals Chemistry with the use of Cognitive and Confidence Measures

    NASA Astrophysics Data System (ADS)

    Sreenivasulu, Bellam; Subramaniam, R.

    2014-12-01

    Compared to studies on school students' understanding of various topics in the sciences, studies involving university students have received relatively less attention in the science education literature. In this study, we investigated university students' understanding of transition metals chemistry, a topic in inorganic chemistry, which has been only scarcely explored in the science education literature. A four-tier diagnostic instrument was used. The instrument comprises 25 questions, and each question has an answer tier, a confidence rating for this tier, a reason tier and a confidence rating for this tier. Versions of the instrument were refined iteratively during the preliminary and pilot phases of the study. This study reports on the results obtained from the main phase of the study, using a sample of 140 students. Overall, the diagnostic test was difficult for the students. The students had a mean score of 38 %, based on correct responses for both answer and reason tiers for the questions. It was accompanied by a mean confidence of only 3.49 out of 6 (that is, 58.2 %) for the whole test. The results indicate that transition metals chemistry is a difficult topic for the students. Twenty-four alternative conceptions have been identified in this study, including some indication of their strengths. Some implications of the study are discussed.

  4. Automated building of organometallic complexes from 3D fragments.

    PubMed

    Foscato, Marco; Venkatraman, Vishwesh; Occhipinti, Giovanni; Alsberg, Bjørn K; Jensen, Vidar R

    2014-07-28

    A method for the automated construction of three-dimensional (3D) molecular models of organometallic species in design studies is described. Molecular structure fragments derived from crystallographic structures and accurate molecular-level calculations are used as 3D building blocks in the construction of multiple molecular models of analogous compounds. The method allows for precise control of stereochemistry and geometrical features that may otherwise be very challenging, or even impossible, to achieve with commonly available generators of 3D chemical structures. The new method was tested in the construction of three sets of active or metastable organometallic species of catalytic reactions in the homogeneous phase. The performance of the method was compared with those of commonly available methods for automated generation of 3D models, demonstrating higher accuracy of the prepared 3D models in general, and, in particular, a much wider range with respect to the kind of chemical structures that can be built automatically, with capabilities far beyond standard organic and main-group chemistry.

  5. (Comparison of group transfer, inner sphere and outer sphere electron transfer mechanisms of organometallic complexes)

    SciTech Connect

    Atwood, J.

    1990-01-01

    During the course of Grant ER13775 we have constructed an infrared stopped-flow spectrophotometer and initiated a study of the mechanisms of reactions that involve a change in the oxidation state of organometallic complexes. The spectrometer combined conventional stopped-flow techniques with an infrared optical system comprised of a carbon monoxide laser, an IRTRAN flow-through cell and a mercury-cadium-telluride detector. In this summary we will highlight our results on reactions: (1) that formally involve exchange of a charged species between two metal carbonyl anions, (2) that involve additional of an electron to, or removal of an electron from organometallic complexes that contain a metal-metal bond, and (3) between coordination complexes and metal carbonyl anions. 12 refs.

  6. Bringing inorganic chemistry to life with inspiration from R. J. P. Williams.

    PubMed

    Hill, H Allen O; Sadler, Peter J

    2016-03-01

    Our appreciation of the scholarly ideas and thinking of Bob Williams is illustrated here by a few of the areas in which he inspired us. His journey to bring inorganic chemistry to life began with an early interest in analytical chemistry, rationalising the relative stabilities of metal coordination complexes (The Irving-Williams Series), and elucidating the organometallic redox chemistry of vitamin B12. He (and Vallee) recognised that metal ions are in energised (entatic) states in proteins and enzymes, which themselves are dynamic structures of rods and springs. He played a key role in helping Rosenberg to pave the road toward the clinic for the anticancer drug cisplatin. He believed that evolution is not just dependent on DNA, but also on the metallome. Organisms and the environment are one system: does DNA code directly for all the essential elements of life?

  7. 103Rh NMR spectroscopy and its application to rhodium chemistry.

    PubMed

    Ernsting, Jan Meine; Gaemers, Sander; Elsevier, Cornelis J

    2004-09-01

    Rhodium is used for a number of large processes that rely on homogeneous rhodium-catalyzed reactions, for instance rhodium-catalyzed hydroformylation of alkenes, carbonylation of methanol to acetic acid and hydrodesulfurization of thiophene derivatives (in crude oil). Many laboratory applications in organometallic chemistry and catalysis involve organorhodium chemistry and a wealth of rhodium coordination compounds is known. For these and other areas, 103Rh NMR spectroscopy appears to be a very useful analytical tool. In this review, most of the literature concerning 103Rh NMR spectroscopy published from 1989 up to and including 2003 has been covered. After an introduction to several experimental methods for the detection of the insensitive 103Rh nucleus, a discussion of factors affecting the transition metal chemical shift is given. Computational aspects and calculations of chemical shifts are also briefly addressed. Next, the application of 103Rh NMR in coordination and organometallic chemistry is elaborated in more detail by highlighting recent developments in measurement and interpretation of 103Rh NMR data, in relation to rhodium-assisted reactions and homogeneous catalysis. The dependence of the 103Rh chemical shift on the ligands at rhodium in the first coordination sphere, on the complex geometry, oxidation state, temperature, solvent and concentration is treated. Several classes of compounds and special cases such as chiral rhodium compounds are reviewed. Finally, a section on scalar coupling to rhodium is provided. 2004 John Wiley & Sons, Ltd.

  8. Pi-metal complexes of tetrapyrrolic systems. A novel coordination mode in "porphyrin-like" chemistry.

    PubMed

    Cuesta, Luciano; Sessler, Jonathan L

    2009-09-01

    The coordination chemistry of porphyrins and related tetrapyrrolic ligands has traditionally centered around the ability of these systems to form pyrrole N-ligated complexes via the formation of sigma bonds, either within the N(4) core or displaced above it. In fact, such sigma-complexes are known with almost every metal cation in the periodic table. However, a growing number of pi-complexes derived from tetrapyrrolic ligands have been reported in recent years. The underlying coordination mode, while still novel in the context of "porphyrin-like" chemistry, is already being recognized for the effects it can impart over the reactivity, as well as the spectroscopic, redox, electronic, and optical properties of various oligopyrrolic macrocycles. This critical review summarizes accomplishments made in this fast-emerging field (59 references).

  9. Molecular Surface Chemistry by Metal Single Crystals and Nanoparticles from Vacuum to High Pressure.

    SciTech Connect

    Somorjai, Gabor A.; Park, Jeong Y.

    2008-04-05

    Model systems for studying molecular surface chemistry have evolved from single crystal surfaces at low pressure to colloidal nanoparticles at high pressure. Low pressure surface structure studies of platinum single crystals using molecular beam surface scattering and low energy electron diffraction techniques probe the unique activity of defects, steps and kinks at the surface for dissociation reactions (H-H, C-H, C-C, O{double_bond}O bonds). High-pressure investigations of platinum single crystals using sum frequency generation vibrational spectroscopy have revealed the presence and the nature of reaction intermediates. High pressure scanning tunneling microscopy of platinum single crystal surfaces showed adsorbate mobility during a catalytic reaction. Nanoparticle systems are used to determine the role of metal-oxide interfaces, site blocking and the role of surface structures in reactive surface chemistry. The size, shape and composition of nanoparticles play important roles in determining reaction activity and selectivity.

  10. Synthesis and characterization of metal-ceramic composites produced via sol-gel chemistry

    NASA Astrophysics Data System (ADS)

    Rodeghiero, Eric

    The incorporation of a metallic phase into a ceramic material is one of the most effective means by which fracture toughness enhancement of the ceramic can be achieved. The extent of this toughness enhancement depends on factors such as the identity and relative proportion of the metal and ceramic phases, the microstructural arrangement of the composite, and the interfacial strength between the metal and ceramic. However, the toughness enhancement celebrated in a given metal-ceramic system can often be offset by unacceptable stiffness and fracture strength levels since the incorporation of metal serves to simultaneously degrade these properties. Hence, proper design of metal-ceramic composites intended for structural use requires a thorough understanding of the delicate balance between the pertinent mechanical properties and how synthesis and microstructural evolution affect this balance. In this light, metal-ceramic composites of the Ni/alpha-Alsb2Osb3 system have been produced through sol-gel chemistry. This type of synthesis affords both the extensive chemical control and fine, highly dispersed microstructures ideal for a thorough investigation of the parameters crucial to the production of mechanically superior materials. The composites have been prepared in metal fractions ranging from 5 to 50 volume percentage (vol.%). The microstructures of the materials containing up to 15 vol.% Ni have consisted of isolated metal particles embedded in a ceramic matrix. In contrast, the morphologies of the composites containing 20 vol.% Ni or higher have typically involved a highly interconnected arrangement between the metal and ceramic phases. Mechanical characterization, in the form of elastic constant evaluation, hardness testing, and fracture toughness and fracture strength determination, has been performed. While some of these mechanical properties have varied predictably with changes in metallic phase parameters, the toughness characteristics of the composites have

  11. Organometallic compounds: an opportunity for chemical biology?

    PubMed

    Patra, Malay; Gasser, Gilles

    2012-06-18

    Organometallic compounds are renowned for their remarkable applications in the field of catalysis, but much less is known about their potential in chemical biology. Indeed, such compounds have long been considered to be either unstable under physiological conditions or cytotoxic. As a consequence, little attention has been paid to their possible utilisation for biological purposes. Because of their outstanding physicochemical properties, which include chemical stability, structural diversity and unique photo- and electrochemical properties, however, organometallic compounds have the ability to play a leading role in the field of chemical biology. Indeed, remarkable examples of the use of such compounds-notably as enzyme inhibitors and as luminescent agents-have recently been reported. Here we summarise recent advances in the use of organometallic compounds for chemical biology purposes, an area that we define as "organometallic chemical biology". We also demonstrate that these recent discoveries are only a beginning and that many other organometallic complexes are likely to be found useful in this field of research in the near future.

  12. Transition metal oxides deposited on rhodium and platinum: Surface chemistry and catalysis

    SciTech Connect

    Boffa, Alexander Bowman

    1994-07-01

    The surface chemistry and catalytic reactivity of transition metal oxides deposited on Rh and Pt substrates has been examined in order to establish the role of oxide-metal interactions in influencing catalytic activity. The oxides investigated included titanium oxide (TiOx), vanadium oxide (VOx), iron oxide (FeOx), zirconium oxide (ZrOx), niobium oxide (NbOx), tantalum oxide (TaOx), and tungsten oxide (WOx). The techniques used to characterize the sample included AES, XPS, LEED, TPD, ISS, and STM. After characterization of the surface in UHV, the sample was enclosed in an atmospheric reaction cell to measure the influence of the oxide deposits on the catalytic activity of the pure metal for CO and CO2 hydrogenation. The oxide deposits were found to strongly enhance the reactivity of the Rh foil. The rates of methane formation were promoted by up to 15 fold with the maximum in rate enhancement occurring at oxide coverages of approximately 0.5 ML. TiOx TaOx, and NbOx were the most effective promoters and were stable in the highest oxidation states during both reactions (compared to VOx, WOx, and FeOx). The trend in promoter effectiveness was attributed to the direct relationship between oxidation state and Lewis acidity. Bonding at the metal oxide/metal interface between the oxygen end of adsorbed CO and the Lewis acidic oxide was postulated to facilitate C-O bond dissociation and subsequent hydrogenation. 192 refs.

  13. Hole contacts on transition metal dichalcogenides: interface chemistry and band alignments.

    PubMed

    McDonnell, Stephen; Azcatl, Angelica; Addou, Rafik; Gong, Cheng; Battaglia, Corsin; Chuang, Steven; Cho, Kyeongjae; Javey, Ali; Wallace, Robert M

    2014-06-24

    MoOx shows promising potential as an efficient hole injection layer for p-FETs based on transition metal dichalcogenides. A combination of experiment and theory is used to study the surface and interfacial chemistry, as well as the band alignments for MoOx/MoS2 and MoOx/WSe2 heterostructures, using photoelectron spectroscopy, scanning tunneling microscopy, and density functional theory. A Mo(5+) rich interface region is identified and is proposed to explain the similar low hole Schottky barriers reported in a recent device study utilizing MoOx contacts on MoS2 and WSe2.

  14. Improved Modeling of Transition Metals, Applications to Catalysis and Technetium Chemistry

    SciTech Connect

    Cundari, T. R.

    2004-03-05

    There is considerable impetus for identification of aqueous OM catalysts as water is the ultimate ''green'' solvent. In collaboration with researchers at Ames Lab, we investigated effective fragment and Monte Carlo techniques for aqueous-phase hydroformylation (HyF). The Rh of the HyF catalyst is weakly aquated, in contrast to the hydride of the Rh-H bond. As the insertion of the olefin C=C into Rh-H determines the linear-to-branched aldehyde ratio, it is reasonable to infer that solvent plays an important role in regiochemistry. Studies on aqueous-phase organometallic catalysis were complemented in studies of the gas-phase reaction. A Rh-carbonyl-phosphine catalyst was investigated. Two of the most important implications of this research include (a) pseudorotation among five-coordinate intermediates is significant in HyF, and (b) CO insertion is the rate-determining step. The latter is in contrast to experimental deductions, highlighting the need for more accurate modeling. To this end, we undertook studies of (a) experimentally relevant PR{sub 3} co-ligands (PMe{sub 3}, PPh{sub 3}, P(p-PhSO{sub 3{sup -}}){sub 3}, etc.), and (b) HyF of propene. For the propylene research, simulations indicated that the linear: branched aldehyde ratio (linear is more desirable) is determined by thermodynamic discrimination of two distinct pathways. Other projects include a theory-experiment study of C-H activation by early transition metal systems, which establishes that weakly-bound adducts play a key role in activity selectivity. By extension, more selective catalysts for functionalization of methane (major component of natural gas) will require better understanding of these adducts, which are greatly affected by steric interactions with the ligands. In the de novo design of Tc complexes, we constructed (and are now testing) a coupled quantum mechanics-molecular mechanics protocol. Initial research shows it to be capable of accurately predicting structure ''from scratch

  15. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band, namely the flat chern band (FCB), has recently been proposed, in which carriers experience strong Coulomb interaction as well as topological frustration that in together spawn unprecedented topological strongly-correlated electronic states, such as high-temperature fractional quantum hall state. Despite the proposal of several theoretical lattice models, however, it remains a doubt whether such a ``romance of flatland'' could exist in a real material. Here, we present a first-principles design to realize a nearly FCB right around the Fermi level in a two-dimensional (2D) Indium-Phenylene Organometallic Framework (IPOF). Our design in addition provides a general strategy to synthesize topologically nontrivial materials in virtue of organic chemistry and nanotechnology. Supported by DOE-BES and ARL

  16. Flat Chern Band in a Two-Dimensional Organometallic Framework

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Wang, Zheng-Fei; Mei, Jia-Wei; Wu, Yong-Shi; Liu, Feng

    2013-03-01

    By combining exotic band dispersion with nontrivial band topology, an interesting type of band structure, namely, the flat Chern band, has recently been proposed to spawn high-temperature fractional quantum Hall states. Despite the proposal of several theoretical lattice models, however, it remains doubtful whether such a “romance of flatland” could exist in a real material. Here, we present a first-principles design of a two-dimensional indium-phenylene organometallic framework that realizes a nearly flat Chern band right around the Fermi level by combining lattice geometry, spin-orbit coupling, and ferromagnetism. An effective four-band model is constructed to reproduce the first-principles results. Our design, in addition, provides a general strategy to synthesize topologically nontrivial materials by virtue of organic chemistry and nanotechnology.

  17. Single-molecule chemistry of metal phthalocyanine on noble metal surfaces.

    PubMed

    Li, Zhenyu; Li, Bin; Yang, Jinlong; Hou, Jian Guo

    2010-07-20

    To develop new functional materials and nanoscale electronics, researchers would like to accurately describe and precisely control the quantum state of a single molecule on a surface. Scanning tunneling microscopy (STM), combined with first-principles simulations, provides a powerful technique for acquiring this level of understanding. Traditionally, metal phthalocyanine (MPc) molecules, composed of a metal atom surrounded by a ligand ring, have been used as dyes and pigments. Recently, MPc molecules have shown great promise as components of light-emitting diodes, field-effect transistors, photovoltaic cells, and single-molecule devices. In this Account, we describe recent research on the characterization and control of adsorption and electronic states of a single MPc molecule on noble metal surfaces. In general, the electronic and magnetic properties of a MPc molecule largely depend on the type of metal ion within the phthalocyanine ligand and the type of surface on which the molecule is adsorbed. However, with the STM technique, we can use on-site molecular "surgery" to manipulate the structure and the properties of the molecule. For example, STM can induce a dehydrogenation reaction of the MPc, which allows us to control the Kondo effect, which describes the spin polarization of the molecule and its interaction with the complex environment. A specially designed STM tip can allow researchers to detect certain molecule-surface hybrid states that are not accessible by other techniques. By matching the local orbital symmetry of the STM tip and the molecule, we can generate the negative differential resistance effect in the formed molecular junction. This orbital symmetry based mechanism is extremely robust and does not critically depend on the geometry of the STM tip. In summary, this simple model system, a MPc molecule absorbed on a noble metal surface, demonstrates the power of STM for quantum characterization and manipulation of single molecules, highlighting the

  18. Interface fracture and chemistry of a tungsten-based metallization on borophosphosilicate glass

    NASA Astrophysics Data System (ADS)

    Völker, B.; Heinz, W.; Matoy, K.; Roth, R.; Batke, J. M.; Schöberl, T.; Scheu, C.; Dehm, G.

    2015-06-01

    In microelectronic devices, the interface between barrier metal and dielectric is of particular interest for a reliable electronic functionality. However, it is frequently observed that this interface is prone to failure. In this work, the strength of interfaces between an as-deposited borophosphosilicate dielectric glass (BPSG) layer and a W(Ti) metallization with and without Ti interlayer was the centre of interest. Four-point-bending tests were used for the mechanical characterization combined with a topological and chemical analysis of the fracture surfaces. In addition, the interface chemistry was studied locally prior to the testing to search for a possible Ti enrichment at the interface. The fracture results will be discussed taking the chemical and topological information into account.

  19. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  20. Chemistry Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Thirteen ideas are presented that may be of use to chemistry teachers. Topics covered include vitamin C, industrial chemistry, electrical conductivity, electrolysis, alkali metals, vibration modes infra-red, dynamic equilibrium, and some new demonstrations in gaseous combinations. (PS)

  1. Injectable dextran hydrogels fabricated by metal-free click chemistry for cartilage tissue engineering.

    PubMed

    Wang, Xiaoyu; Li, Zihan; Shi, Ting; Zhao, Peng; An, Kangkang; Lin, Chao; Liu, Hongwei

    2017-04-01

    Injectable dextran-based hydrogels were prepared for the first time by bioorthogonal click chemistry for cartilage tissue engineering. Click-crosslinked injectable hydrogels based on cyto-compatible dextran (Mw=10kDa) were successfully fabricated under physiological conditions by metal-free alkyne-azide cycloaddition (click) reaction between azadibenzocyclooctyne-modified dextran (Dex-ADIBO) and azide-modified dextran (Dex-N3). Gelation time of these dextran hydrogels could be regulated in the range of approximately 1.1 to 10.2min, depending on the polymer concentrations (5% or 10%) and ADIBO substitution degree (DS, 5 or 10) of Dex-ADIBO. Rheological analysis indicated that the dextran hydrogels were elastic and had storage moduli from 2.1 to 6.0kPa with increasing DS of ADIBO from 5 to 10. The in vitro tests revealed that the dextran hydrogel crosslinked from Dex-ADIBO DS 10 and Dex-N3 DS 10 at a polymer concentration of 10% could support high viability of individual rabbit chondrocytes and the chondrocyte spheroids encapsulated in the hydrogel over 21days. Individual chondrocytes and chondrocyte spheroids in the hydrogel could produce cartilage matrices such as collagen and glycosaminoglycans. However, the chondrocyte spheroids produced a higher content of matrices than individual chondrocytes. This study indicates that metal-free click chemistry is effective to produce injectable dextran hydrogels for cartilage tissue engineering. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Automated design of realistic organometallic molecules from fragments.

    PubMed

    Foscato, Marco; Occhipinti, Giovanni; Venkatraman, Vishwesh; Alsberg, Bjørn K; Jensen, Vidar R

    2014-03-24

    A method for the automated generation of realistic, synthetically accessible transition metal and organometallic complexes is described. Computational tools were designed to generate molecular fragments, preferably harvested from libraries of existing, stable compounds, to be used as building blocks for the construction of new molecules. These fragments are enriched with information about the number and type of possible connections to other fragments and are stored in library files. When connecting fragments in the subsequent building process, compatibility matrices, which define the connection rules between fragments, are used to delineate organometallic fragment spaces from which molecules can be generated in an automated fashion. The approach is flexible and allows ample structural variation at the same time as the combination of known fragments is easily restrained to avoid generation of exotic and unrealistic substructures and molecules. The method was tested in the generation of ruthenium complexes, with a given coordination environment, which can serve as candidates in catalyst development. The results demonstrate that molecules generated with the described method do not contain exotic arrangements of atoms and are by far more realistic than those obtained by the application of valence rules alone.

  3. Recent insights on the medicinal chemistry of metal-based compounds: hints for the successful drug design.

    PubMed

    Hernandes, M Z; de S Pontes, F J; Coelho, L C D; Moreira, D R M; Pereira, V R A; Leite, A C L

    2010-01-01

    Although more complex than usually described, the anticancer action mechanism of cisplatin is based on binding to DNA. Following this line of reasoning, most the metal-based compounds discovered soon after cisplatin were designed to acting as DNA-binding agents and their pharmacological properties were thought to be correlated with this mechanism. Apart from the DNA structure, a significant number of proteins and biochemical pathways have been described as drug targets for metal-based compounds. This paper is therefore aimed at discussing the most recent findings on the medicinal chemistry of metal-based drugs. It starts illustrating the design concept behind the bioinorganic chemistry of anticancer complexes. Anticancer metallic compounds that inhibit the protein kinases are concisely discussed as a case study. The accuracy and limitations of molecular docking programs currently available to predict the binding mode of metallic complexes in molecular targets are further discussed. Finally, the advantages and disadvantages of different in vitro screenings are briefly commented.

  4. Surface chemistry and fundamental limitations on the plasma cleaning of metals

    NASA Astrophysics Data System (ADS)

    Dong, Bin; Driver, M. Sky; Emesh, Ismail; Shaviv, Roey; Kelber, Jeffry A.

    2016-10-01

    In-situ X-ray photoelectron spectroscopy (XPS) studies reveal that plasma cleaning of air-exposed Co or Cu transition metal surfaces results in the formation of a remnant C film 1-3 monolayers thick, which is not reduced upon extensive further plasma exposure. This effect is observed for H2 or NH3 plasma cleaning of Co, and He or NH3 plasma cleaning of Cu, and is observed with both inductively coupled (ICP) and capacitively-coupled plasma (CCP). Changes in C 1 s XPS spectra indicate that this remnant film formation is accompanied by the formation of carbidic C on Co and of graphitic C on Cu. This is in contrast to published work showing no such remnant carbidic/carbon layer after similar treatments of Si oxynitride surfaces. The observation of the remnant carbidic C film on Co and graphitic film on Cu, but not on silicon oxynitride (SiOxNy), regardless of plasma chemistry or type, indicates that this effect is due to plasma induced secondary electron emission from the metal surface, resulting in transformation of sp3 adventitious C to either a metal carbide or graphite. These results suggest fundamental limitations to plasma-based surface cleaning procedures on metal surfaces.

  5. Partitioning of metals in different binding phases of tropical estuarine sediments: importance of metal chemistry.

    PubMed

    Chakraborty, Parthasarathi; Chakraborty, Sucharita; Vudamala, Krushna; Sarkar, Arindam; Nath, B Nagender

    2016-02-01

    Distribution of metals in different binding phases of estuarine sediments provides chemically significant description of metal-sediment interactions. This study describes the influences of ligand field stabilization energy (LFSE), Jahn-Teller effect, and water exchange rate (k-w) on metal distribution in different binding phases of estuarine sediments. It was found that Cu had highest affinity for organic binding phases in the studied sediments followed by Ni and Pb. However, Pb showed strong association with Fe/Mn oxide phases followed by Ni and Cu. Faster k-w of Cu (II) (1 × 10(9) s(-1)) increased the rate of complex formation of Cu(2+) ion with ligand in the organic phases. The Cu-ligand (from organic phase) complexes gained extra stability by the Jahn-Teller effect. The combined effects of these two phenomena and high ionic potential increased the association of Cu with the organic phases of the sediments than Ni and Pb. The smaller ionic radii of Ni(2+) (0.72 Å) than Pb(2+) (1.20 Å) increase the stability of Ni-ligand complexes in the organic phase of the sediments. High LFSE of Ni(II) (compared with Pb(2+) ions) also make Ni-organic complexes increasingly stable than Pb. High k-w (7 × 10(9) s(-1)) of Pb did not help it to associate with organic phases in the sediments. The high concentration of Pb in the Fe/Mn oxyhydroxide binding phase was probably due to co-precipitation of Pb(2+) and Fe(3+). High surface area or site availability for Pb(2+) ion on Fe oxyhydroxide phase was probably responsible for the high concentration of Pb in Fe/Mn oxyhydroxide phase. Increasing concentrations of Cu in organic phases with the increasing Cu loading suggest that enough binding sites were available for Cu in the organic binding phases of the sediments. This study also describes the influence of nature of sedimentary organic carbon (terrestrial and marine derived OC) in controlling these metal distribution and speciation in marine sediment.

  6. Electrically Conductive, Corrosion-Resistant Coatings Through Defect Chemistry for Metallic Interconnects

    SciTech Connect

    Anil V. Virkar

    2006-12-31

    The principal objective of this work was to develop oxidation protective coatings for metallic interconnect based on a defect chemistry approach. It was reasoned that the effectiveness of a coating is dictated by oxygen permeation kinetics; the slower the permeation kinetics, the better the protection. All protective coating materials investigated to date are either perovskites or spinels containing metals exhibiting multiple valence states (Co, Fe, Mn, Cr, etc.). As a result, all of these oxides exhibit a reasonable level of electronic conductivity; typically at least about {approx}0.05 S/cm at 800 C. For a 5 micron coating, this equates to a maximum {approx}0.025 {Omega}cm{sup 2} area specific resistance due to the coating. This suggests that the coating should be based on oxygen ion conductivity (the lower the better) and not on electronic conductivity. Measurements of ionic conductivity of prospective coating materials were conducted using Hebb-Wagner method. It was demonstrated that special precautions need to be taken to measure oxygen ion conductivity in these materials with very low oxygen vacancy concentration. A model for oxidation under a protective coating is presented. Defect chemistry based approach was developed such that by suitably doping, oxygen vacancy concentration was suppressed, thus suppressing oxygen ion transport and increasing effectiveness of the coating. For the cathode side, the best coating material identified was LaMnO{sub 3} with Ti dopant on the Mn site (LTM). It was observed that LTM is more than 20 times as effective as Mn-containing spinels. On the anode side, LaCrO3 doped with Nb on the Cr site (LNC) was the material identified. Extensive oxidation kinetics studies were conducted on metallic alloy foils with coating {approx}1 micron in thickness. From these studies, it was projected that a 5 micron coating would be sufficient to ensure 40,000 h life.

  7. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Technical Reports Server (NTRS)

    Walsh, Fraser

    1987-01-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  8. Organometallic catalysts for primary phosphoric acid fuel cells

    NASA Astrophysics Data System (ADS)

    Walsh, Fraser

    1987-03-01

    A continuing effort by the U.S. Department of Energy to improve the competitiveness of the phosphoric acid fuel cell by improving cell performance and/or reducing cell cost is discussed. Cathode improvement, both in performance and cost, available through the use of a class of organometallic cathode catalysts, the tetraazaannulenes (TAAs), was investigated. A new mixed catalyst was identified which provides improved cathode performance without the need for the use of a noble metal. This mixed catalyst was tested under load for 1000 hr. in full cell at 160 to 200 C in phosphoric acid H3PO4, and was shown to provide stable performance. The mixed catalyst contains an organometallic to catalyze electroreduction of oxygen to hydrogen peroxide and a metal to catalyze further electroreduction of the hydrogen peroxide to water. Cathodes containing an exemplar mixed catalyst (e.g., Co bisphenyl TAA/Mn) operate at approximately 650 mV vs DHE in 160 C, 85% H3PO4 with oxygen as reactant. In developing this mixed catalyst, a broad spectrum of TAAs were prepared, tested in half-cell and in a rotating ring-disk electrode system. TAAs found to facilitate the production of hydrogen peroxide in electroreduction were shown to be preferred TAAs for use in the mixed catalyst. Manganese (Mn) was identified as a preferred metal because it is capable of catalyzing hydrogen peroxide electroreduction, is lower in cost and is of less strategic importance than platinum, the cathode catalyst normally used in the fuel cell.

  9. Asymmetric response of ferroelectric/metal oxide heterojunctions for catalysis arising from interfacial chemistry.

    PubMed

    Iyer, Ashwathi A; Ertekin, Elif

    2017-02-22

    Recently there has been interest in the use of ferroelectricity to modify a material's surface chemistry and enhance its catalytic properties. When a metal oxide catalyst is supported by a switchable ferroelectric underlayer, modifications to the free surface electronic structure can induce changes to the free energy profile of a gas-surface catalytic reaction that either promote or suppress the reaction. The modification of surface properties results from a combination of interface chemistry, surface reconstructions involving adsorbates, and complex interactions between the two, although these interactions are often not characterized in detail. Using the oxygen evolution reaction (OER) on barium titanate/anatase (BTO/TiO2) heterostructures as a case study, we use density functional theory to determine how the OER Gibbs free energy profile depends on the polarization of the ferroelectric and the number of TiO2 monolayers. For positive polarizations, the profile is found to be sensitive to the number of TiO2 monolayers, shows extended finite size effects, and deviates substantially from that of unsupported anatase. For negative polarizations, the monolayer dependence is suppressed and the OER profiles remain similar to that of unsupported anatase independent of the number of TiO2 monolayers. To understand the origin of the differences, we analyze in detail the layer-by-layer rumpling, interface chemistry, surface reconstructions, and interface and surface dipoles. The unbalanced response to negative and positive polarizations is shown to arise from the underlying chemistry of the BTO/TiO2 interface. While the interfacial bonding is largely fixed for negatively polarized systems, it is variable and can be tuned by the presence of nearby surface adsorbates for positively polarized systems. The asymmetry limits the effectiveness of the heterojunction. While positively polarized systems are good candidates for the selective enhancement of catalytic reactions involving

  10. Surface engineering of poly(dimethylsiloxane) microfluidic devices using transition metal sol-gel chemistry.

    PubMed

    Roman, Gregory T; Culbertson, Christopher T

    2006-04-25

    We report the coating of poly(dimethylsiloxane) (PDMS) microchannels using transition metal sol-gel chemistry and the subsequent characterization of the coatings. The channels were created using soft polymer lithography, and three metal alkoxide sol-gel precursors were investigated, titanium isopropoxide, zirconium isopropoxide, and vanadium triisobutoxide oxide. The metal alkoxides were diffused into the sidewalls of a PDMS channel and subsequently hydrolyzed using water vapor. This procedure resulted in the formation of durable metal oxide surfaces of titania, zirconia, or vanadia. The resulting surfaces were characterized using contact angle, X-ray photoelectron spectroscopy (XPS), Raman, transmission electron microscopy (TEM), scanning electron microscopy (SEM), atomic force microscopy (AFM), and electroosmotic mobility (EOM) measurements. All of the metal oxide-modified PDMS surfaces were significantly more hydrophilic than native PDMS. Contact angles for the coatings were 90 degrees for PDMS-ZrO2, 61 degrees for PDMS-TiO2, and 19 degrees for PDMS-vanadia. XPS showed the presence of titania, zirconia, and vanadia on the PDMS surface. XPS spectra also showed no chemical modification of the PDMS after the in situ deposition of the particles either in the Si-O, Si-C, or C-H bonds of the PDMS. The particles deposited in situ were imaged with TEM and were found to be homogeneously distributed throughout the bulk of the PDMS. EOM measurements of the inorganic coatings were stable over a period of at least 95 days. Both cathodic and anodic EOMs could be generated depending upon buffer pH used. The points of net zero charge for PDMS-TiO2, PDMS-ZrO2, and PDMS-vanadia channels were calculated using EOM versus pH measurements and were found to be 4.1 +/- 0.25, 6.1 +/- 0.2, and 7.0 +/- 0.43, respectively. In addition to modifying PDMS channels with inorganic coatings, these inorganic coatings were derivatized with various organic functionalities including oligoethylene

  11. Dependence of bonding interactions in Layered Double Hydroxides on metal cation chemistry

    NASA Astrophysics Data System (ADS)

    Shamim, Mostofa; Dana, Kausik

    2016-12-01

    The evolution of various Infrared bands of Layered Double Hydroxides (LDH) with variable Zn:Al ratio was analyzed to correlate it with the changes in octahedral metal cation chemistry, interlayer carbonate anion and hydroxyl content of LDH. The synthesized phase-pure LDHs were crystallized as hexagonal 2H polytype with a Manasseite structure. The broad and asymmetric hydroxyl stretching region (2400-4000 cm-1) can be deconvoluted into four different bands. With increase in Zn2+:Al3+ metal ratio, the peak position of stretching frequencies of Al3+sbnd OH and carbonate-bridged hydroxyl (water) decrease almost linearly. Individual band's peak position and area under the curve have been successfully correlated with the carbonate and hydroxyl content of LDH. Due to lowering of symmetry of the carbonate anion, the IR-inactive peak νCsbnd O, symm at 1064 cm-1 becomes IR active. The peak position of metal-oxygen bands and carbonate bending modes are practically unaffected by the Zn2+:Al3+ ratio but the area under the individual M-O bands shows a direct correlation.

  12. Probing the bioinorganic chemistry of toxic metals in the mammalian bloodstream to advance human health.

    PubMed

    Gailer, Jürgen

    2012-03-01

    The etiology of numerous grievous human diseases, including Alzheimer's and Parkinson's Disease is not well understood. Conversely, the concentration toxic metals and metalloids, such as As, Cd, Hg and Pb in human blood of the average population is well established, yet we know strikingly little about the role that they might play in the etiology of disease processes. Establishing functional connections between the chronic exposure of humans to these and other inorganic pollutants and the etiology of certain human diseases is therefore viewed by many as one of the greatest challenges in the post-genomic era. Conceptually, this task requires us to uncover hitherto unknown biomolecular mechanisms which must explain how small doses of a toxic metal/metalloid compound (low μg per day) - or mixtures thereof - may eventually result in a particular human disease. The biological complexity that is inherently associated with mammals, however, makes the discovery of these mechanisms a truly monumental task. Recent findings suggest that a better understanding of the bioinorganic chemistry of inorganic pollutants in the mammalian bloodstream represents a fruitful strategy to unravel relevant biomolecular mechanisms. The adverse effect(s) that toxic metals/metalloid compounds exert on the transport of essential ultratrace elements to internal organs appear particularly pertinent. A brief overview of the effect that arsenite and Hg(2+) exert on the mammalian metabolism of selenium is presented. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  14. Chemistry Rocks: Redox Chemistry as a Geologic Tool.

    ERIC Educational Resources Information Center

    Burns, Mary Sue

    2001-01-01

    Applies chemistry to earth science, uses rocks in chemistry laboratories, and teaches about transition metal chemistry, oxidation states, and oxidation-reduction reactions from firsthand experiences. (YDS)

  15. Marine Bioinorganic Chemistry: The Role of Trace Metals in the Oceanic Cycles of Major Nutrients

    NASA Astrophysics Data System (ADS)

    Morel, F. M. M.; Milligan, A. J.; Saito, M. A.

    2003-12-01

    The bulk of living biomass is chiefly made up of only a dozen "major" elements - carbon, hydrogen, oxygen, nitrogen, phosphorus, sodium, potassium, chlorine, calcium, magnesium, sulfur (and silicon in diatoms) - whose proportions vary within a relatively narrow range in most organisms. A number of trace elements, particularly first row transition metals - manganese, iron, nickel, cobalt, copper, and zinc - are also "essential" for the growth of organisms. At the molecular level, the chemical mechanisms by which such elements function as active centers or structural factors in enzymes and by which they are accumulated and stored by organisms is the central topic of bioinorganic chemistry. At the scale of ocean basins, the interplay of physical, chemical, and biological processes that govern the cycling of biologically essential elements in seawater is the subject of marine biogeochemistry. For those interested in the growth of marine organisms, particularly in the one-half of the Earth's primary production contributed by marine phytoplankton, bioinorganic chemistry and marine biogeochemistry are critically linked by the extraordinary paucity of essential trace elements in surface seawater, which results from their biological utilization and incorporation in sinking organic matter. How marine organisms acquire elements that are present at nano- or picomolar concentrations in surface seawater; how they perform critical enzymatic functions when necessary metal cofactors are almost unavailable are the central topics of "marine bioinorganic chemistry." The central aim of this field is to elucidate at the molecular level the metal-dependent biological processes involved in the major biogeochemical cycles.By examining the solutions that emerged from the problems posed by the scarcity of essential trace elements, marine bioinorganic chemists bring to light hitherto unknown ways to take up or utilize trace elements, new molecules, and newer "essential" elements. Focusing on

  16. Unravelling the surface chemistry of metal oxide nanocrystals, the role of acids and bases.

    PubMed

    De Roo, Jonathan; Van den Broeck, Freya; De Keukeleere, Katrien; Martins, José C; Van Driessche, Isabel; Hens, Zeger

    2014-07-09

    We synthesized HfO2 nanocrystals from HfCl4 using a surfactant-free solvothermal process in benzyl alcohol and found that the resulting nanocrystals could be transferred to nonpolar media using a mixture of carboxylic acids and amines. Using solution (1)H NMR, FTIR, and elemental analysis, we studied the details of the transfer reaction and the surface chemistry of the resulting sterically stabilized nanocrystals. As-synthesized nanocrystals are charge-stabilized by protons, with chloride acting as the counterion. Treatment with only carboxylic acids does not lead to any binding of ligands to the HfO2 surface. On the other hand, we find that the addition of amines provides the basic environment in which carboxylic acids can dissociate and replace chloride. This results in stable, aggregate-free dispersions of HfO2 nanocrystals, sterically stabilized by carboxylate ligands. Moreover, titrations with deuterated carboxylic acid show that the charge on the carboxylate ligands is balanced by coadsorbed protons. Hence, opposite from the X-type/nonstoichiometric nanocrystals picture prevailing in literature, one should look at HfO2/carboxylate nanocrystals as systems where carboxylic acids are dissociatively adsorbed to bind to the nanocrystals. Similar results were obtained with ZrO2 NCs. Since proton accommodation on the surface is most likely due to the high Brønsted basicity of oxygen, our model could be a more general picture for the surface chemistry of metal oxide nanocrystals with important consequences on the chemistry of ligand exchange reactions.

  17. A Metal-free Click Chemistry Approach for the Assembly and Probing of Biomolecules

    PubMed Central

    Maity, Sibaprasad; Viazovkina, Ekaterina; Gall, Alexander; Lyubchenko, Yuri

    2016-01-01

    Probing of biomolecular complexes by single-molecule force spectroscopy (SMFS) methods including AFM requires proper and suitable coupling methods for immobilization of biomolecules onto the AFM tip and the surface. The use of flexible tethers for the coupling process has dual advantages. First, they allow the specific immobilization of interacting molecules, and second, their flexibility facilitates the proper orientation of the interacting partners. Recently, we developed an approach termed Flexible Nano Array (FNA) in which interacting partners are located on the same polymeric FNA molecule separated by a flexible segment with a defined length. In this paper, we modified the FNA tether approach by incorporating click chemistry with non-metal modification. FNA was synthesized using DNA synthesis chemistry, in which phosphoramidite (PA) spacers containing six ethylene glycol units were used instead of nucleoside triphosphates. During the synthesis, two T modifiers conjugated to two dibenzocyclooctyl (DBCO) residues were incorporated at selected positions within the FNA. The DBCO functionality allows for coupling azide labeled biomolecules via click chemistry. Amyloid peptide Aβ(14–23) terminated with azide was incorporated into the FNA and the reaction was controlled with mass-spectrometry. Assembly of tethered Aβ(14–23) peptides into dimers was characterized by AFM force spectroscopy experiments in which the AFM tip functionalized with FNA terminated with biotin probed a streptavidin-coated mica surface. The formation of the peptide dimer was verified with force spectroscopy that showed the appearance of a specific fingerprint for dimer dissociation followed by a rupture event for the biotin-streptavidin link. The developed approach is capable of multiple probing events to allow the collection of a large set of data for a quantitative analysis of the force spectroscopy events. PMID:27722203

  18. A Metal-free Click Chemistry Approach for the Assembly and Probing of Biomolecules.

    PubMed

    Maity, Sibaprasad; Viazovkina, Ekaterina; Gall, Alexander; Lyubchenko, Yuri

    2016-01-01

    Probing of biomolecular complexes by single-molecule force spectroscopy (SMFS) methods including AFM requires proper and suitable coupling methods for immobilization of biomolecules onto the AFM tip and the surface. The use of flexible tethers for the coupling process has dual advantages. First, they allow the specific immobilization of interacting molecules, and second, their flexibility facilitates the proper orientation of the interacting partners. Recently, we developed an approach termed Flexible Nano Array (FNA) in which interacting partners are located on the same polymeric FNA molecule separated by a flexible segment with a defined length. In this paper, we modified the FNA tether approach by incorporating click chemistry with non-metal modification. FNA was synthesized using DNA synthesis chemistry, in which phosphoramidite (PA) spacers containing six ethylene glycol units were used instead of nucleoside triphosphates. During the synthesis, two T modifiers conjugated to two dibenzocyclooctyl (DBCO) residues were incorporated at selected positions within the FNA. The DBCO functionality allows for coupling azide labeled biomolecules via click chemistry. Amyloid peptide Aβ(14-23) terminated with azide was incorporated into the FNA and the reaction was controlled with mass-spectrometry. Assembly of tethered Aβ(14-23) peptides into dimers was characterized by AFM force spectroscopy experiments in which the AFM tip functionalized with FNA terminated with biotin probed a streptavidin-coated mica surface. The formation of the peptide dimer was verified with force spectroscopy that showed the appearance of a specific fingerprint for dimer dissociation followed by a rupture event for the biotin-streptavidin link. The developed approach is capable of multiple probing events to allow the collection of a large set of data for a quantitative analysis of the force spectroscopy events.

  19. Progress toward cascade cells made by OM-VPE. [organometallic vapor phase epitaxy

    NASA Technical Reports Server (NTRS)

    Borden, P. G.; Larue, R. A.; Ludowise, M. J.

    1982-01-01

    Organometallic Vapor Phase Epitaxy (COM-VPE) was used to make a sophisticated monolithic cascade cell, with a peak AMO efficiency of 16.6%, not corrected for 14% grid coverage. The cell has 9 epitaxial layers. The top cell is 1.35 microns thick with a 0.1 micron thich emitter. Both cells are heteroface n-p structures. The cascade cell uses metal interconnects. Details of growth and processing are described.

  20. Effect of electrode heating on weld metal chemistry control in shielded metal arc welding

    SciTech Connect

    Bracarense, A.Q.; Liu, S.

    1994-12-31

    During welding with the shielded metal arc welding (SMAW) process, the electrode experiences an increase in temperature because of Joule heating and the heat from the arc conducted though the molten droplet to the solid wire. Heating of the electrode and temperature distribution along the electrode length will depend on the welding parameters as well as the ingredients of the flux coating. Thermal properties such as heat capacity and dissociation temperature of these ingredients can affect the heat transport through the electrode. A mathematical model taking into consideration the heat transport conditions in the electrode nd carbonate decomposition in the flux coating was developed to better understand and predict the increase in temperature in the core rod and coating of the electrode. Knowing the welding parameters and the physical properties of the flux ingredients, it was possible to estimate the temperature distribution along the length of the electrode, the location along the electrode length, above the arc where ingredients such as CaCO{sub 3} will start to dissociate and the oxygen potential of the shielding gas generated. To validate the model, the temperature of the core rod and the coating were monitored during actual welding. Experimental E7018 type electrodes with varying carbonate content were used. The remarkable conclusion of this research is that the stability of the flux ingredients and the welding parameters can be used to predict the thermal history along the electrode length and the oxygen potential in the arc environment during welding. The proposed mathematical model and thermodynamic data of the flux ingredients make it possible to control the chemical composition along the weld length.

  1. Superparamagnetic nickel nanoparticles obtained by an organometallic approach

    NASA Astrophysics Data System (ADS)

    Ramírez-Meneses, E.; Betancourt, I.; Morales, F.; Montiel-Palma, V.; Villanueva-Alvarado, C. C.; Hernández-Rojas, M. E.

    2011-01-01

    Nickel nanoparticles were prepared by decomposition of the organometallic precursor Ni(COD)2 (COD=cycloocta-1,5-diene) dissolved in organic media in the presence of anthranilic acid as stabilizer. Transmission electron microscopy revealed nickel nanoparticles with a mean size of 4.2 ± 1.1 nm and selected area electron diffraction showed the formation of fcc nickel. FTIR spectroscopy confirmed the presence of modified anthranilic acid on the surface of the Ni nanoparticles suggesting that it is able to interact with the metal particles. The magnetic response of the nanoparticles was established as being of superparmagnetic character, for which a detailed quantitative analysis resulted in a mean magnetic moment of 2652 μB per particle together with a blocking temperature of 32 K.

  2. Organometallic Antitumour Agents with Alternative Modes of Action

    NASA Astrophysics Data System (ADS)

    Casini, Angela; Hartinger, Christian G.; Nazarov, Alexey A.; Dyson, Paul J.

    The therapeutic index of drugs that target DNA, a ubiquitous target present in nearly all cells, is low. Nevertheless, DNA has remained the primary target for medicinal chemists developing metal-based anticancer drugs, although DNA has been essentially abandoned in favour of non-genomic targets by medicinal chemists developing organic drugs. A number of organometallic drugs that target proteins/enzymes have been developed and these compounds, based on ruthenium, osmium and gold, are described in this chapter. Targets include cathepsin B, thioredoxin reductases, multidrug resistance protein (Pgp), glutathione S-transferases and kinases. It is found that compounds that inhibit these various targets are active against metastatic tumours, or tumours that are resistant to classical DNA damaging agents such as cisplatin, and therefore offer considerable potential in clinical applications.

  3. Heavy metal coordination chemistry in mercaptides and enzymes studied by TDPAC

    NASA Astrophysics Data System (ADS)

    Butz, T.

    1993-03-01

    Time differential perturbed angular correlation (TDPAC) studies of the coordination chemistry of the heavy metal atoms Cd and Hg via the nuclear quadrupole interaction are presented for the following systems; (i) mercury complexes with mercaptides, polymers with thiol groups, and ferrocenethiols. Mercury has a strong tendency to form linear or almost linear bonds with sulfur ligands. Evidence for 1,3-dithia-2-mercura[3]ferrocenophane formation is presented. (ii)111mCd-derivatives of the small electron transport proteins azurin, including a his 117gly mutant, and stellacyanin. The titration of the his 117gly mutant of azurin with imidazole was monitored in situ. (iii)111mCd- and199mHg-derivatives of the multi-Cu enzymes ascorbate oxidase and laccase. Reconstitution probabilities for Hg-reconstitution will be given as well as information on selective depletion and blocking of Cu-sites.

  4. Organometallic synthesis, reactivity and catalysis in the solid state using well-defined single-site species

    PubMed Central

    Pike, Sebastian D.; Weller, Andrew S.

    2015-01-01

    Acting as a bridge between the heterogeneous and homogeneous realms, the use of discrete, well-defined, solid-state organometallic complexes for synthesis and catalysis is a remarkably undeveloped field. Here, we present a review of this topic, focusing on describing the key transformations that can be observed at a transition-metal centre, as well as the use of well-defined organometallic complexes in the solid state as catalysts. There is a particular focus upon gas–solid reactivity/catalysis and single-crystal-to-single-crystal transformations. PMID:25666064

  5. Synthesis and luminescence of some rare earth metal complexes

    NASA Astrophysics Data System (ADS)

    Bochkarev, Mikhail N.; Pushkarev, Anatoly P.

    2016-12-01

    In the present paper the synthesis, photoand electroluminescent properties of new rare earth metal complexes prepared and studied at the Razuvaev Institute of Organometallic Chemistry during the last decade are reviewed. The obtained compounds give luminescence in UV, visible and NIR regions. The substituted phenolates, naphtholates, mercaptobenzothiazolate, 8-oxyquinolinolate, polyfluorinated alcoholates and chalcogenophosphinates were used as ligands. The synthesis and structure of unusual three-nuclear sulfidenitride clusters of Nd and Dy are described. The new excitation mechanism of ytterbium phenolates and naphtholates, which includes the stage of reversible reduction of Yb to divalent state and oxidation of the ligands in the excitation process, is discussed.

  6. The Construction of Metal-Organic Framework with Active Backbones by the Utilization of Reticular Chemistry

    NASA Astrophysics Data System (ADS)

    Choi, Eunwoo

    With the principles of reticular chemistry, metal-organic frameworks with ultra-high porosity, chiral-recognition unit as a chiral stationary phase, metalloporhyrins for enhanced hydrogen adsorption and an intrinsic conductivity to form porous conductors, have been prepared. This dissertation presents how the principles of reticular chemistry were utilized to achieve in the preparations of metal-organic frameworks with a large surface area and active backbones. Through the simple isoreticular (having the same framework topology) expansion from MOF-177 composed with 1,3,5-tris(4'-carboxyphenyl-)benzene (BTB3-) as the strut; MOF-200 was prepared with 4,4',4"-(benzene-1,3,5-triyl-tris(benzene-4,1-diy1))tribenzoic acid an extension from BTB3- by a phenylene unit to yield one of the most porous MOFs with a Langmuir surface area of 10,400 m2. and the lowest density of 0.22 cm3.g-1. A successful thermal polymerization reaction at 325 °C inside of the pores of highly porous MOF, MOF-177, was performed and verified the integrity of the MOF structure even after the thermal reaction. 1,4-Diphenylbutadiyne that is known to polymerize upon heating to form a conjugated backbone was impregnated via solution-diffusion into MOF-177 and then subsequently polymerized by heat to form polymer impregnated MOF-177. Characterization was carried out using powder X-ray diffraction and volumetric sorption analyzer. MOF-1020 with a linear quaterphenyl dicarboxylate-based strut was designed to contain a chiral bisbinaphthyl crown-ether moiety for alkyl ammonium resolution was precisely placed into a Zn4O(CO2)6-based cubic MOF structure. Unfortunately, the chiral resolution was not achieved due to the sensitivity and the pore environment of MOF-1020. However, an interesting phenomenon was observed, where the loss of crystallinity occurs upon solvent removal while the crystallites remain shiny and crystalline, but it readily is restored upon re-solvation of the crystallites. This rare

  7. Dominance of silylene chemistry in the decomposition of monomethylsilane in the presence of a heated metal filament.

    PubMed

    Toukabri, R; Shi, Y J

    2014-06-05

    The gas-phase reaction chemistry of the decomposition of monomethylsilane (MMS) has been studied in the presence of a heated metal filament in a hot-wire chemical vapor deposition (HWCVD) reactor. A 10.5 eV vacuum ultraviolet laser single-photon ionization time-of-flight mass spectrometry was employed in combination with isotope labeling and chemical trapping to examine the mechanistic details in the reaction chemistry. We have demonstrated the dominant involvement of the methylsilylene (HSiCH3) intermediate in the gas-phase reaction chemistry. Free radical and silene intermediates do not play a role. Major products are found to be H2, 1,2-dimethyldisilane (DMDS), and 1,3-disilacyclobutane (DSCB). The formation of DMDS proceeds by the insertion reaction of methylsilylene, whereas DSCB originates from the dimerization reaction of methylsilylene. Similar reaction chemistry has been observed when using the different filament materials of tungsten and tantalum in the HWCVD reactor. This indicates that changing the filament material from Ta to W does not affect the gas-phase reaction chemistry when using MMS in the HWCVD process. Finally, comparison of the reaction chemistry of MMS with those of dimethylsilane, trimethylsilane, and tetramethylsilane sheds light on the influence of increasing Si-H bonds. A switch in the dominated chemistry from free-radical short-chain reactions to silylene insertion/dimerization reactions occurs as the number of Si-H bonds increases in the four methyl-substituted silane molecules.

  8. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  9. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents background information, laboratory procedures, classroom materials/activities, and experiments for chemistry. Topics include superheavy elements, polarizing power and chemistry of alkali metals, particulate carbon from combustion, tips for the chemistry laboratory, interesting/colorful experiments, behavior of bismuth (III) iodine, and…

  10. Synthesis and chemistry of cationic d sup 0 metal alkyl complexes

    SciTech Connect

    Jordan, R.F.

    1991-01-01

    The objective of this project is to develop new types of electrophilic metal alkyl complexes for catalytic C-H activation and olefin polymerization chemistry, and associated fundamental mechanistic studies. We have focused our efforts on four classes of early metal alkyl complexes: (1) cationic group 4 Cp{sub 2}M(R){sup +} complexes (1) which are active species in Cp{sub 2}MX{sub 2}-based Ziegler-Natta olefin polymerization catalyst systems and which catalyze productive C-H activation reactions of heterocycles, (2) neutral (dicarbollide)(Cp*)M(R) complexes (2) which are structurally are electronically very similar to 1, (3) half-sandwich complexes CpM(R){sub 2}(L){sub n}{sup +} which are highly coordinatively and electronically unsaturated, and (4) new group 5 (dicarbollide)(Cp)MR{sub 2} and (dicarbollide){sub 2} MR complexes which are more unsaturated than group 5 Cp{sub 2}M systems due to incorporation of the dicarbollide ligand.

  11. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-12-31

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  12. Mechanistic study of organometallic vapor phase epitaxy

    SciTech Connect

    Stringfellow, G.B.

    1990-01-01

    Only AsH{sub 3} and PH{sub 3} have been used as the group V source molecules for organometallic vapor phase epitaxy (OMVPE) of III/V semiconductors until recently, since they have been the only precursors yielding device quality materials. This paper reviews recent work on the pyrolysis of individual organometallic molecules, with emphasis on the group V sources, including: (1) the methylarsines, di- and tri-methylarsine, (2) the ethylarsines, mono-, di-, and tri-ethylarsine, and (3) the singly substituted tertiarybutyl arsine and phosphine molecules. The pyrolysis and growth reactions occurring when both group III and group V precursors are present simultaneously, i.e., the reactions occuring during OMVPE growth of several III/V semiconductors, are also briefly reviewed.

  13. Developments in the chemistry of the hard early metals (Groups 1-6) with thioether, selenoether and telluroether ligands.

    PubMed

    Chang, Yao-Pang; Levason, William; Reid, Gillian

    2016-11-22

    The coordination chemistry of neutral thio-, seleno- and telluroether ligands towards the hard s-block, f-block and higher oxidation state early d-block metals has developed significantly over the last 15 or so years. This has revealed several hitherto unknown classes of complexes and new insights into the chemistries of these hard-soft metal-ligand combinations. This Perspective describes the synthetic routes used to access such complexes and draws out their key structural features and spectroscopic properties. Where appropriate, applications of these species are also highlighted, including their use as single source precursors for the chemical vapour deposition of semiconducting metal chalcogenide thin films and as pre-catalysts for olefin polymerisation reactions.

  14. Organometallic enantiomeric scaffolding: a strategy for the enantiocontrolled construction of regio- and stereodivergent trisubstituted piperidines from a common precursor.

    PubMed

    Wong, Heilam; Garnier-Amblard, Ethel C; Liebeskind, Lanny S

    2011-05-18

    Reported herein is a general and efficient method to construct 2,3,6-trisubstituted piperidines in a substituent-independent fashion. From the high enantiopurity organometallic scaffold (-)-Tp(CO)(2)[(η-2,3,4)-(1S,2S)-1-benzyloxycarbonyl-5-oxo-5,6-dihydro-2H-pyridin-2-yl)molybdenum (Tp = hydridotrispyrazolylborato), a variety of TpMo(CO)(2)-based 2,3,6-trifunctionalized complexes of the (η-3,4,5-dihydropyridinyl) ligand were easily obtained in 5 steps through a sequence of highly regio- and stereospecific metal-influenced transformations (15 examples). From the 2,3,6-trifunctionalized molybdenum complexes, either 2,6-cis-3-trans or 2,3,6-cis systems were selectively obtained through the choice of an appropriate stereodivergent demetalation protocol. The potential of this strategy in synthetic chemistry was demonstrated by the short total synthesis of four natural and one non-natural alkaloids: indolizidines (±)-209I and (±)-8-epi-219F in the racemic series, and enantiocontrolled syntheses of (-)-indolizidine 251N, (-)-quinolizidine 251AA, and (-)-dehydroindolizidine 233E.

  15. Organometallic Enantiomeric Scaffolding. A Strategy for the Enantiocontrolled Construction of Regio- and Stereodivergent Trisubstituted Piperidines from a Common Precursor

    PubMed Central

    Wong, Heilam; Garnier-Amblard, Ethel C.; Liebeskind, Lanny S.

    2011-01-01

    Reported herein is a general and efficient method to construct 2,3,6-trisubstituted piperidines in a substituent-independent fashion. From the high enantiopurity organometallic scaffold (−)-Tp(CO)2[(η-2,3,4)-(1S, 2S)-1-benzyloxycarbonyl-5-oxo-5,6-dihydro-2H-pyridin-2-yl)molybdenum (Tp = hydridotrispyrazolylborato), a variety of TpMo(CO)2-based 2,3,6-trifunctionalized complexes of the (η-3,4,5-dihydropyridinyl) ligand were easily obtained in 5 steps through a sequence of highly regio- and stereospecific metal-influenced transformations (15 examples). From the 2,3,6-trifunctionalized molybdenum complexes, either 2,6-cis-3-trans or 2,3,6-cis systems were selectively obtained through the choice of an appropriate stereodivergent demetalation protocol. The potential of this strategy in synthetic chemistry was demonstrated by the short total synthesis of four natural and one non-natural alkaloids: indolizidines (±)-209I and (±)-8-epi-219F in the racemic series, and enantiocontrolled syntheses of (−)-indolizidine 251N, (−)-quinolizidine 251AA, and (−)-dehydroindolizidine 233E. PMID:21513336

  16. Reactivity of TEMPO toward 16- and 17-electron organometallic reaction intermediates: a time-resolved IR study.

    PubMed

    Lomont, Justin P; Nguyen, Son C; Harris, Charles B

    2013-07-31

    The (2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical (TEMPO) has been employed for an extensive range of chemical applications, ranging from organometallic catalysis to serving as a structural probe in biological systems. As a ligand in an organometallic complex, TEMPO can exhibit several distinct coordination modes. Here we use ultrafast time-resolved infrared spectroscopy to study the reactivity of TEMPO toward coordinatively unsaturated 16- and 17-electron organometallic reaction intermediates. TEMPO coordinates to the metal centers of the 16-electron species CpCo(CO) and Fe(CO)4, and to the 17-electron species CpFe(CO)2 and Mn(CO)5, via an associative mechanism with concomitant oxidation of the metal center. In these adducts, TEMPO thus behaves as an anionic ligand, characterized by a pyramidal geometry about the nitrogen center. Density functional theory calculations are used to facilitate interpretation of the spectra and to further explore the structures of the TEMPO adducts. To our knowledge, this study represents the first direct characterization of the mechanism of the reaction of TEMPO with coordinatively unsaturated organometallic complexes, providing valuable insight into its reactions with commonly encountered reaction intermediates. The similar reactivity of TEMPO toward each of the species studied suggests that these results can be considered representative of TEMPO's reactivity toward all low-valent transition metal complexes.

  17. Major-ion and selected trace-metal chemistry of the Biscayne Aquifer, Southeast Florida

    USGS Publications Warehouse

    Radell, M.J.; Katz, B.G.

    1991-01-01

    The major-ion and selected trace-metal chemistry of the Biscayne aquifer was characterized as part of the Florida Ground-Water Quality Monitoring Network Program, a multiagency cooperative effort concerned with delineating baseline water quality for major aquifer systems in the State. The Biscayne aquifer is unconfined and serves as the sole source of drinking water for more than 3 million people in southeast Florida. The Biscayne aquifer consists of highly permeable interbedded limestone and sandstone of Pleistocene and Pliocene age underlying most of Dade and Broward Counties and parts of Palm Beach and Monroe Counties. The high permeability is largely caused by extensive carbonate dissolution. Water sampled from 189 wells tapping the Biscayne aquifer was predominantly a calcium bicarbonate type with some mixed types occurring in coastal areas and near major canals. Major - ion is areally uniform throughout the aquifer. According to nonparametric statistical tests of major ions and dissolved solids, the concentrations of calcium, sodium, bicarbonate, and dissolved solids increased significantly with well depth ( 0.05 significance level ), probably a result of less circulation at depth. Potassium and nitrate concentrations decreased significantly with depth. Although the source of recharge to the aquifer varies seasonally, there was no statistical difference in the concentration of major ions in pared water samples from 27 shallow wells collected during wet and dry seasons. Median concentrations for barium, chromium, copper, lead, and manganese were below maximum or secondary maximum contaminant levels set by the US Environmental Protection Agency. The median iron concentration only slightly exceeded the secondary maximum contaminant level. The concentration of barium was significantly related (0.05 significance level) to calcium and bicarbonate concentration. No distinct areal pattern or vertical distribution of the selected trace metals was evident in water from

  18. Duality of Orbital-Symmetry-Allowed Transition States for Thermal Sigmatropic Hydrogen Shifts in Transition Metal Compounds.

    PubMed

    Mauksch, Michael; Tsogoeva, Svetlana B

    2016-09-19

    Herein, the Zimmerman Möbius/Hückel concept is extended to pericyclic reactions involving transition metals. While sigmatropic hydrogen shifts in parent hydrocarbons are either uniquely antarafacial or suprafacial, we have shown by theoretical orbital topology considerations and quantum chemical computations at DFT level that both modes of stereoselectivity must become allowed in the same system as a consequence of Craig-Möbius-type orbital arrays, in which a transition metal d orbital induces a phase dislocation in metallacycles. This may have fundamental implications for the understanding of reactivity and bonding in organometallic chemistry.

  19. The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of "trans"-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates: A Microscale Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Christensen, James E.; Huddle, Matthew G.; Rogers, Jamie L.; Yung, Herbie; Mohan, Ram S.

    2008-01-01

    Although green chemistry principles are increasingly stressed in the undergraduate curriculum, there are only a few lab experiments wherein the toxicity of reagents is taken into consideration in the design of the experiment. We report a microscale green organic chemistry laboratory experiment that illustrates the utility of metal triflates,…

  20. The Discovery-Oriented Approach to Organic Chemistry. 7. Rearrangement of "trans"-Stilbene Oxide with Bismuth Trifluoromethanesulfonate and Other Metal Triflates: A Microscale Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Christensen, James E.; Huddle, Matthew G.; Rogers, Jamie L.; Yung, Herbie; Mohan, Ram S.

    2008-01-01

    Although green chemistry principles are increasingly stressed in the undergraduate curriculum, there are only a few lab experiments wherein the toxicity of reagents is taken into consideration in the design of the experiment. We report a microscale green organic chemistry laboratory experiment that illustrates the utility of metal triflates,…

  1. Investigation of organometallic reaction mechanisms with one and two dimensional vibrational spectroscopy

    SciTech Connect

    Cahoon, James Francis

    2008-12-01

    One and two dimensional time-resolved vibrational spectroscopy has been used to investigate the elementary reactions of several prototypical organometallic complexes in room temperature solution. The electron transfer and ligand substitution reactions of photogenerated 17-electron organometallic radicals CpW(CO)3 and CpFe(CO)2 have been examined with one dimensional spectroscopy on the picosecond through microsecond time-scales, revealing the importance of caging effects and odd-electron intermediates in these reactions. Similarly, an investigation of the photophysics of the simple Fischer carbene complex Cr(CO)5[CMe(OMe)] showed that this class of molecule undergoes an unusual molecular rearrangement on the picosecond time-scale, briefly forming a metal-ketene complex. Although time-resolved spectroscopy has long been used for these types of photoinitiated reactions, the advent of two dimensional vibrational spectroscopy (2D-IR) opens the possibility to examine the ultrafast dynamics of molecules under thermal equilibrium conditions. Using this method, the picosecond fluxional rearrangements of the model metal carbonyl Fe(CO)5 have been examined, revealing the mechanism, time-scale, and transition state of the fluxional reaction. The success of this experiment demonstrates that 2D-IR is a powerful technique to examine the thermally-driven, ultrafast rearrangements of organometallic molecules in solution.

  2. WSe2-contact metal interface chemistry and band alignment under high vacuum and ultra high vacuum deposition conditions

    NASA Astrophysics Data System (ADS)

    Smyth, Christopher M.; Addou, Rafik; McDonnell, Stephen; Hinkle, Christopher L.; Wallace, Robert M.

    2017-06-01

    Contact metals (Au, Ir, and Cr) are deposited on bulk WSe2 under ultra-high vacuum (UHV, 1  ×  10-9 mbar) and high vacuum (HV, 5  ×  10-6 mbar) conditions and subsequently characterized with x-ray photoelectron spectroscopy (XPS) to elucidate the effects of reactor base pressure on resulting interface chemistry, contact chemistry, and band alignment. Au forms a van der Waals interface with WSe2 regardless of deposition chamber ambient. In contrast, Ir and Cr form a covalent interface by reducing WSe2 to form interfacial metal selenides. When Cr is deposited under HV conditions, significant oxygen incorporation is observed resulting in the thermodynamically favorable formation of tungsten oxyselenide and a substantial concentration of Cr x O y . Regardless of contact metal, WO x (2.63  <  x  <  2.92) forms during deposition under HV conditions which may positively affect interface transport properties. Cr and Ir form unexpectedly large electron and hole Schottky barriers, respectively, when deposited under UHV conditions due to interfacial reactions that contribute to anomalous band alignment. These results reveal the true interface chemistry formed between metals and WSe2 under UHV and HV conditions and demonstrate the impact on the Fermi level position following contact formation on WSe2.

  3. Chemistry of Sulfides and Metal in Enstatite Chondrites — How Many Parent Lithologies (Bodies)?

    NASA Astrophysics Data System (ADS)

    Weyrauch, M.; Horstmann, M.; Bischoff, A.

    2014-09-01

    Chemical data of 74 enstatite chondrites reveal that mineral chemistry cannot be correlated with petrologic type. Differences in sulfide chemistry suggest that at least four parent lithologies (two each for the EH and EL subgroups) might be required.

  4. Sweetening ruthenium and osmium: organometallic arene complexes containing aspartame.

    PubMed

    Gray, Jennifer C; Habtemariam, Abraha; Winnig, Marcel; Meyerhof, Wolfgang; Sadler, Peter J

    2008-09-01

    The novel organometallic sandwich complexes [(eta(6)-p-cymene)Ru(eta(6)-aspartame)](OTf)(2) (1) (OTf = trifluoromethanesulfonate) and [(eta(6)-p-cymene)Os(eta(6)-aspartame)](OTf)(2) (2) incorporating the artificial sweetener aspartame have been synthesised and characterised. A number of properties of aspartame were found to be altered on binding to either metal. The pK(a) values of both the carboxyl and the amino groups of aspartame are lowered by between 0.35 and 0.57 pH units, causing partial deprotonation of the amino group at pH 7.4 (physiological pH). The rate of degradation of aspartame to 3,6-dioxo-5-phenylmethylpiperazine acetic acid (diketopiperazine) increased over threefold from 0.12 to 0.36 h(-1) for 1, and to 0.43 h(-1) for 2. Furthermore, the reduction potential of the ligand shifted from -1.133 to -0.619 V for 2. For the ruthenium complex 1 the process occurred in two steps, the first (at -0.38 V) within a biologically accessible range. This facilitates reactions with biological reductants such as ascorbate. Binding to and activation of the sweet taste receptor was not observed for these metal complexes up to concentrations of 1 mM. The factors which affect the ability of metal-bound aspartame to interact with the receptor site are discussed.

  5. The colloidal chemistry synthesis and electron microscopy characterization of shape-controlled metal and semiconductor nanocrystals

    NASA Astrophysics Data System (ADS)

    Biacchi, Adam J.

    Solution methods of materials synthesis have found application in a variety of fields due to the diversity of products accessible, facility of process scalability, and the ease of tuning their properties through prudent selection of reaction conditions. Control of experimental variables during the formation of colloidally stable nanoscale solids within a liquid matrix allows for tailoring of the particles' characteristics, including shape, size, composition, and surface chemistry. In this dissertation, I will discuss how the manipulation of reaction chemistries can be used to synthesize shape-controlled metal and semiconductor colloidal nanocrystals. Further, I will elaborate on the mechanisms by which these particles form from molecular precursors and describe how their properties can differ from their bulk analogues through extensive characterization, especially using transmission electron microscopy. These studies contribute to the continued development of chemical routes to nanocrystals and their application as functional materials. First, I will review recent advances in the synthesis and characterization of shape-controlled nanocrystals, as well as highlight their promising applicability in a number of emerging technologies. These principles will then be leveraged to the specific case of catalytically-active rhodium nanocrystals, which can be synthesized with morphological and dimensional control using a polyol solution-mediated strategy. I describe an innovative shape-controlled synthesis to monodisperse colloidal rhodium icosahedra, cubes, triangular plates, and octahedra using this route. Additionally, new insights into the important role of the polyol reducing solvent on the synthesis of these nanocrystals are revealed, and how these might be exploited to engender superior reaction control and novel products. Next, I will describe how a crystallization mechanism was established for the synthesis of numerous morphologies of noble metal nanocrystals. I

  6. Creating a Discovery Platform for Confined-Space Chemistry and Materials: Metal-Organic Frameworks.

    SciTech Connect

    Allendorf, Mark D.; Greathouse, Jeffery A.; Simmons, Blake

    2008-09-01

    Metal organic frameworks (MOF) are a recently discovered class of nanoporous, defect-free crystalline materials that enable rational design and exploration of porous materials at the molecular level. MOFs have tunable monolithic pore sizes and cavity environments due to their crystalline nature, yielding properties exceeding those of most other porous materials. These include: the lowest known density (91% free space); highest surface area; tunable photoluminescence; selective molecular adsorption; and methane sorption rivaling gas cylinders. These properties are achieved by coupling inorganic metal complexes such as ZnO4 with tunable organic ligands that serve as struts, allowing facile manipulation of pore size and surface area through reactant selection. MOFs thus provide a discovery platform for generating both new understanding of chemistry in confined spaces and novel sensors and devices based on their unique properties. At the outset of this project in FY06, virtually nothing was known about how to couple MOFs to substrates and the science of MOF properties and how to tune them was in its infancy. An integrated approach was needed to establish the required knowledge base for nanoscale design and develop methodologies integrate MOFs with other materials. This report summarizes the key accomplishments of this project, which include creation of a new class of radiation detection materials based on MOFs, luminescent MOFs for chemical detection, use of MOFs as templates to create nanoparticles of hydrogen storage materials, MOF coatings for stress-based chemical detection using microcantilevers, and "flexible" force fields that account for structural changes in MOFs that occur upon molecular adsorption/desorption. Eight journal articles, twenty presentations at scientific conferences, and two patent applications resulted from the work. The project created a basis for continuing development of MOFs for many Sandia applications and succeeded in securing $2.75 M in

  7. Cytotoxic properties of a new organometallic platinum(II) complex and its gold(I) heterobimetallic derivatives.

    PubMed

    Serratrice, Maria; Maiore, Laura; Zucca, Antonio; Stoccoro, Sergio; Landini, Ida; Mini, Enrico; Massai, Lara; Ferraro, Giarita; Merlino, Antonello; Messori, Luigi; Cinellu, Maria Agostina

    2016-01-14

    A novel platinum(ii) organometallic complex, [Pt(pbi)(Me)(DMSO)], bearing the 2-(2'-pyridyl)-benzimidazole (pbiH) ligand, was synthesized and fully characterized. Interestingly, the reaction of this organometallic platinum(ii) complex with two distinct gold(i) phosphane compounds afforded the corresponding heterobimetallic derivatives with the pbi ligand bridging the two metal centers. The antiproliferative properties in vitro of [Pt(pbi)(Me)(DMSO)] and its gold(i) derivatives as well as those of the known coordination platinum(ii) and palladium(ii) complexes with the same ligand, of the general formula [MCl2(pbiH)], were comparatively evaluated against A2780 cancer cells, either sensitive or resistant to cisplatin. A superior biological activity of the organometallic compound clearly emerged compared to the corresponding platinum(ii) complex; the antiproliferative effects are further enhanced upon attaching the gold(i) triphenylphosphine moiety to the organometallic Pt compound. Remarkably, these novel metal species are able to overcome nearly complete resistance to cisplatin. Significant mechanistic insight into the study compounds was gained after investigating their reactions with a few representative biomolecules by electrospray mass spectrometry and X-ray crystallography. The obtained results are comprehensively discussed.

  8. Exploration geochemical technique for the determination of preconcentrated organometallic halides by ICP-AES

    USGS Publications Warehouse

    Motooka, J.M.

    1988-01-01

    An atomic absorption extraction technique which is widely used in geochemical exploration for the determination of Ag, As, Au, Bi, Cd, Cu, Mo, Pb, Sb, and Zn has been modified and adapted to a simultaneous inductively coupled plasma-atomic emission instrument. the experimental and operating parameters are described for the preconcentration of the metals into their organometallic halides and for the determination of the metals. Lower limits of determination are equal to or improved over those for flame atomic absorption (except Au) and ICP results are very similar to the accepted AA values, with precision for the ICP data in excess of that necessary for exploration purposes.

  9. Bioinspired heme, heme/nonheme diiron, heme/copper, and inorganic NOx chemistry: *NO((g)) oxidation, peroxynitrite-metal chemistry, and *NO((g)) reductive coupling.

    PubMed

    Schopfer, Mark P; Wang, Jun; Karlin, Kenneth D

    2010-07-19

    The focus of this Forum Article highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide [nitrogen monoxide, *NO((g))] and its biological roles and reactions. The latter focus is on (i) oxidation of *NO((g)) to nitrate by nitric oxide dioxygenases (NODs) and (ii) reductive coupling of two molecules of *NO((g)) to give N(2)O(g). In the former case, NODs are described, and the highlighting of possible peroxynitrite/heme intermediates and the consequences of this are given by a discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with *NO((g)) and O(2)(g), leading to peroxynitrite species, are given. The coverage of biological reductive coupling of *NO((g)) deals with bacterial nitric oxide reductases (NORs) with heme/nonheme diiron active sites and on heme/copper oxidases such as cytochrome c oxidase, which can mediate the same chemistry. Recently designed protein and synthetic model compounds (heme/nonheme/diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, that describe the oxidation of *NO((g)) to nitrate (or nitrite) and possible peroxynitrite intermediates or reductive coupling of *NO((g)) to give nitrous oxide.

  10. Surface functionalization of two-dimensional metal chalcogenides by Lewis acid-base chemistry

    NASA Astrophysics Data System (ADS)

    Lei, Sidong; Wang, Xifan; Li, Bo; Kang, Jiahao; He, Yongmin; George, Antony; Ge, Liehui; Gong, Yongji; Dong, Pei; Jin, Zehua; Brunetto, Gustavo; Chen, Weibing; Lin, Zuan-Tao; Baines, Robert; Galvão, Douglas S.; Lou, Jun; Barrera, Enrique; Banerjee, Kaustav; Vajtai, Robert; Ajayan, Pulickel

    2016-05-01

    Precise control of the electronic surface states of two-dimensional (2D) materials could improve their versatility and widen their applicability in electronics and sensing. To this end, chemical surface functionalization has been used to adjust the electronic properties of 2D materials. So far, however, chemical functionalization has relied on lattice defects and physisorption methods that inevitably modify the topological characteristics of the atomic layers. Here we make use of the lone pair electrons found in most of 2D metal chalcogenides and report a functionalization method via a Lewis acid-base reaction that does not alter the host structure. Atomic layers of n-type InSe react with Ti4+ to form planar p-type [Ti4+n(InSe)] coordination complexes. Using this strategy, we fabricate planar p-n junctions on 2D InSe with improved rectification and photovoltaic properties, without requiring heterostructure growth procedures or device fabrication processes. We also show that this functionalization approach works with other Lewis acids (such as B3+, Al3+ and Sn4+) and can be applied to other 2D materials (for example MoS2, MoSe2). Finally, we show that it is possible to use Lewis acid-base chemistry as a bridge to connect molecules to 2D atomic layers and fabricate a proof-of-principle dye-sensitized photosensing device.

  11. A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools.

    PubMed

    He, Jinsong; Chen, J Paul

    2014-05-01

    Heavy metals contamination has become a global issue of concern due to their higher toxicities, nature of non-biodegradability, high capabilities in bioaccumulation in human body and food chain, and carcinogenicities to humans. A series of researches demonstrate that biosorption is a promising technology for removal of heavy metals from aqueous solutions. Algae serve as good biosorbents due to their abundance in seawater and fresh water, cost-effectiveness, reusability and high metal sorption capacities. This article provides a comprehensive review of recent findings on performances, applications and chemistry of algae (e.g., brown, green and red algae, modified algae and the derivatives) for sequestration of heavy metals. Biosorption kinetics and equilibrium models are reviewed. The mechanisms for biosorption are presented. Biosorption is a complicated process involving ion-exchange, complexation and coordination. Finally the theoretical simulation tools for biosorption equilibrium and kinetics are presented so that the readers can use them for further studies.

  12. Modulating the rate of charge transport in a metal-organic framework thin film using host:guest chemistry.

    PubMed

    Hod, Idan; Farha, Omar K; Hupp, Joseph T

    2016-01-28

    Herein we demonstrate the use of host-guest chemistry to modulate rates of charge transport in metal-organic framework (MOF) films. The kinetics of site-to-site of charge hopping and, in turn, the overall redox conductivity, of a ferrocene-modified MOF can be altered by up to 30-fold by coupling electron exchange to the oxidation-state-dependent formation of inclusion complexes between cyclodextrin and channel-tethered metallocenes.

  13. Modifying Surface Chemistry of Metal Oxides for Boosting Dissolution Kinetics in Water by Liquid Cell Electron Microscopy.

    PubMed

    Lu, Yue; Geng, Jiguo; Wang, Kuan; Zhang, Wei; Ding, Wenqiang; Zhang, Zhenhua; Xie, Shaohua; Dai, Hongxing; Chen, Fu-Rong; Sui, Manling

    2017-08-22

    Dissolution of metal oxides is fundamentally important for understanding mineral evolution and micromachining oxide functional materials. In general, dissolution of metal oxides is a slow and inefficient chemical reaction. Here, by introducing oxygen deficiencies to modify the surface chemistry of oxides, we can boost the dissolution kinetics of metal oxides in water, as in situ demonstrated in a liquid environmental transmission electron microscope (LETEM). The dissolution rate constant significantly increases by 16-19 orders of magnitude, equivalent to a reduction of 0.97-1.11 eV in activation energy, as compared with the normal dissolution in acid. It is evidenced from the high-resolution TEM imaging, electron energy loss spectra, and first-principle calculations where the dissolution route of metal oxides is dynamically changed by local interoperability between altered water chemistry and surface oxygen deficiencies via electron radiolysis. This discovery inspires the development of a highly efficient electron lithography method for metal oxide films in ecofriendly water, which offers an advanced technique for nanodevice fabrication.

  14. Environmental Chemistry as Focus in the Undergraduate Curriculum

    NASA Astrophysics Data System (ADS)

    Chittenden, D. M.; Draganjac, M. E.; Wyatt, W. V.

    1995-10-01

    Several of the Arkansas State University chemistry faculty have elected to make environmental chemistry a focus of the laboratory experience to teach basic principles in instrumentation, physical chemistry, and inorganic chemistry courses. Additionally, in the undergraduate research laboratory required for a BS degree, they have mentored students in environmentally relevant projects. The instrumentation involved in these undergraduate experiences were the Varian Spectra250+ with GTA-97 graphite furnace atomic absorption (GFAA) spectrometer and the Seiko TG/DTA320 Thermal Analyzer. TGA methods are currently used in physical chemistry and inorganic chemistry as stand-alone experiments to introduce the technique to the students. In the physical chemistry laboratory, students use the TGA curve to explain mass loss and predict final product. Samples in this initial year included CuSO4(5 hydrate), FeSO4(7 hydrate), CaC2O4(2 hydrate), and metal carbonates; the behavior of all these compounds is well documented. See figure. Students in the inorganic chemistry laboratory were required to determine the number of waters of hydration, and explain decomposition including the thermicity of the process. Currently, an integrated inorganic lab experience is being developed based on the chemistry of selected metal polysulfide complexes (environmentally important as models for hydrodesulfurization catalysts). The TGA/DTA methods will be used to study the decomposition of the polysulfide. The decomposition product will be further characterized by powder X-ray diffraction techniques. The TGA/DTA has been used in Special Problems in Chemistry--the research experience--to study the thermal stability of an organometallic polymer semi-conductor and to study the vapor transport of chromium oxides in the Cr/O/H2O system. The GFAA became fully operational as the instrumentation course was beginning in the fall of 1994. The graphite furnace mode was demonstrated to the Instrumentation

  15. Interfacial Chemistry Regulation via a Skin-Grafting Strategy Enables High-Performance Lithium-Metal Batteries.

    PubMed

    Gao, Yue; Zhao, Yuming; Li, Yuguang C; Huang, Qingquan; Mallouk, Thomas E; Wang, Donghai

    2017-10-06

    The lithium (Li) metal anode suffers severe interfacial instability from its high reactivity towards liquid electrolytes, especially carbonate-based electrolytes, resulting in poor electrochemical performance of batteries that use 4-V high-capacity cathodes. We report a new skin-grafting strategy that stabilizes the Li metal-liquid electrolyte interface by coating the Li metal surface with poly((N-2,2-dimethyl-1,3-dioxolane-4-methyl)-5-norbornene-exo-2,3-dicarboximide), a chemically and electrochemically active polymer layer. This layer, composed of cyclic ether groups with a stiff polycyclic main chain, serves as a grafted polymer skin on the Li metal anode not only to incorporate ether-based polymeric components into the solid-electrolyte interphase (SEI) but also to accommodate Li deposition/dissolution under the skin in a dendrite/moss-free manner. Consequently, a Li-metal battery employing a Li metal anode with the grafted skin paired with LiNi0.5Co0.2Mn0.3O2 cathode has a 90.0 % capacity retention after 400 charge/discharge cycles and a capacity of 1.2 mAh/cm2 in a carbonate-based electrolyte. This proof-of-concept study provides a new direction for regulating the interfacial chemistry of Li metal anodes and for enabling high-performance Li-metal batteries.

  16. Functionalization of a ruthenium-diacetylide organometallic complex as a next-generation push-pull chromophore.

    PubMed

    De Sousa, Samuel; Ducasse, Laurent; Kauffmann, Brice; Toupance, Thierry; Olivier, Céline

    2014-06-02

    The design and preparation of an asymmetric ruthenium-diacetylide organometallic complex was successfully achieved to provide an original donor-π-[M]-π-acceptor architecture, in which [M] corresponds to the [Ru(dppe)2] (dppe: bisdiphenylphosphinoethane) metal fragment. The charge-transfer processes occurring upon photoexcitation of the push-pull metal-dialkynyl σ complex were investigated by combining experimental and theoretical data. The novel push-pull complex, appropriately end capped with an anchoring carboxylic acid function, was further adsorbed onto a semiconducting metal oxide porous thin film to serve as a photosensitizer in hybrid solar cells. The resulting photoactive material, when embedded in dye-sensitized solar cell devices, showed a good spectral response with a broad incident photon-to-current conversion efficiency profile and a power conversion efficiency that reached 7.3 %. Thus, this material paves the way to a new generation of organometallic chromophores for photovoltaic applications.

  17. Small organometallic compounds as antibacterial agents.

    PubMed

    Patra, Malay; Gasser, Gilles; Metzler-Nolte, Nils

    2012-06-07

    The emergence of bacterial resistance to commercial antibiotics is an issue of global importance. During the last two decades, the number of antibacterial agents that have been discovered and introduced into the market has steadily declined and failed to meet the challenges posed by rapidly increasing resistance of the pathogens against common antibacterial drugs. The development of new classes of compounds to control the virulence of the pathogens is therefore urgently required. This perspective describes the historical development in brief and recent advances on the preparation of small organometallic compounds as new classes of antibacterial agents with potential for clinical development.

  18. Synthesis and Small Molecule Exchange Studies of a Magnesium Bisformate Metal-Organic Framework: An Experiment in Host-Guest Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Rood, Jeffrey A.; Henderson, Kenneth W.

    2013-01-01

    concepts of host-guest chemistry and size exclusion in porous metal-organic frameworks (MOFs). The experiment has been successfully carried out in both introductory and advanced-level inorganic chemistry laboratories. Students synthesized the porous MOF, alpha-Mg[subscript…

  19. Synthesis and Small Molecule Exchange Studies of a Magnesium Bisformate Metal-Organic Framework: An Experiment in Host-Guest Chemistry for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Rood, Jeffrey A.; Henderson, Kenneth W.

    2013-01-01

    concepts of host-guest chemistry and size exclusion in porous metal-organic frameworks (MOFs). The experiment has been successfully carried out in both introductory and advanced-level inorganic chemistry laboratories. Students synthesized the porous MOF, alpha-Mg[subscript…

  20. The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry

    NASA Astrophysics Data System (ADS)

    Furche, Filipp; Perdew, John P.

    2006-01-01

    We investigate the performance of contemporary semilocal and hybrid density functionals for bond energetics, structures, dipole moments, and harmonic frequencies of 3d transition-metal (TM) compounds by comparison with gas-phase experiments. Special attention is given to the nonempirical metageneralized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], which has been implemented in TURBOMOLE for the present work. Trends and error patterns for classes of homologous compounds are analyzed, including dimers, monohydrides, mononitrides, monoxides, monofluorides, polyatomic oxides and halogenides, carbonyls, and complexes with organic π ligands such as benzene and cyclopentadienyl. Weakly bound systems such as Ca2, Mn2, and Zn2 are discussed. We propose a reference set of reaction energies for benchmark purposes. Our all-electron results with quadruple zeta valence basis sets validate semilocal density-functional theory as the workhorse of computational TM chemistry. Typical errors in bond energies are substantially larger than in (organic) main group chemistry, however. The Becke-Perdew'86 [Phys. Rev. A 38, 3098 (1988); Phys. Rev. B 33, 8822 (1986)] GGA and the TPSS meta-GGA have the best price/performance ratio, while the TPSS hybrid functional achieves a slightly lower mean absolute error in bond energies. The popular Becke three-parameter hybrid B3LYP underbinds significantly and tends to overestimate bond distances; we give a possible explanation for this. We further show that hybrid mixing does not reduce the width of the error distribution on our reference set. The error of a functional for the s-d transfer energy of a TM atom does not predict its error for TM bond energies and bond lengths. For semilocal functionals, self-interaction error in one- and three-electron bonds appears to be a major source of error in TM reaction energies. Nevertheless, TPSS predicts the correct ground

  1. Unexpected metal ion-assisted transformations leading to unexplored bridging ligands in Ni(II) coordination chemistry: the case of PO3F(2-) group.

    PubMed

    Dermitzaki, Despina; Raptopoulou, Catherine P; Psycharis, Vassilis; Escuer, Albert; Perlepes, Spyros P; Stamatatos, Theocharis C

    2014-10-21

    The initial 'accidental', metal ion-assisted hydrolysis of PF6(-) to PO3F(2-) has been evolved in a systematic investigation of the bridging affinity of the latter group in Ni(II)/oximate chemistry; mono-, di- and trinuclear complexes have been prepared and confirmed both the rich reactivity of PO3F(2-) and its potential for further use as bridging ligand in high-nuclearity 3d-metal cluster chemistry.

  2. General synthesis of transition metal oxides hollow nanospheres/nitrogen-doped graphene hybrids via metal-ammine complex chemistry for high performance lithium ion batteries.

    PubMed

    Chen, Jiayuan; Wu, Xiaofeng; Gong, Yan; Wang, Pengfei; Li, Wenhui; Mo, Shengpeng; Peng, Shengpan; Tan, Qiangqiang; Chen, Yunfa

    2017-08-30

    We present a general and facile synthesis strategy, on the basis of metal-ammine complex chemistry, in synthesizing hollow transition metal oxides (Co3O4, NiO, CuO-Cu2O and ZnO)/nitrogen-doped graphene hybrids, potentially applied in high performance lithium ion batteries. The oxygen-containing functional groups of graphene oxide play a prerequisite role in the formation of hollow transition metal oxides on graphene nanosheets, and a significant hollowing process occurs only when forming metal (Co2+, Ni2+, Cu2+, or Zn2+)-ammine complex ions. Moreover, the hollowing process is well correlated with complexing capacity between metal ions and NH3 molecules. The significant hollowing process occurs for strong metal-ammine complex ions including Co2+, Ni2+, Cu2+, and Zn2+ ions, and no hollow structures formed for weak and/or non-complex Mn2+ and Fe3+ ions. Simultaneously, this novel strategy can also achieve the directly doping of nitrogen atoms into graphene framework. When used as anodic materials, the electrochemical performance of two typical hollow Co3O4 or NiO/nitrogen-doped graphene hybrids are evaluated. It is demonstrated that these unique nanostructed hybrids, in contrast with the bare counterparts, solid transition metal oxides/nitrogen-doped graphene hybrids, perform the significantly improved specific capacity, superior rate capability and excellent capacity retention. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Magnetism of phthalocyanine-based organometallic single porous sheet.

    PubMed

    Zhou, Jian; Sun, Qiang

    2011-09-28

    A two-dimensional (2D) periodic Fe phthalocyanine (FePc) single-layer sheet has very recently been synthesized experimentally (Abel, M.; et al. J. Am. Chem. Soc.2011, 133, 1203), providing a novel pathway for achieving 2D atomic sheets with regularly and separately distributed transition-metal atoms for unprecedented applications. Here we present first-principles calculations based on density functional theory to investigate systematically the electronic and magnetic properties of such novel organometallics (labeled as TMPc, TM = Cr-Zn) as free-standing sheets. Among them, we found that only the 2D MnPc framework is ferromagnetic, while 2D CrPc, FePc, CoPc, and CuPc are antiferromagnetic and 2D NiPc and ZnPc are nonmagnetic. The difference in magnetic couplings for the studied systems is related to the different orbital interactions. Only MnPc displays metallic d(xz) and d(yz) orbitals that can hybridize with p electrons of Pc, which mediates the long-range ferromagnetic coupling. Monte Carlo simulations based on the Ising model suggest that the Curie temperature (T(C)) of the 2D MnPc framework is ∼150 K, which is comparable to the highest T(C) achieved experimentally, that of Mn-doped GaAs. The present study provides theoretical insight leading to a better understanding of novel phthalocyanine-based 2D structures beyond graphene and BN sheets.

  4. Toxicology of organic-inorganic hybrid molecules: bio-organometallics and its toxicology.

    PubMed

    Fujie, Tomoya; Hara, Takato; Kaji, Toshiyuki

    2016-01-01

    Bio-organometallics is a research strategy of biology that uses organic-inorganic hybrid molecules. The molecules are expected to exhibit useful bioactivities based on the unique structure formed by interaction between the organic structure and intramolecular metal(s). However, studies on both biology and toxicology of organic-inorganic hybrid molecules have been incompletely performed. There can be two types of toxicological studies of bio-organometallics; one is evaluation of organic-inorganic hybrid molecules and the other is analysis of biological systems from the viewpoint of toxicology using organic-inorganic hybrid molecules. Our recent studies indicate that cytotoxicity of hybrid molecules containing a metal that is nontoxic in inorganic forms can be more toxic than that of hybrid molecules containing a metal that is toxic in inorganic forms when the structure of the ligand is the same. Additionally, it was revealed that organic-inorganic hybrid molecules are useful for analysis of biological systems important for understanding the toxicity of chemical compounds including heavy metals.

  5. Influence of soil chemistry on metal and bioessential element concentrations in nymphal and adult periodical cicadas (Magicicada spp.)

    USGS Publications Warehouse

    Robinson, G.R.; Sibrell, P.L.; Boughton, C.J.; Yang, L.H.

    2007-01-01

    Metal and bioessential element concentrations were measured in three species of 17-year periodical cicadas (Magicicada spp.) to determine how cicada tissue chemistry is affected by soil chemistry, measure the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils, and assess the potential risks of observed metal contamination for wildlife. Periodical cicada nymphs feed on root xylem fluids for 13 or 17??years of underground development. The nymphs then emerge synchronously at high densities, before leaving their nymphal keratin exoskeleton and molting into their adult form. Cicadas are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland ecosystems. Nymphal exoskeletons and whole adult cicadas were sampled in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during the Brood X emergence in May and June, 2004. Elements, such as Al, Fe, and Pb, are strongly enriched in the nymphal exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe and Pb, when normalized to relatively inert soil constituents such as Al and Ce, are similar in both the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) might control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, indicate strong enrichment in cicada tissues relative to soil, implying selective absorption and retention by xylem fluids, the cicada nymphs themselves, or both. Element enrichment patterns in cicada tissues are similar to enrichment patterns observed in xylem fluids from tree roots. Chalcophile elements and heavy metals accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in the nymphal

  6. Influence of soil chemistry on metal and bioessential element concentrations in nymphal and adult periodical cicadas (Magicicada spp.).

    PubMed

    Robinson, G R; Sibrell, P L; Boughton, C J; Yang, L H

    2007-03-15

    Metal and bioessential element concentrations were measured in three species of 17-year periodical cicadas (Magicicada spp.) to determine how cicada tissue chemistry is affected by soil chemistry, measure the bioavailability of metals from both uncontaminated and lead-arsenate-pesticide contaminated soils, and assess the potential risks of observed metal contamination for wildlife. Periodical cicada nymphs feed on root xylem fluids for 13 or 17 years of underground development. The nymphs then emerge synchronously at high densities, before leaving their nymphal keratin exoskeleton and molting into their adult form. Cicadas are an important food source for birds and animals during emergence events, and influence nutrient cycles in woodland ecosystems. Nymphal exoskeletons and whole adult cicadas were sampled in Clarke and Frederick Counties, Virginia and Berkeley and Jefferson Counties, West Virginia during the Brood X emergence in May and June, 2004. Elements, such as Al, Fe, and Pb, are strongly enriched in the nymphal exoskeleton relative to the adult body; Cu and Zn are enriched in bodies. Concentrations of Fe and Pb, when normalized to relatively inert soil constituents such as Al and Ce, are similar in both the molt exoskeleton and their host soil, implying that passive assimilation through prolonged soil contact (adhesion or adsorption) might control these metal concentrations. Normalized concentrations of bioessential elements, such as S, P, K, Ca, Mn, Cu, Zn, and Mo, and chalcophile (sulfur-loving) elements, such as As, Se, and Au, indicate strong enrichment in cicada tissues relative to soil, implying selective absorption and retention by xylem fluids, the cicada nymphs themselves, or both. Element enrichment patterns in cicada tissues are similar to enrichment patterns observed in xylem fluids from tree roots. Chalcophile elements and heavy metals accumulate in keratin-rich tissues and may bind to sulfhydryl groups. Metal concentrations in the nymphal

  7. Structural Diversity in Alkali Metal and Alkali Metal Magnesiate Chemistry of the Bulky 2,6-Diisopropyl-N-(trimethylsilyl)anilino Ligand.

    PubMed

    Fuentes, M Ángeles; Zabala, Andoni; Kennedy, Alan R; Mulvey, Robert E

    2016-10-10

    Bulky amido ligands are precious in s-block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n-butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe3 )(Dipp)](-) (Dipp=2,6-iPr2 -C6 H3 ). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s-block metal amides. Solvation by N,N,N',N'',N''-pentamethyldiethylenetriamine (PMDETA) or N,N,N',N'-tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi-solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3 )(Dipp)}2 (μ-nBu)]∞ (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  8. Structural Diversity in Alkali Metal and Alkali Metal Magnesiate Chemistry of the Bulky 2,6‐Diisopropyl‐N‐(trimethylsilyl)anilino Ligand

    PubMed Central

    Fuentes, M. Ángeles; Zabala, Andoni; Kennedy, Alan R.

    2016-01-01

    Abstract Bulky amido ligands are precious in s‐block chemistry, since they can implant complementary strong basic and weak nucleophilic properties within compounds. Recent work has shown the pivotal importance of the base structure with enhancement of basicity and extraordinary regioselectivities possible for cyclic alkali metal magnesiates containing mixed n‐butyl/amido ligand sets. This work advances alkali metal and alkali metal magnesiate chemistry of the bulky arylsilyl amido ligand [N(SiMe3)(Dipp)]− (Dipp=2,6‐iPr2‐C6H3). Infinite chain structures of the parent sodium and potassium amides are disclosed, adding to the few known crystallographically characterised unsolvated s‐block metal amides. Solvation by N,N,N′,N′′,N′′‐pentamethyldiethylenetriamine (PMDETA) or N,N,N′,N′‐tetramethylethylenediamine (TMEDA) gives molecular variants of the lithium and sodium amides; whereas for potassium, PMDETA gives a molecular structure, TMEDA affords a novel, hemi‐solvated infinite chain. Crystal structures of the first magnesiate examples of this amide in [MMg{N(SiMe3)(Dipp)}2(μ‐nBu)]∞ (M=Na or K) are also revealed, though these breakdown to their homometallic components in donor solvents as revealed through NMR and DOSY studies. PMID:27573676

  9. Structurally defined allyl compounds of main group metals: coordination and reactivity.

    PubMed

    Lichtenberg, Crispin; Okuda, Jun

    2013-05-10

    Organometallic allyl compounds are important as allylation reagents in organic synthesis, as polymerization catalysts, and as volatile metal precursors in material science. Whereas the allyl chemistry of synthetically relevant transition metals such as palladium and of the lanthanoids is well-established, that of main group metals has been lagging behind. Recent progress on allyl complexes of Groups 1, 2, and 12-16 now provides a more complete picture. This is based on a fundamental understanding of metal-allyl bonding interactions in solution and in the solid state. Furthermore, reactivity trends have been rationalized and new types of allyl-specific reactivity patterns have been uncovered. Key features include 1) the exploitation of the different types of metal-allyl bonding (highly ionic to predominantly covalent), 2) the use of synergistic effects in heterobimetallic compounds, and 3) the adjustment of Lewis acidity by variation of the charge of allyl compounds.

  10. Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering

    NASA Astrophysics Data System (ADS)

    Toor, Fatima; Miller, Jeffrey B.; Davidson, Lauren M.; Nichols, Logan; Duan, Wenqi; Jura, Michael P.; Yim, Joanne; Forziati, Joanne; Black, Marcie R.

    2016-10-01

    There are a range of different methods to generate a nanostructured surface on silicon (Si) but the most cost effective and optically interesting is the metal assisted wet chemical etching (MACE) (Koynov et al 2006 Appl. Phys. Lett. 88 203107). MACE of Si is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features or ‘black silicon’. MACE-fabricated nanowires (NWs) provide improved antireflection and light trapping functionality (Toor et al 2016 Nanoscale 8 15448-66) compared with the traditional ‘iso-texturing’ (Campbell and Green 1987 J. Appl. Phys. 62 243-9). The resulting lower reflection and improved light trapping can lead to higher short circuit currents in NW solar cells (Toor et al 2011 Appl. Phys. Lett. 99 103501). In addition, NW cells can have higher fill factors and voltages than traditionally processed cells, thus leading to increased solar cell efficiencies (Cabrera et al 2013 IEEE J. Photovolt. 3 102-7). MACE NW processing also has synergy with next generation Si solar cell designs, such as thin epitaxial-Si and passivated emitter rear contact (Toor et al 2016 Nanoscale 8 15448-66). While several companies have begun manufacturing black Si, and many more are researching these techniques, much of the work has not been published in traditional journals and is publicly available only through conference proceedings and patent publications, which makes learning the field challenging. There have been three specialized review articles published recently on certain aspects of MACE or black Si, but do not present a full review that would benefit the industry (Liu et al 2014 Energy Environ. Sci. 7 3223-63 Yusufoglu et al 2015 IEEE J. Photovolt. 5 320-8 Huang et al 2011 Adv. Mater. 23 285-308). In this feature article, we review the chemistry of MACE and explore how changing parameters in the wet etch process effects the resulting

  11. The extreme chemistry of multiple stellar populations in the metal-poor globular cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; D'Orazi, V.; Lucatello, S.; Momany, Y.; Sollima, A.; Bellazzini, M.; Catanzaro, G.; Leone, F.

    2014-04-01

    Our FLAMES survey of Na-O anticorrelation in globular clusters (GCs) is extended to NGC 4833, a metal-poor GC with a long blue tail on the horizontal branch (HB). We present the abundance analysis for a large sample of 78 red giants based on UVES and GIRAFFE spectra acquired at the ESO-VLT. We derived abundances of Na, O, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, La, and Nd. This is the first extensive study of this cluster from high resolution spectroscopy. On the scale of our survey, the metallicity of NGC 4833 is [Fe/H] = -2.015 ± 0.004 ± 0.084 dex (rms = 0.014 dex) from 12 stars observed with UVES, where the first error is from statistics and the second one refers to the systematic effects. The iron abundance in NGC 4833 is homogeneous at better than 6%. On the other hand, the light elements involved in proton-capture reactions at high temperature show the large star-to-star variations observed in almost all GCs studied so far. The Na-O anticorrelation in NGC 4833 is quite extended, as expected from the high temperatures reached by stars on the HB, and NGC 4833 contains a conspicuous fraction of stars with extreme [O/Na] ratios. More striking is the finding that large star-to-star variations are also seen for Mg, which spans a range of more than 0.5 dex in this GC. Depletions in Mg are correlated to the abundances of O and anti-correlated with Na, Al, and Si abundances. This pattern suggests the action of nuclear processing at unusually high temperatures, producing the extreme chemistry observed in the stellar generations of NGC 4833. These extreme changes are also seen in giants of the much more massive GCs M 54 and ω Cen, and our conclusion is that NGC 4833 has probably lost a conspicuous fraction of its original mass due to bulge shocking, as also indicated by its orbit. Based on observations collected at ESO telescopes under programmes 083.D-0208 and 68.D-0265.Full Tables 2, 6-11 are only available at the CDS via anonymous ftp to http

  12. Nanostructured silicon via metal assisted catalyzed etch (MACE): chemistry fundamentals and pattern engineering.

    PubMed

    Toor, Fatima; Miller, Jeffrey B; Davidson, Lauren M; Nichols, Logan; Duan, Wenqi; Jura, Michael P; Yim, Joanne; Forziati, Joanne; Black, Marcie R

    2016-10-14

    There are a range of different methods to generate a nanostructured surface on silicon (Si) but the most cost effective and optically interesting is the metal assisted wet chemical etching (MACE) (Koynov et al 2006 Appl. Phys. Lett. 88 203107). MACE of Si is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features or 'black silicon'. MACE-fabricated nanowires (NWs) provide improved antireflection and light trapping functionality (Toor et al 2016 Nanoscale 8 15448-66) compared with the traditional 'iso-texturing' (Campbell and Green 1987 J. Appl. Phys. 62 243-9). The resulting lower reflection and improved light trapping can lead to higher short circuit currents in NW solar cells (Toor et al 2011 Appl. Phys. Lett. 99 103501). In addition, NW cells can have higher fill factors and voltages than traditionally processed cells, thus leading to increased solar cell efficiencies (Cabrera et al 2013 IEEE J. Photovolt. 3 102-7). MACE NW processing also has synergy with next generation Si solar cell designs, such as thin epitaxial-Si and passivated emitter rear contact (Toor et al 2016 Nanoscale 8 15448-66). While several companies have begun manufacturing black Si, and many more are researching these techniques, much of the work has not been published in traditional journals and is publicly available only through conference proceedings and patent publications, which makes learning the field challenging. There have been three specialized review articles published recently on certain aspects of MACE or black Si, but do not present a full review that would benefit the industry (Liu et al 2014 Energy Environ. Sci. 7 3223-63; Yusufoglu et al 2015 IEEE J. Photovolt. 5 320-8; Huang et al 2011 Adv. Mater. 23 285-308). In this feature article, we review the chemistry of MACE and explore how changing parameters in the wet etch process effects the resulting texture

  13. Lead toxicity to Lemna minor predicted using a metal speciation chemistry approach.

    PubMed

    Antunes, Paula M C; Kreager, Nancy J

    2014-10-01

    In the present study, predictive measures for Pb toxicity and Lemna minor were developed from bioassays with 7 surface waters having varied chemistries (0.5-12.5 mg/L dissolved organic carbon, pH of 5.4-8.3, and water hardness of 8-266 mg/L CaCO3 ). As expected based on water quality, 10%, 20%, and 50% inhibitory concentration (IC10, IC20, and IC50, respectively) values expressed as percent net root elongation (%NRE) varied widely (e.g., IC20s ranging from 306 nM to >6920 nM total dissolved Pb), with unbounded values limited by Pb solubility. In considering chemical speciation, %NRE variability was better explained when both Pb hydroxides and the free lead ion were defined as bioavailable (i.e., f{OH} ) and colloidal Fe(III)(OH)3 precipitates were permitted to form and sorb metals (using FeOx as the binding phase). Although cause and effect could not be established because of covariance with alkalinity (p = 0.08), water hardness correlated strongly (r(2)  = 0.998, p < 0.0001) with the concentration of total Pb in true solution ([Pb]T_True solution ). Using these correlations as the basis for predictions (i.e., [Pb]T_True solution vs water hardness and %NRE vs f{OH} ), IC20 and IC50 values produced were within a factor of 2.9 times and 2.2 times those measured, respectively. The results provide much needed effect data for L. minor and highlight the importance of chemical speciation in Pb-based risk assessments for aquatic macrophytes.

  14. Effects of chemistry on toughness and temperature on structural evolution in metallic glasses

    NASA Astrophysics Data System (ADS)

    Shamimi Nouri, Ali

    The notch toughness of various Bulk Metallic Glasses (BMGs) were investigated. Systematic changes in composition to change the Poisson's ratio were employed to increase the notch toughness of a variety of Fe-BMGs. The Fe 50Mn10Mo14Cr4C16B6 BMG possessed very high hardness (e.g. 12 GPa) but very low notch toughness (e.g. 5.7MPam1/2) at room temperature, consistent with fracture surface observations of brittle features. Many of the other Fe-BMG variants, created to change the Poisson's ratio, exhibited higher toughness but more scatter in the data, reflected in a lower Weibull modulus. SEM examination revealed fracture initiation always occurred at inclusions in samples exhibiting lower toughness and/or Weibull modulus for a given chemistry. Implications of these observations on reliability of BMGs are presented. In addition, high-temperature micro-hardness testing on fully amorphous Fe48Mo14Cr 15Y2C15B6 was performed in order to determine the behavior and structure evolution under a variety test conditions. The effects of changes in test temperature on the micro-hardness/strength were determined over the temperature range from 25°C to 620°C. Although high (e.g., > 12 GPa) micro-hardness was exhibited at 25°C, significant hardness reductions were exhibited near Tg. In addition, the effect of exposure time (up to 300 minutes) at elevated temperature on the evolution of micro-hardness/strength was also evaluated for selected temperatures between 25°C and 620°C. The micro-hardness results were complemented with X-ray diffraction (XRD), conventional transmission electron microscopy (TEM), and an in-situ heating TEM study in order to evaluate any structural evolution that could explain the large differences in hardness evolution under different test conditions.

  15. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1997 mid-year progress report

    SciTech Connect

    Smith, B.F.

    1997-06-01

    'The first objective of this research is to develop rapid discovery and optimization approaches to new water-soluble chelating polymers. A byproduct of the development approach will be the new, selective, and efficient metal-binding agents. The second objective is to evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. The technology under development, Polymer Filtration (PF), is a technique to selectively remove or recover hazardous and valuable metal ions and radionuclides from various dilute aqueous streams. Not only can this technology be used to remediate contaminated soils and solid surfaces and treat aqueous wastes, it can also be incorporated into facilities as a pollution prevention and waste minimization technology. Polymer Filtration uses water-soluble metal-binding polymers to sequester metal ions in dilute solution. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using commercial ultrafiltration technology. Water, small organic molecules, and unbound metals pass freely through the ultrafiltration membrane while concentrating the metal-binding polymer. The polymers can then be reused by changing the solution conditions to release the metal ions. The metal-ions are recovered in concentrated form for recycle or disposal using a diafiltration process. The water-soluble polymer can be recycled for further aqueous-stream processing. To advance Polymer Filtration technology to the selectivity levels required for DOE needs. fixture directions in Polymer Filtration must include rapid development, testing, and characterization of new metal-binding polymers. The development of new chelating molecules can be equated to the process of new drugs or new materials discovery. Thus, the authors want to build upon and adapt the combinatorial chemistry approaches developed for rapid molecule generation for the drug industry to the rapid

  16. Chemistry of the Most Metal-poor Stars in the Bulge and the z ≳ 10 Universe

    NASA Astrophysics Data System (ADS)

    Casey, Andrew R.; Schlaufman, Kevin C.

    2015-08-01

    Metal-poor stars in the Milky Way are local relics of the epoch of the first stars and the first galaxies. However, a low metallicity does not prove that a star formed in this ancient era, as metal-poor stars form over a range of redshift in different environments. Theoretical models of Milky Way formation have shown that at constant metallicity, the oldest stars are those closest to the center of the Galaxy on the most tightly bound orbits. For that reason, the most metal-poor stars in the bulge of the Milky Way provide excellent tracers of the chemistry of the high-redshift universe. We report the dynamics and detailed chemical abundances of three stars in the bulge with [{Fe}/{{H}}]≲ -2.7, two of which are the most metal-poor stars in the bulge in the literature. We find that with the exception of scandium, all three stars follow the abundance trends identified previously for metal-poor halo stars. These three stars have the lowest [Sc ii/Fe] abundances yet seen in α-enhanced giant stars in the Galaxy. Moreover, all three stars are outliers in the otherwise tight [Sc ii/Fe]-[Ti ii/Fe] relation observed among metal-poor halo stars. Theoretical models predict that there is a 30% chance that at least one of these stars formed at z≳ 15, while there is a 70% chance that at least one formed at 10≲ z≲ 15. These observations imply that by z˜ 10, the progenitor galaxies of the Milky Way had both reached [{Fe}/{{H}}]˜ -3.0 and established the abundance pattern observed in extremely metal-poor stars. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  17. Molecular orbital studies of the bonding in heavy element organometallics

    SciTech Connect

    Bursten, B.E.

    1992-12-04

    The upgrade to the DECstation 3100 (and other workstations underway) has enabled the use of more sophisticated electronic structure methods. Research were done in the following fields: tris(cyclopentadienyl) actinide complexes; actinide-containing molecules with metal-metal bonds (U dimer, Th-Ru, Zr-Ru); and applications of fully relativistic DV-X[alpha] method to trivalent actinide chemistry (MCl[sub 3]).

  18. Chemistry of layered d-metal pnictide oxides and their potential as candidates for new superconductors

    PubMed Central

    Ozawa, Tadashi C; Kauzlarich, Susan M

    2008-01-01

    Layered d-metal pnictide oxides are a unique class of compounds which consist of characteristic d-metal pnictide layers and metal oxide layers. More than 100 of these layered compounds, including the recently discovered Fe-based superconducting pnictide oxides, can be classified into nine structure types. These structure types and the chemical and physical properties of the characteristic d-metal pnictide layers and metal oxide layers of the layered d-metal pnictide oxides are reviewed and discussed. Furthermore, possible approaches to design new superconductors based on these layered d-metal pnictide oxides are proposed. PMID:27877997

  19. Unravelling novel synergies between organometallic and biological partners: a quantum mechanics/molecular mechanics study of an artificial metalloenzyme.

    PubMed

    Ortega-Carrasco, Elisabeth; Lledós, Agustí; Maréchal, Jean-Didier

    2014-07-06

    In recent years, the design of artificial metalloenzymes obtained by the insertion of homogeneous catalysts into biological macromolecules has become a major field of research. These hybrids, and the corresponding X-ray structures of several of them, are offering opportunities to better understand the synergy between organometallic and biological subsystems. In this work, we investigate the resting state and activation process of a hybrid inspired by an oxidative haemoenzyme but presenting an unexpected reactivity and structural features. An extensive series of quantum mechanics/molecular mechanics calculations show that the resting state and the activation processes of the novel enzyme differ from naturally occurring haemoenzymes in terms of the electronic state of the metal, participation of the first coordination sphere of the metal and the dynamic process. This study presents novel insights into the sensitivity of the association between organometallic and biological partners and illustrates the molecular challenge that represents the design of efficient enzymes based on this strategy.

  20. Unravelling novel synergies between organometallic and biological partners: a quantum mechanics/molecular mechanics study of an artificial metalloenzyme

    PubMed Central

    Ortega-Carrasco, Elisabeth; Lledós, Agustí; Maréchal, Jean-Didier

    2014-01-01

    In recent years, the design of artificial metalloenzymes obtained by the insertion of homogeneous catalysts into biological macromolecules has become a major field of research. These hybrids, and the corresponding X-ray structures of several of them, are offering opportunities to better understand the synergy between organometallic and biological subsystems. In this work, we investigate the resting state and activation process of a hybrid inspired by an oxidative haemoenzyme but presenting an unexpected reactivity and structural features. An extensive series of quantum mechanics/molecular mechanics calculations show that the resting state and the activation processes of the novel enzyme differ from naturally occurring haemoenzymes in terms of the electronic state of the metal, participation of the first coordination sphere of the metal and the dynamic process. This study presents novel insights into the sensitivity of the association between organometallic and biological partners and illustrates the molecular challenge that represents the design of efficient enzymes based on this strategy. PMID:24829279

  1. Preparation of Surface Organometallic Catalysts by Gas-Phase Ligand Stripping and Reactive Landing of Mass-Selected Ions

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    2010-12-27

    Organometallic complexes immobilized on surfaces combine the high selectivity of homogeneous catalysts with the ease of separation of catalyst from products of heterogeneous materials. Here we report a novel approach for the highly controlled preparation of surface organometallic catalysts by gas-phase ligand stripping combined with reactive landing of mass-selected ions onto self assembled monolayer surfaces. Collision induced dissociation is used to generate highly reactive undercoordinated metal complexes in the gas-phase for subsequent surface immobilization. Complexes with an open coordination shell around the metal center are demonstrated to show enhanced activity towards reactive landing in comparison to fully ligated species. In situ TOF-SIMS analysis indicates that the immobilized complexes exhibit behaviour consistent with catalytic activity when exposed to gaseous reagents.

  2. Metal-organic frameworks for analytical chemistry: from sample collection to chromatographic separation.

    PubMed

    Gu, Zhi-Yuan; Yang, Cheng-Xiong; Chang, Na; Yan, Xiu-Ping

    2012-05-15

    In modern analytical chemistry researchers pursue novel materials to meet analytical challenges such as improvements in sensitivity, selectivity, and detection limit. Metal-organic frameworks (MOFs) are an emerging class of microporous materials, and their unusual properties such as high surface area, good thermal stability, uniform structured nanoscale cavities, and the availability of in-pore functionality and outer-surface modification are attractive for diverse analytical applications. This Account summarizes our research on the analytical applications of MOFs ranging from sampling to chromatographic separation. MOFs have been either directly used or engineered to meet the demands of various analytical applications. Bulk MOFs with microsized crystals are convenient sorbents for direct application to in-field sampling and solid-phase extraction. Quartz tubes packed with MOF-5 have shown excellent stability, adsorption efficiency, and reproducibility for in-field sampling and trapping of atmospheric formaldehyde. The 2D copper(II) isonicotinate packed microcolumn has demonstrated large enhancement factors and good shape- and size-selectivity when applied to on-line solid-phase extraction of polycyclic aromatic hydrocarbons in water samples. We have explored the molecular sieving effect of MOFs for the efficient enrichment of peptides with simultaneous exclusion of proteins from biological fluids. These results show promise for the future of MOFs in peptidomics research. Moreover, nanosized MOFs and engineered thin films of MOFs are promising materials as novel coatings for solid-phase microextraction. We have developed an in situ hydrothermal growth approach to fabricate thin films of MOF-199 on etched stainless steel wire for solid-phase microextraction of volatile benzene homologues with large enhancement factors and wide linearity. Their high thermal stability and easy-to-engineer nanocrystals make MOFs attractive as new stationary phases to fabricate MOF

  3. A Titanium-Organic Framework as an Exemplar of Combining the Chemistry of Metal- and Covalent-Organic Frameworks.

    PubMed

    Nguyen, Ha L; Gándara, Felipe; Furukawa, Hiroyasu; Doan, Tan L H; Cordova, Kyle E; Yaghi, Omar M

    2016-04-06

    A crystalline material with a two-dimensional structure, termed metal-organic framework-901 (MOF-901), was prepared using a strategy that combines the chemistry of MOFs and covalent-organic frameworks (COFs). This strategy involves in situ generation of an amine-functionalized titanium oxo cluster, Ti6O6(OCH3)6(AB)6 (AB = 4-aminobenzoate), which was linked with benzene-1,4-dialdehyde using imine condensation reactions, typical of COFs. The crystal structure of MOF-901 is composed of hexagonal porous layers that are likely stacked in staggered conformation (hxl topology). This MOF represents the first example of combining metal cluster chemistry with dynamic organic covalent bond formation to give a new crystalline, extended framework of titanium metal, which is rarely used in MOFs. The incorporation of Ti(IV) units made MOF-901 useful in the photocatalyzed polymerization of methyl methacrylate (MMA). The resulting polyMMA product was obtained with a high-number-average molar mass (26 850 g mol(-1)) and low polydispersity index (1.6), which in many respects are better than those achieved by the commercially available photocatalyst (P-25 TiO2). Additionally, the catalyst can be isolated, reused, and recycled with no loss in performance.

  4. Statistical rate theory and kinetic energy-resolved ion chemistry: theory and applications.

    PubMed

    Armentrout, P B; Ervin, Kent M; Rodgers, M T

    2008-10-16

    Ion chemistry, first discovered 100 years ago, has profitably been coupled with statistical rate theories, developed about 80 years ago and refined since. In this overview, the application of statistical rate theory to the analysis of kinetic-energy-dependent collision-induced dissociation (CID) reactions is reviewed. This procedure accounts for and quantifies the kinetic shifts that are observed as systems increase in size. The statistical approach developed allows straightforward extension to systems undergoing competitive or sequential dissociations. Such methods can also be applied to the reverse of the CID process, association reactions, as well as to quantitative analysis of ligand exchange processes. Examples of each of these types of reactions are provided and the literature surveyed for successful applications of this statistical approach to provide quantitative thermochemical information. Such applications include metal-ligand complexes, metal clusters, proton-bound complexes, organic intermediates, biological systems, saturated organometallic complexes, and hydrated and solvated species.

  5. Polyhydrides of Platinum Group Metals: Nonclassical Interactions and σ-Bond Activation Reactions.

    PubMed

    Esteruelas, Miguel A; López, Ana M; Oliván, Montserrat

    2016-08-10

    The preparation, structure, dynamic behavior in solution, and reactivity of polyhydride complexes of platinum group metals, described during the last three decades, are contextualized from both organometallic and coordination chemistry points of view. These compounds, which contain dihydrogen, elongated dihydrogen, compressed dihydride, and classical dihydride ligands promote the activation of B-H, C-H, Si-H, N-H, O-H, C-C, C-N, and C-F, among other σ-bonds. In this review, it is shown that, unlike other more mature areas, the chemistry of polyhydrides offers new exciting conceptual challenges and at the same time the possibility of interacting with other fields including the conversion and storage of regenerative energy, organic synthetic chemistry, drug design, and material science. This wide range of possible interactions foresees promising advances in the near future.

  6. Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000.

    PubMed

    Yang, Dong; Bernales, Varinia; Islamoglu, Timur; Farha, Omar K; Hupp, Joseph T; Cramer, Christopher J; Gagliardi, Laura; Gates, Bruce C

    2016-11-23

    Some metal organic frameworks (MOFs) incorporate nodes that are nanoscale metal oxides, and the hydroxy-containing functional groups on them provide opportunities for introducing catalytic sites with precisely defined structures. Investigations have been done to understand the structures of these groups on nodes and node vacancies, because, in prospect, atomic-scale modulation of the composition, areal density, and/or siting of the groups would open up possibilities for exquisite tuning of the siting and performance of subsequently anchored catalytic units (e.g., single metal ions, pairs of metal ions, or well-defined metal-ion-containing clusters). We have combined infrared (IR) spectroscopy and density functional theory (DFT) to demonstrate tuning of these sites, namely, hydrogen-bonded OH/OH2 groups on the Zr6 nodes of the MOFs UiO-66 and NU-1000 via the intermediacy of node methoxy (or ethoxy) groups formed from methanol (or ethanol). Methoxy (or ethoxy) groups on node vacancy sites are converted to a structure incorporating one vacant Zr site and one terminal OH group per face by reaction with water. Our results highlight how the combination of DFT and IR spectroscopy facilitates the determination of the identity and chemistry of the functional groups on MOF node vacancies and defect sites.

  7. Simulation and testing of a vertical organometallic vapor phase epitaxy reactor

    NASA Astrophysics Data System (ADS)

    Sani, R. A.; Barmawi, M.; Mindara, J. Y.

    1998-02-01

    The purpose of the study is to design a single wafer vertical organo-metallic vapor phase epitaxy (OMVPE) reactor which gives a uniform deposition around the symmetry axis. The vertical reactor under the consideration consist of a diffuser and a system of coaxial cylinders to laminarize the flow which may lead to a uniform deposition without rotating the susceptor. The simulation shows that for a susceptor with a radius of 2.5 cm, a uniformity can be achieved in a region of a radius of 2 cm within 1% for certain operating condition. The result is compared with the experimental measurement of TiO2 deposition from TTIP.

  8. Organotitanoxanes with unique structure among transition-element organometallic oxide derivatives.

    PubMed

    Buitrago, Olga; Mosquera, Marta E G; Jiménez, Gerardo; Cuenca, Tomás

    2008-05-19

    The synthesis of novel titanoxane compounds, [{(TiCl)(Ti)[mu-(eta(5)-C5Me4SiMe2O-kappaO)]2(mu-O)}2(mu-O)] (4) and [{Ti[mu-(eta(5)-C5Me4SiMe2O-kappaO)](mu-O)}6] (5), by controlled hydrolysis of a dinuclear titanium/oxo complex is described. Complexes 4 and 5 show unprecedented structural features for organometallic oxide derivatives of transition elements and represent unique fully characterized examples of tetra- and hexanuclear organo-transition-metal oxide compounds with an open-chain and a monocyclic structure, respectively.

  9. Switching on elusive organometallic mechanisms with photoredox catalysis.

    PubMed

    Terrett, Jack A; Cuthbertson, James D; Shurtleff, Valerie W; MacMillan, David W C

    2015-08-20

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to 'switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  10. Switching on Elusive Organometallic Mechanisms with Photoredox Catalysis

    PubMed Central

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-01-01

    Transition metal-catalyzed cross-coupling reactions have become one of the most utilized carbon–carbon and carbon–heteroatom bond-forming reactions in chemical synthesis. More recently, nickel catalysis has been shown to participate in a wide variety of C–C bond forming reactions, most notably Negishi, Suzuki–Miyaura, Stille, Kumada, and Hiyama couplings1,2. Despite the tremendous advances in C–C fragment couplings, the ability to forge C–O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C–O bond forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. In this manuscript, we demonstrate that visible light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon–oxygen coupling reaction using abundant alcohols and aryl bromides. More significantly, we have developed a general strategy to “switch on” important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron transfer (SET) catalysts. PMID:26266976

  11. Coordination of dibensothiophenes and corannulenes to organometallic ruthenium (II) fragments

    SciTech Connect

    Vecchi, Paul Anthony

    2005-01-01

    This dissertation contains five papers in the format required for journal publication which describe (in part) my research accomplishments as a graduate student at Iowa State University. This work can be broadly categorized as the binding of weakly-coordinating ligands to cationic organometallic ruthenium fragments, and consists of two main areas of study. Chapters 2-4 are investigations into factors that influence the binding of dibenzothiophenes to [Cp'Ru(CO)2(+ fragments, where Cp' = η5-C5H5 (Cp) and η5-C5Me5 (Cp*). Chapters 5 and 6 present the synthesis and structural characterization of complexes containing corannulene buckybowls that are η6-coordinated to [Cp*Ru(+ fragments. The first chapter contains a brief description of the difficulty in lowering sulfur levels in diesel fuel along with a review of corannulene derivatives and their metal complexes. After the final paper is a short summary of the work herein (Chapter 7). Each chapter is independent, and all equations, schemes, figures, tables, references, and appendices in this dissertation pertain only to the chapter in which they appear.

  12. High-sensitivity molecular organometallic resist for EUV (MORE)

    NASA Astrophysics Data System (ADS)

    Passarelli, James; Murphy, Michael; Del Re, Ryan; Sortland, Miriam; Dousharm, Levi; Vockenhuber, Michaela; Ekinci, Yasin; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-03-01

    We have developed organometallic carboxylate compounds [RnM(O2CR')2] capable of acting as negativetone EUV resists. Overall, the best and fastest resists contain antimony, are pentavalent and the carboxylate group contains a polymerizable olefin (e.g. acrylate, methacrylate or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of molecules of the type RnM(O2CR')2 where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR'). We found that the greatest predictor of sensitivity of the RnSb(O2CR')2 resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins vs. the number of non-hydrogen atoms. Linear and log plots of Emax vs. POL for a variety of molecules of the type R3Sb(O2CR')2 lend insight into the behaviour of these resists.

  13. Organometallic carboxylate resists for extreme ultraviolet with high sensitivity

    NASA Astrophysics Data System (ADS)

    Passarelli, James; Murphy, Michael; Re, Ryan Del; Sortland, Miriam; Hotalen, Jodi; Dousharm, Levi; Fallica, Roberto; Ekinci, Yasin; Neisser, Mark; Freedman, Daniel A.; Brainard, Robert L.

    2015-10-01

    We have developed organometallic carboxylate compounds [RnM)] capable of acting as negative-tone extreme ultraviolet (EUV) resists. The most sensitive of these resists contain antimony, three R-groups and two carboxylate groups, and carboxylate groups with polymerizable olefins (e.g., acrylate, methacrylate, or styrenecarboxylate). Evidence suggests that high sensitivity is achieved through the polymerization of olefins in the exposed region. We have performed a systematic sensitivity study of the molecules of the type RnM) where we have studied seven R groups, four main group metals (M), and three polymerizable carboxylate groups (O2CR‧). The sensitivity of these resists was evaluated using Emax or dose to maximum resist thickness after exposure and development. We found that the greatest predictor of sensitivity of the RnSb) resists is their level of polymerizable olefins. We mathematically define the polymerizable olefin loading (POL) as the ratio of the number of olefins versus the number of nonhydrogen atoms. Linear and log plots of Emax versus POL for a variety of molecules of the type R3Sb) lend insight into the behavior of these resists.

  14. Switching on elusive organometallic mechanisms with photoredox catalysis

    NASA Astrophysics Data System (ADS)

    Terrett, Jack A.; Cuthbertson, James D.; Shurtleff, Valerie W.; MacMillan, David W. C.

    2015-08-01

    Transition-metal-catalysed cross-coupling reactions have become one of the most used carbon-carbon and carbon-heteroatom bond-forming reactions in chemical synthesis. Recently, nickel catalysis has been shown to participate in a wide variety of C-C bond-forming reactions, most notably Negishi, Suzuki-Miyaura, Stille, Kumada and Hiyama couplings. Despite the tremendous advances in C-C fragment couplings, the ability to forge C-O bonds in a general fashion via nickel catalysis has been largely unsuccessful. The challenge for nickel-mediated alcohol couplings has been the mechanistic requirement for the critical C-O bond-forming step (formally known as the reductive elimination step) to occur via a Ni(III) alkoxide intermediate. Here we demonstrate that visible-light-excited photoredox catalysts can modulate the preferred oxidation states of nickel alkoxides in an operative catalytic cycle, thereby providing transient access to Ni(III) species that readily participate in reductive elimination. Using this synergistic merger of photoredox and nickel catalysis, we have developed a highly efficient and general carbon-oxygen coupling reaction using abundant alcohols and aryl bromides. More notably, we have developed a general strategy to `switch on' important yet elusive organometallic mechanisms via oxidation state modulations using only weak light and single-electron-transfer catalysts.

  15. Organometallic perovskites for optoelectronic applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Levchuk, Levgen; Hoegl, Florian; Brandl, Marco; Osvet, Andres; Hock, Rainer; Herre, Patrick; Wolfgang, Wolfgang; Schweizer, Peter; Spiecker, Erdmann; Batentschuk, Miroslaw; Brabec, Christoph

    2016-09-01

    Organometallic halide perovskites CH3NH3BX3 (B= Pb, Sn, Ge; X = I, Br, Cl) have become one of the most promising semiconductors for solar cell applications, reaching power conversion efficiencies beyond 20%. Improving our ability to harness the full potential of organometal halide perovskites requires the development of more reliable synthesis routines of well defined, reproducible and defect free reference systems allowing to study the fundamental photo-physical processes. In this study we present size and band gap engineering for organo-lead perovskites crystallites with various shapes and sizes ranging from the 5 nm regime all the way to 1 cm. Colloidal nano-crystals, micro-crystlline particles as well as single crystals are demonstrated with excellent purity and control in shape and size are demonstrated. The structural, optical and photo-physical properties of these reference materials are investigated and analyzed as function of their size and shape.

  16. The trace element chemistry of the metal in IAB iron meteorites.

    NASA Astrophysics Data System (ADS)

    Larimer, J. W.; Rambaldi, E. R.

    1989-10-01

    Metal grains from a silicate inclusion in Landes, a group IAB iron-meteorite, were separated and analyzed for 14 siderophile elements. The same 14 elements were determined in matrix metal from Landes, 5 other IAB meteorites and three anomalous iron meteorites. Compared to the other samples and to chondritic metal, the inclusion metal is enriched in siderophile elements. In chondritic metal, the siderophile element contents are higher when Fe0 is oxidized to FeO. Silicates in IAB inclusions contain little FeO, yet the metal is as rich in siderophile elements as the most oxidized chondrites.

  17. Chesapeake Bay earth science study: interstitial water chemistry-chemical zonation, tributaries study, and trace metals. Final report

    SciTech Connect

    Hill, J.M.; Blakeslee, P.J.; Conkwright, R.D.; McKeon, G.

    1982-11-01

    The sediments of the Chesapeake Bay constitute a large reservoir of chemical species derived from natural and anthropogenic sources. The behavior of these materials in the estuary is determined by the physiochemical sedimentary environments in which they are found. Three major environments are identified, from the interstitial water chemistry as Northern Bay, Middle Bay, and Southern Bay. The chemical sedimentary environments of five tributaries to the main Bay were sampled for interstitial water. The data indicate the concentration of the metals are greater than coastal seawater and river water, and comparable to concentrations found in municipal waste.

  18. The chemistry of rhenium and tungsten porphyrin complexes in low oxidation states. Synthesis and characterization of rhenium and tungsten porphyrin dimers containing metal-metal multiple bonds

    SciTech Connect

    Collmann, J.P.; Garner, J.M.; Woo, L.K. )

    1989-10-11

    The coordination chemistry of rhenium and tungsten porphyrin complexes in low oxidation states is presented. W{sup IV}(Por)(Cl){sub 2}, W{sup II}(Por)(H{sub 5}C{sub 6}C{identical to}CC{sub 6}H{sub 5}) and W{sup II}(OEP)(PEt{sub 3}){sub 2} complexes (Por = 5,10,15,20-tetra(4-tolyl)porphyrin (TTP) or 2,3,7,8,12,13,17,18-octaethylporphyrin (OEP) dianions) were found to be similar to the analogous molybdenum porphyrin complexes by spectroscopic and magnetic measurements. UV-visible and vibrational spectroscopies indicate that these oxidations occur at the metal-metal bond rather than the porphyrin ligand.

  19. Chemistry and thermal history of metal particles in Luna 20 soils.

    NASA Technical Reports Server (NTRS)

    Goldstein, J. I.; Blau, P. J.

    1973-01-01

    Individual metal particles from Luna 20 thin sections 521, 513 and 514 as well as several small metallic inclusions in silicate particles from Luna 20 thin sections 501 and 502 were examined using optical microscopy and the electron microprobe. All the metallic particles and inclusions analyzed are of meteoritic Co-Ni content as are most of the metallic particles from the Fra Mauro and the Apollo 16 highlands sites. It is proposed that most of the metal at these 3 sites had its origin in the meteoritic projectiles that bombarded and accumulated in the early lunar crust. It is apparent that the metallic particles and some of the metallic inclusions in the Luna 20 soil have been subjected to reheating on the moon and this process has removed any evidence of the original meteoritic microstructure of the metal.

  20. Half-sandwich iridium- and rhodium-based organometallic architectures: rational design, synthesis, characterization, and applications.

    PubMed

    Han, Ying-Feng; Jin, Guo-Xin

    2014-12-16

    CONSPECTUS: Over the last two decades, researchers have focused on the design and synthesis of supramolecular coordination complexes, which contain discrete functional structures with particular shapes and sizes, and are similar to classic metal-organic frameworks. Chemists can regulate many of these systems by judiciously choosing the metal centers and their adjoining ligands. These resulting complexes have unusual properties and therefore many applications, including molecular recognition, supramolecular catalysis, and some applications as nanomaterials. In addition, researchers have extensively developed synthetic methodologies for the construction of discrete self-assemblies. One of the most important challenges for scientists in this area is to be able to synthesize target structures that can be controlled in both length and width. For this reason, it is important that we understand the factors leading to special shapes and sizes of such architectures, especially how starting building blocks and functional ligands affect the final conformations and cavity sizes of the resulting assemblies. Towards this goal, we have developed a wide range of different organometallic architectures by rationally designing metal-containing precursors and organic ligands. In this Account, we present our recent work, focusing on half-sandwich iridium- and rhodium-based organometallic assemblies that we obtained through rational design. We discuss their synthesis, structures, and applications for the encapsulation of guests and enzyme-mimicking catalysis. We first describe a series of self-assembled organometallic metallarectangles and metallacages, which we constructed from preorganized dinuclear half-sandwich molecular clips and suitable pyridyl ligands. We extended this strategy to tune the size of the obtained rectangles, creating large cavities by introduction of larger molecular clips. The cavity was found to exhibit selective and reversible CH2Cl2 adsorption properties while

  1. Molecular alloys, linking organometallics with intermetallic Hume-Rothery phases: the highly coordinated transition metal compounds [M(ZnR)(n)] (n >or= 8) containing organo-zinc ligands.

    PubMed

    Cadenbach, Thomas; Bollermann, Timo; Gemel, Christian; Tombul, Mustafa; Fernandez, Israel; von Hopffgarten, Moritz; Frenking, Gernot; Fischer, Roland A

    2009-11-11

    This paper presents the preparation, characterization and bonding analyses of the closed shell 18 electron compounds [M(ZnR)(n)] (M = Mo, Ru, Rh, Ni, Pd, Pt, n = 8-12), which feature covalent bonds between n one-electron organo-zinc ligands ZnR (R = Me, Et, eta(5)-C(5)(CH(3))(5) = Cp*) and the central metal M. The compounds were obtained in high isolated yields (>80%) by treatment of appropriate GaCp* containing transition metal precursors 13-18, namely [Mo(GaCp*)(6)], [Ru(2)(Ga)(GaCp*)(7)(H)(3)] or [Ru(GaCp*)(6)(Cl)(2)], [(Cp*Ga)(4)RhGa(eta(1)-Cp*)Me] and [M(GaCp*)(4)] (M = Ni, Pd, Pt) with ZnMe(2) or ZnEt(2) in toluene solution at elevated temperatures of 80-110 degrees C within a few hours of reaction time. Analytical characterization was done by elemental analyses (C, H, Zn, Ga), (1)H and (13)C NMR spectroscopy. The molecular structures were determined by single crystal X-ray diffraction. The coordination environment of the central metal M and the M-Zn and Zn-Zn distances mimic the situation in known solid state M/Zn Hume-Rothery phases. DFT calculations at the RI-BP86/def2-TZVPP and BP86/TZ2P+ levels of theory, AIM and EDA analyses were done with [M(ZnH)(n)] (M = Mo, Ru, Rh, Pd; n = 12, 10, 9, 8) as models of the homologous series. The results reveal that the molecules can be compared to 18 electron gold clusters of the type M@Au(n), that is, W@Au(12), but are neither genuine coordination compounds nor interstitial cage clusters. The molecules are held together by strong radial M-Zn bonds. The tangential Zn-Zn interactions are generally very weak and the (ZnH)(n) cages are not stable without the central metal M.

  2. Surface chemistry, microstructure and friction properties of some ferrous-base metallic glasses at temperatures to 750 C

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    X-ray photoelectron spectroscopy analysis, transmission electron microscopy, diffraction studies, and sliding friction experiments were conducted with ferrous-base metallic glasses in sliding contact with aluminum oxide at temperatures from room to 750 C in a vacuum of 30 nPa. The results indicate that there is a significant temperature influence on the friction properties, surface chemistry, and microstructure of metallic glasses. The relative concentrations of the various constituents at the surface of the sputtered specimens were very different from the normal bulk compositions. Contaminants can come from the bulk of the material to the surface upon heating and impart boric oxide and silicon oxide at 350 C and boron nitride above 500 C. The coefficient of friction increased with increasing temperature to 350 C. Above 500 C the coefficient of friction decreased rapidly. The segregation of contaminants may be responsible for the friction behavior.

  3. The effects of metallicity, UV radiation and non-equilibrium chemistry in high-resolution simulations of galaxies

    NASA Astrophysics Data System (ADS)

    Richings, A. J.; Schaye, Joop

    2016-05-01

    We present a series of hydrodynamic simulations of isolated galaxies with stellar mass of 109 M⊙. The models use a resolution of 750 M⊙ per particle and include a treatment for the full non-equilibrium chemical evolution of ions and molecules (157 species in total), along with gas cooling rates computed self-consistently using the non-equilibrium abundances. We compare these to simulations evolved using cooling rates calculated assuming chemical (including ionization) equilibrium, and we consider a wide range of metallicities and UV radiation fields, including a local prescription for self-shielding by gas and dust. We find higher star formation rates and stronger outflows at higher metallicity and for weaker radiation fields, as gas can more easily cool to a cold (few hundred Kelvin) star-forming phase under such conditions. Contrary to variations in the metallicity and the radiation field, non-equilibrium chemistry generally has no strong effect on the total star formation rates or outflow properties. However, it is important for modelling molecular outflows. For example, the mass of H2 outflowing with velocities {>}50 {km} {s}^{-1} is enhanced by a factor ˜20 in non-equilibrium. We also compute the observable line emission from C II and CO. Both are stronger at higher metallicity, while C II and CO emission are higher for stronger and weaker radiation fields, respectively. We find that C II is generally unaffected by non-equilibrium chemistry. However, emission from CO varies by a factor of ˜2-4. This has implications for the mean XCO conversion factor between CO emission and H2 column density, which we find is lowered by up to a factor ˜2.3 in non-equilibrium, and for the fraction of CO-dark molecular gas.

  4. Multi-stimuli-responsive organometallic gels based on ferrocene-linked poly(aryl ether) dendrons: reversible redox switching and Pb2+-ion sensing.

    PubMed

    Lakshmi, Neelakandan Vidhya; Mandal, Dipendu; Ghosh, Sundargopal; Prasad, Edamana

    2014-07-14

    We describe the design, synthesis, and "stimuli-responsive" study of ferrocene-linked Fréchet-type [poly(aryl ether)]-dendron-based organometallic gels, in which the ferrocene moiety is attached to the dendron framework through an acyl hydrazone linkage. The low-molecular-weight gelators (LMWGs) form robust gels in both polar and non-polar solvent/solvent mixtures. The organometallic gels undergo stimuli-responsive behavior through 1) thermal, 2) chemical, and 3) electrochemical methods. Among them, conditions 1 and 3 lead to seamlessly reversible with repeated cycles of identical efficiency. Results indicate that the flexible nature of the poly(aryl ether) dendron framework plays a key role in retaining the reversible electrochemical behavior of ferrocene moiety in the LMWGs. Further, the organometallic gelators have exhibited unique selectivity towards Pb(2+) ions (detection limit ≈10(-8)  M). The metal ion-sensing results in a gel-sol phase transition associated with a color change visible to the naked eye. Most importantly, decomplexing the metal ion from the system leads to the regeneration of the initial gel morphology, indicating the restoring ability of the organometallic gel. The metal-ligand binding nature has been analyzed by using (1)H NMR spectroscopy, mass spectrometry, and DFT calculations.

  5. Surface and Interface Engineering of Organometallic and Two Dimensional Semiconductor

    NASA Astrophysics Data System (ADS)

    Park, Jun Hong

    For over half a century, inorganic Si and III-V materials have led the modern semiconductor industry, expanding to logic transistor and optoelectronic applications. However, these inorganic materials have faced two different fundamental limitations, flexibility for wearable applications and scaling limitation as logic transistors. As a result, the organic and two dimensional have been studied intentionally for various fields. In the present dissertation, three different studies will be presented with followed order; (1) the chemical response of organic semiconductor in NO2 exposure. (2) The surface and stability of WSe2 in ambient air. (3) Deposition of dielectric on two dimensional materials using organometallic seeding layer. The organic molecules rely on the van der Waals interaction during growth of thin films, contrast to covalent bond inorganic semiconductors. Therefore, the morphology and electronic property at surface of organic semiconductor in micro scale is more sensitive to change in gaseous conditions. In addition, metal phthalocyanine, which is one of organic semiconductor materials, change their electronic property as reaction with gaseous analytes, suggesting as potential chemical sensing platforms. In the present part, the growth behavior of metal phthalocyanine and surface response to gaseous condition will be elucidated using scanning tunneling microscopy (STM). In second part, the surface of layered transition metal dichalcogenides and their chemical response to exposure ambient air will be investigated, using STM. Layered transition metal dichalcogenides (TMDs) have attracted widespread attention in the scientific community for electronic device applications because improved electrostatic gate control and suppression of short channel leakage resulted from their atomic thin body. To fabricate the transistor based on TMDs, TMDs should be exposed to ambient conditions, while the effect of air exposure has not been understood fully. In this part

  6. p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells.

    PubMed

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-23

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  7. p-type Mesoscopic Nickel Oxide/Organometallic Perovskite Heterojunction Solar Cells

    NASA Astrophysics Data System (ADS)

    Wang, Kuo-Chin; Jeng, Jun-Yuan; Shen, Po-Shen; Chang, Yu-Cheng; Diau, Eric Wei-Guang; Tsai, Cheng-Hung; Chao, Tzu-Yang; Hsu, Hsu-Cheng; Lin, Pei-Ying; Chen, Peter; Guo, Tzung-Fang; Wen, Ten-Chin

    2014-04-01

    In this article, we present a new paradigm for organometallic hybrid perovskite solar cell using NiO inorganic metal oxide nanocrystalline as p-type electrode material and realized the first mesoscopic NiO/perovskite/[6,6]-phenyl C61-butyric acid methyl ester (PC61BM) heterojunction photovoltaic device. The photo-induced transient absorption spectroscopy results verified that the architecture is an effective p-type sensitized junction, which is the first inorganic p-type, metal oxide contact material for perovskite-based solar cell. Power conversion efficiency of 9.51% was achieved under AM 1.5 G illumination, which significantly surpassed the reported conventional p-type dye-sensitized solar cells. The replacement of the organic hole transport materials by a p-type metal oxide has the advantages to provide robust device architecture for further development of all-inorganic perovskite-based thin-film solar cells and tandem photovoltaics.

  8. Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity

    NASA Astrophysics Data System (ADS)

    French, S.; Fakra, S.; Glasauer, S.

    2009-05-01

    Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of

  9. The optical characterization of organometallic complex thin films by spectroscopic ellipsometry and photovoltaic diode application

    SciTech Connect

    Özaydın, C.; Güllü, Ö.; Pakma, O.; Ilhan, S.; Akkılıç, K.

    2016-05-15

    Highlights: • Optical properties and thickness of the A novel organometallic complex (OMC) film were investigated by spectroscopic ellipsometry (SE). • Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated • This paper presents the I–V analysis of Au/OMC/n-Si MIS diode. • Current–voltage and photovoltaic properties of the diode were investigated. - Abstract: In this work, organometallic complex (OMC) films have been deposited onto glass or silicon substrates by spin coating technique and their photovoltaic application potential has been investigated. Optical properties and thickness of the film have been investigated by spectroscopic ellipsometry (SE). Also, transmittance spectrum has been taken by UV/vis spectrophotometer. The optical method has been used to determine the band gap value of the films. Also, Au/OMC/n-Si metal/interlayer/semiconductor (MIS) diode has been fabricated. Current–voltage and photovoltaic properties of the structure were investigated. The ideality factor (n) and barrier height (Φ{sub b}) values of the diode were found to be 2.89 and 0.79 eV, respectively. The device shows photovoltaic behavior with a maximum open-circuit voltage of 396 mV and a short circuit current of 33.8 μA under 300 W light.

  10. Transition metal catalysis in the mitochondria of living cells

    NASA Astrophysics Data System (ADS)

    Tomás-Gamasa, María; Martínez-Calvo, Miguel; Couceiro, José R.; Mascareñas, José L.

    2016-09-01

    The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential.

  11. Transition metal catalysis in the mitochondria of living cells

    PubMed Central

    Tomás-Gamasa, María; Martínez-Calvo, Miguel; Couceiro, José R.; Mascareñas, José L.

    2016-01-01

    The development of transition metal catalysts capable of promoting non-natural transformations within living cells can open significant new avenues in chemical and cell biology. Unfortunately, the complexity of the cell makes it extremely difficult to translate standard organometallic chemistry to living environments. Therefore, progress in this field has been very slow, and many challenges, including the possibility of localizing active metal catalysts into specific subcellular sites or organelles, remain to be addressed. Herein, we report a designed ruthenium complex that accumulates preferentially inside the mitochondria of mammalian cells, while keeping its ability to react with exogenous substrates in a bioorthogonal way. Importantly, we show that the subcellular catalytic activity can be used for the confined release of fluorophores, and even allows selective functional alterations in the mitochondria by the localized transformation of inert precursors into uncouplers of the membrane potential. PMID:27600651

  12. Cyclopentadienyl-ruthenium(II) and iron(II) organometallic compounds with carbohydrate derivative ligands as good colorectal anticancer agents.

    PubMed

    Florindo, Pedro R; Pereira, Diane M; Borralho, Pedro M; Rodrigues, Cecília M P; Piedade, M F M; Fernandes, Ana C

    2015-05-28

    New ruthenium(II) and iron(II) organometallic compounds of general formula [(η(5)-C5H5)M(PP)Lc][PF6], bearing carbohydrate derivative ligands (Lc), were prepared and fully characterized and the crystal structures of five of those compounds were determined by X-ray diffraction studies. Cell viability of colon cancer HCT116 cell line was determined for a total of 23 organometallic compounds and SAR's data analysis within this library showed an interesting dependency of the cytotoxic activity on the carbohydrate moiety, linker, phosphane coligands, and metal center. More importantly, two compounds, 14Ru and 18Ru, matched oxaliplatin IC50 (0.45 μM), the standard metallodrug used in CC chemotherapeutics, and our leading compound 14Ru was shown to be significantly more cytotoxic than oxaliplatin to HCT116 cells, triggering higher levels of caspase-3 and -7 activity and apoptosis in a dose-dependent manner.

  13. Metal Based Synthetic Strategies and the Examination of Structure Determining Factors in Alkaline Earth Metal Compounds

    NASA Astrophysics Data System (ADS)

    Takahashi, Yuriko

    Last decades have witnessed a large expansion of the organometallic heavier alkaline earth metal species. However, continued growth of this promising area of chemistry has been slowed by severe restrictions and limitations in viable synthetic methodologies leading to difficulties in preparing and characterizing the target compounds. There is clearly a need for the further development of synthetic methodologies and detailed structure function analysis that will promote the further advancement of organoalkaline earth metal chemistry in applications as diverse as materials chemistry and catalysis. This thesis work greatly extends the synthetic options currently available towards organoalkaline earth metal species by introducing redox transmetallation protolysis (RTP), a reaction based on the readily available Ph3Bi as a non-toxic transmetallation agent. Based on a straightforward one-pot procedure and work-up, Ph3Bi based RTP presents a powerful synthetic alternative for the facile preparation of a large variety of heavy alkaline earth metal compounds. The second part of the thesis explores the effect of secondary non covalent interactions on the coordination chemistry as well as thermal properties of a series of novel alkali, alkaline earth, rare earth as well as heterobimetallic alkali/alkaline earth fluoroalkoxides. These compounds showcase the significance of non-covalent M···F-C and agostic interactions on metal stabilization and structural features, providing critical input on ligand design for the design of advanced metal organic vapor deposition (MOCVD) precursor materials. This work also showcases the impact of M···F-C interactions over M---co-ligand coordination, a critical precursor design element as well.

  14. ALTERATION OF SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY ASSOCIATED WITH BIOSOLIDS APPLICATION (ABSTRACT)

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  15. Difficulties in Interpreting Alkali Metal Trends at the Senior Chemistry Level.

    ERIC Educational Resources Information Center

    de Berg, Kevin

    2001-01-01

    Explores the reasons for the differences in alkali metal reactivity in water in terms of thermodynamics rather than ionization trends. Shows that differences in alkali metal reactivity with water are more appropriately explained in terms of the kinetics of the reactions. (MM)

  16. Difficulties in Interpreting Alkali Metal Trends at the Senior Chemistry Level.

    ERIC Educational Resources Information Center

    de Berg, Kevin

    2001-01-01

    Explores the reasons for the differences in alkali metal reactivity in water in terms of thermodynamics rather than ionization trends. Shows that differences in alkali metal reactivity with water are more appropriately explained in terms of the kinetics of the reactions. (MM)

  17. ALTERATION OF SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY ASSOCIATED WITH BIOSOLIDS APPLICATION (ABSTRACT)

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  18. Structural and Magnetic Diversity in Alkali-Metal Manganate Chemistry: Evaluating Donor and Alkali-Metal Effects in Co-complexation Processes.

    PubMed

    Uzelac, Marina; Borilovic, Ivana; Amores, Marco; Cadenbach, Thomas; Kennedy, Alan R; Aromí, Guillem; Hevia, Eva

    2016-03-24

    By exploring co-complexation reactions between the manganese alkyl Mn(CH2SiMe3)2 and the heavier alkali-metal alkyls M(CH2SiMe3) (M=Na, K) in a benzene/hexane solvent mixture and in some cases adding Lewis donors (bidentate TMEDA, 1,4-dioxane, and 1,4-diazabicyclo[2,2,2] octane (DABCO)) has produced a new family of alkali-metal tris(alkyl) manganates. The influences that the alkali metal and the donor solvent impose on the structures and magnetic properties of these ates have been assessed by a combination of X-ray, SQUID magnetization measurements, and EPR spectroscopy. These studies uncover a diverse structural chemistry ranging from discrete monomers [(TMEDA)2 MMn(CH2SiMe3)3] (M=Na, 3; M=K, 4) to dimers [{KMn(CH2SiMe3)3 ⋅C6 H6}2] (2) and [{NaMn(CH2SiMe3)3}2 (dioxane)7] (5); and to more complex supramolecular networks [{NaMn(CH2SiMe3)3}∞] (1) and [{Na2Mn2 (CH2SiMe3)6 (DABCO)2}∞] (7)). Interestingly, the identity of the alkali metal exerts a significant effect in the reactions of 1 and 2 with 1,4-dioxane, as 1 produces coordination adduct 5, while 2 forms heteroleptic [{(dioxane)6K2Mn2 (CH2SiMe3)4(O(CH2)2OCH=CH2)2}∞] (6) containing two alkoxide-vinyl anions resulting from α-metalation and ring opening of dioxane. Compounds 6 and 7, containing two spin carriers, exhibit antiferromagnetic coupling of their S=5/2 moments with varying intensity depending on the nature of the exchange pathways.

  19. The possible role of metal ions and clays in prebiotic chemistry

    NASA Technical Reports Server (NTRS)

    Lawless, J. G.; Edelson, E. H.

    1980-01-01

    Eight homoionic bentonites were prepared using alkali, alkaline earth, and transition metal ions as counterions. The interaction of the clays with 5'-AMP was studied and it was found that the alkali metal-substituted clays did not remove any nucleotide from dilute solution, and that zinc-bentonite adsorbed the most (98%). In addition, study of the interaction of seven other nucleotides with zinc-bentonite showed that the purine nucleotides were more strongly absorbed than the pyrimidine nucleotides. Langmuir isotherms were obtained for these systems and the adsorption data were explained by the adsorption coefficient and the accessibility of metal for binding.

  20. Organic Metals and Semiconductors: The Chemistry of Polyacetylene, (CH)x, and Its Derivatives.

    DTIC Science & Technology

    1979-11-24

    diferent &*a Rtsp ~t3n& 18. SUPPLEMENTARY NOTES Paper presented at the 3rd International Congress of Quantum Chemistry, Kyoto, Japan, October 1979 ., Is...prepared using a lower catalyst concentration (7). Highly porous, very low density, "foam- like" (C.) can be obtained from these gels (7). Both cis...MacDiarmid, A.G.: 1979, Proceedings NATO ASI on Low Dimen- sional Solids, Tomar, Portugal, Aug. 1979. Io - -’ - -- - l . -- --- ...... - --- -7- p-(CH

  1. Oligomerization of glycine and alanine on metal(II) octacynaomolybdate(IV): role of double metal cyanides in prebiotic chemistry.

    PubMed

    Kumar, Anand; Kamaluddin

    2012-12-01

    Condensation reactions of amino acid (glycine and alanine) on the surface of metal(II) octacyanomolybdate(IV) (MOCMo) complexes are investigated using high-performance liquid chromatography (HPLC) and electron spray ionizations-mass spectroscopy (ESI-MS). The series of MOCMo have been synthesized and the effect of outer sphere metal ions present in the MOCMo on the oligomerization of glycine and alanine at different temperature and time found out. Formation of peptides was observed to start after 7 days at 60 °C. Maximum yield of peptides was found after 35 days at 90 °C. It has been found that zinc(II) octacyanomolybdate(IV) and cobalt(II) were the most effective metal cations present in outer sphere of the MOCMo for the production of high yield of oligomerized products. Surface area of MOCMo seems to play dominating parameter for the oligomerization of alanine and glycine. The results of the present study reveal the role of MOCMo in chemical evolution for the oligomerization of biomolecules.

  2. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  3. TRACE ELEMENT CHEMISTRY IN RESIDUAL-TREATED SOIL: KEY CONCEPTS AND METAL BIOAVAILABILITY

    EPA Science Inventory

    Trace element solubility and availability in land-applied residuals is governed by fundamental chemical reactions between metal constituents, soil, and residual components. Iron, aluminum, and manganese oxides; organic matter; and phosphates, carbonates, and sulfides are importan...

  4. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    ERIC Educational Resources Information Center

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  5. A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles

    ERIC Educational Resources Information Center

    Niagi, John; Warner, John; Andreesco, Silvana

    2007-01-01

    The study describes the development of new biosensors based on metal nanoparticles because of its high surface area and large binding ability. The adopted procedure is extremely simple and versatile and can be used in various applications of electrochemistry.

  6. Transition metal complexes of phyllobilins – a new realm of bioinorganic chemistry

    PubMed Central

    Li, Chengjie

    2015-01-01

    Natural cyclic tetrapyrroles feature outstanding capacity for binding transition metal ions, furnishing Nature with the important metallo-porphyrinoid ‘Pigments of Life’, such as heme, chlorophyll (Chl) and vitamin B12. In contrast, linear tetrapyrroles are not generally ascribed a biologically relevant ability for metal-binding. Indeed, when heme or Chl are degraded to natural linear tetrapyrroles, their central Fe- or Mg-ions are set free. Some linear tetrapyrroles are, however, effective multi-dentate ligands and their transition metal complexes have remarkable chemical properties. The focus of this short review is centred on such complexes of the linear tetrapyrroles derived from natural Chl-breakdown, called phyllobilins. These natural bilin-type compounds are massively produced in Nature and in highly visible processes. Colourless non-fluorescing Chl-catabolites (NCCs) and the related dioxobilin-type NCCs, which typically accumulate in leaves as ‘final’ products of Chl-breakdown, show low affinity for transition metal-ions. However, NCCs are oxidized in leaves to give less saturated coloured phyllobilins, such as yellow or pink Chl-catabolites (YCCs or PiCCs). YCCs and PiCCs are ligands for various biologically relevant transition metal-ions, such as Zn(ii)-, Ni(ii)- and Cu(ii)-ions. Complexation of Zn(ii)- and Cd(ii)-ions by the effectively tridentate PiCC produces blue metal-complexes that exhibit an intense red fluorescence, thus providing a tool for the sensitive detection of these metal ions. Outlined here are fundamental aspects of structure and metal coordination of phyllobilins, including a comparison with the corresponding properties of bilins. This knowledge may be valuable in the quest of finding possible biological roles of the phyllobilins. Thanks to their capacity for metal-ion coordination, phyllobilins could, e.g., be involved in heavy-metal transport and detoxification, and some of their metal-complexes could act as sensitizers for

  7. Synthesis and Chemistry of Energetic Metallotetraazadienes.

    DTIC Science & Technology

    1985-10-10

    and physical studies of metal tetraazadiene complexes, *vanadocene nitrene complexes, and tetrazene anions are described. A serendipitious *discovery of...transition metal organometallic com- plexes. We were interested to see whether the same kinds of products (e.g., tetraazadienes and nitrenes ) found in late...nature of the N-R group. If the nitrene group acts as a 4-electron donor then the com- plex is a 19-electron species. Early metal complexes rarely exceed

  8. Metal and silicon oxides as efficient catalysts for the preparative organic chemistry

    NASA Astrophysics Data System (ADS)

    Titova, Yu A.; Fedorova, O. V.; Rusinov, G. L.; Charushin, V. N.

    2015-12-01

    Data on the use of metal and silicon oxides as catalysts of reactions which are most in demand in laboratory organic syntheses are summarized. The potential of oxide catalysts for optimization of organic reactions is demonstrated, and some mechanistic aspects of oxide action are considered. Published data on the synthetic use of single, mixed, bulk and nanosized metal and silicon oxides are presented. Bibliography — 189 references.

  9. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    PubMed Central

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-01-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin–orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels–Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage. PMID:26626796

  10. Suppressing molecular motions for enhanced room-temperature phosphorescence of metal-free organic materials

    NASA Astrophysics Data System (ADS)

    Kwon, Min Sang; Yu, Youngchang; Coburn, Caleb; Phillips, Andrew W.; Chung, Kyeongwoon; Shanker, Apoorv; Jung, Jaehun; Kim, Gunho; Pipe, Kevin; Forrest, Stephen R.; Youk, Ji Ho; Gierschner, Johannes; Kim, Jinsang

    2015-12-01

    Metal-free organic phosphorescent materials are attractive alternatives to the predominantly used organometallic phosphors but are generally dimmer and are relatively rare, as, without heavy-metal atoms, spin-orbit coupling is less efficient and phosphorescence usually cannot compete with radiationless relaxation processes. Here we present a general design rule and a method to effectively reduce radiationless transitions and hence greatly enhance phosphorescence efficiency of metal-free organic materials in a variety of amorphous polymer matrices, based on the restriction of molecular motions in the proximity of embedded phosphors. Covalent cross-linking between phosphors and polymer matrices via Diels-Alder click chemistry is devised as a method. A sharp increase in phosphorescence quantum efficiency is observed in a variety of polymer matrices with this method, which is ca. two to five times higher than that of phosphor-doped polymer systems having no such covalent linkage.

  11. Rational Design of Polynuclear Organometallic Assemblies from a Simple Heteromultifunctional Ligand.

    PubMed

    Zhang, Long; Lin, Yue-Jian; Li, Zhen-Hua; Jin, Guo-Xin

    2015-10-28

    In modern coordination chemistry, supramolecular coordination complexes take advantage of ligand design to control the shapes and sizes of such architectures. Here we describe how to utilize starting building blocks and a multifunctional ligand to rationally design and synthesize different types of discrete assemblies. Using a hydroxamate ligand featuring two pair of chelating sites together with half-sandwich iridium and rhodium fragments, we were able to construct a series multinuclear organometallic macrocycles and cages through stepwise coordination-driven self-assembly. Experimental observations, supported by computational work, show that selective coordination modes were ascribed to the significant electronic density differences of the two chelating sites, (O,O') and (N,N'). The results underline the advantages of the discrimination between soft and hard binding sites, and suggest that hydroxamic acids can be used as a versatile class of facile multifunctional scaffold for the construction of novel two-dimensional and three-dimensional architectures.

  12. Two Principles of Reticular Chemistry Uncovered in a Metal-Organic Framework of Heterotritopic Linkers and Infinite Secondary Building Units.

    PubMed

    Catarineu, Noelle R; Schoedel, Alexander; Urban, Philipp; Morla, Maureen B; Trickett, Christopher A; Yaghi, Omar M

    2016-08-31

    Structural diversity of metal-organic frameworks (MOFs) has been largely limited to linkers with at most two different types of coordinating groups. MOFs constructed from linkers with three or more nonidentical coordinating groups have not been explored. Here, we report a robust and porous crystalline MOF, Zn3(PBSP)2 or MOF-910, constructed from a novel linker PBSP (phenylyne-1-benzoate, 3-benzosemiquinonate, 5-oxidopyridine) bearing three distinct types of coordinative functionality. The MOF adopts a complex and previously unreported topology termed tto. Our study suggests that simple, symmetric linkers are not a necessity for formation of crystalline extended structures and that new, more complex topologies are attainable with irregular, heterotopic linkers. This work illustrates two principles of reticular chemistry: first, selectivity for helical over straight rod secondary building units (SBUs) is achievable with polyheterotopic linkers, and second, the pitch of the resulting helical SBUs may be fine-tuned based on the metrics of the polyheterotopic linker.

  13. Anisotropic Mo2-phthalocyanine sheet: a new member of the organometallic family.

    PubMed

    Zhu, Guizhi; Kan, Min; Sun, Qiang; Jena, Puru

    2014-01-09

    Metal-organic porous sheets, due to their unique atomic configurations and properties, represent a class of materials beyond graphene and BN monolayers. The Mo2-phthalocyanine-based sheet (Mo2Pc) is a new member of this porous organometallic family. Using density functional theory with hybrid functional for exchange-correlation potential, we show that this dimer-based material, unlike conventional organic monolayers that contain isolated metal atoms, possesses unique mechanical, magnetic, electronic, and optical properties due to inherent anisotropy in the structure. Furthermore, it is a semiconductor with a direct band gap of 0.93 eV and is antiferromagnetic with each Mo site carrying a magnetic moment of 0.88 μB. The strong anisotropy in elasticity and infrared light absorption is likely to open new doors for potential applications.

  14. On-Surface Observation of the Formation of Organometallic Complex in a Supramolecular Network

    NASA Astrophysics Data System (ADS)

    Li, Yibao; Cheng, Linxiu; Liu, Chunhua; Liu, Wei; Fan, Yulan; Fan, Xiaolin; Zeng, Qingdao

    2015-06-01

    The on-surface formation of organometallic monomers or oligomers, especially in supramolecular network, attracts an extensive interest for chemists and material scientist. In this work, we have investigated metal coordination between zinc (II) phthalocyanine (ZnPc) and 1, 3-di (4-pyridyl) propane (dipy-pra) in the 2, 6, 11-tricarboxydecyloxy-3, 7, 10-triundecyloxy triphenylene (asym-TTT) supramolecular template by means of scanning tunneling microscopy (STM) on highly oriented pyrolytic graphite (HOPG) substrate under ambient conditions. The experimental results demonstrate that every two ZnPc molecules in one nano-reactor connect with each other through one dipy-pra molecule by metal-coordination interaction. In this coordinating process, the template of asym-TTT supramolecular networks plays a significant role.

  15. Computational Estimate of the Photophysical Capabilities of Four Series of Organometallic Iron(II) Complexes.

    PubMed

    Dixon, Isabelle M; Boissard, Gauthier; Whyte, Hannah; Alary, Fabienne; Heully, Jean-Louis

    2016-06-06

    In this study, we examine a large range of organometallic iron(II) complexes with the aim of computationally identifying the most promising ones in terms of photophysical properties. These complexes combine polypyridine, bis(phosphine), and carbon-bound ligands. Density functional theory has allowed us to establish a comparative Jablonski diagram displaying the lowest singlet, triplet, and quintet states. All of the proposed FeN5C or FeN3P2C complexes unfavorably possess a lowest triplet state of metal-centered (MC) nature. Among the FeN4C2 and FeN2P2C2 series, the carbene complexes display the least favorable excited-state distribution, also having a low-lying (3)MC state. Validating our design strategy, we are now able to propose seven iron(II) complexes displaying a lowest excited state of triplet metal-to-ligand charge-transfer nature.

  16. HARNESSING THE CHEMISTRY OF CO2

    SciTech Connect

    Louie, Janis

    2010-05-11

    Our research program is broadly focused on activating CO{sub 2} through the use of organic and organometallic based catalysts. Some of our methods have centered on annulation reactions of unsaturated hydrocarbons (and carbonyl substrates) to provide a diverse array of carbocycles and heterocycles. We use a combination of catalyst discovery and optimization in conjunction with classical physical organic chemistry to elucidate the key mechanistic features of the cycloaddition reactions such that the next big advances in catalyst development can be made. Key to all of our cycloaddition reactions is the use of a sterically hindered, electron donating N heterocyclic carbene (NHC) ligand, namely IPr (or SIPr), in conjunction with a low valent nickel pre-catalyst. The efficacy of this ligand is two-fold: (1) the high {delta}-donating ability of the NHC increases the nucleophilicity of the metal center which thereby facilitates interaction with the electrophilic carbonyl and (2) the steric hindrance prevents an otherwise competitive side reaction involving only the alkyne substrate. Such a system has allowed for the facile cycloaddition to prepare highly functionalized pyrones, pyridones, pyrans, as well as novel carbocycles. Importantly, all reactions proceed under extremely mild conditions (room temperature, atmospheric pressures, and short reaction times), require only catalytic amounts of Ni/NHC and readily available starting materials, and afford annulated products in excellent yields. Our current focus revolves around understanding the fundamental processes that govern these cycloadditions such that the next big advance in the cyclization chemistry of CO{sub 2} can be made. Concurrent to our annulation chemistry is our investigation of the potential for imidazolylidenes to function as thermally-actuated CO{sub 2} sequestering and delivery agents.

  17. Interactions Between Diffuse Groundwater Recharge and Hyporheic Zone Chemistry in Spring-Fed River: Implications for Metal, Nutrient & Carbonate Cycling

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Martin, J. B.; Cohen, M.

    2012-12-01

    Diffuse groundwater flow through stream-bed sediments can represent water with a chemically distinct composition, influencing elemental cycling and ecosystem dynamics. Diffuse flow may be particularly important in systems where hyporheic exchange is small. The entirely spring-sourced Ichetucknee River (north-central Florida) is a model system for distinguishing the processes controlling solute sources and cycling due to its stable discharge (6-9 m3/s), constant but distinct spring chemistry through time, and minimal hyporheic exchange. Most stream solute concentrations exhibit large diel cycles, but these changes do not explain all observed longitudinal changes in river chemistry. Ca, Fe, and PO4 concentrations are all elevated in river water over the flow-weighted average of the source springs (Ca = 1.37 vs 1.31 mM; Fe = 8 vs. 0.4 μg/L; PO4 = 54 vs. 49 μg/L) despite evidence of in-stream removal of these solutes by biotic and abiotic processes. Cl concentrations are also elevated in the river over the spring sources and previous calculations estimated an additional 0.75 m3/s of water was needed to close the Cl budget of the river. Diffuse groundwater flow could be the source of these additional solutes and flow. To estimate the impact of diffuse flow interacting with hyporheic zone chemistry on the metal, nutrient, and carbonate chemistry of the Ichetucknee River we compared the chemistry of the springs and river with measurements of pore-water chemistry and hydraulic gradients within the unconsolidated channel sediments. A cross-river transect of four pore-water chemical profiles indicate that pore-water chemistry is dominated by the mineralization of organic carbon, resulting in pore-waters undersaturated with respect to calcite and elevated in Ca, Fe, and PO4 concentrations (ca. 1.44 mM, 2000 μg/L, and 150-300 μg/L, respectively) relative to the river. A diffuse flow rate through the river sediments of 0.2-0.7 m3/s, would account for the addition of both PO

  18. New chemistry for the growth of first-row transition metal films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Klesko, Joseph Peter

    Thin films containing first-row transition metals are widely used in microelectronic, photovoltaic, catalytic, and surface-coating applications. In particular, metallic films are essential for interconnects and seed, barrier, and capping layers in integrated circuitry. Traditional vapor deposition methods for film growth include PVD, CVD, or the use of plasma. However, these techniques lack the requisite precision for film growth at the nanoscale, and thus, are increasingly inadequate for many current and future applications. By contrast, ALD is the favored approach for depositing films with absolute surface conformality and thickness control on 3D architectures and in high aspect ratio features. However, the low-temperature chemical reduction of most first-row transition metal cations to their zero-valent state is very challenging due to their negative electrochemical potentials. A lack of strongly-reducing coreagents has rendered the thermal ALD of metallic films an intractable problem for many elements. Additionally, several established ALD processes for metal films are plagued by low growth rates, impurity incorporation, poor nucleation, high surface roughness, or the need for hazardous coreagents. Finally, stoichiometric control of ternary films grown by ALD is rare, but increasingly important, with emerging applications for metal borate films in catalysis and lithium ion batteries. The research herein is focused toward the development of new ALD processes for the broader application of metal, metal oxide, and metal borate thin films to future nanoscale technologies. These processes display self-limited growth and support the facile nucleation of smooth, continuous, high-purity films. Bis(trimethylsilyl) six-membered rings are employed as strongly-reducing organic coreagents for the ALD of titanium and antimony metal films. Additionally, new processes are developed for the growth of high-purity, low-resistivity cobalt and nickel metal films by exploiting the

  19. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics?

    PubMed Central

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E.

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. The aim of this article is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Toward the end of this article, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take. PMID:19053095

  20. Coordination Chemistry of Disilylated Stannylenes with Group 10 d10 Transition Metals: Silastannene vs Stannylene Complexation

    PubMed Central

    2013-01-01

    The coordination behavior of disilylated stannylenes toward zerovalent group 10 transition metal complexes was studied. This was accomplished by reactions of PEt3 adducts of disilylated stannylenes with zerovalent group 10 transition metal complexes. The thus obtained products differed between the first row example nickel and its heavier congeners. While with nickel stannylene complex formation was observed, coordination of the stannylenes to palladium and platinum compounds led to unusual silastannene complexes of these metals. A computational model study indicated that in each case metal stannylene complexes were formed first and that the disilylstannylene/silastannene rearrangement occurs only after complexation to the group 10 metal. The isomerization is a two-step process with relatively small barriers, suggesting a thermodynamic control of product formation. In addition, the results of the computational investigation revealed a subtle balance of steric and electronic effects, which determines the relative stability of the metalastannylene complex relative to its silastannene isomer. In the case of cyclic disilylstannylenes, the Pd(0) and Pt(0) silastannene complexes are found to be more stable, while with acyclic disilylstannylenes the Ni(0) stannylene complex is formed preferentially. PMID:23627362

  1. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?

    PubMed

    Xia, Younan; Xiong, Yujie; Lim, Byungkwon; Skrabalak, Sara E

    2009-01-01

    Nanocrystals are fundamental to modern science and technology. Mastery over the shape of a nanocrystal enables control of its properties and enhancement of its usefulness for a given application. Our aim is to present a comprehensive review of current research activities that center on the shape-controlled synthesis of metal nanocrystals. We begin with a brief introduction to nucleation and growth within the context of metal nanocrystal synthesis, followed by a discussion of the possible shapes that a metal nanocrystal might take under different conditions. We then focus on a variety of experimental parameters that have been explored to manipulate the nucleation and growth of metal nanocrystals in solution-phase syntheses in an effort to generate specific shapes. We then elaborate on these approaches by selecting examples in which there is already reasonable understanding for the observed shape control or at least the protocols have proven to be reproducible and controllable. Finally, we highlight a number of applications that have been enabled and/or enhanced by the shape-controlled synthesis of metal nanocrystals. We conclude this article with personal perspectives on the directions toward which future research in this field might take.

  2. The chemistry of transition metals in relation to their potential role in neurodegenerative processes.

    PubMed

    Hamai, D; Bondy, S C; Becaria, A; Campbell, A

    2001-12-01

    Cells rely on several transition metals to regulate a wide range of metabolic and signaling functions. The diversity and efficiency of their physiological functions are derived from atomic properties that are specific to transition metals, most notably an incomplete inner valence subshell. These properties impart upon these elements the ability to fluctuate among a variety of positively charged ionic forms, and a chemical flexibility that allows them to impose conformational changes upon the proteins to which they bind. By this means, transition metals can serve as the catalytic centers of enzymes for redox reactions including molecular oxygen and endogenous peroxides. This review addresses the consequences of the aberrant translocation of the redox-capable essential transition elements, iron, copper, and manganese, upon the brain with an emphasis on uncontrolled and deleterious oxidative events. The potential of metal-protein interactions in facilitating such events, and their association with the physiologically redox-inert metals zinc and aluminum, are related to their postulated contribution to the pathology of neurodegeneration.

  3. Separation and Identification of a Mixture of Group 6 Transition-Metal Carbonyl Compounds Using GC-MS in the General Chemistry Curriculum

    ERIC Educational Resources Information Center

    Fong, Lawrence K.

    2004-01-01

    Students in the general chemistry course are advised to scrutinize data obtained by gas chromatograph (GC) for segregation, and mass spectroscopy (MS) for recognizing combination of group 6 transition-metal carbonyl compounds. The GC-MS method arouses students' interest, as it can be applied to real-world situations, such as the routine…

  4. Paper-Based Heavy Metal Sensors from the Concise Synthesis of an Anionic Porphyrin: A Practical Application of Organic Synthesis to Environmental Chemistry

    ERIC Educational Resources Information Center

    Prabpal, Jutamat; Vilaivan, Tirayut; Praneenararat, Thanit

    Tetrakis(4-sulfonatophenyl)porphyrin (TSPP) was immobilized on patterned paper and used as a sensor for heavy metal ions in an advanced organic chemistry course. The resulting sensor could detect Hg[superscript 2+] and Cd[superscript 2+] ions colorimetrically, while Cu[superscript 2+] ion resulted in fluorescence quenching, thus demonstrating a…

  5. Separation and Identification of a Mixture of Group 6 Transition-Metal Carbonyl Compounds Using GC-MS in the General Chemistry Curriculum

    ERIC Educational Resources Information Center

    Fong, Lawrence K.

    2004-01-01

    Students in the general chemistry course are advised to scrutinize data obtained by gas chromatograph (GC) for segregation, and mass spectroscopy (MS) for recognizing combination of group 6 transition-metal carbonyl compounds. The GC-MS method arouses students' interest, as it can be applied to real-world situations, such as the routine…

  6. Constructing metal nanoparticle multilayers with polyphenylene dendrimer/gold nanoparticles via "click" chemistry.

    PubMed

    Li, Huiqiang; Li, Zhanxian; Wu, Linzhi; Zhang, Yuna; Yu, Mingming; Wei, Liuhe

    2013-03-26

    Multilayer films composed of azide-functional polymer and polyphenylene dendrimer-stabilized gold nanoparticles with alkynes in their peripheries have been fabricated using a layer-by-layer (LBL) approach via "click" chemistry. This method permits facile covalent linking of the polymer/nanoparticle interlayers in the mixture of DMF and water, which provides a general and powerful technique for preparing uniform nanoparticle (NP) thin films. The deposition process is linearly related to the number of bilayers as monitored by UV-vis spectroscopy. The multilayer structure and morphology have been characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and contact angle.

  7. Understanding of catalysis on early transition metal oxide-based catalysts through exploration of surface structure and chemistry during catalysis using in-situ approaches

    SciTech Connect

    Tao, Franklin

    2015-09-14

    Two main categories of heterogeneous catalysts are metal and metal oxide which catalyze 80% chemical reactions at solid-gas and solid-liquid interfaces. Metal oxide catalysts are much more complicated than metal catalysts. The reason is that the cations of the metal atoms could exhibit a few different oxidation states on surface of the same catalyst particle such as Co3O4 or change of their oxidation states under different reactive environments. For a metal catalyst, there is only one oxidation state typically. In addition, surface of a metal oxide can be terminated with multiple surface functionalities including O atoms with different binding configurations and OH group. For metal, only metal atoms are exposed typically. Obviously, the complication of surface chemistry and structure of a metal oxide makes studies of surface of an oxide catalyst very challenging. Due to the complication of surface of a meal oxide, the electronic and geometric structures of surface of a metal oxide and the exposed species have received enormous attention since oxide catalysts catalyze at least 1/3 chemical reactions in chemical and energy industries. Understanding of catalytic reactions on early transition metal oxide-based catalysts is fundamentally intriguing and of great practical interest in energy- and environment-related catalysis. Exploration of surface chemistry of oxide-based catalysts at molecular level during catalysis has remained challenging though it is critical in deeply understanding catalysis on oxide-based catalysts and developing oxide-based catalysts with high activity and selectivity. Thus, the overall objective of this project is to explore surface chemistry and structure of early transition metal oxide-based catalysts through in-situ characterization of surface of catalysts, measurements of catalytic performances, and then build an intrinsic correlation of surface chemistry and structure with their catalytic performances in a few

  8. Surface organometallic chemistry on metals. III. Formation of a bimetallic Ni-Sn phase generated by reaction of a Sn(n-C sub 4 H sub 9 ) sub 4 and silica-supported nickel oxide

    SciTech Connect

    Agnelli, M.; Candy, J.P.; Basset, J.M. ); Bournonville, J.P.; Ferretti, O.A. )

    1990-02-01

    Reaction of Sn(n-C{sub 4}H{sub 9}){sub 4} with NiO/SiO{sub 2} occurs above 423 K according to the apparent following stoichiometry: NiO + xSn(n-C{sub 4}H{sub 9}){sub 4} {yields} NiSn{sub x} + (2x + 1)C{sub 4}H{sub 8} + (2x {minus} 1)C{sub 4}H{sub 10} + H{sub 2}O. Various compositions of the bimetallic phase can be achieved by changing the initial Sn/Ni ratio. The obtained catalysts were very active and selective in the hydrogenation of ethyl acetate to ethanol. Characterization of the bimetallic phase has shown that the particles are bimetallic (STEM). As a result of chemisorption IR, and magnetic measurements, it appears that the presence of tin has four effects: (i) it decreases significantly the amount of CO and H{sub 2} adsorbed; (ii) it isolates nickel atoms from their neighbors; (iii) it increases electron density on nickel; and (IV) it suppresses the magnetic properties of nickel. Redox behavior of Ni-Sn/SiO{sub 2} toward surface OH indicates that surface hydroxyls can oxidize Sn{sup (0)}, probably to Sn{sup (II)} with evolution of H{sub 2}, the process being reversible with H{sub 2}. It is suggested that during this oxidation process, tin migrates to the periphery of the bimetallic particle with formation of (chemical bond Si-O){sub 2}Sn{sup (II)} surface species.

  9. Friction and surface chemistry of some ferrous-base metallic glasses

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The friction properties of some ferrous-base metallic glasses were measured both in argon and in vacuum to a temperature of 350 C. The alloy surfaces were also analyzed with X-ray photoelectron spectroscopy to identify the compounds and elements present on the surface. The results of the investigation indicate that even when the surfaces of the amorphous alloys, or metallic glasses, are atomically clean, bulk contaminants such as boric oxide and silicon dioxide diffuse to the surfaces. Friction measurements in both argon and vacuum indicate that the alloys exhibit higher coefficients of friction in the crystalline state than they do in the amorphous state.

  10. Laser-Induced Plasma Chemistry of the Explosive RDX with Various Metals

    DTIC Science & Technology

    2011-07-18

    UNCLASSIFIED discrimination RDX residue on various metals Effects of substrate on discrimination Motivation Investigated formation of carbon in aluminized -RDX...included: . , . , (99.98%), tin (99.998%) and titanium (99.998%) • numerous metal alloys including brass, lead and steel Differences in the...b. NiCu C 1248 ste,el1761 - steel C 1296 <l Ti 641 o Zn 625 Lead C2417 + RDX ead C2418 + RDX NiCu C1248 + RDX steel 1761 + RDX steel C1296

  11. Coordination Chemistry of Cyclic Disilylated Germylenes and Stannylenes with Group 11 Metals

    PubMed Central

    2014-01-01

    Reactions of Et3P adducts of bissilylated germylenes and stannylenes with gold, silver, and copper cyanides led to cyanogermyl or -stannyl complexes of the respective metals. In the course of the reaction the phosphine moved to the metal, while the cyanide migrated to the low-coordinate group 14 element. The respective gold complexes were found to be monomeric, whereas the silver and copper complexes exhibited a tendency to dimerize in the solid state. Attempts to abstract the phosphine ligand with B(C6F5)3 led only to the formation of adducts with the borane coordinating to the cyanide nitrogen atom. PMID:25550678

  12. Electrophilic metal alkyl chemistry in new ligand environments. Annual report, January 1, 1992--September 15, 1992

    SciTech Connect

    Jordan, R.F.

    1992-12-31

    Methods have been worked out for efficient synthesis of various N{sub 4}{sup 2{minus}} macrocyclic ligands, neutral group 4 metal (e.g., Zr) (N{sub 4})MR{sub 2} complexes, and cationic mono-alkyl (N{sub 4})M(R){sup +} species. Intital indications are that the latter will be highly reactive in base-free form. Objective is to develop new types of electrophilic metal alkyl complexes for study of olefin polymerization and C-H activation catalysis.

  13. The Development and Study of Surface Bound Ruthenium Organometallic Complexes

    NASA Astrophysics Data System (ADS)

    Abbott, Geoffrey Reuben

    The focus of this project has been on the use of mono-diimine ruthenium organometallic complexes, of the general structure [H(Ru)(CO)(L)2(L') 2][PF6] (L=PPh3, DPPENE and L'=Bpy, DcBpy, MBpyC, Phen, AminoPhen) bound to surfaces as luminescent probes. Both biological and inorganic/organic hybrid surfaces have been studied. The complexes were characterized both bound and unbound using standard analytical techniques such as NMR, IR and X-ray crystallography, as well as through several photophysical methods as well. Initially the study focused on how the photophyscial properties of the complexes were affected by incorporation into biological membranes. It was found that by conjugating the probes to a more rigid cholesterol moiety that luminescence was conserved, compared to conjugation with a far more flexible lipid moiety, where luminescence was either lost or reduced. Both the cholesterol and lipid conjugates were able to insert into a lipid membrane, and in the more rigid environment some of the lipid conjugates regained some of their luminescence, but often blue shifted and reduced, depending on the conjugation site. Silica Polyamine Composites (SPCs) were a hybrid material developed in the Rosenberg Lab as useful metal separation materials, that could be easily modified, and had several benefits over current commercially available polymers, or inorganic materials. These SPCs also provided an opportunity for the development of a heterogeneous platform for luminescent complexes as either catalysts or sensors. Upon binding of the luminescent Ru complexes to the surface no loss, or major change in luminescence was seen, however, when bound to the rigid surface a significant increase in excited state lifetime was measured. It is likely that through binding and interacting with the surface that the complexes lost non-radiative decay pathways, resulting in the increase in lifetime, however, these interactions do not seem to affect the energy level of the MLCT band in a

  14. Chemistry at the dirac point of graphene

    NASA Astrophysics Data System (ADS)

    Sarkar, Santanu

    device mobility. To this end, we find that the organometallic hexahapto metal complexation chemistry of graphene, in which the graphene pi-band constructively hybridizes with the vacant d-orbitals of transition metals, allows the fabrication of field effect devices which retain a high degree of the mobility with enhanced on-off ratio. In summary, we find that the singular electronic structure of graphene at the Dirac point governs the chemical reactivity of graphene and this chemistry will play a vital role in propelling graphene to assume its role as the next generation electronic material beyond silicon.

  15. Emergence of electrophilic alumination as the counterpart of established nucleophilic lithiation: an academic sojourn in organometallics with William Kaska as fellow traveler.

    PubMed

    Eisch, John J

    2015-04-21

    William Kaska pursued doctoral studies with John Eisch in mechanistic organometallic chemistry, first with organolithium reactions at St. Louis University and then at the University of Michigan with organoaluminum reactions. Thereby he revealed the change in mechanism from nucleophilic lithiation and carbolithiation to that of electrophilic alumination, carboalumination and hydroalumination of organic substrates, which reactions were previously observed by Karl Ziegler in his empirical studies of organoaluminum reactions. Our findings were the first mechanistic studies attempting to set such Ziegler chemistry on a modern theoretical basis.

  16. All kinds of reactivity: recent breakthroughs in metal-catalyzed alkyne chemistry.

    PubMed

    Anaya de Parrodi, Cecilia; Walsh, Patrick J

    2009-01-01

    Alkynes of reactions: Recent breakthroughs in metal-catalyzed alkyne reactions, which expand the synthetic utility of alkynes, have been achieved. These approaches broaden the range of alkynes that are accessible by C--N and C--C bond-forming reactions and demonstrate that the use of bifunctional heterobimetallic catalysts can lead to new reactivity and excellent enantioselectivity (see scheme).

  17. Shape, metal abundance, chemistry, and origin of chondrules in the Renazzo (CR) chondrite

    SciTech Connect

    Ebel, D.S.; Weisberg, M.K.; Hertz, J.; Campbell, A.J.

    2009-03-31

    We used synchrotron X-ray microtomography to image in 3-dimensions (3D) eight whole chondrules in a {approx}1 cm{sup 3} piece of the Renazzo (CR) chondrite at {approx}17 {micro}m per volume element (voxel) edge. We report the first volumetric (3D) measurement of metal/silicate ratios in chondrules and quantify indices of chondrule sphericity. Volumetric metal abundances in whole chondrules range from 1 to 37 volume % in 8 measured chondrules and by inspection in tomography data. We show that metal abundances and metal grain locations in individual chondrules cannot be reliably obtained from single random 2D sections. Samples were physically cut to intersect representative chondrules multiple times and to verify 3D data. Detailed 2D chemical analysis combined with 3D data yield highly variable whole-chondrule Mg/Si ratios with a supra-chondritic mean value, yet the chemically diverse, independently formed chondrules are mutually complementary in preserving chondritic (solar) Fe/Si ratios in the aggregate CR chondrite. These results are consistent with localized chondrule formation and rapid accretion resulting in chondrule + matrix aggregates (meteorite parent bodies) that preserve the bulk chondritic composition of source regions.

  18. Green chemistry: solvent- and metal-free Prins cyclization. Application to sequential reactions.

    PubMed

    Clarisse, Damien; Pelotier, Béatrice; Piva, Olivier; Fache, Fabienne

    2012-01-04

    Prins cyclization between a homoallylic alcohol and an aldehyde, promoted by trimethylsilyl halide, afforded 4-halo-tetrahydropyrans with good to excellent yields. Thanks to the absence of the solvent and metal, the THP thus obtained have been implicated without purification in several other reactions, in a sequential way, affording in particular new indole derivatives.

  19. Laser-shocked energetic materials with metal additives: evaluation of chemistry and detonation performance.

    PubMed

    Gottfried, Jennifer L; Bukowski, Eric J

    2017-01-20

    A focused, nanosecond-pulsed laser has been used to ablate, atomize, ionize, and excite milligram quantities of metal-doped energetic materials that undergo exothermic reactions in the laser-induced plasma. The subsequent shock wave expansion in the air above the sample has been monitored using high-speed schlieren imaging in a recently developed technique, laser-induced air shock from energetic materials (LASEM). The method enables the estimation of detonation velocities based on the measured laser-induced air-shock velocities and has previously been demonstrated for organic military explosives. Here, the LASEM technique has been extended to explosive formulations with metal additives. A comparison of the measured laser-induced air-shock velocities for TNT, RDX, DNTF, and LLM-172 doped with Al or B to the detonation velocities predicted by the thermochemical code CHEETAH for inert or active metal participation demonstrates that LASEM has potential for predicting the early time (<10  μs) participation of metal additives in detonation events. The LASEM results show that while Al is mostly inert at early times in the detonation event (confirmed from large-scale detonation testing), B is active-and reducing the amount of hydrogen present during the early chemical reactions increases the resulting estimated detonation velocities.

  20. Effect of O-Side-Chain-Lipopolysaccharide Chemistry on Metal Binding

    PubMed Central

    Langley, S.; Beveridge, T. J.

    1999-01-01

    Pseudomonas aeruginosa PAO1 produces two chemically distinct types of lipopolysaccharides (LPSs), termed A-band LPS and B-band LPS. The A-band O-side chain is electroneutral at physiological pH, while the B-band O-side chain contains numerous negatively charged sites due to the presence of uronic acid residues in the repeat unit structure. Strain PAO1 (A+ B+) and three isogenic LPS mutants (A+ B−, A− B+, and A− B−) were studied to determine the contribution of the O-side-chain portion of LPS to metal binding by the surfaces of gram-negative cells. Transmission electron microscopy with energy-dispersive X-ray spectroscopy was used to locate and analyze sites of metal deposition, while atomic absorption spectrophotometry and inductively coupled plasma-mass spectrometry were used to perform bulk quantitation of bound metal. The results indicated that cells of all of the strains caused the precipitation of gold as intracellular, elemental crystals with a d-spacing of 2.43 Å. This type of precipitation has not been reported previously for gram-negative cells and suggests that in the organisms studied gold binding is not a surface-mediated event. All four strains bound similar amounts of copper (0.213 to 0.222 μmol/mg [dry weight] of cells) at the cell surface, suggesting that the major surface metal-binding sites reside in portions of the LPS which are common to all strains (perhaps the phosphoryl groups in the core-lipid A region). However, significant differences were observed in the abilities of strains dps89 (A− B+) and AK1401 (A+ B−) to bind iron and lanthanum, respectively. Strain dps89 caused the precipitation of iron (1.623 μmol/mg [dry weight] of cells) as an amorphous mineral phase (possibly iron hydroxide) on the cell surface, while strain AK1401 nucleated precipitation of lanthanum (0.229 μmol/mg [dry weight] of cells) as apiculate, surface-associated crystals. Neither iron nor lanthanum precipitates were observed on the cells of other

  1. NOBLE METAL CHEMISTRY AND HYDROGEN GENERATION DURING SIMULATED DWPF MELTER FEED PREPARATION

    SciTech Connect

    Koopman, D

    2008-06-25

    Simulations of the Defense Waste Processing Facility (DWPF) Chemical Processing Cell vessels were performed with the primary purpose of producing melter feeds for the beaded frit program plus obtaining samples of simulated slurries containing high concentrations of noble metals for off-site analytical studies for the hydrogen program. Eight pairs of 22-L simulations were performed of the Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles. These sixteen simulations did not contain mercury. Six pairs were trimmed with a single noble metal (Ag, Pd, Rh, or Ru). One pair had all four noble metals, and one pair had no noble metals. One supporting 4-L simulation was completed with Ru and Hg. Several other 4-L supporting tests with mercury have not yet been performed. This report covers the calculations performed on SRNL analytical and process data related to the noble metals and hydrogen generation. It was originally envisioned as a supporting document for the off-site analytical studies. Significant new findings were made, and many previous hypotheses and findings were given additional support as summarized below. The timing of hydrogen generation events was reproduced very well within each of the eight pairs of runs, e.g. the onset of hydrogen, peak in hydrogen, etc. occurred at nearly identical times. Peak generation rates and total SRAT masses of CO{sub 2} and oxides of nitrogen were reproduced well. Comparable measures for hydrogen were reproduced with more variability, but still reasonably well. The extent of the reproducibility of the results validates the conclusions that were drawn from the data.

  2. Synthesis and chemistry of cationic d{sup 0} metal alkyl complexes. Progress report, July 1988--May 1991

    SciTech Connect

    Jordan, R.F.

    1991-12-31

    The objective of this project is to develop new types of electrophilic metal alkyl complexes for catalytic C-H activation and olefin polymerization chemistry, and associated fundamental mechanistic studies. We have focused our efforts on four classes of early metal alkyl complexes: (1) cationic group 4 Cp{sub 2}M(R){sup +} complexes (1) which are active species in Cp{sub 2}MX{sub 2}-based Ziegler-Natta olefin polymerization catalyst systems and which catalyze productive C-H activation reactions of heterocycles, (2) neutral (dicarbollide)(Cp*)M(R) complexes (2) which are structurally are electronically very similar to 1, (3) half-sandwich complexes CpM(R){sub 2}(L){sub n}{sup +} which are highly coordinatively and electronically unsaturated, and (4) new group 5 (dicarbollide)(Cp)MR{sub 2} and (dicarbollide){sub 2} MR complexes which are more unsaturated than group 5 Cp{sub 2}M systems due to incorporation of the dicarbollide ligand.

  3. [Corrosion behaviour, metal release and biocompatibility of implant materials coated by TiO2-sol gel chemistry].

    PubMed

    Hoffmann, B; Kokott, A; Shafranska, O; Detsch, R; Winter, S; Eisenbarth, E; Peters, K; Breme, J; Kirkpatrick, C J; Ziegler, G

    2005-10-01

    Alloys based on titanium or cobalt have been used as implant materials for decades with good success. Because of their natural oxide layer these alloys reveal good corrosion behaviour. In contact with physiological solution metal release takes place, which can cause inflammation. Coatings can improve the corrosion behaviour. In this study Ti6Al4V and Co28Cr6Mo alloys, which are frequently used as implant materials, were tested. Polished discs of these alloys and polished discs, which were coated with TiO2-layers by sol-gel chemistry, were compared regarding their corrosion behaviour and metal ion releasing. The releasing of Al, V, Ti, Co, Cr and Mo was quantified by ICP-MS analysis. The TiO2-coating reduced the release of all ions except of the Al-ion. Both alloys showed a deviating kinetic of ion releasing. In addition, cell response (cell vitality, cell proliferation, endothelial marker CD31 and actin allocation) of osteoblasts and endothelial cells were investigated.

  4. Organo-metallic elements for associative information processing

    NASA Astrophysics Data System (ADS)

    Potember, Richard S.; Poehler, Theodore O.

    1989-01-01

    In the three years of the program we have: (1) built and tested a 4 bit element matrix device for possible use in high density content-addressable memories systems; (2) established a test and evaluation laboratory to examine optical materials for nonlinear effects, saturable absorption, harmonic generation and photochromism; (3) successfully designed, constructed and operated a codeposition processing system that enables organic materials to be deposited on a variety of substrates to produce optical grade coatings and films. This system is also compatible with other traditional microelectronic techniques; (4) used the sol-gel process with colloidal AgTCNQ to fabricate high speed photochromic switches; (5) develop and applied for patent coverage to make VO2 optical switching materials via the sol-gel processing using vanadium (IV) alkoxide compounds.

  5. Organo-Metallic Elements for Associative Information Processing

    DTIC Science & Technology

    1989-01-15

    identify by block number) ELD SUB-GROUP Nonlinear optics, charge-transfer tomplexes, TCNQ, VO,= FIEL GROUP U-RP, - . conducting7 polymers , organic’solids...materials to be deposited on a variety of substrates to produce optical grade coatings and films. This sys- tem is also compatible with other...the possibility of using the excited state nonlinear proper- ties of dyes and polymers for optical information processing applications. 20

  6. Bioorganometallic Chemistry and Malaria

    NASA Astrophysics Data System (ADS)

    Biot, Christophe; Dive, Daniel

    This chapter summarizes recent developments in the design, synthesis, and structure-activity relationship studies of organometallic antimalarials. It begins with a general introduction to malaria and the biology of the parasite Plasmodium falciparum, with a focus on the heme detoxification system. Then, a number of metal complexes from the literature are reported for their antiplasmodial activity. The second half of the chapter deals with the serendipitous discovery of ferroquine, its mechanism(s) of action, and the failure to induce a resistance. Last, but not least, we suggest that the bioorganometallic approach offers the potential for the design of novel therapeutic agents.

  7. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater. 3. Lead

    NASA Astrophysics Data System (ADS)

    Maring, H. B.; Duce, R. A.

    1990-04-01

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm-2 yr-1 at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate paniculate lead can be reinjected into the atmosphere during sea salt aerosol production.

  8. Examining metal nanoparticle surface chemistry using hollow-core, photonic-crystal, fiber-assisted SERS.

    PubMed

    Eftekhari, Fatemeh; Lee, Anna; Kumacheva, Eugenia; Helmy, Amr S

    2012-02-15

    In this Letter, we demonstrate the efficacy of hollow core photonic crystal fibers (HCPCFs) as a surface-enhanced Raman spectroscopy (SERS) platform for investigating the ligand exchange process on the surface of gold nanoparticles. Raman measurements carried out using this platform show the capability to monitor minute amounts of surface ligands on gold nanoparticles used as an SERS substrate. The SERS signal from an HCPCF exhibits a tenfold enhancement compared to that in a direct sampling scheme using a cuvette. Using exchange of cytotoxic cetyltrimethylammonium bromide with α-methoxy-ω-mercaptopoly(ethylene glycol) on the surface of gold nanorods as an exemplary system, we show the feasibility of using HCPCF SERS to monitor the change in surface chemistry of nanoparticles.

  9. Bioorganometallic chemistry. 7. A novel, linear, two-coordinate Rh(I) anionic amide complex formed by the reaction of the nucleobase, 1-methylthymine, with the [(C{sub p} Rh){sub 2}({mu}-OH){sub 3}]{sup +} cation at pH 10. Molecular recognition and electrostatic interaction within an organometallic hydrophobic cavity

    SciTech Connect

    Chen, H.; Maestre, M.F.; Fish, R.H.; Olmstead, M.M.

    1995-09-06

    Recently authors were able to characterize several ({eta}{sup 5}-pentamethylcyclopentadienyl) rhodium(Cp{sup *}Rh) -cyclic trimer structures with 9-methyladenine 9-ethylhypoxanthine, adenosine, adenosine 3`-, methyl-5`-, and 5`-monophosphates and, in this process, discovered the first examples of molecular recognition by several bioorganometallic Cp{sup *}Rh-cycle trimer nucleobase, nucleoside, and nucleotide hosts with aromatic amino acid guests in H{sub 2}O at pH 7.0. They now extend their bioorganometallic/molecular recognition studies to the nucleobase 1-methylthymine (1-MTH) and describe the synthesis and structural characterization of the first example of a novel, linear, two-coordinate Rh(I) anionic amide complex [Rh({eta}{sup 1},N{sup 3}-1-MT){sub 2}]{sup -} (1), from the reaction of 1-MTH with in situ generated [(Cp{sup *}Rh){sub 2}({mu}-OH){sub 3}]{sup +} (2) performed at pH 10. This unusual coordination around the Rh(I) complex is presumed to be stabilized by three factors: an organometallic hydrophobic cavity, generated from 1.5 molecules of 2; an electrostatic interaction of anionic 1 with cation 2; and a possible shielding of the Rh(I) center to nucleophilic attack by the 4 sets of oxygen lone pair electrons. 19 refs., 3 figs.

  10. Chemistry and resistance at metal contacts to YBa sub 2 Cu sub 3 O sub 7 high T sub c superconducting thin films

    SciTech Connect

    Schmidt, M.T.; Ma, Q.Y.; Weinman, L.S.; Wu, X.; Yang, E.S. ); Chin-An Chang )

    1990-01-25

    X-ray photoelectron spectroscopy (XPS) and electrical characterization have been used to investigate metal contacts to thin films of superconducting YBa{sub 2}Cu{sub 3}O{sub 7{minus}{ital x}} (YBCO). The metals studied are Au, Pt, Pd, Sn, and Ti, which cover a wide range of physical properties including reactivity with oxygen and bulk resistivity. XPS was also used to investigate the sputter cleaning and subsequent heating of the YBCO films prior to contact formation. Contacts for electrical study were defined by a shadow mask, while contacts studied by XPS were formed by sequential deposition of several A of metal. XPS of the O 1s, Cu 2p, and the various metal core levels confirm that the more reactive metals cause more disruption at the metal/YBCO interface. These observations of interface chemistry are correlated with contact resistivity measured at room temperature and at 77 K. We find that although Au, Pt and Pd have similar contact resistivity at room temperature, only the Au contacts show a large decrease in contact resistance at 77 K. Ti and Sn have much higher contact resistivities at room temperature than the noble metals. These results are discussed in terms of interface chemistry and material properties.

  11. Metal-Sulfide Mineral Ores, Fenton Chemistry and Disease – Particle Induced Inflammatory Stress Response in Lung Cells

    PubMed Central

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; Schoonen, Martin A.A.

    2014-01-01

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleterious nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 minutes and measured systematically for up to 24 hours). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. This study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management. PMID:25107347

  12. Metal-sulfide mineral ores, Fenton chemistry and disease. Particle induced inflammatory stress response in lung cells

    DOE PAGES

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; ...

    2014-07-10

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleteriousmore » nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.« less

  13. Metal-sulfide mineral ores, Fenton chemistry and disease. Particle induced inflammatory stress response in lung cells

    SciTech Connect

    Harrington, Andrea D.; Smirnov, Alexander; Tsirka, Stella E.; Schoonen, Martin A. A.

    2014-07-10

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleterious nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002 m2/mL stock) and exposure periods (beginning at 30 min and measured systematically for up to 24 h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. Furthermore, this study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.

  14. Chemistry of oxygenates on transition metal surfaces: Activation of C- H, C-C, and C-O bonds

    SciTech Connect

    Not Available

    1991-01-01

    Goal is to understand the requirements for and competition between activation of C-H, C-C, and C-O bonds in the synthesis and decomposition of oxygenates on transition metal surfaces. Efforts during the past year was devoted primarily to the role of activation of {beta}-CH bonds in decarbonylation of higher oxygenates on surfaces of metals such as Rh and Pd; studies were completed of more than a dozen C{sub 1}-C{sub 3} oxygenates on Rh(111), and progress was made with reagents for which {beta}-CH scission is blocked. It is shown that alcohols and aldehydes do not react via a common pathway on on Rh(111). Ethanol and acetaldehyde are formed from CO + H{sub 2} by parallel routes on Rh catalysts which do not contain interacting supports or oxide promoters; i.e., the two compounds result from CO insertion into different metal-hydrocarbon bonds. Aldehydes decarbonylate via {alpha}-CH scission to form acyl, followed by C-C scission to release an alkyl ligand; this ligand undergoes hydrogenation and dehydrogenation steps. Alcohols form surface alkoxides, but these do not dehydrogenate further to the aldehydes, they release CO + H{sub 2} but no volatile hydrocarbon. These results indicate that {beta}-CH scissors to form a surface oxametallacycle intermediate; supporting evidence is spresented for this intermediate. Chemistry of alcohols blocked to different extends at the {beta}-position was also studied; complete blocking (CF{sub 3}CH{sub 2}OH) forces the reaction to follow the aldehyde-acyl path, while partial substitution at the {beta} position (branched alcohols) favors the oxametallacycle pathway. (DLC)

  15. Metal-sulfide mineral ores, Fenton chemistry and disease--particle induced inflammatory stress response in lung cells.

    PubMed

    Harrington, Andrea D; Smirnov, Alexander; Tsirka, Stella E; Schoonen, Martin A A

    2015-01-01

    The inhalation of mineral particulates and other earth materials, such as coal, can initiate or enhance disease in humans. Workers in occupations with high particulate exposure, such as mining, are particularly at risk. The ability of a material to generate an inflammatory stress response (ISR), a measure of particle toxicity, is a useful tool in evaluating said exposure risk. ISR is defined as the upregulation of cellular reactive oxygen species (ROS) normalized to cell viability. This study compares the ISR of A549 human lung epithelial cells after exposure to well-characterized common metal-sulfide ore mineral separates. The evaluation of the deleterious nature of ore minerals is based on a range of particle loadings (serial dilutions of 0.002m(2)/mL stock) and exposure periods (beginning at 30min and measured systematically for up to 24h). There is a wide range in ISR values generated by the ore minerals. The ISR values produced by the sphalerite samples are within the range of inert materials. Arsenopyrite generated a small ISR that was largely driven by cell death. Galena showed a similar, but more pronounced response. Copper-bearing ore minerals generated the greatest ISR, both by upregulating cellular ROS and generating substantial and sustained cell death. Chalcopyrite and bornite, both containing ferrous iron, generated the greatest ISR overall. Particles containing Fenton metals as major constituents produce the highest ISR, while other heavy metals mainly generate cell death. This study highlights the importance of evaluating the chemistry, oxidation states and structure of a material when assessing risk management.

  16. Radical S-Adenosyl-L-methionine Chemistry in the Synthesis of Hydrogenase and Nitrogenase Metal Cofactors

    DOE PAGES

    Byer, Amanda S.; Shepard, Eric M.; Peters, John W.; ...

    2014-12-04

    Nitrogenase, [FeFe]-hydrogenase, and [Fe]-hydrogenase enzymes perform catalysis at metal cofactors with biologically unusual non-protein ligands. Furthermore, the FeMo cofactor of nitrogenase has a MoFe7S9 cluster with a central carbon, whereas the H-cluster of [FeFe]-hydrogenase contains a 2Fe subcluster coordinated by cyanide and CO ligands as well as dithiomethylamine; the [Fe]-hydrogenase cofactor has CO and guanylylpyridinol ligands at a mononuclear iron site. Intriguingly, radical S-adenosyl-L-methionine enzymes are vital for the assembly of all three of these diverse cofactors. Here, in this minireview, we present and discuss the current state of knowledge of the radical S-adenosylmethionine enzymes required for synthesis of thesemore » remarkable metal cofactors.« less

  17. High-pressure chemistry of hydrogen in metals: in situ study of iron hydride.

    PubMed

    Badding, J V; Hemley, R J; Mao, H K

    1991-07-26

    Optical observations and x-ray diffraction measurements of the reaction between iron and hydrogen at high pressure to form iron hydride are described. The reaction is associated with a sudden pressure-induced expansion at 3.5 gigapascals of iron samples immersed in fluid hydrogen. Synchrotron x-ray diffraction measurements carried out to 62 gigapascals demonstrate that iron hydride has a double hexagonal close-packed structure, a cell volume up to 17% larger than pure iron, and a stoichiometry close to FeH. These results greatly extend the pressure range over which the technologically important iron-hydrogen phase diagram has been characterized and have implications for problems ranging from hydrogen degradation and embrittlement of ferrous metals to the presence of hydrogen in Earth's metallic core.

  18. Chemistry of guanidinate-stabilised diboranes: transition-metal-catalysed dehydrocoupling and hydride abstraction.

    PubMed

    Wagner, Arne; Litters, Sebastian; Elias, Jana; Kaifer, Elisabeth; Himmel, Hans-Jörg

    2014-09-22

    Herein, we analyse the catalytic boron-boron dehydrocoupling reaction that leads from the base-stabilised diborane(6) [H2 B(hpp)]2 (hpp=1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidinate) to the base-stabilised diborane(4) [H2 B(hpp)]2 . A number of potential transition-metal precatalysts was studied, including transition-metal complexes of the product diborane(4). The synthesis and structural characterisation of two further examples of such complexes is presented. The best results for the dehydrocoupling reactions were obtained with precatalysts of Group 9 metals in the oxidation state of +I. The active catalyst is formed in situ through a multistep process that involves reduction of the precatalyst by the substrate [H2 B(hpp)]2 , and mechanistic investigations indicate that both heterogeneous and (slower) homogeneous reaction pathways play a role in the dehydrocoupling reaction. In addition, hydride abstraction from [H2 B(hpp)]2 and related diboranes is analysed and the possibility for subsequent deprotonation is discussed by probing the protic character of the cationic boron-hydrogen compounds with NMR spectroscopic analysis.

  19. Effect of solution chemistry on particle characteristics during metal sulfide precipitation.

    PubMed

    Mokone, T P; van Hille, R P; Lewis, A E

    2010-11-01

    Metal sulfide precipitation forms an important component of acid mine drainage remediation systems based on bacterial sulfate reduction. The precipitation reaction is thermodynamically favorable, but a number of technical issues remain. In this study the effect of metal to sulfide molar ratio and operating pH on the nature and settling characteristics of copper and zinc sulfide precipitates was studied in a CSTR. A large number of small copper sulfide particles, with highly negatively charged surfaces and poor settling characteristics, were formed in the presence of a stoichiometric excess of sulfide at pH 6. The size and the settling characteristics of the particles were significantly improved, while the number of particles and magnitude of their zeta potential decreased when experiments were conducted at pH values <6. By comparison, for zinc sulfide, a small change in the number and size of the particles was observed for all metal to sulfide molar ratios and tested operating pH values. Precipitates generated at pH 6 had the most negative zeta potential, while operating at pH values <6 reduced the magnitude of the negative surface charge and improved the settling and dewatering characteristics of the precipitate. The data indicated that the amount of reactive sulfide species (HS(-) and S(2-) ions) available in solution during the precipitation process was important in determining the nature and surface characteristics of the particles produced and this was mainly dependent on pH.

  20. ROMP Synthesis of Iron-Containing Organometallic Polymers.

    PubMed

    Dragutan, Ileana; Dragutan, Valerian; Filip, Petru; Simionescu, Bogdan C; Demonceau, Albert

    2016-02-06

    The paper overviews iron-containing polymers prepared by controlled "living" ring-opening metathesis polymerization (ROMP). Developments in the design and synthesis of this class of organometallic polymers are highlighted, pinpointing methodologies and newest trends in advanced applications of hybrid materials based on polymers functionalized with iron motifs.

  1. Ligand Rearrangements of Organometallic Complexes inSolution

    SciTech Connect

    Shanoski, Jennifer E.

    2006-01-01

    Many chemical reactions utilize organometallic complexes as catalysts. These complexes find use in reactions as varied as bond activation, polymerization, and isomerization. This thesis outlines the construction of a new ultrafast laser system with an emphasis on the generation of tunable mid-infrared pulses, data collection, and data analysis.

  2. Preparation of activated carbons with mesopores by use of organometallics

    SciTech Connect

    Yamada, Yoshio; Yoshizawa, Noriko; Furuta, Takeshi

    1996-12-31

    Activated carbons are commercially produced by steam or CO{sub 2} activation of coal, coconut shell and so on. In general the carbons obtained give pores with a broad range of distribution. The objective of this study was to prepare activated carbons from coal by use of various organometallic compounds. The carbons were evaluated for pore size by nitrogen adsorption experiments.

  3. Recent applications of polymer supported organometallic catalysts in organic synthesis.

    PubMed

    Kann, Nina

    2010-09-07

    Recent developments concerning the application of polymer supported organometallic reagents in solid phase synthesis are reviewed, with a special focus on methodology for carbon-carbon formation. Examples of reactions that are covered include the classical Suzuki, Sonogashira and Heck coupings, but also aryl amination, epoxide opening, rearrangements, metathesis and cyclopropanation. Applications in the field of asymmetric synthesis are also discussed.

  4. Organometalic carbosilane polymers containing vanadium and their preparation

    NASA Technical Reports Server (NTRS)

    Yajima, S.; Okamura, K.; Shishido, T.; Fukuda, K.

    1983-01-01

    The present invention concerns a new organometallic polymer material containing in part a vanadium-siloxane linkage (V-0-Si), which has excellent resistance to heat and oxidation and a high residue ratio after high temperature treatment in a non-oxidizing atmosphere, for example, nitrogen, argon, helium, ammonia, or hydrogen.

  5. Laser-assisted solar cell metallization processing

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1984-01-01

    Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.

  6. Short-term inactivation rates of selected Gram-positive and Gram-negative bacteria attached to metal oxide mineral surfaces: role of solution and surface chemistry.

    PubMed

    Asadishad, Bahareh; Ghoshal, Subhasis; Tufenkji, Nathalie

    2013-06-04

    Metal oxides such as ferric or aluminum oxides can play an important role in the retention of bacteria in granular aquatic environments; however, their role in bacterial inactivation is not well understood. Herein, we examined the role of water chemistry and surface chemistry on the short-term inactivation rates of three bacteria when adhered to surfaces. To evaluate the role of water chemistry on the inactivation of attached bacteria, the loss in membrane integrity of bacteria attached to an iron oxide (Fe2O3) surface was measured over a range of water ionic strengths of either monovalent or divalent salts in the absence of a growth substrate. The influence of surface chemistry on the inactivation of attached bacteria was examined by measuring the loss in membrane integrity of cells attached to three surfaces (SiO2, Fe2O3, and Al2O3) at a specific water chemistry (10 mM KCl). Bacteria were allowed to attach onto the SiO2 or metal oxide coated slides mounted in a parallel-plate flow cell, and their inactivation rate (loss in membrane integrity) was measured directly without removing the cells from the surface and without disturbing the system. X-ray photoelectron spectroscopy analysis revealed a high correlation between the amounts of C-metal or O-metal bonds and the corresponding bacterial inactivation rates for each surface. Finally, for all three surfaces, a consistent increase in inactivation rate was observed with the type of bacterium in the order: Enterococcus faecalis, Escherichia coli O157:H7, and Escherichia coli D21f2.

  7. New precursors and chemistry for the growth of transition metal films by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Knisley, Thomas Joseph

    The advancing complexity of advanced microelectronic devices is placing rigorous demands on currently used PVD and CVD deposition techniques. The ALD deposition method is proposed to meet the film thickness and conformality constraints needed by the semiconductor industry in future manufacturing processes. Unfortunately, there is a limited number of chemical precursors available that have high thermal stability, reactivity, and vapor pressure suitable for ALD film growth to occur. These properties collectively contribute to the lack of suitable transition metal precursors available for use in ALD. In this thesis, we report the discovery of a series of novel transition metal diazadienate precursors that promising properties deemed suitable for ALD. The volatility and thermal stability of the new transition metal diazadienyl compounds were studied by preparative sublimation and capillary tube melting point/decomposition experiments. Thermogravimetric analyses (TGA) demonstrate precursor residues of less than 4% at 500 °C. In addition, sublimation data, melting points, and decomposition temperatures for all complexes are presented. The manganese diazadienyl complex has the highest decomposition temperature of the series of complexes produced (325 °C). During preparative sublimations, the product recoveries of all transition metal diazadienyl complexes were greater than 92.0% with nonvolatile residues of less than 7.0%. This is an excellent indication that these complexes may be suitable candidates as metal precursors for ALD. Nickel nitride (NixN) films have been studied as an intermediate material for the formation of both nickel metal and nickel silicide using chemical vapor deposition. Herein, we describe the ALD growth of nickel nitride thin films from bis(1,4-di-tert-butyl-1,3-diazabutadiene) nickel(II) (Ni(tBu2DAD)2) and 1,1-dimethylhydrazine. An ALD window for the deposition of nickel nitride films on 500 nm thermal SiO2 substrates was observed between 225

  8. Nanometallic chemistry: deciphering nanoparticle catalysis from the perspective of organometallic chemistry and homogeneous catalysis.

    PubMed

    Yan, Ning; Yuan, Yuan; Dyson, Paul J

    2013-10-07

    Nanoparticle (NP) catalysis is traditionally viewed as a sub-section of heterogeneous catalysis. However, certain properties of NP catalysts, especially NPs dispersed in solvents, indicate that there could be benefits from viewing them from the perspective of homogeneous catalysis. By applying the fundamental approaches and concepts routinely used in homogeneous catalysis to NP catalysts it should be possible to rationally design new nanocatalysts with superior properties to those currently in use.

  9. Multiple Electron Charge Transfer Chemistries for Electrochemical Energy Storage Systems: The Metal Boride and Metal Air Battery

    NASA Astrophysics Data System (ADS)

    Stuart, Jessica F.

    (g) → CO 32- (molten) (2a) CO32- (molten) ?→ C (solid) + O2 (g) + O2- (dissolved) (2b). Thus, powered by the oxidation of carbon formed directly from the CO 2 in our earth's atmosphere, the carbon molten air battery is a viable system to provide large-scale energy storage. These batteries are rechargeable and have amongst the highest intrinsic battery storage capacities available. The electron charge transfer chemistry is demonstrated through three examples. These examples utilize iron, carbon, and vanadium diboride as reactive materials, each containing intrinsic volumetric energy capacities of 10,000 Wh/L for Fe to Fe (III), 19,000 Wh/L for C to CO2, and 27,000 Wh/L for VB2 to B2O3 and V2O 5, compared to 6,200 Wh/L for the lithium air battery.

  10. The fascinating construction of pyridine ring systems by transition metal-catalysed [2 + 2 + 2] cycloaddition reactions.

    PubMed

    Heller, Barbara; Hapke, Marko

    2007-07-01

    Cycloaddition reactions compose one of the most important classes of reactions when it comes to the simultaneous formation of several bonds in one reaction step. The de novo construction of carbocyclic aromatic systems from acetylenes was also found as an excellent possibility for the assembly of heteroaromatic systems. The transition metal-catalysed [2 + 2 + 2] cycloaddition reaction constitutes a fascinating tool for the synthesis of pyridines from nitriles and the most recent developments demonstrate the ability to control the substitution pattern as well as the possibility of introducing chirality by the use of achiral substrates and a chiral catalyst under mild conditions. In this tutorial review we are focusing on the de novo construction of pyridine ring systems by the transition metal-catalysed [2 + 2 + 2] cycloaddition reaction. After surveying the mechanistic features and intermediates of the reaction depending on the different metal complexes used, we depict the preparation of achiral pyridine derivatives. The last section describes the advances in the synthesis of chiral pyridines and biaryls using the cyclotrimerization method. The various possibilities of introducing chirality by catalytic means are presented and illustrated by instructive examples. This review will be of interest for people active in: Organic Chemistry, Organometallic Chemistry, Transition Metal Chemistry, Stereoselective Synthesis, Heterocyclic Chemistry.

  11. Latest approaches on green chemistry preconcentration methods for trace metal determination in seawater--a review.

    PubMed

    La Colla, Noelia Soledad; Domini, Claudia Elizabeth; Marcovecchio, Jorge Eduardo; Botté, Sandra Elizabeth

    2015-03-15

    Evaluation of trace metal levels in seawater samples is undertaken regularly by research groups all over the world, leading to a growing demand for techniques involving fewer toxic reagents, less time-consuming protocols and lower limits of detection. This review focuses on providing a brief but concise description of the latest methodologies developed to this end, outlining the advantages and disadvantages of the various protocols, chelating and dispersive agents and instruments used. Conclusions are drawn on the basis of the articles reviewed, highlighting improvements introduced in order to enhance the performance of the protocols.

  12. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  13. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, experiments, demonstrations, teaching suggestions, and information on a variety of chemistry topics including, for example, inert gases, light-induced reactions, calculators, identification of substituted acetophenones, the elements, analysis of copper minerals, extraction of metallic strontium, equilibrium, halogens, and…

  14. Modern Chemistry Techniques Applied to Metal Behavior and Chelation in Medical and Environmental Systems ? Final Report

    SciTech Connect

    Sutton, M; Andresen, B; Burastero, S R; Chiarappa-Zucca, M L; Chinn, S C; Coronado, P R; Gash, A E; Perkins, J; Sawvel, A M; Szechenyi, S C

    2005-02-03

    This report details the research and findings generated over the course of a 3-year research project funded by Lawrence Livermore National Laboratory (LLNL) Laboratory Directed Research and Development (LDRD). Originally tasked with studying beryllium chemistry and chelation for the treatment of Chronic Beryllium Disease and environmental remediation of beryllium-contaminated environments, this work has yielded results in beryllium and uranium solubility and speciation associated with toxicology; specific and effective chelation agents for beryllium, capable of lowering beryllium tissue burden and increasing urinary excretion in mice, and dissolution of beryllium contamination at LLNL Site 300; {sup 9}Be NMR studies previously unstudied at LLNL; secondary ionization mass spec (SIMS) imaging of beryllium in spleen and lung tissue; beryllium interactions with aerogel/GAC material for environmental cleanup. The results show that chelator development using modern chemical techniques such as chemical thermodynamic modeling, was successful in identifying and utilizing tried and tested beryllium chelators for use in medical and environmental scenarios. Additionally, a study of uranium speciation in simulated biological fluids identified uranium species present in urine, gastric juice, pancreatic fluid, airway surface fluid, simulated lung fluid, bile, saliva, plasma, interstitial fluid and intracellular fluid.

  15. Impact of platinum group metals on the environment: a toxicological, genotoxic and analytical chemistry study.

    PubMed

    Gagnon, Zofia E; Newkirk, Catherine; Hicks, Steven

    2006-01-01

    Recent studies show particles of Platinum Group Metals (PGMs); primarily platinum, palladium and rhodium; released from automobile catalytic converters are being deposited alongside roadways. This deposition is leading to increasing concentrations of PGMs in the environment, raising concerns about the environmental impact and toxicity of these elements in living organisms. The objective of this study was to determine how PGMs alter the patterns of growth, development, and physiology by studying the toxicological and genotoxic effects of these metals. Two vastly different species were used as models: plant-a wild wetland common Sphagnum moss, and animal-6-week old rats Sprague-Dawley. Both species were exposed, in controlled environments, to different concentrations of the PGMs. Toxicological and genotoxic effects were determined by assessment of plant growth, animal survival and pathology, and influence on DNA in both models. Our results on the uptake of PGMs by Sphagnum showed significant decreases in plant length and biomass as PGM concentration increased. Histological and pathological analysis of the animal model revealed vacuolization, eosinophil inclusion bodies in adrenal glands, shrinkage of glomeruli in the kidney, and enlargement of white pulp in the spleen. In both models, DNA damage was detected. Chemical analysis using ICP-AES atomic absorption demonstrated accumulation of PGMs in plant tissues at all PGM levels, proportional to concentration.

  16. A facile surface chemistry route to a stabilized lithium metal anode

    NASA Astrophysics Data System (ADS)

    Liang, Xiao; Pang, Quan; Kochetkov, Ivan R.; Sempere, Marina Safont; Huang, He; Sun, Xiaoqi; Nazar, Linda F.

    2017-09-01

    Lithium metal is a highly desirable anode for lithium rechargeable batteries, having the highest theoretical specific capacity and lowest electrochemical potential of all material candidates. Its most notable problem is dendritic growth upon Li plating, which is a major safety concern and exacerbates reactivity with the electrolyte. Here we report that Li-rich composite alloy films synthesized in situ on lithium by a simple and low-cost methodology effectively prevent dendrite growth. This is attributed to the synergy of fast lithium ion migration through Li-rich ion conductive alloys coupled with an electronically insulating surface component. The protected lithium is stabilized to sustain electrodeposition over 700 cycles (1,400 h) of repeated plating/stripping at a practical current density of 2 mA cm‑2 and a 1,500 cycle-life is realized for a cell paired with a Li4Ti5O12 positive electrode. These findings open up a promising avenue to stabilize lithium metal with surface layers having targeted properties.

  17. Silver cluster formation, dynamics, and chemistry in metal-organic frameworks.

    PubMed

    Houk, Ronald J T; Jacobs, Benjamin W; El Gabaly, Farid; Chang, Noel N; Talin, A Alec; Graham, Dennis D; House, Stephen D; Robertson, Ian M; Allendorf, Mark D

    2009-10-01

    Synthetic methods used to produce metal nanoparticles typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with the potential for both steric and chemical stabilization. We report a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions < or =1 nm, with a significant fraction existing as Ag(3) clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible.

  18. Thiodiacetate-manganese chemistry with N ligands: unique control of the supramolecular arrangement over the metal coordination mode.

    PubMed

    Grirrane, Abdessamad; Pastor, Antonio; Galindo, Agustín; Alvarez, Eleuterio; Mealli, Carlo; Ienco, Andrea; Orlandini, Annabella; Rosa, Patrick; Caneschi, Andrea; Barra, Anne-Laure; Sanz, Javier Fernández

    2011-09-12

    Compounds based on the Mn-tda unit (tda=S(CH(2)COO)(2)(-2) ) and N co-ligands have been analyzed in terms of structural, spectroscopic, magnetic properties and DFT calculations. The precursors [Mn(tda)(H(2)O)](n) (1) and [Mn(tda)(H(2)O)(3)]·H(2)O (2) have been characterized by powder and X-ray diffraction, respectively. Their derivatives with bipyridyl-type ligands have formulas [Mn(tda)(bipy)](n) (3), [{Mn(N-N)}(2)(μ-H(2)O)(μ-tda)(2)](n) (N-N=4,4'-Me(2)bipy (4), 5,5'-Me(2)bipy, (5)) and [Mn(tda){(MeO)(2)bipy}·2H(2)O](n) (6). Depending on the presence/position of substituents at bipy, the supramolecular arrangement can affect the metal coordination type. While all the complexes consist of 1D coordination polymers, only 3 has a copper-acetate core with local trigonal prismatic metal coordination. The presence of substituents in 4-6, together with water co-ligands, reduces the supramolecular interactions and typical octahedral Mn(II) ions are observed. The unicity of 3 is also supported by magnetic studies and by DFT calculations, which confirm that the unusual Mn coordination is a consequence of extended noncovalent interactions (π-π stacking) between bipy ligands. Moreover, 3 is an example of broken paradigm for supramolecular chemistry. In fact, the desired stereochemical properties are achieved by using rigid metal building blocks, whereas in 3 the accumulation of weak noncovalent interactions controls the metal geometry. Other N co-ligands have also been reacted with 1 to give the compounds [Mn(tda)(phen)](2)·6H(2)O (7) (phen=1,10-phenanthroline), [Mn(tda)(terpy)](n) (8) (terpy=2,2':6,2''-terpyridine), [Mn(tda)(pyterpy)](n) (9) (pyterpy=4'-(4-pyridyl)-2,2':6,2''-terpyridine), [Mn(tda)(tpt)(H(2)O)]·2H(2)O (10) and [Mn(tda)(tpt)(H(2)O)](2)·2H(2)O (11) (tpt=2,4,6-tris(2-pyridyl)-1,3,5-triazine). Their identified mono-, bi- or polynuclear structures clearly indicate that hydrogen bonding is variously competitive with π-π stacking. Copyright © 2011 WILEY

  19. Stepwise formation of organometallic macrocycles and triangular prisms containing 2,2'-bisbenzimidazole ligands.

    PubMed

    Wu, Tong; Lin, Yue-Jian; Jin, Guo-Xin

    2013-01-07

    A series of organometallic macrocycles have been constructed by an efficient “bottom-up” assembly methodology at ambient temperature. Treatment of [Cp*MCl2]2 (1a: M = Ir, 1b: M = Rh) with pyrazine or 4,4′-bipyridine (bpy) (1:1; Cp* = pentamethylcyclopentadienyl) at room temperature resulted in the formation of binuclear complexes [Cp*MCl2]2(pyrazine) and [Cp*MCl2]2(bpy) (M = Ir or Rh), which were then further reacted with AgOTf (Tf = O2SCF3) and 2,2′-bisbenzimidazole ligand (BiBzIm). Four organometallic macrocyclic complexes formulated as [Cp*4Ir4(BiBzIm)2(pyrazine)2](OTf)4 (2a), [Cp*4Rh4(BiBzIm)2(pyrazine)2](OTf)4 (2b), [Cp*4Ir4(BiBzIm)2(bpy)2](OTf)4 (2c) and [Cp*4Rh4(BiBzIm)2(bpy)2](OTf)4 (2d) each bearing 2,2′-bisbenzimidazole ligand and the half-sandwich Ir, Rh fragments were finally obtained in good yields. In a similar process, if a rigid ligand L (3-pyridyl-bian) was used as the linker, two novel metallacycles (3a and 3b) which enchased a silver atom in the centre were obtained. Organometallic triangular prisms 4a were synthesized via methods similar to those of the rectangles. [Cp*IrCl2]2 reacted with tridentate ligand 2,4,6-tri(4-pyridyl)-1,3,5-triazine (tpt) to give the corresponding trinuclear complexes [Cp*IrCl2]3(tpt), then further reacted with AgOTf and 2,2′-bisbenzimidazole ligand, leading to the formation of the prism-like complexes formulated as [Cp*6M6(BiBzIm)6(tpt)2](OTf)6 (3a: M = Ir, 3b: M = Rh). All complexes were well characterized by 1H NMR and IR spectroscopy, as well as elemental analyses. The molecular structures of 2a, 2b, 2c, 3a, 3b and 4a were characterized by single-crystal X-ray crystallography. We found that the prism-like hexanuclear complexes 4a displayed interesting host–guest chemistry.

  20. MALDI-TOFMS analysis of coordination and organometallic complexes: a nic(h)e area to work in.

    PubMed

    Wyatt, Mark F

    2011-07-01

    A mini-review of the characterisation of metal-containing compounds by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is presented. Organometallic and coordination compounds have many varied applications, most notably in industrial catalytic processes and also in the electronics and healthcare sectors. In general, the compounds discussed, be they small or large molecules, have a high percentage metal content, rather than simply containing 'a metal atom'. A brief history of the field is given, but the main scope over the last 5 years is covered in some detail. How MALDI-TOFMS compliments electrospray for metal-containing compounds is highlighted. Perspectives on recent advances, such as solvent-free and air/moisture-sensitive sample preparation, and potential future challenges and developments, such as nanomaterials and metallodrug/metallometabolite imaging, are given. Copyright © 2011 John Wiley & Sons, Ltd.