Science.gov

Sample records for metal polluted site

  1. Earliest evidence of pollution by heavy metals in archaeological sites

    NASA Astrophysics Data System (ADS)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  2. Earliest evidence of pollution by heavy metals in archaeological sites

    PubMed Central

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  3. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  4. Rapid evolution of metal resistance in a benthic oligochaete inhabiting a metal-polluted site

    SciTech Connect

    Klerks, P.L.; Levinton, J.S. )

    1989-04-01

    A case of very rapid evolution of resistance in a common freshwater benthic invertebrate to sediment with extremely high levels of cadmium and nickel was identified. Limnodrilus hoffmeisteri from metal-polluted sites in Foundry cove, New York was significantly more resistant than conspecifics from a nearby control site, to both metal-rich natural sediment and metal-spiked water. Resistance differences were also found among sites within Foundry Cove. Elevated resistance in Foundry Cove worms was genetically determined, as it was still present after two generations in clean sediment. Resistance evolved rapidly, within 30 years. A laboratory selection experiment and estimates of the heritability of this resistance in L hoffmeisteri from the control site indicated that the resistance could have evolved in 1 to 4 generations. Laboratory selection resulted in a large increase in resistance after two generations of selection, while they demonstrated that most of the phenotypic variation was additive genetic; heritability estimates range from 0.59 to 1.08. 28 refs., 4 figs.

  5. Stepwise magnetic-geochemical approach for efficient assessment of heavy metal polluted sites

    NASA Astrophysics Data System (ADS)

    Appel, E.; Rösler, W.; Ojha, G.

    2012-04-01

    Previous studies have shown that magnetometry can outline the distribution of fly ash deposition in the surroundings of coal-burning power plants and steel industries. Especially the easy-to-measure magnetic susceptibility (MS) is capable to act as a proxy for heavy metal (HM) pollution caused by such kind of point source pollution. Here we present a demonstration project around the coal-burning power plant complex "Schwarze Pumpe" in eastern Germany. Before reunification of West and East Germany huge amounts of HM pollutants were emitted from the "Schwarze Pumpe" into the environment by both fly ash emission and dumped clinker. The project has been conducted as part of the TASK Centre of Competence which aims at bringing new innovative techniques closer to the market. Our project combines in situ and laboratory MS measurements and HM analyses in order to demonstrate the efficiency of a stepwise approach for site assessment of HM pollution around point sources of fly-ash emission and deposition into soil. The following scenario is played through: We assume that the "true" spatial distribution of HM pollution (given by the pollution load index PLI comprising Fe, Zn, Pb, and Cu) is represented by our entire set of 85 measured samples (XRF analyses) from forest sites around the "Schwarze Pumpe". Surface MS data (collected with a Bartington MS2D) and in situ vertical MS sections (logged by an SM400 instrument) are used to determine a qualitative overview of potentially higher and lower polluted areas. A suite of spatial HM distribution maps obtained by random selections of 30 out of the 85 analysed sites is compared to the HM map obtained from a targeted 30-sites-selection based on pre-information from the MS results. The PLI distribution map obtained from the targeted 30-sites-selection shows all essential details of the "true" pollution map, while the different random 30-sites-selections miss important features. This

  6. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  7. Plant growth promotion, metabolite production and metal tolerance of dark septate endophytes isolated from metal-polluted poplar phytomanagement sites.

    PubMed

    Berthelot, Charlotte; Leyval, Corinne; Foulon, Julie; Chalot, Michel; Blaudez, Damien

    2016-10-01

    Numerous studies address the distribution and the diversity of dark septate endophytes (DSEs) in the literature, but little is known about their ecological role and their effect on host plants, especially in metal-polluted soils. Seven DSE strains belonging to Cadophora, Leptodontidium, Phialophora and Phialocephala were isolated from roots of poplar trees from metal-polluted sites. All strains developed on a wide range of carbohydrates, including cell-wall-related compounds. The strains evenly colonized birch, eucalyptus and ryegrass roots in re-synthesis experiments. Root and shoot growth promotion was observed and was both plant and strain dependent. Two Phialophora and Leptodontidium strains particularly improved plant growth. However, there was no correlation between the level of root colonization by DSEs and the intensity of growth promotion. All strains produced auxin and six also stimulated plant growth through the release of volatile organic compounds (VOCs). SPME-GC/MS analyses revealed four major VOCs emitted by Cadophora and Leptodontidium The strains exhibited growth at high concentrations of several metals. The ability of metal-resistant DSE strains to produce both soluble and volatile compounds for plant growth promotion indicates interesting microbial resources with high potential to support sustainable production of bioenergy crops within the context of the phytomanagement of metal-contaminated sites.

  8. Efficiency of stepwise magnetic-chemical site assessment for fly ash derived heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Cao, Liwan; Appel, Erwin; Rösler, Wolfgang; Magiera, Tadeusz

    2015-11-01

    Previous works revealed a close relationship between magnetic susceptibility (MS) and heavy metal (HM) contents originating from industrial sources. However, despite general statements on the usefulness of magnetic mapping, the benefit of this procedure for geochemistry was not quantified yet. We present a study on fly ash pollution in soil around a coal-burning power plant complex and simulate a stepwise approach of magnetic pre-screening and subsequent targeted sampling for chemical analysis. The aim of this study is not to discuss correlations between MS and HM, but to show that a combined stepwise magnetic-chemical approach is the most efficient way for outlining HM contamination. In order to provide quantitative evidence, we explored map similarities of spatial HM distributions based on magnetochemical data and chemical data only. We determined 3-D triangular planes defined by categorized HM values at the sampling coordinates and calculated the average dihedral angle of the normal vectors as a similarity result. The study shows that the `Targeted' HM map (selection of 30 sites based magnetic pre-screening) has a higher similarity with the `True' Pollution HM map (85 sites) than HM maps resulting from site selections (30 sites) without using magnetic pre-screening information.

  9. Metabolic responses to metal pollution in shrimp Crangon affinis from the sites along the Laizhou Bay in the Bohai Sea.

    PubMed

    Xu, Lanlan; Ji, Chenglong; Zhao, Jianmin; Wu, Huifeng

    2016-12-15

    Marine environment in the Laizhou Bay is potentially contaminated by metals from industrial discharges. In this study, metal concentrations in shrimps Crangon affinis indicated that two typical sites (S6283 and S5283) close to Longkou and Zhaoyuan cities along the Laizhou Bay have been contaminated by metals, including Cd, As, Cu, Ni, Co, and Mn. In particular, Cd and As were the main metal contaminants in S6283. In S5283, however, Cu was the most important metal contaminant. The metabolic responses in the shrimps indicated that the metal pollution in S6283 and S5283 induced disturbances in osmotic regulation and energy metabolism and reduced anaerobiosis, lipid metabolism, and muscle movement. However, alteration in the levels of dimethylglycine, dimethylamine, arginine, betaine, and glutamine indicated that the metal pollution in S5283 induced osmotic stress through different pathways compared to that in S6283. In addition, dimethylamine might be the biomarker of Cu in shrimp C. affinis.

  10. Heavy metal pollution across sites affecting the intestinal helminth communities of the Egyptian lizard, Chalcides ocellatus (Forskal, 1775).

    PubMed

    Soliman, M F M

    2012-12-01

    This study aimed to investigate the possible effects of heavy metal pollution across sites and some biological factors on helminth communities infecting the lizard, Chalcides ocellatus. The possibility of heavy metal accumulation by such helminths was also investigated. A total of 202 C. ocellatus were collected from three different sites (industrial, rural, and urban systems) in Ismailia governorate, Egypt, during summer 2009. The lizards were classified according to their sex and size and were examined for the intestinal helminths. Heavy metal levels were detected in the intestinal tissue of the lizards and the recovered helminths. Species richness was 6, 5, and 3 in rural, urban, and industrial systems, respectively. Significant site variations regarding infection prevalence, intensity, and abundance were encountered at different levels. Some noticeable effects of the host size were found. The significant differences found between the metal levels of the intestinal tissues and the recovered helminths and the other relations found in this study may be indications for a possible metals accumulation capacity by helminths. The cestode Oochoristica tuberculata could be a promising biomonitor for Cu and Pb, while the intestinal nematodes were less sensitive to the pollution. Differences in the accumulation capacity may be attributed to the intensity of infection, parasite species, and metal. The observed patterns of distribution and occurrence of helminths and the metals accumulation capacity reflect the need for more studies since this study proposes the model intestinal helminth/C. ocellatus as another promising bioindication system in the terrestrial habitat, especially in areas where the lizard C. ocellatus are available.

  11. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil.

    PubMed

    Khan, Shbbir R; Singh, Satish K; Rastogi, Neelkamal

    2017-04-01

    The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.

  12. Effect of metal stress on photosynthetic pigments in the Cu-hyperaccumulating lichens Cladonia humilis and Stereocaulon japonicum growing in Cu-polluted sites in Japan.

    PubMed

    Nakajima, Hiromitsu; Yamamoto, Yoshikazu; Yoshitani, Azusa; Itoh, Kiminori

    2013-11-01

    To understand the ecology and physiology of metal-accumulating lichens growing in Cu-polluted sites, we investigated lichens near temple and shrine buildings with Cu roofs in Japan and found that Stereocaulon japonicum Th. Fr. and Cladonia humilis (With.) J. R. Laundon grow in Cu-polluted sites. Metal concentrations in the lichen samples collected at some of these sites were determined by inductively coupled plasma mass spectroscopy (ICP-MS). UV-vis absorption spectra of pigments extracted from the lichen samples were measured, and the pigment concentrations were estimated from the spectral data using equations from the literature. Secondary metabolites extracted from the lichen samples were analyzed by high-performance liquid chromatography (HPLC) with a photodiode array detector. We found that S. japonicum and C. humilis are Cu-hyperaccumulating lichens. Differences in pigment concentrations and their absorption spectra were observed between the Cu-polluted and control samples of the 2 lichens. However, no correlation was found between Cu and pigment concentrations. We observed a positive correlation between Al and Fe concentrations and unexpectedly found high negative correlations between Al and pigment concentrations. This suggests that Al stress reduces pigment concentrations. The concentrations of secondary metabolites in C. humilis growing in the Cu-polluted sites agreed with those in C. humilis growing in the control sites. This indicates that the metabolite concentrations are independent of Cu stress.

  13. Heavy metal contamination in sand and sediments near to disposal site of reject brine from desalination plant, Arabian Gulf: Assessment of environmental pollution.

    PubMed

    Alshahri, Fatimh

    2017-01-01

    Accumulation of heavy metals in environment may cause series potential risk in the living system. This study was carried out to investigate heavy metal contamination in sand samples and sediments along the beach near to disposal site of reject brine from Alkhobar desalination plant, which is one of the oldest and largest reverse osmosis desalination plants in eastern Saudi Arabia, Arabian Gulf. Fourteen heavy metals (U, Ca, Fe, Al, Ti, Sr, Rb, Ni, Pb, Cd, Cr, Cu, As, and Zr) were measured using gamma-ray spectrometry, atomic absorption spectrometer (AAS) and energy dispersive X-ray fluorescence spectrometer (EDX). The obtained data revealed that the concentrations of these metals were higher than the values in sediment and soil for other studies in Arabian Gulf. Furthermore, the mean values of Fe, Mn, Cr, Cu, As, Sr, and Zr concentrations in sand and sediments were higher than the geochemical background values in shale. The contamination factor (CF), modified degree of contamination (mCd) and pollution load index (PLI) were assessed. According to contamination factors (CF > 1), the results showed elevated levels of Cu, Cr, Mn, Zr, and As in all samples. The highest value of contamination factor was found for As. Based on PLI (PLI > 1), the values of all sampling sites indicate a localized pollution in the study area. Current study could be useful as baseline data for heavy metals in sand and sediments nearby a desalination plant.

  14. Poplar clones of different sizes, grown on a heavy metal polluted site, are associated with microbial populations of varying composition.

    PubMed

    Gamalero, Elisa; Cesaro, Patrizia; Cicatelli, Angela; Todeschini, Valeria; Musso, Chiara; Castiglione, Stefano; Fabiani, Arturo; Lingua, Guido

    2012-05-15

    We performed a field trial to evaluate the response of different poplar clones to heavy metals. We found that poplar plants of the same clone, propagated by cuttings, had a marked variability of survival and growth in different zones of the field that were characterized by very similar physical-chemical prosperities. Since metal uptake and its accumulation by plants can be affected by soil microorganisms, we investigated soil microbial populations that were collected in proximity to the roots of large and small poplar plants. We used microbiological and molecular tools to ascertain whether bacterial strains or species were associated with large, or small poplars, and whether these were different from those present in the bulk (without plants) soil. We found that the culturable fraction of the bacteria differed in the three cases (bulk soil, small or large poplars). While some taxa were always present, two species (Chryseobacterium soldanellicola and Variovorax paradoxus) were only found in the soil where poplars (large or small) were growing, independently from the plant size. Bacterial strains of the genus Flavobacterium were prevalent in the soil with large poplar plants. The existence of different microbial populations in the bulk and in the poplar grown soils was confirmed by the DGGE profiles of the bacterial culturable fractions. Cluster analysis of the DGGE profiles highlighted the clear separation of the culturable fraction from the whole microbial community. The isolation and identification of poplar-associated bacterial strains from the culturable fraction of the microbial community provided the basis for further studies aimed at the combined use of plants and soil microorganisms in the remediation of heavy metal polluted soils.

  15. METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFPPT)

    EPA Science Inventory

    The Metal Finishing Facility Pollution Tool (MFFPPT) is being developed to allow the metal finishing industry an easy method to evaluate potential pollution prevention options. In order to reduce the quantity of pollutants generated by a process, the sources of pollutants within ...

  16. Heavy metal pollution of soils and sediments at the historical smelting site of the Rudawy Janowickie Mountains (Lower Silesia, Poland).

    NASA Astrophysics Data System (ADS)

    Kierczak, Jakub; Néel, Catherine; Pietranik, Anna

    2010-05-01

    Multidisciplinary studies of historical slags are mostly focused on exploring how metallurgy evolved through human history. Another purpose for studying historical slags are potentially harmful interactions between slags, surrounding soils, sediments and waters. Metallurgical slags generally concentrate potentially toxic elements (PTE) such as arsenic, copper and lead. These elements may be mobilized and transferred into immediate surroundings. The main aim of our work is to identify factors controlling migration of metals at the historical smelting site of the Rudawy Janowickie Mountains. This study involves detailed analyzes of historical slags (older than 300 years) containing PTE, as well as surrounding soils and sediments. The Rudawy Janowickie Mountains represented an important centre of copper mining and smelting in Poland until 1925 with metallurgical activities being documented as early as in the XIV century. The exploitation of Cu ores has left large amounts of mine tailings and slags extending over ca. 35ha. The slags were deposited on ground and no barriers between the slags and environment were set. Therefore, they were continuously affected by variable factors, for example, changing weather conditions. Soils located in the study area are derived from granitic rocks. They are shallow (< 1 meter depth) and skeletic (containing > 50 wt. % of coarse fragments). Their pHw is acidic and varies from 3.4 to 4.5 from the topsoil to the deeper horizons in which slags are widespread. Mineral composition of soils and sediments is dominated by quartz, alkali feldspar, plagioclase and biotite. However, some samples may contain additionally numerous slag fragments. At present, the slags occur within three types of environments: (1) at the surface, (2) in soils and (3) in sediments from two streams: Janówka and Smelter Stream. Studied slags were sampled in the vicinity of both streams from (1) surface, (2) soil profiles and (3) streambeds. Furthermore, samples of

  17. Metal pollution of river Msimbazi, Tanzania

    SciTech Connect

    Ak'habuhaya, J.; Lodenius, M. )

    1988-01-01

    The Misimbazi River in Dar es Salaam is polluted with industrial, urban and agricultural waste waters. A preliminary investigation on the extent of metal pollution (Hg, Cr, Cu, Zn, Fe, Ni, Cd, Mn, Al) was made from samples of sediments and biological indicators. The metal concentrations were in general low, but some of our results indicated industrial pollution.

  18. A metabolomic study on the biological effects of metal pollutions in oysters Crassostrea sikamea.

    PubMed

    Ji, Chenglong; Wang, Qing; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-01-15

    Metal pollution has become a great threat to organisms in the estuaries in South China. In the present study, the oysters Crassostrea sikamea were collected from one clean (Jiuzhen) and five metal polluted sites (Baijiao, Fugong, Gongqian, Jinshan and Songyu). The tissue metal concentrations in oysters indicated that the five metal sites were polluted by several metals, including Cr, Ni, Co, Cu, Zn, Ag, Cd and Pb with different patterns. Especially, Cu and Zn were the major contaminants in Baijiao, Fugong and Jinshan sites. The metabolic responses in oysters C. sikamea indicated that the metal pollutions in BJ, FG, JS and SY sites induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways. However, the metal pollution in GQ site mainly influenced the osmotic regulation in the oysters C. sikamea. This study demonstrates that NMR-based metabolomics is useful to characterize metabolic responses induced by metal pollution.

  19. A comparative proteomic study on the effects of metal pollution in oysters Crassostrea hongkongensis.

    PubMed

    Xu, Lanlan; Ji, Chenglong; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2016-11-15

    The metal pollution has posed great risk on the coastal organisms along the Jiulongjiang Estuary in South China. In this work, two-dimensional electrophoresis-based proteomics was applied to the oysters Crassostrea hongkongensis from metal pollution sites to characterize the proteomic responses to metal pollution. Metal accumulation and proteomic responses indicated that the oysters from BJ site were more severely contaminated than those from FG site. Compared with those oyster samples from the clean site (JZ), metal pollution induced cellular injuries, oxidative and immune stresses in oyster heapatopancreas from both BJ and FG sites via differential metabolic pathways. In addition, metal pollution in BJ site induced disturbance in energy and lipid metabolisms in oysters. Results indicated that cathepsin L and ferritin GF1 might be the biomarkers of As and Fe in oyster C. hongkongensis, respectively. This study demonstrates that proteomics is a useful tool for investigating biological effects induced by metal pollution.

  20. A metabolomic investigation of the effects of metal pollution in oysters Crassostrea hongkongensis.

    PubMed

    Ji, Chenglong; Wang, Qing; Wu, Huifeng; Tan, Qiaoguo; Wang, Wen-Xiong

    2015-01-15

    Metal pollution has been of great concern in the estuaries in Southern China. In this study, metabolic differences between oysters Crassostrea hongkongensis from clean and metal-polluted sites were characterized using NMR-based metabolomics. We collected oyster samples from one clean (Jiuzhen) and two metal polluted sites (Baijiao and Fugong). The metal concentrations in oyster gills indicated that both the Baijiao and Fugong sites were severely polluted by several metals, including Cr, Ni, Cu, Zn, Ag, Cd and Pb. In particular, Cu and Zn were the major contaminants from the Baijiao and Fugong sites. Compared with those oysters from the clean site (JZ), metal pollution in BJ and FG induced disturbances in osmotic regulation and energy metabolism via different metabolic pathways, as indicated by different metabolic biomarkers. This study demonstrates that NMR-based metabolomics is a useful tool for characterizing metabolic responses induced by metal pollution.

  1. Metallothionein as bioindicator of freshwater metal pollution: European eel and brown trout.

    PubMed

    Linde, A R; Sánchez-Galán, S; Vallés-Mota, P; García-Vázquez, E

    2001-05-01

    The aim of this work was to evaluate the potential of metallothionein (MT) as a bioindicator of heavy metal pollution in brown trout and European eel in the field situation. River Ferrerias (North Spain) provided a good gradient of metal contamination: concentrations of heavy metals were elevated both in water and in sediments at the downstream (polluted) site and were low at the upstream (unpolluted) site. MT levels of brown trout exhibited statistically significant differences between sites. Although European eel at the polluted site had a higher MT content, differences were not significant. It is concluded that MT is a good bioindicator of heavy metal pollution in brown trout.

  2. Impact of metals on the biodegradation of organic pollutants.

    PubMed Central

    Sandrin, Todd R; Maier, Raina M

    2003-01-01

    Forty percent of hazardous waste sites in the United States are co-contaminated with organic and metal pollutants. Data from both aerobic and anaerobic systems demonstrate that biodegradation of the organic component can be reduced by metal toxicity. Metal bioavailability, determined primarily by medium composition/soil type and pH, governs the extent to which metals affect biodegradation. Failure to consider bioavailability rather than total metal likely accounts for much of the enormous variability among reports of inhibitory concentrations of metals. Metals appear to affect organic biodegradation through impacting both the physiology and ecology of organic degrading microorganisms. Recent approaches to increasing organic biodegradation in the presence of metals involve reduction of metal bioavailability and include the use of metal-resistant bacteria, treatment additives, and clay minerals. The addition of divalent cations and adjustment of pH are additional strategies currently under investigation. PMID:12826480

  3. Effects of heavy metal pollution on oak leaf microorganisms.

    PubMed

    Bewley, R J

    1980-12-01

    During the growing season, comparisons were made of the leaf surface microflora of (i) two groups of mature oak trees, one in the vicinity of a smelting complex contaminated by heavy metals and the other at a relatively uncontaminated site, and (ii) two groups of oak saplings at the uncontaminated site, one of which was sprayed with zinc, lead, and cadmium to simulate the heavy metal pollution from the smelter without the complicating effects of other pollutants. Total viable counts of bacteria, yeasts, and filamentous fungi (isolated by leaf washing) were generally little affected by the spraying treatment, whereas polluted leaves of mature trees supported fewer bacteria compared with leaves of mature trees at the uncontaminated site. Numbers of pigmented yeasts were lower on polluted oaks and on metal-dosed saplings compared with their respective controls. Polluted leaves of mature trees supported both greater numbers of Aureobasidium pullulans and Cladosporium spp. and a greater percentage of metal-tolerant fungi compared with oak leaves at the uncontaminated site. There were no significant overall differences in the degree of mycelial growth between the two groups of saplings or the mature trees.

  4. Metal intracellular partitioning as a detoxification mechanism for mummichogs (Fundulus heteroclitus) living in metal-polluted salt marshes.

    PubMed

    Goto, Daisuke; Wallace, William G

    2010-04-01

    Intracellular partitioning of trace metals is critical to metal detoxification in aquatic organisms. In the present study, we assessed metal (Cd, Cu, Pb, and Zn) handling capacities of mummichogs (Fundulus heteroclitus) in metal-polluted salt marshes in New York, USA by examining metal intracellular partitioning. Despite the lack of differences in the whole body burdens, partitioning patterns of metals in intracellular components (heat-stable proteins, heat-denaturable proteins, organelles, and metal-rich granules) revealed clear differential metal handling capacities among the populations of mummichogs. In general, mummichogs living in metal-polluted sites stored a large amount of metals in detoxifying cellular components, particularly metal-rich granules (MRG). Moreover, only metals associated with MRG were consistently correlated with variations in the whole body burdens. These findings suggest that metal detoxification through intracellular partitioning, particularly the sequestration to MRG, may have important implications for metal tolerance of mummichogs living in chronically metal-polluted habitats.

  5. Coal combustion and heavy metals pollution

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Borovec, K.

    1996-12-31

    Combustion of coal may be an important source of heavy metals pollution. The major environmental risks of heavy metals are connected to their toxicity and mobility in the environment. In the flame, heavy metals are re-distributed with respect to their volatility. Enrichment of fine particles by volatile metals is the most important mechanism for most of the metals. Nevertheless, Hg is emitted mainly in gaseous form and some metals like Mn are concentrated rather in coarse particles. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal; other possibilities (metals extraction from the coal, changes of condition in the flame) are limited. Fly ashes from the most important Czech power plants were examined with respect to the heavy metals content. The easily leachable elements with high volatility in the flame (arsenic, zinc, lead) were recognized as the most important fly ash pollutants. The average concentrations of these metals in fly ash were: bituminous coal 46{+-}18 ppm As, 196{+-}93 ppm Zn, 126{+-}46 ppm Pb; brown coal 283{+-}260 ppm As, 60{+-}28 ppm Pb and 212{+-}116 ppm Zn. When ESP and cyclones are used in series, fly ashes from ESP have higher concentration of volatile heavy metals, mainly Pb, Zn and As. Presence of chlorine in fuel increases the volatility of metals.

  6. Metal-binding proteins as metal pollution indicators.

    PubMed Central

    Hennig, H F

    1986-01-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass. PMID:3709437

  7. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  8. The use of mosses as environmental metal pollution indicators.

    PubMed

    Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado

    2003-01-01

    The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.

  9. Changes in soil microbial community functionality and structure in a metal-polluted site: The effect of digestate and fly ash applications.

    PubMed

    Garcia-Sánchez, M; Garcia-Romera, I; Cajthaml, T; Tlustoš, P; Száková, J

    2015-10-01

    Soil from Trhové Dušníky (Příbram, Czech Republic) is characterized by its high polymetallic accumulations in Pb-Ag-Zn due to mining and smelting activities. In previous studies performed in our research group, we have evaluated the potential use of amendments that would reduce the mobility and availability of metals such as Hg. We have observed that the application of digestate and fly ash in metal-polluted soil has an impact in immobilizing these metals. However, until now we have lacked information about the effect of these amendments on soil microbial functionality and communities. The multi-contaminated soil was used to grow wheat in a pot experiment to evaluate the impact of digestate and fly ash application in soil microbial communities. Soil samples were collected after 30 and 60 days of treatment. The digestate application improved chemical attributes such as the content in total organic carbon (TOC), water soluble carbon (WSOC), total soluble carbon (C), total soluble nitrogen (N), and inorganic N forms (NO3(-)) as consequence of high content in C and N which is contained in digestate. Likewise, microbial activity was greatly enhanced by digestate application, as was physiological diversity. Bacterial and fungal communities were increased, and the microbial biomass was highly enhanced. These effects were evident after 30 and 60 days of treatment. In contrast, fly ash did not have a remarkable effect when compared to digestate, but soil microbial biomass was positively affected as a consequence of macro- and micro-nutrient sources applied by the addition of fly ash. This study indicates that digestate can be used successfully in the remediation of metal-contaminated soil.

  10. Hanford Site pollution prevention progress report

    SciTech Connect

    BETSCH, M.D.

    1999-10-05

    The Richland Operations Office (RL) and Office of River Protection (ORP) are pleased to issue the attached Pollution Prevention Progress Report. We have just met the most aggressive waste reduction and A recycling goals to date and are publishing this report to recognize A the site's progress, and to ensure it will sustain success beyond 1 Fiscal Year 2000. This report was designed to inform the been made by RL and ORP in Waste Minimization (WMin) and Pollution Prevention (P2). RL, ORP and their contractors are committed to protecting the environment, and we reiterate pollution prevention should continue to be at the forefront of the environmental cleanup and research efforts. As you read the attached report, we believe you will see a clear demonstration of RL and ORP's outstanding performance as it has been responsible and accountable to the nation, its employees, and the community in which we live and work. commitment that all employees have for environmental stewardship. The report provides useful information about the U.S. Department of Energy's (DOE'S) environmental policy and programs, and contains countless examples of waste minimization projects. This year was the first year our site received the White House Closing the Circle in the category of Affirmative Procurement. This Award recognizes our site for designing a comprehensive strategy for achieving 100 percent purchases of the U.S.Environmenta1 Protection Agency designated recycled items. DOE-Headquarters also acknowledged the site in 1999 for its public outreach efforts in communicating pollution prevention to Hanford Site employees and the community. Our site is truly a recognized leader in outreach as it has kept this title for two consecutive years. In previous years, we received the White House Closing the Circle Honorable Mention in Affirmative Procurement and several other National DOE Awards. Through partnership with the local community and stakeholders, the site and its contractors have a clear

  11. Pollution Prevention Accomplishments Hanford Site FY2001

    SciTech Connect

    COENENBERG, J.G.

    2001-12-01

    In Fiscal Year 2001, the Hanford Site Prime Contractors, Bechtel Hanford Inc. (BHI), CH2M Hill hanford Group (CHG), Fluor Hanford Inc. (FH), and Pacific Northwest National Laboratory (PNNL) achieved over $32 million in cost savings/avoidance. The total cost savings/avoidance includes accomplishments reported to DOE Headquarters and additional accomplishments achieved on the Hanford Site. This accomplishment report highlights the major successes totaling over $5.5 million in cost savings/avoidance. The following summarizes the FY 2001 waste reduced, and cost savings/avoidance by waste category for accomplishments documented in this report. Additionally, this accomplishment report documents the hanford site Return on Investment (ROI) projects completed or in progress during FY 2001. The ROI projects continue to show excellent results this past year. The ROI program funds waste minimization projects that provide a high return on investment. The funding is available to all Hanford contractors for pollution prevention projects. This accomplishment report highlights 7 ROI projects implemented and 6 projects that were in progress during FY 2001. The annual cost savings of the ROI projects completed and in progress is over $53.5 million. The Hanford Site continues to be the leader in pollution prevention and waste minimization across the DOE complex. This was evidenced by meeting aggressive Hanford Site waste generation goals and operating an outstanding recycling program. Additionally, waste streams are continuously evaluated and reduced through effective analysis and implementation via Pollution Prevention Opportunity Assessments.

  12. Idaho National Laboratory Site Pollution Prevention Plan

    SciTech Connect

    E. D. Sellers

    2007-03-01

    It is the policy of the Department of Energy (DOE) that pollution prevention and sustainable environmental stewardship will be integrated into DOE operations as a good business practice to reduce environmental hazards, protect environmental resources, avoid pollution control costs, and improve operational efficiency and mission sustainability. In furtherance of this policy, DOE established five strategic, performance-based Pollution Prevention (P2) and Sustainable Environmental Stewardship goals and included them as an attachment to DOE O 450.1, Environmental Protection Program. These goals and accompanying strategies are to be implemented by DOE sites through the integration of Pollution Prevention into each site's Environmental Management System (EMS). This document presents a P2 and Sustainability Program and corresponding plan pursuant to DOE Order 450.1 and DOE O 435.1, Radioactive Waste Management. This plan is also required by the state of Idaho, pursuant to the Resource Conservation and Recovery Act (RCRA) partial permit. The objective of this document is to describe the Idaho National Laboratory (INL) Site P2 and Sustainability Program. The purpose of the program is to decrease the environmental footprint of the INL Site while providing enhanced support of its mission. The success of the program is dependent on financial and management support. The signatures on the previous page indicate INL, ICP, and AMWTP Contractor management support and dedication to the program. P2 requirements have been integrated into working procedures to ensure an effective EMS as part of an Integrated Safety Management System (ISMS). This plan focuses on programmatic functions which include environmentally preferable procurement, sustainable design, P2 and Sustainability awareness, waste generation and reduction, source reduction and recycling, energy management, and pollution prevention opportunity assessments. The INL Site P2 and Sustainability Program is administratively

  13. Monitoring of metal pollution in waterways across Bangladesh and ecological and public health implications of pollution.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-12-01

    Using innovative artificial mussels technology for the first time, this study detected eight heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, U, Zn) on a regular basis in waterways across Bangladesh (Chittagong, Dhaka and Khulna). Three heavy metals, viz. Co, Cr and Hg were always below the instrumental detection levels in all the sites during the study period. Through this study, seven metal pollution "hot spots" have been identified, of which, five "hot spots" (Cu, Fe, Mn, Ni, Pb) were located in the Buriganga River, close to the capital Dhaka. Based on this study, the Buriganga River can be classified as the most polluted waterway in Bangladesh compared to waterways monitored in Khulna and Chittagong. Direct effluents discharged from tanneries, textiles are, most likely, reasons for elevated concentrations of heavy metals in the Buriganga River. In other areas (Khulna), agriculture and fish farming effluents may have caused higher Cu, U and Zn in the Bhairab and Rupsa Rivers, whereas untreated industrial discharge and ship breaking activities can be linked to elevated Cd in the coastal sites (Chittagong). Metal pollution may cause significant impacts on water quality (irrigation, drinking), aquatic biodiversity (lethal and sub-lethal effects), food contamination/food security (bioaccumulation of metals in crops and seafood), human health (diseases) and livelihoods of people associated with wetlands.

  14. Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring.

    PubMed

    Zuykov, Michael; Pelletier, Emilien; Harper, David A T

    2013-09-01

    Contemporary environmental challenges have emphasized the need to critically assess the use of bivalve mollusks in chemical monitoring (identification and quantification of pollutants) and biomonitoring (estimation of environmental quality). Many authors, however, have considered these approaches within a single context, i.e., as a means of chemical (e.g. metal) monitoring. Bivalves are able to accumulate substantial amounts of metals from ambient water, but evidence for the drastic effects of accumulated metals (e.g. as a TBT-induced shell deformation and imposex) on the health of bivalves has not been documented. Metal bioaccumulation is a key tool in biomonitoring; bioavailability, bioaccumulation, and toxicity of various metals in relation to bivalves are described in some detail including the development of biodynamic metal bioaccumulation model. Measuring metal in the whole-body or the tissue of bivalves themselves does not accurately represent true contamination levels in the environment; these data are critical for our understanding of contaminant trends at sampling sites. Only rarely has metal bioaccumulation been considered in combination with data on metal concentrations in parts of the ecosystem, observation of biomarkers and environmental parameters. Sclerochemistry is in its infancy and cannot be reliably used to provide insights into the pollution history recorded in shells. Alteration processes and mineral crystallization on the inner shell surface are presented here as a perspective tool for environmental studies.

  15. Heavy metal pollution in sediments and mussels: assessment by using pollution indices and metallothionein levels.

    PubMed

    Okay, Oya S; Ozmen, Murat; Güngördü, Abbas; Yılmaz, Atilla; Yakan, Sevil D; Karacık, Burak; Tutak, Bilge; Schramm, Karl-Werner

    2016-06-01

    In the present work, the concentration of eight metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, Zn) was determined in the sediments and transplanted and native mussels (Mytilus galloprovincialis). The study was conducted in Turkish marinas, shipyards, and shipbreaking yards. The effect of metal pollution was evaluated by determining the levels of metallothionein (MT) in the mussels. The extent of contamination for each single metal was assessed by using the geoaccumulation index (I geo) and enrichment factor (EF). Whereas, to evaluate the overall metal pollution and effect, the pollution load index (PLI), modified contamination degree (mC d), potential toxicity response index (RI), mean effects range median (ERM) quotient (m-ERM-Q), and mean PEL quotient (m-PEL-Q) were calculated. The influence of different background values on the calculations was discussed. The results indicated a significant metal pollution caused by Cu, Pb, and Zn especially in shipyard and shipbreaking sites. Higher concentrations of MT were observed in the ship/breaking yard samples after the transplantation.

  16. Metallic corrosion in the polluted urban atmosphere of Hong Kong.

    PubMed

    Liu, Bo; Wang, Da-Wei; Guo, Hai; Ling, Zhen-Hao; Cheung, Kalam

    2015-01-01

    This study aimed to explore the relationship between air pollutants, particularly acidic particles, and metallic material corrosion. An atmospheric corrosion test was carried out in spring-summer 2012 at a polluted urban site, i.e., Tung Chung in western Hong Kong. Nine types of metallic materials, namely iron, Q235 steel, 20# steel, 16Mn steel, copper, bronze, brass, aluminum, and aluminum alloy, were selected as specimens for corrosion tests. Ten sets of the nine materials were all exposed to ambient air, and then each set was collected individually after exposure to ambient air for consecutive 6, 13, 20, 27, 35, 42, 49, 56, 63, and 70 days, respectively. After the removal of the corrosion products on the surface of the exposed specimens, the corrosion rate of each material was determined. The surface structure of materials was observed using scanning electron microscopy (SEM) before and after the corrosion tests. Environmental factors including temperature, relative humidity, concentrations of gaseous pollutants, i.e., sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), ozone (O₃), and particulate-phase pollutants, i.e., PM₂.₅ (FSP) and PM₁₀ (RSP), were monitored. Correlation analysis between environmental factors and corrosion rate of materials indicated that iron and carbon steel were damaged by both gaseous pollutants (SO₂ and NO₂) and particles. Copper and copper alloys were mainly corroded by gaseous pollutants (SO₂ and O₃), while corrosion of aluminum and aluminum alloy was mainly attributed to NO₂ and particles.

  17. Diffuse urban pollution increases metal tolerance of natural heterotrophic biofilms.

    PubMed

    Fechner, Lise C; Gourlay-Francé, Catherine; Bourgeault, Adeline; Tusseau-Vuillemin, Marie-Hélène

    2012-03-01

    This study is a first attempt to investigate the impact of urban contamination on metal tolerance of heterotrophic river biofilms using a short-term test based on β-glucosidase activity. Tolerance levels to Cu, Cd, Zn, Ni and Pb were evaluated for biofilms collected at three sites along an urban gradient in the Seine river (France). Metallic pollution increased along the river, but concentrations remained low compared to environmental quality standards. Biofilm metal tolerance increased downstream from the urban area. Multivariate analysis confirmed the correlation between tolerance and contamination and between multi-metallic and physico-chemical gradients. Therefore, tolerance levels have to be interpreted in relation to the whole chemical and physical characteristics and not solely metal exposure. We conclude that community tolerance is a sensitive biological response to urban pressure and that mixtures of contaminants at levels lower than quality standards might have a significant impact on periphytic communities.

  18. Heavy metal pollution in lentic ecosystem of sub-tropical industrial region and its phytoremediation.

    PubMed

    Rai, Prabhat Kumar

    2010-03-01

    Metals and several physicochemical parameters, from four sampling sites in a tropical lake receiving the discharges from a thermal power plant, a coal mine and a chlor-alkali industry, were studied from 2004-2005. Pertaining to metal pollution, the site most polluted with heavy metals was Belwadah, i.e., waters and sediments had the highest concentration of all the metals examined. The reference site was characterized by the presence of low concentrations of metals in waters and in sediments. Further, several wetland plants were harvested from different sites, and simultaneously, these were assessed for their metal concentration efficiency. Following the water quality monitoring and metal concentration efficiency, two-month field phytoremediation experiments were conducted using large enclosures at the discharge point of different polluted sites of the lake. Eichhornia crassipes, Lemna minor, and Azolla pinnata were frontier metal accumulators hence selected for previously mentioned field phytoremediation experiments. During field phytoremediation experiments using aquatic macrophytes, marked percentage reduction in metals concentrations were recorded. The percentage decrease for different metals was in the range of 25-67.90% at Belwadah (with Eichhornia crassipes and Lemna minor), 25-77.14% at Dongia nala (with Eichhornia crassipes, Lemna minor, and Azolla pinnata) and 25-71.42% at Ash pond site of G.B. Pant Sagar (with Lemna minor and Azolla pinnata). Preliminary studies of polluted sites are therefore useful for improved microcosm design and for the systematic extrapolation of information from experimental ecosystems to natural ecosystems.

  19. Seasonal changes in antioxidant enzyme activities of freshwater biofilms in a metal polluted Mediterranean stream.

    PubMed

    Bonet, Berta; Corcoll, Natàlia; Acuňa, Vicenç; Sigg, Laura; Behra, Renata; Guasch, Helena

    2013-02-01

    While seasonal variations in fluvial communities have been extensively investigated, effects of seasonality on community responses to environmental and/or chemical stress are poorly documented. The aim of this study was to describe antioxidant enzyme activity (AEA) variability in fluvial biofilms over an annual cycle, under multi-stress scenarios due to environmental variability (e.g., light intensity, water flow, and temperature) and metal pollution (Zn, Mn and Fe). The annual monitoring study was performed at three sites according to their water and biofilm metal concentrations. Metal concentration was affected by water flow due to dilution. Low flow led to higher dissolved Zn concentrations, and thus to higher Zn accumulation in the biofilm. Water temperature, light intensity and phosphate concentration were the environmental factors which determined the seasonality of biofilm responses, whereas dissolved Zn and Zn accumulation in biofilms were the parameters linked to sites and periods of highest metal pollution. Community algal succession, from diatoms in cold conditions to green algae in warm conditions, was clearer in the non metal-polluted site than in those metal-polluted, presumably due to the selection pressure exerted by metals. Most AEA were related with seasonal environmental variability at the sites with low or no-metal pollution, except glutathione-S-transferase (GST) which was related with Zn (dissolved and accumulated in biofilm) pollution occurring at the most polluted site. We can conclude that seasonal variations of community composition and function are masked by metal pollution. From this study we suggest the use of a multi-biomarker approach, including AEA and a set of biological and physicochemical parameters as an effect-based field tool to assess metal pollution.

  20. Biomonitoring potential of five sympatric Tillandsia species for evaluating urban metal pollution (Cd, Hg and Pb)

    NASA Astrophysics Data System (ADS)

    Sánchez-Chardi, Alejandro

    2016-04-01

    The present study quantifies non essential heavy metals highly toxic for biological systems (Pb, Hg and Cd) in five autochthonous epiphytic plants from Tillandsia genus (T. recurvata, T. meridionalis, T. duratii, T. tricholepis, T. loliacea) according to different traffic levels (reference, low, medium and high polluted sites) in Asunción (Paraguay). The three metals increased in polluted sites following Pb (till 62.99 ppm in T. tricholepis) > Cd (till 1.35 ppm in T. recurvata) > Hg (till 0.36 ppm in T. recurvata) and Pb and Cd levels were directly related to traffic flow. Although the species showed similar bioaccumulation pattern (namely, higher levels of metals in polluted sites), enrichment factors (maximum EF values 37.00, 18.16, and 11.90 for Pb, Hg, and Cd, respectively) reported T. tricholepis as the most relevant bioindicator due to its wide distribution and abundance in study sites, low metal content in control site and high metal contents in polluted sites, and significant correlations with traffic density of Pb and Cd. This study emphasizes the necessity of biomonitoring air pollution in areas out of air monitoring control such as Asunción, where the high levels of metal pollution especially Pb, may represent an increment of risk for the human population inhabiting this urban area.

  1. Genome-wide genetic diversity of rove beetle populations along a metal pollution gradient.

    PubMed

    Giska, Iwona; Babik, Wiesław; van Gestel, Cornelis A M; van Straalen, Nico M; Laskowski, Ryszard

    2015-09-01

    To what extent chemical contamination affects genetic diversity of wild populations remains an open question in ecotoxicology. Here we used a genome-wide approach (615 nuclear RADseq loci containing 3017 SNPs) and a mtDNA fragment (ATP6) to analyze the effect of long-term exposure to elevated concentrations of metals (Cd, Pb, Zn) on genetic diversity in rove beetle (Staphylinus erythropterus) populations living along a pollution gradient in Poland. In total, 96 individuals collected from six sites at increasing distance from the source of pollution were analyzed. We found weak differentiation between populations suggesting extensive gene flow. The highest genetic diversity was observed in a population inhabiting the polluted site with the highest metal availability. This may suggest increased mutation rates, possibly in relation to elevated oxidative stress levels. The polluted site could also act as an ecological sink receiving numerous migrants from neighboring populations. Despite higher genetic diversity at the most polluted site, there was no correlation between the genetic diversity and metal pollution or other soil properties. We did not find a clear genomic signature of local adaptation to metal pollution. Like in some other cases of metal tolerance in soil invertebrates, high mobility may counteract possible effects of local selective forces associated with soil pollution.

  2. Bioaccumulation and metabolomics responses in oysters Crassostrea hongkongensis impacted by different levels of metal pollution.

    PubMed

    Cao, Chen; Wang, Wen-Xiong

    2016-09-01

    Jiulong River Estuary, located in southern China, was heavily contaminated by metal pollution. In this study, the estuarine oysters Crassostrea hongkongensis were transplanted to two sites with similar hydrological conditions but different levels of metal pollution in Jiulong River Estuary over a six-month period. We characterized the time-series change of metal bioaccumulation and final metabolomics responses of oysters. Following transplantation, all metals (Cd, Cu, Cr, Ni, Pb, and Zn) in the oyster digestive glands had elevated concentrations over time. By the end of six-month exposure, Cu, Zn and Cd were the main metals significantly differentiating the two sites. Using (1)H NMR metabolite approach, we further demonstrated the disturbance in osmotic regulation, energy metabolism, and glycerophospholipid metabolism induced by metal contaminations. Six months later, the oysters transplanted in the two sites showed a similar metabolite variation pattern when compared with the initial oysters regardless of different metal levels in the tissues. Interestingly, by comparing the oysters from two sites, the more severely polluted oysters accumulated significantly higher amounts of osmolytes (betaine and homarine) and lower energy storage compounds (glycogen) than the less polluted oysters; these changes could be the potential biomarkers for different levels of metal pollution. Our study demonstrated the complexity of biological effects under field conditions, and NMR metabolomics provides an important approach to detect sensitive variation of oyster inner status.

  3. [Research advances in heavy metals pollution ecology of diatom].

    PubMed

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  4. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy.

  5. Haematological status of wintering great tits (Parus major) along a metal pollution gradient.

    PubMed

    Geens, Ann; Dauwe, Tom; Bervoets, Lieven; Blust, Ronny; Eens, Marcel

    2010-02-01

    In the long-term biomonitoring of wild populations inhabiting polluted areas, the use of non-destructive biomarkers as markers of condition is very important. We examined the possible effects of metal pollution on the haematological status of adult great tits (Parus major) along a well-established pollution gradient near a non-ferrous smelter in Belgium. We measured blood and feather metal concentrations and assessed the haematological status (amount of red blood cells, haemoglobin concentration, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin) of adult great tits during winter at four study sites. Metal concentrations in blood and feathers indicated that cadmium and lead were the most important metals in the pollution gradient under study. Measurements of haematological parameters revealed that haemoglobin concentration, haematocrit, mean corpuscular volume and mean corpuscular haemoglobin were lower in great tits from the more polluted sites. These parameters were significantly negatively correlated with blood lead concentration. The amount of red blood cells, however, did not significantly differ among study sites. Our results indicate that the haematological status of great tits is negatively affected by metal pollution and may therefore be used as a successful biomarker for monitoring the negative impact of metal exposure in the wild.

  6. Energy reserves and accumulation of metals in the ground beetle Pterostichus oblongopunctatus from two metal-polluted gradients.

    PubMed

    Bednarska, Agnieszka J; Stachowicz, Izabela; Kuriańska, Ligia

    2013-01-01

    Living in an area chronically polluted with metals is usually associated with changes in the energy distribution in organisms due to increased energy expenses associated with detoxification and excretion processes. These expenses may be reflected in the available energy resources, such as lipids, carbohydrates, and proteins. In this context, the energy status of Pterostichus oblongopunctatus (Coleoptera: Carabidae) was studied in two metal pollution gradients near Olkusz and Miateczko Śląskie in southern Poland. Both regions are rich in metal ores, and the two largest Polish zinc smelters have been operating there since the 1970s. Beetles were collected from five sites at each gradient. Zinc and cadmium concentrations were measured in both the soil and the beetles. The possible reduction in energy reserves as a cost of detoxifying assimilated metals was evaluated biochemically by determining the total lipid, carbohydrates, and protein contents. At the most polluted sites, the Zn concentration in the soil organic layer reached 2,906 mg/kg, and the Cd concentration reached 55 mg/kg. Body Zn and Cd concentrations increased with increasing soil Zn and Cd concentrations (p = 0.003 and p = 0.0001, respectively). However, no relationship between pollution level and energetic reserves was found. The results suggest that populations of P. oblongopunctatus inhabiting highly metal-polluted sites are able to survive without any serious impact on their energy reserves, though they obviously have to cope with elevated body metal concentrations.

  7. Air pollution prevention at the Hanford Site: Status and recommendations

    SciTech Connect

    Engel, J.A.

    1995-08-01

    With the introduction of the Clean Air Act Amendments of 1990 and other air and pollution prevention regulations, there has been increased focus on both pollution prevention and air emissions at US DOE sites. The Pollution Prevention (P2) Group of WHC reviewed the status of air pollution prevention with the goal of making recommendations on how to address air emissions at Hanford through pollution prevention. Using the air emissions inventory from Hanford`s Title V permit, the P2 Group was able to identify major and significant air sources. By reviewing the literature and benchmarking two other DOE Sites, two major activities were recommended to reduce air pollution and reduce costs at the Hanford Site. First, a pollution prevention opportunity assessment (P2OA) should be conducted on the significant painting sources in the Maintenance group and credit should be taken for reducing the burning of tumbleweeds, another significant source of air pollution. Since they are significant sources, reducing these emissions will reduce air emission fees, as well as have the potential to reduce material and labor costs, and increase worker safety. Second, a P2OA should be conducted on alternatives to the three coal-fired powerhouses (steam plants) on-site, including a significant costs analysis of alternatives. This analysis could be of significant value to other DOE sites. Overall, these two activities would reduce pollution, ease regulatory requirements and fees, save money, and help Hanford take a leadership role in air pollution prevention.

  8. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  9. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  10. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-07

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  11. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution.

    PubMed

    Kosior, G; Samecka-Cymerman, A; Kolon, K; Kempers, A J

    2010-09-01

    During a period of 90d assays were carried out with the moss Pleurozium schreberi transplanted from an uncontaminated control site to 27 sites selected in one of the most polluted regions of Upper Silesia (Poland). The native mosses of this species were collected from the polluted sites. Concentrations of Cd, Cr, Cu, Pb and Zn were determined in P. schreberi and in the soil of all of the sites. The sites were divided into more and less polluted ones. The obtained results indicate that the native P. schreberi from the more polluted sites accumulated significantly more Cd, Cr, Cu, Pb and Zn than the transplanted moss from the same sites. The transplanted P. schreberi from the less polluted sites accumulated significantly more Cr, Pb, Zn, significantly less Cu and comparable amounts of Cd, as compared to the native moss. The selection of native versus transplant P. schreberi as a bioindicator depends on the level of pollution.

  12. EPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL - 2002

    EPA Science Inventory

    To help metal finishing facilities meet the goal of profitable pollution prevention, the USEPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a computer program that estimates the rate of solid, liquid waste generation and air emissions. This progr...

  13. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.

    PubMed

    Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei

    2014-01-15

    Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines.

  14. Melanin- and carotenoid-dependent signals of great tits ( Parus major) relate differently to metal pollution

    NASA Astrophysics Data System (ADS)

    Dauwe, Tom; Eens, Marcel

    2008-10-01

    Due to their high phenotypic plasticity, the expression of secondary sexual characteristics is particularly sensitive to stress. Here, we investigated the expression of two conspicuous visual signals in great tits ( Parus major) in a metal pollution gradient. In three study sites with marked differences in metal contamination (mainly lead, cadmium, copper and zinc), we compared melanin and carotenoid colouration of great tits. While carotenoid colouration (yellow breast) was negatively related to metal pollution, the size of a melanin trait (breast stripe) was larger in the most polluted sites. Environmental pollutants not only affect the expression of conspicuous signals but may even enhance, directly or indirectly, a signal of male quality such as breast stripe. Our results also support the multiple messages hypothesis predicting that different signals highlight different aspects of geno- and phenotypic condition of the bearer.

  15. Hanford Site waste minimization and pollution prevention awareness program plan

    SciTech Connect

    Place, B.G.

    1998-09-24

    This plan, which is required by US Department of Energy (DOE) Order 5400. 1, provides waste minimization and pollution prevention guidance for all Hanford Site contractors. The plan is primary in a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan, Prime contractor implementation plans, and the Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation (DOE-RL, 1997a) describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Items discussed include the pollution prevention policy and regulatory background, organizational structure, the major objectives and goals of Hanford Site`s pollution prevention program, and an itemized description of the Hanford Site pollution prevention program. The document also includes US Department of Energy, Richland Operations Office`s (RL`s) statement of policy on pollution prevention as well as a listing of regulatory drivers that require a pollution prevention program.

  16. Carbon based secondary compounds do not provide protection against heavy metal road pollutants in epiphytic macrolichens.

    PubMed

    Gauslaa, Yngvar; Yemets, Olena A; Asplund, Johan; Solhaug, Knut Asbjørn

    2016-01-15

    Lichens are useful monitoring organisms for heavy metal pollution. They are high in carbon based secondary compounds (CBSCs) among which some may chelate heavy metals and thus increase metal accumulation. This study quantifies CBSCs in four epiphytic lichens transplanted for 6months on stands along transects from a highway in southern Norway to search for relationships between concentrations of heavy metals and CBSCs along a gradient in heavy metal pollutants. Viability parameters and concentrations of 21 elements including nutrients and heavy metals in these lichen samples were reported in a separate paper. Medullary CBSCs in fruticose lichens (Ramalina farinacea, Usnea dasypoga) were reduced in the most polluted sites, but not in foliose ones (Parmelia sulcata, Lobaria pulmonaria), whereas cortical CBSC did not change with distance from the road in any species. Strong positive correlations only occurred between the major medullary compound stictic acid present in L. pulmonaria and most heavy metals, consistent with a chelating role of stictic acid, but not of other studied CBSCs or in other species. However, heavy metal chelating did not protect L. pulmonaria against damage because this species experienced the strongest reduction in viability in the polluted sites. CBSCs with an accumulation potential for heavy metals should be quantified in lichen biomonitoring studies of heavy metals because they, like stictic acid, could overshadow pollutant inputs in some species rendering biomonitoring data less useful. In the two fruticose lichen species, CBSCs decreased with increasing heavy metal concentration, probably because heavy metal exposure impaired secondary metabolism. Thus, we found no support for a heavy metal protection role of any CBSCs in studied epiphytic lichens. No intraspecific relationships occurred between CBSCs versus N or C/N-ratio. Interspecifically, medullary CBSCs decreased and cortical CBSCs increased with increasing C/N-ratio.

  17. Dustfall Heavy Metal Pollution During Winter in North China.

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Shu, Tong-tong; Chen, Fan-tao; Zheng, Xiao-xia; Gong, Zhao-ning

    2015-10-01

    In order to study heavy metal pollution in dustfall during Winter in North China, forty-four dustfall samples were collected in North China Region from November 2013 to March 2014. Then forty trace elements content were measured for each sample by inductively coupled plasma-mass spectrometry. Finally, the contamination characteristics of the main heavy metals were studied through a multi-method analysis, including variability analysis, Pearson correlation analysis and principal component analysis. Results showed that the relative contents of cadmium (Cd), zinc (Zn), copper (Cu), bismuth (Bi), lead (Pb) exceeded the standards stipulated in Chinese soil elements background values by amazing 4.9 times. In this study, conclusions were drawn that dustfall heavy metal pollution in the region was mainly caused by transport pollution, metallurgy industrial pollution, coal pollution and steel industrial pollution.

  18. Bioremediation of Southern Mediterranean oil polluted sites comes of age.

    PubMed

    Daffonchio, Daniele; Ferrer, Manuel; Mapelli, Francesca; Cherif, Ameur; Lafraya, Alvaro; Malkawi, Hanan I; Yakimov, Michail M; Abdel-Fattah, Yasser R; Blaghen, Mohamed; Golyshin, Peter N; Kalogerakis, Nicolas; Boon, Nico; Magagnini, Mirko; Fava, Fabio

    2013-09-25

    Mediterranean Sea is facing a very high risk of oil pollution due to the high number of oil extractive and refining sites along the basin coasts, and the intense maritime traffic of oil tankers. All the Mediterranean countries have adopted severe regulations for minimizing pollution events and bioremediation feasibility studies for the most urgent polluted sites are undergoing. However, the analysis of the scientific studies applying modern 'meta-omics' technologies that have been performed on marine oil pollution worldwide showed that the Southern Mediterranean side has been neglected by the international research. Most of the studies in the Mediterranean Sea have been done in polluted sites of the Northern side of the basin. Those of the Southern side are poorly studied, despite many of the Southern countries being major oil producers and exporters. The recently EU-funded research project ULIXES has as a major objective to increase the knowledge of the bioremediation potential of sites from the Southern Mediterranean countries. ULIXES is targeting four major polluted sites on the coastlines of Egypt, Jordan, Morocco and Tunisia, including seashore sands, lagoons, and oil refinery polluted sediments. The research is designed to unravel, categorize, catalogue, exploit and manage the diversity and ecology of microorganisms thriving in these polluted sites. Isolation of novel hydrocarbon degrading microbes and a series of state of the art 'meta-omics' technologies are the baseline tools for improving our knowledge on biodegradation capacities mediated by microbes under different environmental settings and for designing novel site-tailored bioremediation approaches. A network of twelve European and Southern Mediterranean partners is cooperating for plugging the existing gap of knowledge for the development of novel bioremediation processes targeting such poorly investigated polluted sites.

  19. Hanford site waste minimization and pollution prevention awareness program

    SciTech Connect

    Kirkendall, J.R.

    1996-09-23

    This plan documents the requirements of the Hanford Site Waste Minimization/Pollution Prevention (WMin/P2) Program. The plan specifies requirements for Hanford contractors to prevent pollution from entering the environment, to conserve resources and energy, and to reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary waste generated at Hanford. The Pollution Prevention Awareness Program required by DOE 5400.1 (DOE 1988A) is included in the Hanford WMin/P2 Program.

  20. Heavy metal pollutants and chemical ecology: exploring new frontiers.

    PubMed

    Boyd, Robert S

    2010-01-01

    Heavy metals are an important class of pollutants with both lethal and sublethal effects on organisms. The latter are receiving increased attention, as these may have harmful ecological outcomes. For example, recent explorations of heavy metals in freshwater habitats reveal that they can modify chemical communication between individuals, resulting in "info-disruption" that can impact ecological relationships within and between species. Info-disruption can affect animal behavior and social structure, which in turn can modify both intraspecies and interspecies interactions. In terrestrial habitats, info-disruption by metals is not well studied, but recent demonstrations of chemical signaling between plants via both roots and volatile organic molecules provide potential opportunities for info-disruption. Metals in terrestrial habitats also can form elemental plant defenses, in which they can defend a plant against natural enemies. For example, hyperaccumulation of metals by terrestrial plants has been shown to provide defensive benefits, although in almost all known cases the metals are not anthropogenic pollutants but are naturally present in soils inhabited by these plants. Info-disruption among microbes is another arena in which metal pollutants may have ecological effects, as recent discoveries regarding quorum sensing in bacteria provide an avenue for metals to affect interactions among bacteria or between bacteria and other organisms. Metal pollutants also may influence immune responses of organisms, and thus affect pathogen/host relationships. Immunomodulation (modification of immune system function) has been tied to some metal pollutants, although specific metals may boost or reduce immune system function depending on dose. Finally, the study of metal pollutants is complicated by their frequent occurrence as mixtures, either with other metals or with organic pollutants. Most studies of metal pollutants focus on single metals and therefore oversimplify complex

  1. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    PubMed

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  2. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    PubMed

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality.

  3. Metal Pollutant Exposure and Behavior Disorders: Implications for School Practices.

    ERIC Educational Resources Information Center

    Marlowe, Mike

    1986-01-01

    The article summarizes research on relationships between low (below metal poisoning) metal exposure and childhood behavior disorders. Symptoms, assessment techniques (hair analysis), and environmental and dietary factors that may increase the risk of metal pollutant exposure are described. School programs emphasizing education and the role of…

  4. Community response patterns: evaluating benthic invertebrate composition in metal-polluted streams.

    PubMed

    Pollard, A I; Yuan, L

    2006-04-01

    Human activities are modifying the condition and character of ecosystems at a rapid rate. Because of these rapid changes, questions concerning how ecosystems and their assemblages respond to anthropogenic stressors have been of general interest. Accurate prediction of assemblage composition in ecosystems with anthropogenic degradation requires that we assess both how assemblages respond to stressors and the generality of the responses. We ask whether assemblage composition among stream sites becomes more similar after exposure to a common stressor. Using data from biological monitoring programs in the southern Rocky Mountain ecoregion of Colorado and in West Virginia, we compare benthic invertebrate similarity and assemblage composition among sites having different levels (background, low, medium, and high) of heavy-metal pollution. Invertebrate assemblages were most similar within the background metal category, and similarity was progressively lower in low, medium, and high metal categories. An analysis of the frequency of occurrence of genera within metal categories reveals taxonomic shifts that conform to expectations based on metal tolerance of benthic invertebrates. However, different metal-tolerant genera were found at different metal-impacted sites, suggesting that local abiotic and biotic processes may influence the identity of the metal-tolerant genera that become established in polluted sites. Low community similarity in the medium and high-metal categories suggests that accurate prediction of assemblage composition at impacted sites may be challenging.

  5. [Bioremediation of heavy metal pollution by edible fungi: a review].

    PubMed

    Liu, Jian-Fei; Hu, Liu-Jie; Liao, Dun-Xiu; Su, Shi-Ming; Zhou, Zheng-Ke; Zhang, Sheng

    2011-02-01

    Bioremediation is the method of using organisms and their derivatives to absorb heavy metals from polluted environment, with the characteristics of low cost, broad sources, and no secondary pollution. Heavy metals enrichment by edible fungi is an important research focus of bioremediation, because it can decrease the eco-toxicity of heavy metals via the uptake by edible fungi, and thereby, take a definite role in heavy metal remediation. This paper reviewed the research progress on the enrichment of heavy metal copper, cadmium, lead, zinc, arsenic, and chromium by edible fungi and the possible enrichment mechanisms, and prospected the development and applications of heavy metal enrichment by edible fungi in the management of polluted environment.

  6. Trees as bioindicator of heavy metal pollution in three European cities.

    PubMed

    Sawidis, T; Breuste, J; Mitrovic, M; Pavlovic, P; Tsigaridas, K

    2011-12-01

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution.

  7. Predicted metal binding sites for phytoremediation.

    PubMed

    Sharma, Ashok; Roy, Sudeep; Tripathi, Kumar Parijat; Roy, Pratibha; Mishra, Manoj; Khan, Feroz; Meena, Abha

    2009-09-05

    Metal ion binding domains are found in proteins that mediate transport, buffering or detoxification of metal ions. The objective of the study is to design and analyze metal binding motifs against the genes involved in phytoremediation. This is being done on the basis of certain pre-requisite amino-acid residues known to bind metal ions/metal complexes in medicinal and aromatic plants (MAP's). Earlier work on MAP's have shown that heavy metals accumulated by aromatic and medicinal plants do not appear in the essential oil and that some of these species are able to grow in metal contaminated sites. A pattern search against the UniProtKB/Swiss-Prot and UniProtKB/TrEMBL databases yielded true positives in each case showing the high specificity of the motifs designed for the ions of nickel, lead, molybdenum, manganese, cadmium, zinc, iron, cobalt and xenobiotic compounds. Motifs were also studied against PDB structures. Results of the study suggested the presence of binding sites on the surface of protein molecules involved. PDB structures of proteins were finally predicted for the binding sites functionality in their respective phytoremediation usage. This was further validated through CASTp server to study its physico-chemical properties. Bioinformatics implications would help in designing strategy for developing transgenic plants with increased metal binding capacity. These metal binding factors can be used to restrict metal update by plants. This helps in reducing the possibility of metal movement into the food chain.

  8. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  9. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  10. Differential Hepatic Metal and Metallothionein Levels in Three Feral Fish Species along a Metal Pollution Gradient

    PubMed Central

    Bervoets, Lieven; Knapen, Dries; De Jonge, Maarten; Van Campenhout, Karen; Blust, Ronny

    2013-01-01

    The accumulation of cadmium, copper and zinc and the induction of metallothioneins (MT) in liver of three freshwater fish species was studied. Gudgeon (Gobio gobio), roach (Rutilus rutilus) and perch (Perca fluviatilis) were captured at 6 sampling sites along a cadmium and zinc gradient and one reference site in a tributary of the Scheldt River in Flanders (Belgium). At each site up to 10 individuals per species were collected and analyzed on their general condition factor (K), hepatosomatic index (HSI) and gonadosomatic index (GSI). From each individual fish the liver was dissected and analyzed on Cd, Cu and Zn and MT-content. Although not all species were present at each site, hepatic Cd and Zn levels generally followed the pollution gradient and highest levels were measured in perch, followed by roach and gudgeon. Nevertheless also an effect of site was observed on this order. MT-levels appeared to be the highest in gudgeon although differences with the other species were not very pronounced and depended on the site. Significant relationships were found between hepatic zinc accumulation and MT levels. For each species the ratio MTtheoretical/ MTmeasured was calculated, which gives an indication of the relative capacity to induce MTs and thus immobilize the metals. Perch had the lowest capacity in inducing MTs (highest ratio). Relationships between hepatic metal levels and fish condition indices were absent or very weak. PMID:23556004

  11. The relationship between metal composition, phenolic acid and flavonoid content in Imleria badia from non-polluted and polluted areas.

    PubMed

    Gąsecka, Monika; Rzymski, Piotr; Mleczek, Mirosław; Siwulski, Marek; Budzyńska, Sylwia; Magdziak, Zuzanna; Niedzielski, Przemysław; Sobieralski, Krzysztof

    2017-03-04

    The aim of this study was to determine the elemental composition, phenolic content and composition and antioxidant properties of Imleria badia (Fr.) Vizzini (former names Boletus badius (Fr.) Fr., and Xerocomus badius (Fr.) E.-J. Gilbert) fruiting bodies collected from sites with different levels of pollution. Imleria badia was relatively tolerant to soil contamination with toxic elements and was able to grow in As, Cd, Hg and Pb concentrations exceeding 15, 2.9, 0.4 and 77 mg kg(-1), respectively. The concentration of elements in soil was reflected in the element content in I. badia. The fruiting bodies from polluted sites exhibited significantly higher content of all the analyzed elements. Among 21 individual phenolic compounds only protocatechiuc and caffeic acids, and quercetin were determined in fruiting bodies of I. badia. The differences between the concentration of the quantified phenolic compounds and the total flavonoid content in fruiting bodies of I. badia from unpolluted and polluted sites were not significant. However, the greatest total phenolic content was found in fruiting bodies from the polluted areas. The antioxidative capacity of mushrooms collected from heavily polluted sites was lower than those growing in unpolluted areas. The concentrations of some metals in soil and fruiting soil were positively correlated with phenolic content and IC50.

  12. Cytology of pollutant metals in marine invertebrates: A review of microanalytical applications

    SciTech Connect

    Nott, J.A. )

    1991-03-01

    x-ray microanalysis (XRMA) is customized for investigations of the metabolic and detoxification strategies of heavy metals taken by marine organisms from polluted environments. Sites of uptake, intracellular accumulation, transport and excretion are visualized, analysed and quantified. Cryopreparation techniques are required to prevent the translocation or loss from specimens of soluble metal species. In marine invertebrates, metals are detoxified by systems of chemical binding and intracellular compartmentalization. XRMA investigations have concentrated on marine molluscs and crustaceans and even within these restricted groups there are marked inter-species differences in the biochemical and cytological processes which reduce metal bioavailability. Some detoxification systems also protect the carnivores which ingest the metal-laden tissues of the prey. This results in the bioreduction of metals along a food chain. These processes are investigated by XRMA which can be tuned to observe the complex interactions which operate at all levels within and between the biota and polluted environments. 90 refs.

  13. Decomposition of birch leaves in heavily polluted industrial barrens: relative importance of leaf quality and site of exposure.

    PubMed

    Kozlov, Mikhail V; Zvereva, Elena L

    2015-07-01

    The decrease in litter decomposition rate in polluted habitats is well documented, but the factors that explain the observed variation in the magnitude of this pollution effect on litter decomposition remain poorly understood. We explored effects of environmental conditions and leaf quality on decomposition rate of mountain birch (Betula pubescens ssp. czerepanovii) leaves in a heavily polluted industrial barren near the nickel-copper smelter at Monchegorsk. Litter bags filled with leaves collected from two heavily polluted barren sites and from two control forest sites were buried at 2.5-cm depth and exposed for 2 and 4 years at each of these four sites. The relative mass loss of native leaves in the industrial barren during 2 years of exposure was reduced to 49% of the loss observed in the unpolluted forest. We found a similar reduction in mass loss when leaves from control sites were exposed to polluted sites and when leaves from polluted sites were exposed to control sites. We conclude that the reduction in leaf litter decomposition in an industrial barren is caused by pollution-induced changes in both environmental conditions and leaf quality. This reduction is much smaller than expected, given the four-fold decrease in soil microbial activity and nearly complete extinction of saprophagous invertebrates in the polluted soil. We suggest that a longer snowless period and higher spring and summer temperatures at the barren sites have partially counterbalanced the adverse effects caused by the toxicity of metal pollutants.

  14. Heavy Metal Pollution in Settled Dust Associated with Different Urban Functional Areas in a Heavily Air-Polluted City in North China

    PubMed Central

    Wan, Dejun; Han, Zhangxiong; Yang, Jinsong; Yang, Guanglin; Liu, Xingqi

    2016-01-01

    Understanding variations of heavy metals in atmospheric particles between different functional areas is significant for pollution control and urban planning in cities. To reveal pollution and spatial distribution of heavy metals in atmospheric particles from different urban functional areas in Shijiazhuang in North China, 43 settled dust samples were collected over the main urban area and heavy metal concentrations were determined in their <63 μm fractions using an ICP-OES. The results suggest that Cr, Mn, Fe, Co, Ni, and V in the dust are not or slightly enriched and their concentrations vary slightly between different sites, implying their natural origins; whereas Cu, Zn, Cd, and Pb are often notably enriched and their concentrations vary significantly between different functional areas, indicating their anthropogenic sources. Integrated pollution indexes (IPIs) of the ten heavy metals are 2.7–13.6 (5.7 ± 2.2), suggesting high or very high pollution levels of most dust. Relatively lower IPIs occur mainly in the administration-education area, the commercial area, and other unclassified sites; while peaks occur mainly in the North Railway Station, the northeastern industrial area, and some sites near heavily trafficked areas, implying the significant influence of intensive industrial (including coal combustion) and traffic activities on atmospheric heavy metal accumulation. These results suggest a clear need of mitigating atmospheric heavy metal pollution via controlling emissions of toxic metals (especially Cd and Pb) from industrial and traffic sources in the city. PMID:27834903

  15. Heavy Metal Pollution in Settled Dust Associated with Different Urban Functional Areas in a Heavily Air-Polluted City in North China.

    PubMed

    Wan, Dejun; Han, Zhangxiong; Yang, Jinsong; Yang, Guanglin; Liu, Xingqi

    2016-11-10

    Understanding variations of heavy metals in atmospheric particles between different functional areas is significant for pollution control and urban planning in cities. To reveal pollution and spatial distribution of heavy metals in atmospheric particles from different urban functional areas in Shijiazhuang in North China, 43 settled dust samples were collected over the main urban area and heavy metal concentrations were determined in their <63 μm fractions using an ICP-OES. The results suggest that Cr, Mn, Fe, Co, Ni, and V in the dust are not or slightly enriched and their concentrations vary slightly between different sites, implying their natural origins; whereas Cu, Zn, Cd, and Pb are often notably enriched and their concentrations vary significantly between different functional areas, indicating their anthropogenic sources. Integrated pollution indexes (IPIs) of the ten heavy metals are 2.7-13.6 (5.7 ± 2.2), suggesting high or very high pollution levels of most dust. Relatively lower IPIs occur mainly in the administration-education area, the commercial area, and other unclassified sites; while peaks occur mainly in the North Railway Station, the northeastern industrial area, and some sites near heavily trafficked areas, implying the significant influence of intensive industrial (including coal combustion) and traffic activities on atmospheric heavy metal accumulation. These results suggest a clear need of mitigating atmospheric heavy metal pollution via controlling emissions of toxic metals (especially Cd and Pb) from industrial and traffic sources in the city.

  16. Remediation of metal polluted hotspot areas through enhanced soil washing--evaluation of leaching methods.

    PubMed

    Fedje, Karin Karlfeldt; Yillin, Li; Strömvall, Ann-Margret

    2013-10-15

    Soil washing offers a permanent remediation alternative for metal polluted sites. In addition, the washed out metals can be recovered from the leachate and re-introduced into the social material cycle instead of landfilled. In this paper, soil, bark and bark-ash washing was tested on four different metal polluted soil and bark samples from hotspots at former industrial sites. Six different leaching agents; HCl, NH4Cl, lactic acid, EDDS and two acidic process waters from solid waste incineration, were tested, discussed and evaluated. For the soil washing processes, the final pH in the leachate strongly influences the metal leachability. The results show that a pH < 2 is needed to achieve a high leaching yield, while <50 w% of most metals were leached when the pH was higher than 2 or below 10. The acidic process waste waters were generally the most efficient at leaching metals from all the samples studied, and as much as 90-100 w% of the Cu was released from some samples. Initial experiments show that from one of these un-purified leachates, Cu metal (>99% purity) could be recovered. After a single leaching step, the metal contents of the soil residues still exceed the maximum limits according to the Swedish guidelines. An additional washing step is needed to reduce the contents of easy soluble metal compounds in the soil residues. The overall results from this study show that soil and bark-ash washing followed by metal recovery is a promising on-site permanent alternative to remediate metal polluted soils and to utilize non-used metal resources.

  17. Implications of soil pollution with heavy metals for public health

    NASA Astrophysics Data System (ADS)

    Juozulynas, Algirdas; Jurgelėnas, Antanas; Butkienė, Birutė; Greičiūtė, Kristina; Savičiūtė, Rasa

    2008-01-01

    Soil of military grounds is often polluted with heavy metals. Their concentrations may be dosens of times higher in polluted regions. The affected soils are permeable, so the pollutions can get into water and spread to the environment. Into human and animal organisms they can get with food and water. Heavy metals are very dangerous for people's health, and we must know their accumulation places, intensity of scatter and integral risk for health. The purpose of this work was to establish links between zones polluted with heavy metals and morbidity caused by pollution with heavy metals. The morbidity caused by heavy metals (Pb, Cu, Zn, Ca and other) in the polluted regions is 1.4-1.5 times higher for adults and teenagers and 1.5-3.9 times higher for children aged under 14 years than the mean morbidity of the same diseases in Lithuania. Hypothetically, it is possible to prognosticate that this problem will grow in future because the ratio of the newly registered and the existing cases of morbidity for children aged under 14 years is 1.3-1.5 times higher than for adults.

  18. Does metal pollution matter with C retention by rice soil?

    PubMed Central

    Bian, Rongjun; Cheng, Kun; Zheng, Jufeng; Liu, Xiaoyu; Liu, Yongzhuo; Li, Zhipeng; Li, Lianqing; Smith, Pete; Pan, Genxing; Crowley, David; Zheng, Jinwei; Zhang, Xuhui; Zhang, Liangyun; Hussain, Qaiser

    2015-01-01

    Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China. This change is linked to a decline in soil aggregation, in microbial abundance and in fungal dominance. The carbon release is presumably driven by changes in carbon cycling occurring in the stressed soil microbial community with heavy metal pollution in the soil. The pollution-induced increase in soil respiration and loss of SOC storage will likely counteract efforts to increase SOC sequestration in rice paddies for climate change mitigation. PMID:26272277

  19. Water hyacinth as indicator of heavy metal pollution the tropics

    SciTech Connect

    Gonzalez, H.; Otero, M. ); Lodenius, M. )

    1989-12-01

    The water hyacinth (Eichhornia crassipes) is a common aquatic plant in many tropical countries. Its ability absorb nutrients and other elements from the water has made it possible to use it for water purification purposes. Eichhornia, especially stems and leaves, have been successfully used as indicators of heavy metal pollution in tropical countries. The uptake of heavy metals in this plant is stronger in the roots than in the floating shoots. Metallothionein-like compounds have been found from roots of this species after cadmium exposure. The purpose of this investigation was to study the possibilities of using roots of water hyacinth as a biological indicator of metal pollution in tropical aquatic ecosystems.

  20. Pollution by metals: Is there a relationship in glycemic control?

    PubMed

    González-Villalva, Adriana; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; Rodríguez-Lara, Vianey; García-Pelaez, Isabel; Ustarroz-Cano, Martha; López-Valdez, Nelly; Albarrán-Alonso, Juan Carlos; Fortoul, Teresa I

    2016-09-01

    There are evidences of environmental pollution and health effects. Metals are pollutants implicated in systemic toxicity. One of the least studied effects, but which is currently becoming more important, is the effect of metals on glycemic control. Metals have been implicated as causes of chronic inflammation and oxidative stress and are associated to obesity, hyperglycemia and even diabetes. Arsenic, iron, mercury, lead, cadmium and nickel have been studied as a risk factor for hyperglycemia and diabetes. There is another group of metals that causes hypoglycemia such as vanadium, chromium, zinc and magnesium by different mechanisms. Zinc, magnesium and chromium deficiency is associated with increased risk of diabetes. This review summarizes some metals involved in glycemic control and pretends to alert health professionals about considering environmental metals as an important factor that could explain the poor glycemic control in patients. Further studies are needed to understand this poorly assessed problem.

  1. [Odor pollution from landfill sites and its control: a review].

    PubMed

    Hu, Bin; Ding, Ying; Wu, Wei-Xiang; Hu, Bei-Gang; Chen, Ying-Xu

    2010-03-01

    Landfill sites are the major sources of offensive odor in urban public facilities. With the progress of urbanization and the residents' demands for a higher living environment quality, the odor emission from landfill sites has become a severe pollution problem, and the odor control at landfill sites has been one of the research hotspots. This paper summarized the main components and their concentrations of the odor from landfill sites, and expatiated on the research progress in the in-situ control of the odor. The further research directions in in-situ control of the odor from landfill sites were prospected.

  2. [Heavy metals pollution and its stability assessment of sediments in flowing rivers around lake Taihu].

    PubMed

    Lu, Shao-Yong; Jiao, Wei; Jin, Xiang-Can; Yuan, Ye; Zhang, Ye; Li, Guang-De

    2010-10-01

    16 main inflow and outflow rivers around Lake Taihu were chosen as the research object, and the concentrations and distribution of four heavy metals (Pb, Cd, Cu and Zn) in the surface sediments of these river estuaries were detected. The pollution extent and stability were analyzed by using three-step sequential extraction method (BCR method). Aim of this study is to control heavy metal pollution of Lake Taihu and provide the basic information. Based on the results, the monitored river estuaries all had been contaminated by different degrees, and four heavy metals' concentrations all exceeded the threshold effect level (TEL) at most sampling sites. A distinct spatial heterogeneity was found in extracted fractions of these heavy metals distribution: northern rivers > southern rivers, inflow rivers > outflow rivers. The Stability Assessment Code (SAC) for different metals varied in the descending order of Cd, Zn, Pb and Cu. Compared with Pb and Cu, Cd and Zn had a higher second release potential and ecological risk.

  3. Local adaptation of microbial communities to heavy metal stress in polluted sediments of Lake Erie.

    PubMed

    Hoostal, Matthew J; Bidart-Bouzat, M Gabriela; Bouzat, Juan L

    2008-07-01

    Microbial communities must balance the assimilation of biologically necessary metals with resistance to toxic metal concentrations. To investigate the impact of heavy metal contaminants on microbial communities, we performed two experiments measuring extracellular enzyme activities (EEA) in polluted and unpolluted sediments of Lake Erie. In the first experiment, inoculations with moderate concentrations of copper and zinc appreciably diminished EEA from uncontaminated sites, whereas EEA from contaminated sediments increased or were only negligibly affected. In the second experiment, we compared the effects of three separate metals (i.e. copper, arsenic, and cadmium) on microbial community metabolism in polluted and unpolluted locations. Although copper and arsenic elicited differential effects by inhibiting EEA only in unpolluted sediments, cadmium inhibited EEA in both polluted and unpolluted sediments. Multivariate analyses of EEA from polluted sediments revealed direct associations among hydrolytic enzymes and inverse or absent associations between hydrolases and oxidases; these associations demonstrated resilience to heavy metal stress. In contrast, addition of heavy metals to unpolluted sediments appeared to have a higher impact on the multivariate pattern of EEA associations as revealed by an increase in the number of associations, more inverse relationships, and potential enzymatic trade-offs. The results of this study suggest community-level adaptations through the development of resistance mechanisms to the types and local levels of heavy metals in the environment.

  4. Heavy metals pollution in the environment of Kathmandu

    NASA Astrophysics Data System (ADS)

    Shrestha, H. D.

    2003-05-01

    Nepal situated on the lap of mighty Himalayas is now threatened by heavy metals pollution in her atmosphere, land and river system. The indigenious technology of Nepal heavily depends on the use of mercury in gold plating technique. The mercury vapours are released to the atmosphere, when gold-amalgam smeared untesils and idols are strongly heated. Absence of control mechanism to collect mercury vapours has not only polluted atmosphere but it has also caused health hazard to the workers working in the poorly ventilated workshop. The craftsmen and articians have been victim of mercury poisoining. Another heavy metal that has caused atmospheric pollution in Nepal is lead. The lead containing gasoline used in greater amount in vehicles has released more and more lead in the from of exhaust gas into the atmosphere. The atmospheric pollution has been more acute in Nepal due to the use of lead gasoline in used vehicles. Likewise the river system of the urban areas of Nepal is polluted by heavy metals like cadmium, lead salt, ferrous salt, etc. The effulents of battery industries, leather factories, dye factories are directly dumped into the river system of urban areas. This has killed many aquatic animals of rivers. Thus Nepal is facing the problem of heavy metals pollution in her environnent.

  5. Snails from heavy-metal polluted environments have reduced sensitivity to carbon dioxide-induced acidity.

    PubMed

    Lefcort, Hugh; Cleary, David A; Marble, Aaron M; Phillips, Morgan V; Stoddard, Timothy J; Tuthill, Lara M; Winslow, James R

    2015-01-01

    Anthropogenic atmospheric CO2 reacts with water to form carbonic acid (H2CO3) which increases water acidity. While marine acidification has received recent consideration, less attention has been paid to the effects of atmospheric carbon dioxide on freshwater systems-systems that often have low buffering potential. Since many aquatic systems are already impacted by pollutants such as heavy metals, we wondered about the added effect of rising atmospheric CO2 on freshwater organisms. We studied aquatic pulmonate snails (Physella columbiana) from both a heavy-metal polluted watershed and snails from a reference watershed that has not experienced mining pollution. We used gaseous CO2 to increase water acidity and we then measured changes in antipredatory behavior and also survival. We predicted a simple negative additive effect of low pH. We hypothesized that snails from metal-polluted environments would be physiologically stressed and impaired due to defense responses against heavy metals. Instead, snails from populations that acclimated or evolved in the presence of heavy metal mining pollution were more robust to acidic conditions than were snails from reference habitats. Snails from mining polluted sites seemed to be preadapted to a low pH environment. Their short-term survival in acidic conditions was better than snails from reference sites that lacked metal pollution. In fact, the 48 h survival of snails from polluted sites was so high that it did not significantly differ from the 24 h survival of snails from control sites. This suggests that the response of organisms to a world with rising anthropogenic carbon dioxide levels may be complex and difficult to predict. Snails had a weaker behavioral response to stressful stimuli if kept for 1 month at a pH that differed from their lake of origin. We found that snails raised at a pH of 5.5 had a weaker response (less of a decrease in activity) to concentrated heavy metals than did snails raised at their natal pH of

  6. Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal-stressed soil.

    PubMed

    Salminen, J; van Gestel, C A; Oksanen, J

    2001-10-01

    Pollution may lead to the development of pollution-induced community tolerance (PICT) in a stressed community. We studied the presence of PICT in soil food webs using soil microcosms. Soil microcosms containing soil invertebrates and microbes were collected from polluted and unpolluted areas and exposed to a range of soil zinc concentrations. A pine seedling was planted in each microcosm to measure the effects of the origin of the community and Zn pollution on above-ground plant production. The effects of the treatments on nutrient content in the soil were also measured. The diversity of soil microarthropods and the soil's mineral nutrient content were low at the Zn-polluted site. We did not observe an increasing Zn tolerance among the soil organisms in the polluted soil. However, low population growth rates of soil invertebrates from the polluted site may indicate the deleterious effects on fitness of long-lasting pollution. In the soil from the nonpolluted site, Zn additions caused changes in the invertebrate food web structure. These changes were explained by the good physiological condition of the animals and their insensitivity to Zn. The fact that the food web structure in soil from the polluted site did not change can be used as a rough indicator of PICT. Structural stability is presumed by the lack of Zn-sensitive species at this site and the inability of populations to acclimate by altering their growth or reproduction patterns in response to changing soil conditions. Although microbial-based soil decomposer systems may have a high functional redundancy, our results indicate that metal stress at the polluted site exceeds the tolerance limits of the system. As a consequence, ecosystem function at this site is endangered. This study also shows that the evolution of metal tolerance by soil decomposer organisms may not be a common reaction to soil pollution, although changes of population and community structure indicated severe metal stress on organisms.

  7. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    PubMed

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  8. Time to death response in carabid beetles exposed to multiple stressors along a gradient of heavy metal pollution.

    PubMed

    Stone, D; Jepson, P; Kramarz, P; Laskowski, R

    2001-01-01

    We investigated the responses of invertebrates inhabiting polluted environments to multiple stressors. Carabid beetles (Pterostichus oblongopunctatus F.) were subjected to food deprivation and insecticide treatment (dimethoate) to resolve trends associated with a gradient of heavy metal pollution. Metal concentrations along the gradient of five sites ranged from approximately 150 to 10,500 mg/kg Zn, 136 to 2600 mg/kg Pb, and 0.84 to 81.9 mg/kg Cd. There was no difference in body mass along the pollution gradient. However, the beetles originating from the most contaminated sites were significantly less tolerant to food deprivation than beetles from the reference site. Median survival time was 120 h for the two most polluted sites, compared with 168 h at the reference site. Beetles from the two most polluted sites were also significantly more susceptible to dimethoate at 0.1 microgram active ingredient/beetle. Median survival times were 12 and 123 h for beetles from the two most polluted sites and 359 h for the reference site. Carabid beetles exposed to chronic pollution, therefore, exhibit elevated susceptibility to additional stressors.

  9. Assessment of airborne heavy metal pollution by aboveground plant parts.

    PubMed

    Rossini Oliva, S; Mingorance, M D

    2006-10-01

    Italian stone pine (Pinus pinea L.) and oleander (Nerium oleander L.) leaves, bark and wood samples were collected at different sites around an industrial area (Huelva, SW Spain) and compared with samples of the same species from a background site. Samples were analysed with respect to the following pollutants: Al, Ba, Cr, Cu, Fe and Pb by ICP-AES. The suitability of different plant parts as biomonitors of pollution was investigated. In pine samples from the polluted sites the ratio of concentrations between bark and wood was high for Al, Ba, Cu and Fe, whereas no differences were found in samples from the unpolluted area. No differences were detected in oleander for the same ratio. In the oleander species, the ratio between leaves and wood concentration allowed to distinguish between control and polluted sites. The ratio of the concentration between leaves and wood was elevated for Al, Ba and Fe in pine samples from the polluted sites. The ratio of the concentration in bark or leaves to their concentration in wood might be useful to detect inorganic atmospheric pollutants.

  10. Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals.

    PubMed

    Gichner, Tomás; Patková, Zdenka; Száková, Jirina; Demnerová, Katerina

    2006-11-01

    Heterezygous tobacco (Nicotiana tabacum var. xanthi) and potato (Solanum tuberosum var. Korela) plants were cultivated on soil from the site Strimice which is highly polluted with heavy metals and on nonpolluted soil from the recreational site Jezerí, both in North Bohemia, Czech Republic. The total content, the content of bioavailable, easily mobile, and potentially mobile components of heavy metals (Cd, Cu, Pb, and Zn) in the tested soils, and the accumulation of these metals in the above-ground biomass and roots of tested plants were analyzed by flame atomic absorption spectrometry or flameless atomic absorption spectrometry. The average tobacco leaf area and potato plant height were significantly reduced in plants growing on the polluted soil. We have measured the DNA damage in nuclei of leaves of both plant species using the Comet assay. A small but significant increase in DNA damage was noted in plants growing on the polluted soil versus controls. As the tobacco and potato plants with increased DNA damage were severely injured (inhibited growth, distorted leaves), this increase may be associated with necrotic or apoptotic DNA fragmentation. No increase in the frequency of somatic mutation was detected in tobacco plants growing on the polluted soil. Thus, the polluted soil probably induced toxic but not genotoxic effects on tobacco and potato plants.

  11. Integrating multiple fish biomarkers and risk assessment as indicators of metal pollution along the Red Sea coast of Hodeida, Yemen Republic.

    PubMed

    Omar, Wael A; Saleh, Yousef S; Marie, Mohamed-Assem S

    2014-12-01

    The marine environment of the Red Sea coast of Yemen Republic is subjected to increasing anthropogenic activities. The present field study assesses the impacts of metal pollutants on two common marine fish species; Pomadasys hasta and Lutjanus russellii collected from a reference site in comparison to two polluted sites along the Red Sea coast of Hodeida, Yemen Republic. Concentrations of heavy metals (Fe, Cu, Zn, Cd and Pb) in fish vital organs, metal pollution index (MPI), indicative biochemical parameters of liver functions (alanine aminotransferase [ALT] and aspartate aminotransferase [AST]) and kidney functions (urea and creatinine) as well as histopathological changes in gills, liver and kidney of both fish species are integrated as biomarkers of metal pollution. These biomarkers showed species-specific and/or site-specific response. The hazard index (HI) was used as an indicator of human health risks associated with fish consumption. The detected low HI values in most cases doesn't neglect the fact that the cumulative risk effects for metals together give an alarming sign and that the health of fish consumers is endangered around polluted sites. The levels of ALT, AST and urea in plasma of both fish species collected from the polluted sites showed significant increase in comparison to those of reference site. Histopathological alterations and evident damage were observed in tissues of fish collected from the polluted sites. The investigated set of biomarkers proved to be efficient and reliable in biomonitoring the pollution status along different pollution gradients.

  12. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    PubMed

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  13. Local environmental pollution strongly influences culturable bacterial aerosols at an urban aquatic superfund site.

    PubMed

    Dueker, M Elias; O'Mullan, Gregory D; Juhl, Andrew R; Weathers, Kathleen C; Uriarte, Maria

    2012-10-16

    In polluted environments, when microbial aerosols originate locally, species composition of the aerosols should reflect the polluted source. To test the connection between local environmental pollution and microbial aerosols near an urban waterfront, we characterized bacterial aerosols at Newtown Creek (NTC), a public waterway and Superfund site in a densely populated area of New York, NY, USA. Culturable bacterial aerosol fallout rate and surface water bacterial concentrations were at least an order of magnitude greater at NTC than at a neighboring, less polluted waterfront and a nonurban coastal site in Maine. The NTC culturable bacterial aerosol community was significantly different in taxonomic structure from previous urban and coastal aerosol studies, particularly in relative abundances of Actinobacteria and Proteobacteria. Twenty-four percent of the operational taxonomic units in the NTC overall (air + water) bacterial isolate library were most similar to bacterial 16S rRNA gene sequences previously described in terrestrial or aquatic environments contaminated with sewage, hydrocarbons, heavy metals, and other industrial waste. This study is the first to examine the community composition and local deposition of bacterial aerosols from an aquatic Superfund site. The findings have important implications for the use of aeration remediation in polluted aquatic environments and suggest a novel pathway of microbial exposure in densely populated urban communities containing contaminated soil and water.

  14. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  15. Oyster-based national mapping of trace metals pollution in the Chinese coastal waters.

    PubMed

    Lu, Guang-Yuan; Ke, Cai-Huan; Zhu, Aijia; Wang, Wen-Xiong

    2017-03-02

    To investigate the distribution and variability of trace metal pollution in the Chinese coastal waters, over 1000 adult oyster individuals were collected from 31 sites along the entire coastline, spanning from temperate to tropical regions (Bohai Sea, Yellow Sea, East China Sea and South China Sea), between August and September 2015. Concentrations of macroelements [sodium (Na), potassium (K), calcium (Ca), magnesium (Mg) and phosphorus (P)] and trace elements [cadmium (Cd), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), chromium (Cr), silver (Ag), and titanium (Ti)] in these oysters were concurrently measured and analyzed. The results showed high Ti, Zn and Cu bioaccumulation in oysters from Guangdong (South China Sea) and Zhejiang (East China Sea). Oysters at Nanji Island (Wenzhou) and Daya Bay (Huizhou) accumulated significantly high concentrations of Ni and Cr. The elements in these oysters were several times higher than the national food safety limits of China. On the other hand, the present study found that normalization of metals by salinity (Na) and nutrient (P) could reflect more details of metal pollution in the oysters. Biomonitoring of metal pollution could benefit from incorporating the macroelement calibration instead of focusing only on the total metal concentrations. Overall, simultaneous measurement of macroelements and trace metals coupled with non-linear analysis provide a new perspective for revealing the underlying mechanism of trace metal bioavailability and bioaccumulation in marine organisms.

  16. Relationship of atmospheric pollution characterized by gas (NO2) and particles (PM10) to microbial communities living in bryophytes at three differently polluted sites (rural, urban, and industrial).

    PubMed

    Meyer, Caroline; Gilbert, Daniel; Gaudry, André; Franchi, Marielle; Nguyen, Hung Viet; Fabure, Juliette; Bernard, Nadine

    2010-02-01

    Atmospheric pollution has become a major problem for modern societies owing to its fatal effects on both human health and ecosystems. We studied the relationships of nitrogen dioxide atmospheric pollution and metal trace elements contained in atmospheric particles which were accumulated in bryophytes to microbial communities of bryophytes at three differently polluted sites in France (rural, urban, and industrial) over an 8-month period. The analysis of bryophytes showed an accumulation of Cr and Fe at the rural site; Cr, Fe, Zn, Cu, Al, and Pb at the urban site; and Fe, Cr, Pb, Al, Sr, Cu, and Zn at the industrial site. During this study, the structure of the microbial communities which is characterized by biomasses of microbial groups evolved differently according to the site. Microalgae, bacteria, rotifers, and testate amoebae biomasses were significantly higher in the rural site. Cyanobacteria biomass was significantly higher at the industrial site. Fungal and ciliate biomasses were significantly higher at the urban and industrial sites for the winter period and higher at the rural site for the spring period. The redundancy analysis showed that the physico-chemical variables ([NO(2)], relative humidity, temperature, and site) and the trace elements which were accumulated in bryophytes ([Cu], [Sr], [Pb]) explained 69.3% of the variance in the microbial community data. Moreover, our results suggest that microbial communities are potential biomonitors of atmospheric pollution. Further research is needed to understand the causal relationship underlined by the observed patterns.

  17. Heavy metal pollution among autoworkers. I. Lead.

    PubMed Central

    Clausen, J; Rastogi, S

    1977-01-01

    Lead pollution was evaluated in 216 individuals working in 10 garages on the Island of Funen, Denmark and related to data from biochemical and medical examinations. Clinical symptoms were recorded by means of a questionnaire. Increased blood test lead levels were foun in 59% with 9% having above 80 microgram lead/100 ml (3-86mumol/1) whole blood. Mechanics in eight out of ten garages had significantly increased blood lead levels. A decrease in delta-aminolevulinic acid dehydratase (ALAD) activity was associated with increased blood lead levels but the latter were not related to haematological changes, tobacco consumption or to length of service in the trade. Particulate lead air pollution was not the sole cause of increased blood lead levels. Raised lead values were maximal among diesel engine workers who are exposed to high pressure-resistant lubricants containing lead naphthenate. As these workers complained of skin damage, lead absorption may have occurred through the skin. Assay of lead content showed 9290 ppm in gear oil and 1500-3500 ppm in used motor oils. The data are discussed in relation to the occupational risks in auto repair shops. PMID:911691

  18. Leaf biochemical responses and fruit oil quality parameters in olive plants subjected to airborne metal pollution.

    PubMed

    Fourati, Radhia; Scopa, Antonio; Ben Ahmed, Chedlia; Ben Abdallah, Ferjani; Terzano, Roberto; Gattullo, Concetta Eliana; Allegretta, Ignazio; Galgano, Fernanda; Caruso, Marisa Carmela; Sofo, Adriano

    2017-02-01

    This study was carried out in two olive orchards (Olea europaea L., cv. Chemlali) located in a polluted area near a fertilizers factory and in a control unpolluted site, managed with similar cultivation techniques. The aim was to investigate the physiological and biochemical responses of polluted plants (PP), exposed to atmospheric metal contamination (Cd, Cu, Fe, Mn, Ni and Pb) as compared to control plants (CP). Leaves, roots and fruits of PP showed a depression of their non-enzymatic and enzymatic antioxidant defences and a disruption of their hormonal homeostasis. The anomalous physiological status of PP was also demonstrated by the lower values of pigments in leaves and fruits, as compared to CP. Atmospheric metals negatively affected olive oil chemical and sensory quality. However, despite metal deposition on fruit surfaces, the accumulation of potentially toxic metals in olive oil was negligible. Considering that olive oil is an important food product worldwide and that many productive olive orchards are exposed to several sources of pollution, this work could contribute to clarify the effects of atmospheric metal pollution on olive oil quality and its potential toxicity for humans.

  19. Heavy Metal Pollution from Gold Mines: Environmental Effects and Bacterial Strategies for Resistance

    PubMed Central

    Fashola, Muibat Omotola; Ngole-Jeme, Veronica Mpode; Babalola, Olubukola Oluranti

    2016-01-01

    Mining activities can lead to the generation of large quantities of heavy metal laden wastes which are released in an uncontrolled manner, causing widespread contamination of the ecosystem. Though some heavy metals classified as essential are important for normal life physiological processes, higher concentrations above stipulated levels have deleterious effects on human health and biota. Bacteria able to withstand high concentrations of these heavy metals are found in the environment as a result of various inherent biochemical, physiological, and/or genetic mechanisms. These mechanisms can serve as potential tools for bioremediation of heavy metal polluted sites. This review focuses on the effects of heavy metal wastes generated from gold mining activities on the environment and the various mechanisms used by bacteria to counteract the effect of these heavy metals in their immediate environment. PMID:27792205

  20. Heavy metal pollution of ambient air in Nagpur City.

    PubMed

    Chaudhari, Pramod R; Gupta, Rakhi; Gajghate, Daulat Ghilagi; Wate, Satish R

    2012-04-01

    Heavy metals released from different sources in urban environment get adsorbed on respirable particulate matter less than 10 μm in size (PM(10)) and are important from public health point of view causing morbidity and mortality. Therefore, the ambient air quality monitoring was carried out to study the temporal and special pattern in the distribution of PM(10) and associated heavy metal content in the atmosphere of Nagpur, Maharashtra State, India during 2001 as well as in 2006. PM(10) fraction was observed to exceed the stipulated standards in both years. It was also observed that minimum range of PM(10) was observed to be increased in 2006 indicating increase in human activity during nighttime also. Six heavy metals were analyzed and were observed to occur in the order Zn > Fe > Pb > Ni > Cd > Cr in 2006, similar to the trend in other metro cities in India. Lead and Nickel were observed to be within the stipulated standards. Poor correlation coefficient (R(2)) between lead and PM(10) indicated that automobile exhaust is not the source of metals to air pollution. Commercial and industrial activity as well as geological composition may be the potential sources of heavy metal pollution. Total load of heavy metals was found to be increased in 2006 with prominent increase in zinc, lead, and nickel in the environment. Public health impacts of heavy metals as well as certain preventive measures to mitigate the impact of heavy metals on public health are also summarized.

  1. Pollution prevention opportunity assessments. Guidance for the Hanford Site

    SciTech Connect

    Engel, J.A.

    1994-10-01

    The purpose of this document is to provide help to you, Hanford waste generators, in finding ways to reduce waste through Pollution Prevention (P2) and Pollution Prevention Opportunity Assessments (P2OAs). It is based on guidance from other sites, and serves to compliment the Hanford-specific training on P2OAs offered by the Pollution Prevention group at Westinghouse Hanford Company (WHC). The chapters of this document include help on how to choose major waste generating activities, how to conduct a P2OA, how to get results, and how to show progress. There is also a chapter on special situations and problems your facility may encounter. This first chapter tells you why you should consider conducting P2OAs and why they may be required.

  2. [Distribution and pollution characteristics of nutrients and heavy metals in sediments of Hedi Reservoir].

    PubMed

    Zhang, Hua-Jun; Chen, Xiu-Kang; Han, Bo-Ping; Luo, Yong; Yang, Hao-Wen; Zeng, Yan; Chen, Jing-An

    2012-04-01

    Core sediments were collected from the riverine, transition and lacustrine zones of Hedi Reservoir in southern China to investigate the spatial distributions of nutrients and heavy metals and assess the potential ecological risk of heavy metals. The total nitrogen (TN) contents of the sediments at three sampling sites are between 2.314-2.427 mg x g(-1), while total phosphorus (TP) contents range from 0.591 mg x g(-1) to 0.760 mg x g(-1), TN contents of the surface sediments increase from the riverine zone to the lacustrine zone, but the TP content in the transition zone is higher than that in the other two sites (riverine zone and lacustrine zone). The mean contents of heavy metals are: 31.094, 46.85, 75.615, 385.739, 0.624 and 0.171 mg x kg(-1) respectively, except Cr, the contents of heavy metals in sediment of lacustrine zone are higher than the sediment of transition zone. In all core sediments, the contents of nutrients and heavy metals decrease from the surface to the bottom of core sediments. Inorganic phosphorus (IP) is the dominant fraction of phosphorus in the sediment and the NaOH-P is the main forms of inorganic phosphorus. The potential ecological risk assessed by using of the highest environmental background values before industrialization as the reference indicates that each single heavy metal only causes slightly pollution, but two heavy metals (Cd and Hg) cause heavy pollution based on the soil environmental background values of Guangdong province. In spite of the slight difference between two kinds of risk assessment, all demonstrated that Cd and Hg resulted in more serious pollution than the other metals and these two metals contributed most to the RI values.

  3. Effects of historic metal(loid) pollution on earthworm communities.

    PubMed

    Lévêque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mombo, Stéphane; Mazzia, Christophe; Foucault, Yann; Dumat, Camille

    2015-04-01

    The effects of metal(loid)s (Pb, Cd, Cu, Zn, As and Sb) from atmospheric fallout on earthworm communities were investigated in a fallow meadow located close to a 60-year-old lead recycling factory. We examined abundance and species diversity as well as the ratio of adult-to-juvenile earthworms, along five 140 m parallel transects. The influence of soil pollution on the earthworm community at the plot scale was put in context by measuring some physico-chemical soil characteristics (OM content, N content, pH), as well as total and bioavailable metal(loid) concentrations. Earthworms were absent in the highly polluted area (concentration from 30,000 to 5000 mg Pb·kg(-1) of dried soil), just near the factory (0-30 m area). A clear and almost linear relationship was observed between the proportion of juvenile versus mature earthworms and the pollution gradient, with a greater proportion of adults in the most polluted zones (only adult earthworms were observed from 30 to 50 m). Apporectodea longa was the main species present just near the smelter (80% of the earthworms were A. longa from 30 to 50 m). The earthworm density was found to increase progressively from five individuals·m(-2) at 30 m to 135 individuals·m(-2) at 140 m from the factory. On average, metal(loid) accumulation in earthworm tissues decreased linearly with distance from the factory. The concentration of exchangeable metal(loid)s in earthworm surface casts was higher than that of the overall soil. Finally, our field study clearly demonstrated that metal(loid) pollution has a direct impact on earthworm communities (abundance, diversity and proportion of juveniles) especially when Pb concentrations in soil were higher than 2050 mg·kg(-1).

  4. Anthropogenic vs. natural pollution: An environmental study of an industrial site under remediation (Naples, Italy)

    USGS Publications Warehouse

    Tarzia, M.; de Vivo, B.; Somma, R.; Ayuso, R.A.; McGill, R.A.R.; Parrish, R.R.

    2002-01-01

    Heavy metal concentrations and Pb isotopic composition were determined in the soils, slags, scums and landfill materials from a shut down industrial (brownfield) site. This was the second largest integrated steelworks in Italy, and is now under remediation by a Government project. It is located in the outskirts of Napoli on the Bagnoli-Fuorigrotta plain (BFP), which is part of the Campi Flegrei (CF) volcanic caldera, where many spas and geothermal springs occur. The purpose of this work is to distinguish the natural (geogenic) component, originated by hydrothermal activity, from anthropogenic contamination owing to industrial activity. 'In-situ sediments' (soils), slags, scums and landfill materials from 20 drill-cores were selected from a network of 197 drills carried out on a 100 ?? 100 m grid, covering the entire brownfield site. In general, heavy metal enrichments in the upper 3 m of the cores strongly suggest mixing between natural (geogenic) and anthropogenic components. Pb isotopic data are suggestive of three potential end members, and confirm the existence of a strong natural component in addition to contamination from anthropogenic activities. The slags, scums and landfill materials have been proved, through mineralogy and leachate experiments, to be geochemically stable; this shows that metal pollutants are not bio-available and, hence, do not pose a risk to future developments on this site. The natural contribution of hydrothermal fluids to soil pollution, in addition to the non-bio-availability of metal pollutants from industrial materials, indicate that heavy metal remediation of soils in this area would be of little use. Continuous discharge from mineralized hydrothermal solutions would cancel out any remediation effort.

  5. Heavy metal pollution in Ancient Nara, Japan, during the eighth century

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Yamashita, Shusuke; Yamaoka, Kyoko; Okai, Takashi; Shimoda, Gen; Imai, Noboru

    2014-12-01

    We quantitatively investigated the eighth century heavy metal pollution in Heijo-kyo (Ancient Nara), the first large, international city of Japan. In this metropolis, mercury, copper, and lead levels in soil were increased by urban activity and by the construction of the Great Buddha statue, Nara Daibutsu. Mercury and copper pollution associated with the construction of the statue was particularly high in the immediate vicinity of the statue, but markedly lower in the wider city environment. We therefore reject the hypothesis that extensive mercury pollution associated with the construction of the Nara Daibutsu made it necessary to abandon Ancient Nara, even though severe lead pollution was detected at several sites. The isotopic composition of the lead indicated that it originated mainly from the Naganobori mine in Yamaguchi, which was a major source of the copper for the Nara Daibutsu.

  6. Temporal Trends in Metal Pollution: Using Bird Excrement as Indicator

    PubMed Central

    Berglund, Åsa M. M.; Rainio, Miia J.; Eeva, Tapio

    2015-01-01

    Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca) excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends. PMID:25680108

  7. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    PubMed

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  8. Biogeochemical indication of pollution with metals and radionuclides in oil-producing regions

    NASA Astrophysics Data System (ADS)

    Moiseenko, T. I.; Gashev, S. N.

    2012-12-01

    The results of investigation of the biogeochemical indication of pollution with metals and radio-nuclides in the oil-producing regions of Western Siberia are presented. It was ascertained that eight years after the oil spill, biota components (lichens, mosses, small mammals, etc.) on technogenic territories contain higher elemental concentrations as compared to the background sites, which allows us to use them to assess the anthropogenic load. Original data pertaining to radionuclide content in mosses and woody plants in Western Siberia are presented; they prove the fact that both oil production and trans-regional transportation contribute to the total pollution of Western Siberia with radionuclides.

  9. Pollution performance of 110 kV metal oxide arresters

    SciTech Connect

    Chrzan, K.; Pohl, Z.; Grzybowski, S.; Koehler, W.

    1997-04-01

    Pollution test results of single unit 110 kV metal oxide surge arresters with porcelain housing according to the solid layer and salt fog methods are presented. During 6 hours of testing, the internal and external charge and maximum temperature along the varistor column were measured. The formation of single stable dry bands on the housing was often observed, especially during salt fog tests. In such cases, the varistor temperature can reach about 70 C. The simple electrical model of the arrester enabling calculations of voltages and currents as a function of arrester and pollution parameters is shown.

  10. The fish gill: site of action and model for toxic effects of environmental pollutants.

    PubMed Central

    Evans, D H

    1987-01-01

    The gill epithelium is the site of gas exchange, ionic regulation, acid-base balance, and nitrogenous waste excretion by fishes. The last three processes are controlled by passive and active transport of various solutes across the epithelium. Various environmental pollutants (e.g., heavy metals, acid rain, and organic xenobiotics) have been found to affect the morphology of the gill epithelium. Associated with these morphological pathologies, one finds alterations in blood ionic levels, as well as gill Na,K-activated ATPase activity and ionic fluxes. Such physiological disturbances may underly the toxicities of these pollutants. In addition, the epithelial transport steps which are affected in the fish gill model resemble those described in the human gut and kidney, sites of action of a variety of environmental toxins. Images FIGURE 1. a FIGURE 1. b FIGURE 3. PMID:3297663

  11. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation.

    PubMed

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices.

  12. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    PubMed Central

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  13. Nutrient and metal pollution of the eastern Gulf of Finland coastline: Sediments, macroalgae, microbiota.

    PubMed

    Gubelit, Yulia; Polyak, Yulia; Dembska, Grazyna; Pazikowska-Sapota, Grazyna; Zegarowski, Lukasz; Kochura, Dmitry; Krivorotov, Denis; Podgornaya, Elena; Burova, Olga; Maazouzi, Chafik

    2016-04-15

    The anthropogenic pollution along the coastline of the eastern Gulf of Finland was studied through a range of methods, including analyses of metal contamination in water, surface sediments, accumulated algal biomass and its correlation with resistant microbiota. According to concentrations, the main pollutants in water were copper and manganese. Influence of Nuclear Power Plant was remarkable in adjacent areas and was expressed in high concentrations of molybdenum, nickel, copper and other elements in the water. Relatively high concentrations of copper, lead and zinc were found in sediments. Microbial tolerance appeared to be correlated with the concentration of the metals in sediments. Higher tolerance levels were found in sediment samples from more polluted stations. Macroalgae, which were massively developed in the coastal zone, had shown high level of metal bioaccumulation. Analyses of carbon, nitrogen and phosphorus content of algal tissues allowed the estimation of additional nutrient loading from accumulated decaying algal biomass on the coastal zone of the eastern Gulf of Finland. Mass development of algae in coastal area may contribute to accumulation of organic matter and associated metals. In our study the highest metal concentrations in sediments were found at the sites with dense and continuous layer of fresh and decaying macroalgal biomass, accompanied by hypoxic conditions. Also our study has shown that accumulated biomass may be a significant source of nutrients in the coastal ecosystem.

  14. Microbial removal of toxic metals from a heavily polluted soil

    NASA Astrophysics Data System (ADS)

    Nicolova, Marina; Spasova, Irena; Georgiev, Plamen; Groudev, Stoyan

    2015-04-01

    Samples of a leached cinnamonic forest soil heavily polluted with uranium and some toxic heavy metals (mainly copper, zinc and cadmium) were subjected to cleaning by means of bioleaching with acidophilic chemolithotrophic bacteria. The treatment was carried out in a green house in which several plots containing 150 kg of soil each were constructed. The effect of some essential environmental factors such as pH, humidity, temperature and contents of nutrients on the cleaning process was studied. It was found that under optimal conditions the content of pollutants were decreased below the relevant permissible levels within a period of 170 days. The soil cleaned in this way was characterized by a much higher production of biomass of different plants (alfalfa, clover, red fescue, vetch) than the untreated polluted soil.

  15. Hanford site pollution prevention plan progress report, 1993

    SciTech Connect

    Kirkendall, J.R.

    1996-08-26

    This report tracks progress made during 1995 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307,`Plans,` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, `Waste Reduction,` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in- process reuse or reclamation of valuable spent material.

  16. Pollution prevention and waste minimization in metal finishing

    SciTech Connect

    Stimetz, C.J.

    1994-12-01

    This study was done to identify pollution prevention and waste minimization opportunities in the general plating department and the printed circuit board processing department. Recommendations for certain recycle and recovery technologies were mad in order to reduce usage of acids and the volume of heavy metal sludge that is formed at the industrial Wastewater Pretreatment Facility (IWPF). Some of these technologies discussed were acid purification, electrowinning, and ion exchange. Specific technologies are prescribed for specific processes. Those plating processes where the metals can be recovered are copper, nickel, gold, cadmium, tin, lead, and rhodium.

  17. Optimization Review, Peck Iron and Metal Superfund Site, Portsmouth, Virginia

    EPA Pesticide Factsheets

    The Peck Iron and Metal Superfund Site is a 33-acre property located in Norfolk County, Portsmouth, Virginia. PIM (Figure 1) is the site of a former scrap metal storage and recycling facility that began operation in the 1940s.

  18. Manila clam Venerupis philippinarum as a biomonitor to metal pollution

    NASA Astrophysics Data System (ADS)

    Wu, Huifeng; Ji, Chenglong; Wang, Qing; Liu, Xiaoli; Zhao, Jianmin; Feng, Jianghua

    2013-01-01

    The Manila clam Venerupis philippinarum is a good biomonitor/bioindicator to marine metal pollution and is frequently used in aquatic toxicology. Two dominant pedigrees (white and zebra) of clam are distributed in the Bohai Sea; however, little attention has been paid to potential biological differences between these two pedigrees. In this study, we tested the sensitivity of both pedigrees to marine metal (cadmium and zinc) pollution biomonitoring and marine environmental toxicology. Results demonstrate significant biological differences in gills of white and zebra clams based on metabolic profiles and antioxidant enzyme activities. In addition, we found that hypotaurine, malonate and homarine were relatively high in white clam gills, while alanine, arginine, glutamate, succinate, 4-aminobutyrate, taurine and betaine were high in zebra clam gills. Zebra clam gills were also more sensitive to a mixture of Cd and Zn, as shown by antioxidant enzyme activities and metabolic profiles, but white clam gills could accumulate more Zn. Therefore, we suggest that the white pedigree can be used as a biomonitor to marine Zn pollution, whereas the zebra pedigree can be used for toxicology studies on Cd and Zn mixed pollution.

  19. Hanford Site Pollution Prevention Plan progress report, 1994. Revision 1

    SciTech Connect

    1995-09-01

    This report tracks progress made during 1994 against the goals stated in DOE/RL-92-62, Executive Summary, Hanford Site Pollution Prevention Plan. The Executive Summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, Executive Summary, and the progress reports are elements of a pollution prevention planning program that is required by WAC 173-307, ``Plans,`` for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement RCW 70.95C, ``Waste Reduction,`` an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the in-process reuse or reclamation of valuable spent material. The Hanford Site is voluntarily complying with this state regulatory-mandated program. All treatment, storage, or disposal (TSD) facilities are exempt from participating; the Hanford Site is classified as a TSD.

  20. Genetic basis and importance of metal resistant genes in bacteria for bioremediation of contaminated environments with toxic metal pollutants.

    PubMed

    Das, Surajit; Dash, Hirak R; Chakraborty, Jaya

    2016-04-01

    Metal pollution is one of the most persistent and complex environmental issues, causing threat to the ecosystem and human health. On exposure to several toxic metals such as arsenic, cadmium, chromium, copper, lead, and mercury, several bacteria has evolved with many metal-resistant genes as a means of their adaptation. These genes can be further exploited for bioremediation of the metal-contaminated environments. Many operon-clustered metal-resistant genes such as cadB, chrA, copAB, pbrA, merA, and NiCoT have been reported in bacterial systems for cadmium, chromium, copper, lead, mercury, and nickel resistance and detoxification, respectively. The field of environmental bioremediation has been ameliorated by exploiting diverse bacterial detoxification genes. Genetic engineering integrated with bioremediation assists in manipulation of bacterial genome which can enhance toxic metal detoxification that is not usually performed by normal bacteria. These techniques include genetic engineering with single genes or operons, pathway construction, and alternations of the sequences of existing genes. However, numerous facets of bacterial novel metal-resistant genes are yet to be explored for application in microbial bioremediation practices. This review describes the role of bacteria and their adaptive mechanisms for toxic metal detoxification and restoration of contaminated sites.

  1. Hanford Site Pollution Prevention Plan Progress report, 1993

    SciTech Connect

    Not Available

    1994-08-01

    This report tracks progress against the goals stated in the Hanford Site 5-year Pollution Prevention Plan. The executive summary of the plan was submitted to the Washington State Department of Ecology (Ecology) in September 1992. The plan, executive summary, and the progress reports are elements of a pollution prevention planning program that is required by Washington Administrative Code (WAC) 173-307 for all hazardous substance users and/or all hazardous waste generators regulated by Ecology. These regulations implement Chapter 70.95C, Revised Code of Washington, an act relating to hazardous waste reduction. The act encourages voluntary efforts to redesign industrial processes to help reduce or eliminate hazardous substances and hazardous waste byproducts, and to maximize the inprocess reuse or reclamation of valuable spent material. Although the Hanford Site is exempt, it is voluntarily complying with this state regulatory-mandated program. This is the first year the Hanford Site is submitting a progress report. It covers calendar year 1993 plus the last quarter of 1992. What is reported, in accordance with WAC 173-307, are reductions in hazardous substance use and hazardous waste generated. A system of Process Waste Assessments (PWA) was chosen to meet the requirements of the program. The PWAs were organized by a physical facility or company organization. Each waste-generating facility/organization performed PWAs to identify, screen, and analyze their own reduction options. Each completed PWA identified any number of reduction opportunities, that are listed individually in the plan and summarized by category in the executive summary. These opportunities were to be implemented or evaluated further over the duration of the 5-year plan. The basis of this progress report is to track action taken on these PWA reduction opportunities in relationship to achieving the goals stated in the Pollution Prevention Plan.

  2. Metal Pollutants and Cardiovascular Disease: Mechanisms and Consequences of Exposure

    PubMed Central

    Solenkova, Natalia V.; Newman, Jonathan D.; Berger, Jeffrey S.; Thurston, George; Hochman, Judith S.; Lamas, Gervasio A.

    2014-01-01

    Introduction There is epidemiological evidence that metal contaminants may play a role in the development of atherosclerosis and its complications. Moreover, a recent clinical trial of a metal chelator had a surprisingly positive result in reducing cardiovascular events in a secondary prevention population, strengthening the link between metal exposure and cardiovascular disease (CVD). This is, therefore, an opportune moment to review evidence that exposure to metal pollutants, such as arsenic, lead, cadmium, and mercury, are significant risk factors for CVD. Methods We reviewed the English-speaking medical literature to assess and present the epidemiological evidence that 4 metals having no role in the human body (xenobiotic), mercury, lead, cadmium, and arsenic, have epidemiologic and mechanistic links to atherosclerosis and CVD. Moreover, we briefly review how the results of the Trial to Assess Chelation Therapy strengthen the link between atherosclerosis and xenobiotic metal contamination in humans. Conclusions There is strong evidence that xenobiotic metal contamination is linked to atherosclerotic disease and is a modifiable risk factor. PMID:25458643

  3. Trace metal content of sediments close to mine sites in the Andean region.

    PubMed

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established.

  4. Trace Metal Content of Sediments Close to Mine Sites in the Andean Region

    PubMed Central

    Yacoub, Cristina; Pérez-Foguet, Agustí; Miralles, Nuria

    2012-01-01

    This study is a preliminary examination of heavy metal pollution in sediments close to two mine sites in the upper part of the Jequetepeque River Basin, Peru. Sediment concentrations of Al, As, Cd, Cu, Cr, Fe, Hg, Ni, Pb, Sb, Sn, and Zn were analyzed. A comparative study of the trace metal content of sediments shows that the highest concentrations are found at the closest points to the mine sites in both cases. The sediment quality analysis was performed using the threshold effect level of the Canadian guidelines (TEL). The sediment samples analyzed show that potential ecological risk is caused frequently at both sites by As, Cd, Cu, Hg, Pb, and Zn. The long-term influence of sediment metals in the environment is also assessed by sequential extraction scheme analysis (SES). The availability of metals in sediments is assessed, and it is considered a significant threat to the environment for As, Cd, and Sb close to one mine site and Cr and Hg close to the other mine site. Statistical analysis of sediment samples provides a characterization of both subbasins, showing low concentrations of a specific set of metals and identifies the main characteristics of the different pollution sources. A tentative relationship between pollution sources and possible ecological risk is established. PMID:22606058

  5. Protection of SAAO observing site against light and dust pollution

    NASA Astrophysics Data System (ADS)

    Sefako, Ramotholo; Vaisanen, Petri

    2015-08-01

    South African Astronomical Observatory (SAAO) observing station near Sutherland, Northern Cape, is one of the darkest sites for optical and IR astronomy in the world. The SAAO hosts and operates several optical and IR telescopes, including the Southern African Large Telescope (SALT) and a number of international robotic telescopes, most of which were attracted by the good night sky conditions for optical astronomy at SAAO. To ensure that the conditions remain optimal for astronomy and our night skies are protected against light and dust pollution, a legislation called the Astronomy Geographic Advantage (AGA) Act, of 2007, was enacted. The Act empowers the South African minister of Science and Technology to regulate things that could pose a threat to both radio and/or optical astronomy in areas that are declared Astronomy Advantage Areas (or AAAs) in South Africa. For optical astronomy, the main challenges are those that are likely to be posed by light and dust pollution as result of wind energy developments, and petroleum gas and oil exploration and exploitation in the area. We give an update and current status of possible threats to the quality of the night skies at SAAO and the challenges relating to the AGA Act implementation and enforcement. We discuss measures that are put in place to protect the Observatory, including relevant studies using a planned wind energy facility to quantify the severity of the threats posed by light pollution from these and similar facilities.

  6. Remediation of metal polluted mine soil with compost: co-composting versus incorporation.

    PubMed

    Tandy, Susan; Healey, John R; Nason, Mark A; Williamson, Julie C; Jones, Davey L

    2009-02-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost.

  7. Studies on antioxidant status in Mugil cephalus in response to heavy metal pollution at Ennore estuary.

    PubMed

    Padmini, E; Usha Rani, M; Vijaya Geetha, B

    2009-08-01

    Estuaries, the important component of natural environment are under pressure nowadays due to pollution from different sources like industries, agricultural fields etc. Ennore estuary one of the highly polluted estuary situated in Chennai, Tamilnadu, India, due to heavy industrialization surrounding this site poses serious threat to its inhabitants. The present paper focuses on studying the response of the fish Mugil cephalus with reference to its antioxidants during their exposure to metals like iron and chromium present in the industrial effluents that are discharged into the Ennore estuary. The results on comparison with unpolluted Kovalam estuary showed that fish from Ennore experiences severe oxidative stress with significant alteration being observed with antioxidant enzyme activities. Since these results were also found to vary with seasons, the determination of oxidative stress biomarkers in M. cephalus along with seasonal variations may serve as a convenient approach during pollution biomonitoring programme.

  8. A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption.

    PubMed

    Dong, Xiaoqing; Li, Chaolin; Li, Ji; Wang, Jiaxin; Liu, Suting; Ye, Bin

    2010-03-15

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10(-3) for Shaoguan and 1.28 x 10(-3) for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control.

  9. Representing soil pollution by heavy metals using continuous limitation scores

    NASA Astrophysics Data System (ADS)

    Romić, Marija; Hengl, Tomislav; Romić, Davor; Husnjak, Stjepan

    2007-10-01

    The paper suggests a methodology to represent overall soil pollution in a sampled area using continuous limitation scores. The interpolated heavy metal concentrations are first transformed to limitation scores using the exponential transfer function determined by using two threshold values: permissible concentration (0 limitation points) and seriously polluted soil (4 limitation points). The limitation scores can then be summed to produce the map of cumulative limitation scores and visualize the most critically polluted areas. The methodology was illustrated using the 784 soil samples analyzed for Cd, Cr, Cu, Ni, Pb and Zn in the central region of Croatia. The samples were taken at 1×1 and 2×2 km grids and at fixed depths of 20 cm. Heavy metal concentrations in soil were determined by ICP-OES after microwave assisted aqua regia digestion. The sampled concentrations were interpolated using block regression-kriging with geology and land cover maps, terrain parameters and industrialization parameters as auxiliary predictors. The results showed that the best auxiliary predictors are geological map, ground water depth, NDVI and slope map and distance to urban areas. The spatial prediction was satisfactory for Cd, Ni, Pb and Zn, and somewhat less satisfactory for Cu and Cr. The final map of cumulative limitation scores showed that 33.5% of the total area is suitable for organic agriculture and 7.2% of the total area is seriously polluted by one or more heavy metals. This procedure can be used to assess suitability of soils for agricultural production and as a basis for possible legal commitments to maintain the soil quality.

  10. Assessment of heavy metal pollution in urban soils of Havana city, Cuba.

    PubMed

    Rizo, O Díaz; Castillo, F Echeverría; López, J O Arado; Merlo, M Hernández

    2011-10-01

    Concentrations of Co, Ni, Cu, Zn, Pb and Fe in the top-soils (0-10 cm) from urbanized and un-urbanized areas of Havana city were measured by X-ray fluorescence analysis. The mean Co, Ni, Cu, Zn and Pb contents in the urban topsoil samples (13.9 ± 4.1, 66 ± 26, 101 ± 51, 240 ± 132 and 101 ± 161 mg kg(-1), respectively) were compared with mean concentrations for other cities around the world. The results revealed the highest concentrations of metals in topsoil samples from industrial sites. Lowest metal contents were determined in the un-urbanized areas. The comparison with Dutch soil quality guidelines showed a slight contamination with Co, Ni Cu and Zn in all studied sites and with Pb in industrial soils. On the other hand, the metal-to-iron normalisation using Earth crust contents as background showed that soils from urbanized areas in Havana city (industrial sites, parks and school grounds) are moderately enriched with zinc, moderately to severe enriched (city parks and school grounds) and severe enriched (industrial sites) with lead. The values of integrated pollution index (IPI) indicated that industrial soils are middle and high contaminated by heavy metals (1.19 ≤ IPI ≤ 7.54), but enrichment index values (EI) shows that metal concentrations on the studied locations are not above the permissible levels for urban agriculture, except soils from power and metallurgical plants surroundings.

  11. Plankton as an indicator of heavy metal pollution in a freshwater reservoir of Madhya Pradesh, India.

    PubMed

    Malik, Neetu; Biswas, A K; Raju, C B

    2013-06-01

    Halali Reservoir is an important freshwater body of Madhya Pradesh. The water of the reservoir is used for drinking, irrigation and aquaculture practices. It receives untreated sewage, wastes from small scale industries and agricultural runoff from the catchment area. Various heavy metal (Cd, Cr, Cu, Ni, Pb and Zn) levels were measured in plankton of Halali Reservoir during 2006-2007 by inductively coupled plasma-optical emission spectrometry. Mean concentration ranges for Cd, Cr, Cu, Ni, Pb and Zn were 0.0018-0.0037, 0.0038-0.2257, 0.0013-0.0228, 0.0011-0.0086, 0.0133-0.0494 and 0.0130-0.1168 μg g⁻¹, respectively. Overall, mean Cr concentrations in the plankton were generally the highest of the six metals at four of the five study sites. Metal concentrations at these four sites generally followed the order: Cr > Zn > Pb > Cu > Ni > Cd. Mean concentrations of all metals at a fifth site were consistently lower than at the other sites. The high levels of Cr in the plankton are in agreement with high Cr levels that have been reported in fish from this reservoir, indicating that plankton may serve as a useful indicator of metal pollution in fish.

  12. Prawn biomonitors of nutrient and trace metal pollution along Asia-Pacific coastlines.

    PubMed

    Fry, Brian; Carter, James F; Tinggi, Ujang; Arman, Ali; Kamal, Masud; Metian, Marc; Waduge, Vajira Ariyaratna; Yaccup, Rahman Bin

    2016-12-01

    To assess coastal ecosystem status and pollution baselines, prawns were collected from the commercial catches of eight Asia-Pacific countries (Australia, Bangladesh, Indonesia, Myanmar, Philippines, Pakistan, Sri Lanka and Thailand). Samples collected from 21 sites along regional coastlines were analysed for trace metal and stable isotopic compositions of H, C, N, O and S. A combination of simple averaging and multivariate analyses was used to evaluate the data. Sites could be assigned to easily recognise polluted and unpolluted groups based on the prawn results. Some filter-feeding clams were also collected and analysed together with the benthic-feeding prawns, and the prawns generally had lower trace metal burdens. Climate change effects were not strongly evident at this time, but altered ocean circulation and watershed run-off patterns accompanying future climate change are expected to change chemical patterns recorded by prawns along these and other coastlines. Stable isotopes, especially (15)N, can help to distinguish between relatively polluted and unpolluted sites.

  13. Assessment of Metal Pollution in Lower Torag River in Bangladesh

    NASA Astrophysics Data System (ADS)

    Zakir, H. M.; Shikazono, N.

    2008-02-01

    The study was conducted to assess the metal pollution levels in water and sediments of lower Torag River in Bangladesh. Industrial wastewaters and urban sewage from the Tongi municipal and industrial area directly discharge to this part of the rivers without any sorts of treatment. Fourteen samples each of water and sediment were collected and the distance, in between the samples was about 300 m. The results showed that the metal concentrations in the water samples greatly exceeded the standard values for the surface water quality. Organic carbon and clay content in the sediment samples were, in general, high (3.6 and 40.76%, respectively). The mean concentrations of Mn, Zn, Cr, Cu and Pb in the sediment samples were higher than the standard shale values. Although the geoaccumulation index (Igeo) for most of the heavy metals lie below grade zero but according to Igeo class some points were moderately contaminated for Zn, Cu, Cr and Pb. About 40-50% heavy metals studied showed good to excellent positive correlation with pH, EC and organic carbon of the sediments. High metal contents were found close to industrial and municipal areas and so enhanced metal concentrations are related to direct discharge of industrial sewage and municipal wastes into the river.

  14. Use of cestodes as indicator of heavy-metal pollution.

    PubMed

    Yen Nhi, Tran Thi; Mohd Shazili, Noor Azhar; Shaharom-Harrison, Faizah

    2013-01-01

    Thirty snakehead fish, Channa micropeltes (Cuvier, 1831) were collected at Lake Kenyir, Malaysia. Muscle, liver, intestine and kidney tissues were removed from each fish and the intestine was opened to reveal cestodes. In order to assess the concentration of heavy metal in the environment, samples of water in the surface layer and sediment were also collected. Tissues were digested and the concentrations of manganese (Mn), zinc (Zn), copper (Cu), cadmium (Cd) and lead (Pb) were analysed by using inductively-coupled plasma mass-spectrometry (ICP-MS) equipment. The results demonstrated that the cestode Senga parva (Fernando and Furtado, 1964) from fish hosts accumulated some heavy metals to a greater extent than the water and some fish tissues, but less than the sediment. In three (Pb, Zn and Mn) of the five elements measured, cestodes accumulated the highest metal concentrations, and in remaining two (Cu and Cd), the second highest metal accumulation was recorded in the cestodes when compared to host tissues. Therefore, the present study indicated that Senga parva accumulated metals and might have potential as a bioindicator of heavy-metal pollution.

  15. Marine sponges with contrasting life histories can be complementary biomonitors of heavy metal pollution in coastal ecosystems.

    PubMed

    Batista, Daniela; Muricy, Guilherme; Rocha, Rafael Chávez; Miekeley, Norbert F

    2014-05-01

    In this study, we compared the usefulness of a long-living sponge (Hymeniacidon heliophila, Class Demospongiae) and a short-living one (Paraleucilla magna, Class Calcarea) as biomonitors of metallic pollution. The concentrations of 16 heavy metals were analyzed in both species along a gradient of decreasing pollution from the heavily polluted Guanabara Bay to the less impacted coastal islands in Rio de Janeiro, SE Brazil (SW Atlantic). The levels of most elements analyzed were higher in H. heliophila (Al, Co, Cr, Cu, Fe, Mn, Ni, Hg, Ni, and Sn) and P. magna (Ni, Cu, Mn, Al, Ti, Fe, Pb, Co, Cr, Zn, and V) collected from the heavily polluted bay when compared with the cleanest sites. Hymeniacidon heliophila accumulates 11 elements more efficiently than P. magna. This difference may be related to their skeleton composition, histological organization, symbiont bacteria and especially to their life cycle. Both species can be used as a biomonitors of metallic pollution, but while Hymeniacidon heliophila was more effective in concentrating most metals, Paraleucilla magna is more indicated to detect recent pollutant discharges due to its shorter life cycle. We suggest that the complementary use of species with contrasting life histories can be an effective monitoring strategy of heavy metals in coastal environments.

  16. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers

    PubMed Central

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-01-01

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake’s only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr. PMID:26561822

  17. Heavy Metal Pollution, Fractionation, and Potential Ecological Risks in Sediments from Lake Chaohu (Eastern China) and the Surrounding Rivers.

    PubMed

    Zhang, Lei; Liao, Qianjiahua; Shao, Shiguang; Zhang, Nan; Shen, Qiushi; Liu, Cheng

    2015-11-06

    Heavy metal (Cr, Ni, Cu, Zn, Cd, and Pb) pollution, fractionation, and ecological risks in the sediments of Lake Chaohu (Eastern China), its eleven inflowing rivers and its only outflowing river were studied. An improved BCR (proposed by the European Community Bureau of Reference) sequential extraction procedure was applied to fractionate heavy metals within sediments, a geoaccumulation index was used to assess the extent of heavy metal pollution, and a risk assessment code was applied to evaluate potential ecological risks. Heavy metals in the Shuangqiao and Nanfei Rivers were generally higher than the other studied sites. Of the three Lake Chaohu sites, the highest concentrations were identified in western Chaohu. Heavy metal pollution and ecological risks in the lake's only outflowing river were similar to those in the eastern region of the lake, to which the river is connected. Heavy metal concentrations occurred in the following order: Cd > Zn > Cu > Pb ≈ Ni ≈ Cr. Cr, Ni, and Cu made up the largest proportion of the residual fraction, while Cd was the most prominent metal in the exchangeable and carbonate-included fraction. Cd posed the greatest potential ecological risk; the heavy metals generally posed risks in the following order: Cd > Zn > Cu > Ni > Pb > Cr.

  18. Heavy metal contents of epiphytic acrocarpous mosses within inhabited sites in southwest Nigeria

    SciTech Connect

    Onianwa, P.C.; Ajayi, S.O.

    1987-01-01

    The levels of the metals Pb, Zn, Cu, Cd, Ni, Mn, and Fe accumulated in acrocarpous mosses within inhabited parts of villages and towns in the southwest region of Nigeria were determined, and then used for a classification of the area into relative pollution zones. Ibadan City was found to be the most polluted in the study area. Other zones of low and medium polluted villages and towns were identified. The zonations based on metal levels in these mosses were to some extent similar to that already obtained in a separate study of the same area with epiphytic forest mosses. The enrichment factors show that the gradients between zones of different pollution levels were higher in mosses within the inhabited sites.

  19. Heavy metal pollution assessment in relation to sediment properties in the coastal sediments of the southern Caspian Sea.

    PubMed

    Bastami, Kazem Darvish; Neyestani, Mahmoud Reza; Shemirani, Farzaneh; Soltani, Farzaneh; Haghparast, Sarah; Akbari, Atefeh

    2015-03-15

    This study aimed to evaluate major elements and heavy metal concentrations of Arsenic (As), Copper (Cu), Chromium (Cr), Cobalt (Co), Vanadium (V), Nickel (Ni), lead (Pb) and Zinc (Zn) in surface sediments of the southern Caspian Sea. Metal contents in the sediment were observed in the order of: V>Cr>Zn>Ni>Co>Cu>Pb>As. Correlations between elements showed that sediment TOM, grain size and chemical composition are the main factors that influence the distribution of heavy metals. According to the pollution load index (PLI), sediments from some sampling sites were polluted. Concentrations of Ni, As, Cr and Cu were higher than sediment quality guidelines at some sampling sites, implying potential adverse impacts of these metals.

  20. Influence of sulfhydryl sites on metal binding by bacteria

    NASA Astrophysics Data System (ADS)

    Nell, Ryan M.; Fein, Jeremy B.

    2017-02-01

    The role of sulfhydryl sites within bacterial cell envelopes is still unknown, but the sites may control the fate and bioavailability of metals. Organic sulfhydryl compounds are important complexing ligands in aqueous systems and they can influence metal speciation in natural waters. Though representing only approximately 5-10% of the total available binding sites on bacterial surfaces, sulfhydryl sites exhibit high binding affinities for some metals. Due to the potential importance of bacterial sulfhydryl sites in natural systems, metal-bacterial sulfhydryl site binding constants must be determined in order to construct accurate models of the fate and distribution of metals in these systems. To date, only Cd-sulfhydryl binding has been quantified. In this study, the thermodynamic stabilities of Mn-, Co-, Ni-, Zn-, Sr- and Pb-sulfhydryl bacterial cell envelope complexes were determined for the bacterial species Shewanella oneidensis MR-1. Metal adsorption experiments were conducted as a function of both pH, ranging from 5.0 to 7.0, and metal loading, from 0.5 to 40.0 μmol/g (wet weight) bacteria, in batch experiments in order to determine if metal-sulfhydryl binding occurs. Initially, the data were used to calculate the value of the stability constants for the important metal-sulfhydryl bacterial complexes for each metal-loading condition studied, assuming a single binding reaction for the dominant metal-binding site type under the pH conditions of the experiments. For most of the metals that we studied, these calculated stability constant values increased significantly with decreasing metal loading, strongly suggesting that our initial assumption was not valid and that more than one type of binding occurs at the assumed binding site. We then modeled each dataset with two distinct site types with identical acidity constants: one site with a high metal-site stability constant value, which we take to represent metal-sulfhydryl binding and which dominates under low

  1. Incorporation of in situ exposure and biomarkers response in clams Ruditapes philippinarum for assessment of metal pollution in coastal areas from the Maluan Bay of China.

    PubMed

    Wang, Zaosheng; Yan, Changzhou; Vulpe, Chris D; Yan, Yijun; Chi, Qiaoqiao

    2012-01-01

    The clams Ruditapes philippinarum were used to assess the impact of metal contaminants when transplanted to seven study sites along the Maluan Bay (China). Metal concentrations in digestive gland tissues of clams after 7-day in situ cage exposure were determined in conjunction with antioxidant enzyme activities. The results showed the importance of specific antioxidant biomarkers to assess complex pollutant mixtures and their good correlations to the pollutant compositions of deployment sites. Multivariate analysis indicated causal relationship between the chemicals at each study site and the biochemical "response" of the caged clams at these sites and demonstrated the potential presence of two different contaminant sources. This study suggested that the incorporation of tissue residue analysis with biomarkers response in caged clams together with factor analysis can be a useful biomonitoring tool for the identification of causal toxic pollutants and the assessment of complex metal pollutions in marine coastal environment.

  2. DEP-On-Go for Simultaneous Sensing of Multiple Heavy Metals Pollutants in Environmental Samples.

    PubMed

    Biyani, Madhu; Biyani, Radhika; Tsuchihashi, Tomoko; Takamura, Yuzuru; Ushijima, Hiromi; Tamiya, Eiichi; Biyani, Manish

    2016-12-27

    We describe a simple and affordable "Disposable electrode printed (DEP)-On-Go" sensing platform for the rapid on-site monitoring of trace heavy metal pollutants in environmental samples for early warning by developing a mobile electrochemical device composed of palm-sized potentiostat and disposable unmodified screen-printed electrode chips. We present the analytical performance of our device for the sensitive detection of major heavy metal ions, namely, mercury, cadmium, lead, arsenic, zinc, and copper with detection limits of 1.5, 2.6, 4.0, 5.0, 14.4, and, 15.5 μg·L(-1), respectively. Importantly, the utility of this device is extended to detect multiple heavy metals simultaneously with well-defined voltammograms and similar sensitivity. Finally, "DEP-On-Go" was successfully applied to detect heavy metals in real environmental samples from groundwater, tap water, house dust, soil, and industry-processed rice and noodle foods. We evaluated the efficiency of this system with a linear correlation through inductively coupled plasma mass spectrometry, and the results suggested that this system can be reliable for on-site screening purposes. On-field applications using real samples of groundwater for drinking in the northern parts of India support the easy-to-detect, low-cost (<1 USD), rapid (within 5 min), and reliable detection limit (ppb levels) performance of our device for the on-site detection and monitoring of multiple heavy metals in resource-limited settings.

  3. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.

    PubMed

    Li, Yong-Tao; Becquer, Thierry; Dai, Jun; Quantin, Cécile; Benedetti, Marc F

    2009-04-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils.

  4. Soil chemistry and pollution study of a closed landfill site at Ampar Tenang, Selangor, Malaysia.

    PubMed

    Mohd Adnan, Siti Nur Syahirah Binti; Yusoff, Sumiani; Piaw, Chua Yan

    2013-06-01

    A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals.

  5. A comparative study of heavy metal accumulation and antioxidant responses in Vaccinium myrtillus L. leaves in polluted and non-polluted areas.

    PubMed

    Kandziora-Ciupa, Marta; Ciepał, Ryszard; Nadgórska-Socha, Aleksandra; Barczyk, Gabriela

    2013-07-01

    The purpose of this study was to explore a possible relationship between the availability of metals in soil (Cd, Fe, Mn, Pb and Zn) and their concentrations in leaves of Vaccinium myrtillus L. as a species which has been reported to be a successful colonist of acid-and-heavy metal-contaminated soil. Analysis also concerned the antioxidant response of plants from three heavily polluted (immediate vicinity of: zinc smelter, iron smelter and power plant) and three relatively clean sites (nature reserve, ecological site and unprotected natural forest community) in southern Poland. The contents of glutathione, non-protein thiols, protein, proline and activity of guaiacol peroxidase in leaves of bilberry were measured. Generally, the concentrations of metals in the HNO3 and CaCl2 extracants of the soil from the polluted sites were higher. Moreover, the antioxidant responses were also elevated in bilberries in the polluted sites. Significant positive relationships between Cd, Pb and Zn concentrations in soil and in the plants were found. In the leaves of V. myrtillus from the polluted sites, higher concentrations of Cd, Pb and Zn were noted (In Miasteczko Śląskie respectively 6.26, 157.09 and 207.17 mg kg(-1) d.w.). We found a positive correlation between the increase in the NPTs and protein contents as well as the Cd, Pb and Zn concentrations in V. myrtillus. Cd, Pb and Zn also decreased guaiacol peroxidase activity. However, the activity of this enzyme increased under Fe. A decreasing trend in glutathione contents was observed with increasing iron and manganese concentrations in bilberry leaves. Parameters such as protein, non-protein -SH groups and changes in GPX activity seem to be universal, sensitive and correlated well with heavy metal stress.

  6. Assessment of the environmental significance of nutrients and heavy metal pollution in the river network of Serbia.

    PubMed

    Dević, Gordana; Sakan, Sanja; Đorđević, Dragana

    2016-01-01

    In this paper, the data for ten water quality variables collected during 2009 at 75 monitoring sites along the river network of Serbia are considered. The results are alarming because 48% of the studied sites were contaminated by Ni, Mn, Pb, As, and nutrients, which are key factors impairing the water quality of the rivers in Serbia. Special attention should be paid to Zn and Cu, listed in the priority toxic pollutants of US EPA for aquatic life protection. The employed Q-model cluster analysis grouped the data into three major pollution zones (low, moderate, and high). Most sites classified as "low pollution zones" (LP) were in the main rivers, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) were in the large and small tributaries/hydro-system. Principal component analysis/factor analysis (PCA/FA) showed that the dissolved metals and nutrients in the Serbian rivers varied depending on the river, the heterogeneity of the anthropogenic activities in the basins (influenced primarily by industrial wastewater, agricultural activities, and urban runoff pollution), and natural environmental variability, such as geological characteristics. In LP dominated non-point source pollution, such as agricultural and urban runoff, whereas mixed source pollution dominated in the MP and HP zones. These results provide information to be used for developing better pollution control strategies for the river network of Serbia.

  7. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates.

  8. A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing.

    PubMed

    Rout, Bhimsen

    2016-06-07

    The efficacy of a miniaturized unimolecular analytic system is illustrated. The easily accessible therapeutic chromophore "temoporfin", which responds differentially to bound metals at multiple wavelengths of Q-band absorption using chemometric analysis, expeditiously detects and discriminates a wide range of metals regarded as priority pollutants in water and hence may also be used for diagnosis of medically relevant metals in human urine. The molecule was further investigated as an electronic logic device, e.g. keypad lock device, to authorize multiple highly secure chemical passwords for information protection.

  9. A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing

    NASA Astrophysics Data System (ADS)

    Rout, Bhimsen

    2016-06-01

    The efficacy of a miniaturized unimolecular analytic system is illustrated. The easily accessible therapeutic chromophore “temoporfin”, which responds differentially to bound metals at multiple wavelengths of Q-band absorption using chemometric analysis, expeditiously detects and discriminates a wide range of metals regarded as priority pollutants in water and hence may also be used for diagnosis of medically relevant metals in human urine. The molecule was further investigated as an electronic logic device, e.g. keypad lock device, to authorize multiple highly secure chemical passwords for information protection.

  10. A Miniaturized Therapeutic Chromophore for Multiple Metal Pollutant Sensing, Pathological Metal Diagnosis and Logical Computing

    PubMed Central

    Rout, Bhimsen

    2016-01-01

    The efficacy of a miniaturized unimolecular analytic system is illustrated. The easily accessible therapeutic chromophore “temoporfin”, which responds differentially to bound metals at multiple wavelengths of Q-band absorption using chemometric analysis, expeditiously detects and discriminates a wide range of metals regarded as priority pollutants in water and hence may also be used for diagnosis of medically relevant metals in human urine. The molecule was further investigated as an electronic logic device, e.g. keypad lock device, to authorize multiple highly secure chemical passwords for information protection. PMID:27271817

  11. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, S.G.T.

    1994-12-06

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO[sub x] and optionally SO[sub 2] from a fluid using a metal ion (Fe[sup 2+]) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution. 26 figures.

  12. Metal chelate process to remove pollutants from fluids

    DOEpatents

    Chang, Shih-Ger T.

    1994-01-01

    The present invention relates to improved methods using an organic iron chelate to remove pollutants from fluids, such as flue gas. Specifically, the present invention relates to a process to remove NO.sub.x and optionally SO.sub.2 from a fluid using a metal ion (Fe.sup.2+) chelate wherein the ligand is a dimercapto compound wherein the --SH groups are attached to adjacent carbon atoms (HS--C--C--SH) or (SH--C--CCSH) and contain a polar functional group so that the ligand of DMC chelate is water soluble. Alternatively, the DMC' is covalently attached to a water insoluble substrate such as a polymer or resin, e.g., polystyrene. The chelate is regenerated using electroreduction or a chemical additive. The dimercapto compound bonded to a water insoluble substrate is also useful to lower the concentration or remove hazardous metal ions from an aqueous solution.

  13. Genetic structure and diversity of animal populations exposed to metal pollution.

    PubMed

    Mussali-Galante, Patricia; Tovar-Sánchez, Efraín; Valverde, Mahara; Rojas, Emilio

    2014-01-01

    ecotoxicological studies. Collectively, these points are designed to provide more accurate data and a deeper understanding of the relationship between alterations in genetic diversity of impacted populations and metal exposures. In particular, we believe that the exact nature of all tested chemical pollutants be clearly described, biomarkers be included, sentinel organisms be used, testing be performed at multiple experimental sites, reference populations be sampled in close geographical proximity to where pollution occurs, and genetic structure parameters and high-throughput technology be more actively employed. Furthermore, we propose a new class of biomarkers,termed "biomarkers of permanent effect," which may include measures of genetic variability in impacted populations.

  14. Analysis of Soil Heavy Metal Pollution and Pattern in Central Transylvania

    PubMed Central

    Suciu, Ioan; Cosma, Constantin; Todică, Mihai; Bolboacă, Sorana D.; Jäntschi, Lorentz

    2008-01-01

    The concentration of five soil heavy metals (Pb, Co, Cr, Cu, Hg) was measured in forty sampling sites in central Transylvania, Romania, regions known as centres of pollution due to the chemical and metallurgical activities. The soil samples were collected from locations where the ground is not sliding and the probability of alluvial deposits is small. The concentration of heavy metals was measured by using the Inductively Coupled Plasma Spectrometry method. Data were verified by using the Neutron Activation Analysis method. In some locations, the concentration for the investigated heavy metals exceeds the concentration admitted by the Romanian guideline. The highest concentration of lead (1521.8 ppm) and copper (1197.6 ppm) was found in Zlatna. The highest concentration of chromium was found in Târnăveni (1080 ppm). The maximum admitted concentrations in the sensitive areas revealed to be exceed from five to forty times. PMID:19325760

  15. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    PubMed

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  16. The Chemophytostabilisation Process of Heavy Metal Polluted Soil

    PubMed Central

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  17. Microbial Diffraction Gratings as Optical Detectors for Heavy Metal Pollutants

    NASA Technical Reports Server (NTRS)

    Noever, David; Matsos, Helen; Brittain, Andrew; Obenhuber, Don; Cronise, Raymond; Armstrong, Shannon

    1996-01-01

    As a significant industrial pollutant, cadmium is implicated as the cause of itai-itai disease. For biological detection of cadmium toxicity, an assay device has been developed using the motile response of the protozoa species, Tetrahymena pyriformis. This mobile protozoa measures 50 microns in diameter, swims at 10 body lengths per second, and aggregates into macroscopically visible patterns at high organism concentrations. The assay demonstrates a Cd(+2) sensitivity better than 1 micro-M and a toxicity threshold to 5 micro-M, thus encouraging the study of these microbial cultures as viable pollution detectors. Using two-dimensional diffraction patterns within a Tetrahymena culture, the scattered light intensity varies with different organism densities (population counts). The resulting density profile correlates strongly with the toxic effects at very low dosages for cadmium (less than 5 ppm) and then for poison protection directly (with nickel and copper antagonists competing with cadmium absorption). In particular, copper dosages as low as 0.1-0.5 mM Cu have shown protective antagonism against cadmium, have enhanced density variability for cultures containing 1 mM Cd(+2) and therefore have demonstrated the sensitivity of the optical detection system. In this way, such microbial diffraction patterns give a responsive optical measure of biological culture changes and toxicity determination in aqueous samples of heavy metals and industrial pollutants.

  18. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.

    PubMed

    Wang, YuanPeng; Shi, JiYan; Wang, Hui; Lin, Qi; Chen, XinCai; Chen, YingXu

    2007-05-01

    The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results showed that microbial biomass C was negatively affected by the elevated metal levels and was closely correlated with heavy metal stress. Enzyme activity was greatly depressed by conditions in the heavy metal-contaminated sites. Good correlation was observed between enzyme activity and the distance from the smelter. Elevated metal loadings resulted in changes in the activity of the soil microbe, as indicated by changes in their metabolic profiles from correlation analysis. Significant decrease of soil phosphatase activities was found in the soils 200 m away from the smelter. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis demonstrated that heavy metals pollution had a significant impact on bacterial and actinomycetic community structure. There were negative correlations between soil microbial biomass, phosphatase activity, and NH(4)NO(3) extractable heavy metals. The soil microorganism activity and community composition could be predicted significantly using the availability of Cu and Zn. By combining different monitoring approaches from different viewpoints, the set of methods applied in this study were sensitive to site differences and contributed to a better understanding of heavy metals effects on the structure, size and activity of microbial communities in soils. The data presented demonstrate the role of heavy metals pollution in understanding the heavy metal toxicity to soil microorganism near a copper smelter in China.

  19. Methodology for Identifying and Quantifying Metal Pollutant Sources in Storm Water Runoff

    DTIC Science & Technology

    2015-02-01

    February 2015 METHODOLOGY FOR IDENTIFYING AND QUANTIFYING METAL POLLUTANT SOURCES IN STORM WATER RUNOFF Edwin Chiang P.E. Naval Facilities Engineering...5a. CONTRACT NUMBER METHODOLOGY FOR IDENTIFYING AND QUANTIFYING METAL POLLUTANT SOURCES IN STORM WATER RUNOFF 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...This page intentionally left blank. v Methodology for Identifying and Quantifying Metal Pollutant Sources in Storm Water Runoff NESDI Project Number

  20. Assessment of Heavy Metal Pollution in Topsoil around Beijing Metropolis

    PubMed Central

    Sun, Ranhao; Chen, Liding

    2016-01-01

    The topsoil around Beijing metropolis, China, is experiencing impacts of rapid urbanization, intensive farming, and extensive industrial emissions. We analyzed the concentrations of Cu, Ni, Pb, Zn, Cd, and Cr from 87 topsoil samples in the pre-rainy season and 115 samples in the post-rainy season. These samples were attributed to nine land use types: forest, grass, shrub, orchard, wheat, cotton, spring maize, summer maize, and mixed farmland. The pollution index (PI) of heavy metals was calculated from the measured and background concentrations. The ecological risk index (RI) was assessed based on the PI values and toxic-response parameters. The results showed that the mean PI values of Pb, Cr, and Cd were > 1 while those of Cu, Ni, and Zn were < 1. All the samples had low ecological risk for Cu, Ni, Pb, Zn, and Cr while only 15.35% of samples had low ecological risk for Cd. Atmospheric transport rather than land use factors best explained the seasonal variations in heavy metal concentrations and the impact of atmospheric transport on heavy metal concentrations varied according to the heavy metal types. The concentrations of Cu, Cd, and Cr decreased from the pre- to post-rainy season, while those of Ni, Pb, and Zn increased during this period. Future research should be focused on the underlying atmospheric processes that lead to these spatial and seasonal variations in heavy metals. The policymaking on environmental management should pay close attention to potential ecological risks of Cd as well as identifying the transport pathways of different heavy metals. PMID:27159454

  1. Overview about polluted sites management by mining activities in coastal-desertic zones

    NASA Astrophysics Data System (ADS)

    Reyes, Arturo; Letelier, María Victoria; Arenas, Franko; Cuevas, Jacqueline; Fuentes, Bárbara

    2016-04-01

    In Chile the main mining operations as well as artisanal and small-scale mining (copper, gold and silver) are located in desert areas. A large number of abandoned polluted sites with heavy metals and metalloids (Hg, Pb, Cu, Sb, As) remain in coastal areas close to human centers. The aim of this work was to identify the best remediation alternatives considering the physic-chemical characteristics of the coastal-desertic soils. The concentrations of above mentioned pollutants as well as soil properties were determined. The results showed variable concentration of the pollutants, highest detected values were: Hg (46.5 mg kg-1), Pb (84.7 mg kg-1), Cu (283.0 mg kg-1), Sb (90 mg kg-1), As (2,691 mg kg-1). The soils characteristic were: high alkalinity with pH: 7.75-9.66, high electric conductivity (EC: 1.94-118 mScm-1), sodium adsorption ratio (SAR: 5.07-8.22) and low permeability of the soils. Coastal-desertic sites are potential sources of pollution for population, and for terrestrial and marine ecosystems. Exposure routes of pollution for the population include: primary, by incidental ingestion and inhalation of soil and dust and secondary, by the ingestion of marine sediments, sea food and seawater. Rehabilitation of coastal-desertic sites, by using techniques like soil washing in situ, chemical stabilization, or phytostabilization, is conditioned by physic-chemical properties of the soils. In these cases the recommendation for an appropriate management, remediation and use of the sites includes: 1) physic chemical characterization of the soils, 2) evaluation of environmental risk, 3) education of the population and 3) application of a remediation technology according to soil characteristic and the planned use of the sites. Acknowledgments: Funding for this study was supported by the Regional Council of Antofagasta under Project Estudio de ingeniería para la remediación de sitios abandonados con potencial presencia de contaminantes identificados en la comuna de

  2. Heavy Metal Pollution in Urban Soils of Sopron

    NASA Astrophysics Data System (ADS)

    Horváth, Adrienn; Bidló, András

    2014-05-01

    Keywords: anthropogenic effects, land use types, heavy metal content, polluted urban soils, GIS methods Our aim was to identify the main feedback effects between the town and its environment. In the course of our investigation we have analysed the heavy metal contents of urban soil in Sopron town in Hungary. We collected 208 samples on 104 points from 0 to 10 and from 10 to 20 cm depth in a standard network and also at industrial territories. We have been represented our results in a GIS system. We analysed the soils with Lakanen-Erviö method and we measured 24 elements but we have been focused on Co, Cd, Cu, Pb and Zn. Using the data we observed the relationship between these elements in both layers. In the downtown the acidity of soils were alkaline by the greatest number of point, therefore the pollution of these soils is not leach in deeper layers yet. The lead was very high (> 100 mg Pb/kg) in both layers on the whole area of the town. Urban soils with high copper content (among 611 mg and 1221 mg Cu/kg) have been collected from garden and viticulture areas by us. Cadmium contents were the highest (6.14 mg Cd/kg) in traffic zones, where these values could be more than 3 mg Cd/kg according to the literature. The cobalt and zinc results were under the limits. According to our measurements we founded the highest average values in the soils of parks. This could be contamination of the lead from traffic, which bind in the soil of urban green spaces. Now we could continue our examinations with the investigations of these polluted green areas, which can effect to human health.

  3. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-02-23

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  4. MetalS(3), a database-mining tool for the identification of structurally similar metal sites.

    PubMed

    Valasatava, Yana; Rosato, Antonio; Cavallaro, Gabriele; Andreini, Claudia

    2014-08-01

    We have developed a database search tool to identify metal sites having structural similarity to a query metal site structure within the MetalPDB database of minimal functional sites (MFSs) contained in metal-binding biological macromolecules. MFSs describe the local environment around the metal(s) independently of the larger context of the macromolecular structure. Such a local environment has a determinant role in tuning the chemical reactivity of the metal, ultimately contributing to the functional properties of the whole system. The database search tool, which we called MetalS(3) (Metal Sites Similarity Search), can be accessed through a Web interface at http://metalweb.cerm.unifi.it/tools/metals3/ . MetalS(3) uses a suitably adapted version of an algorithm that we previously developed to systematically compare the structure of the query metal site with each MFS in MetalPDB. For each MFS, the best superposition is kept. All these superpositions are then ranked according to the MetalS(3) scoring function and are presented to the user in tabular form. The user can interact with the output Web page to visualize the structural alignment or the sequence alignment derived from it. Options to filter the results are available. Test calculations show that the MetalS(3) output correlates well with expectations from protein homology considerations. Furthermore, we describe some usage scenarios that highlight the usefulness of MetalS(3) to obtain mechanistic and functional hints regardless of homology.

  5. Using stable isotope systematics and trace metals to constrain the dispersion of fish farm pollution

    NASA Astrophysics Data System (ADS)

    Torchinsky, A.; Shiel, A. E.; Price, M.; Weis, D. A.

    2010-12-01

    Fish farming is a growing industry of great economic importance to coastal communities. Unfortunately, open-net fish farming is associated with the release of organic and metal pollution, which has the potential to adversely affect the coastal marine environment. The dispersion of fish farm pollution and its environmental impact are not well understood/quantified. Pollutants released by fish farms include organic products such as uneaten feed pellets and fish feces, as well as chemicals and pharmaceuticals, all of which may enter marine ecosystems. In this study, we took advantage of bioaccumulation in passive suspension feeding Manila Clams collected at varying distances from an open-net salmon farm located in the Discovery Islands of British Columbia. Measurements of stable C and N isotopes, as well as trace metal concentrations, in the clams were used to investigate the spread of pollutants by detecting the presence of fish farm waste in the clams’ diet. Lead isotopic measurements were used to identify other significant anthropogenic pollution sources, which may impact the study area. Clams located within the areal extent of waste discharged by a fish farm are expected to exhibit anomalous light stable isotope ratios and metal concentrations, reflecting the presence of pollutants accumulated directly from seawater and from their diet. Clams were collected in the Discovery Islands from three sites in the Octopus Islands, located 850 m, 2100 m and 3000 m north of the Cyrus Rocks salmon farm (near Quadra Island) and from a reference site on Penn Island. Light stable isotope ratios (δN = ~10‰, with little variation between sites, and δC from -14.5 to -17.3‰) of the clams suggest that the most distal site (i.e., 3000 m away) is most impacted by organic fish farm waste (i.e., food pellets and feces) and that contributions of organic waste actually decrease closer to the farm. Not surprisingly, the smallest contribution of organic waste was detected in clams

  6. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.

    PubMed

    Usman, Adel R A; Lee, Sang Soo; Awad, Yasser M; Lim, Kyoung Jae; Yang, Jae E; Ok, Yong Sik

    2012-05-01

    In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAF(shoots) and BAF(roots)) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg(-1), 27.78-120.83 mg kg(-1), and 0.13-9.43 mg kg(-1), respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg(-1)) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAF(shoot) (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAF(root) values>1 and TF values<1 were suitable; however, Typha orientalis was the best for Cr.

  7. Assessment of trace metal air pollution in Paris using slurry-TXRF analysis on cemetery mosses.

    PubMed

    Natali, Marco; Zanella, Augusto; Rankovic, Aleksandar; Banas, Damien; Cantaluppi, Chiara; Abbadie, Luc; Lata, Jean -Christophe

    2016-12-01

    Mosses are useful, ubiquitous accumulation biomonitors and as such can be used for biomonitoring surveys. However, the biomonitoring of atmospheric pollution can be compromised in urban contexts if the targeted biomonitors are regularly disturbed, irregularly distributed, or are difficult to access. Here, we test the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled mosses growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. We focused on Grimmia pulvinata (Hedwig) Smith, a species abundantly found in all studied cemeteries and very common in Europe. The concentration of Al, As, Br, Ca, Ce, Cl, Cr, Cu, Fe, K, Mn, Ni, V, P, Pb, Rb, S, Sr, Ti, and Zn was determined by a total reflection X-ray fluorescence technique coupled with a slurry sampling method (slurry-TXRF). This method avoids a digestion step, reduces the risk of sample contamination, and works even at low sample quantities. Elemental markers of road traffic indicated that the highest polluted cemeteries were located near the highly frequented Parisian ring road and under the influence of prevailing winds. The sites with the lowest pollution were found not only in the peri-urban cemeteries, adjoining forest or farming landscapes, but also in the large and relatively wooded cemeteries located in the center of Paris. Our results suggest that (1) slurry-TXRF might be successfully used with moss material, (2) G. pulvinata might be a good biomonitor of trace metals air pollution in urban context, and (3) cemetery moss sampling could be a useful complement for monitoring urban areas. Graphical abstract We tested the hypothesis that cemeteries are appropriate moss sampling sites for the evaluation of air pollution in urban areas. We sampled 110 moss cushions (Grimmia pulvinata) growing on gravestones in 21 urban and peri-urban cemeteries in the Paris metropolitan area. The concentration of 20

  8. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  9. Relative importance of multiple environmental variables in structuring benthic macroinfaunal assemblages in chronically metal-polluted salt marshes.

    PubMed

    Goto, Daisuke; Wallace, William G

    2010-03-01

    In this study, we assessed importance of sediment-associated trace metals in structuring benthic macroinfaunal assemblages along multiple environmental gradients in chronically polluted salt marshes of the Arthur Kill - AK (New York, USA). More than 90% of benthic macroinfaunal communities at the northern AK sites consisted of a considerably large number of only a few polychaete and oligochaete species. Approximately 70% of among-site variances in abundance and biomass of benthic macroinfaunal communities was strongly associated with a few environmental variables; only sediment-associated mercury consistently contributed to a significant proportion of the explained variances in species composition along natural environmental gradients (e.g., salinity). Although sediment-associated copper, lead, and zinc were substantially elevated at some of the AK sites, their ecological impacts on benthic macroinfaunal communities appeared to be negligible. These findings suggest that cumulative metal-specific impacts may have played an important role in structuring benthic macroinfaunal communities in chronically polluted AK ecosystems.

  10. Comparison of the effects of pollution on the marine bivalve Donax trunculus in the vicinity of polluted sites with specimens from a clean reference site (Mediterranean Sea).

    PubMed

    Yawetz, Aminadav; Fishelson, Lev; Bresler, Vladimir; Manelis, Rami

    2010-02-01

    The physiological and biochemical characteristics of tissue samples of the marine mussel, Donax trunculus, from an oil-polluted site (Qiryat Yam) and from a site adjacent to an industrial factory (Frutarom) producing polyvinyl chloride (PVC) were compared with samples from a clean reference site (Akko). All sites were located along the sandy shores of the Israeli Mediterranean Sea. The mussels from the oil-polluted site showed increased activity of the system of active transport of organic anions (SATOA) in the gills and the renocardial organ and also of the multixenobiotic resistance transporter (MXR) in the gills. In contrast, samples collected near the PVC factory showed a decrease in SATOA activity and no increase in the activity of MXR in the gills. Specimens from the reference site demonstrated a redox state of equilibrium between energy production and utilization, while in Donax from both the oil polluted and the PVC-polluted sites, the mitochondrial redox state reflected intensive consumption of energy. No significant changes were found in the activity of reduced glutathione s-transferase (GST) in the cytosolic fraction of the digestive gland of Donax collected from any of the three sites. The data demonstrate a differential increase in the anti-chemical defense systems and an intensification of energy metabolism in the mussels exposed to pollution.

  11. Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment.

    PubMed

    Chakraborty, Sukalyan; Bhattacharya, Tanushree; Singh, Gurmeet; Maity, Jyoti Prakash

    2014-02-01

    Metal pollution in the marine coastline environment is an important topical issue in the context of ecological disturbance and climate change. Heavy metal contaminations (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in seawater and surficial sediments, as well as macroalgal diversity, were determined in six different locations along the coast of the Gulf of Kutch in India. The marine coastline environment was found to be enriched with Cd and Zn in comparison to other metals. Significant (p ≤ 0.05) inter-elemental positive-correlations were observed between Fe-Mn, Fe-Cu, Fe-Cr, Fe-Zn, Cr-Cu, Cu-Mn, and Cd-Zn, as well as negative-correlations between Cd-Pb, Ni-Pb, and Zn-Pb. Though genus specific macroalgal responses to heavy metal accumulation were significant, species specific response was insignificant (p ≤ 0.05). The relative abundance of metals in macroalgae followed the order of Fe>Zn>Mn>Cu>Cd>Cr>Ni>Pb. The high uptake of metals in green algae (Ulva lactuca and Enteromorpha intestinalis) and brown algae (Padina gymnospora and Dictyota bartayresiana) suggested that these algae may be used as potential biomonitors for heavy metal pollution. Three pollution indicators, Contamination Factor (CF), Enrichment Factor (EF) and Geochemical Index (Igeo) were calculated to determine the degree of metal pollution in the marine coastline and the contribution of anthropogenic influence.

  12. Phytoremediation efficiency OF CD by Eucalyptus globulus transplanted from polluted and unpolluted sites.

    PubMed

    Luo, Jie; Qi, Shihua; Peng, Li; Wang, Jinji

    2016-01-01

    The capacity of plants to uptake heavy metals from contaminated soils has shown great phytoremediation potential. The development, resistibility and Cd extraction of Eucalyptus globulus individuals from metalliferous and clean sites in different years were analyzed under a specific environment. Eucalyptus globulus planted in Guiyu for phytoremediation or cultivated in an uncontaminated, natural environment for economic purposes were transplanted to Yuecheng town, which, in recent years, has been involved in the e-waste dismantling and recycling business, to compare the phytoremediation efficiency of Eucalyptus globulus trees grown in different environments. Trees cultivated in polluted areas can remove far more Cd and Hg from the contaminated soil than the individuals from clean soils because metalliferous Eucalyptus globulus can produce more biomass and uptake more heavy metals than nonmetalliferous plants per year. As polluted environments negatively affect the growth of plants, we speculated that the phytoremediation efficiency of metalliferous Eucalyptus globulus should decrease over time and that nonmetalliferous trees should adapt to the local environment.

  13. Increased site fertility and litter decomposition rate in high-pollution sites in the San Bernardino Mountains

    SciTech Connect

    Fenn, M. )

    1991-09-01

    Some possible factors causing enhanced litter decomposition in high-pollution sites in the San Bernardino Mountains of southern California were investigated. Nitrogen concentration of soil, as well as foliage and litter of ponderosa pine (Pinus ponderosa Laws.) and Jeffrey pine (Pinus jeffreyi Grev, and Balf.) were greater in high-pollution plots than in moderate- or low-pollution plots. Nitrogen concentration of soil, foliage, and litter of ponderosa pine (ozone-sensitive), and of the ozone-tolerant species, sugar pine (Pinus lambertiana Dougl.) and incense cedar (Calocedrus decurrens (Torr.) Florin.), were all higher at a higher pollution site than at a moderate-pollution site. The rate of litter decomposition for all three species was also greater at the high-pollution site. Results suggest than the primary factor causing enhanced decomposition of L-layer litter in high-pollution plots is greater site fertility, leading to the production of foliage and litter that is higher in N than litter from moderate- or low-pollution plots.

  14. Three centuries of heavy metal pollution in Paris (France) recorded by urban speleothems.

    PubMed

    Pons-Branchu, Edwige; Ayrault, Sophie; Roy-Barman, Matthieu; Bordier, Louise; Borst, Wolfgang; Branchu, Philippe; Douville, Eric; Dumont, Emmanuel

    2015-06-15

    The first record of urban speleothems used to reconstruct the history of heavy metal pollution of shallow groundwaters is presented. Two speleothems grew during the last 300 years in an underground aqueduct in the north-eastern part of Paris. They display high Pb, Mn V, Cu, Cd and Al concentrations since 1900 due to the urbanization of the site which triggered anthropogenic contamination of the water feeding the speleothems. Surprisingly, these heavy metal concentrations are also high in the oldest part. This early pollution could come from the use of Parisian waste as fertilizers in the orchards and vineyards cultivated above the aqueduct before urbanization. Lead isotopes were measured in these carbonates as well as in lead artifacts from the 17th-18th centuries ((206)Pb/(207)Pb=1.180+/-0.003). The mean (206)Pb/(207)Pb ratio, for one of the speleothems is 1.181+/-0.003 unvarying with time. These lead signatures are close to those of coal and old lead from northern European mines, lower than the natural background signature. It confirms that the high metal concentrations found come from anthropogenic pollution. Conversely, the lead isotopic composition of the second speleothem presents two temporal trends: for the oldest levels, the mean value (1.183+/-0.003) is similar to the first speleothem. For the youngest part, a lower value (1.172+/-0.005) is recorded, evidencing the contribution of a new lead source at the beginning of the industrial revolution. Pb isotopes were also measured in recent samples from a nearby superficial site. The first sample is a recent (AD 1975+/-15 years) deposit ((206)Pb/(207)Pb=1.148+/-0.003), and the second, a thin subactual layer ((206)Pb/(207)Pb=1.181+/-0.002). These data are compatible with the adding of anthropogenic sources (leaded gasoline and industrial lead from Rio Tinto ore).

  15. Protection of SAAO observing site against light and dust pollution

    NASA Astrophysics Data System (ADS)

    Sefako, Ramotholo; Väisänen, Petri

    2016-10-01

    The South African Astronomical Observatory (SAAO) observing station near Sutherland, Northern Cape in South Africa, is one of the darkest sites in the world for optical and IR astronomy. The SAAO hosts and operates several facilities, including the Southern African Large Telescope (SALT) and a number of international robotic telescopes. To ensure that the conditions remain optimal for astronomy, legislation called the Astronomy Geographic Advantage (AGA) Act, of 2007, was enacted. The Act empowers the Department of Science and Technology (DST) to regulate issues that pose a threat to optical and/or radio astronomy in areas declared Astronomy Advantage Areas in South Africa. For optical astronomy, the main challenges are those posed by light and dust pollution as result of wind energy developments, and petroleum gas and oil exploration/exploitation in the area. We give an update of possible threats to the quality of the night skies at SAAO, and the challenges relating to the AGA Act implementation and enforcement. We discuss measures that are put in place to protect the Observatory, including a study to quantify the threat by a planned wind energy facility.

  16. Heavy metal pollution status in surface sediments of Swan Lake lagoon and Rongcheng Bay in the northern Yellow Sea.

    PubMed

    Huang, Lili; Pu, Xinming; Pan, Jin-Fen; Wang, Bo

    2013-11-01

    The national 'Shandong Peninsula Blue Economic Zone Development Plan' compels the further understanding of the distribution and potential risk of metals pollution in the east coast of China, where the rapid economic and urban development have been taken off and metal pollution has become a noticeable problem. Surface sediments collected from the largest swan habitat in Asia, the Swan Lake lagoon and the surrounding coastal area in Rongcheng Bay in northern Yellow Sea, were analyzed for the total metal concentrations and chemical phase partitioning of five heavy metals (Cu, Zn, Pb, Cd, and Cr). Metal contents in the studied region have increased significantly in the past decade. The speciation analyzed by the sequential extraction showed that Zn and Cr were present dominantly in the residual fraction and thus of low bioavailability, while Cd, Pb and Cu were found mostly in the non-residual fraction thus of high potential availability, indicating significant anthropogenic sources. Among the five metals, Cd is the most outstanding pollutant and presents high risk, and half of the surface sediments in the studied region had a 21% probability of toxicity based on the mean Effect Range-Median Quotient. At some stations with comparable total metal contents, remarkably different non-residual fraction portions were determined, pointing out that site-specific risk assessment integrating speciation is crucial for better management practices of coastal sediments.

  17. Critical review of heavy metal pollution of traffic area runoff: Occurrence, influencing factors, and partitioning.

    PubMed

    Huber, Maximilian; Welker, Antje; Helmreich, Brigitte

    2016-01-15

    A dataset of 294 monitored sites from six continents (Africa, Asia, Australia, Europe, North and South America) was compiled and evaluated to characterize the occurrence and fate of heavy metals in eight traffic area categories (parking lots, bridges, and three types each of both roads and highways). In addition, site-specific (fixed and climatic) and method-specific (related to sample collection, preparation, and analysis) factors that influence the results of the studies are summarized. These factors should be considered in site descriptions, conducting monitoring programs, and implementing a database for further research. Historical trends for Pb show a sharp decrease during recent decades, and the median total Pb concentrations of the 21st century for North America and Europe are approximately 15 μg/L. No historical trend is detected for Zn. Zn concentrations are very variable in traffic area runoff compared with other heavy metals because of its presence in galvanized structures and crumbs of car tire rubber. Heavy metal runoff concentrations of parking lots differ widely according to their use (e.g., employee, supermarket, rest areas for trucks). Bridge deck runoff can contain high Zn concentrations from safety fences and galvanizing elements. Roads with more than 5000 vehicles per day are often more polluted than highways because of other site-specific factors such as traffic signals. Four relevant heavy metals (Zn, Cu, Ni, and Cd) can occur in the dissolved phase. Knowledge of metal partitioning is important to optimize stormwater treatment strategies and prevent toxic effects to organisms in receiving waters.

  18. DEVELOPMENT OF THE U.S. EPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL

    EPA Science Inventory

    Metal finishing processes are a type of chemical processes and can be modeled using Computer Aided Process Engineering (CAPE). Currently, the U.S. EPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a pollution prevention software tool for the meta...

  19. IMPLEMENTATION OF USEPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T) - 2003

    EPA Science Inventory

    To help metal finishing facilities meet the goal of profitable pollution prevention, the USEPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a computer program that estimates the rate of solid, liquid waste generation and air emissions. This progr...

  20. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    PubMed

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.

  1. Decomposer animal communities in forest soil along heavy metal pollution gradient.

    PubMed

    Haimi, J; Siira-Pietikäinen, A

    1996-03-01

    Responses of soil decomposer animals to heavy metal contamination and to concomitant changes in organic matter quality and quantity and in soil microbial biomasses have been studied along a pollution gradient from a Cu-Ni smelter. Samples have been taken separately for nematodes, enchytraeids and microarthropods 0.5, 2 and 8 km from the smelter. Special attention has been paid to the changes in the collembolan fauna. The sampling sites have been located in homogeneous Scots pine ( Pinus sylvestris) forests with podsolic soil profiles. In addition, an experiment has been carried out in which intact soil cores have been transferred in mesh baskets between the sites 2 and 8 km from the smelter (control samples have been transferred within the sites). Although most soil animals seemed to be quite resistant to direct and indirect effects of heavy metals, results indicate that certain soil animals like enchytraeids can be useful and easy to monitor when the effects of heavy metals on soil decomposition systems are assessed.

  2. Health Risk-Based Assessment and Management of Heavy Metals-Contaminated Soil Sites in Taiwan

    PubMed Central

    Lai, Hung-Yu; Hseu, Zeng-Yei; Chen, Ting-Chien; Chen, Bo-Ching; Guo, Horng-Yuh; Chen, Zueng-Sang

    2010-01-01

    Risk-based assessment is a way to evaluate the potential hazards of contaminated sites and is based on considering linkages between pollution sources, pathways, and receptors. These linkages can be broken by source reduction, pathway management, and modifying exposure of the receptors. In Taiwan, the Soil and Groundwater Pollution Remediation Act (SGWPR Act) uses one target regulation to evaluate the contamination status of soil and groundwater pollution. More than 600 sites contaminated with heavy metals (HMs) have been remediated and the costs of this process are always high. Besides using soil remediation techniques to remove contaminants from these sites, the selection of possible remediation methods to obtain rapid risk reduction is permissible and of increasing interest. This paper discusses previous soil remediation techniques applied to different sites in Taiwan and also clarified the differences of risk assessment before and after soil remediation obtained by applying different risk assessment models. This paper also includes many case studies on: (1) food safety risk assessment for brown rice growing in a HMs-contaminated site; (2) a tiered approach to health risk assessment for a contaminated site; (3) risk assessment for phytoremediation techniques applied in HMs-contaminated sites; and (4) soil remediation cost analysis for contaminated sites in Taiwan. PMID:21139851

  3. Cellular stress reactions assessed by gender and species in spiders from areas variously polluted with heavy metals.

    PubMed

    Wilczek, Grazyna; Babczyńska, Agnieszka; Wilczek, Piotr; Dolezych, Bogdan; Migula, Paweł; Młyńska, Hanna

    2008-05-01

    In the funnel web spider Agelena labyrinthica (Agelenidae; A. l.), sheet web spider Linyphia triangularis (Linyphiidae; L. t.) and wolf spider Xerolycosa nemoralis (Lycosidae; X. n.) from two differently polluted meadow sites in southern Poland, we studied the relations between antioxidant parameters (glutathione, GSH; glutathione peroxidases, GPOX, GSTPx; catalase, CAT; stress proteins-Hsp70, metallothioneins Mts), the intensity of apoptosis and necrosis, and heavy metal burdens of the midgut gland. Cellular reactions against stress caused by pollutants seemed to be sex-dependent. The concentrations of Zn and Cu in the midgut glands of male A. l. and X. n. were more than double that of the females, from both study sites. In male spiders from the heavily polluted site, both negative correlations (activity of caspase-3-like proteins vs Cu, Zn concentration; number of depolarized mitochondria vs Cu concentration) and positive correlations (number of necrotic cells vs Cu concentrations; activity of CAT vs Zn ) were noted. The defense of males against high metal content and its prooxidative effects is based mainly on GSH and CAT. In females the antioxidative reactions are species-specific and depend mainly on high peroxidase activity and on stress protein level. The increase in the number of apoptotic cells in the midgut gland of female spiders from the heavily polluted site suggests the defensive role of this process in maintaining the proper functioning of this organ.

  4. Heavy Metals Phytoextraction from the Polluted Soils of Zakamensk (Russia)

    NASA Astrophysics Data System (ADS)

    Ubugunov, V.; Dorzhonova, V.; Ubugunov, L.

    2012-04-01

    Mining and ore-dressing are one of the most serious causes of environment pollution. Last century in days of active industrialization in Russia a considerable quantity of mineral deposits has been developed. It was not given sufficient attention for ecological safety at that time. After an economic crisis connected with disorder of the USSR and a planned economy, a number of the enterprises became bankrupts and have stopped the activity. As a result the broken landscapes have not been recultivated everywhere, there were numerous wastes. The negative consequences were especially strongly manifested in areas with severe climatic conditions where environmental self-renewal occurred is slowed rather down. The degree of a waste toxicity also acted as the important factor. One of such situations has arisen in Zakamensk - an administrative center of Zakamensky area of Buryat Republic (Russia). Environmental problems of the town have arisen in connection with activity of town-forming enterprise - Dzhidinsky tungsten-molybdenum industrial complex. The enterprise has been organized in 1934 and functioned within 63 years till 1997. During enterprise operating time 3 deposits have been exploited and is created 2 large (more than 40 million tons) tails depository of technogenic sands (TS), located in immediate proximity (less than 1-2 km) from a town residential zone.Sand of tails are rather toxic, the average maintenance of heavy metals in them is (mg/kg): Cd - 42, Pb - 7500, Zn - 3160, Cu - 620, Ni - 34, Co - 44, Mn - 121, Cr - 70, Hg - 0,01, As - 13, Mo - 90. Due to the lack of knowledges on the toxicity of TS in the past century, they were actively used in the road and house construction, during the erection of dams. After scientific studies they were recommended for using as fertilizers. Besides anthropogenic sands movement, there was intensive dispersion of sand by means of water and wind erosion. As a result of natural migration sands got to the subordinated elements of

  5. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    PubMed

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  6. Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem.

    PubMed

    Zhou, Qunfang; Zhang, Jianbin; Fu, Jianjie; Shi, Jianbo; Jiang, Guibin

    2008-01-14

    Wide occurrence of aquatic metal pollution has caused much attention. Biomonitoring offers an appealing tool for the assessment of metal pollution in aquatic ecosystem. The bioindicators including algae, macrophyte, zooplankton, insect, bivalve mollusks, gastropod, fish, amphibian and others are enumerated and compared for their advantages and disadvantages in practical biomonitoring of aquatic metal pollution. The common biomonitoring techniques classified as bioaccumulation, biochemical alterations, morphological and behavior observation, population- and community-level approaches and modeling are discussed. The potential applications of biomonitoring are proposed to mainly include evaluation of actual aquatic metal pollution, bioremediation, toxicology prediction and researches on toxicological mechanism. Further perspectives are made for the biomonitoring of metal pollution in aquatic ecosystem.

  7. Leaf litter breakdown, microbial respiration and shredder production in metal-polluted streams

    USGS Publications Warehouse

    Carlisle, D.M.; Clements, W.H.

    2005-01-01

    1. If species disproportionately influence ecosystem functioning and also differ in their sensitivities to environmental conditions, the selective removal of species by anthropogenic stressors may lead to strong effects on ecosystem processes. We evaluated whether these circumstances held for several Colorado, U.S.A. streams stressed by Zn. 2. Benthic invertebrates and chemistry were sampled in five second-third order streams for 1 year. Study streams differed in dissolved metal concentrations, but were otherwise similar in chemical and physical characteristics. Secondary production of leaf-shredding insects was estimated using the increment summation and size-frequency methods. Leaf litter breakdown rates were estimated by retrieving litter-bags over a 171 day period. Microbial activity on leaf litter was measured in the laboratory using changes in oxygen concentration over a 48 h incubation period. 3. Dissolved Zn concentrations varied eightfold among two reference and three polluted streams. Total secondary production of shredders was negatively associated with metal contamination. Secondary production in reference streams was dominated by Taenionema pallidum. Results of previous studies and the current investigation demonstrate that this shredder is highly sensitive to metals in Colorado headwater streams. Leaf litter breakdown rates were similar between reference streams and declined significantly in the polluted streams. Microbial respiration at the most contaminated site was significantly lower than at reference sites. 4. Our results supported the hypothesis that some shredder species contribute disproportionately to leaf litter breakdown. Furthermore, the functionally dominant taxon was also the most sensitive to metal contamination. We conclude that leaf litter breakdown in our study streams lacked functional redundancy and was therefore highly sensitive to contaminant-induced alterations in community structure. We argue for the necessity of simultaneously

  8. Hazardous metal pollution in a protected coastal area from Northern Patagonia (Argentina).

    PubMed

    Marinho, C H; Giarratano, E; Esteves, J L; Narvarte, M A; Gil, M N

    2017-01-13

    The San Antonio Bay is a protected natural coastal area of Argentina that has been exposed to mining wastes over the last three decades. Iron and trace metals of potential concern to biota and human health (Cd, Pb, Cu, and Zn) were investigated in the sediments from the bay and in the soils of the Pile (mining wastes). Concentrations of Cd (45 mg kg(-1)), Pb (42,853 mg kg(-1)), Cu (24,505 mg kg(-1)), and Zn (28,686 mg kg(-1)) in the soils Pile exceeded guidelines for agricultural, residential, and industrial land uses. Risk assessment due to exposure to contaminated soils (Pile) was performed. Hazard quotients were superior to non-risk (HQ >1) for all trace metals, while accumulative hazard quotient index indicated a high risk for children (HI = 93) and moderate for adults (HI = 9). In the bay, sediments closest to the Pile (mudflat and salt marsh) exceeded sediment quality guidelines for protection of biota. Results of different acid extraction methods suggest that most of the pseudototal content was potentially mobile. Principal component analysis indicated that the sites near the Pile (Encerrado channel) were more polluted than the distal ones. Tissues of Spartina spp. located within Encerrado channel showed the highest metal levels among all studied sites. These results show that the problem still persists and the mining wastes are the sources of the pollution. Furthermore, the Encerrado channel is a highly impacted area, as it is shown by their metal enriched sediments.

  9. Air Pollution Monitoring Site Selection by Multiple Criteria Decision Analysis

    EPA Science Inventory

    Criteria air pollutants (particulate matter, sulfur dioxide, oxides of nitrogen, volatile organic compounds, and carbon monoxide) as well as toxic air pollutants are a global concern. A particular scenario that is receiving increased attention in the research is the exposure to t...

  10. Assessing heavy metal pollution using Great Tits (Parus major): feathers and excrements from nestlings and adults.

    PubMed

    Costa, R A; Eeva, T; Eira, C; Vaqueiro, J; Vingada, J V

    2013-06-01

    Passerine species have been increasingly used as bioindicators of metal bioaccumulation especially by taking benefit of non-invasive procedures, such as collecting feathers and excrements. In 2009, metal (As, Cd, Cu, Hg, Ni, Pb, Se and Zn) concentrations were determined in feathers and excrements of nestling and adult female great tits (Parus major) in industrial (a paper mill) and rural sites in maritime pine forests on the west coast of Portugal. The aim of this study was to compare the levels of metals between the areas but also between sampling methods (feather vs. excrement) and age classes (nestling vs. adult). Although excrements and feathers of nestling great tits showed different concentrations, similar patterns of accumulation were detected in both study areas. There was a significantly higher concentration of mercury in the industrial area and significantly higher concentrations of arsenic in the rural area in both sample types. Metal levels in adult females had quite different results when compared to nestlings, and only nickel presented significantly higher levels near the paper mill. Since metal levels showed a consistent pattern in feathers and excrements of nestling great tits, we conclude that both represent good and non-invasive methods for the evaluation of these elements in polluted areas.

  11. Causes of daily cycle variability of atmospheric pollutants in a western Mediterranean urban site (DAURE campaign)

    NASA Astrophysics Data System (ADS)

    Reche, Cristina; Moreno, Teresa; Viana, Mar; Querol, Xavier; Alastuey, Andrés.; Jimenez, Jose L.; Pandolfi, Marco; Amato, Fulvio; Pérez, Noemí; Moreno, Natalia

    2010-05-01

    The 2009 DAURE Aerosol Campaign (23-February-2009 to 27-March-2009 and 1-July to 31-July) (see Presentation: Pandolfi et al., section AS3.2) had the objective of characterising the main sources and chemical processes controlling atmospheric pollution due to particulate matter in the Mediterranean site of Barcelona (Spain). An urban and a rural background site were selected in order to describe both kinds of pollution setting. Several parameters were taken into consideration, including the variability of mass concentration in the coarse and fine fractions, particle number, amount of black carbon and the concentration of gaseous pollutants (SO2, H2S, NO, NO2, CO, O3) present. Comparisons between the chemical composition of ambient atmospheric particles during day versus night were made using twelve-hour PM samples. The data shown here are focused on results obtained for the urban site where two main atmospheric settings were distinguishable in winter, namely Atlantic advection versus local air mass recirculation. During the warmer months Saharan dust intrusions added a third important influence on PM background. The data demonstrate that superimposed upon these background influences on city air quality are important local contributions from road traffic, construction-demolition works and shipping. There is also a major local contribution of secondary aerosols, with elevated number of particles occurring at midday (and especially in summer) when nucleation processes are favoured by photochemistry. Concentrations of SO2 peak at different times to the other gaseous pollutants due to regular daytime onshore south-easterly breezes bringing harbour emissions into the city. Road traffic in Barcelona also has a great impact on air quality, as demonstrated by daily and weekly cycles of gaseous pollutants, black carbon and the finer fraction of PM, with peaks being coincident with traffic rush-hours (8-10h and 20-22h), levels of pollution increasing from Monday to Friday, and

  12. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China

    PubMed Central

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream. PMID:26366176

  13. Risk Assessment and Prediction of Heavy Metal Pollution in Groundwater and River Sediment: A Case Study of a Typical Agricultural Irrigation Area in Northeast China.

    PubMed

    Zhong, Shuang; Geng, Hui; Zhang, Fengjun; Liu, Zhaoying; Wang, Tianye; Song, Boyu

    2015-01-01

    The areas with typical municipal sewage discharge river and irrigation water function were selected as study sites in northeast China. The samples from groundwater and river sediment in this area were collected for the concentrations and forms of heavy metals (Cr(VI), Cd, As, and Pb) analysis. The risk assessment of heavy metal pollution was conducted based on single-factor pollution index (I) and Nemerow pollution index (NI). The results showed that only one groundwater sampling site reached a polluted level of heavy metals. There was a high potential ecological risk of Cd on the N21-2 sampling site in river sediment. The morphological analysis results of heavy metals in sediment showed that the release of heavy metals can be inferred as one of the main pollution sources of groundwater. In addition, the changes in the concentration and migration scope of As were predicted by using the Groundwater Modeling System (GMS). The predicted results showed that As will migrate downstream in the next decade, and the changing trend of As polluted areas was changed with As content districts because of some pump wells downstream to form groundwater depression cone, which made the solute transfer upstream.

  14. Genetic diversity of the giant tiger prawn Penaeus monodon in relation to trace metal pollution at the Tanzanian coast.

    PubMed

    Rumisha, Cyrus; Leermakers, Martine; Elskens, Marc; Mdegela, Robinson H; Gwakisa, Paul; Kochzius, Marc

    2017-01-30

    The genetic diversity of giant tiger prawns in relation to trace metals (TMs) pollution was analysed using 159 individuals from eight sites at the Tanzanian coast. The seven microsatellites analysed showed high degree of polymorphism (4-44 alleles). The measured genetic diversity (Ho=0.592±0.047) was comparable to that of populations in the Western Indian Ocean. Apart from that, correlation analysis revealed significant negative associations between genetic diversity and TMs pollution (p<0.05), supporting the genetic erosion hypothesis. Limited gene flow was indicated by a significant genetic differentiation (FST=0.059, p<0.05). The Mantel test rejected the isolation-by-distance hypothesis, but revealed that gene flow along the Tanzanian coast is limited by TMs pollution. This suggests that TMs affect larvae settlement and it may account for the measured deficiency of heterozygosity. This calls for strengthened pollution control measures in order to conserve this commercially important species.

  15. [Pollution characteristics and ecological risk assessment of heavy metals in surface sediments of Qingshan Reservoir in Lin' an City, Zhejiang Province of East China].

    PubMed

    Zhang, Fen; Yang, Chang-Ming; Pan, Rui-Jie

    2013-09-01

    A total of 8 representative surface sediment sampling sites were collected from the Qingshan Reservoir in Lin'an City of Zhejiang Province to investigate the differences in the total concentrations of As, Cr, Cu, Ni, Mn, Pb, and Zn among the sampling sites. The different forms of the heavy metals, i. e., acid soluble, easily reducible, easily oxidizable, and residual, were determined by BCR sequential extraction method, and the pollution degrees and potential ecological risk, of the heavy metals in the surface sediments at different sampling sites of the Reservoir were assessed by using geo-accumulation index (I(geo)) and Hakanson potential ecological risk index. There existed obvious spatial differences in the total concentrations of the heavy metals in the surface sediments of the Reservoir. The sampling sites nearby the estuaries of the tributaries flowing through downtowns and heavy industrial parks to the Reservoir had obviously higher heavy metals concentrations in surface sediments, as compared to the other sampling sites. In the sediments, Mn was mainly in acid extractable form, Cu and Pb were mainly in reducible form, and As was mainly in residual form. The surface sediments at the sampling sites nearby the estuaries of the tributaries flowing through downtowns to the Reservoir had higher proportions of acid extractable and reducibles forms of the heavy metals, which would have definite potential toxic risk to aquatic organisms. Among the 7 heavy metals in the surface sediments, As showed the highest pollution degree, followed by Cu, Ni, Mn, Pb, and Zn, which were at moderate pollution degree, while Cr was at non-pollution degree, with relatively low potential ecological risk. Through the comparison of the sampling sites, it was observed that the surface sediments at the sites nearby the estuaries of Jinxi River and Hengxi River flowing through downtowns and heavy industrial parks to the Reservoir showed obviously higher heavy metals pollution degree and

  16. Assessment of metal pollution in Onsan Bay, Korea using Asian periwinkle Littorina brevicula as a biomonitor.

    PubMed

    Kang, S G; Choi, M S; Oh, I S; Wright, D A; Koh, C H

    1999-08-30

    Cadmium (Cd), lead (Pb), copper (Cu) and zinc (Zn) concentrations in the marine gastropod, Littorina brevicula Philippi, were determined to assess the metal pollution in Onsan Bay, Korea. Samples of L. brevicula employed as a biomonitor and seawater were collected from 12 to 20 stations of Onsan Bay in November 1997, respectively. Dissolved metal concentrations in surface seawater were highest at the station near Onsan Non-ferrous Industrial Complex: 1.15 micrograms l-1 for Cd, 2.49 micrograms l-1 for Pb, 3.75 micrograms l-1 for Cu and 23.98 micrograms l-1 for Zn. These values were 1-2 orders higher than those shown at outer regions of the Bay. Metal concentrations in the soft body of periwinkles were highly variable at different sampling locations: 0.48-27.11 micrograms g-1 for Cd, 1.41-24.91 micrograms g-1 for Pb, 57-664 micrograms g-1 for Cu and 83-246 micrograms g-1 for Zn. The values from stations near the industrial complex were higher than those expected from relationships between body sizes and metal body burdens in periwinkles collected from the whole Korean coast. Spatial distribution of metal concentrations in the periwinkle and seawater indicated that Onsan industrial complex near the Bay is the input source of these metals. Especially, Cd and Pb concentrations in the periwinkle and seawater were distinctly decreased with distance from the Onsan industrial complex. Non-essential metals such as Cd and Pb in the periwinkle showed a strong correlation with dissolved metal concentrations in seawater. Conversely, essential Cu and Zn in the periwinkle were hardly explained by those in seawater, except at the most contaminated sites.

  17. DEP-On-Go for Simultaneous Sensing of Multiple Heavy Metals Pollutants in Environmental Samples

    PubMed Central

    Biyani, Madhu; Biyani, Radhika; Tsuchihashi, Tomoko; Takamura, Yuzuru; Ushijima, Hiromi; Tamiya, Eiichi; Biyani, Manish

    2016-01-01

    We describe a simple and affordable “Disposable electrode printed (DEP)-On-Go” sensing platform for the rapid on-site monitoring of trace heavy metal pollutants in environmental samples for early warning by developing a mobile electrochemical device composed of palm-sized potentiostat and disposable unmodified screen-printed electrode chips. We present the analytical performance of our device for the sensitive detection of major heavy metal ions, namely, mercury, cadmium, lead, arsenic, zinc, and copper with detection limits of 1.5, 2.6, 4.0, 5.0, 14.4, and, 15.5 μg·L−1, respectively. Importantly, the utility of this device is extended to detect multiple heavy metals simultaneously with well-defined voltammograms and similar sensitivity. Finally, “DEP-On-Go” was successfully applied to detect heavy metals in real environmental samples from groundwater, tap water, house dust, soil, and industry-processed rice and noodle foods. We evaluated the efficiency of this system with a linear correlation through inductively coupled plasma mass spectrometry, and the results suggested that this system can be reliable for on-site screening purposes. On-field applications using real samples of groundwater for drinking in the northern parts of India support the easy-to-detect, low-cost (<1 USD), rapid (within 5 min), and reliable detection limit (ppb levels) performance of our device for the on-site detection and monitoring of multiple heavy metals in resource-limited settings. PMID:28036003

  18. Local to regional scale industrial heavy metal pollution recorded in sediments of large freshwater lakes in central Europe (lakes Geneva and Lucerne) over the last centuries.

    PubMed

    Thevenon, Florian; Graham, Neil D; Chiaradia, Massimo; Arpagaus, Philippe; Wildi, Walter; Poté, John

    2011-12-15

    This research first focuses on the spatial and temporal patterns of heavy metals from contrasting environments (highly polluted to deepwater sites) of Lake Geneva. The mercury (Hg) and lead (Pb) records from two deepwater sites show that the heavy metal variations before the industrial period are primarily linked to natural weathering input of trace elements. By opposition, the discharge of industrial treated wastewaters into Vidy Bay of Lake Geneva during the second part of the 20th century, involved the sedimentation of highly metal-contaminated sediments in the area surrounding the WWTP outlet pipe discharge. Eventually, a new Pb isotope record of sediments from Lake Lucerne identifies the long-term increasing anthropogenic lead pollution after ca. 1500, probably due to the development of metallurgical activities during the High Middle Ages. These data furthermore allows to compare the recent anthropogenic sources of water pollution from three of the largest freshwater lakes of Western Europe (lakes Geneva, Lucerne, and Constance). High increases in Pb and Hg highlight the regional impact of industrial pollution after ca. 1750-1850, and the decrease of metal pollution in the 1980s due to the effects of remediation strategies such as the implementation of wastewater treatment plants (WWTPs). However, at all the studied sites, the recent metal concentrations remain higher than pre-industrial levels. Moreover, the local scale pollution data reveal two highly contaminated sites (>100 μg Pb/g dry weight sediment) by industrial activities, during the late-19th and early-20th centuries (Lake Lucerne) and during the second part of the 20th century (Vidy Bay of Lake Geneva). Overall, the regional scale pollution history inferred from the three large and deep perialpine lakes points out at the pollution of water systems by heavy metals during the last two centuries due to the discharge of industrial effluents.

  19. Validating metal binding sites in macromolecule structures using the CheckMyMetal web server

    PubMed Central

    Zheng, Heping; Chordia, Mahendra D.; Cooper, David R.; Chruszcz, Maksymilian; Müller, Peter; Sheldrick, George M.

    2015-01-01

    Metals play vital roles in both the mechanism and architecture of biological macromolecules. Yet structures of metal-containing macromolecules where metals are misidentified and/or suboptimally modeled are abundant in the Protein Data Bank (PDB). This shows the need for a diagnostic tool to identify and correct such modeling problems with metal binding environments. The "CheckMyMetal" (CMM) web server (http://csgid.org/csgid/metal_sites/) is a sophisticated, user-friendly web-based method to evaluate metal binding sites in macromolecular structures in respect to 7350 metal binding sites observed in a benchmark dataset of 2304 high resolution crystal structures. The protocol outlines how the CMM server can be used to detect geometric and other irregularities in the structures of metal binding sites and alert researchers to potential errors in metal assignment. The protocol also gives practical guidelines for correcting problematic sites by modifying the metal binding environment and/or redefining metal identity in the PDB file. Several examples where this has led to meaningful results are described in the anticipated results section. CMM was designed for a broad audience—biomedical researchers studying metal-containing proteins and nucleic acids—but is equally well suited for structural biologists to validate new structures during modeling or refinement. The CMM server takes the coordinates of a metal-containing macromolecule structure in the PDB format as input and responds within a few seconds for a typical protein structure modeled with a few hundred amino acids. PMID:24356774

  20. The impact of drought and air pollution on metal profiles in peat cores.

    PubMed

    Souter, Laura; Watmough, Shaun A

    2016-01-15

    Peat cores have long been used to reconstruct atmospheric metal deposition; however, debate remains regarding how well historical depositional patterns are preserved in peat. This study examined peat cores sampled from 14 peatlands in the Sudbury region of Ontario, Canada, which has a well-documented history of acid and metal deposition. Copper (Cu) and lead (Pb) concentrations within individual peat cores were strongly correlated and were elevated in the upper 10 cm, especially in the sites closest to the main Copper Cliff smelter. In contrast, nickel (Ni) and cobalt (Co) concentrations were often elevated at depths greater than 10 cm, indicating much greater post-depositional movement of these metals compared with Cu and Pb. Post-depositional movement of metals is supported by the observation that Ni and Co concentrations in peat pore water increased by approximately 530 and 960% for Ni and Co, respectively between spring and summer due to drought-induced acidification, but there was much less change in Cu concentration. Sphagnum cover and (210)Pb activity measured at 10 cm at the 14 sites significantly increased with distance from Copper Cliff, and the surface peat von Post score decreased with distance from Copper Cliff, indicating the rate of peat formation increases with distance from Sudbury presumably as a result of improved Sphagnum survival. This study shows that the ability of peat to preserve deposition histories of some metals is strongly affected by drought-induced post-depositional movement and that loss of Sphagnum due to air pollution impairs the rate of peat formation, further affecting metal profiles in peatlands.

  1. Catalase in fluvial biofilms: a comparison between different extraction methods and example of application in a metal-polluted river.

    PubMed

    Bonnineau, Chloé; Bonet, Berta; Corcoll, Natàlia; Guasch, Helena

    2011-01-01

    Antioxidant enzymes are involved in important processes of cell detoxification during oxidative stress and have, therefore, been used as biomarkers in algae. Nevertheless, their limited use in fluvial biofilms may be due to the complexity of such communities. Here, a comparison between different extraction methods was performed to obtain a reliable method for catalase extraction from fluvial biofilms. Homogenization followed by glass bead disruption appeared to be the best compromise for catalase extraction. This method was then applied to a field study in a metal-polluted stream (Riou Mort, France). The most polluted sites were characterized by a catalase activity 4-6 times lower than in the low-polluted site. Results of the comparison process and its application are promising for the use of catalase activity as an early warning biomarker of toxicity using biofilms in the laboratory and in the field.

  2. The National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention

    DTIC Science & Technology

    1997-12-01

    Heavy Metal Adsorbents for Storm Water Pollution Prevention U.S. DEPARTMENT OF THE NAVY CARDEROCK DIVISION, NAVAL SURFACE WARFARE CENTER in...National Shipbuilding Research Program, Heavy Metal Adsorbents for Storm Water Pollution Prevention 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...States Navy. ANY POSSIBLE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR PURPOSE ARE SPECIFICALLY DISCLAIMED. FINAL REPORT HEAVY METAL ADSORBENTS

  3. Do high levels of diffuse and chronic metal pollution in sediments of Rhine and Meuse floodplains affect structure and functioning of terrestrial ecosystems?

    PubMed

    Rozema, Jelte; Notten, Martje J M; Aerts, Rien; van Gestel, Cornelis A M; Hobbelen, Peter H F; Hamers, Timo H M

    2008-12-01

    This paper (re)considers the question if chronic and diffuse heavy metal pollution (cadmium, copper, lead and zinc) affects the structure and functioning of terrestrial ecosystems of Biesbosch National Park, the floodplain area of rivers Meuse and Rhine. To reach this aim, we integrated the results of three projects on: 1. the origin, transfer and effects of heavy metals in a soil-plant-snail food chain; 2. the impact of bioavailability on effects of heavy metals on the structure and functioning of detritivorous communities; 3. the risk assessment of heavy metals for an herbivorous and a carnivorous small mammal food chain. Metal pollution levels of the Biesbosch floodplain soils are high. The bioavailability of metals in the soils is low, causing low metal levels in plant leaves. Despite this, metal concentrations in soil dwelling detritivores and in land snails at polluted locations are elevated in comparison to animals from 'non-polluted' reference sites. However, no adverse effects on ecosystem structure (species richness, density, biomass) and functioning (litter decomposition, leaf consumption, reproduction) have been found. Sediment metal pollution may pose a risk to the carnivorous small mammal food chain, in which earthworms with elevated metal concentrations are eaten by the common shrew. Additional measurements near an active metal smelter, however, show reduced leaf consumption rates and reduced reproduction by terrestrial snails, reflecting elevated metal bioavailability at this site. Since future management may also comprise reintroduction of tidal action in the Biesbosch area, changes in metal bioavailability, and as a consequence future ecosystem effects, cannot be excluded.

  4. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2017-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  5. Effects of environmental regulations on heavy metal pollution decline in core sediments from Manila Bay.

    PubMed

    Hosono, Takahiro; Su, Chih-Chieh; Siringan, Fernando; Amano, Atsuko; Onodera, Shin-ichi

    2010-05-01

    We investigated the high-resolution heavy metal pollution history of Manila Bay using heavy metal concentrations and Pb isotope ratios together with (210)Pb dating to find out the effects of environmental regulations after the 1990 s. Our results suggested that the rate of decline in heavy metal pollution increased dramatically from the end of the 1990 s due to stricter environmental regulations, Administrative Order No. 42, being enforced by the Philippines government. The presented data and methodology should form the basis for future monitoring, leading to pollution control, and to the generation of preventive measures at the pollution source for the maintenance of environmental quality in the coastal metropolitan city of Manila. Although this is the first report of a reduction in pollution in Asian developing country, our results suggest that we can expect to find similar signs of pollution decline in other parts of the world as well.

  6. Ecological risk assessment of soil pollution with heavy metals

    SciTech Connect

    Kuperman, R.G.

    1995-12-31

    The structure and function of soil ecosystems in an area with a wide range of concentrations of heavy metals were studied in portions of the US Army`s Aberdeen Proving Ground, Maryland. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach which integrated biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to establish community structure, (2) laboratory and field tests on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input in the decision making process. Soil invertebrate communities showed significant reductions in the abundance of several taxonomic and trophic groups in contaminated areas. The numbers of soil microorganisms were lower in areas of soil contamination. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area. The proposed methodology appears to offer an efficient and potentially cost saving tool for remedial investigations at contaminated sites.

  7. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    PubMed

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  8. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions.

    PubMed

    Kapusta, Paweł; Sobczyk, Łukasz

    2015-12-01

    We studied enchytraeid communities in several habitats polluted by heavy metals from Zn-Pb mining and smelting activities. We sampled 41 sites that differed in the type of substratum (carbonate rock, metal-rich carbonate mining waste, siliceous sand) and land management (planting Scots pine, topsoiling, leaving to natural succession), and the distance from the smelter. Our main aims were to determine which pollution variables and natural factors most influenced enchytraeid species composition, richness and density, and examine what was the effect of planting Scots pine (reclamation) on enchytraeid communities. The soils harboured on average 1 to 5 enchytraeid species and 700 to 18,300 individuals per square metre, depending on the habitat. These figures were generally lower than those reported from unpolluted regions. Redundancy and multiple regression analyses confirmed the negative impact of heavy metal pollution on both enchytraeid community structure and abundance. Among pollution variables, the distance from the smelter best explained the variation in enchytraeid communities. The concentrations of heavy metals in the soil had less (e.g. total Pb and exchangeable Zn) or negligible (water-soluble forms) explanatory power. Natural soil properties were nearly irrelevant for enchytraeids, except for soil pH, which determined the species composition. Plant species richness was an important explanatory variable, as it positively affected most parameters of enchytraeid community. The results of two-by-two factorial comparisons (planting Scots pine vs. natural succession; carbonate mining waste vs. siliceous sand) suggest that reclamation can improve soil quality for biota, since it increased the diversity and abundance of enchytraeids; this effect was not dependent on the type of substratum. In conclusion, enchytraeids responded negatively to heavy metal pollution and their response was consistent and clear. These animals can be used as indicators of metal toxicity

  9. An overview of trace metal pollution in the coastal waters of Hong Kong.

    PubMed

    Blackmore, G

    1998-06-18

    The state of metal pollution in Hong Kong's coastal waters has been assessed by measuring metal levels in: (i) the water column; (ii) sediments and (iii) in organisms, i.e. biomonitors. Current literature is reviewed. Data from sediment analysis have shown that metal pollution is most severe in the urban areas of Victoria Harbour, Tolo Harbour, Deep Bay and Northwestern waters. Bottom sediments in typhoon shelters are particularly heavily polluted with, for example, Cu levels from Kowloon Bay reaching 5300 mg.kg-1 in 1995. Since 1987, levels of pollution have generally either stabilized or fallen in Deep Bay and Victoria Harbour but have increased in Inner Tolo Harbour and Northwestern waters. Many biomonitors have been used to study metal pollution in Hong Kong, the most popular of which are barnacles, mussels (in particular Perna viridis) and algae (in particular Ulva lactuca). Biomonitoring studies generally recorded high levels of metal pollution in Victoria Harbour in the late nineteen seventies and early eighties, with increasing pollution of the semi-enclosed Tolo Harbour through the eighties and early nineties. In a recent study using barnacles, the levels of Ag, As, Cd, Cu, Hg, Pb and Zn were shown to be greatly reduced as compared to those recorded in 1986 and 1989, respectively. Levels of metal pollution in Hong Kong coastal waters may have lowered in the last 10 years.

  10. Distribution and pollution, toxicity and risk assessment of heavy metals in sediments from urban and rural rivers of the Pearl River delta in southern China.

    PubMed

    Xiao, Rong; Bai, Junhong; Huang, Laibin; Zhang, Honggang; Cui, Baoshan; Liu, Xinhui

    2013-12-01

    Sediments were collected from the upper, middle and lower reaches of both urban and rural rivers in a typical urbanization zone of the Pearl River delta. Six heavy metals (Cd, Cr, Cu, Ni, Pb and Zn) were analyzed in all sediment samples, and their spatial distribution, pollution levels, toxicity and ecological risk levels were evaluated to compare the characteristics of heavy metal pollution between the two rivers. Our results indicated that the total contents of the six metals in all samples exceeded the soil background value in Guangdong province. Based on the soil quality thresholds of the China SEPA, Cd levels at all sites exceeded class III criteria, and other metals exhibited pollution levels exceeding class II or III criteria at both river sites. According to the sediment quality guidelines of the US EPA, all samples were moderately to heavily polluted by Cr, Cu, Ni, Pb and Zn. Compared to rural river sites, urban river sites exhibited heavier pollution. Almost all sediment samples from both rivers exhibited moderate to serious toxicity to the environment, with higher contributions from Cr and Ni. A "hot area" of heavy metal pollution being observed in the upper and middle reaches of the urban river area, whereas a "hot spot" was identified at a specific site in the middle reach of the rural river. Contrary metal distribution patterns were also observed along typical sediment profiles from urban and rural rivers. However, the potential ecological risk indices of rural river sediments in this study were equal to those of urban river sediments, implying that the ecological health issues of the rivers in the undeveloped rural area should also be addressed. Sediment organic matter and grain size might be important factors influencing the distribution profiles of these heavy metals.

  11. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  12. Efficiently Evaluating Heavy Metal Urban Soil Pollution Using an Improved Entropy-Method-Based Topsis Model.

    PubMed

    Liu, Jie; Liu, Chun; Han, Wei

    2016-10-01

    Urban soil pollution is evaluated utilizing an efficient and simple algorithmic model referred to as the entropy method-based Topsis (EMBT) model. The model focuses on pollution source position to enhance the ability to analyze sources of pollution accurately. Initial application of EMBT to urban soil pollution analysis is actually implied. The pollution degree of sampling point can be efficiently calculated by the model with the pollution degree coefficient, which is efficiently attained by first utilizing the Topsis method to determine evaluation value and then by dividing the evaluation value of the sample point by background value. The Kriging interpolation method combines coordinates of sampling points with the corresponding coefficients and facilitates the formation of heavy metal distribution profile. A case study is completed with modeling results in accordance with actual heavy metal pollution, proving accuracy and practicality of the EMBT model.

  13. Decrease in air pollution load in urban environment of Bratislava (Slovakia) inferred from accumulation of metal elements in lichens.

    PubMed

    Guttová, Anna; Lackovičová, Anna; Pišút, Ivan; Pišút, Peter

    2011-11-01

    The study illustrates the response of epiphytic lichens to changing atmospheric conditions in Central Europe, where the emission of air pollutants has significantly decreased from 1990, in the area in and around Bratislava City. Variation in concentrations of seven metal elements (Cu, Cd, Cr, Mn, Ni, Pb and Zn) in the thalli of Evernia prunastri, Hypogymnia physodes and Parmelia sulcata is assessed. Samples of these species were exposed in lichen bags in 39 sites throughout the territory of the city (more than 300 km(2)) during the period December 2006-February 2007. The samples were analyzed by AAS for metal element contents prior to and after exposure. The decrease in air pollution (for all studied elements by more than 90%) corresponded to a decrease in the accumulation of elements in lichen thalli, e.g. the contents of Pb decreased by 69% and of Cd by 34% on average. The results show also variations in accumulation between with different lichen species. The background values of metal element contents in thalli of H. physodes growing in situ were measured in semi-natural sites in Slovakia. It is suggested that these can be used as a reference in large-scale monitoring studies in Central Europe. Analysis of compatible data from the current study, and the study performed at the end of 1990s shows a significant decrease of metal elements in the air pollution load.

  14. Assessing the trace metal pollution in the sediments of Mahshahr Bay, Persian Gulf, via a novel pollution index.

    PubMed

    Vaezi, A R; Karbassi, A R; Fakhraee, M

    2015-10-01

    Sediment samples were collected from the Petrochemical Special Economic Zone of Mahshahr Bay, Persian Gulf, and analyzed for possible trace metal contamination by means of a chemical partitioning method. The heavy metal contents in the sediments follow the order of Al > Sr > Mn > Zn > Ni > Ba > Cr > Cu > As > Co. The degree of sediment contamination was evaluated using pollution load index (PLI), modified degree of contamination (mC d), geo-accumulation index (I geo), and enrichment factor (EF). All these indices compare present concentrations of metals to their background levels in crust and shale. In a specific area with high geological background like Mahshahr Bay, such a comparison may lead to erroneous conclusions. Due to the remarkable contribution of lithogenous fraction, as the natural component, to the bulk concentration of trace metals in the sediments of such an area, assessment of chemical hazard to the surrounding aquatic environment should not be carried out through traditional approaches. In the present study, anthropogenic portion of the metals was determined through one-step chemical sequential extraction and lithogenous portion substituted for the mean crust and shale levels in the new pollution index (RIAquatic). PLI, mC d, and I geo revealed overall low values, but EF, pollution index (I POLL), and newly developed pollution index were relatively high for all samples.

  15. The Assessment of Sediment Heavy Metal Pollution in Begej Canal (Serbia)

    NASA Astrophysics Data System (ADS)

    Krčmar, Dejan; Trickovic, Jelena; Grba, Nenad; Becelic Tomin, Milena; Pesic, Vesna; Varga, Natasa; Dalmacija, Bozo

    2016-04-01

    Accumulation of heavy metals in aquatic systems has received huge concern due to their toxicity, persistence and subsequent accumulation in aquatic sediments. One of the most crucial properties of the metals, which differentiate them from organic pollutants, is that they are not biodegradable in the environment. Metals are part of biogeochemical cycles with aquatic sediments acting as their ultimate sinks for longer periods of time. However, when environmental conditions change (pH, redox potential, etc.) sediments act as secondary sources of metal pollution. The toxicity and mobility of metals depend strongly on the way they are associated with sediments. Therefore, information on the total concentrations of metals in sediment alone should not be used to assess the environmental impact of polluted sediments. The Begej Canal is navigation canal between Romania and Serbia and it is a part of Danube-Tisa-Danube hydrosystem in Vojvodina (Northern Province of Serbia). Approximately, 500,000 m3 of sediment is accumulated in Begej canal which currently prevents canal's primary function - navigability. The objective of the present study was to assess the chemical quality of Begej canal sediments regarding heavy metals content. The concentrations of heavy metals were as follows: Cd - 2.4-4.9 mg/kg, Cr - 125-349 mg/kg, Cu - 65-124 mg/kg, Pb - 47-113 mg/kg, Ni - 45-88 mg/kg and Zn - 362-602 mg/kg. According to Serbian legislation (Official gazette, no. 50/12), sediment of Begej canal is the third class sediment which means that special measures should be taken in case of its removal from watercourse and final disposal in order to prevent contamination of other environmental compartments (soil, ground waters, surface waters, wildlife). Therefore, determination of third class has important economic and social implications. Additional tests to assess sediment quality included determination of contamination factor (CF), pollution load index (PLI) and enrichment factor (EF). In

  16. Decline in topsoil microbial quotient, fungal abundance and C utilization efficiency of rice paddies under heavy metal pollution across South China.

    PubMed

    Liu, Yongzhuo; Zhou, Tong; Crowley, David; Li, Lianqing; Liu, Dawen; Zheng, Jinwei; Yu, Xinyan; Pan, Genxing; Hussain, Qaiser; Zhang, Xuhui; Zheng, Jufeng

    2012-01-01

    Agricultural soils have been increasingly subject to heavy metal pollution worldwide. However, the impacts on soil microbial community structure and activity of field soils have been not yet well characterized. Topsoil samples were collected from heavy metal polluted (PS) and their background (BGS) fields of rice paddies in four sites across South China in 2009. Changes with metal pollution relative to the BGS in the size and community structure of soil microorganisms were examined with multiple microbiological assays of biomass carbon (MBC) and nitrogen (MBN) measurement, plate counting of culturable colonies and phospholipids fatty acids (PLFAs) analysis along with denaturing gradient gel electrophoresis (DGGE) profile of 16S rRNA and 18S rRNA gene and real-time PCR assay. In addition, a 7-day lab incubation under constantly 25°C was conducted to further track the changes in metabolic activity. While the decrease under metal pollution in MBC and MBN, as well as in culturable population size, total PLFA contents and DGGE band numbers of bacteria were not significantly and consistently seen, a significant reduction was indeed observed under metal pollution in microbial quotient, in culturable fungal population size and in ratio of fungal to bacterial PLFAs consistently across the sites by an extent ranging from 6% to 74%. Moreover, a consistently significant increase in metabolic quotient was observed by up to 68% under pollution across the sites. These observations supported a shift of microbial community with decline in its abundance, decrease in fungal proportion and thus in C utilization efficiency under pollution in the soils. In addition, ratios of microbial quotient, of fungal to bacterial and qCO(2) are proved better indicative of heavy metal impacts on microbial community structure and activity. The potential effects of these changes on C cycling and CO(2) production in the polluted rice paddies deserve further field studies.

  17. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    PubMed

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  18. Assessment of Heavy Metal Pollution in Sediments of Inflow Rivers to Lake Taihu, China.

    PubMed

    Niu, Yong; Niu, Yuan; Pang, Yong; Yu, Hui

    2015-11-01

    Lake Taihu, the third-largest freshwater body in China, has many functions, including drinking water supply, flood control, cultivation, navigation, and tourism. In this study, sediment samples were collected at 31 sites from 11 inflow rivers in 2012, to investigate the distribution and concentration of heavy metals copper (Cu), zinc (Zn), lead (Pb), nickel (Ni), and chromium (Cr), and to assess their potential ecological risk. The highest mean concentration was found for Zn, followed by Cu, Cr, Pb, and Ni. Generally, heavy metal pollution was more serious in Wu Jingang River and Caoqiao River, probably because they receive large amounts of wastewater from various local industrial enterprises. The potential ecological risk values of the heavy metals were larger than 120 in more than 25.8% of the sediment samples, indicating a very high risk. The largest ecological risk was due to copper. Furthermore, the results of a principal component analysis and subsequent analysis of variance showed that heavy metal concentrations in the sediment of inflow rivers were higher than those of the lake, which created a large hazard for the aquatic ecosystems of Lake Taihu.

  19. Characterization of land-based sources of pollution in Jobos Bay, Puerto Rico: status of heavy metal concentration in bed sediment.

    PubMed

    Apeti, Dennis A; Whitall, David R; Pait, Anthony S; Dieppa, Angel; Zitello, Adam G; Lauenstein, Gunnar G

    2012-01-01

    As part of an assessment of land-based sources of pollution in Jobos Bay, Puerto Rico, sediment samples were collected at 43 sites to characterize concentrations of a suite of pollutants, including metals. Fifteen major and trace metals (Ag, Al, As, Cd, Cr, Cu, Fe, Hg, Mn Ni, Pb, Sb, Se, Sn, and Zn) were measured along with total organic carbon and grain size in surficial sediments. For most metals, maximum concentrations were seen in the eastern bay; however, values were still within concentration ranges found in other estuarine systems. In contrast, silver was higher in the western region. In general, metal distribution in the bay was positively correlated with grain size. Additionally, correlations between Al and other metals suggest natural sources for metals. The data presented here suggest that, although the Jobos Bay watershed contains both urban centers along with industrial and agricultural developments, anthropogenic inputs of metals may be negligible.

  20. High intensity magnetic separation for the clean-up of a site polluted by lead metallurgy.

    PubMed

    Sierra, C; Martínez, J; Menéndez-Aguado, J M; Afif, E; Gallego, J R

    2013-03-15

    The industrial history in the district of Linares (Spain) has had a severe impact on soil quality. Here we examined soil contaminated by lead and other heavy metals in "La Cruz" site, a brownfield affected by metallurgical residues. Initially, the presence of contaminants mainly associated with the presence of lead slag fragments mixed with the soil was evaluated. The subsequent analysis showed a quasi-uniform distribution of the pollution irrespective of the grain-size fractions. This study was accompanied by a characterization of the lead slag behavior under the presence of a magnetic field. Two main magnetic components were detected: first a ferromagnetic and/or ferrimagnetic contribution, second a paramagnetic and/or antiferromagnetic one. It was also established that the slag was composed mainly of lead spherules and iron oxides embedded in a silicate matrix. Under these conditions, the capacity of magnetic separation to remove pollutants was examined. Therefore, two high intensity magnetic separators (dry and wet devices, respectively) were used. Dry separation proved to be successful at decontaminating soil in the first stages of a soil washing plant. In contrast, wet separation was found effective as a post-process for the finer fractions.

  1. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite.

    PubMed

    Shi, Wei-yu; Shao, Hong-bo; Li, Hua; Shao, Ming-an; Du, Sheng

    2009-10-15

    Hazardous heavy metal pollution of soils is an increasingly urgent problem all over the world. The zeolite as a natural amendment has been studied extensively for the remediation of hazardous heavy metal-polluted soils with recycling. But its theory and application dose are not fully clear. This paper reviews the related aspects of theory and application progress for the remediation of hazardous heavy metal-polluted soils by natural zeolite, with special emphasis on single/co-remediation. Based on the comments on hazardous heavy metal behavior characteristics in leaching and rhizosphere and remediation with zeolite for heavy metal-polluted soils, it indicated that the research of rhizosphere should be strengthened. Theory of remediation with natural zeolite could make breakthroughs due to the investigation on synthetic zeolite. Co-remediation with natural zeolite may be applied and studied with more prospect and sustainable recycling.

  2. The Distribution and Health Risk Assessment of Metals in Soils in the Vicinity of Industrial Sites in Dongguan, China

    PubMed Central

    Liu, Chao; Lu, Liwen; Huang, Ting; Huang, Yalin; Ding, Lei; Zhao, Weituo

    2016-01-01

    Exponential industrialization and rapid urbanization have resulted in contamination of soil by metals from anthropogenic sources in Dongguan, China. The aims of this research were to determine the concentration and distribution of various metals (arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), lead (Pb) and zinc (Zn)) in soils and identify their potential health risks for local residents. A total of 106 soil samples were collected from the vicinity of industrial sites in Dongguan. Two types of samples were collected from each site: topsoil (0–20 cm, TS) and shallow soil (20–50 cm, SS). Results showed that the soils were contaminated by metals and pollution was mainly focused on TS. The geoaccumulation index (Igeo) and pollution indexes (PI) implied that there was a slight increase in the concentrations of Cd, Cu, Hg, Ni, and Pb, but the metal pollution caused by industrial activities was less severe, and elements of As and Cr exhibited non-pollution level. The risk assessment results suggested that there was a potential health risk associated with As and Cr exposure for residents because the carcinogenic risks of As and Cr via corresponding exposure pathways exceeded the safety limit of 10−6 (the acceptable level of carcinogenic risk for humans). Furthermore, oral ingestion and inhalation of soil particles are the main exposure pathways for As and Cr to enter the human body. This study may provide basic information of metal pollution control and human health protection in the vicinity of industrial regions. PMID:27548198

  3. Tolerance to Cadmium of Agave lechuguilla (Agavaceae) Seeds and Seedlings from Sites Contaminated with Heavy Metals

    PubMed Central

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them. PMID:24453802

  4. Tolerance to cadmium of Agave lechuguilla (Agavaceae) seeds and seedlings from sites contaminated with heavy metals.

    PubMed

    Méndez-Hurtado, Alejandra; Rangel-Méndez, René; Yáñez-Espinosa, Laura; Flores, Joel

    2013-01-01

    We investigated if seeds of Agave lechuguilla from contaminated sites with heavy metals were more tolerant to Cd ions than seeds from noncontaminated sites. Seeds from a highly contaminated site (Villa de la Paz) and from a noncontaminated site (Villa de Zaragoza) were evaluated. We tested the effect of Cd concentrations on several ecophysiological, morphological, genetical, and anatomical responses. Seed viability, seed germination, seedling biomass, and radicle length were higher for the non-polluted site than for the contaminated one. The leaves of seedlings from the contaminated place had more cadmium and showed peaks attributed to chemical functional groups such as amines, amides, carboxyl, and alkenes that tended to disappear due to increasing the concentration of cadmium than those from Villa de Zaragoza. Malformed cells in the parenchyma surrounding the vascular bundles were found in seedlings grown with Cd from both sites. The leaves from the contaminated place showed a higher metallothioneins expression in seedlings from the control group than that of seedlings at different Cd concentrations. Most of our results fitted into the hypothesis that plants from metal-contaminated places do not tolerate more pollution, because of the accumulative effect that cadmium might have on them.

  5. Comparative study of biochemical and immunological biomarkers in three marine bivalves exposed at a polluted site.

    PubMed

    Cotou, Efthimia; Tsangaris, Catherine; Henry, Morgane

    2013-03-01

    A battery of biochemical and immunological biomarkers used for pollution assessment were measured for first time in the clams Venus verrucosa and Callista chione and were compared with those of the mussel Mytilus galloprovincialis, a well-established indicator organism utilized in numerous environmental monitoring programs. Clams and mussel were transplanted at a polluted and a reference site or maintained at the laboratory. Among biochemical biomarkers, acetylcholinesterase did not differ at the polluted site in all species, but there was a significant difference between the mussel and the clams, glutathione S-transferase showed a clear inhibition at the polluted site in all species and a significant difference between the two clams was also indicated, while catalase activities were increased only in V. verrucosa at the polluted site and not in mussel or the other clam. Immunological biomarkers responses were also pronounced at the polluted site. Lysozyme activity was species-dependent whereas respiratory burst activity measured as luminol-dependent chemiluminescence (CL) was site and stimulus dependent, and it was evident in M. galloprovincialis and V. verrucosa and not in C. chione. Further investigation focused on biochemical and immunological biomarkers related with the oxidative mechanisms in clams will strengthen and expand their use as bioindicators for pollution assessment.

  6. Interaction of Soil Heavy Metal Pollution with Industrialisation and the Landscape Pattern in Taiyuan City, China

    PubMed Central

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460

  7. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    PubMed

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  8. Assessment of metals pollution and health risk in dust from nursery schools in Xi'an, China.

    PubMed

    Lu, Xinwei; Zhang, Xiaolan; Li, Loretta Y; Chen, Hao

    2014-01-01

    Concentrations, pollution and health risks of metals in dust from nursery schools in Xi'an, China were determined. In comparison with local soil, dust samples have elevated metals concentrations except for Mn. The results indicate no distinct pollution of Mn, Ni, As and Ba in the dust, while Cu, Co and Zn are moderate pollution, Pb is significant pollution, and Cr with large pollution range. Most samples presented moderately polluted by metals. The non-cancer risks of the studied metals are within the safe range, and the cancer risks of As, Co, Cr and Ni are also within the currently acceptable range.

  9. Pollution evaluation of heavy metals in soil near smelting area by index of geoaccumulation (Igeo)

    NASA Astrophysics Data System (ADS)

    Huang, S. H.; Yang, Y.; Yuan, C. Y.; Li, Q.; Ouyang, K.; Wang, B.; Wang, Z. X.

    2017-01-01

    In order to investigate the heavy metal pollution conditions of soil of smelting area in Zijiang of Chenzhou, Hunan province, 42 samples were studied. The concentrations of heavy metals As, Pb, Cd, Zn and Cu in the soil were determined by using atomic absorption spectrometry(AAS) and atomic fluorescence spectrometry(AFS). Then the potential pollution risks of heavy metal in the soil were evaluated by method of geological acumination index (Igeo). The results indicated that the average concentrations of As, Pb, Cd, Zn and Cu were 187.79, 2074.52, 15.72, 2178.89, 39.69 mg/kg respectively. The geological evaluation of the cumulative index results showed that the contamination degree of 5 heavy metals follow the sequence of Cd> Zn >Pb > As >Cu. The results show that Cd reached extremely pollution degree, Zn reached strong pollution-extremely pollution levels, the pollution of Pb in the soil is classified as strong pollution degree, Cu and As of no pollution according to the results of Igeo based on the background value of heavy metals in the soil of Hunan Province.

  10. Assessment of Heavy Metal Contamination and Calculation of Its Pollution Index for Uglješnica River, Serbia.

    PubMed

    Milivojević, Jelena; Krstić, Dragana; Šmit, Biljana; Djekić, Vera

    2016-11-01

    The aim of the study was to assess the water pollution in terms of total content of heavy metals by parameter called Heavy metal pollution index (HPI). The water samples were collected from four different locations along the course of the river during spring and the autumn seasons. The concentrations of lead (Pb), cadmium (Cd), iron (Fe), zinc (Zn), manganese (Mn), copper (Cu), arsenic (As) and mercury (Hg) were determined using atomic absorption spectroscopy. The data were used to evaluate HPI of the river water. The mean value of HPI was 67.487 for the spring season, and 80.676 for the autumn season. The average for both seasons and all sampling sites is 74.082. The maximum value of 112.722 found at one sampling site is above the critical index limit of 100. Also, from the values of mean HPI for each sampling site could be concluded that the pollution load at sampling site-4 is the most significant (HPI 89.575).

  11. Heavy metal pollution in farmland irrigated with river water near a steel plant - detection by magnetic and geochemical methods

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.

    2012-04-01

    The presence of heavy metals in the environment has become an increasing problem during the last several decades. It is a key scientific issue to disclose the source, degree and extent of pollution in farmland near to heavy industries. In this study the efficiency of magnetic methods for such a purpose is tested at a Chinese city (Loudi, Hunan Province) with fast developing steel industry. Lianshui River flows through the city and passes a large steel plant at the entrance of the urban area. Previous results revealed higher heavy metal contents in the vicinity of the Fe-smelting plant and in the city region[1]. Nearby farmland usually is irrigated with water from this river. We collected vertical soil profiles to about 60 cm depth within farmland nearby Lianshui River with sampling sites distributed from the upstream (before entering the city) to the downstream region (after leaving the city area). These samples were comprehensively investigated by integrating both magnetic and chemical analyses. Heavy metals (Pb, Zn, Cd etc) pollution in farmland soils in the downstream region is clearly higher than in the upstream region. Magnetic susceptibility and SIRM is correlating with heavy metals contents. The SIRM background in the upstream section of unpolluted farmland soils and river sediments is low (< 7-10-3Am2kg-1), whereas the polluted soils at the surrounding of the steel plant reveal higher SIRM intensities (30 to 40-10-3Am2kg-1) within the topmost 20 cm. SIRM in river sediments also correlates with heavy metals contents; it is strongly enhanced (80 to 200-10-3Am2kg-1) at the same sites, from surface to 40 cm deep depth. Magnetic enhancement is found to be related to the presence of spherical magnetite particles with a diameter of 10~30 μm. These findings demonstrate that magnetic methods have a convenient practical application for detecting and mapping heavy metal pollution in farmland soils irrigated by river water from nearby industrial areas. Reference 1

  12. Heavy metal contamination of soil and water in the vicinity of an abandoned e-waste recycling site: implications for dissemination of heavy metals.

    PubMed

    Wu, Qihang; Leung, Jonathan Y S; Geng, Xinhua; Chen, Shejun; Huang, Xuexia; Li, Haiyan; Huang, Zhuying; Zhu, Libin; Chen, Jiahao; Lu, Yayin

    2015-02-15

    Illegal e-waste recycling activity has caused heavy metal pollution in many developing countries, including China. In recent years, the Chinese government has strengthened enforcement to impede such activity; however, the heavy metals remaining in the abandoned e-waste recycling site can still pose ecological risk. The present study aimed to investigate the concentrations of heavy metals in soil and water in the vicinity of an abandoned e-waste recycling site in Longtang, South China. Results showed that the surface soil of the former burning and acid-leaching sites was still heavily contaminated with Cd (>0.39 mg kg(-1)) and Cu (>1981 mg kg(-1)), which exceeded their respective guideline levels. The concentration of heavy metals generally decreased with depth in both burning site and paddy field, which is related to the elevated pH and reduced TOM along the depth gradient. The pond water was seriously acidified and contaminated with heavy metals, while the well water was slightly contaminated since heavy metals were mostly retained in the surface soil. The use of pond water for irrigation resulted in considerable heavy metal contamination in the paddy soil. Compared with previous studies, the reduced heavy metal concentrations in the surface soil imply that heavy metals were transported to the other areas, such as pond. Therefore, immediate remediation of the contaminated soil and water is necessary to prevent dissemination of heavy metals and potential ecological disaster.

  13. [Pollution evaluation and health risk assessment of heavy metals from atmospheric deposition in Lanzhou].

    PubMed

    Li, Ping; Xue, Su-Yin; Wang, Sheng-Li; Nan, Zhong-Ren

    2014-03-01

    In order to evaluate the contamination and health risk of heavy metals from atmospheric deposition in Lanzhou, samples of atmospheric deposition were collected from 11 sampling sites respectively and their concentrations of heavy metals were determined. The results showed that the average contents of Cu, Pb, Cd, Cr, Ni, Zn and Mn were 82.22, 130.31, 4.34, 88.73, 40.64, 369.23 and 501.49 mg x kg(-1), respectively. There was great difference among different functional areas for all elements except Mn. According to the results, the enrichment factor score of Mn was close to 1, while the enrichment of Zn, Ni, Cu and Cr was more serious, and Pb and Cd were extremely enriched. The assessment results of geoaccumulation index of potential ecological risk indicated that the pollution of Cd in the atmospheric deposition of Lanzhou should be classified as extreme degree, and that of Cu, Ni, Zn, Pb as between slight and extreme degrees, and Cr as practically uncontaminated. Contaminations of atmospheric dust by heavy metals in October to the next March were more serious than those from April to August. Health risk assessment indicated that the heavy metals in atmospheric deposition were mainly ingested by human bodies through hand-mouth ingestion. The non-cancer risk was higher for children than for adults. The order of non-cancer hazard indexes of heavy metals was Pb > Cr > Cd > Cu > Ni > Zn. The non-cancer hazard indexes and carcinogen risks of heavy metals were both lower than their threshold values, suggesting that they will not harm the health.

  14. [Numerical simulation and application of electrical resistivity survey in heavy metal contaminated sites].

    PubMed

    Wang, Yu-ling; Nai, Chang-xin; Wang, Yan-wen; Dong, Lu

    2013-05-01

    In order to analyze the effects of electrical resistivity in heavy metal contaminated sites, we established the resistivity model of typical contaminated sites and simulate the DC resistivity method with Wenner arrays using the finite element method. The simulation results showed that the electrical method was influenced by the contamination concentration and the location of pollution. The more serious the degree of pollution was, the more obvious the low resistivity anomaly, thus the easier the identification of the contaminated area; otherwise, if there was light pollution, Wenner array could not get obvious low resistivity anomalies, so it would be hard to judge the contaminated area. Our simulation results also showed that the closer the contaminated areas were to the surface, the more easily the pollution was detected and the low resistivity anomalies shown in the apparent resistivity diagram were influenced by the Layered medium. The actual field survey results using resistivity method also show that the resistivity method can correctly detect the area with serious pollution.

  15. Spatiotemporal variations in metal accumulation, RNA/DNA ratio and energy reserve in Perna viridis transplanted along a marine pollution gradient in Hong Kong.

    PubMed

    Yeung, Jamius W Y; Zhou, Guang-Jie; Leung, Kenneth M Y

    2017-01-21

    We examined spatiotemporal variations of metal levels and three growth related biomarkers, i.e., RNA/DNA ratio (RD), total energy reserve (Et) and condition index (CI), in green-lipped mussels Perna viridis transplanted into five locations along a pollution gradient in the marine environment of Hong Kong over 120days of deployment. There were significant differences in metal levels and biomarker responses among the five sites and six time points. Mussels in two clean sites displayed better CI and significantly lower levels of Ag, Cu, Pb and Zn in their tissues than the other sites. Temporal patterns of RD in P. viridis were found to be site-specific. Across all sites, Et decreased in P. viridis over the deployment period, though the rate of decrease varied significantly among the sites. Therefore, temporal variation of biomarkers should be taken to consideration in mussel-watch programs because such information can help discriminate pollution-induced change from natural variation.

  16. Hanford Site waste minimization and pollution prevention awareness program plan. Revision 1

    SciTech Connect

    Not Available

    1994-05-01

    The Hanford Site WMin/P2 program is an organized, comprehensive, and continual effort to systematically reduce the quantity and toxicity of hazardous, radioactive, mixed, and sanitary wastes; conserve resources; and prevent or minimize pollutant releases to all environmental media from all Site activities. The Hanford Site WMin/P2 program plan reflects national and DOE waste minimization and pollution prevention goals and policies, and represents an ongoing effort to make WMin/P2 part of the Site operating philosophy. In accordance with these policies, a hierarchical approach to environmental management has been adopted and is applied to all types of polluting and waste generating activities. Pollution prevention and waste minimization through source reduction are first priority in the Hanford WMin/P2 program, followed by environmentally safe recycling. Treatment to reduce the quantity, toxicity, and/or mobility will be considered only when prevention or recycling are not possible or practical. Environmentally safe disposal is the last option.

  17. Industrial pollution with copper and other heavy metals in a beef cattle ranch

    SciTech Connect

    Parada, R.; Gonzalez, S.; Bergqvist, E.

    1987-04-01

    Experimental evidence of air borne heavy metal pollution as the cause of a disease of unknown etiology in beef cattle was obtained. Analysis of metals in natural grasses and leaves of tree defined Cu, Zn and Pb as the major pollutants, with Cd being a minor one. Emissions from a Cu smelter were traced as the main source of metallic pollution. No evidence of metal accumulation in the soil was found, mainly because of the short duration and intermittent pattern of pollution. A progressive intake of the several heavy metals contained in dusts deposited on the grasses was considered the cause of the sickness; this was associated with the grazing of cattle on contaminated grasses. The most severe cases were found in the most polluted pastures. With the exception of Cd, the concentrations of the metals in the livers and kidneys of affected cattle were high. No overlapping of the respective ranges between test and control samples from both organs was found. Mean hepatic levels of Cu (925.7 mg/kg DM), Zn (491.2 mg/kg) and Pb (26.7 mg/kg) reflected the decreasing order of the concentrations of these elements in the polluted grasses. The main clinical and pathological features of this disease were discussed in light of the organic levels of the investigated metals. Disease could not be ascribed to a pure chronic toxicosis with any one of these.

  18. Industrial pollution with copper and other heavy metals in a beef cattle ranch.

    PubMed

    Parada, R; Gonzalez, S; Bergqvist, E

    1987-04-01

    Experimental evidence of air borne heavy metal pollution as the cause of a disease of unknown etiology in beef cattle was obtained. Analysis of metals in natural grasses and leaves of tree defined Cu, Zn and Pb as the major pollutants, with Cd being a minor one. Emissions from a Cu smelter were traced as the main source of metallic pollution. No evidence of metal accumulation in the soil was found, mainly because of the short duration and intermittent pattern of pollution. A progressive intake of the several heavy metals contained in dusts deposited on the grasses was considered the cause of the sickness; this was associated with the grazing of cattle on contaminated grasses. The most severe cases were found in the most polluted pastures. Excepting Cd, the concentrations of the metals in the livers and kidneys of affected cattle were high. No overlapping of the respective ranges between test and control samples from both organs was found. Mean hepatic levels of Cu (925.7 mg/kg DM), Zn (491.2 mg/kg) and Pb (26.7 mg/kg) reflected the decreasing order of the concentrations of these elements in the polluted grasses. The main clinical and pathological features of this disease were discussed in light of the organic levels of the investigated metals. Disease could not be ascribed to a pure chronic toxicosis with any one of these.

  19. Translocation of microbenthic algal assemblages used for In situ analysis of metal pollution in rivers

    PubMed

    Ivorra; Hettelaar; Tubbing; Kraak; Sabater; Admiraal

    1999-07-01

    Effects of metal pollution from a zinc factory on microbenthic algal communities were assessed in three neighboring streams on the Dutch-Belgian border. Diatom species composition was experimentally related to water quality by transferring racks with colonized glass discs from a polluted stream to a reference stream and vice versa. The succession of species and the changes in biomass and metal accumulation were measured during experiments in spring, autumn, and winter. Metal concentrations and dry weight in translocated biofilms tended to conform with those in local biofilms within an incubation time of 14 to 18 days. Bray-Curtis similarity values from the different communities indicated that diatom communities responded more completely to the metal-polluted conditions than to the reference water quality. Cymbella minuta, Diatoma vulgare var. ehrenbergii, Navicula sp., and Melosira varians had a lower percentage in assemblages placed in the metal-polluted streams. In contrast, Pinnularia sp. and Neidium ampliatum decreased in assemblages from the polluted streams that were transferred to the reference stream. Achnanthes minutissima and Navicula seminulum (N. atomus) proliferated on any translocation, possibly reflecting an opportunistic strategy and a high tolerance for Zn and Cd. The behavior of the species in relation to metal pollution generally accorded with observations in the literature. However, it seems that metal tolerance is not the only selective factor, and other ecological variables may also influence the composition of microphytobenthic communities.http://link.springer-ny. com/link/service/journals/00244/bibs/37n1p19.html

  20. [Assessment of heavy metal pollution in surface sediments of rivers in northern area of Haihe River Basin, China].

    PubMed

    Shang, Lin-Yuan; Sun, Ran-Hao; Wang, Zhao-Ming; Ji, Yu-He; Chen, Li-Ding

    2012-02-01

    Using Håkanson potential ecological risk index, the paper assesses heavy metal risk levels in northern parts of Haihe River basin based on 39 sampling sites. The results indicate that, the concentrations of Cu, Zn, Cd, and Cr in Haihe River basin are higher than the background values of heavy metals in China mainland, while the concentration of Pb is close to the background value in China mainland. Based on the potential ecological risk index for single heavy metal, the risk of Cu, Pb, Zn and Cr belongs to the "slight" level, while Cd has various risk levels at different sampling sites. Generally, the risk order of the heavy metals is Cd > Pb > Cu > Cr > Zn. According to Håkanson potential ecological risk index, 32 monitoring sites belong to "slight" level, 5 sampling sites belong to "middle" level, and 2 monitoring sites belong to "very strong" level. The most polluted sites are Tang River and Dashi River of Beijing, Juma River in Baoding. Therefore, these rivers should be taken more considerations in the river management.

  1. Baseline metals pollution profile of tropical estuaries and coastal waters of the Straits of Malacca.

    PubMed

    Looi, Ley Juen; Aris, Ahmad Zaharin; Wan Johari, Wan Lutfi; Md Yusoff, Fatimah; Hashim, Zailina

    2013-09-15

    The status report on metal pollution in tropical estuaries and coastal waters is important to understand potential environmental health hazards. Detailed baseline measurements were made on physicochemical parameters (pH, temperature, redox potential, electrical conductivity, salinity, dissolved oxygen, total dissolved solid), major ions (Na, Ca, Mg, K, HCO3, Cl, SO4 and NO3) and metals concentrations ((27)Al, (75)As, (138)Ba, (9)Be, (111)Cd, (59)Co, (63)Cu, (52)Cr, (57)Fe, (55)Mn, (60)Ni, (208)Pb, (80)Se, (66)Zn) at estuaries and coastal waters along the Straits of Malacca. Principal component analysis (PCA) was employed to reveal potential pollution sources. Seven principal components were extracted with relation to pollution contribution from minerals-related parameters, natural and anthropogenic sources. The output from this study will generate a profound understanding on the metal pollution status and pollution risk of the estuaries and coastal system.

  2. Testing benthic foraminiferal distributions as a contemporary quantitative approach to biomonitoring estuarine heavy metal pollution.

    PubMed

    Foster, William J; Armynot du Châtelet, Eric; Rogerson, Mike

    2012-05-01

    Biomonitoring of estuarine pollution is the subject of active research, and benthic foraminifera are an attractive group to use for these purposes due to their ubiquitous presence in saline water and wide diversity. Here, we describe a case study of biomonitoring using benthic foraminifera in the French Mediterranean lagoon, Bages-Sigean lagoon. In this case, the major pollutants of interest are heavy metals in the sediment, particularly contaminated by Cu and Cd derived from industrial and agricultural sources. The foraminiferal assemblages of the Bages-Sigean lagoon are typical of normal paralic environments, but unusually almost completely lack agglutinated forms. The density of benthic foraminifera was shown to be more influenced by the sediment characteristics rather than heavy metal pollution. However, the relative abundance of Quinqueloculina bicostata was shown to increase in the most polluted areas and we propose that this taxon may be used as an indicator of heavy metal pollution.

  3. Fact Sheets: Final Rules to Reduce Toxic Air Pollutants from Surface Coating of Metal Cans

    EPA Pesticide Factsheets

    This page contains the August 2003 final rule fact sheet and the December 2005 final rule fact sheet that contain information on the National Emission Standards for Hazardous Air Pollutants (NESHAP) for Surface Coating of Metal Cans.

  4. NON-POLLUTING METAL SURFACE FINISHING PRETREATMENT AND PRETREATMENT/CONVERSION COATING

    EPA Science Inventory

    Picklex, a proprietary formulation, is an alterantive to conventional metal surface pretreatments and is claimed not to produce waste or lower production or lower performance. A laboratory program was designed to evaluate Picklex in common, large scale, polluting surface finishin...

  5. Heavy metals in human teeth dentine: A bio-indicator of metals exposure and environmental pollution.

    PubMed

    Asaduzzaman, Khandoker; Khandaker, Mayeen Uddin; Binti Baharudin, Nurul Atiqah; Amin, Yusoff Bin Mohd; Farook, Mohideen Salihu; Bradley, D A; Mahmoud, Okba

    2017-06-01

    With rapid urbanization and large-scale industrial activities, modern human populations are being increasingly subjected to chronic environmental heavy metal exposures. Elemental uptake in tooth dentine is a bioindicator, the uptake occurring during the formation and mineralization processes, stored to large extent over periods of many years. The uptake includes essential elements, most typically geogenic dietary sources, as well as non-essential elements arising through environmental insults. In this study, with the help of the Dental Faculty of the University of Malaya, a total of 50 separate human teeth were collected from dental patients of various ethnicity, age, gender, occupation, dietary habit, residency, etc. Analysis was conducted using inductively coupled plasma-mass spectrometry (ICP-MS), most samples indicating the presence of the following trace elements, placed in order of concentration, from least to greatest: As, Mn, Ba, Cu, Cr, Pb, Zn, Hg, Sb, Al, Sr, Sn. The concentrations have been observed to increase with age. Among the ethnic groups, the teeth of ethnic Chinese showed marginally greater metal concentrations than those of the Indians and Malays, the teeth dentine of females generally showing greater concentrations than that of males. Greater concentrations of Hg, Cu and Sn were found in molars while Pb, Sr, Sb and Zn were present in greater concentrations in incisors. With the elevated concentration levels of heavy metals in tooth dentine reflecting pollution from industrial emissions and urbanization, it is evident that human tooth dentine can provide chronological information on exposure, representing a reliable bio-indicator of environmental pollution.

  6. Plant parts of the apple tree (Malus spp.) as possible indicators of heavy metal pollution.

    PubMed

    Tošić, Snežana; Alagić, Slađana; Dimitrijević, Mile; Pavlović, Aleksandra; Nujkić, Maja

    2016-05-01

    The content of Cu, Zn, Pb, As, Cd, and Ni was determined by ICP-OES in spatial soil and parts (root, branches, leaves, and fruit) of the apple tree (Malus spp.) from polluted sites near The Mining and Smelting Complex Bor (Serbia). The aim of this study was to examine if the obtained results can be used for biomonitoring purposes. Data recorded in plant parts, especially leaves, gave very useful information about the environmental state of the Bor region. Conveniently, these data described well the capability of investigated plant species to assimilate and tolerate severely high concentrations of heavy metals in its tissues, which may further allow the possibility for utilization of the apple tree for phytostabilization.

  7. METAL ATTENUATION PROCESSES AT MINING SITES

    EPA Science Inventory

    The purpose of this Issue Paper is to provide scientists and engineers responsible for assessing remediation technologies with background information on MNA processes at mining-impacted sites. The global magnitude of the acid drainage problem is clear evidence that in most cases...

  8. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site.

    PubMed

    Adama, M; Esena, R; Fosu-Mensah, B; Yirenya-Tawiah, D

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (I geo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites.

  9. Heavy Metal Contamination of Soils around a Hospital Waste Incinerator Bottom Ash Dumps Site

    PubMed Central

    Adama, M.; Esena, R.; Fosu-Mensah, B.; Yirenya-Tawiah, D.

    2016-01-01

    Waste incineration is the main waste management strategy used in treating hospital waste in many developing countries. However, the release of dioxins, POPs, and heavy metals in fly and bottom ash poses environmental and public health concerns. To determine heavy metal (Hg, Pb, Cd, Cr, and Ag) in levels in incinerator bottom ash and soils 100 m around the incinerator bottom ash dump site, ash samples and surrounding soil samples were collected at 20 m, 40 m, 60 m, 80 m, 100 m, and 1,200 m from incinerator. These were analyzed using the absorption spectrophotometer method. The geoaccumulation (Igeo) and pollution load indices (PLI) were used to assess the level of heavy metal contamination of surrounding soils. The study revealed high concentrations in mg/kg for, Zn (16417.69), Pb (143.80), Cr (99.30), and Cd (7.54) in bottom ash and these were above allowable limits for disposal in landfill. The study also found soils within 60 m radius of the incinerator to be polluted with the metals. It is recommended that health care waste managers be educated on the implication of improper management of incinerator bottom ash and regulators monitor hospital waste incinerator sites. PMID:27034685

  10. Ecological risk and pollution history of heavy metals in Nansha mangrove, South China.

    PubMed

    Wu, Qihang; Tam, Nora F Y; Leung, Jonathan Y S; Zhou, Xizhen; Fu, Jie; Yao, Bo; Huang, Xuexia; Xia, Lihua

    2014-06-01

    Owing to the Industrial Revolution in the late 1970s, heavy metal pollution has been regarded as a serious threat to mangrove ecosystems in the region of the Pearl River Estuary, potentially affecting human health. The present study attempted to characterize the ecological risk of heavy metals (Cd, Cr, Cu, Mn, Ni, Pb and Zn) in Nansha mangrove, South China, by estimating their concentrations in the surface sediment. In addition, the pollution history of heavy metals was examined by determining the concentrations of heavy metals along the depth gradient. The phytoremediation potential of heavy metals by the dominant plants in Nansha mangrove, namely Sonneratia apetala and Cyperus malaccensis, was also studied. Results found that the surface sediment was severely contaminated with heavy metals, probably due to the discharge of industrial sewage into the Pearl River Estuary. Spatial variation of heavy metals was generally unobvious. The ecological risk of heavy metals was very high, largely due to Cd contamination. All heavy metals, except Mn, decreased with depth, indicating that heavy metal pollution has been deteriorating since 1979. Worse still, the dominant plants in Nansha mangrove had limited capability to remove the heavy metals from sediment. Therefore, we propose that immediate actions, such as regulation of discharge standards of industrial sewage, should be taken by the authorities concerned to mitigate the ecological risk posed by heavy metals.

  11. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    PubMed

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper

  12. Photochemical pollution at two southern California smog receptor sites

    SciTech Connect

    Grosjean, D.; Williams, E.L. II. )

    1992-06-01

    A one-year survey of air quality has been carried out at two southern California inland locations, Perris and Palm Springs to evaluate transport of photochemical smog from the Los Angeles area and to assess population exposure to toxic air pollutants in the Coachella Valley and eastern Riverside County. Air pollutants measured included formaldehyde, acetaldehyde, nitric acid, and peroxyacetyl nitrate (PAN). Acetic acid was also measured as part of the time-integrated method employed to measure PAN. In addition, intensive studies were carried out at both locations and included measurements of aldehydes, nitric acid, PAN, peroxypropionyl nitrate (PPN), methylchloroform and tetrachloroethylene. Maximum concentrations of HCHO, CH{sub 3}CHO, HNO{sub 3}, PAN, PPN, CH{sub 3}COOH and C{sub 2}Cl{sub 4} were 26, 21, 4.5, 7.6, 0.42, 6.6 and 0.29 ppb in Palm Springs and 15, 30, 6.3, 9.1, 0.73, 7.8 and 0.43 ppb in Perris. Pollutant concentrations measured in Palm Springs and Perris are compared to those measured in the Los Angeles area, and are discussed in terms of formation and removal during transport.

  13. Saharan dust - A carrier of persistent organic pollutants, metals and microbes to the Caribbean?

    USGS Publications Warehouse

    Garrison, V.H.; Foreman, W.T.; Genualdi, S.; Griffin, Dale W.; Kellogg, C.A.; Majewski, M.S.; Mohammed, A.; Ramsubhag, A.; Shinn, E.A.; Simonich, S.L.; Smith, G.W.

    2006-01-01

    An international team of scientists from government agencies and universities in the United States, U.S. Virgin Islands (USVI), Trinidad & Tobago, the Republic of Cape Verde, and the Republic of Mali (West Africa) is working together to elucidate the role Saharan dust may play in the degradation of Caribbean ecosystems. The first step has been to identify and quantify the persistent organic pollutants (POPs), trace metals, and viable microorganisms in the atmosphere in dust source areas of West Africa, and in dust episodes at downwind sites in the eastern Atlantic (Cape Verde) and the Caribbean (USVI and Trinidad & Tobago). Preliminary findings show that air samples from Mali contain a greater number of pesticides, polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs) and in higher concentrations than the Caribbean sites. Overall, POP concentrations were similar in USVI and Trinidad samples. Trace metal concentrations were found to be similar to crustal composition with slight enrichment of lead in Mali. To date, hundreds of cultureable microorganisms have been identified from Mali, Cape Verde, USVI, and Trinidad air samples. The sea fan pathogen, Aspergillus sydowii, has been identified in soil from Mali and in air samples from dust events in the Caribbean. We have shown that air samples from a dust-source region contain orders of magnitude more cultureable microorganisms per volume than air samples from dust events in the Caribbean, which in turn contain 3-to 4-fold more cultureable microbes than during non-dust conditions.

  14. Susceptibility of a carabid beetle, Pterostichus oblongopunctatus fab., from a gradient of heavy metal pollution to additional stressors.

    PubMed

    Lagisz, Malgorzata; Laskowski, Ryszard

    2007-11-01

    Insects inhabiting contaminated areas show increased susceptibility to other stressors, the purpose of this study was to investigate whether this phenomenon had a genetic basis. We investigated changes in susceptibility to food deprivation and insecticide (dimethoate) treatment of the ground beetle Pterostichus oblongopunctatus originating from four populations situated along a metal pollution gradient. To determine whether the increased susceptibility to additional stressors found in field-exposed animals from chronically metal-polluted sites had a genetic basis, our research was conducted on the second generation of laboratory-reared animals. There was no difference in susceptibility to the additional stressors indicating that the differences between populations observed in earlier studies do not have a genetic basis.

  15. Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions.

    PubMed

    Mateos-Naranjo, E; Andrades-Moreno, L; Redondo-Gómez, S

    2011-10-01

    Spartina densiflora has demonstrated a high tolerance to heavy metal contamination and a high capacity for accumulating metal in its tissues. In the Gulf of Cadiz this species has colonized habitats with different degrees of metal pollution. The aim of this study is to analyse the responses of populations of Spartina densiflora to this pollution. Germination, growth, photosynthesis and metal uptake of two populations of Spartina densiflora collected from contaminated sites (Odiel and Tinto marshes) and of one population from a clean site (Piedras marshes) were examined through two reciprocal experiments, in which seeds and adult plants were exposed to metal-contaminated and uncontaminated soil under greenhouse conditions. The seeds of Spartina densiflora were able to germinate in all sediments with little differences between populations, even in more contaminated soils. However, these conditions decreased the growth and survival of the seedlings to a similar degree for all populations. Likewise, no differences were recorded in relation to physiological and metal uptake. Contrarily, in the adult experiment, we found that the Odiel population differed from the other populations in growth and metal uptake, with overall greater values. These differences in growth were strongly supported by lower photosynthetic rates and stomatal conductance in the Piedras and Tinto populations. The reduction in photosynthetic performance was largely due to the reduction in photosynthetic pigment concentration in both populations. Despite these differences, there was insufficient evidence to support that Spartina has evolved to heavy-tolerant ecotypes, since all Spartina densiflora populations proved to have a great capacity for accumulating heavy metals in its roots. Nonetheless, this finding suggests that the Odiel population could have a greater phytoremediation potential.

  16. The Utility of a Consortium of Microbial Enzymes as an Early Warning Tool for Monitoring Soil Pollution with Heavy Metals

    NASA Astrophysics Data System (ADS)

    Wahsha, Mohammad; Bini, Claudio; Fornasier, Flavio; Al-Rshaidat, Mamoon M. D.

    2013-04-01

    Potentially Toxic Substances (PTS) in soils are of increasingly growing concern worldwide. Heavy metals are acting as one of the most serious groups of environmental contaminants, and their release into the environment has strongly increased over the last decades. Heavy metals can cause acute and long-term toxic effects on both human health and the ecosystems around. Toxic effects of heavy metals reach soil biota in general and affect the microbial community biomass and metabolic activities related to such communities. Although all members of the soil biota respond relatively to soil pollution, microbial communities are considered to be the first and most swift responders to such environmental pollutants. This study focused on the state of the art of developing a consortium of different enzymes and how their collective activities could be used for the assessment and monitoring of soil in response to heavy metal pollution. By measuring microbial community biomass and activity from soil samples from Imperina Valley; an abandoned mine in Italy. Measurements covered heavy metal concentrations; soil physiochemical parameters, and enzymatic activity and biomass of soil's microbial community. Results showed significant contamination at the sampled sites with different heavy metals (p ≤ 0.05). With averages above the allowed limits in Italy: 2.12 mg Cd kg- 1, 2.33 mg Cu kg- 1, 9.63 mg Pb kg- 1, 1.23 mg Zn kg- 1 and 3.05 mg Fe kg- 1. Enzymatic activities varied widely among the sampled sites, and were positively correlated with organic matter content. Strong positive correlation was observed between leucyl aminopeptidase/chitinase, leucyl aminopeptidase/β-glucosidase, and β-glucosidase/chitinase, (0.999), (0.992), and (0.992), respectively. The above enzymes showed positive linear correlation with the organic carbon content of the sampled soils, with alkaline phosphatase showing the most significant correlation (0.726) among all. This study clearly highlights in situ

  17. Distribution of trace metals at Hopewell Furnace National Historic Site, Berks and Chester Counties, Pennsylvania

    USGS Publications Warehouse

    Sloto, Ronald A.; Reif, Andrew G.

    2011-01-01

    low concentrations of nutrients and major ions but had elevated concentrations of iron, manganese, and strontium when compared to sites sampled in adjacent watersheds. The background site on Baptism Creek generally had the lowest concentrations and yields of constituents. Low concentrations of nutrients and major ions at all five sites indicate that measured concentrations can be attributed to general land use and geology and not to point sources. Streambed-sediment sampling results indicated higher concentrations of all metals except nickel at sites on French Creek compared to the background site on Baptism Creek. Concentrations of aluminum, cadmium, and nickel were highest in sediment from the sampling site upstream from Hopewell Furnace. The highest concentrations of arsenic, boron, cobalt, copper, iron, lead, manganese, mercury, and zinc were detected at the site just below Hopewell Furnace, which indicates that the source of these metals may be in Hopewell Furnace NHS. The invertebrate community at the background site on Baptism Creek was dominated by pollution sensitive taxa indicating a healthy, diverse benthic-macroinvertebrate community. Benthic-macroinvertebrate communities at sampling sites on French Creek indicated disturbed communities when compared to the background site on Baptism Creek and that the overall stream quality immediately above and below Hopewell Furnace NHS is degraded. The benthic-macroinvertebrate communities were dominated by pollution-tolerant taxa, and taxa were less diverse than at the background site. Habitat conditions at the upstream site on French Creek were good but were degraded at downstream sites on French Creek. The major habitat issues at these sites were related to a lack of stable substrate, erosion, and deposition. Water quality and streambed-sediment quality do not indicate that the degraded benthic-macroinvertebrate communities are the result of poor water quality. Habitat conditions (erosion and sedimentation) and

  18. Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils.

    PubMed

    Idaszkin, Yanina L; Lancelotti, Julio L; Pollicelli, María P; Marcovecchio, Jorge E; Bouza, Pablo J

    2017-03-10

    Phytoremediation is considered the most appropriate technique to restore metal polluted soil, given its low cost, high efficiency and low environmental impact. Spartina densiflora and Sarcocornia perennis are perennial halophytes growing under similar environmental conditions in San Antonio marsh (Patagonia Argentina), therefore it is interesting to compare their phytoremediation potential capacity. To this end, we compared concentrations of Pb, Zn, Cu, and Fe in soils and in below- and above-ground structures of S. perennis and S. densiflora. It was concluded that both species are able to inhabit Pb, Zn, and Cu polluted soils. Although Sarcocornia translocated more metals to the aerial structures than Spartina, both species translocated only when they were growing in soils with low metal concentrations. It seems that the plants translocate only a certain proportion of the metal contained in the soil. These results suggest that both species could be considered candidates to phytostabilize these metals in polluted soils.

  19. [Heavy metal pollution ecology of macro-fungi: research advances and expectation].

    PubMed

    Zhou, Qi-xing; An, Xin-long; Wei, Shu-he

    2008-08-01

    Macro-fungi are the main component of biosphere and one of the ecological resources, and play very important roles in matter cycling and in maintaining ecological balances. This paper summarized and reviewed the research advances in the eco-toxicological effects of heavy metals on macro-fungi, the bioaccumulation function of macro-fungi on heavy metals, the ecological adaptation mechanisms of macro-fungi to heavy metal pollution, the role of macro-fungi as a bio-indicator of heavy metal pollution, and the potential of macro-fungi in the ecological remediation of contaminated environment. To strengthen the researches on the heavy metal pollution ecology of macro-fungi would be of practical significance in the reasonable utilization of macro-fungi resources and in the ecological remediation of contaminated environment.

  20. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination.

  1. Magnetic Measurements and Heavy Metal Concentrations at Formosa Mine Superfund Site, Douglas County, OR

    NASA Astrophysics Data System (ADS)

    Upton, T. L.

    2015-12-01

    Advances in the field of environmental magnetism have led to exciting new applications for this field. Magnetic minerals are ubiquitous in the environment and tend to have an affinity for heavy metals. It has been demonstrated that magnetic properties are often significantly related to concentrations of heavy metals and/or pollution loading index (PLI). As a result, magnetic techniques have been used as proxy for determining hot spots of several types of pollution produced from a diversity of anthropogenic sources. Magnetic measurements are non-destructive and relatively inexpensive compared to geochemical analyses. The utility of environmental magnetic methods varies widely depending on biological, chemical and physical processes that create and transform soils and sediments. Applications in the direction of mapping heavy metals have been studied and shown to be quite useful in countries such as China and India but to date, little research has been done in the US. As such, there is need to expand the scope of research to a wider range of soil types and land uses, especially within the US. This study investigates the application of environmental magnetic techniques to mapping of heavy metal concentrations and PLI at the Formosa Mine Superfund Site, an abandoned mine about 25 miles southwest of Roseburg, OR. Using hotspot analysis, correlation and cluster analyses, interactions between metals and magnetic parameters are examined in relation to environmental factors such as proximity to seeps and adits. Preliminary results suggest significant correlation of magnetic susceptibility with certain heavy metals, signifying that magnetic methods may be useful in mapping heavy metal hotspots at this site.

  2. A Fuzzy Markov approach for assessing groundwater pollution potential for landfill siting.

    PubMed

    Chen, Wei-Yea; Kao, Jehng-Jung

    2002-04-01

    This study presents a Fuzzy Markov groundwater pollution potential assessment approach to facilitate landfill siting analysis. Landfill siting is constrained by various regulations and is complicated by the uncertainty of groundwater related factors. The conventional static rating method cannot properly depict the potential impact of pollution on a groundwater table because the groundwater table level fluctuates. A Markov chain model is a dynamic model that can be viewed as a hybrid of probability and matrix models. The probability matrix of the Markov chain model is determined based on the groundwater table elevation time series. The probability reflects the likelihood of the groundwater table changing between levels. A fuzzy set method is applied to estimate the degree of pollution potential, and a case study demonstrates the applicability of the proposed approach. The short- and long-term pollution potential information provided by the proposed approach is expected to enhance landfill siting decisions.

  3. Study of heavy metals in wild edible mushrooms under different pollution conditions by X-ray fluorescence spectrometry.

    PubMed

    Carvalho, M L; Pimentel, A C; Fernandes, B

    2005-07-01

    In this work we studied and compared the metal uptake in edible mushrooms (Lepiota procera, Boletus badius, Boletus edulis, Tricholoma equestry, Lactarius deliciosus, Cantarelus tubalformis and Cantarelus edulis), relative to sampling sites submitted to different pollution conditions: car traffic, soil pollution due to pesticides and fertilizers used in old vineyards, and incineration of hospital waste. Soil was also collected in some places, and its content was correlated to the corresponding one in some mushrooms species. All samples, without any chemical treatment, were analyzed by an X-ray fluorescence set-up. This technique is based on a monochromatic X-ray beam ionizing the atoms of the sample. Following this ionization, the emitted radiation is characteristic of the element, allowing its identification and quantification. Vineyards are normally submitted to very high amounts of sulfating, containing high copper concentrations. This metal is accumulated on the soil, and can be up-taken by vegetation. Very high levels of Fe and Cu were found in Lepiota procera species in old vineyards. Zinc was found to be always higher than Cu by factors ranging from 1.5 to 8 in clean wood taken as a reference for the whole analyzed species, while in old vineyards the ratio Zn/Cu reach 0.25 for Lepiota procera. This is correlated to the soil content for both elements. In addition, pollution induced by car traffic was checked in some samples, collected in the proximity of highways. Pb was the main contaminant in these areas, and presenting values 10 times higher than the corresponding ones in sites not submitted to pollution, for some species. Mushrooms contamination due to incineration of hospital waste was also studied, but we did not observe any contamination involving heavy metals in the several analyzed species around these areas. This is in agreement with what was expected, taking into account that hospital waste is mostly organic and, in principle, no heavy metals would

  4. [Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation].

    PubMed

    Zhao, Xin-Ru; Nasier, Telajin; Cheng, Yong-Yi; Zhan, Jiang-Yu; Yang, Jian-Hong

    2014-06-01

    Environmental geochemical baseline models of Cu, Zn, Pb, As, Hg were established by standardized method in the ehernozem, chestnut soil, sierozem and saline soil from the Ili river valley region. The theoretical baseline values were calculated. Baseline factor pollution index evaluation method, environmental background value evaluation method and heavy metal cleanliness evaluation method were used to compare soil pollution degrees. The baseline factor pollution index evaluation showed that As pollution was the most prominent among the four typical types of soils within the river basin, with 7.14%, 9.76%, 7.50% of sampling points in chernozem, chestnut soil and sierozem reached the heavy pollution, respectively. 7.32% of sampling points of chestnut soil reached the permitted heavy metal Pb pollution index in the chestnut soil. The variation extent of As and Pb was the largest, indicating large human disturbance. Environmental background value evaluation showed that As was the main pollution element, followed by Cu, Zn and Pb. Heavy metal cleanliness evaluation showed that Cu, Zn and Pb were better than cleanliness level 2 and Hg was the of cleanliness level 1 in all four types of soils. As showed moderate pollution in sierozem, and it was of cleanliness level 2 or better in chernozem, chestnut soil and saline-alkali soil. Comparing the three evaluation systems, the baseline factor pollution index evaluation more comprehensively reflected the geochemical migration characteristics of elements and the soil formation processes, and the pollution assessment could be specific to the sampling points. The environmental background value evaluation neglected the natural migration of heavy metals and the deposition process in the soil since it was established on the regional background values. The main purpose of the heavy metal cleanliness evaluation was to evaluate the safety degree of soil environment.

  5. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes

    NASA Astrophysics Data System (ADS)

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X.; Urban, Ania; Thacker, Nathan C.; Lin, Wenbin

    2016-08-01

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  6. Chemoselective single-site Earth-abundant metal catalysts at metal-organic framework nodes.

    PubMed

    Manna, Kuntal; Ji, Pengfei; Lin, Zekai; Greene, Francis X; Urban, Ania; Thacker, Nathan C; Lin, Wenbin

    2016-08-30

    Earth-abundant metal catalysts are critically needed for sustainable chemical synthesis. Here we report a simple, cheap and effective strategy of producing novel earth-abundant metal catalysts at metal-organic framework (MOF) nodes for broad-scope organic transformations. The straightforward metalation of MOF secondary building units (SBUs) with cobalt and iron salts affords highly active and reusable single-site solid catalysts for a range of organic reactions, including chemoselective borylation, silylation and amination of benzylic C-H bonds, as well as hydrogenation and hydroboration of alkenes and ketones. Our structural, spectroscopic and kinetic studies suggest that chemoselective organic transformations occur on site-isolated, electron-deficient and coordinatively unsaturated metal centres at the SBUs via σ-bond metathesis pathways and as a result of the steric environment around the catalytic site. MOFs thus provide a novel platform for the development of highly active and affordable base metal catalysts for the sustainable synthesis of fine chemicals.

  7. A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems.

    PubMed

    Ciszewski, Dariusz; Grygar, Tomáš Matys

    Recently observed rapid climate changes have focused the attention of researchers and river managers on the possible effects of increased flooding frequency on the mobilization and redistribution of historical pollutants within some river systems. This text summarizes regularities in the flood-related transport, channel-to-floodplain transfer, and storage and remobilization of heavy metals, which are the most persistent environmental pollutants in river systems. Metal-dispersal processes are essentially much more variable in alluvia than in soils of non-inundated areas due to the effects of flood-sediment sorting and the mixing of pollutants with grains of different origins in a catchment, resulting in changes of one to two orders of magnitude in metal content over distances of centimetres. Furthermore, metal remobilization can be more intensive in alluvia than in soils as a result of bank erosion, prolonged floodplain inundation associated with reducing conditions alternating with oxygen-driven processes of dry periods and frequent water-table fluctuations, which affect the distribution of metals at low-lying strata. Moreover, metal storage and remobilization are controlled by river channelization, but their influence depends on the period and extent of the engineering works. Generally, artificial structures such as groynes, dams or cut-off channels performed before pollution periods favour the entrapment of polluted sediments, whereas the floodplains of lined river channels that adjust to new, post-channelization hydraulic conditions become a permanent sink for fine polluted sediments, which accumulate solely during overbank flows. Metal mobilization in such floodplains takes place only by slow leaching, and their sediments, which accrete at a moderate rate, are the best archives of the catchment pollution with heavy metals.

  8. An advanced field experimental design to assess plant tolerance to heavy metal pollution

    NASA Astrophysics Data System (ADS)

    Łopata, Barbara; Szarek-Łukaszewska, Grażyna; Babst-Kostecka, Alicja

    2016-04-01

    Only a limited number of vascular plant species can survive and reproduce in toxic metalliferous environments. Among these species, pseudometallophytes are particularly interesting, as their metallicolous (M) populations on metalliferous soils and non-metallicolous (NM) populations on non-metalliferous soils show very pronounced ecological differences. Pseudometallophytes thus provide excellent opportunities for multidisciplinary research to improve phytoremediation and phytomining. Numerous methods have been developed to investigate plant adaptation to metal pollution, the majority of which has been conducted under controlled laboratory conditions. Although these efforts have significantly advanced our understanding of mechanisms underlying metal tolerance in plants, populations must be reciprocally transplanted to clearly identify natural selection. Only then is it possible to test, whether the fitness of native plants is higher than that of nonnative populations and thereby prove local adaptation. Here, we present an enhanced field experimental design aimed at verification of local adaptation to habitats with different levels of heavy metal soil contamination. At two M and two NM sites, we established a total of 12 plots (4 sites x 3 plots each), removed the existing local vegetation, and collected soil samples for chemical analyses (5 samples per plot). Plant collection (N= 480) from all four selected populations was established under laboratory conditions prior to the transplant experiment. Genotypes were randomly distributed within each plot (240 x 270 cm) and planted along a regulary spaced grid (30x30cm cell size) in spring 2015. Measurements will start in spring 2016, by which time plants are expected to have acclimatized to the local conditions. For the two subsiquent years, growth, survival, fitness, life cycle and herbivory consumption will be monitored for each transplant. On a weekly basis, we will record: 1) pictures of each transplant to determine

  9. Soil Heavy Metal Pollution along Subin River in Kumasi, Ghana; Using X-Ray Fluorescence (XRF) Analysis

    NASA Astrophysics Data System (ADS)

    Kodom, K.; Wiafe-Akenten, J.; Boamah, D.

    2010-04-01

    This study is aimed to analyze and assess the existence of heavy metal pollution in the surface soils along Subin River in the Kumasi metropolis using X-Ray Fluorescence (XRF) analysis. Twenty (20) soil samples were collected along the River at regular interval of 5 m (covering entire area of about 100 m2), with the aid of a core sampler. The samples were suitably packaged and conveyed into the laboratory for sample preparation and analysis. The concentration of heavy metals (Cr, Cu, Pb, Hg, Ni, Zn, Tl, V and Cd) were measured and quantified (mgkg-1) after the elemental analysis using XRF spectrometry, and their respective average concentrations (121.89 mgkg-1, 49.24 mgkg-1, 80.84 mgkg-1, 2.52 mgkg-1, 17.01 mgkg-1, 148.08 mgkg-1, 3.21 mgkg-1, 84.40 mgkg-1, and 4.05 mgkg-1) were attained. According to these results, the presence of heavy metals such as (Pb, Cd and Hg) present in the soil, were highly recorded above their threshold limit values (TLVs) by an amount of 60.84 mgkg-1, 3.05 mgkg-1 and 1.52 mgkg-1 respectively. These metals are highly toxic even in very low concentrations and their toxicity and poisoning in living organisms often occur through exchange and co-ordination mechanisms in the soft tissues. These high excess concentration values alarmingly depict that, the study site is highly polluted with those metals, and the Subin river-body and the inhabitants who reside closely to the polluted river, are at serious risk. The extent to which the study area is polluted, was successfully and statistically analyzed from the standard deviation (σ) and difference between the average concentration values recorded, and the TLVs.

  10. Spatial distribution of heavy metal contamination in soils near a primitive e-waste recycling site.

    PubMed

    Quan, Sheng-Xiang; Yan, Bo; Yang, Fan; Li, Ning; Xiao, Xian-Ming; Fu, Jia-Mo

    2015-01-01

    The total concentrations of 12 heavy metals in surface soils (SS, 0-20 cm), middle soils (MS, 30-50 cm) and deep soils (DS, 60-80 cm) from an acid-leaching area, a deserted paddy field and a deserted area of Guiyu were measured. The results showed that the acid-leaching area was heavily contaminated with heavy metals, especially in SS. The mean concentrations of Ni, Cu, Zn, Cd, Sn, Sb and Pb in SS from the acid-leaching area were 278.4, 684.1, 572.8, 1.36, 3,472, 1,706 and 222.8 mg/kg, respectively. Heavy metal pollution in the deserted paddy field was mainly concentrated in SS and MS. The average values of Sb in SS and MS from the deserted paddy field were 16.3 and 20.2 mg/kg, respectively. However, heavy metal contamination of the deserted area was principally found in the DS. Extremely high concentrations of heavy metals were also observed at some special research sites, further confirming that the level of heavy metal pollution was very serious. The geoaccumulation index (Igeo) values revealed that the acid-leaching area was severely polluted with heavy metals in the order of Sb > Sn > Cu > Cd > Ni > Zn > Pb, while deserted paddy field was contaminated predominately by metals in the order of Sb > Sn > Cu. It was obvious that the concentrations of some uncommon contaminants, such as Sb and Sn, were higher than principal contaminants, such as Ni, Cu, Zn and Pb, suggesting that particular attention should be directed to Sn and Sb contamination in the future research of heavy metals in soils from e-waste-processing areas. Correlation analysis suggested that Li and Be in soils from the acid-leaching area and its surrounding environment might have originated from other industrial activities and from batteries, whereas Ni, Cu, Zn, Cd, Pb, Sn and Sb contamination was most likely caused by uncontrolled electronic waste (e-waste) processing. These results indicate the significant need for optimisation of e-waste-dismantling technologies and remediation of polluted soil

  11. Mass burden and estimated flux of heavy metals in Pakistan coast: sedimentary pollution and eco-toxicological concerns.

    PubMed

    Ali, Usman; Malik, Riffat Naseem; Syed, Jabir Hussain; Mehmood, Ch Tahir; Sánchez-García, Laura; Khalid, Azeem; Chaudhry, Muhammad Jamshed Iqbal

    2015-03-01

    Heavy-metal contamination in coastal areas poses a serious threat to aquatic life and public health due to their high toxicity and bio-accumulation potential. In the present study, levels of different heavy metals (Cu, Cd, Cr, Ni, Co, Pb, Zn, and Mn), their spatial distribution, geochemical status, and enrichment indices (Cu, Cd, Cr, Ni, Co, Pb, Zn) were investigated in the sediment samples from 18 coastal sites of Pakistan. The analyses of coastal sediments indicated the presence of heavy metals in order such as Cr > Zn > Cu > Pb > Ni > Mn > Co > Cd. Geo-accumulation index (I geo), enrichment factor (EF), and contamination factor (CF) showed diverse range in heavy-metal enrichment site by site. Pollution load index (PLI) has shown that average pollution load along the entire coastal belt was not significant. Based on the mean effect range medium quotient, coastal sediments of Pakistan had 21% probability of toxicity. The estimated sedimentary load of selected heavy metals was recorded in the range of 0.3-44.7 g/cm(2)/year, while the depositional flux was in the range of 0.07-43.5 t/year. Heavy-metal inventories of 9.8 × 10(2)-3.8 × 10(5) t were estimated in the coastal sediments of Pakistan. The enrichment and contamination factors (EF and CF) suggested significant influence of anthropogenic and industrial activities along the coastal belt of Pakistan.

  12. Advancing our understanding of plant adaptation to metal polluted environments - new insights from Biscutella laevigata

    NASA Astrophysics Data System (ADS)

    Babst-Kostecka, Alicja; Waldmann, Patrik; Frérot, Hélène; Vollenweider, Pierre

    2016-04-01

    The legacy of industrial pollution alters ecosystems, particularly at post-mining sites where metal trace elements have created toxic conditions that trigger rapid plant adaptation. Apart from the purely scientific merits, in-depth knowledge of the mechanisms underlying plant adaptation to metal contamination is beneficial for the economic and societal sectors because of its application in bioengineering (e.g. phytoremediation or biofortification). An important process is the evolution and/or enhancement of metal tolerance, a trait that has predominantly been studied by applying acute metal stress on species that allocate large quantities of certain metals to their foliage (so-called hyperaccumulators). As the vast majority of vascular plants does not hyperaccumulate metals, more efforts are needed to investigate non-hyperaccumulating species and thereby broaden understanding of biological mechanisms underlying metal tolerance. The pseudometallophyte Biscutella laevigata has shown potential in this respect, but its characteristics are insufficiently understood. We determined the zinc tolerance level and various plant responses to environmentally relevant zinc concentrations in ten metallicolous and non-metallicolous B. laevigata populations. In a two-phase hydroponic experiment, we scored multiple morphological and physiological traits (e.g. biomass, visible stress symptoms, element content in foliage) and assessed phenotypic variability within plant families. The structure of these quantitative traits was compared to that of neutral molecular markers to test, whether natural selection caused population differentiation in zinc tolerance. While all genotypes were tolerant compared to a zinc sensitive reference species, we found congruent trends toward higher tolerance in metallicolous compared to non-metallicolous plants. We identified the most indicative parameters for these differences and find that enhanced zinc tolerance in metallicolous populations is driven by

  13. THE USEPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    The USEPA has developed a pre-release version of a process simulation tool, the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), for the metal finishing industry. This presentation will provide a demonstration of the current version of this tool. The presentation will...

  14. IMPLEMENTATION OF THE US ENVIRONMENTAL PROTECTION AGENCY'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    The United States Environmental Protection Agency has developed a pre-release version of a process simulation tool, the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), for the metal finishing industry. This presentation will provide a demonstration of the current ver...

  15. THE USEPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    The USEPA has developed a pre-release version of a process simulation tool, the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), for the metal finishing industry. This presentation will provide a demonstration of the current version of this tool. The presentation wi...

  16. Assessment of the impact of heavy metal pollution from a ferro-nickel smelting plant using biomarkers.

    PubMed

    Tsangaris, Catherine; Papathanasiou, Evangelos; Cotou, Efthimia

    2007-02-01

    A set of biomarkers was used to assess the impact of heavy metal pollution by a ferro-nickel smelting plant in Larymna bay (North Evoikos Gulf, Greece). These included a biomarker reflecting health status of an organism (scope for growth, SFG), a cellular biomarker of heavy metal exposure (composition of metal-containing granules), and two biochemical biomarkers reflecting oxidative stress (glutathione peroxidase, GPX) and neurotoxicity (acetylcholinesterase, AChE) measured in mussels (Mytilus galloprovincialis) both native and transplanted for 1 and 6 months at the coastal area of Larymna. All biomarkers in mussels at Larymna revealed differences from mussels at a reference site, signaling effects of the increased heavy metal levels on the biota. While effects on SFG and GPX in Larymna mussels were obvious on short-term exposure and persistent during chronic exposure, only chronic exposure induced a possibly cumulative effect on AChE. To validate the causal relationship between heavy metal exposure and effects observed in Larymna, SFG, GPX, and ACHE were examined in mussels exposed to a mixture of heavy metals (Ni, Cr, and Fe) under controlled laboratory conditions. The laboratory experiment verified the causal relationship between SFG and GPX responses and heavy metals but this was not demonstrated for AChE. Results from field-collected and laboratory-exposed mussels indicated a potential of GPX as predictive biomarker of population-level effects of heavy metal exposure.

  17. Mathematical modeling of heavy metals contamination from MSW landfill site in Khon Kaen, Thailand.

    PubMed

    Tantemsapya, N; Naksakul, Y; Wirojanagud, W

    2011-01-01

    Kham Bon landfill site is one of many municipality waste disposal sites in Thailand which are in an unsanitary condition. The site has been receiving municipality wastes without separating hazardous waste since 1968. Heavy metals including, Pb, Cr and Cd are found in soil and groundwater around the site, posing a health risk to people living nearby. In this research, contamination transport modelling of Pb, Cr and Cd was simulated using MODFLOW for two periods, at the present (2010) and 20 years prediction (2030). Model results showed that heavy metals, especially Pb and Cr migrated toward the north-eastern and south-eastern direction. The 20 years prediction showed that, heavy metals tend to move from the top soil to the deeper aquifer. The migration would not exceed 500 m radius from the landfill centre in the next 20 years, which is considered to be a slow process. From the simulation model, it is recommended that a mitigation measure should be performed to reduce the risk from landfill contamination. Hazardous waste should be separated for proper management. Groundwater contamination in the aquifer should be closely monitored. Consumption of groundwater in a 500 m radius must be avoided. In addition, rehabilitation of the landfill site should be undertaken to prevent further mobilization of pollutants.

  18. [Phenols pollutants in soil and shallow groundwater of a retired refinery site].

    PubMed

    Pei, Fang; Luo, Ze-Jiao; Peng, Jin-Jin; Qi, Shi-Hua

    2012-12-01

    To study the distribution of phenol compounds in a retired refinery site, 21 soil sampling sites and 8 shallow groundwater wells were investigated. The results showed, shallow unconfined groundwater of the site was in a serious pollution situation and the phenols concentration was much higher than quality standard for ground water. Confined water sample was slightly contaminated by phenols and the total quality was good. Approximately half of the area was heavily polluted by phenol compounds. According to the retired refinery layout, the phenols pollution distribution in shallow groundwater and soil exhibited the regional similarity. The highly contaminated area was production workshop, oil tank and plant storage. Horizontal diffusion of pollutants was not serious. Vertical diffusion of pollutants was different, and a site with pollutant diffusion was deeper than ten meters. The 2-chlorophenol, 2-nitrophenol, 2,4-xylenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol, 2,4-dinitrophenol and 2-methyl-4,6-dinitrophenol in typical soils were analyzed by GC/MS. It showed that concentrations of seven phenol compounds were 0.01-232.96 mg x kg(-1), and the concentrations of 2,4-dinitrophenol and 2-methyl-4,6-dinitrophenol were high.

  19. [Risk assessment and countermeasures of heavy metals pollution in Wanquan segment of Yanghe River].

    PubMed

    Tan, Bing; Wang, Tie-Yu; Zhu, Zhao-Yun; Li, Qi-Feng; Xu, Li; Lü, Yong-Long

    2014-02-01

    In order to investigate heavy metals contamination status in Wanquan segment of Yanghe River, Zhangjiakou, 9 water and sediments samples were collected respectively for analyzing Cu, Ni, Cd, Zn, Cr, Pb, Hg and As, with water quality indicators determined at the same time. The potential ecological risk index (PERI) was then employed to evaluate potential ecological risk of heavy metals in sediments. Results indicated that the concentrations of Cu, Ni, Cd, Zn, Cr, Pb, Hg and As in water samples ranged from 1.28-24.13, 1.13-16.84, 0.08-0.11, 1.80-10.65, 1.40-19.12, 0.13-2.05, 0.06-0.99, 0.46-4.22 microg x L(-1), respectively, which are all below the national water quality standard for the demands of industrial use and agricultural irrigation. Principal component analysis (PCA) was conducted to reveal the relationship between water quality indicators and heavy metals pollution in water samples. Concentrations of Cu, Ni, Cd, Zn, Cr, Pb, Hg and As in sediments ranged from 5.90-110.11, 17.34-56.04, 0.07-0.31, 38.71-116.74, 40.39-85.77, 18.65-22.74, nd-0.047, 0.85-9.98 mg x kg(-1), respectively. The descending order of potential ecological risk intensity caused by different heavy metals was: Cd > Cu > Hg > Ni > As > Pb > Cr > Zn, and the average value of each heavy metal was low, while middle-grade risk level of Cd and Hg were also found in several sites. Among all monitoring sites, the descending order of PERI of all target heavy metals was: YH-07 > YH-03 > YH-09 > YH-02 > YH-06 > YH-04 > YH-05 > YH-01, and the average value reached slight grade, while middle-grade risk level was detected in YH-07. Sampling locations in YH-02-YH-03 and YH-07-YH-09 were found with relatively high ecological risk level because of agricultural and anthropogenic activities, respectively. Finally, three risk management regions were figured out and corresponding countermeasures for improving the environmental quality of the watershed were proposed based on the research results.

  20. Particle size effect for metal pollution analysis of atmospherically deposited dust

    NASA Astrophysics Data System (ADS)

    Al-Rajhi, M. A.; Al-Shayeb, S. M.; Seaward, M. R. D.; Edwards, H. G. M.

    The metallic compositions of 231 atmospherically deposited dust samples obtained from widely-differing environments in Riyadh city, Saudi Arabia, have been investigated in relation to the particle size distributions. Sample data are presented which show that particle size classification is very important when analysing dust samples for atmospheric metal pollution studies. By cross-correlation and comparison, it was found that the best way to express the results of the metal concentration trend was as an average of particle ratios. Correlations between the six metals studied, namely Pb, Cr, Ni, Cu, Zn and Li, were found for every particle size (eight categories) and reveal that the metal concentrations increased as the particle size decreased. On the basis of this work, it is strongly recommended that future international standards for metal pollutants in atmospherically deposited dusts should be based on particle size fractions.

  1. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China.

    PubMed

    Zhang, Rui; Zhou, Li; Zhang, Fan; Ding, Yingjun; Gao, Jinrong; Chen, Jing; Yan, Hongqiang; Shao, Wei

    2013-09-15

    The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.

  2. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents.

    PubMed

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-19

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal.

  3. A New Strategy for Heavy Metal Polluted Environments: A Review of Microbial Biosorbents

    PubMed Central

    Ayangbenro, Ayansina Segun; Babalola, Olubukola Oluranti

    2017-01-01

    Persistent heavy metal pollution poses a major threat to all life forms in the environment due to its toxic effects. These metals are very reactive at low concentrations and can accumulate in the food web, causing severe public health concerns. Remediation using conventional physical and chemical methods is uneconomical and generates large volumes of chemical waste. Bioremediation of hazardous metals has received considerable and growing interest over the years. The use of microbial biosorbents is eco-friendly and cost effective; hence, it is an efficient alternative for the remediation of heavy metal contaminated environments. Microbes have various mechanisms of metal sequestration that hold greater metal biosorption capacities. The goal of microbial biosorption is to remove and/or recover metals and metalloids from solutions, using living or dead biomass and their components. This review discusses the sources of toxic heavy metals and describes the groups of microorganisms with biosorbent potential for heavy metal removal. PMID:28106848

  4. Heavy metal pollution in coastal areas of South China: a review.

    PubMed

    Wang, Shuai-Long; Xu, Xiang-Rong; Sun, Yu-Xin; Liu, Jin-Ling; Li, Hua-Bin

    2013-11-15

    Coastal areas of South China face great challenges due to heavy metal contamination caused by rapid urbanization and industrialization. In this paper, more than 90 articles on levels, distributions, and sources of heavy metals in sediments and organisms were collected to review the status of heavy metal pollution along coastal regions of South China. The results show that heavy metal levels were closely associated with local economic development. Hong Kong and the Pearl River Estuary were severely contaminated by heavy metals. However, concentrations of heavy metals in sediments from Hong Kong have continually decreased since the early 1990 s. High levels of heavy metals were found in biota from Lingdingyang in Guangdong province. Mollusks had higher concentrations of heavy metals than other species. Human health risk assessments suggested that levels of heavy metals in some seafood from coastal areas of South China exceeded the safety limit.

  5. Development of a new pollution index for heavy metals in sediments.

    PubMed

    Farsad, Forough; Karbassi, Abdolreza; Monavari, Seyed Masoud; Mortazavi, Mohammad Seddigh; Farshchi, Parvin

    2011-12-01

    This study aims to investigate the pollution rate of heavy metals on the western seaboard of Bandarabbas in southeast Iran using a new pollution index. The bulk of the analysis was conducted on sediments, followed by selection of a few samples to perform experiments on chemical partitioning studies as well as biological accessibility. On this basis, the proportions of natural and anthropogenic elements were calculated. Finally, with regard to chemical separation results, the pollution rate was calculated based on Muller's geo-chemical index, enrichment factor, pollution index, and a new "Risk" index. Chemical separation showed the anthropogenic origin of elements are as follows: Ni(27.5%) > Zn(6.5%) > Pb(2%) > Al (0.2%). The newly developed pollution index is indicative of "low environmental pollution "for Ni.

  6. Development of a hybrid pollution index for heavy metals in marine and estuarine sediments.

    PubMed

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-05-01

    Heavy metal pollution of sediments is a growing concern in most parts of the world, and numerous studies focussed on identifying contaminated sediments by using a range of digestion methods and pollution indices to estimate sediment contamination have been described in the literature. The current work provides a critical review of the more commonly used sediment digestion methods and identifies that weak acid digestion is more likely to provide guidance on elements that are likely to be bioavailable than other traditional methods of digestion. This work also reviews common pollution indices and identifies the Nemerow Pollution Index as the most appropriate method for establishing overall sediment quality. Consequently, a modified Pollution Index that can lead to a more reliable understanding of whole sediment quality is proposed. This modified pollution index is then tested against a number of existing studies and demonstrated to give a reliable and rapid estimate of sediment contamination and quality.

  7. Pollution by Arsenic, Mercury and other Heavy Metals in Sunchulli mining district of Apolobamba (Bolivia)

    NASA Astrophysics Data System (ADS)

    Terán Mita, Tania; Faz Cano, Angel; Muñoz, Maria Angeles; Millán Gómez, Rocio; Chincheros Paniagua, Jaime

    2010-05-01

    In Bolivia, metal mining activities since historical times have been one of the most important sources of environmental pollution. This is the case of the National Area of Apolobamba Integrated Management (ANMIN of Apolobamba) in La Paz, Bolivia, where intense gold mining activities have been carried out from former times to the present, with very little gold extraction and very primitive mineral processing technology; in fact, mercury is still being used in the amalgam processes of the gold concentration, which is burned outdoors to recover the gold. Sunchullí is a representative mining district in ANMIN of Apolobamba where mining activity is mainly gold extraction and its water effluents go to the Amazonian basin; in this mining district the productivity of extracted mineral is very low but the processes can result in heavy-metal contamination of the air, water, soils and plants. Due to its high toxicity, the contamination by arsenic and mercury create the most critical environmental problems. In addition, some other heavy metals may also be present such as lead, copper, zinc and cadmium. These heavy metals could be incorporated in the trophic chain, through the flora and the fauna, in their bio-available and soluble forms. Inhabitants of this area consume foodcrops, fish from lakes and rivers and use the waters for the livestock, domestic use, and irrigation. The aim of this work was to evaluate the heavy metals pollution by gold mining activities in Sunchullí area. In Sunchullí two representative zones were distinguished and sampled. Zone near the mining operation site was considered as affected by mineral extraction processes, while far away zones represented the non affected ones by the mining operation. In each zone, 3 plots were established; in each plot, 3 soil sampling points were selected in a random manner and analysed separately. In each sampling point, two samples were taken, one at the surface, from 0-5 cm depth (topsoil), and the other between 5

  8. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer.

    PubMed

    Yuan, Wenzhen; Yang, Ning; Li, Xiangkai

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective.

  9. Advances in Understanding How Heavy Metal Pollution Triggers Gastric Cancer

    PubMed Central

    Yuan, Wenzhen; Yang, Ning

    2016-01-01

    With the development of industrialization and urbanization, heavy metals contamination has become a major environmental problem. Numerous investigations have revealed an association between heavy metal exposure and the incidence and mortality of gastric cancer. The mechanisms of heavy metals (lead, cadmium, mercury, chromium, and arsenic) contamination leading to gastric cancer are concluded in this review. There are four main potential mechanisms: (1) Heavy metals disrupt the gastric mucosal barrier by decreasing mucosal thickness, mucus content, and basal acid output, thereby affecting the function of E-cadherin and inducing reactive oxygen species (ROS) damage. (2) Heavy metals directly or indirectly induce ROS generation and cause gastric mucosal and DNA lesions, which subsequently alter gene regulation, signal transduction, and cell growth, ultimately leading to carcinogenesis. Exposure to heavy metals also enhances gastric cancer cell invasion and metastasis. (3) Heavy metals inhibit DNA damage repair or cause inefficient lesion repair. (4) Heavy metals may induce other gene abnormalities. In addition, heavy metals can induce the expression of proinflammatory chemokine interleukin-8 (IL-8) and microRNAs, which promotes tumorigenesis. The present review is an effort to underline the human health problem caused by heavy metal with recent development in order to garner a broader perspective. PMID:27803929

  10. Heavy metal pollution in various canals originating from river Yamuna in Haryana.

    PubMed

    Kaushik, A; Jain, S; Dawra, J; Sharma, P

    2003-07-01

    Heavy metal pollution due to Fe, Ni, Pb, Cd, Co and Zn in the water of major canals originating from the river Yamuna in Haryana was studied. All these metals except Zn were found to be present in the Western Yamuna Canal (WYC) exceeding the maximum permissible limits. In the Sunder branch (SB), the heavy metal concentration was relatively more. Concentrations of the metals were, however, relatively less in the highly eutrophicated waters of Agra canal and Gurgaon canal as compared to that in WYC but Fe concentration were much higher. Except Zn and Ni the metal concentrations exceeded the standard permissible limits in these canals also.

  11. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  12. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  13. Leachate characterization and assessment of groundwater pollution near municipal solid waste landfill site.

    PubMed

    Mor, Suman; Ravindra, Khaiwal; Dahiya, R P; Chandra, A

    2006-07-01

    Leachate and groundwater samples were collected from Gazipur landfill-site and its adjacent area to study the possible impact of leachate percolation on groundwater quality. Concentration of various physico-chemical parameters including heavy metal (Cd, Cr, Cu, Fe, Ni, Pb and Zn) and microbiological parameters (total coliform (TC) and faecal coliform (FC)) were determined in groundwater and leachate samples. The moderately high concentrations of Cl-, NO3(-), SO4(2-), NH4(+), Phenol, Fe, Zn and COD in groundwater, likely indicate that groundwater quality is being significantly affected by leachate percolation. Further they proved to be as tracers for groundwater contamination. The effect of depth and distance of the well from the pollution source was also investigated. The presence of TC and FC in groundwater warns for the groundwater quality and thus renders the associated aquifer unreliable for domestic water supply and other uses. Although some remedial measures are suggested to reduce further groundwater contamination via leachate percolation, the present study demand for the proper management of waste in Delhi.

  14. Hanford Site guide for preparing and maintaining generator group pollution prevention program documentation

    SciTech Connect

    PLACE, B.G.

    1998-11-16

    This document provides guidance to generator groups for preparing and maintaining documentation of Pollution Prevention Waste Minimization (P2/WMin) Program activities. The guidance is one of a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan (DOE-RL, 1998a) and Prime contractor implementation plans describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994). Documentation guidance for the following five P2/WMin elements are discussed: Fiscal Year (FY) Goals; Budget and Staffing; Waste Minimization (WMin) Assessments (WMAs); Quarterly Pollution Prevention (P2) Reporting WMin Certification.

  15. Comparative Laser Spectroscopy Diagnostics for Ancient Metallic Artefacts Exposed to Environmental Pollution

    PubMed Central

    Ciupiński, Łukasz; Fortuna-Zaleśna, Elżbieta; Garbacz, Halina; Koss, Andrzej; Kurzydłowski, Krzysztof J.; Marczak, Jan; Mróz, Janusz; Onyszczuk, Tomasz; Rycyk, Antoni; Sarzyński, Antoni; Skrzeczanowski, Wojciech; Strzelec, Marek; Zatorska, Anna; Żukowska, Grażyna Z.

    2010-01-01

    Metal artworks are subjected to corrosion and oxidation processes due to reactive agents present in the air, water and in the ground that these objects have been in contact with for hundreds of years. This is the case for archaeological metals that are recovered from excavation sites, as well as artefacts exposed to polluted air. Stabilization of the conservation state of these objects needs precise diagnostics of the accrued surface layers and identification of original, historical materials before further protective treatments, including safe laser cleaning of unwanted layers. This paper presents analyses of the chemical composition and stratigraphy of corrosion products with the use of laser induced breakdown spectroscopy (LIBS) and Raman spectroscopy. The discussion of the results is supported by material studies (SEM-EDS, XRF, ion-analyses). The tests were performed on several samples taken from original objects, including copper roofing from Wilanów Palace in Warsaw and Karol Poznański Palace in ŁódŸ, bronze decorative figures from the Wilanów Palace gardens, and four archaeological examples of old jewellery (different copper alloys). Work has been performed as a part of the MATLAS project in the frames of EEA and Norway Grants (www.matlas.eu) and the results enable the comparison of the methodology and to elaborate the joint diagnostic procedures of the three project partner independent laboratories. PMID:22399915

  16. The siting of a polluting facility in an urban environment

    SciTech Connect

    Griffin, J.J.

    1991-01-01

    Siting of a trash incinerator to serve a medium-sized city is analyzed. A model of residential locational choice is developed. In the model, households gather to live in proximity to employment, which is assumed to be concentrated at a central point. Land prices and residential density adjust to reflect this preference for central location. Land prices also reflect variation in environmental characteristics over space, for example the level of ambient air quality at a given location. The question of siting an incinerator is addressed within this framework. Transport of waste is more costly if the incinerator is placed in a remote location while more households are affected by the external impacts of the incinerator if it is placed at a central location. A complication, previously unaddressed in locational analyses, arises from the realization that any incinerator location influences long-run residential locational choices. This work analyzes the impact of siting and related policy questions within a long-run framework, which takes full account of subsequent residential locational patterns. because of the complexity of the model, a computer simulation is designed to allow the solution of a long-run equilibrium.

  17. Contamination by persistent organic pollutants in dumping sites of Asian developing countries: implication of emerging pollution sources.

    PubMed

    Minh, N H; Minh, T B; Kajiwara, N; Kunisue, T; Subramanian, A; Iwata, H; Tana, T S; Baburajendran, R; Karuppiah, S; Viet, P H; Tuyen, B C; Tanabe, S

    2006-05-01

    In Asian developing countries, large amounts of municipal wastes are dumped daily in open dumping sites without proper management. This practice may cause several adverse environmental consequences and increased health risk to local communities. To elucidate contamination by persistent organic pollutants (POPs)--including dichloro-diphenyl-trichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs), chlordanes, hexachlorobenzene (HCB), and polychlorinated biphenyls (PCBs)--in such dumping sites, soil samples were collected from open dumping sites and respective control sites in Cambodia, India, and Vietnam from 1999 through 2001. Our results demonstrated that DDTs, PCBs, and HCHs were dominant contaminants in the dumping sites. However, the contamination pattern was not consistent, showing higher HCHs in India than in Cambodia and Vietnam. Interestingly, in all of the countries, extremely higher levels of POPs were observed in the dumping sites compared with those in the respective control sites, suggesting significant amplification of POP contamination in the dumping sites of Asian developing countries. Mean concentrations of DDTs and PCBs were 350 and 140 ng/g dry weight, respectively, in the dumping sites of Cambodia and 26 and 210 ng/g, respectively, in India. These residue levels were hundreds to thousands times higher than those in general soils, implying possible risk to human health of the local communities, especially to the rag pickers, including children who work in these sites to collect recyclable materials. Composition of DDT compounds suggested their recent use in populated areas, which in turn might have caused increased levels of DDTs in the open dumping sites. In addition, composition of HCH isomers revealed their different use pattern in different countries.

  18. Magnetic Properties and Heavy Metals in topsoils from Mexico City: Implications for Pollution

    NASA Astrophysics Data System (ADS)

    Morton-Bermea, O.; Hernandez-Alvarez, E.; Acosta, T.; Martinez, E.; Soler-Arechalde, A. M.; Urrutia-Fucugauchi, J.

    2006-12-01

    Initial results of a long-term geochemical and magnetic mineralogy study of the heavy metal pollution as recorded in topsoils in Mexico City are reported. We concentrate on investigating the contents and distribution of heavy metals and magnetic minerals in sediments associated to atmospheric particulate pollutants. The geological setting, environmental characteristics and development history of Mexico City make this extensive urban and industrial area a natural laboratory to investigate air-, land- and water-pollution. Thirty-eight samples from surface soils were collected from localities within the metropolitan area, which represent different traffic conditions and heavy metal pollution levels. Elemental determinations are made with induced-coupled plasma mass spectrometry (ICP-MS). Magnetic mineralogy is investigated by low-field susceptibility, remanence intensity, magnetic hysteresis and coercivity spectra analyses on natural and laboratory-induced magnetizations. Soils show high pollution levels indicated by increase concentrations of heavy metals such as Pb, Zn, Cu and Cd, and by high contents of iron minerals (iron-titanium oxides). Urban soils close to dense slow traffic condition zones show the higher heavy metal concentrations, like it was to be expected, some of them exceeding the allowed limits.

  19. Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests

    PubMed Central

    Pennanen, T.; Frostegard, A.; Fritze, H.; Baath, E.

    1996-01-01

    The effects of long-term heavy metal deposition on microbial community structure and the level of bacterial community tolerance were studied along two different gradients in Scandinavian coniferous forest soils. One was near the Harjavalta smelter in Finland, and one was at Ronnskar in Sweden. Phospholipid fatty acid (PLFA) analysis revealed a gradual change in soil microbial communities along both pollution gradients, and most of the individual PLFAs changed similarly to metal pollution at both sites. The relative quantities of the PLFAs br18:0, br17:0, i16:0, and i16:1 increased with increasing heavy metal concentration, while those of 20:4 and 18:2(omega)6, which is a predominant PLFA in many fungi, decreased. The fungal part of the microbial biomass was found to be more sensitive to heavy metals. This resulted in a decreased fungal/bacterial biomass ratio along the pollution gradient towards the smelters. The thymidine incorporation technique was used to study the heavy metal tolerance of the bacteria. The bacterial community at the Harjavalta smelter, exposed mainly to Cu deposition, exhibited an increased tolerance to Cu but not to Cd, Ni, and Zn. At the Ronnskar smelter the deposition consisting of a mixture of metals increased the bacterial community tolerance to all tested metals. Both the PLFA pattern and the bacterial community tolerance were affected at lower soil metal concentrations than were bacterial counts and bacterial activities. At Harjavalta the increased Cu tolerance of the bacteria and the change in the PLFA pattern of the microbial community were found at the same soil Cu concentrations. This indicated that the altered PLFA pattern was at least partly due to an altered, more metal-tolerant bacterial community. At Ronnskar, where the PLFA data varied more, a correlation between bacterial community tolerance and an altered PLFA pattern was found up to 10 to 15 km from the smelter. Farther away changes in the PLFA pattern could not be explained

  20. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  1. Comprehensive biological effects of a complex field poly-metallic pollution gradient on the New Zealand mudsnail Potamopyrgus antipodarum (Gray).

    PubMed

    Gust, M; Buronfosse, T; Geffard, O; Coquery, M; Mons, R; Abbaci, K; Giamberini, L; Garric, J

    2011-01-17

    The Lot River is known to be contaminated by metals, mainly cadmium and zinc, due to a former Zn ore treatment plant in the watershed of the Riou-Mort, a tributary of the Lot River. Many studies have been performed to characterize contamination, but few have assessed its consequences on the biological responses of organisms along the gradient. We exposed adult and juvenile New Zealand freshwater mudsnails Potamopyrgus antipodarum at several sites along the gradient of metal contamination for 28 days. Biological responses were monitored at different levels: individual (survival, growth and fecundity), tissue and biochemical (energy status and vertebrate-like sex steroid levels) to better understand the toxicity mechanisms involved. Accumulation of Cd and Zn was high during exposure. Most of the biological effects observed could be linked to this contamination and were concentration-dependent. Histological lesions of the digestive gland were observed, with hypertrophy of calcium cells and vacuolization of digestive cells. Such effects are likely to explain the decrease of energy status (triglycerides and proteins), juvenile growth and adult fecundity observed at the most polluted site. However the magnitude of the fall in fecundity cannot be attributed only to these tissular effects, indicating another mode of action of Cd or possible confounding factors. Steroid accumulation in snails indicated only organic pollution. Histopathological effects proved the most sensitive endpoint to metal (Cd and Zn) contamination.

  2. Heavy metal pollution among autoworkers. II. Cadmium, chromium, copper, manganese, and nickel.

    PubMed Central

    Clausen, J; Rastogi, S C

    1977-01-01

    Garages and auto-repair workshops may be polluted with other heavy metals besides lead. Blood of autoworkers with high lead content was analysed for cadmium, chromium, copper manganese, nickel, ALAD activity and carboxyhaemoglobin level. Cadmium and copper levels in blood of autoworkers were comparable with those of the control subjects while chroimium and nickel levels were significantly higher (P less than 0-01 for both metals), and scattered raised values of manganese were found. There was no significant mutual correlation between levels of various heavy metals determined in whole blood. High copper levels were slightly related to decreasing ALAD activity (P less than 0-1). Nineteen per cent of autoworkers were found to have an abnormally blood level of carboxyhaemoglobin. The amount of particulate heavy metal in autoworkshop air was not related to biochemical abnormalities found in the autoworkers. Various sources of pollution of these heavy metals in autoworkshops are discussed. PMID:71915

  3. Response of magnetic properties to heavy metal pollution in dust from three industrial cities in China.

    PubMed

    Zhu, Zongmin; Li, Zhonggen; Bi, Xiangyang; Han, Zhixuan; Yu, Genhua

    2013-02-15

    Magnetic method is a reliable and powerful technique for identification of the relative contribution of industrial pollutants. However, it has not been fully applied in urban area impacted by non-ferrous metal (NFM) smelting/processing activities. The aim of this study is to explore the applicability of magnetic methods for detecting heavy metal contamination in dust from three NFM smelting/processing industrial cities (Ezhou, Zhuzhou, and Hezhang) in China. The enhancements of magnetic susceptibility (MS) and saturation isothermal remanent magnetization (SIRM) together with heavy metals were significant in the studied areas in comparison with the background values. Scanning electron microscope (SEM) analysis revealed that magnetic particles in dust from Ezhou were dominated by spherules, while those from Zhuzhou and Hezhang were mainly consisted of irregular-shaped particles. κ-T curves and X-ray diffraction (XRD) analyses indicated that the magnetic particles from Ezhou were dominated by magnetite and metallic iron, whereas those from Zhuzhou and Hezhang were consisted of magnetite and hematite. Our study indicates that magnetic properties of the dust are sensitive to the NFM smelting/processing related heavy metal pollutants. However, the relationship between magnetic parameters and heavy metals was influenced by the presence of metallic iron particles and multi-sources of metal pollutants.

  4. Exploring the status of motility, lipid bodies, deformities and size reduction in periphytic diatom community from chronically metal (Cu, Zn) polluted waterbodies as a biomonitoring tool.

    PubMed

    Pandey, Lalit K; Bergey, Elizabeth A

    2016-04-15

    Taxonomic metrics of diatoms are regularly used for aquatic biomonitoring, including testing for heavy metal stress. In contrast, non-taxonomical parameters in diatoms are rarely assessed. In the present study, taxonomical features of diatoms, such as cell density, chlorophyll a, species richness, and the Shannon index, were reduced at severely polluted (Cu, Zn) sites compared with less polluted sites. Some non-taxonomic parameters, such as, lipid bodies (LBs) number and size, carotenoid/chlorophyll a ratios, and frustule deformities were elevated at the severely polluted sites in comparison to the less polluted sites in both the areas. Cell size diminished and motility changed from smooth to erratic with increasing Cu and Zn pollution. Some of these behavioral and physiological changes were easily assessed (e.g., motility and formation of LBs), while morphological alterations (cell wall deformities and changes in cell size) requires more time and human expertise in diatom taxonomy. These parameters were consistent across metal concentrations of sediments, in the water, and in cells. The results illustrate the usefulness of these non-taxonomic parameters in biomonitoring, especially as early warning tools for ecotoxicity assessment and testing for sublethal effects. Some of these parameters, such as cell size and cell wall deformities, can be easily incorporated into traditional protocols, although LBs and motility metrics will require more effort.

  5. Heavy metals pollution and pb isotopic signatures in surface sediments collected from Bohai Bay, North China.

    PubMed

    Gao, Bo; Lu, Jin; Hao, Hong; Yin, Shuhua; Yu, Xiao; Wang, Qiwen; Sun, Ke

    2014-01-01

    To investigate the characteristics and potential sources of heavy metals pollution, surface sediments collected from Bohai Bay, North China, were analyzed for the selected metals (Cd, Cr, Cu, Ni, Pb, and Zn). The Geoaccumulation Index was used to assess the level of heavy metal pollution. Pb isotopic compositions in sediments were also measured to effectively identify the potential Pb sources. The results showed that the average concentrations of Cd, Cr, Cu, Ni, Pb, and Zn were 0.15, 79.73, 28.70, 36.56, 25.63, and 72.83 mg/kg, respectively. The mean concentrations of the studied metals were slightly higher than the background values. However, the heavy metals concentrations in surface sediments in Bohai Bay were below the other important bays or estuaries in China. The assessment by Geoaccumulation Index indicated that Cr, Zn, and Cd were classified as "the unpolluted" level, while Ni, Cu, and Pb were ranked as "unpolluted to moderately polluted" level. The order of pollution level of heavy metals was: Pb > Ni > Cu > Cr > Zn > Cd. The Pb isotopic ratios in surface sediments varied from 1.159 to 1.185 for (206)Pb/(207)Pb and from 2.456 to 2.482 for (208)Pb/(207)Pb. Compared with Pb isotopic radios in other sources, Pb contaminations in the surface sediments of Bohai Bay may be controlled by the mix process of coal combustion, aerosol particles deposition, and natural sources.

  6. Antioxidative responses of the tissues of two wild populations of Pelophylax kl. esculentus frogs to heavy metal pollution.

    PubMed

    Prokić, Marko D; Borković-Mitić, Slavica S; Krizmanić, Imre I; Mutić, Jelena J; Vukojević, Vesna; Nasia, Mohammed; Gavrić, Jelena P; Despotović, Svetlana G; Gavrilović, Branka R; Radovanović, Tijana B; Pavlović, Slađan Z; Saičić, Zorica S

    2016-06-01

    Heavy metal pollution of the aquatic environment is of great concern worldwide. Heavy metals are capable of inducing oxidative stress by increasing the formation of reactive oxygen species (ROS), and directly affecting the antioxidant defense system (AOS) in living organisms. The frog Pelophylax kl. esculentus is a semiaquatic species with semipermeable skin and a complex lifecycle, and represents a potentially useful bioindicator organism. The aim of this study was to investigate the accumulation of several heavy metals (Cd, Co, Cr, Cu, Fe, Hg, Ni, Pb and Zn), and their effects on selected parameters of the AOS, including the activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), glutathione reductase (GR), phase II biotransformation enzyme glutathione-S-transferase (GST), the total glutathione (GSH) contents and sulfhydryl (SH) group concentrations, as well as cholinesterases (ChEs) activities in the liver, skin and muscle of P. kl. esculentus. Frog samples were collected at two sites (the Danube-Tisza-Danube canal (DTDC) and the river Ponjavica) in Serbia, which are characterized by different levels of metal pollution. Differences between the metal contents in different tissues showed that the skin of frogs from the DTDC accumulated statistically higher concentrations of Cd, Cu, Pb and Zn, while only the Fe concentration was lower. No significant differences between metal concentrations in muscle tissues of frogs from the DTDC and Ponjavica were observed. Examination of the parameters of the AOS revealed that frogs from the DTDC had higher concentrations of GSH in the liver and of SH groups in the skin and muscle, whereas the activities of the antioxidative enzymes SOD, GHS-Px and GR in the liver and of GR in the skin were lower than in frogs from the Ponjavica. The relationship between metal concentrations and AOS parameters showed the highest number of correlations with GSH, GR and CAT, and with Ni, Zn, Hg, Cr and Cd. Based

  7. Contaminated scrap-metal inventories at ORO-managed sites

    SciTech Connect

    Mack, J.E.

    1981-01-01

    Radioactively contaminated scrap metal inventories were surveyed at facilities operating under contract with the US Department of Energy and managed through the Oak Ridge Operations Office. Nearly 90,000 tons of nickel, aluminum, copper, and ferrous metals (steels) contaminated with low-enriched uranium have accumulated, primarily at the uranium enrichment facilities. The potential value of this metal on the scrap market is over $100 million. However, existing regulations do not permit sale for unlicensed use of materials contaminated with low-enriched uranium. Therefore, current handling practices include burial and above-ground storage. Smelting is also used for shape declassification, with subsequent storage of ingots. This survey of existing inventories, generation rates, and handling capabilities is part of an overall metal waste management program to coordinate related activities among the ORO-managed sites.

  8. Metal pollution in Huayuan River in Hunan Province in China by manganese sulphate waste residue.

    PubMed

    Hu, Nan; Zheng, Ji-Fang; Ding, De-Xin; Liu, Jun; Yang, Lu-Qing; Yin, Jie; Li, Guang-Yue; Wang, Yong-Dong; Liu, Yu-Long

    2009-10-01

    The Huayuan River in Hunan Province in China is subject to ongoing mining activity with Mn extraction. In this study, the level and environmental significance of metals (including Mn, Cd, Pb, Cu, Zn, Ni and Fe) concentrations in the surface water and river sediments have been investigated along a 187 km reach of the Huayuan River. Using the X-ray fluorescence (XRF) analysis, we analyzed the characterization of metals in manganese sulphate waste residue (MSWR) deposited along the bank of Huayuan River. The speciation of metals in both sediment and MSWR was established using the BCR-three step sequential extraction procedure. In the water samples, the average concentrations of Mn, Cd and Pb exceeded the acceptable concentrations for drinking water in the WHO Guidelines for drinking water quality, Vol. 1, Recommendations, Geneva (2004) and Chinese (GB 5749-2006) guidelines, respectively. The average concentrations of Mn, Cd, Pb and Zn in the river sediments were found to be considerably higher than the corresponding world average shale values. The percentages of Cd (31.4%), Mn (31.1%), Zn (12.8%) and Pb (8.1%) associated with exchangeable and weak acid fraction in the sediments were higher than other metals. Mn (5.81%), Zn (0.208%), Pb (0.0292%) and Cd (0.0113%) were identified in MSWR by XRF analysis. The percentages of Mn, Cd, Zn and Pb associated with the exchangeable and weak acid soluble fraction in MSWR were 41.9%, 31.1%, 23.8% and 9.8%, respectively. The peak solute and sediment-bound metal concentrations were found at the sites of MSWR deposited along the bank of Huayuan River. The results suggested that MSWR deposited along the bank may have a closely relation with the metal pollution of Huayuan River. The results obtained may be useful to assess both short and long-term environmental impact of the MSWR deposited activities and support decisions for a future remediation of this river.

  9. Heavy metal pollution in farmland irrigated with river water near a steel plant—magnetic and geochemical signature

    NASA Astrophysics Data System (ADS)

    Zhang, Chunxia; Appel, Erwin; Qiao, Qingqing

    2013-03-01

    The presence of heavy metals (HMs) in the environment is a major threat for humans. Magnetic proxies provide a rapid method for assessing the degree of HM pollution in environment. We have studied farmland soil irrigated with polluted river water in the vicinity of a steel plant in Loudi city (Hunan Province, China) to test the efficiency of magnetic methods for detecting the degree of HM pollution. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these farmland soils. Enhanced magnetic concentration values were found in the upper arable soil horizon (0-20 cm), which is related to the presence of spherical ˜10 to 30 μm sized magnetite particles. The spatial distribution of magnetic concentration and HM contents in the farmland soils matches with the spatial pattern of these parameters in river sediments. These findings provide evidence that HM pollution of the farmland soil is mainly caused by irrigation with wastewater. HMs Zn, Pb, Cu, Cd, Co, Ni, V are well correlate with magnetic susceptibility (χ). The pollution load index (PLI) of all nine anthropogenic HMs (including also Cr and Mo) and log10(χ) are significantly correlated. Using the resulting linear PLI-log10(χ) function, values of χ can serve as a convenient tool for semi-quantifying the degree of HM pollution in the uppermost ˜20 cm of the studied farmland soils. These findings suggest that magnetic methods can generally serve as a convenient tool for detecting and mapping HM pollution in farmland soil irrigated with wastewater from sites nearby heavy industrial activities.

  10. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Ye, Chen; Li, Siyue; Zhang, Yulong; Zhang, Quanfa

    2011-07-15

    The water-level-fluctuation zone (WLFZ) between the elevations of 145-175 m in China's Three Gorges Reservoir has experienced a novel hydrological regime with half a year (May-September) exposed in summer and another half (October-April) submerged in winter. In September 2008 (before submergence) and June 2009 (after submergence), soil samples were collected in 12 sites in the WLFZ and heavy metals (Hg, As, Cr, Cd, Pb, Cu, Zn, Fe, and Mn) were determined. Enrichment factor (EF), factor analysis (FA), and factor analysis-multiple linear regression (FA-MLR) were employed for heavy metal pollution assessment, source identification, and source apportionment, respectively. Results demonstrate spatial variability in heavy metals before and after submergence and elements of As, Cd, Pb, Cu, and Zn are higher in the upper and low reaches. FA and FA-MLR reveal that As and Cd are the primary pollutants before submergence, and over 45% of As originates from domestic sewage and 59% of Cd from industrial wastes. After submergence, the major contaminants are Hg, Cd, and Pb, and traffic exhaust contributes approximately 81% to Hg and industrial effluent accounts about 36% and 73% for Cd and Pb, respectively. Our results suggest that increased shipping and industrial wastes have deposited large amounts of heavy metals which have been accumulated in the WLFZ during submergence period.

  11. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes.

    PubMed

    Massas, Ioannis; Kalivas, Dionisios; Ehaliotis, Constantions; Gasparatos, Dionisios

    2013-08-01

    The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16 × 10(3) mg kg(-1), respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg kg(-1). Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.

  12. [Pollution distribution and potential ecological risk assessment of heavy metals in sediments from the different eastern dredging regions of Lake Taihu].

    PubMed

    Mao, Zhi-Gang; Gu, Xiao-Hong; Lu, Xiao-Ming; Zeng, Qing-Fei; Gu, Xian-Kun; Li, Xu-Guang

    2014-01-01

    In order to investigate the distribution characteristics of nutrients and heavy metals in sediments from different eastern dredging regions of Lake Taihu, the surface and core sediment samples at 5 sites (in East Taihu Lake and Xukou Bay) were collected in 2012. Contents of nutrients (TOC, TN and TP) and heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) in the sediments were measured and the pollution degrees of heavy metals were evaluated with the potential ecological risk method. The results showed that the heavy metal contents in Xukou Bay were generally higher than those in East Taihu Lake, whereas the nutrients contents showed the reverse trend. There were significant differences between the phytoplankton-dominated and culture lake regions. The concentrations of both nutrients and heavy metals decreased with increasing profile depth. Moreover, the contents of nutrients and heavy metals in the sediments of all dredged areas were lower than those in the un-dredged areas, suggesting that dredging may be a useful approach for decreasing nutrients and heavy metals loading in sediments, but its effectiveness decreased with time. Significant positive correlations were found among different heavy metals and nutrients, indicating that they were from the same pollution source. The Hakanson potential ecological risk index was applied for assessing the status of sediment heavy metal enrichment and the result indicated that sediment dredging could reduce the extent of potential ecological risk. The risk index in different sites followed the order: X1 > D1 > D3 > X2 > D2, while the risk index in site X1 of Xukou Bay was higher than that in site D1 of East Taihu Lake. And the comprehensive ecological risk grades in sites X1 and D1 were in the moderate range, while the sites D2, D3 and X2 were low.

  13. Integrated use of histological and ultrastructural biomarkers in Mugil cephalus for assessing heavy metal pollution in Ennore estuary, Chennai.

    PubMed

    Arockia Vasanthi, Lourduraj; Revathi, Peranandam; Mini, Jayaprakash; Munuswamy, Natesan

    2013-05-01

    Bioaccumulation of heavy metals and its associated histological perturbations were studied in various tissues of Mugil cephalus collected from Ennore estuary and compared with the fish collected from off-shore region. The concentration of copper, lead, zinc, cadmium, manganese and iron were quantified in gills, liver and muscle. The results showed marked differences between the two sites as well as significant variations within the tissues. The decreasing trend of metals in the tissues of fish sampled from both Ennore estuary and off-shore was in the order of Fe>Mn>Zn>Cu>Pb>Cd. Overall, the highest metal concentrations were found in the fish collected from Ennore estuary. The accumulation in the gills and liver of M. cephalus was found to be quite high in comparison with the muscle. These tissues were further investigated by light and electron microscopy and the results were compared with the reference site (off-shore region). The presence of large lipid droplets in liver and increase of mucous cells in gills were some of the most noticeable alterations observed and were related to heavy metal contaminants. It is concluded that histopathological and ultrastructural biomarkers provide reliable and discriminatory data to augment heavy metal pollution in Ennore estuary. Therefore, long-term monitoring is necessary to assess the eco-health of the Ennore estuarine environment by choosing bio-indicator species like M. cephalus, which provide accurate, reliable measurements of environmental quality.

  14. Turritella attenuata (Kasinathan): as biological indicator of marine pollution--a trace metal analytical study.

    PubMed

    Paul, V I; Radhakrishnan, M V; Hemalatha, S

    1999-11-01

    A study to monitor marine pollution with reference to trace elements (Fe, Zn, Mn and Cu) on T. attenuata, commonly called as screw shell over a period of one year on the whole body and various organs, viz. digestive diverticula, foot, mantle and ovary was conducted from the sandy beach of Porto Novo Coast (Lat 11 degrees 29' N Long: 79 degrees 46' E) of Peninsular India using Atomic Absorption Spectrophotometer (AAS). Higher concentration of all the four trace metals analysed were recorded in the digestive diverticula, whereas lower concentration of zinc and manganese were recorded in the ovary during the monsoon period. The higher level of trace metal concentration in the monsoon period may be due to the presence of these pollutants in large amounts in water. The accumulation of selected trace metals varies in different seasons according to the extent of pollution load in the marine environment.

  15. Neuroendocrine disruption in Mya arenaria clams during gametogenesis at sites under pollution stress.

    PubMed

    Gagné, F; Blaise, C; Pellerin, J; André, C

    2007-08-01

    This study examined the neuroendocrine status of clams on intertidal mud flats in the St. Lawrence Estuary and Saguenay Fjord areas during late gametogenesis. The impact of pollution was determined by a test battery of early stress markers (metallothioneins, heme levels, glutathione S-transferase activity), tissue damage (lipid peroxidation and DNA damage) and morphologic characteristics (age, soft-tissue weight ratio and growth index). Neuroendocrinal status was examined by tracking serotonin and dopamine metabolism, monoamine adenylate cyclase activity in synaptosomes, monoamine oxidase and arachidonate cyclooxygenase activities in relation to gametogenetic activity: pyrimidine synthesis, (aspartate transcarbamoylase activity or ATC), vitellogenin-like proteins and gonado-somatic index. The results show that clam soft tissue weights were reduced at sites close to harbours and higher at sites near domestic wastewater outfalls. The age-to-length ratio of clams was generally higher at impacted sites, suggesting reduced growth. The biomarkers of stress or damage confirmed that oxidative stress, DNA damage, metallothioneins and glutathione S-transferase activity were significantly increased at varying degrees, at the polluted sites. Vitellogenin-like proteins and gametogenetic activity were significantly increased at sites influenced by domestic wastewaters. Furthermore, the clams were still in active gametogenesis and not ready for spawning, as indicated by the concordance of the serotonin/dopamine ratio with vitellogenin-like proteins and pyrimidine synthesis. However, gonadal cyclooxygenase activity was increased at polluted sites and significantly correlated with most of the stress biomarkers, suggesting that the clams were in a state of inflammation rather than at the spawning stage. Finally, a multivariate analysis revealed that the sites were readily discriminated with high efficiency (>71%) and that both neuroendocrine physiological markers and stress

  16. Characterization and pollution potential assessment of Tunceli, Turkey municipal solid waste open dumping site leachates.

    PubMed

    Demirbilek, Deniz; Öztüfekçi Önal, Ayten; Demir, Veysel; Uslu, Gulsad; Arslanoglu-Isık, Hilal

    2013-11-01

    Environmental monitoring of leachate quality from an open municipal solid waste dumping site in Tunceli, Turkey was studied in this research. The most commonly examined pollution parameters were determined on a seasonal basis. The annual average 5-day biological oxygen demand (BOD₅) and chemical oxygen demand (COD) values of station points were measured as 70 and 425 mg/L, respectively, and also the average BOD₅/COD ratio (a measure of biodegradability) was calculated as 0.20. The low ratio of biodegradability and slightly alkaline pH values in the leachate samples indicated that the site was characterized by methanogenic conditions. The mean ammonium-nitrogen (NH4 (+)-N) and corresponding phosphate (orthophosphate) values were assayed as 70 and 11 mg/L, respectively. The average solids content in the leachates was measured as 4,681 mg/L (total solids) and 144 mg/L (suspended solids). Very low concentrations of iron, manganese, copper, and zinc in the leachate samples were found and the concentration of cadmium was measured below detection limits. Excessive amount of nutrients and high organic and inorganic pollutant content in the leachates pose serious pollution potential to the environment. Since no drainage system or bio treatment exists in this open dumping site, high permeability of natural soil at the site and in the surrounding area and very fractured and crackled rocks under natural soil are indicators of high groundwater pollution potential in this site.

  17. Common buzzards (Buteo buteo) bio-indicators of heavy metals pollution in Sicily (Italy).

    PubMed

    Naccari, C; Cristani, M; Cimino, F; Arcoraci, T; Trombetta, D

    2009-04-01

    The aim of this study was to evaluate the accumulation of toxic (As, Cd and Pb) and essential (Cu, Mn and Zn) metals in samples (feathers, liver, kidney, lung, intestine and muscle) of common buzzards (Buteo buteo) from Sicily, used as bio-indicators for monitoring environmental metals pollution. All samples of buzzards were collected at the "Recovery Center of Wild Fauna" of Palermo, through the Zooprophilactic Institute. The quantitative determinations of metals were carried out using an atomic absorbtion spectrophotometer (AAS). The results obtained showed the presence of metals in all samples analyzed. For toxic metals the highest levels of Pb and As were found in liver and those of Cd in kidney; for essential metals Zn levels were higher than Cu and Mn in all tissues analyzed. Significant differences are observed in metal levels between female and male and juvenile and adult bird samples. Highest metal levels found in liver, kidney and muscle can be considered indicative of chronic exposure to metals while the presence of metals in feathers can be consequential to storing and elimination processes. The results obtained suggest that common buzzards (Buteo buteo) may be very useful as bio-indicators for monitoring environmental pollution.

  18. Cadmium, Chromium, and Copper Concentration plus Semen-Quality in Environmental Pollution Site, China

    PubMed Central

    LI, Yan; GAO, Qiaoyan; LI, Mingcai; LI, Mengyang; GAO, Xueming

    2014-01-01

    Abstract Background The environmental pollution is one of the factors contributing to the decrease of sperm quality for human beings. The aim of this study was to assess cadmium (Cd), chromium (Cr), and copper (Cu) concentration of man in environmental pollution site, and explore relationships between men exposure to Cd, Cr, and Cu and semen-quality parameters in environmental pollution site. Methods Ninety five men were recruited through pollution area and controls in 2011. We measured semen quality using Computer-aided Semen Quality Analysis, and Cd, Cr, and Cu levels in seminal plasma using Graphite Gurnace Atomic Absorption Spectroscopy. Spearman rank correlation analysis was used to evaluate the correlation between Cd, Cr and Cu concentration in seminal plasma and semen quality. Results The mean of seminal plasma Cd, Cr, and Cu values in pollution area was higher than the controls. Seminal plasma Cr values displayed a significant negative correlation with total motility and normomorph sperm rate. Seminal plasma Cu values also displayed a negative correlation with normomorph sperm rate. Conclusions Male reproductive health may be threatened by environmental pollution, and it may be influence local population diathesis. PMID:26060677

  19. Oxidative stress on land snail Helix aspersa as a sentinel organism for ecotoxicological effects of urban pollution with heavy metals.

    PubMed

    Abdel-Halim, K Y; Abo El-Saad, A M; Talha, M M; Hussein, A A; Bakry, N M

    2013-10-01

    The oxidative stress in the digestive gland of the land snail Helix aspersa was considered as a bioindicator for atmospheric pollution with heavy metals from several industries and vehicular traffic in Kafr El-Zayat city. Regional means of heavy metals concentration of all sites were 0.71, 7.09, 0.71, 2.68, 41.44 and 18.01 mg kg(-1) wet mass for Cd, Mn, Ni, Pb, Zn and Cu, respectively. In addition, the highest values of Cd concentrations were found 1.22 and 1.73 mg kg(-1) wet mass in S1 (Potato International Center) and S4 (The Nile bank), respectively. Lactate dehydrogenase (D-LDH(and recorded lipid peroxidation (LPO) levels were significantly high in S1 and S2 (Traffic station). On the other hand, the highest activity of catalase (CAT) was found in S2 (194.04% of control), while the activity of glutathione peroxidase (GPx) reached the highest significant value in S1. As a matter of fact, glutathione-S-transferase (GST) and glutathione reductase (GR) activities were significantly higher in polluted sites than in reference zone. In contrast, the glutathione (GSH) concentration of exposed animals showed significant decrease in all sites, with the lowest value in S1 (57.61% of control). However, metallothioneins concentration (MT) showed no significant difference in all sites except in S1 which accounted for 127.81% of control. Therefore, the overall results of this study showed the importance of H. aspersa as a sentinel organism for biomonitoring the biologic impact of atmospheric pollution in urban areas.

  20. Environmental Pollution Studies in an Underdeveloped Country: (1) Heavy Metal Pollution in Ibadan, Nigeria.

    ERIC Educational Resources Information Center

    Onianwa, P. C.

    1993-01-01

    Reviews research studies related to the monitoring of trace heavy metals in environmental samples such as plants, water, soils, and other natural resources in the city of Ibadan, Nigeria. Research results indicate a significant increase in toxic heavy metal levels has occurred, implying the need for environmental education. (Contains 31…

  1. Impact of Soil Heavy Metal Pollution on Food Safety in China

    PubMed Central

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  2. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    PubMed

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  3. How and where to perform biomonitoring studies: different levels of toxic metal pollution are detected in the Alagados Reservoir in Southern Brazil.

    PubMed

    Doria, Halina Binde; Voigt, Carmen Lúcia; Sandrini-Neto, Leonardo; Campos, Sandro Xavier; de Oliveira-Ribeiro, Ciro Alberto; Randi, Marco Antonio Ferreira

    2017-04-05

    The Alagados Reservoir located in the Brazilian city of Ponta Grossa is used to supply water for human consumption but is impacted by toxic metals. The current study combined chemical, biochemical, and multivariate analyses to determine the bioavailability of toxic metals at three sites (AL-A, AL-B, and AL-C) within the Alagados Reservoir. Metal bioaccumulation was analyzed in the liver, gills, and muscle tissue of a native fish species (Geophagus brasiliensis), and neurotoxicity, xenobiotic metabolism, and oxidative stress were evaluated using biochemical biomarkers. Additionally, histopathological studies were performed on the gills and the liver using scanning electron microscopy (SEM) and conventional light microscopy (LM), respectively. Overall, the bioaccumulation of metals, biomarkers of oxidative stress, and melanomacrophage counts indicate that the AL-C and the AL-A sites are the most and least affected by metals, respectively. The AL-B site presented the lowest acetylcholinesterase enzyme activity, a finding which was probably associated with the agricultural activities around this area of the reservoir. The biomarkers clearly revealed that toxic metals negatively affect all three sites studied herein and that human activity is the major source of pollutants. Despite the existence of different pollution levels within the Alagados Reservoir, it is still used as a human water supply.

  4. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    PubMed

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  5. Comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens.

    PubMed

    State, Gabriel; Popescu, Ion V; Radulescu, Cristiana; Macris, Cristina; Stihi, Claudia; Gheboianu, Anca; Dulama, Ioana; Niţescu, Ovidiu

    2012-09-01

    Our study was dedicated to the analysis of air pollution level with metals in Dambovita County, Romania; maps of the concentration distributions for air pollutants were drawn; statistical analysis includes calculation of the background concentrations and the contamination factors. The highest values of the contamination factor CF is 63.1 ± 6.63 for mosses samples and 33.12 ± 3.96 for lichens and it indicates extreme contaminations in the surroundings of steel works and an electric plant. The comparison of the distribution maps for Cr, Cu, Fe, Ni, Pb and Zn concentrations enables the identification of the pollution sources, the limits of areas with very high levels of pollution, the comparison of the concentration gradients in some areas and the influence of woodlands on the spread of pollutants through the air.

  6. The environmental impact of gold mines: pollution by heavy metals

    NASA Astrophysics Data System (ADS)

    Abdul-Wahab, Sabah Ahmed; Marikar, Fouzul Ameer

    2012-06-01

    The gold mining plant of Oman was studied to assess the contribution of gold mining on the degree of heavy metals into different environmental media. Samples were collected from the gold mining plant area in tailings, stream waters, soils and crop plants. The collected samples were analyzed for 13 heavy metals including vanadium (V), chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), cadmium (Cd), cobalt (Co), lead (Pb), zinc (Zn), aluminium (Al), strontium (Sr), iron (Fe) and barium (Ba). The water in the acid evaporation pond showed a high concentration of Fe as well as residual quantities of Zn, V, and Al, whereas water from the citizens well showed concentrations of Al above those of Omani and WHO standards. The desert plant species growing closed to the gold pit indicated high concentrations of heavy metals (Mn, Al, Ni, Fe, Cr, and V), while the similar plant species used as a control indicated lesser concentrations of all heavy metals. The surface water (blue) indicated very high concentrations of copper and significant concentrations of Mn, Ni, Al, Fe, Zn, lead, Co and Cd. The results revealed that some of the toxic metals absorbed by plants indicated significant metal immobilization.

  7. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  8. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  9. Periphyton as monitors for heavy metal pollution in the Calcasieu River estuary.

    PubMed

    Ramelow, G J; Maples, R S; Thompson, R L; Mueller, C S; Webre, C; Beck, J N

    1987-01-01

    The levels of copper, lead, chromium, zinc, cadmium, arsenic and silver were determined in periphyton specimens obtained with a diatometer collector. Stations selected were along three important bayous of the Calcasieu River system. Distributions of some metals in the organisms were similar to those found in sediment from the same locations, while other metals appeared to be similar to water concentrations. Concentration ratios of periphyton over sediment greatly exceeded one for the metals chromium, zinc, cadmium, arsenic and silver. The concentrations of heavy metals in the periphyton appeared to yield more information about pollutants than either water or sediment samples collected at the periphyton stations.

  10. Emergent effects of heavy metal pollution at a population level: Littorina brevicula a study case.

    PubMed

    Kim, Sook-Jung; Rodriguez-Lanetty, Mauricio; Suh, Jae-Hwa; Song, Jun-Im

    2003-01-01

    Changes in genetic variability and allele frequency can be responses from natural populations when encountering a novel contaminated environment. The genetic diversity and population structuring of natural populations of the gastropod Littorina brevicula from heavy-metal polluted and unpolluted environments along the southeast coast of Korea were examined using two mtDNA markers, cyt b and ND6. This study applied a nested clade analysis to test the existence of structuring association of haplotype distribution with environments (polluted and unpolluted). No genetic differences within cyt b mtDNA were detected between environments. On the other hand, differences in population haplotype diversity and structuring were found within ND6 mtDNA between polluted and unpolluted environments. The ND6-mtDNA haplotype (=genetic) diversity was significant lower in polluted environments. This decreased genetic diversity along with differences in the haplotype distribution within heavy-metal polluted environments compared to those unpolluted ones stand out as emergent effects from pollution at a population level. In this study, we propose the use of different approaches, such as the NCA, that takes into account the rare haplotypes, when assessing the effects of pollution on population genetic structuring.

  11. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    PubMed

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  12. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    PubMed Central

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  13. Evaluating the efficiency of sediment metal pollution indices in interpreting the pollution of Haraz River sediments, southern Caspian Sea basin.

    PubMed

    Nasrabadi, Touraj; Bidhendi, Gholamreza Nabi; Karbassi, Abdolreza; Mehrdadi, Nasser

    2010-12-01

    The Haraz River is one of the most significant rivers in the southern Caspian Sea basin. Towards the estuary, the river receives discharges of industrial, agricultural, and urban wastes. In the present investigation, bulk concentrations of Cu, Zn, As, Cd, Pb, Fe, Ni, Cr, Co, and Sr in Haraz River (Iran) bed sediments were measured from several sample locations. In addition, association of studied metals with various sedimentary phases was assessed to determine the proportions of metals in different forms. The intensity of sediment contamination was evaluated using an enrichment factor (EF), geo-accumulation index (I(geo)), and a newly developed pollution index (I(poll)). Both EF and I(geo) formulae compare present concentrations of metals to their background levels in crust and shale, respectively. In a specific area with its own geological background like Haraz River water basin where naturally high concentrations of metals may be found, such a comparison may lead to biased conclusions regarding levels of anthropogenic contamination. Accordingly, chemical partitioning results are substituted for the mean crust and shale levels in the new index (I(poll)). The Pearson correlation coefficient between the anthropogenic portion of metallic pollution in Haraz river-bed sediments with I(poll) showed much more value in comparison with those of geochemical accumulation index and enrichment factor. The order of metals introduced by anthropogenic activities are as follows: Sr > Pb > Co > Cd > Zn > Cu > Ni > As > Cr > Fe. The results showed relatively higher concentrations of Cd, As, Sr, and Pb in comparison with those of shale. However, based on the chemical partitioning of metals, it is found that Sr, Pb, Co, and Cd are the most mobile metals. In spite of the high As concentrations in sediments, it is not likely that this element is a major hazard for the aquatic environment since it is found mainly in the residual fraction. Also, Fe, Cr, and Ni are present in the greatest

  14. The application of Diffusive Gradients in Thin Films (DGT) for improved understanding of metal behaviour at marine disposal sites.

    PubMed

    Parker, Ruth; Bolam, Thi; Barry, Jon; Mason, Claire; Kröger, Silke; Warford, Lee; Silburn, Briony; Sivyer, Dave; Birchenough, Silvana; Mayes, Andrew; Fones, Gary R

    2017-01-01

    Assessment of the effects of sediment metal contamination on biological assemblages and function remains a key question in marine management, especially in relation to disposal activities. However, the appropriate description of bioavailable metal concentrations within pore-waters has rarely been reported. Here, metal behaviour and availability at contaminated dredged material disposal sites within UK waters were investigated using Diffusive Gradient in Thin films (DGT). Three stations, representing contrasting history and presence of dredge disposal were studied. Depth profiles of five metals were derived using DGT probes as well as discrete analysis of total metal concentrations from sliced cores. The metals analysed were: iron and manganese, both relevant to sediment biogeochemistry; cadmium, nickel and lead, classified as priority pollutants. DGT time-integrated labile flux profiles of the metals display behaviour consistent with increasingly reduced conditions at depth and availability to DGT (iron and manganese), subsurface peaks and a potential sedimentary source to the water column related to the disposal activity (lead and nickel) and release to pore-water linked to decomposition of enriched phytodetritus (cadmium). DGT data has the potential to improve our current understanding of metal behaviour at impacted sites and is suitable as a monitoring tool. DGT data can provide information on metal availability and fluxes within the sediment at high depth-resolution (5mm steps). Differences observed in the resulting profiles between DGT and conventional total metal analysis illustrates the significance of considering both total metals and a potentially labile fraction. The study outcomes can help to inform and improve future disposal site impact assessment, and could be complemented with techniques such as Sediment Profile Imagery for improved biologically relevance, spatial coverage and cost-effective monitoring and sampling of dredge material disposal sites

  15. Metals in air pollution particles decrease whole-blood coagulation time.

    PubMed

    Sangani, Rahul G; Soukup, Joleen M; Ghio, Andrew J

    2010-07-01

    The mechanism underlying procoagulative effects of air pollution particle exposure is not known. The authors tested the postulate that (1) the water-soluble components of an air pollution particle could affect whole-blood coagulation time and (2) metals included in this fraction were responsible for this effect. Exposure to the water-soluble fraction of particulate matter (PM), at doses as low as 50 ng/ml original particle, significantly diminished the whole-blood coagulation time. Inclusion of deferoxamine prolonged coagulation time following the exposures to the water-soluble fraction, whereas equivalent doses of ferroxamine had no effect. Except for nickel, all metal sulfates shortened the whole-blood coagulation time. Iron and zinc were two metals with the greatest capacity to reduce the coagulation time, with an effect observed at 10 ng/ml. Finally, in contrast to the anticoagulants citrate and EDTA, their iron complexes were found to be procoagulative. The authors conclude that metals in the water-soluble fraction of air pollution particles decrease whole-blood coagulation time. These metals can potentially contribute to procoagulative effects observed following human exposures to air pollution particles.

  16. Heavy metal pollution status in surface sediments of the coastal Bohai Bay.

    PubMed

    Gao, Xuelu; Chen, Chen-Tung Arthur

    2012-04-15

    Bohai Bay, the second largest bay of Bohai Sea, largely due to the huge amount of pollutants discharged into it annually and its geohydrologic condition, is considered to be one of the most polluted marine areas in China. To slow down, halt and finally reverse the environmental deterioration of Bohai Sea, some researchers have proposed to connect it with Jiaozhou Bay in the western coast of Southern Yellow Sea by digging an interbasin canal through Shandong Peninsula. In order to assess the heavy metal pollution and provide background information for such a large geoengineering scheme, surface sediments from 42 stations covering both riverine and marine regions of the northwestern coast of Bohai Bay were analyzed for heavy metal content and fractionation (Cd, Cr, Cu, Ni, Pb and Zn). Three empirically derived sediment quality guidelines were used to assess the pollution extent of these metals. The studied metals had low mobility except for Cd at all stations and Zn at some riverine stations. Although a high mobility of Cd was observed, it could hardly cause a bad effect on the environment owing to its low total concentrations. Anthropogenic influence on the accumulation of studied heavy metals in sediments of Bohai Bay was obvious, but their contents were relatively lower to date comparing with some other marine coastal areas that receive important anthropogenic inputs. Taking as a whole, surface sediments of northwestern Bohai Bay had a 21% probability of toxicity based on the mean effects range-median quotient.

  17. Metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Kerala, south India.

    PubMed

    Varghese, J; Jaya, D S

    2014-12-01

    A comprehensive study was conducted to evaluate metal pollution of groundwater in the vicinity of Valiathura Sewage Farm in Thiruvananthapuram district, Kerala using the Heavy Metal Pollution Index (HPI). Forty two groundwater samples were collected during the summer season (April 2010) and the concentration of metals Fe, Cu, Zn, Cd and Pb were analyzed. Results showed that groundwater was contaminated mainly with Fe, Cu and Pb. Correlation analysis revealed that the sources of metals in groundwater in the study area are the same, and it may be due to the leachates from the nearby Sewage Farm, Parvathy Puthanar canal and solid wastes dumped in the residential area. Of the groundwater samples studied, 47.62 % were medium and 2.68 % were classified in HPI high category. HPI was highest (41.79) in DW29, which was adjacent to the polluted Parvathy Puthanar canal and Sewage Farm. The present study points out that the metal pollution causes the degradation of groundwater quality around the Sewage Farm during the study period.

  18. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    PubMed

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  19. Oak Ridge K-25 Site chlorinated solvent pollution prevention opportunity assessment

    SciTech Connect

    Not Available

    1994-08-01

    A pollution prevention opportunity assessment (PPOA) was conducted at the Oak Ridge K-25 Site to identify opportunities to reduce and better manage the use of chlorinated solvents. At the K-25 Site, 67 control areas were examined for their potential use of chlorinated solvents. Of these areas, 27 were found to be using (1) chlorinated solvents for cleaning, degreasing, and lubricating; (2) laboratory standards and solvents; and (3) test medium. Current management practices encourage the identification and use of nonhazardous chemicals, including the use of chlorinated solvents. The main pollution prevention principles are source reduction and recycling, and a number of pollution prevention options based on these principles were identified and evaluated as part of this chlorinated solvent PPOA. Source reduction options evaluated for the K-25 Site include the substitution of chlorinated solvents with nonchlorinated solvents. Recycling was identified for those areas that would benefit most from the reuse of the chlorinated solvents in use. The pollution prevention options that offer the greatest opportunity for success at the K-25 Site are the implementation of substitutes at the 10 control areas using chlorinated solvents for cleaning, degreasing, and lubrication. A change in the process may be all that is needed to eliminate the use of a chlorinated solvent. Once a decision is made to implement a substitution, the information should be communicated to all shops and laboratories. Another option to consider is the installation of recycling units to recycle the large amounts of methylene chloride used in the analytical sampling procedure.

  20. Variations of arsenic species content in edible Boletus badius growing at polluted sites over four years.

    PubMed

    Mleczek, Mirosław; Niedzielski, Przemysław; Rzymski, Piotr; Siwulski, Marek; Gąsecka, Monika; Kozak, Lidia

    2016-07-02

    The content of arsenic (As) in mushrooms can vary depending on the concentration level of this metalloid in the soil/substrate. The present study evaluated the content of arsenic in Boletus badius fruiting bodies collected from polluted and non-polluted sites in relation to the content of this element in overgrown substrate. It was found that mushrooms from the arsenic-polluted sites contained mean concentrations from 49 to 450 mg As kg(-1) dry matter (d.m.), with the greatest content found for specimens growing in close proximity of sludge deposits (490±20 mg As kg(-1)d.m.). The mean content of total arsenic in mushrooms from clean sites ranged from 0.03 to 0.37 mg kg(-1) It was found that B. badius could tolerate arsenic in soil substrate at concentrations of up to 2500 mg kg(-1), at least. In different years of investigation, shifts in particular arsenic forms, as well as a general increase in the accumulation of organic arsenic content, were observed. The results of this study clearly indicate that B. badius should not be collected for culinary purposes from any sites that may be affected by pollution.

  1. EPA True NO2 ground site measurements ?? multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites ,GeoTASO NO2 Vertical Column

    EPA Pesticide Factsheets

    EPA True NO2 ground site measurements ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of meteorological and air pollution parameters ?? multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; GeoTASO NO2 Vertical Column - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013?FALCON=1This dataset is associated with the following publication:Nowlan, C., X. Lu, J. Leitch, K. Chance, G. González Abad, C. Lu, P. Zoogman, J. Cole, T. Delker, W. Good, F. Murcray, L. Ruppert, D. Soo, M. Follette-Cook, S. Janz, M. Kowalewski, C. Loughner, K. Pickering, J. Herman, M. Beaver, R. Long, J. Szykman, L. Judd, P. Kelley, W. Luke, X. Ren, and J. Al-Saadi. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013. Atmospheric Measurement Techniques. Copernicus Publications, Katlenburg-Lindau, GERMANY, 9(6): 2647-2668, (2016).

  2. Modern approaches to remediation of heavy metal polluted soils: A review

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.

    2014-07-01

    The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

  3. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G.

    2014-02-01

    Anthropogenic activities are resulting in an increase of the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment, having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the state of the art of the scientific research on phytoremediation and biochar application to remediate heavy-metal-contaminated soils. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both, and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.

  4. Elevated levels of metals and organic pollutants in fish and clams in the Cape Fear River watershed.

    PubMed

    Mallin, Michael A; McIver, Matthew R; Fulton, Michael; Wirth, Ed

    2011-10-01

    A study was performed in 2003 to 2004 to assess metal and organic contaminant concentrations at three areas in the lower Cape Fear River system, North Carolina, United States. Sites examined were Livingston Creek along the mainstem of the Cape Fear River near Riegelwood, Six Runs Creek in the Black River Basin, and Rockfish Creek in the Northeast Cape Fear River basin. The results of the investigation showed that levels of metals and organic pollutants in the sediments were lower than limits considered harmful to aquatic life. However, results of fish (adult bowfin) tissue analyses showed that concentrations of arsenic (As), cadmium (Cd), mercury (Hg), selenium (Se), and now-banned polychlorinated biphenyls (PCBs), and the pesticide dieldrin were higher than levels considered safe for human consumption by the United States Environmental Protection Agency and the North Carolina Health Director's Office. Fish tissue concentrations of Hg, Se, and PCBs were also higher than concentrations determined by researchers to be detrimental either to the health of the fish themselves or their avian and mammalian predators. Due to the rural nature of two of the sites, increased concentrations of As, Cd, Se, and PCBs in fish tissue were unexpected. The likely reason the levels are increased in fish and some clams but not in sediments is that these pollutants are biomagnified in the food chain. These pollutants will also biomagnify in humans. In these rural areas there is subsistence fishing by low-income families; thus, increased fish tissue metals and toxicant concentrations may present a direct threat to human health.

  5. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China].

    PubMed

    Li, Yi-Meng; Ma, Jian-Hua; Liu, De-Xin; Sun, Yan-Li; Chen, Yan-Fang

    2015-03-01

    Ninety-nine topsoil (0-15 cm) samples were collected from Kaifeng City, China using the grid method, and then the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in the samples were measured by standard methods. Soil pollution levels and potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and potential ecological risk index (RI), respectively. Ordinary Kriging interpolation technique was employed to investigate the spatial distribution of PLI and RI of the city. The results showed that high pollution of Cd occurred in Kaifeng urban soils, and there was moderate pollution of Zn, slight pollution of Pb and Cu, and no pollution of Ni, Cr and As. Very high ecological risk was posed by Cd and low risk by other metals. The mean PLI of the 7 metals from all sample points was 2.53, which was categorized as moderate pollution. The average RI was 344.58 which represented a considerable ecological risk. PLI and RI shared a similar spatial distribution with high values centralized in the old industrial area in the southeast and railway stations for passengers and goods in the south of the city, followed by the old town within the ancient city wall, and low values located in the north and west areas. Cadmium was the main factor for both soil pollution and potential ecological risk primarily due to farmland topsoil in the eastern suburb of Kaifeng City with high Cd concentrations resulted from sewage irrigation deposited in the urban area by wind, human activities such as soot discharged from the chemical fertilizer plant of Kaifeng, transportation and coal combustion.

  6. Assessment of rhizospheric culturable bacteria of Phragmites australis and Juncus effusus from polluted sites.

    PubMed

    Pereira, Sofia I A; Pires, Carlos; Henriques, Isabel; Correia, António; Magan, Naresh; Castro, Paula M L

    2015-10-01

    This study aimed at the isolation and characterization of metal(loid)-tolerant bacteria from the rhizosphere of Phragmites australis and Juncus effusus plants growing in two long-term contaminated sites in Northern Portugal. Site 1 had higher contamination than Site 3. Bacteria were isolated using metal(loid)-supplemented (Cd, Zn, and As) media. Isolates were grouped by random amplified polymorphic DNA and identified by 16S rRNA gene sequencing. Strains were also examined for their metal(loid) tolerance. The counts of metal(loid)-tolerant bacteria were higher in Site 1 and ranged between log 7.17 CFU g(-1) soil in As-containing medium and log 7.57 CFU g(-1) soil in Zn-containing medium, while counts at Site 3 varied between log 5.33 CFU g(-1) soil in Cd-containing medium and log 6.97 CFU g(-1) soil in As-containing medium. The composition of bacterial populations varied between locations. In Site 1, the classes Actinobacteria (36%) and Bacilli (24%) were well represented, while in Site 3 strains were mainly affiliated to classes Actinobacteria (35%), γ-Proteobacteria (35%), and β-Proteobacteria (12%). The order of metal(loid) toxicity for the isolated strains was Cd > As > Zn. Overall, 10 strains grew at 500 mg Cd L(-1) , 1000 mg Zn L(-1) , and 500 mg As L(-1) , being considered the most metal(loid)-tolerant bacteria. These strains belonged to genera Cupriavidus, Burkholderia, Novosphingobium, Sphingobacterium, Castellaniella, Mesorhizobium, Chryseobacterium, and Rhodococcus and were mainly retrieved from Site 1. The multiple metal(loid)-tolerant strains isolated in this study have potential to be used in bioremediation/phytoremediation.

  7. Evaluation of hazardous metal pollution in irrigation and drinking water systems in the vicinity of a coal mine area of northwestern Bangladesh.

    PubMed

    Bhuiyan, Mohammad A H; Islam, M A; Dampare, Samuel B; Parvez, Lutfar; Suzuki, Shigeyuki

    2010-07-15

    An integrated approach of pollution evaluation indices, principal component analysis (PCA) and cluster analysis (CA) was employed to evaluate the intensity and sources of pollution in irrigation and drinking water systems of northwestern Bangladesh. Temperature, BOD, chemical oxygen demand (COD), Mn, Fe, Co, Ni, Cu and Pb levels in most of the water samples exceed the Bangladesh and international standards. The heavy metal pollution index (HPI) and degree of contamination (C(d)) yield different results despite significant correlations between them. The heavy metal evaluation index (HEI) shows strong correlations with HPI and C(d), and gives a better assessment of pollution levels. Modifications to the existing HPI and C(d) schemes show comparable results with HEI, and indicate that about 55% of the mine drainage/irrigation waters and 50% of the groundwaters are moderately to highly contaminated. The CA, PCA and pollution indices suggest that the mine drainage water (DW) is contaminated by anthropogenic (mining operation and agrogenic) sources, and the proximal parts are more contaminated than the distal part. The groundwater system in the vicinity of the coal mine site is also heavily polluted by anthropogenic sources. The pollution status of irrigation and drinking water systems in the study area are of great environmental and health concerns.

  8. Removal of heavy metals from effluent. (Latest citations from Pollution Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-10-01

    The bibliography contains citations concerning the removal of lead, cadmium, mercury, and other heavy metals from waste waters. Precipitation, reverse osmosis, complexation, ultrafiltration, and adsorption are among the techniques described. The citations examine the efficiency, operational difficulties, cost effectiveness, and optimization of these methods. Prevention and remediation of metal pollution from electroplating, mining, smelting, and other industries are included. (Contains 250 citations and includes a subject term index and title list.)

  9. Heavy metal pollution in soils from abandoned Taizhou Chemical Industry Zone in Zhejiang province.

    PubMed

    Yu, Binbin; Zhang, Huimin; Chen, Tao; Mou, Yijun; Wu, Zucheng

    2015-01-01

    Heavy metal (HM) pollution in soils from an abandoned Taizhou Chemical Industry Zone (TCIZ) was investigated. By analysing soils, including sediments, collected from the study zone, the main pollutants were quantitatively identified and their spatial distribution patterns were clearly displayed. Eleven types of HM pollutants were obtained and the results indicated a significant correlation in most of the elements of the soil and sediment. A pollution index Pi was employed to classify the degree of contamination and characterize the main pollutant, which was controlled with the evaluation standard value instead of background one. As was characterized to be one of the main pollutants with the mean concentrations at the pollution source, in the surrounding area, and in the sediment of 603, 20.4, and 22.5 mg/kg, respectively. Our study suggested that the contaminated area of TCIZ may necessitate remediation before it can be considered for reuse. Pollution index method could be a useful tool for assessing soils quality to provide comparable criteria.

  10. Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China.

    PubMed

    Yang, Liyuan; Wang, Longfeng; Wang, Yunqian; Zhang, Wei

    2015-05-01

    Sixteen surface sediment samples were collected from Nansi Lake to analyze geochemical speciation of heavy metals including Cd, As, Pb, Cr, and Zn, assess their pollution level, and determine the spatial distribution of the non-residual fraction. Results showed that Cd had higher concentrations in water-soluble and exchangeable fractions. As and Pb were mainly observed as humic acid and reducible fractions among the non-residual fractions, while Cr and Zn were mostly locked up in a residual fraction. The mean pollution index (P i) values revealed that the lower lake generally had a higher enrichment degree than the upper lake. Cd (2.73) and As (2.05) were in moderate level of pollution, while the pollution of Pb (1.80), Cr (1.27), and Zn (1.02) appeared at low-level pollution. The calculated pollution load index (PLI) suggested the upper lake suffered from borderline moderate pollution, while the lower lake showed moderate to heavy pollution. Spatial principle component analysis showed that the first principal component (PC1) including Cd, As, and Pb could explain 56.18 % of the non-residual fraction. High values of PC1 were observed mostly in the southern part of Weishan Lake, which indicated greater bioavailability and toxicity of Cd, As, and Pb in this area.

  11. Mining-caused changes to habitat structure affect amphibian and reptile population ecology more than metal pollution.

    PubMed

    Sasaki, Kiyoshi; Lesbarrères, David; Watson, Glen; Litzgus, Jacqueline

    2015-12-01

    Emissions from smelting not only contaminate water and soil with metals, but also induce extensive forest dieback and changes in resource availability and microclimate. The relative effects of such co-occurring stressors are often unknown, but this information is imperative in developing targeted restoration strategies. We assessed the role and relative effects of structural alterations of terrestrial habitat and metal pollution caused by century-long smelting operations on amphibian and reptile communities by collecting environmental and time- and area-standardized multivariate abundance data along three spatially replicated impact gradients. Overall, species richness, diversity, and abundance declined progressively with increasing levels of metals (As, Cu, and Ni) and soil temperature (T(s)) and decreasing canopy cover, amount of coarse woody debris (CWD), and relative humidity (RH). The composite habitat variable (which included canopy cover, CWD, T(s), and RH) was more strongly associated with most response metrics than the composite metal variable (As, Cu, and Ni), and canopy cover alone explained 19-74% of the variance. Moreover, species that use terrestrial habitat for specific behaviors (e.g., hibernation, dispersal), especially forest-dependent species, were more severely affected than largely aquatic species. These results suggest that structural alterations of terrestrial habitat and concomitant changes in the resource availability and microclimate have stronger effects than metal pollution per se. Furthermore, much of the variation in response metrics was explained by the joint action of several environmental variables, implying synergistic effects (e.g., exacerbation of metal toxicity by elevated temperatures in sites with reduced canopy cover). We thus argue that the restoration of terrestrial habitat conditions is a key to successful recovery of herpetofauna communities in smelting-altered landscapes.

  12. Amino Acid Features of P1B-ATPase Heavy Metal Transporters Enabling Small Numbers of Organisms to Cope with Heavy Metal Pollution

    PubMed Central

    Ashrafi, E.; Alemzadeh, A.; Ebrahimi, M.; Ebrahimie, E.; Dadkhodaei, N.; Ebrahimi, M.

    2011-01-01

    Phytoremediation refers to the use of plants for extraction and detoxification of pollutants, providing a new and powerful weapon against a polluted environment. In some plants, such as Thlaspi spp, heavy metal ATPases are involved in overall metal ion homeostasis and hyperaccumulation. P1B-ATPases pump a wide range of cations, especially heavy metals, across membranes against their electrochemical gradients. Determination of the protein characteristics of P1B-ATPases in hyperaccumulator plants provides a new opportuntity for engineering of phytoremediating plants. In this study, using diverse weighting and modeling approaches, 2644 protein characteristics of primary, secondary, and tertiary structures of P1B-ATPases in hyperaccumulator and nonhyperaccumulator plants were extracted and compared to identify differences between proteins in hyperaccumulator and nonhyperaccumulator pumps. Although the protein characteristics were variable in their weighting, tree and rule induction models; glycine count, frequency of glutamine-valine, and valine-phenylalanine count were the most important attributes highlighted by 10, five, and four models, respectively. In addition, a precise model was built to discriminate P1B-ATPases in different organisms based on their structural protein features. Moreover, reliable models for prediction of the hyperaccumulating activity of unknown P1B-ATPase pumps were developed. Uncovering important structural features of hyperaccumulator pumps in this study has provided the knowledge required for future modification and engineering of these pumps by techniques such as site-directed mutagenesis. PMID:21573033

  13. Evaluation of heavy metal and polycyclic aromatic hydrocarbons accumulation in plants from typical industrial sites: potential candidate in phytoremediation for co-contamination.

    PubMed

    Sun, Lu; Liao, Xiaoyong; Yan, Xiulan; Zhu, Ganghui; Ma, Dong

    2014-11-01

    The heavy metal and polycyclic aromatic hydrocarbons (PAHs) contents were evaluated in surface soil and plant samples of 18 wild species collected from 3 typical industrial sites in South Central China. The accumulative characteristics of the plant species for both heavy metal and PAHs were discussed. The simultaneous accumulation of heavy metal and PAHs in plant and soil was observed at all the investigated sites, although disparities in spatial distributions among sites occurred. Both plant and soil samples were characterized by high accumulation for heavy metal at smelting site, moderate enrichment at coke power and coal mining sites, whereas high level of PAHs (16 priority pollutants according to US Environmental Protection Agency) at coke power site, followed sequentially by coal mining and smelting sites. Based on the differences of heavy metal and PAH accumulation behaviors of the studied plant species, heavy metal and PAH accumulation strategies were suggested: Pteris vittata L. and Pteris cretica L. for As and PAHs, Boehmeria nivea (L.) Gaud for Pb, As, and PAHs, and Miscanthus floridulu (Labnll.) Warb for Cu and PAHs. These native plant species could be proposed as promising materials for heavy metal and PAHs combined pollution remediation.

  14. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations

    PubMed Central

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-01-01

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range. PMID:26287229

  15. Pollution Characteristics and Health Risk Assessment of Airborne Heavy Metals Collected from Beijing Bus Stations.

    PubMed

    Zheng, Xiaoxia; Zhao, Wenji; Yan, Xing; Shu, Tongtong; Xiong, Qiulin; Chen, Fantao

    2015-08-17

    Airborne dust, which contains high levels of toxic metals, is recognized as one of the most harmful environment component. The purpose of this study was to evaluate heavy metals pollution in dustfall from bus stations in Beijing, and to perform a risk assessment analysis for adult passengers. The concentrations of Cd, Co, Cr, Cu, Mo, Ni, Pb, V and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). The spatial distribution, pollution level and potential health risk of heavy metals were analyzed by Geographic Information System (GIS) mapping technology, geo-accumulation index and health risk assessment model, respectively. The results indicate that dust samples have elevated metal concentrations, especially for Cd, Cu, Pb and Zn. The nine metals can be divided into two categories in terms of spatial distribution and pollution level. Cd, Cr, Cu, Mo, Pb and Zn reach contaminated level and have similar spatial patterns with hotspots distributed within the Fifth Ring Road. While the hot spot areas of Co and V are always out of the Fifth Ring Road. Health risk assessment shows that both carcinogenic and non-carcinogenic risks of selected metals were within the safe range.

  16. Assessing metal pollution in ponds constructed for controlling runoff from reclaimed coal mines.

    PubMed

    Miguel-Chinchilla, Leticia; González, Eduardo; Comín, Francisco A

    2014-08-01

    Constructing ponds to protect downstream ecosystems is a common practice in opencast coal mine reclamation. As these ponds remain integrated in the landscape, it is important to evaluate the extent of the effect of mine pollution on these ecosystems. However, this point has not been sufficiently addressed in the literature. The main objective of this work was to explore the metal pollution in man-made ponds constructed for runoff control in reclaimed opencast coal mines over time. To do so, we evaluated the concentration of ten heavy metals in the water, sediment, and Typha sp. in 16 runoff ponds ranging from 1 to 19 years old that were constructed in reclaimed opencast coal mines of northeastern Spain. To evaluate degree of mining pollution, we compared these data to those from a pit lake created in a local unreclaimed mine and to local streams as an unpolluted reference, as well as comparing toxicity levels in aquatic organisms. The runoff ponds showed toxic concentrations of Al, Cu, and Ni in the water and As and Ni in the sediment, which were maintained over time. Metal concentrations in runoff ponds were higher than in local streams, and macrophytes showed high metal concentrations. Nevertheless, metal concentrations in water and sediment in runoff ponds were lower than those in the pit lake. This study highlights the importance of mining reclamation to preserve the health of aquatic ecosystems and suggests the existence of chronic metal toxicity in the ponds, potentially jeopardizing pond ecological functions and services.

  17. Heavy metal contents in whitefish (Coregonus lavaretus) along a pollution gradient in a subarctic watercourse.

    PubMed

    Amundsen, Per-Arne; Kashulin, Nikolay A; Terentjev, Petr; Gjelland, Karl Øystein; Koroleva, Irina M; Dauvalter, Vladimir A; Sandimirov, Sergey; Kashulin, Alexander; Knudsen, Rune

    2011-11-01

    Metallurgic industry is a source of serious environmental pollution related to the emission of heavy metals. Freshwater systems are focal points for pollution, acting as sinks for contaminants that may end up in fish and humans. The Pasvik watercourse in the border area between Finland, Norway and Russia is located in the vicinity of the Pechenganickel metallurgic enterprises, and the lower part of the watershed drains the Nikel smelters directly through Lake Kuetsjarvi. Heavy metal (Ni, Cu, Cd, Zn, Pb and Hg) concentrations in environment (water and sediments) and whitefish Coregonus lavaretus tissue (gills, liver, kidney and muscle) were contrasted between five lake localities situated along a spatial gradient of increasing distance (5-100 km) to the smelters. The heavy metal concentrations, in particular Ni, Cu and Cd, were highly elevated in Kuetsjarvi, but steeply declined with increasing distance to the smelters and were moderate or low in the other four localities. The study demonstrates that the majority of metal emissions and runoffs are deposited near the pollution source, and only moderate amounts of the heavy metal contaminants seem to be transported at further distances. Bioaccumulation of Hg occurred in all investigated tissues, and higher Hg concentrations in planktivorous versus benthivorous whitefish furthermore indicated that pelagic foraging is associated with higher levels of Hg biomagnification. Potential population ecology impacts of high heavy metal contaminations where mainly observed in whitefish in Kuetsjarvi, which showed depletions in growth rate, condition factor and size and age at maturation.

  18. Heavy metal pollution in surface soils of Pearl River Delta, China.

    PubMed

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  19. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory.

  20. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals.

    PubMed

    Chand, Sukhmal; Singh, Geetu; Patra, D D

    2016-08-02

    An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.

  1. Sediment evidence of early eutrophication and heavy metal pollution of Lake Mälaren, central Sweden.

    PubMed

    Renberg, I; Bindler, R; Bradshaw, E; Emteryd, O; McGowan, S

    2001-12-01

    Lake Mälaren is the water supply and recreation area for more than 1 million people in central Sweden and subject to considerable environmental concern. To establish background data for assessments of contemporary levels of trophy and heavy metal pollution, sediment cores from the lake were analyzed. Diatom-inferred lake-water phosphorus concentrations suggest that pre-20th century nutrient levels in Södra Björkfjärden, a basin in the eastern part of Mälaren, were higher (c. 10-20 micrograms TP L-1) than previously assumed (c. 6 micrograms TP L-1). Stable lead isotope and lead concentration analyses from 3 basins (S. Björkfjärden, Gisselfjärden and Asköfjärden) show that the lake was polluted in the 19th century and earlier from extensive metal production and processing in the catchment, particularly in the Bergslagen region. The lake has experienced a substantial improvement of the lead pollution situation in the 20th century following closure of the mining and metal industry. The lead pollution from the old mining industry was large compared to late-20th century pollution from car emissions, burning of fossil fuels and modern industries.

  2. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  3. Tissue metal levels in Muskrat (Ondatra zibethica) collected near the Sudbury (Ontario) ore-smelters; prospects for biomonitoring marsh pollution.

    PubMed

    Parker, G H

    2004-05-01

    An examination of tissue metal levels in Sudbury-area muskrat (Ondatra zibethica) revealed that animals collected in the vicinity of the local ore-smelters contained elevated burdens of Cd and Ni in their liver and kidneys. Respective tissue concentrations averaged 2-fold and 3- to 6-fold higher than background values and are believed to reflect accumulations resulting from food chain contamination in regional marshes, including that reportedly characterizing Typha latifolia stands-their primary food source-and adherent sediments which may be consumed inadvertently while feeding. No evidence of site-influence or enhanced tissue metal levels was seen for Cu, Pb or Zn. While Cd : Ni accumulations were positively correlated in both the liver (r=0.78) and the kidneys (r=0.65), between-tissue comparisons indicated that hepatic : renal burdens were significantly correlated (r=0.75) only in the case of Ni. With the exception of 30-35% lower hepatic Zn levels in females relative to males within the Sudbury population, tissue metal levels did not vary according to sex or age class at either site. Our findings substantiate the potential of muskrat to serve as useful bioindicators/monitors of metal pollution in semi-aquatic environments.

  4. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  5. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  6. Pollution

    ERIC Educational Resources Information Center

    Rowbotham, N.

    1973-01-01

    Presents the material given in one class period in a course on Environmental Studies at Chesterfield School, England. The topics covered include air pollution, water pollution, fertilizers, and insecticides. (JR)

  7. Silica nanoparticles capture atmospheric lead: implications in the treatment of environmental heavy metal pollution.

    PubMed

    Yang, Xifei; Shen, Zhiguo; Zhang, Bing; Yang, Jianping; Hong, Wen-Xu; Zhuang, Zhixiong; Liu, Jianjun

    2013-01-01

    Lead (Pb) contamination in the air is a severe global problem, most notably in China. Removal of Pb from polluted air remains a significant challenge. It is unclear what potential effects silica nanoparticles (SiNPs) exposure can have on atmospheric Pb. Here we first characterized the features of SiNPs by measuring the particle size, zeta potential and the specific surface area of SiO(2) particles using a Nicomp 380/ZLS submicron particle sizer, the Brunauer-Emmett-Teller (BET) method and transmission electronic microscopy (TEM). We measured the content of the metal Pb adsorbed by SiNPs exposed to two Pb polluted electric battery plants using inductively coupled plasma mass spectrometry (ICP-MS). It is found that SiNPs exposed to two Pb polluted electric battery plants absorb more atmospheric Pb compared to either blank control or micro-sized SiO(2) particles in a time-dependent manner. This is the first study demonstrating that SiNPs exposure can absorb atmospheric Pb in the polluted environment. These novel findings indicate that SiNPs have potential to serve as a significant adsorbent of Pb from industrial pollution, implicating a potentially novel application of SiNPs in the treatment of environmental heavy metal pollution.

  8. Organochlorine and metal pollution in aquatic organisms sampled in the Donana National Park during the period 1983-1986

    SciTech Connect

    Rico, M.C.; Hernandez, L.M.; Gonzalez, M.J.; Fernandez, M.A.; Montero, M.C.

    1987-12-01

    The study area, Donana National Park, is located in the South South-West of Spain, and this is one of the most important reservation of Europe. Samples of aquatic organism were obtained from the principal waterway of Donana National Park to determine the degree of organochlorine and metal contamination of this environment. The sampling was carried out during the period 1983-1986 in order to collect six aquatic species in four sites along the Brazo de la Torre. An agricultural area in the North-West side of the Park and a working mine at about 40 km from its northern boundary were considered as the likely main polluting sources of organochlorine pesticides, PCBs, and heavy metals respectively. The aquatic organism species chosen for analysis were: American crayfish (Procambarus clarckii), carp (Cyprinus carpio), barbel (Barbus barbus), grey mullet (Mugil capito), eel (Anguilla anguilla), and frog (Rana perezi).

  9. PULMONARY TOXICOLOGY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL

    EPA Science Inventory

    PULMONARY TOXICITY OF SYNTHETIC AIR POLLUTION PARTICLES CONTAINING METAL SULFATES COMPARED TO CARBON BLACK AND DIESEL.

    M Daniels, A Ranade* & MJ Selgrade & MI Gilmour.
    Experimental Toxicology Division, ORD/NHEERL, U.S. EPA, RTP, NC. * Particle Technology, College Par...

  10. The influence of heavy metals and predation on benthic macroinvertebrate communities from polluted and unpolluted streams

    SciTech Connect

    Clements, W.H.

    1995-12-31

    The author tested the hypothesis that benthic macroinvertebrate communities from a stream polluted by historic mining operations were tolerant of heavy metals but more susceptible to predation compared to communities from an unpolluted stream. Benthic communities obtained from reference (Cache la Poudre River) and chronically-polluted (Arkansas River) streams in Colorado were transferred to the CSU Stream Research Laboratory and placed into one of 16 stream microcosms. In the first experiment, communities in treatment streams were exposed to 220 {micro}g Zn/L, 24 {micro}g Cu/L and 2.2 {micro}g Cd/L for 10 d. In a second experiment, communities in treatment streams were exposed to predatory stoneflies (Hesperperla pacifica). Effects of metals were significantly greater on mayflies (Rhithrogena hageni, Baetis sp., Ephemerella infrequens) from the unpolluted Cache la Poudre River than from the Arkansas River. In addition, exposure to metals increased drift rate of invertebrates collected from the unpolluted stream but had no effect on invertebrates from the Arkansas River. In contrast to these results, effects of predation on survival and drift were greater for communities from the polluted stream. The results demonstrate that while macroinvertebrate populations in chronically-polluted habitats may acclimate to heavy metals, these populations are more susceptible to biotic interactions.

  11. Exposure to Metal Pollutants and Behavioral Disorders in Children: A Review of the Evidence.

    ERIC Educational Resources Information Center

    Marlowe, Mike

    The paper reviews research on effects of metal pollutants on behavioral disorders in children. Methodological programs of studies conducted in the 1970's are described. Research since 1980 is then addressed in terms of general population studies and studies of behaviorally disordered populations. Findings of research on the latter subject group…

  12. METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFP2T) BETA VERSION

    EPA Science Inventory

    The MFFP2T is a computer-based simulation of metal finishing facilities that is intended to allow the facility to evaluate the effect of process modifications on pollution generation within the facility. MFFP2T has been developed consists of two basic parts, a process simulation ...

  13. THE USEPA'S METAL FINISHING FACILITY RISK SCREENING TOOL (MFFRST) AND POLLUTION PREVENTION TOOL (MFFP2T)

    EPA Science Inventory

    This presentation will provide an overview of the USEPA's Metal Finishing Facility Risk Screening Tool, including a discussion of the models used and outputs. The tool is currently being expanded to include pollution prevention considerations as part of the model. The current st...

  14. Evaluating the fate of metals in air pollution control residues from coal-fired power plants

    EPA Science Inventory

    Changes in air pollution control at coal-fired power plants are shifting mercury (Hg) and other metals from the flue gas at electric utilities to the coal ash. This paper presents data from the characterization of73 coal combustion residues (CCRs) evaluating the composition and c...

  15. Elemental mapping inventory of the fish Liza aurata brain: a biomarker of metal pollution vulnerability.

    PubMed

    Godinho, Rita M; Pereira, Patricia; Raimundo, Joana; Pacheco, Mário; Pinheiro, Teresa

    2015-02-01

    The elemental distributions in optic tectum of brains of wild Liza aurata a teleost fish captured in polluted and reference coastal areas were assessed quantitatively by nuclear microscopy providing insights into brain vulnerability to metal pollution. Elemental maps enabled us to visualize optic tectum layers and identify cellular arrangements. Whereas Cl, K and Ca contents identify meninges, the Ca, Fe and Zn concentrations distinguish the underneath grey matter, white matter and inner cellular layers. Exposed animals showed significantly decreased P concentrations and increased contents of Cu, Zn and Ni in all brain structures. These changes highlight homeostasis modification, altered permeability of the blood-brain barrier and suggest risk for neurological toxicity. Our study initiated for the first time an inventory of physiological measures containing images and elemental compositions of brain regions of fish exposed to different environmental conditions. This will help defining total and local brain vulnerability to metals and pollution levels.

  16. Distribution and pollution assessment of heavy metals in surface sediments in the Yellow Sea.

    PubMed

    Jiang, Xin; Teng, Ankang; Xu, Wenzhe; Liu, Xiaoshou

    2014-06-15

    Heavy metal concentrations in surface sediments at 56 stations during two cruises in the Yellow Sea in summer and winter, 2011 were analyzed by inductively coupled plasma-mass spectrometry. The pollution status was assessed via the Geoaccumulation index and Hankanson potential ecological risk index. Higher concentrations of heavy metals (except for Mn) were found in the central Southern Yellow Sea and the western Northern Yellow Sea. The higher contents of Mn were much closer to Shandong Peninsula. Correlation analyses indicated that Pb, Cu, Fe, Ni, Zn and Co probably had the same origin and were controlled by grain size and total organic carbon. Pollution assessment showed that most areas of the Yellow Sea were not or lowly contaminated with the exception of the northwest and south parts of the Southern Yellow Sea showing Cd-contamination. The pollution status of the Yellow Sea in summer was worse than that in winter.

  17. Characteristics of immune-competent amoebocytes non-invasively retrieved from populations of the sentinel earthworm Lumbricus rubellus (Annelida; Oligochaeta; Lumbricidae) inhabiting metal polluted field soils.

    PubMed

    Plytycz, Barbara; Cygal, Malgorzata; Lis-Molenda, Urszula; Klimek, Malgorzata; Mazur, Agnieszka Irena; Duchnowski, Michał; Morgan, A John

    2011-05-01

    Lumbricus rubellus is a cosmopolitan earthworm devoid of riboflavin-storing eleocytes; its immune competent coelomocytes are predominantly amoebocytes. Our aim was to determine whether amoebocyte cytometrics in L. rubellus are robust biomarkers for innate immunological responses to environmental pollutants. Investigations were conducted on populations inhabiting three unpolluted and five metalliferous (mainly Pb+Zn+Cd) habitats in the UK and Poland. Inter-population differences in worm mass and amoebocyte numbers did not consistently reflect soil or tissue metal concentrations. Flow cytometry indicated that autofluorescence of the amoebocytes differs between cells from the unpolluted and metal-polluted worms, and pinocytosis of neutral red by amoebocytes was lower (especially at 15 versus 60 min incubation) in worms from the polluted Poland site compared with the reference population. To conclude, amoebocyte cytometrics and functionality are potentially useful for environmental diagnostics; deployment is contingent on better understanding potential confounders.

  18. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - A review.

    PubMed

    Kovacs, Helga; Szemmelveisz, Katalin

    2017-01-01

    Reducing or preventing damage caused by environmental pollution is a significant goal nowadays. Phytoextraction, as remediation technique is widely used, but during the process, the heavy metal content of the biomass grown on these sites special treatment and disposal techniques are required, for example liquid extraction, direct disposal, composting, and combustion. These processes are discussed in this review in economical and environmental aspects. The following main properties are analyzed: form and harmful element content of remains, utilization of the main and byproducts, affect to the environment during the treatment and disposal. The thermal treatment (combustion, gasification) of contaminated biomass provides a promising alternative disposal option, because the energy production affects the rate of return, and the harmful elements are riched in a small amount of solid remains depending on the ash content of the plant (1-2%). The biomass combustion technology is a wildely used energy production process in residential and industrial scale, but the ordinary biomass firing systems are not suited to burn this type of fuel without environmental risk.

  19. A paleolimnological perspective on industrial-era metal pollution in the central Andes, Peru.

    PubMed

    Cooke, Colin A; Abbott, Mark B

    2008-04-15

    To date, few studies have investigated the environmental legacy associated with industrialization in the South American Andes. Here, we present an environmental archive of industrial pollution from (210)Pb-dated lake cores recovered from Laguna Chipian, located near the Cerro de Pasco metallurgical region and Laguna Pirhuacocha, located near the Morococha mining region and the La Oroya smelting complex. At Laguna Chipian, trace metal concentrations increase beginning ~1900 AD, coincident with the construction of the central Peruvian railway, and the rapid industrial development of the Cerro de Pasco region. Trace metal concentrations and fluxes peak during the 1950s before subsequently declining up-core (though remaining well above background levels). While Colonial mining and smelting operations are known to have occurred at Cerro de Pasco since at least 1630 AD, our sediment record preserves no associated metal deposition. Based on our (14)C and (210)Pb data, we suggest that this is due to a depositional hiatus, rather than a lack of regional Colonial pollution. At Laguna Pirhuacocha, industrial trace metal deposition first begins ~1925 AD, rapidly increasing after ~1950 AD and peaking during either the 1970s or 1990s. Trace metal concentrations from these lakes are comparable to some of the most polluted lakes in North America and Europe. There appears to be little diagenetic alteration of the trace metal record at either lake, the exception being arsenic (As) accumulation at Laguna Pirhuacocha. There, a correlation between As and the redox-sensitive element manganese (Mn) suggests that the sedimentary As burden is undergoing diagenetic migration towards the sediment-water interface. This mobility has contributed to surface sediment As concentrations in excess of 1100 microg g(-1). The results presented here chronicle a rapidly changing Andean environment, and highlight a need for future research in the rate and magnitude of atmospheric metal pollution.

  20. Indoor metallic pollution and children exposure in a mining city.

    PubMed

    Barbieri, Enio; Fontúrbel, Francisco E; Herbas, Cristian; Barbieri, Flavia L; Gardon, Jacques

    2014-07-15

    Mining industries are known for causing strong environmental contamination. In most developing countries, the management of mining wastes is not adequate, usually contaminating soil, water and air. This situation is a source of concern for human settlements located near mining centers, especially for vulnerable populations such as children. The aim of this study was to assess the correlations of the metallic concentrations between household dust and children hair, comparing these associations in two different contamination contexts: a mining district and a suburban non-mining area. We collected 113 hair samples from children between 7 and 12 years of age in elementary schools in the mining city of Oruro, Bolivia. We collected 97 indoor dust samples from their households, as well as information about the children's behavior. Analyses of hair and dust samples were conducted to measure As, Cd, Pb, Sb, Sn, Cu and Zn contents. In the mining district, there were significant correlations between non-essential metallic elements (As, Cd, Pb, Sb and Sn) in dust and hair, but not for essential elements (Cu and Zn), which remained after adjusting for children habits. Children who played with dirt had higher dust-hair correlations for Pb, Sb, and Cu (P=0.006; 0.022 and 0.001 respectively) and children who put hands or toys in their mouths had higher dust-hair correlations of Cd (P=0.011). On the contrary, in the suburban area, no significant correlations were found between metallic elements in dust and children hair and neither children behavior nor gender modified this lack of associations. Our results suggest that, in a context of high metallic contamination, indoor dust becomes an important exposure pathway for children, modulated by their playing behavior.

  1. Geochemical modelling and speciation studies of metal pollutants present in selected water systems in South Africa

    NASA Astrophysics Data System (ADS)

    Magu, M. M.; Govender, P. P.; Ngila, J. C.

    2016-04-01

    Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.

  2. Impact of Metal Pollution and Thlaspi caerulescens Growth on Soil Microbial Communities▿

    PubMed Central

    Epelde, Lur; Becerril, José M.; Kowalchuk, George A.; Deng, Ye; Zhou, Jizhong; Garbisu, Carlos

    2010-01-01

    Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts of Zn and/or Cd pollution and Thlaspi caerulescens growth on key soil microbial properties: basal respiration; substrate-induced respiration (SIR); bacterial community structure as assessed by PCR-denaturing gradient gel electrophoresis (DGGE); community sizes of total bacteria, ammonia-oxidizing bacteria, and chitin-degrading bacteria as assessed by quantitative PCR (Q-PCR); and functional gene distributions as determined by functional gene arrays (GeoChip). T. caerulescens proved to be suitable for Zn and Cd phytoextraction: shoots accumulated up to 8,211 and 1,763 mg kg−1 (dry weight [DW]) of Zn and Cd, respectively. In general, Zn pollution led to decreased levels of basal respiration and ammonia-oxidizing bacteria, while T. caerulescens growth increased the values of substrate-induced respiration (SIR) and total bacteria. In soils polluted with 1,000 mg Zn kg−1 and 250 mg Cd kg−1 (DW), soil bacterial community profiles and the distribution of microbial functional genes were most affected by the presence of metals. Metal-polluted and planted soils had the highest percentage of unique genes detected via the GeoChip (35%). It was possible to track microbial responses to planting with T. caerulescens and to gain insight into the effects of metal pollution on soilborne microbial communities. PMID:20935131

  3. Benthic foraminifera (Protista) as indicators of metal pollution in areas of historic mining: examples from southwest England

    NASA Astrophysics Data System (ADS)

    Hart, Malcolm; Smart, Christopher

    2016-04-01

    Southwest England has been, from Roman times, an important mining area supplying a range of important metals, including copper, tin, tungsten, arsenic, zinc, silver, etc. This mining activity virtually disappeared in the twentieth century, although one tungsten mine near Plymouth has recently re-opened. Large areas of Cornwall and West Devon are now inscribed as the 'Cornish Mining World Heritage Site' on the cultural list of UNESCO. Many of the old mines with their spoil heaps and tailings dams are now protected and, together with the mineral-rich local geology, provide many catchments with on-going metal pollution. In January 1992, after a period of prolonged, heavy rainfall Wheal Jane mine flooded and discharged heavily polluted, acidic, water into Restonguet Creek and the Fal Estuary. This event provided the setting for a detailed investigation of the immediate impact of the pollution and the resulting environmental improvements caused by engineering interventions and natural re-adjustment. Benthic foraminifera disappeared from Restronguet Creek for a number of years and while there is now an abundant, though low diversity, estuarine assemblage of foraminifera living in the creek there are still high levels (<15% in 2004) of test deformity recorded (Olugbode et al., 2005). In other parts of the Fal Estuary (a Special Area of Conservation under the EU Habitats Directive, 2000), deformed foraminifera are very rare and the measured levels of pollution can be used to compare with the test deformity data. In other estuarine systems in southwest England, such as the River Fowey and the River Tamar, levels of deformity are less, though still significant for areas no longer being actively mined. This demonstrates that polluted sediments in all these estuaries, which can be disturbed during floods or times of stormy weather, and the background levels of metal elements in the catchments that supply these estuaries, are sufficient to maintain these levels of deformity in

  4. Environmental research brief: Pollution prevention assessment for a manufacturer of metal fasteners

    SciTech Connect

    Jendrucko, R.J.; Coleman, T.N.; Looby, G.P.

    1995-08-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual (EPA/625/7-88/003, July 1988). That document has been superseded by the Facility Pollution Prevention Guide (EPA/600/R-92/088, May 1992). The WMAC team at the University of Tennessee performed an assessment at a plant that manufactures various types of metal fasteners for automobiles, furniture, and appliances. Products are manufactured from steel, brass, copper, and aluminum wire and rod stock in two production lines-large part production and small part production. In large part production, header machines press wire stock into specific product shapes which are washed, machined, and in some cases heat-treated and polished. Small parts are manufactured from wire and rod stock in a series of machining operations, then washed, heat treated and polished, before shipment to an outside firm for surface finishing. The team`s report, detailing findings and recommendations indicated that a large amount of plant oil waste is shipped off-site for fuels blending and a significant quantity of oily sludge waste is shipped offsite for disposal as non-hazardous waste. Large cost savings can be achieved by the plant through the use of alternative methods of removing metal chips from parts, thereby reducing intermediate washings.

  5. Assessment of pollution and identification of sources of heavy metals in the sediments of Changshou Lake in a branch of the Three Gorges Reservoir.

    PubMed

    Liang, Ao; Wang, Yechun; Guo, Hongtao; Bo, Lei; Zhang, Sheng; Bai, Yili

    2015-10-01

    To assess the heavy metal pollution in Changshou Lake, sediments were collected from nine sites at three periods (dry, normal, and wet) in 2013. The Hg, As, Cr, Cd, Pb, Cu, and Zn levels were then determined. The index of geoaccumulation (I geo) and the sediment pollution index (SPI) were applied to the sediment assessment, and Pearson's correlation analysis and factor analysis (FA) were performed to identify common pollution sources in the basin. The results showed that heavy metals presented significant spatial variations with Cr, Cd, Pb, Cu, Zn, Hg, and As concentrations of 29.66~42.58, 0.62~0.91, 24.91~37.96, 21.18~74.91, 41.65~86.86, 0.079~0.152, and 20.17~36.88 mg kg(-1), respectively, and no obvious variations were found among the different periods. The average contents of the metals followed the order Zn > Cu > Cr > Pb > As > Cd > Hg, which showed a high pollution in the sediments collected from open water and at the river mouth. The assessment results indicated that toxic heavy metals presented obvious pollution with I Hg of 0.64~1.36 (moderately polluted), I Cd of 1.66~2.22 (moderately to heavily polluted), and I As of 1.21~2.07 (moderately to heavily polluted). The heavy metal pollution states followed the order Cd > As > Hg > Cu > Pb > Zn > Cr, and the SPI showed that the sediment collected from open water area was more polluted than those obtained from the tributaries and the river mouth. Cr, Cd, Hg, Pb, Cu, As, and Zn were mainly attributed to sediment weathering with Hg, Pb, and Cu and partially due to domestic sewage from the upper reaches. These results indicate that the more attention should be paid to the inner loads of sediment in order to achieve improvements in reservoir water quality after the control of external pollution.

  6. Lung cancer mortality in a site producing hard metals

    PubMed Central

    Wild, P.; Perdrix, A.; Romazini, S.; Moulin, J.; Pellet, F.

    2000-01-01

    OBJECTIVES—To study the mortality from lung cancer from exposures to hard metal dust at an industrial site producing hard metals—pseudoalloys of cobalt and tungsten carbide—and other metallurgical products many of which contain cobalt.
METHODS—A historical cohort was set up of all subjects who had worked for at least 3 months on the site since its opening date in the late 1940s. A full job history could be obtained for 95% of the subjects. The cohort was followed up from January 1968 to December 1992. The exposure was assessed by an industry specific job exposure matrix (JEM) characterising exposure to hard metal dust from 1 to 9 and other possibly carcinogenic exposures as present or absent. Smoking information was obtained by interview of former workers. Standard lifetable methods and Poisson regression were used for the statistical analysis of the data.
RESULTS—Mortality from all causes was close to the expected (standardised mortality ratio (SMR) 1.02, 399 deaths) whereas mortality from lung cancer was significantly increased among men (SMR 1.70; 46 deaths, 95% confidence interval (95% CI) 1.24 to 2.26). By workshop, lung cancer mortality was significantly higher than expected in hard metal production before sintering (SMR 2.42; nine deaths; 95%CI 1.10 to 4.59) and among maintenance workers (SMR 2.56; 11 deaths; 95%CI 1.28 to 4.59), whereas after sintering the SMR was lower (SMR 1.28; five deaths; 95%CI 0.41 to 2.98). The SMR for all exposures to hard metal dust at a level >1 in the JEM was in significant excess (SMR 2.02; 26 deaths; 95%CI 1.32 to 2.96). The risks increased with exposure scores, duration of exposure, and cumulative dose reaching significance for duration of exposure to hard metal dust before sintering, after adjustment for smoking and known or suspected carcinogens.
CONCLUSION—Excess mortality from lung cancer was found among hard metal production workers which cannot be attributed to smoking alone. This excess

  7. Occurrence, source identification and ecological risk evaluation of metal elements in surface sediment: toward a comprehensive understanding of heavy metal pollution in Chaohu Lake, Eastern China.

    PubMed

    Wang, Ji-Zhong; Peng, Shu-Chuan; Chen, Tian-Hu; Zhang, Liu

    2016-01-01

    In the present study, surface sediment samples from 48 sites covering the whole water area and three main estuaries of Chaohu Lake were collected to determine the concentrations of 25 metal elements using microwave-assisted digestion combined with ICP-MS. Spatial variation, source appointments, and contamination evaluation were examined using multivariate statistical techniques and pollution indices. The results show that for the elements Cd, Pb, Zr, Hf, U, Sr, Zn, Th, Rb, Sn, Cs, Tl, Bi, and Ba, which had higher coefficients of variation (CV), the concentrations were significantly higher in the eastern lake than in the western lake, but other elements with low CV values did not show spatial differences. The accumulation of Cu, Zn, Rb, Sr, Zr, Cd, Sn, Cs, Ba, Hf, Ta, Tl, Pb, Bi, U, and Th in the surface sediments was inferred as long-term agricultural cultivation impact, but that of Ti, V, Cr, Mn, Co, and Ni may have been a natural occurrence. The contribution from industrial and municipal impact was negligible, despite the rapid urbanization around the studied area. Principal component analysis-multiple linear regression (PCA-MLR) predicted the contribution from agricultural activities to range from 0.45 ± 1.31% for Co to 92.7 ± 17.7% for Cd. The results of the pollution indices indicate that Chaohu Lake was weakly to moderately affected by Ti, V, Cr, Mn, Co, and Ni but was severely contaminated by Hf and Cd. The overall pollution level in the eastern lake was higher than that in the western lake with respect to the pollution level index (PLI). Therefore, our results can help comprehensively understand the sediment contamination by metals in Chaohu Lake.

  8. Pollution characteristics, source apportionment, and health risk of heavy metals in street dust of Suzhou, China.

    PubMed

    Lin, Manli; Gui, Herong; Wang, Yao; Peng, Weihua

    2017-01-01

    To analyze the pollution characteristics, source apportionment, and health risk of heavy metals (HMs) in street dust of Suzhou, China, 23 sampling sites were selected and periodically sampled for 12 months. A total of 276 samples were collected, and the concentrations of selected HMs (e.g., Cr, Cu, Fe, Mn, Pb, V, and Zn) were examined with an X-ray fluorescence spectrum analyzer. Results showed that the mean concentrations of Cr, Cu, Fe, Mn, Pb, V, and Zn in the street dust of Suzhou were 112.9, 27.5, 19941.3, 410.3, 45.2, 75.6, and 225.3 mg kg(-1), respectively. Cr, Cu, Pb, and Zn exceeded their background values in local natural soils by 1.3-3.6-fold, whereas Fe, Mn, and V were all within their background values. However, enrichment factor analysis revealed that Cr, Cu, Mn, Pb, V, and Zn, especially Cr, Cu, Pb, and Zn, were enriched in Suzhou street dust. The HMs showed no significant seasonal changes overall, but spatial distribution analysis implied that the high values of Cr, Cu, Mn, Pb, V, and Zn were mainly distributed in areas with frequent human activities. Results of multivariate techniques (e.g., Pearson correlation, hierarchical cluster, and principal components analyses) suggested that Pb and Zn had complicated sources; Cu and V mainly originated from traffic sources; Fe and Mn mainly came from natural sources; and Cr was dominantly related to industrial district. Health risk assessment revealed that a single heavy metal might not cause both non-cancer and carcinogenic risks to local residents. Nevertheless, the sum of the hazard index of all selected HMs for children slightly exceeded the safety value, thereby implying that the HMs from Suzhou street dust can possibly produce significant risk to children. Cr was the priority pollutant in the study area because of its high concentration, high enrichment, and high contribution to non-cancer risk values.

  9. The effect of nitrogen additions on oak foliage and herbivore communities at sites with high and low atmospheric pollution.

    PubMed

    Eatough Jones, Michele; Paine, Timothy D; Fenn, Mark E

    2008-02-01

    To evaluate plant and herbivore responses to nitrogen we conducted a fertilization study at a low and high pollution site in the mixed conifer forests surrounding Los Angeles, California. Contrary to expectations, discriminant function analysis of oak herbivore communities showed significant response to N fertilization when atmospheric deposition was high, but not when atmospheric deposition was low. We hypothesize that longer-term fertilization treatments are needed at the low pollution site before foliar N nutrition increases sufficiently to affect herbivore communities. At the high pollution site, fertilization was also associated with increased catkin production and higher densities of a byturid beetle that feeds on the catkins of oak. Leaf nitrogen and nitrate were significantly higher at the high pollution site compared to the low pollution site. Foliar nitrate concentrations were positively correlated with abundance of sucking insects, leafrollers and plutellids in all three years of the study.

  10. Heavy metal pollution and health risk assessment in the Wei River in China.

    PubMed

    Yang, Xuefu; Duan, Jinming; Wang, Lei; Li, Wei; Guan, Jianling; Beecham, Simon; Mulcahy, Dennis

    2015-03-01

    From data collected monthly at 26 monitoring cross sections in the Wei River in the Shaanxi Region of China during the period 2008-2012, the temporal pollution characteristics of heavy metals (Hg, Cd, Cr(VI), Pb, and As) were analyzed based on a heavy metal pollution index (HPI). The monthly HPI values of the five heavy metals in the river fluctuated greatly in 2008 and then declined gradually with time. This general trend of reduction in HPI appears not to have a seasonal variation and most likely resulted from the continued improvement in heavy metal pollution control strategies implemented by local environmental agencies combined with a significant improvement in wastewater treatment capacities. Among the five heavy metals, Cd and Pb were below 0.1 and 3 μg L(-1), respectively, at all the sampling points in the studied areas in the year 2012. The detection rates of As, Hg, and Cr(VI) were in the order of Hg > Cr(VI) > As. Hg, Cr(VI), and As exceeded, in a month of the dry season in 2012, the standard limits for category III surface waters according to the China Environment Quality Standards for Surface Water (CEQSSW). Based on the assessment using the HPI method, the pollution status of these heavy metals in water of the Wei River in the Shaanxi Region was generally at an acceptable level, but exhibited distinctive characteristics between the main stream river and tributaries. Most of the tributaries were more seriously polluted than the main river. A health risk assessment was conducted based on the Human Health Risk Assessment (HHRA) method recommended by the United States Environmental Protection Agency (USEPA). Apart from As, the health risk for the five heavy metals in the region were at acceptable levels for drinking water sources (hazard quotient (HQ) < 1, carcinogenic risk (CR) ranged from 10(-4)-10(-6)) according to the Risk Assessment Guidance for Superfund (RAGS), USEPA. Arsenic was identified as the most important pollutant of concern

  11. [Pollution by heavy metals in the petrochemical sewage waters of the sea area of Daya Bay and assessment on potential ecological risks].

    PubMed

    Xu, Shan-Nan; Li, Chun-Hou; Xu, Jiao-Jiao; Xiao, Ya-Yuan; Lin, Lin; Huang, Xiao-Ping

    2014-06-01

    This study aimed to gain a clear understanding on the status of pollution by heavy metals in the petrochemical sewage and the potential ecological risk caused by heavy metal pollution in the sea area of Daya Bay. The contents and spatial distributions of heavy metals including Zn, Pb, Cu, Cd, Cr, As and Hg in seawater, sediment and fishes collected from Daya Bay were analyzed. The comprehensive pollution index (CPI) and ecological risk indexes (ERIs) were used to evaluate the contaminated severity and potential ecological risks of heavy metals in seawater and sediment. The results showed that the contents of these heavy metals, except for those of Zn and Pb, in several stations set in Daya Bay from 2011 to 2012 were relatively low, which were lower than the quality standard of class I according to the China National Standard Criteria for Seawater Quality, suggesting that the seawater in Daya Bay has not been polluted yet by these heavy metals. The average CPI of heavy metals in seawater during flooding season (0.72) was higher than that during dry season (0.38) whereas the average CPI of heavy metals in sediment during dry season (7.77) was higher than that during flooding season (5.70). Hg was found to be the primary contaminating heavy metal in sediment during dry season, which was followed by As and Zn whereas during flooding season, Hg was the primary contaminating metal in sediment, followed by Zn and Cu. The contents of these 7 heavy metals in fishes collected from the surveyed areas were lower than those of the standard requirements. A correlation analysis indicated that there were significant differences in the correlations between the midst of the heavy metals in sea water and the different periods. The ERIs of heavy metals in sediment during dry season (129.20) was higher than that during flooding season (102.86), and 25% of the sampling sites among all stations were under the risk of high-level alarm. The potential ERIs of heavy metals in sediment in

  12. The nutrient, total petroleum hydrocarbon and heavy metal contents in the seawater of Bohai Bay, China: Temporal-spatial variations, sources, pollution statuses, and ecological risks.

    PubMed

    Peng, Shitao

    2015-06-15

    Seawater samples collected between 2007 and 2012 were determined the concentrations of nutrient (DIN and DIP), total petroleum hydrocarbon (TPH), and six different heavy metals (As, Cu, Zn, Pb, Cd and Hg). The DIN, DIP, TPH, Pb, and Cd concentrations decreased from 2007 to 2009 or 2010 and increased after 2010. However, the Hg and Cu concentrations increased from 2007 to 2012. In contrast, the As and Zn gradually decreased during the study period. All of the pollutant concentrations gradually decreased from the shoreline to the offshore sites. PCA result showed that urban and port areas, agriculture, and atmospheric deposition were the main sources of pollutants in the bay. Although most of the pollutants were present at concentrations bellow the highest seawater quality standards in China, eutrophication was a risk in Bohai Bay. In addition, DIN was the main pollutant and was responsible for the eutrophication risk in Bohai Bay.

  13. Heavy-metal pollution of sediments from the Polish exclusive economic zone, southern Baltic Sea

    NASA Astrophysics Data System (ADS)

    Szefer, P.; Glasby, G. P.; Geldon, J.; Renner, R. M.; Björn, E.; Snell, J.; Frech, W.; Warzocha, J.

    2009-04-01

    Analysis of 59 surface sediment samples from the Polish exclusive economic zone (EEZ) shows that Szczecin Lagoon sediments are the most polluted by heavy metals and that the degree of heavy-metal pollution decreases substantially on passing from the Szczecin Lagoon to the Pomeranian Bay and the inner shelf area and then on passing to the Bornholm Deep and Słupsk Furrow. Heavy-metal pollution in the sediments of the western part of the Polish EEZ therefore appears to follow the dispersion of the Oder River. Fluffy material from the Oder estuary appears to be the main source of heavy metals in the muddy sediments of the Bornholm Deep. The formation of sulphides is therefore not the principal factor controlling the enrichment of heavy metals in the sediments of this anoxic basin, although it may be responsible for the uptake of Mo, Sb and As. Two main factors control the distribution of the rare earth elements (REE) in sediments of the Polish EEZ: the input of Fe-organic colloids from rivers and the presence of detrital material in the sediments.

  14. Toxic Metal Pollution in Pakistan and Its Possible Risks to Public Health.

    PubMed

    Shakir, Shakirullah Khan; Azizullah, Azizullah; Murad, Waheed; Daud, Muhammad K; Nabeela, Farhat; Rahman, Hazir; Ur Rehman, Shafiq; Häder, Donat-Peter

    2017-01-01

    Environmental pollution has increased many folds in recent years and in some places has reached levels that are toxic to living things. Among pollutant types, toxic heavy metals and metalloids are among the chemicals that pose the highest threat to biological systems (Jjemba 2004). Unlike organic pollutants, which are biodegradable, heavy metals are not degraded into less hazardous end products (Gupta et al. 2001). Low concentrations of some heavy metals are essential for life, but some of them like Hg, As, Pb and Cd are biologically non-essential and very toxic to living organisms. Even the essential metals may become toxic if they are present at a concentration above the permissible level (Puttaiah and Kiran 2008). For example, exposure to Zn and Fe oxides produce gastric disorder and vomiting, irritation of the skin and mucous membranes. Intake of Ni, Cr, Pb, Cd and Cu causes heart problems, leukemia and cancer, while Co and Mg can cause anemia and hypertension (Drasch et al. 2006). Similarly, various studies indicated that overexposure to heavy metals in air can cause cardiovascular disorders (Miller et al. 2007; Schwartz 2001), asthma (Wiwatanadate and Liwsrisakun 2011), bronchitis/emphysema (Pope 2000), and other respiratory diseases (Dominici et al. 2006).

  15. [Magnetic Response of Dust-loaded Leaves in Parks of Shanghai to Atmospheric Heavy Metal Pollution].

    PubMed

    Liu, Fei; Chu, Hui-min; Zheng, Xiang-min

    2015-12-01

    To reveal the magnetic response to the atmospheric heavy metal pollution in leaves along urban parks, Camphor leaf samples, widely distributed at urban parks, were collected along the year leading wind direction of Shanghai, by setting two vertical and horizontal sections, using rock magnetic properties and heavy metal contents analysis. The results showed that the magnetic minerals of samples were predominated by ferromagnetic minerals, and both the concentration and grain size of magnetite particles gradually decreased with the winter monsoon direction from the main industrial district. A rigorous cleaning of leaves using ultrasonic agitator washer could remove about 63%-90% of low-field susceptibility values of the leaves, and this strongly indicated that the intensity of magnetic signal was mainly controlled by the PMs accumulated on the leaves surfaces. Moreover, there was a significant linear relationship between heavy metals contents (Fe, Mn, Zn, Cu, Cr, V and Pb) and magnetic parameters (0.442 ≤ R ≤ 0.799, P < 0.05), which suggested that magnetic parameters of urban park leaves could be used as a proxy for atmospheric heavy metal pollution. The results of multivariate statistical analysis showed that the content of magnetic minerals and heavy metal indust-loaded tree leaves was affected by associated pollution of industry and traffic.

  16. Metals pollution tracing in the sewerage network using the diffusive gradients in thin films technique.

    PubMed

    Thomas, P

    2009-01-01

    Diffusive Gradients in Thin-films (DGT) is a quantitative, passive monitoring technique that can be used to measure concentrations of trace species in situ in solutions. Its potential for tracing metals pollution in the sewer system has been investigated by placing the DGT devices into sewage pumping stations and into manholes, to measure the concentration of certain metals in the catchment of a sewage treatment works with a known metals problem. In addition the methodology and procedure of using the DGT technique in sewers was investigated. Parameters such as temperature and pH were measured to ensure they were within the limits required by the DGT devices, and the optimum deployment time was examined. It was found that although the results given by the DGT technique could not be considered to be fully quantitative, they could be used to identify locations that were showing an excess concentration of metals, and hence trace pollution back to its source. The DGT technique is 'user friendly' and requires no complicated equipment for deployment or collection, and minimal training for use. It is thought that this is the first time that the DGT technique has been used in situ in sewers for metals pollution tracing.

  17. A magnetic record of heavy metal pollution in the Yangtze River subaqueous delta.

    PubMed

    Dong, Chenyin; Zhang, Weiguo; Ma, Honglei; Feng, Huan; Lu, Honghua; Dong, Yan; Yu, Lizhong

    2014-04-01

    The rapid industrial development in the Yangtze River watershed over the last several decades has drawn great attention with respect to heavy metal pollution to the Yangtze River estuary and nearby coastal areas. In this study, a 236 cm long sediment core was retrieved from the Yangtze River subaqueous delta (122°36' E, 31°00' N) in 2008 and analyzed for magnetic properties and geochemical compositions to investigate heavy metal pollution history. The activity of (137)Cs peaked at depth 140 cm, with a broad plateau between 120 cm and 140 cm, suggesting an average sedimentation rate of 3.11 cm yr(-1) for the upper 140 cm layer. Magnetic susceptibility (χ), saturation isothermal remanent magnetization (SIRM), anhysteretic remanent magnetization (χARM) and heavy metal enrichment factors (EF) all showed an upward increase trend above depth 140 cm, suggesting that increased ferrimagnetic mineral concentration was accompanied by heavy metal enrichment in the sediment. Geochemical and granolumetric analyses showed that sediment sources and particle sizes played minor roles in the variations of magnetic properties. The effect of diagenesis, which can lead to the selective removal of magnetic minerals, was noticeable in the lower part of the core (140-236 cm). Co-variation between magnetic properties (χ, SIRM and χARM) and EF of Cu and Pb suggests that the elevated ferrimagnetic mineral concentration can be used as an indicator of heavy metal pollution in the reconstruction of environmental changes in estuarine and coastal settings.

  18. The environmental significance of heavy metal pollution in surface sediments of Maryout lagoon, Egypt

    NASA Astrophysics Data System (ADS)

    Abdallah, M. A. M.

    2009-04-01

    Sediment quality of Lake Maryout (one of the four Nile Delta shallow brackish water lakes) was concerned since this lake were used for land reclamation, aquaculture in addition to its importance as a fishing source. Meanwhile, sediments served as one of the main ultimate sinks for large amount of pollutants especially heavy metals discharged through two wastewater treatment plants, also from several agricultural drains. Total concentrations of heavy metal, such as Cd, Ni, Pb, Cr, Cu and Zn were investigated, as well as the ecological relevance of metal pollution was investigated by applying different sediment quality assessment approaches: (1) comparisons of concentrations with regional reference data, and (2) comparisons with consensus-based sediment quality guidelines (SQGs).

  19. Distribution and Pollution Characteristics Analysis of Heavy Metals in Surface Sediment in Bi River

    NASA Astrophysics Data System (ADS)

    Huang, Qianrui; Danek, Tomas; Cheng, Xianfeng; Dong, Tao; Qi, Wufu; Zou, Liling; Zhao, Xueqiong; Zhao, Xinliang; Xiang, Yungang

    2016-10-01

    The author analyzes distribution characteristics of heavy metals’ content in surface sediments of Bi River (Cu, Zn, As and Cd) and evaluates the potential ecological harm of heavy metal pollution in surface sediment by index method of potential ecological harm. Results show that heavy metals, such as Cu, Zn, As, Pb and Cd in surface sediments of Bi River are badly out of limitation. Especially, the heavy metals’ content in Jinding mining area is far higher than the national first class standard. The content of heavy metal is still high in the intersection of Bi River and Lancang River, which have certain influence on the Lancang River sediment and its water system. And, Pb and Cd, as the main pollutants, should be regarded as a key research subject.

  20. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.

    2014-09-01

    The current state, problems, and prospects of phymoremediation of heavy metal polluted soils are analyzed. The main attention is paid to the phytoextraction and phytostabilization as the most widespread and alternative methods of soil phytoremediation. The efficiency of phymoremediation is related to the natural capability of plants for the accumulation and translocation of metals, their tolerance to a high content of metals, the plant biomass, and the amendments applied. The advantages and disadvantages of phytoremediation as compared to other methods of remediation of polluted soils in situ are considered. Examples of successful phytoextraction and phytomining for cleaning up of contaminated soils in Rasteburg (South Africa) and the phytostabilization of technogenic barrens nearby the copper-nickel plants in Sudbury (Ontario, Canada) and in the Kola Subarctic (Russia) are presented.

  1. The Little Penguin (Eudyptula minor) as an indicator of coastal trace metal pollution.

    PubMed

    Finger, Annett; Lavers, Jennifer L; Dann, Peter; Nugegoda, Dayanthi; Orbell, John D; Robertson, Bruce; Scarpaci, Carol

    2015-10-01

    Monitoring trace metal and metalloid concentrations in marine animals is important for their conservation and could also reliably reflect pollution levels in their marine ecosystems. Concentrations vary across tissue types, with implications for reliable monitoring. We sampled blood and moulted feathers of the Little Penguin (Eudyptula minor) from three distinct colonies, which are subject to varying levels of anthropogenic impact. Non-essential trace metal and metalloid concentrations in Little Penguins were clearly linked to the level of industrialisation adjacent to the respective foraging zones. This trend was more distinct in blood than in moulted feathers, although we found a clear correlation between blood and feathers for mercury, lead and iron. This study represents the first reported examination of trace metals and metalloids in the blood of any penguin species and demonstrates that this high trophic feeder is an effective bioindicator of coastal pollution.

  2. Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment.

    PubMed

    Liu, Ruimin; Men, Cong; Liu, Yongyan; Yu, Wenwen; Xu, Fei; Shen, Zhenyao

    2016-09-15

    To analyze the spatial distribution patterns and ecological risks of heavy metals, 30 sediment samples were taken in the Yangtze River Estuary (YRE) in May 2011. The content of Al, As, Cr, Cu, Fe, Mn, Ni and Pb increased as follows: inner-regionpollutants. What is more, the greatest contaminated area appeared at the river mouth of the south branch of YRE. In Tucker 3, considering the fractions of metals, Mn turned to be the severest pollutant and As did not contribute too much to the contamination of the YRE. That was most probably because that Mn was closely related to the carbonate-associated (CARB) and As was related to organic-associated (OM) which is more stable than CARB. The fractions played an important role in the contamination assessment of heavy metals.

  3. Quantitative evaluation of heavy metals' pollution hazards in liquefaction residues of sewage sludge.

    PubMed

    Huang, Huajun; Yuan, Xingzhong; Zeng, Guangming; Zhu, Huina; Li, Hui; Liu, Zhifeng; Jiang, Hongwei; Leng, Lijian; Bi, Wenkai

    2011-11-01

    Liquefaction residues (LR) are the main by-products of sewage sludge (SS) liquefaction. This study quantitatively evaluates the potential ecological risk and pollution degrees of heavy metals (Pb, Zn, Cu, Cd, Cr and Ni) in LR versus SS. The leaching rates (R1) of heavy metals in LR were much lower than those in SS, revealing that the mobility/leachability of heavy metals was well suppressed after liquefaction. Geo-accumulation index (Igeo) indicated that the liquefaction process significantly weakened the contamination degrees of heavy metals. Potential ecological risk index (RI) demonstrated that overall risks caused by heavy metals were obviously lowered from 1093.56 (very high risk) in SS to 4.72 and 1.51 (low risk) in LR1 and LR2, respectively. According to the risk assessment code (RAC), each tested heavy metal had no or low risk to the environments after liquefaction. In a word, the pollution hazards of heavy metals in LR were markedly mitigated.

  4. Which came first, people or pollution? Assessing the disparate siting and post-siting demographic change hypotheses of environmental injustice

    NASA Astrophysics Data System (ADS)

    Mohai, Paul; Saha, Robin

    2015-11-01

    Although a large body of quantitative environmental justice research exists, only a handful of studies have examined the processes by which racial and socioeconomic disparities in the location of polluting industrial facilities can occur. These studies have had mixed results, we contend, principally because of methodological differences, that is, the use of the unit-hazard coincidence method as compared to distance-based methods. This study is the first national-level environmental justice study to conduct longitudinal analyses using distance-based methods. Our purposes are to: (1) determine whether disparate siting, post-siting demographic change, or a combination of the two created present-day disparities; (2) test related explanations; and (3) determine whether the application of distance-based methods helps resolve the inconsistent findings of previous research. We used a national database of commercial hazardous waste facilities sited from 1966 to 1995 and examined the demographic composition of host neighborhoods around the time of siting and demographic changes that occurred after siting. We found strong evidence of disparate siting for facilities sited in all time periods. Although we found some evidence of post-siting demographic changes, they were mostly a continuation of changes that occurred in the decade or two prior to siting, suggesting that neighborhood transition serves to attract noxious facilities rather than the facilities themselves attracting people of color and low income populations. Our findings help resolve inconsistencies among the longitudinal studies and builds on the evidence from other subnational studies that used distance-based methods. We conclude that racial discrimination and sociopolitical explanations (i.e., the proposition that siting decisions follow the ‘path of least resistance’) best explain present-day inequities.

  5. Pollution Prevention Plan for the Y-12 Analytical Chemistry Organization Off-Site Union Valley Facility

    SciTech Connect

    Jackson, J. G.

    2010-03-01

    The Y-12 Analytical Chemistry Organization (ACO) Off-Site Union Valley Facility (Union Valley Facility) is managed by Babcock and Wilcox Technical Services Y-12, L.L.C. (B and W Y-12) through the Y-12 National Security Complex organization. Accordingly, the Y-12 Pollution Prevention Program encompasses the operations conducted at the Union Valley Facility. The Y-12 Program is designed to fully comply with state, federal and U.S. Department of Energy (DOE) requirements concerning waste minimization/pollution prevention as documented in the Y-12 Pollution Prevention Program Plan. The Program is formulated to reduce the generation and toxicity of all Y-12 wastes in all media, including those wastes generated by the Union Valley Facility operations. All regulatory and DOE requirements are met by the Y-12 Program Plan.

  6. Hanford Site Guide for Preparing and Maintaining Generator Group Pollution Prevention Program Documentation

    SciTech Connect

    PLACE, B.G.

    2000-11-01

    This document provides guidance to generator groups for preparing and maintaining documentation of Pollution Prevention/Waste Minimization (P2/WMin) Program activities. The guidance is one of a hierarchical series that includes the Hanford Site Waste Minimization and Pollution Prevention Awareness Program Plan (DOE-RL, 2000) and Prime Contractor implementation plans describing programs required by Resource Conservation and Recovery Act of 1976 (RCRA) 3002(b) and 3005(h) (RCRA and EPA, 1994) and Department of Energy Acquisition Regulations (DEAR) (48 CFR 970.5204-2 and 48 CFR 970.5204-78). Documentation guidance for the following five P2/WMin elements is discussed: Fiscal Year (FY) Goals; Budget and Staffing; Pollution Prevention (P2) Reporting; WMin Certification; and Waste Minimization (WMin) Assessments (WMAs).

  7. Mercury pollution in the lake sediments and catchment soils of anthropogenically-disturbed sites across England.

    PubMed

    Yang, Handong; Turner, Simon; Rose, Neil L

    2016-12-01

    Sediment cores and soil samples were taken from nine lakes and their catchments across England with varying degrees of direct human disturbance. Mercury (Hg) analysis demonstrated a range of impacts, many from local sources, resulting from differing historical and contemporary site usage and management. Lakes located in industrially important areas showed clear evidence for early Hg pollution with concentrations in sediments reaching 400-1600 ng g(-1) prior to the mid-19th century. Control of inputs resulting from local management practices and a greater than 90% reduction in UK Hg emissions since 1970 were reflected by reduced Hg pollution in some lakes. However, having been a sink for Hg deposition for centuries, polluted catchment soils are now the major Hg source for most lakes and consequently recovery from reduced Hg deposition is being delayed.

  8. Comparison of heavy metal contamination during the last decade along the coastal sediment of Pakistan: Multiple pollution indices approach.

    PubMed

    Saher, Noor Us; Siddiqui, Asmat Saleem

    2016-04-15

    Heavy metals concentrations (Fe, Cu, Zn, Ni, Cr, Co, Pb, and Cd) were scrutinized during two monitoring years (2001 and 2011) in the coastal sediment of Pakistan. The status of metal contamination in coastal sediment was interpreted using sediment quality guidelines, and single and combined metal pollution indices. Ni, Cr, and Cd were recognized for their significant (p<0.05) intensification in the sediment during the last decade. Sediment quality guidelines recognized the frequent adverse biological effect of Ni and the occasional adverse biological effect of Cu, Cr, Pb and Cd. Single metal pollution indices (Igeo, EF, CF, and ER) revealed that sediment pollution is predominantly caused by Pb and Cd. Low to moderate contamination was appraised along the coast by multi-metal pollution indices (CD and PERI). Correlation study specifies that heavy metals were presented diverse affiliations and carriers for distribution in the sediment during the last decade.

  9. Trace/heavy metal pollution monitoring in estuary and coastal area of Bay of Bengal, Bangladesh and implicated impacts.

    PubMed

    Kibria, Golam; Hossain, Md Maruf; Mallick, Debbrota; Lau, T C; Wu, Rudolf

    2016-04-15

    Using artificial mussels (AMs), this study reports and compares time-integrated level of eleven trace metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, U, Zn) in Karnafuli River estuary and coastal area of the Bay of Bengal, Bangladesh. Through this study, "hot spots" of metal pollution were identified. The results may demonstrate that the Karnafuli Estuary, and adjacent coastal area of Chittagong, Bangladesh are highly polluted by high risk metals (cadmium, chromium, copper, mercury, nickel, lead, uranium). Agricultural, domestic and industrial wastes directly discharged into the waterways have been identified as the main causes of metal pollution in Chittagong, Bangladesh. The high level of metal pollution identified may impact on local water quality, and seafood catch, livelihoods of people and public health resulting from seafood consumption. There is a need for regular monitoring to ascertain that local water quality with respect to metal levels are within acceptable levels to safeguards both environmental health and public health.

  10. Histidine pairing at the metal transport site of mammalian ZnT transporters controls Zn2+ over Cd2+ selectivity.

    PubMed

    Hoch, Eitan; Lin, Wei; Chai, Jin; Hershfinkel, Michal; Fu, Dax; Sekler, Israel

    2012-05-08

    Zinc and cadmium are similar metal ions, but though Zn(2+) is an essential nutrient, Cd(2+) is a toxic and common pollutant linked to multiple disorders. Faster body turnover and ubiquitous distribution of Zn(2+) vs. Cd(2+) suggest that a mammalian metal transporter distinguishes between these metal ions. We show that the mammalian metal transporters, ZnTs, mediate cytosolic and vesicular Zn(2+) transport, but reject Cd(2+), thus constituting the first mammalian metal transporter with a refined selectivity against Cd(2+). Remarkably, the bacterial ZnT ortholog, YiiP, does not discriminate between Zn(2+) and Cd(2+). A phylogenetic comparison between the tetrahedral metal transport motif of YiiP and ZnTs identifies a histidine at the mammalian site that is critical for metal selectivity. Residue swapping at this position abolished metal selectivity of ZnTs, and fully reconstituted selective Zn(2+) transport of YiiP. Finally, we show that metal selectivity evolves through a reduction in binding but not the translocation of Cd(2+) by the transporter. Thus, our results identify a unique class of mammalian transporters and the structural motif required to discriminate between Zn(2+) and Cd(2+), and show that metal selectivity is tuned by a coordination-based mechanism that raises the thermodynamic barrier to Cd(2+) binding.

  11. Application of aragonite shells for the removal of aqueous metals in polluted soils and wastewaters.

    NASA Astrophysics Data System (ADS)

    Bucca, M.; Köhler, S. J.; Dietzel, M.

    2009-04-01

    In the present study the use of coupled precipitation/dissolution processes for metal (Me) removal from polluted soils and waters by biogenic carbonate (CaCO3) shell surfaces is proposed, according to the following overall reaction: CaCO3 + Me2+ = MeCO3 + Ca2+ This reaction has been investigated at fixed experimental conditions using synthetic model systems consisting in columns, batch, and reactors (e.g. lead, zinc, and cadmium artificial solutions mixed with aragonite shells) that allowed quantifying the kinetics of the process of metal carbonate formation. The above mentioned process has the potential of being used in three different areas of water treatment: a) use of shells as a cheap and effective geologic barrier for contaminated ground or surface waters, b) use as a material in filter beds or fluidized bed for selective cleaning of waste water with the potential of partial metal recovery and c) use as seed crystals during the elimination of metals through precipitation with soda (Na2CO3). Acidic wastewaters containing several pollutants, including heavy and trace metals, are created during production of pesticides, paper, lubricating oil, batteries, acid/alkali, or in ship repair manufacturing, mines drainage systems, metalworking and metal plating industries. Biogenic shells are a waste product in many coastal countries and may thus be more favorable than other solid phases such as clays or zeolithes from an economic viewpoint. Our metal elimination study aims at setting up a low-cost effective elimination system for various types of metal rich waste waters. A number of experimental techniques such as batch, column and flow through reactors were used to optimize the metal removal efficiency in both synthetic and waste waters from the metal finishing industry. Solid liquid ratio, initial and final pH, metal concentration and combination of metals have been varied. Measurements of pH, metal concentration, conductivity and alkalinity were recorded over the

  12. Evaluation of bivalves as bioindicators of metal pollution in freshwater.

    PubMed

    Waykar, Bhalchandra; Deshmukh, Gajanan

    2012-01-01

    The fresh water bivalves, Lamellidens corrianus, Lamellidens marginalis, and Indonaia caeruleus were exposed to chronic concentration of arsenic (0.1719 ppm), cadmium (0.1284 ppm), copper (0.033 ppm), lead (1.50 ppm), mercury (0.0443 ppm) and zinc (1.858 ppm) separately up to 30 days in laboratory. Dry weight of each animal was used to calculate metal concentrations (μg/g) and the metal body burden (μg/individual). It was observed that lead (1235.4 μg/g) and arsenic (37.9 μg/g) concentration were highest in Lamellidens corrianus, zinc (3,032.3 μg/g) was highest in Lamellidens marginalis, while mercury (5.87 μg/g), cadmium (142 μg/g) and copper (826.7 μg/g) was highest in Indonaia caeruleus.

  13. Pollution prevention assessment for a metal parts coater

    SciTech Connect

    Edwards, H.W.; Kostrzewa, M.F.; Spika, T.; Looby, G.P.

    1995-09-01

    The US Environmental Protection Agency (EPA) has funded a pilot project to assist small and medium-size manufacturers who want to minimize their generation of waste but who lack the expertise to do so. In an effort to assist these manufacturers Waste Minimization Assessment Centers (WMACs) were established at selected universities and procedures were adapted from the EPA Waste Minimization Opportunity Assessment Manual. The WMAC team at Colorado State University performed an assessment at a plant that applies corrosion resistant coatings to metal parts. Aluminum parts received from customers may be anodized or may receive a chromate conversion coating. Brass, copper, steel, and aluminum parts from customers are nickel plated--either by electrolytic or electroless plating. The assessment team`s report, detailing findings and recommendations, indicated that large quantities of wastewater and metal sludge are generated by the plant and that significant cost savings could be achieved through replacement of Freon used for degreasing. This Research Brief was developed by the principal investigators and EPA`s National Risk Management Research Laboratory, Cincinnati, OH, to announce key findings of an ongoing research project that is fully documented in a separate report of the same title available from University City Science Center.

  14. Metal pollution records in core sediments of some Red Sea coastal areas, Kingdom of Saudi Arabia.

    PubMed

    Badr, Nadia B E; El-Fiky, Anwar A; Mostafa, Alaa R; Al-Mur, Bandr A

    2009-08-01

    In the last three decades, the industrial and human activities in the coastal area of Saudi Arabia have increased dramatically and resulted in the continuous invasion of different types of pollutants including heavy metals. Seven sediment cores were collected from three major industrialized areas; Jeddah, Rabigh and Yanbu, along the coast of Saudi Arabia to determine the spatial and temporal distribution of metals and to assess the magnitude of pollution and their potential biological effects. Sediments were analyzed for texture, calcium carbonate contents, organic matter and metals (Al, Fe, Mn, Cd, Cr, Cu, Ni, Pb and Zn). Some metals like, Cr, Mn, Ni and Zn, were enriched in the upper 15 cm of core samples (recent deposition of sediments). Cadmium concentrations showed high fluctuations with depth and reverse pattern to that for Al, Fe and Mn which indicated land based sources of this element to the studied areas. Elevated concentrations of lead were recorded in the bottom layers of cores in Jeddah that indicated the most dramatic increase in usage of gasoline in early 1970s. The calculated contamination factors (CF's) were found in the following sequences: Cd > Pb > Ni > Cu > Zn > Cr > Mn for all studied areas. Results of Pollution Load Index (PLI) revealed that Jeddah is the most polluted area, followed by Rabigh while Yanbu is the least contaminated area. Except for Ni, the concentrations of most metals in the majority of sediment samples were believed to be safe for living organisms. As no data were available on the concentration of metals in core sediments in the coastal area of Saudi Arabia, the results of this study would serve as a baseline against which future anthropogenic effects can be assessed.

  15. Tuned by metals: the TET peptidase activity is controlled by 3 metal binding sites.

    PubMed

    Colombo, Matteo; Girard, Eric; Franzetti, Bruno

    2016-02-08

    TET aminopeptidases are dodecameric particles shared in the three life domains involved in various biological processes, from carbon source provider in archaea to eye-pressure regulation in humans. Each subunit contains a dinuclear metal site (M1 and M2) responsible for the enzyme catalytic activity. However, the role of each metal ion is still uncharacterized. Noteworthy, while mesophilic TETs are activated by Mn(2+), hyperthermophilic TETs prefers Co(2+). Here, by means of anomalous x-ray crystallography and enzyme kinetics measurements of the TET3 aminopeptidase from the hyperthermophilic organism Pyrococcus furiosus (PfTET3), we show that M2 hosts the catalytic activity of the enzyme, while M1 stabilizes the TET3 quaternary structure and controls the active site flexibility in a temperature dependent manner. A new third metal site (M3) was found in the substrate binding pocket, modulating the PfTET3 substrate preferences. These data show that TET activity is tuned by the molecular interplay among three metal sites.

  16. Active biomonitoring with Corbicula for USEPA priority pollutant and metal sources in the Anacostia River (DC, Maryland, USA).

    PubMed

    Phelps, Harriette L

    2016-07-01

    The freshwater Anacostia River watershed (Maryland, DC, USA) was surveyed for the sources of bioavailable US Environmental Protection Agency (USEPA) Priority Pollutants and toxic metals by active biomontoring (ABM) using the freshwater Asiatic clam Corbicula fluminea. The Anacostia River is a 456 km(2) tributary of the tidal freshwater Potomac River that includes the city of Washington, DC where edible fish are highly contaminated with PCBs and chlordane. From 1999 to 2011, Corbicula were collected for ABM from a Potomac reference site and translocated in cages placed at 45 sites in the tidal and nontidal Anacostia watershed. Minimum clam mortality and maximum contaminant bioaccumulation was with 2-week translocation. The clam tissues (28-50) were combined at sites and analyzed by TestAmerica for 66 USEPA Priority Pollutants plus technical chlordane, benz(e) pyrene, and 6 metals (As, Cd, Cr, Cu, Fe, Pb). Tissue contaminants reflected water, not sediment, levels. To compare sites, all contaminant data above detection or reference were grouped as total metals (TMET), total polycyclic aromatic hydrocarbons (TPAH), total PCB congeners (TPCB), total pesticides (TPEST), and total technical chlordane (TCHL). Tidal Anacostia ABM found highest TPAH and TCHL upstream at Bladensburg Marina (MD) except for TCHL at site PP near the confluence. Five nontidal MD subtributaries (94% of flow) had 17 sites with bioavailable TPAH, TPCB, or TCHL 2 to 3 times higher than found at the toxic-sediment "hotspots" near Washington. The only TMET noted was Fe at 1 site. TPAH in MD subtributaries was highest near industrial parks and Metro stations. A naphthalene spill was detected in Watts Branch. TPCB (low molecular weight) originated upstream at 1 industrial park. Total technical chlordane (80% of TPEST) was 2 to 5 times the US Food and Drug Administration action in 4 nontidal tributaries where heptachlor indicated legacy chlordane dumpsites. Total technical chlordane fell to reference

  17. Oxidative stress biomarkers in Senegal sole, Solea senegalensis, to assess the impact of heavy metal pollution in a Huelva estuary (SW Spain): seasonal and spatial variation.

    PubMed

    Oliva, Milagrosa; José Vicente, Juan; Gravato, Carlos; Guilhermino, Lucia; Dolores Galindo-Riaño, María

    2012-01-01

    The response of wild fish to heavy metals was studied in sole (Solea senegalensis) collected in 2004, 2005 and 2006 at three sampling sites from Huelva estuary (SW Spain), in the vicinity of a petrochemical and mining industry. Heavy metals As, Cd, Cu, Fe, Pb and Zn were analyzed in samples collected from sediment, water and tissue (liver) to examine their bioconcentration and effects in fish such as lipid peroxidation (LPO), catalase (CAT; EC 1.11.1.6), glutathione peroxidase (GPx; EC 1.8.1.7), glutathione S-transferase (GST; EC 2.5.1.18) and glutathione reductase (GR; EC 1.11.1.6) were also analyzed in the fish liver. The results showed different effects in sole from diverse locations with varying degrees of pollution. Significant differences in LPO, CAT and GR activities between control fish and fish from sampling sites were observed as well as seasonal differences for biomarkers. Significant correlations were established between some biomarkers and heavy metals concentrations in liver, sediment and water. This study indicates the usefulness of integrating a set of biomarkers to assess the effects of pollutants in aquatic environments under complex mix of pollutants and chronic pollution situation.

  18. Phytoaccumulation of Heavy Metals in Natural Vegetation at the Municipal Wastewater Site in Abbottabad, Pakistan.

    PubMed

    Irshad, Muhammad; Ruqia, Bibi; Hussain, Zahid

    2015-01-01

    Heavy metal accumulation in crops and soils from wastewater irrigation poses a significant threat to the human health. A study was carried out to investigate the removal potential of heavy metals (HM) by native plant species, namely Cannabis sativa L., Chenopodium album L., Datura stramonium L., Sonchus asper L., Amaranthus viridus L., Oenothera rosea (LHer), Xanthium stramonium L., Polygonum macalosa L., Nasturtium officinale L. and Conyza canadensis L. growing at the municipal wastewater site in Abbottabad city, Pakistan. The HM concentrations varied among plants depending on the species. Metal concentrations across species varied in the order iron (Fe) > zinc (Zn) > chromium (Cr) > nickel (Ni) > cadmium (Cd). Majority of the species accumulated more HM in roots than shoots. Among species, the concentrations (both in roots and shoots) were in the order C. sativa > C. album > X. stramonium > C. canadensis > A. viridus > N. officinale > P. macalosa > D. stramonium > S. asper > O. rosea. No species was identified as a hyperaccumulator. All species exhibited a translocation factor (TF) less than 1. Species like C. sativa, C. album and X. stramonium gave higher (> 1) biological concentration factor (BCF) and biological accumulation coefficient (BAC) especially for Fe, Cr and Cd than other species. Higher accumulation of heavy metals in these plant species signifies the general application of these species for phytostabilization and phytoextraction of HM from polluted soils.

  19. Spectroscopic analysis of soil metal contamination around a derelict mine site in the Blue Mountains, Australia

    NASA Astrophysics Data System (ADS)

    Shamsoddini, A.; Raval, S.; Taplin, R.

    2014-09-01

    Abandoned mine sites pose the potential threat of the heavy metal pollution spread through streams and via runoff leading to contamination of soil and water in their surrounding areas. Regular monitoring of these areas is critical to minimise impacts on water resources, flora and fauna. Conventional ground based monitoring is expensive and sometimes impractical; spectroscopic methods have been emerged as a reliable alternative for this purpose. In this study, the capabilities of the spectroscopy method were examined for modelling soil contamination from around the abandoned silver-zinc mine located at Yerranderie, NSW Australia. The diagnostic characteristics of the original reflectance data were compared with models derived from first and second derivatives of the reflectance data. The results indicate that the models derived from the first derivative of the reflectance data estimate heavy metals significantly more accurately than model derived from the original reflectance. It was also found in this study that there is no need to use second derivative for modelling heavy metal soil contamination. Finally, the results indicate that estimates were of greater accuracy for arsenic and lead compared to other heavy metals, while the estimation for silver was found to be the most erroneous.

  20. Assessment of heavy metal pollution in surface sediments of the Bayan Lepas area, Penang, Malaysia.

    PubMed

    Khodami, Sharareh; Surif, Misni; W O, Wan Maznah; Daryanabard, Reza

    2017-01-15

    This study aimed to evaluate the spatial and temporal distribution of heavy metals (Cd, Cr, Cu, Co, Fe, Pb, Ni, V, and Zn) in the sediments of Bayan Lepas Free Industrial Zone of Penang, Malaysia. Ten sampling stations were selected and sediment samples were collected during low tide (2012-2013). Metals were analyzed and the spatial distribution of metals were evaluated based on GIS mapping. According to interim sediment quality guidelines (ISQG), metal contents ranged from below low level to above high level at different stations. Based on the geoaccumulation index (Igeo) of sediment, sampling stations were categorized from unpolluted to strongly polluted. The enrichment factor (EF) of metals in the sediment varied between no enrichment to extremely high enrichment. The potential ecological risk index (RI) indicated Bayan Lepas FIZ was at low risk.

  1. Evaluation of Surface Water Quality by Using GIS and a Heavy Metal Pollution Index (HPI) Model in a Coal Mining Area, India.

    PubMed

    Tiwari, Ashwani Kumar; De Maio, Marina; Singh, Prasoon Kumar; Mahato, Mukesh Kumar

    2015-09-01

    Twenty eight surface water samples were collected from fourteen sites of the West Bokaro coalfield, India. The concentration of Mn, Cu, Zn, Ni, As, Se, Al, Cr, Ba, and Fe were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) for determination of seasonal fluctuations and a heavy metal pollution index (HPI). The HPI values were below the critical pollution index value of 100. Metal concentrations were higher in the pre-monsoon season as compared to the post-monsoon season. The Zn, Ni, Mn, As, Se, Al, Ba, Cu, and Cr concentrations did not exceed the desirable limits for drinking water in either season. However, at many sites, concentrations of Fe were above the desirable limit of the WHO (2006) and Indian drinking water standard (BIS 2003) in both seasons. The water that contained higher concentrations of Fe would require treatment before domestic use.

  2. Multi-phase distribution and comprehensive ecological risk assessment of heavy metal pollutants in a river affected by acid mine drainage.

    PubMed

    Liao, Jianbo; Ru, Xuan; Xie, Binbin; Zhang, Wanhui; Wu, Haizhen; Wu, Chaofei; Wei, Chaohai

    2017-03-16

    To date, there is a lack of a comprehensive research on heavy metals detection and ecological risk assessment in river water, sediments, pore water (PW) and suspended solids (SS). Here, the concentrations of heavy metals, including Cu, Zn, Mn, Cd, Pb and As, and their distribution between the four phases was studied. Samples for analysis were taken from twelve sites of the Hengshi River, Guangdong Province, China, during the rainy and dry seasons. A new comprehensive ecological risk index (CERI) based on considering metal contents, pollution indices, toxicity coefficients and water categories is offered for prediction of potential risk on aquatic organisms. The results of comprehensive analysis showed that the highest concentrations of Cu, Zn and Mn of 6.42, 87.17 and 98.74mg/L, respectively, in PW were comparable with those in water, while concentrations of Cd, Pb and As of 609.5, 2757 and 96.38μg/L, respectively, were 2-5 times higher. The sum of the exchangeable and carbonate fractions of target metals in sediments followed the order of Cd > Mn > Zn > Pb > Cu > As. The distribution of heavy metals in phases followed the order of sediment > SS > water > PW, having the sum content in water and PW lower than 2% of total. The elevated ecological risk for a single metal and the phase were 34,585 for Cd and 1160 for water, respectively, implied Cd as a priority pollutant in the considered area. According to the CERI, the maximum risk value of 769.3 was smaller than 1160 in water, but higher than those in other phases. Out of considering the water categories and contribution coefficients, the CERI was proved to be more reliable for assessing the pollution of rivers with heavy metals. These results imply that the CERI has a potential of adequate assessment of multi-phase composite metals pollution.

  3. Public health consequences of heavy metals in dump sites.

    PubMed Central

    Clarkson, T W; Weiss, B; Cox, C

    1983-01-01

    Metals differ from most synthetic organic chemicals in that their clinical manifestations are well known and methods for their measurement in the body are generally well established. Since metals are ubiquitous, special care should be taken to identify the source, whether dump site or not. Isotopic ratios may be used for lead. Time of exposure may be highly variable so estimates will be necessary of integrated "dose-commitment." Transmission to man will follow many pathways. The contamination of children's hands and clothing by dust may be an important route. Because effects are so different, the chemical species (e.g., organic versus inorganic forms) of each metal must be identified. Exposure assessment requires identification of suitable indicator media, usually blood in the case of lead, urine with cadmium and inorganic mercury, and blood or hair with regard to methylmercury. Human head hair may have considerable potential, as it may provide a recapitulation of past exposures. The first health complaints associated with most metals are usually nonspecific. The complex social, political, and legal issues strongly indicate the need for objective tests for health effects. Most important is the identification and measurement of the critical effect, i.e., an effect that alerts the public health authorities that further exposure should cease. For example, in the case of lead, the critical effect is hematologic; with cadmium it is the presence in urine of abnormally high concentration of small molecular weight protein; and with mercury no early objective test has yet been devised. PMID:6825626

  4. Mountain lakes of Russian subarctic as markers of air pollution: Acidification, metals and paleoecology

    SciTech Connect

    Moiseenko, T.I.; Dauvalter, V.A.; Kagan, L.Y.

    1996-12-31

    The Kola Peninsula mountain lakes reflect a real situation not only of the local air pollution but also polluted transborder emissions from Europe to Arctic and they are of interest for early detection and monitoring for acidification and pollution by heavy metals. Two monitoring mountain lakes had a discrepancy by their resistance to acidification: the Chuna lake is vulnerable and the Chibiny one is not, respectively. Despite the Chuna and Chibiny lakes are close tone of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Severonickel Company, local emissions very slightly affect the mountain lakes, because heavily polluted air masses do not rise in altitude. Sulfur deposition on the Chuna lake catchment is 0.4 gSm{sup -2}, Chibiny lake is 0.6 gSm{sup -2}. In comparison with area at the foot of the mountain (less than 200 m above the sea level) sulfur deposition is 1.0-1.5 gSm{sup -2}. Water quality, sediment chemistry, and diatoms in sediment cores were studied.

  5. Migration of radionuclides and heavy metals during the bioremediation of a polluted cinnamonic soil

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nikolova, Marina

    2013-04-01

    A fresh sample of cinnamonic soil polluted with radionuclides (U, Ra) and toxic heavy metals (Cu, Pb, Zn) was subjected to bioremediation in large-scale lysimeters by means of moulching. The aim of soil treatment was solubilization of pollutants located in horizon A, the migration of their dissolved complexes through the soil profile, and the pollutants` precipitation in the rich-in-clays below-lying horizons. The solubilization was due to the joint action of natural soil microflora and leach waters containing ammonium and phosphate ions, and in some variants-hydrocarbonate ions. The precipitation of pollutants was due to the enhanced activity of the indigenous microflora in which iron- and sulphate-reducing bacteria were the prevalent groups. After 24 months of treatment, each of the soil profiles in different lysimeters was divided into five sections reflecting the relevant soil layers (horizon A and the sub-horizons B1, B2, B3, and B4). The soil in these sections was subjected to a detailed chemical analysis and the obtained data were compared with the relevant data obtained before the start of soil bioremediation. It was found that considerable portions of the pollutants were removed from the horizon A and were migrated to the sub-horizons B3 and B4, mainly. In these sub-horizons the non-ferrous metals were precipitated mainly as the relevant sulphides, uranium was precipitated as uraninite (UO2), and radium-mainly as adsorbed ions and complexes.

  6. Residual impact of aged nZVI on heavy metal-polluted soils.

    PubMed

    Fajardo, C; Gil-Díaz, M; Costa, G; Alonso, J; Guerrero, A M; Nande, M; Lobo, M C; Martín, M

    2015-12-01

    In the present study, the residual toxicity and impact of aged nZVI after a leaching experiment on heavy metal (Pb, Zn) polluted soils was evaluated. No negative effects on physico-chemical soil properties were observed after aged nZVI exposure. The application of nZVI to soil produced a significant increase in Fe availability. The impact on soil biodiversity was assessed by fluorescence in situ hybridization (FISH). A significant effect of nZVI application on microbial structure has been recorded in the Pb-polluted soil nZVI-treated. Soil bacteria molecular response, evaluated by RT-qPCR using exposure biomarkers (pykA, katB) showed a decrease in the cellular activity (pykA) due to enhanced intracellular oxidative stress (katB). Moreover, ecotoxicological standardised test on Caenorhabditis elegans (C. elegans) showed a decrease in the growth endpoint in the Pb-polluted soil, and particularly in the nZVI-treated. A different pattern has been observed in Zn-polluted soils: no changes in soil biodiversity, an increase in biological activity and a significant decrease of Zn toxicity on C. elegans growth were observed after aged nZVI exposure. The results reported indicated that the pollutant and its nZVI interaction should be considered to design soil nanoremediation strategies to immobilise heavy metals.

  7. Pollution status of the Bohai Sea: an overview of the environmental quality assessment related trace metals.

    PubMed

    Gao, Xuelu; Zhou, Fengxia; Chen, Chen-Tung Arthur

    2014-01-01

    It is well recognized that the ecosystem of the Bohai Sea is being rapidly degraded and the Sea has basically lost its function as a fishing ground. Billions of funds have been spent in slowing down, halting and finally reversing the environmental deterioration of the Bohai Sea. Although trace metals are routinely monitored, the data with high temporal resolution for a clear understanding of biogeochemical processes in the ecosystem of the Bohai Sea are insufficient, especially in the western literature. In this review, status of trace metal contamination in the Bohai Sea is assessed based on a comprehensive review of their concentrations recorded in the waters, sediments and organisms over the past decades. Studies show that metal contamination in the Bohai Sea is closely associated with the fast economic growth in the past decades. Concentrations of trace metals are high in coastal areas especially in the estuaries. Alarmingly high metal concentrations are observed in the waters, sediments and organisms from the western Bohai Bay and the northern Liaodong Bay, especially the coasts near Huludao in the northernmost area of the Bohai Sea, which is being polluted by industrial sewage from the surrounding areas. The knowledge of the speciation and fractionation of trace metals and the influence of submarine groundwater discharge on the biogeochemistry of trace metals in the Bohai Sea is far from enough and related work needs to be done urgently to get a better understanding of the influence of trace metals on the ecosystem of the Bohai Sea. A clear understanding of the trace metal pollution status of the Bohai Sea could not be achieved presently for lack of systematic cooperation in different research fields. It is quite necessary to apply the environmental and ecological modeling to the investigation of trace metals in the Bohai Sea and then provide foundations for the protection of the environment and ecosystem of the Bohai Sea.

  8. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers.

    PubMed

    Kalantzi, I; Pergantis, S A; Black, K D; Shimmield, T M; Papageorgiou, N; Tsapakis, M; Karakassis, I

    2016-03-01

    Twenty-eight metals and elements were measured in the muscle, liver, gills, bone and intestine of farmed seabass and gilthead seabream from four Mediterranean fish farms. The influence of fish species and the effect of environmental conditions on the metal accumulation in fish tissues was investigated. Most concentrations were lower in muscle and higher in liver and bone than in other body tissues. Seabass accumulates more elements in its tissues than seabream. Fish reared in coarse, oxic sites accumulate more elements with higher concentrations in muscle, bone and intestine and with lower concentrations in liver and gills than fish reared in silty, anoxic sites. This may be attributed to feed type and sediment properties. According to the metal pollution index, hazard quotient, selenium health benefit values, carcinogenic risk of arsenic, maximum safe consumption and the permitted limits, the consumption of both farmed species should be considered as safe for human health.

  9. Diet-mediated effects of heavy metal pollution on growth and immune response in the geometrid moth Epirrita autumnata.

    PubMed

    van Ooik, Tapio; Rantala, Markus J; Saloniemi, Irma

    2007-01-01

    The potential capacity of larval growth and immune response traits of the autumnal moth to adapt to heavy metal polluted environment was tested experimentally. Both the relative growth rate (RGR) and pupal weight were significantly higher in control trees than on polluted trees, indicating that metal pollution prevented the insect from achieving maximal growth on birch leaves. Larval growth rates of different broods differed significantly between metal contaminated and control birches. However, pupal weight of broods, which is considered more important for fitness than growth rate, in response to pollution did not differ. Immune response was significantly higher in moths exposed to pollution than in moths that were exposed to control environment suggesting that pollution enhances the immune defense of defoliators. Encapsulation rate tended to differ between broods indicating that the immune function has potential to respond to selection.

  10. Predictive Modeling of Metal-Organic Chains with Active Metal Site

    NASA Astrophysics Data System (ADS)

    Ud Din, Naseem; Le, Duy; Rahman, Talat

    Creation, stabilization, characterization and control of single atom transition metal (TM) sites may lead to significant advancement of the next-generation catalyst. Motivated by the experimental results of Skomski et al., we have performed density functional theory based calculations of TM-dipyridyltetrazine (DT) chains in which TM atoms are stabilized and separated by the DT molecules. Our calculations show that the formation energies of the chains are high, suggesting that these chains can easily be synthesized and stabilized. Moreover, by calculating the adsorption energies of CO, O2 and O atom on the metal atom sites of the chains we found that these molecules/atoms strongly bond to TM atoms Mo, Cr, Fe and Co occupying these sites, suggesting that these TM-DT chains are potential candidates for CO oxidation catalyst. Details of reaction pathway (energetic and kinetic) of CO oxidation on the chains will be also presented and discussed.

  11. Metal Nanoparticle Pollutants Interfere with Pulmonary Surfactant Function In Vitro☆

    PubMed Central

    Bakshi, Mandeep Singh; Zhao, Lin; Smith, Ronald; Possmayer, Fred; Petersen, Nils O.

    2008-01-01

    Abstract Reported associations between air pollution and pulmonary and cardiovascular diseases prompted studies on the effects of gold nanoparticles (Au NP) on pulmonary surfactant function. Low levels (3.7 mol % Au/lipid, 0.98% wt/wt) markedly inhibited adsorption of a semisynthetic pulmonary surfactant (dipalmitoyl-phosphatidylcholine (DPPC)/palmitoyl-oleoyl-phosphatidylglycerol/surfactant protein B (SP-B); 70:30:1 wt %). Au NP also impeded the surfactant's ability to reduce surface tension (γ) to low levels during film compression and to respread during film expansion. Transmission electron microscopy showed that Au NP generated by a seed-growth method were spherical with diameters of ∼15 nm. Including palmitoyl-oleoyl-phosphatidylglycerol appeared to coat the NP with at least one lipid bilayer but did not affect NP shape or size. Similar overall observations occurred with dimyristoyl phosphatidylglycerol. Dipalmitoyl-phosphatidylglycerol was less effective in NP capping, although similar sized NP were formed. Including SP-B (1% wt/wt) appears to induce the formation of elongated strands of interacting threads with the fluid phosphatidylglycerols (PG). Including DPPC resulted in formation of aggregated, less spherical NP with a larger size distribution. With DPPC, strand formation due to SP-B was not observed. Agarose gel electrophoresis studies demonstrated that the aggregation induced by SP-B blocked migration of PG-coated NP. Migration was also influenced by the fluidity of the PGs. It is concluded that Au NP can interact with and sequester pulmonary surfactant phospholipids and, if inhaled from the atmosphere, could impede pulmonary surfactant function in the lung. PMID:17890383

  12. Comparative assessment of button cells using a normalized index for potential pollution by heavy metals.

    PubMed

    Moreno-Merino, Luis; Jiménez-Hernández, Maria Emilia; de la Losa, Almudena; Huerta-Muñoz, Virginia

    2015-09-01

    Many household batteries worldwide still end up in landfills or are incinerated due to inefficient collection and recycling schemes. Toxic heavy metals from improperly discarded button cells pose a serious risk to human health and the environment, as they can pollute air, soil and water. This paper analyses a series of button cells selected from batteries available on the retail market, and compares their polluting potential. A total of 64 batteries were subjected to chemical analyses of 19 elements - including metals and metalloids - , and energy density measurements. The samples were from four different brands of each of the four most common button cell technologies (alkaline, zinc-air, silver oxide and lithium). An energy-normalized index - the Weighted Potential Pollution Index (WPPI) - was proposed to compare the polluting potential of the different batteries. The higher the battery WPPI score, the greater the content in toxic elements and the lower the energy output. The results of the chemical composition and energy density varied depending on the construction technology of the button cells. However, significant differences in both variables were also found when comparing different brands within the same technology. The differences in WPPI values confirmed the existence of a significant margin to reduce the environmental impact of discarded button cells simply by avoiding the most polluting options. The choice of the battery with the most favourable WPPI produced a reduction in potential pollution of 3-53% for silver oxide batteries, 4-39% for alkaline, 20-28% for zinc-air and 12-26% for lithium. Comparative potential pollution could be assessed when selecting batteries using an energy-normalized index such as WPPI to reduce the environmental impact of improperly disposed button cells.

  13. Epigenetic Modifications Due to Heavy Metals Exposure in Children Living in Polluted Areas

    PubMed Central

    Bitto, Alessandra; Pizzino, Gabriele; Irrera, Natasha; Galfo, Federica; Squadrito, Francesco

    2014-01-01

    The aim of the present article is to provide a summary of the epigenetic modifications that might occur in children exposed to heavy metals pollutants. It is known that children are more susceptible to environmental pollutants, because their detoxification enzymes are less competent, and this may lead to alterations in chromatin structure or of DNA causing, in turn, epigenetic modifications. Little is currently known about the long-term effects of these changes when occur early in childhood, none-theless there are ethics and practical concerns that make the assessment of DNA modifications difficult to perform in large-scale. PMID:25646074

  14. A novel field transplantation technique reveals intra-specific metal-induced oxidative responses in strains of Ectocarpus siliculosus with different pollution histories.

    PubMed

    Sáez, Claudio A; González, Alberto; Contreras, Rodrigo A; Moody, A John; Moenne, Alejandra; Brown, Murray T

    2015-04-01

    A novel field transplantation technique, in which seaweed material is incorporated into dialysis tubing, was used to investigate intra-specific responses to metals in the model brown alga Ectocarpus siliculosus. Metal accumulation in the two strains was similar, with higher concentrations in material deployed to the metal-contaminated site (Ventanas, Chile) than the pristine site (Quintay, Chile). However, the oxidative responses differed. At Ventanas, strain Es147 (from low-polluted site) underwent oxidative damage whereas Es524 (from highly polluted site) was not affected. Concentrations of reduced ascorbate (ASC) and reduced glutathione (GSH) were significantly higher in Es524. Activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) all increased in Es524, whereas only SOD increased in Es147. For the first time, employing a field transplantation technique, we provide unambiguous evidence of inter-population variation of metal-tolerance in brown algae and establish that antioxidant defences are, in part, responsible.

  15. The occurrence and sources of heavy metal contamination in peri-urban and smelting contaminated sites in Baoji, China.

    PubMed

    Deng, Wenbo; Li, Xuxiang; An, Zhisheng; Yang, Liu

    2016-04-01

    Atmospheric deposition, soil, plant, ore, and coal cinder samples were collected and analyzed to determine heavy metal concentrations in a typical peri-urban industrial area of Baoji. The lead isotope ratio method was employed to trace the source and dispersion of atmospheric heavy metal contamination. Results showed that concentrations of lead, zinc, cadmium, and copper in atmospheric deposition significantly exceed soil background levels and Chinese soil environmental quality standards. The most polluted sites were located in the downwind direction of the smelter, which confirmed this site to be the major pollution source for this area. The other source of heavy metals in this area is a power plant. The investigation into lead isotopes revealed compositions in atmospheric deposition samples were similar to those in ores and coal cinders identifying smelting as the predominant pollution source of lead with the power plant having a minimal effect. Similar isotopic compositions were also found in plants, indicating that the major source of lead in plants was derived from atmospheric deposition, although some evidence was found to suggest uptake from the soil to the roots as an additional contaminant pathway.

  16. Biomonitoring of trace metal pollution using the bivalve molluscs, Villorita cyprinoides, from the Cochin backwaters.

    PubMed

    George, Rejomon; Martin, G D; Nair, S M; Chandramohanakumar, N

    2013-12-01

    Trace metal concentrations in the muscle of the bivalve Villorita cyprinoides from the Cochin backwaters (southwest coast of India) were investigated during the monsoon, post-monsoon and pre-monsoon periods. The seasonal average ranges of metals (μg g(-1), dry weight) in the bivalve were as follows: Fe (18,532.44-28,267.05), Co (23.25-37.58), Ni (10.56-19.28), Cu (3.58-11.35), Zn (48.45-139.15), Cd (1.06-1.50) and Pb (3.05-4.35). The marginally elevated metal concentrations in bivalve muscles are probably related to high influx of metals as a result of pollution from the industries and agricultural fields with consequent increased bioavailability of metals to the bivalve. Evaluation of the risks to human health associated with consumption of the bivalves suggested that there is no health risk for moderate shellfish consumers. A regular and continuous biomonitoring program is recommended to establish V. cyprinoides as a bioindicator for assessing the effects of trace metal pollution and to identify future changes to conserve the "health" of this fragile ecosystem.

  17. Heavy metal pollution in water and sediments in the Kabini River, Karnataka, India.

    PubMed

    Taghinia Hejabi, Azadeh; Basavarajappa, H T; Karbassi, A R; Monavari, S M

    2011-11-01

    The River Kabini in Karnataka, India carries natural and anthropogenic pollutants, mainly heavy metal concentrations of Cr, Cu, Fe, Mn, Ni, Pb and Zn which are released from industrial effluents, agricultural return flows and domestic sewage. Kabini, which is a tributary of the Cauvery, drains through the industrial area at Nanjangud, Karnataka, India. Heavy metals were determined in waters and sediment (2 μm) of Kabini River. In the present investigation, chemical partitioning studies was carried out to know the association of base metals with various sedimentary phases. The concentrations of heavy metals are higher in loosely bonded fraction than the other studied fractions. Furthermore, the degree of sediment contamination was assessed by geochemical index. It should be pointed out that Cu and Cr show the highest pollution intensity. Cluster analysis was used to know about the inter correlation amongst the studied metals. It is evident that higher concentrations of metals are found in the vicinity of industrial effluents. The concentrations of Cr followed by Zn and Ni are rather higher than the maximum background values in the Kabini River sediment. This is especially true at the influx of paper mill effluents into the River.

  18. Increased chromatin fragmentation and reduced acrosome integrity in spermatozoa of red deer from lead polluted sites.

    PubMed

    Castellanos, Pilar; del Olmo, Enrique; Fernández-Santos, M Rocío; Rodríguez-Estival, Jaime; Garde, J Julián; Mateo, Rafael

    2015-02-01

    Vertebrates are constantly exposed to a diffuse pollution of heavy metals existing in the environment, but in some cases, the proximity to emission sources like mining activity increases the risk of developing adverse effects of these pollutants. Here we have studied lead (Pb) levels in spermatozoa and testis, and chromatin damage and levels of endogenous antioxidant activity in spermatozoa of red deer (Cervus elaphus) from a Pb mining area (n=37) and a control area (n=26). Deer from the Pb-polluted area showed higher Pb levels in testis parenchyma, epididymal cauda and spermatozoa, lower values of acrosome integrity, higher activity of glutathione peroxidase (GPx) and higher values of DNA fragmentation (X-DFI) and stainability (HDS) in sperm than in the control area. These results indicate that mining pollution can produce damage on chromatin and membrane spermatozoa in wildlife. The study of chromatin fragmentation has not been studied before in spermatozoa of wildlife species, and the sperm chromatin structure assay (SCSA) has been revealed as a successful tool for this purpose in species in which the amount of sperm that can be collected is very limited.

  19. An innovative continuous flow system for monitoring heavy metal pollution in water using transgenic Xenopus laevis tadpoles.

    PubMed

    Fini, Jean-Baptiste; Pallud-Mothré, Sophie; Le Mével, Sébastien; Palmier, Karima; Havens, Christopher M; Le Brun, Matthieu; Mataix, Vincent; Lemkine, Gregory F; Demeneix, Barbara A; Turque, Nathalie; Johnson, Paul E

    2009-12-01

    While numerous detection methods exist for environmental heavy metal monitoring, easy-to-use technologies combining rapidity with in vivo measurements are lacking. Multiwell systems exploiting transgenic tadpoles are ideal but require time-consuming placement of individuals in wells. We developed a real-time flow-through system, based on Fountain Flow cytometry, which measures in situ contaminant-induced fluorescence in transgenic amphibian larvae immersed in water samples. The system maintains the advantages of transgenic amphibians, but requires minimal human intervention. Portable and self-contained, it allows on-site measurements. Optimization exploited a transgenic Xenopus laevis bearing a chimeric gene with metal r