Science.gov

Sample records for metal polluted soils

  1. Does metal pollution matter with C retention by rice soil?

    PubMed Central

    Bian, Rongjun; Cheng, Kun; Zheng, Jufeng; Liu, Xiaoyu; Liu, Yongzhuo; Li, Zhipeng; Li, Lianqing; Smith, Pete; Pan, Genxing; Crowley, David; Zheng, Jinwei; Zhang, Xuhui; Zhang, Liangyun; Hussain, Qaiser

    2015-01-01

    Soil respiration, resulting in decomposition of soil organic carbon (SOC), emits CO2 to the atmosphere and increases under climate warming. However, the impact of heavy metal pollution on soil respiration in croplands is not well understood. Here we show significantly increased soil respiration and efflux of both CO2 and CH4 with a concomitant reduction in SOC storage from a metal polluted rice soil in China. This change is linked to a decline in soil aggregation, in microbial abundance and in fungal dominance. The carbon release is presumably driven by changes in carbon cycling occurring in the stressed soil microbial community with heavy metal pollution in the soil. The pollution-induced increase in soil respiration and loss of SOC storage will likely counteract efforts to increase SOC sequestration in rice paddies for climate change mitigation. PMID:26272277

  2. Impact of repeated single-metal and multi-metal pollution events on soil quality.

    PubMed

    Burges, Aritz; Epelde, Lur; Garbisu, Carlos

    2015-02-01

    Most frequently, soil metal pollution results from the occurrence of repeated single-metal and, above all, multi-metal pollution events, with concomitant adverse consequences for soil quality. Therefore, in this study, we evaluated the impact of repeated single-metal and multi-metal (Cd, Pb, Cu, Zn) pollution events on soil quality, as reflected by the values of a variety of soil microbial parameters with potential as bioindicators of soil functioning. Specifically, parameters of microbial activity (potentially mineralizable nitrogen, β-glucosidase and acid phosphatase activity) and biomass (fungal and bacterial gene abundance by RT-qPCR) were determined, in the artificially metal-polluted soil samples, at regular intervals over a period of 26 weeks. Similarly, we studied the evolution over time of CaCl2-extractable metal fractions, in order to estimate metal bioavailability in soil. Different metals showed different values of bioavailability and relative bioavailability ([metal]bio/[metal]tot) in soil throughout the experiment, under both repeated single-metal and multi-metal pollution events. Both repeated Zn-pollution and multi-metal pollution events led to a significant reduction in the values of acid phosphatase activity, and bacterial and fungal gene abundance, reflecting the negative impact of these repeated events on soil microbial activity and biomass, and, hence, soil quality.

  3. A review of soil heavy metal pollution from mines in China: pollution and health risk assessment.

    PubMed

    Li, Zhiyuan; Ma, Zongwei; van der Kuijp, Tsering Jan; Yuan, Zengwei; Huang, Lei

    2014-01-15

    Heavy metal pollution has pervaded many parts of the world, especially developing countries such as China. This review summarizes available data in the literature (2005-2012) on heavy metal polluted soils originating from mining areas in China. Based on these obtained data, this paper then evaluates the soil pollution levels of these collected mines and quantifies the risks these pollutants pose to human health. To assess these potential threat levels, the geoaccumulation index was applied, along with the US Environmental Protection Agency (USEPA) recommended method for health risk assessment. The results demonstrate not only the severity of heavy metal pollution from the examined mines, but also the high carcinogenic and non-carcinogenic risks that soil heavy metal pollution poses to the public, especially to children and those living in the vicinity of heavily polluted mining areas. In order to provide key management targets for relevant government agencies, based on the results of the pollution and health risk assessments, Cd, Pb, Cu, Zn, Hg, As, and Ni are selected as the priority control heavy metals; tungsten, manganese, lead-zinc, and antimony mines are selected as the priority control mine categories; and southern provinces and Liaoning province are selected as the priority control provinces. This review, therefore, provides a comprehensive assessment of soil heavy metal pollution derived from mines in China, while identifying policy recommendations for pollution mitigation and environmental management of these mines.

  4. Implications of soil pollution with heavy metals for public health

    NASA Astrophysics Data System (ADS)

    Juozulynas, Algirdas; Jurgelėnas, Antanas; Butkienė, Birutė; Greičiūtė, Kristina; Savičiūtė, Rasa

    2008-01-01

    Soil of military grounds is often polluted with heavy metals. Their concentrations may be dosens of times higher in polluted regions. The affected soils are permeable, so the pollutions can get into water and spread to the environment. Into human and animal organisms they can get with food and water. Heavy metals are very dangerous for people's health, and we must know their accumulation places, intensity of scatter and integral risk for health. The purpose of this work was to establish links between zones polluted with heavy metals and morbidity caused by pollution with heavy metals. The morbidity caused by heavy metals (Pb, Cu, Zn, Ca and other) in the polluted regions is 1.4-1.5 times higher for adults and teenagers and 1.5-3.9 times higher for children aged under 14 years than the mean morbidity of the same diseases in Lithuania. Hypothetically, it is possible to prognosticate that this problem will grow in future because the ratio of the newly registered and the existing cases of morbidity for children aged under 14 years is 1.3-1.5 times higher than for adults.

  5. Microbial removal of toxic metals from a heavily polluted soil

    NASA Astrophysics Data System (ADS)

    Nicolova, Marina; Spasova, Irena; Georgiev, Plamen; Groudev, Stoyan

    2015-04-01

    Samples of a leached cinnamonic forest soil heavily polluted with uranium and some toxic heavy metals (mainly copper, zinc and cadmium) were subjected to cleaning by means of bioleaching with acidophilic chemolithotrophic bacteria. The treatment was carried out in a green house in which several plots containing 150 kg of soil each were constructed. The effect of some essential environmental factors such as pH, humidity, temperature and contents of nutrients on the cleaning process was studied. It was found that under optimal conditions the content of pollutants were decreased below the relevant permissible levels within a period of 170 days. The soil cleaned in this way was characterized by a much higher production of biomass of different plants (alfalfa, clover, red fescue, vetch) than the untreated polluted soil.

  6. Magnetic properties of alluvial soils polluted with heavy metals

    NASA Astrophysics Data System (ADS)

    Dlouha, S.; Petrovsky, E.; Boruvka, L.; Kapicka, A.; Grison, H.

    2012-04-01

    Magnetic properties of soils, reflecting mineralogy, concentration and grain-size distribution of Fe-oxides, proved to be useful tool in assessing the soil properties in terms of various environmental conditions. Measurement of soil magnetic properties presents a convenient method to investigate the natural environmental changes in soils as well as the anthropogenic pollution of soils with several risk elements. The effect of fluvial pollution with Cd, Cu, Pb and Zn on magnetic soil properties was studied on highly contaminated alluvial soils from the mining/smelting district (Příbram; CZ) using a combination of magnetic and geochemical methods. The basic soil characteristics, the content of heavy metals, oxalate, and dithionite extractable iron were determined in selected soil samples. Soil profiles were sampled using HUMAX soil corer and the magnetic susceptibility was measured in situ, further detailed magnetic analyses of selected distinct layers were carried out. Two types of variations of magnetic properties in soil profiles were observed corresponding to indentified soil types (Fluvisols, and Gleyic Fluvisols). Significantly higher values of topsoil magnetic susceptibility compared to underlying soil are accompanied with high concentration of heavy metals. Sequential extraction analysis proved the binding of Pb, Zn and Cd in Fe and Mn oxides. Concentration and size-dependent parameters (anhysteretic and isothermal magnetization) were measured on bulk samples in terms of assessing the origin of magnetic components. The results enabled to distinguish clearly topsoil layers enhanced with heavy metals from subsoil samples. The dominance of particles with pseudo-single domain behavior in topsoil and paramagnetic/antiferromagnetic contribution in subsoil were observed. These measurements were verified with room temperature hysteresis measurement carried out on bulk samples and magnetic extracts. Thermomagnetic analysis of magnetic susceptibility measured on

  7. Representing soil pollution by heavy metals using continuous limitation scores

    NASA Astrophysics Data System (ADS)

    Romić, Marija; Hengl, Tomislav; Romić, Davor; Husnjak, Stjepan

    2007-10-01

    The paper suggests a methodology to represent overall soil pollution in a sampled area using continuous limitation scores. The interpolated heavy metal concentrations are first transformed to limitation scores using the exponential transfer function determined by using two threshold values: permissible concentration (0 limitation points) and seriously polluted soil (4 limitation points). The limitation scores can then be summed to produce the map of cumulative limitation scores and visualize the most critically polluted areas. The methodology was illustrated using the 784 soil samples analyzed for Cd, Cr, Cu, Ni, Pb and Zn in the central region of Croatia. The samples were taken at 1×1 and 2×2 km grids and at fixed depths of 20 cm. Heavy metal concentrations in soil were determined by ICP-OES after microwave assisted aqua regia digestion. The sampled concentrations were interpolated using block regression-kriging with geology and land cover maps, terrain parameters and industrialization parameters as auxiliary predictors. The results showed that the best auxiliary predictors are geological map, ground water depth, NDVI and slope map and distance to urban areas. The spatial prediction was satisfactory for Cd, Ni, Pb and Zn, and somewhat less satisfactory for Cu and Cr. The final map of cumulative limitation scores showed that 33.5% of the total area is suitable for organic agriculture and 7.2% of the total area is seriously polluted by one or more heavy metals. This procedure can be used to assess suitability of soils for agricultural production and as a basis for possible legal commitments to maintain the soil quality.

  8. Heavy Metal Pollution in Urban Soils of Sopron

    NASA Astrophysics Data System (ADS)

    Horváth, Adrienn; Bidló, András

    2014-05-01

    Keywords: anthropogenic effects, land use types, heavy metal content, polluted urban soils, GIS methods Our aim was to identify the main feedback effects between the town and its environment. In the course of our investigation we have analysed the heavy metal contents of urban soil in Sopron town in Hungary. We collected 208 samples on 104 points from 0 to 10 and from 10 to 20 cm depth in a standard network and also at industrial territories. We have been represented our results in a GIS system. We analysed the soils with Lakanen-Erviö method and we measured 24 elements but we have been focused on Co, Cd, Cu, Pb and Zn. Using the data we observed the relationship between these elements in both layers. In the downtown the acidity of soils were alkaline by the greatest number of point, therefore the pollution of these soils is not leach in deeper layers yet. The lead was very high (> 100 mg Pb/kg) in both layers on the whole area of the town. Urban soils with high copper content (among 611 mg and 1221 mg Cu/kg) have been collected from garden and viticulture areas by us. Cadmium contents were the highest (6.14 mg Cd/kg) in traffic zones, where these values could be more than 3 mg Cd/kg according to the literature. The cobalt and zinc results were under the limits. According to our measurements we founded the highest average values in the soils of parks. This could be contamination of the lead from traffic, which bind in the soil of urban green spaces. Now we could continue our examinations with the investigations of these polluted green areas, which can effect to human health.

  9. Using biochar for remediation of soils contaminated with heavy metals and organic pollutants.

    PubMed

    Zhang, Xiaokai; Wang, Hailong; He, Lizhi; Lu, Kouping; Sarmah, Ajit; Li, Jianwu; Bolan, Nanthi S; Pei, Jianchuan; Huang, Huagang

    2013-12-01

    Soil contamination with heavy metals and organic pollutants has increasingly become a serious global environmental issue in recent years. Considerable efforts have been made to remediate contaminated soils. Biochar has a large surface area, and high capacity to adsorb heavy metals and organic pollutants. Biochar can potentially be used to reduce the bioavailability and leachability of heavy metals and organic pollutants in soils through adsorption and other physicochemical reactions. Biochar is typically an alkaline material which can increase soil pH and contribute to stabilization of heavy metals. Application of biochar for remediation of contaminated soils may provide a new solution to the soil pollution problem. This paper provides an overview on the impact of biochar on the environmental fate and mobility of heavy metals and organic pollutants in contaminated soils and its implication for remediation of contaminated soils. Further research directions are identified to ensure a safe and sustainable use of biochar as a soil amendment for remediation of contaminated soils.

  10. The Chemophytostabilisation Process of Heavy Metal Polluted Soil.

    PubMed

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  11. The Chemophytostabilisation Process of Heavy Metal Polluted Soil

    PubMed Central

    Grobelak, Anna; Napora, Anna

    2015-01-01

    Industrial areas are characterised by soil degradation processes that are related primarily to the deposition of heavy metals. Areas contaminated with metals are a serious source of risk due to secondary pollutant emissions and metal leaching and migration in the soil profile and into the groundwater. Consequently, the optimal solution for these areas is to apply methods of remediation that create conditions for the restoration of plant cover and ensure the protection of groundwater against pollution. Remediation activities that are applied to large-scale areas contaminated with heavy metals should mainly focus on decreasing the degree of metal mobility in the soil profile and metal bioavailability to levels that are not phytotoxic. Chemophytostabilisation is a process in which soil amendments and plants are used to immobilise metals. The main objective of this research was to investigate the effects of different doses of organic amendments (after aerobic sewage sludge digestion in the food industry) and inorganic amendments (lime, superphosphate, and potassium phosphate) on changes in the metals fractions in soils contaminated with Cd, Pb and Zn during phytostabilisation. In this study, the contaminated soil was amended with sewage sludge and inorganic amendments and seeded with grass (tall fescue) to increase the degree of immobilisation of the studied metals. The contaminated soil was collected from the area surrounding a zinc smelter in the Silesia region of Poland (pH 5.5, Cd 12 mg kg-1, Pb 1100 mg kg-1, Zn 700 mg kg-1). A plant growth experiment was conducted in a growth chamber for 5 months. Before and after plant growth, soil subsamples were subjected to chemical and physical analyses. To determine the fractions of the elements, a sequential extraction method was used according to Zeien and Brümmer. Research confirmed that the most important impacts on the Zn, Cd and Pb fractions included the combined application of sewage sludge from the food industry and

  12. Distribution of Heavy Metal Pollution in Surface Soil Samples in China: A Graphical Review.

    PubMed

    Duan, Qiannan; Lee, Jianchao; Liu, Yansong; Chen, Han; Hu, Huanyu

    2016-09-01

    Soil pollution in China is one of most wide and severe in the world. Although environmental researchers are well aware of the acuteness of soil pollution in China, a precise and comprehensive mapping system of soil pollution has never been released. By compiling, integrating and processing nearly a decade of soil pollution data, we have created cornerstone maps that illustrate the distribution and concentration of cadmium, lead, zinc, arsenic, copper and chromium in surficial soil across the nation. These summarized maps and the integrated data provide precise geographic coordinates and heavy metal concentrations; they are also the first ones to provide such thorough and comprehensive details about heavy metal soil pollution in China. In this study, we focus on some of the most polluted areas to illustrate the severity of this pressing environmental problem and demonstrate that most developed and populous areas have been subjected to heavy metal pollution.

  13. Heavy Metals Phytoextraction from the Polluted Soils of Zakamensk (Russia)

    NASA Astrophysics Data System (ADS)

    Ubugunov, V.; Dorzhonova, V.; Ubugunov, L.

    2012-04-01

    the landscape - Modonkul river flood plain, were transferred by its waters and redeposited in an estuary, forming a cone of carrying out with capacity of up to 2 meters or more. The presence of large number of private houses with garden plots, in which the population grew potatoes, vegetables and fruit-berry trees cultures for food purposes, is the feature of many Siberian towns, including Zakamensk. The biogeochemical assessment of the town territory current status has shown a high level of contamination of soils and plants by heavy metals that poses a threat to the health of townsmen. In this connection search of effective ways of clearing up of the polluted soils by phytoextraction and selection of plants, capable to extract high quantities of heavy metals from soil in concrete ecological conditions, is actual. For this purpose we had been made experiments with 8 species of plants. Modeling of various conditions of pollution carried out by addition of following quantities of TS (%): 0; 25; 33; 50; 67; 75 and 100. In the report results of the experiments and the recommendations on using of plants as extractors on soils polluted by technogenic sand will be presented.

  14. Soil microbial communities as suitable bioindicators of trace metal pollution in agricultural volcanic soils

    NASA Astrophysics Data System (ADS)

    Parelho, Carolina; dos Santos Rodrigues, Armindo; do Carmo Barreto, Maria; Gonçalo Ferreira, Nuno; Garcia, Patrícia

    2015-04-01

    Summary: The biological, chemical and physical properties of soil confer unique characteristics that enhance or influence its overall biodiversity. The adaptive character of soil microbial communities (SMCs) to metal pollution allows discriminating soil health, since changes in microbial populations and activities may function as excellent indicators of soil pollutants. Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals (TM). In our previous works, we identified priority TM affecting agricultural Andosols under different agricultural land uses. Within this particular context, the objectives of this study were to (i) assess the effect of soil TM pollution in different agricultural systems (conventional, traditional and organic) on the following soil properties: microbial biomass carbon, basal soil respiration, metabolic quotient, enzymatic activities (β-glucosidase, acid phosphatase and dehydrogenase) and RNA to DNA ratio; and (ii) evaluate the impact of TM in the soil ecosystem using the integrated biomarker response (IBR) based on a set of biochemical responses of SMCs. This multi-biomarker approach will support the development of the "Trace Metal Footprint" for different agricultural land uses in volcanic soils. Methods: The study was conducted in S. Miguel Island (Azores, Portugal). Microbial biomass carbon was measured by chloroform-fumigation-incubation-assay (Vance et al., 1987). Basal respiration was determined by the Jenkinson & Powlson (1976) technique. Metabolic quotient was calculated as the ratio of basal respiration to microbial biomass C (Sparkling & West, 1988). The enzymatic activities of β-glucosidase and acid phosphatase were determined by the Dick et al. (1996) method and dehydrogenase activity by the Rossel et al. (1997) method. The RNA and DNA were co-extracted from the same

  15. [Environmental geochemical baseline of heavy metals in soils of the Ili river basin and pollution evaluation].

    PubMed

    Zhao, Xin-Ru; Nasier, Telajin; Cheng, Yong-Yi; Zhan, Jiang-Yu; Yang, Jian-Hong

    2014-06-01

    Environmental geochemical baseline models of Cu, Zn, Pb, As, Hg were established by standardized method in the ehernozem, chestnut soil, sierozem and saline soil from the Ili river valley region. The theoretical baseline values were calculated. Baseline factor pollution index evaluation method, environmental background value evaluation method and heavy metal cleanliness evaluation method were used to compare soil pollution degrees. The baseline factor pollution index evaluation showed that As pollution was the most prominent among the four typical types of soils within the river basin, with 7.14%, 9.76%, 7.50% of sampling points in chernozem, chestnut soil and sierozem reached the heavy pollution, respectively. 7.32% of sampling points of chestnut soil reached the permitted heavy metal Pb pollution index in the chestnut soil. The variation extent of As and Pb was the largest, indicating large human disturbance. Environmental background value evaluation showed that As was the main pollution element, followed by Cu, Zn and Pb. Heavy metal cleanliness evaluation showed that Cu, Zn and Pb were better than cleanliness level 2 and Hg was the of cleanliness level 1 in all four types of soils. As showed moderate pollution in sierozem, and it was of cleanliness level 2 or better in chernozem, chestnut soil and saline-alkali soil. Comparing the three evaluation systems, the baseline factor pollution index evaluation more comprehensively reflected the geochemical migration characteristics of elements and the soil formation processes, and the pollution assessment could be specific to the sampling points. The environmental background value evaluation neglected the natural migration of heavy metals and the deposition process in the soil since it was established on the regional background values. The main purpose of the heavy metal cleanliness evaluation was to evaluate the safety degree of soil environment.

  16. Comparison of phytoremediation potential capacity of Spartina densiflora and Sarcocornia perennis for metal polluted soils.

    PubMed

    Idaszkin, Yanina L; Lancelotti, Julio L; Pollicelli, María P; Marcovecchio, Jorge E; Bouza, Pablo J

    2017-03-10

    Phytoremediation is considered the most appropriate technique to restore metal polluted soil, given its low cost, high efficiency and low environmental impact. Spartina densiflora and Sarcocornia perennis are perennial halophytes growing under similar environmental conditions in San Antonio marsh (Patagonia Argentina), therefore it is interesting to compare their phytoremediation potential capacity. To this end, we compared concentrations of Pb, Zn, Cu, and Fe in soils and in below- and above-ground structures of S. perennis and S. densiflora. It was concluded that both species are able to inhabit Pb, Zn, and Cu polluted soils. Although Sarcocornia translocated more metals to the aerial structures than Spartina, both species translocated only when they were growing in soils with low metal concentrations. It seems that the plants translocate only a certain proportion of the metal contained in the soil. These results suggest that both species could be considered candidates to phytostabilize these metals in polluted soils.

  17. Progress in the remediation of hazardous heavy metal-polluted soils by natural zeolite.

    PubMed

    Shi, Wei-yu; Shao, Hong-bo; Li, Hua; Shao, Ming-an; Du, Sheng

    2009-10-15

    Hazardous heavy metal pollution of soils is an increasingly urgent problem all over the world. The zeolite as a natural amendment has been studied extensively for the remediation of hazardous heavy metal-polluted soils with recycling. But its theory and application dose are not fully clear. This paper reviews the related aspects of theory and application progress for the remediation of hazardous heavy metal-polluted soils by natural zeolite, with special emphasis on single/co-remediation. Based on the comments on hazardous heavy metal behavior characteristics in leaching and rhizosphere and remediation with zeolite for heavy metal-polluted soils, it indicated that the research of rhizosphere should be strengthened. Theory of remediation with natural zeolite could make breakthroughs due to the investigation on synthetic zeolite. Co-remediation with natural zeolite may be applied and studied with more prospect and sustainable recycling.

  18. Ecological risk assessment of soil pollution with heavy metals

    SciTech Connect

    Kuperman, R.G.

    1995-12-31

    The structure and function of soil ecosystems in an area with a wide range of concentrations of heavy metals were studied in portions of the US Army`s Aberdeen Proving Ground, Maryland. The objective of this project was to develop and test the efficacy of a comprehensive methodology for assessing ecological impacts of soil contamination. A hierarchical approach which integrated biotic parameters and ecosystem processes was used to give insight into the mechanisms that lead to alterations in the structure and function of soil ecosystems in contaminated areas. This approach involved (1) a thorough survey of the soil biota to establish community structure, (2) laboratory and field tests on critical ecosystem processes, (3) toxicity trials, and (4) the use of spatial analyses to provide input in the decision making process. Soil invertebrate communities showed significant reductions in the abundance of several taxonomic and trophic groups in contaminated areas. The numbers of soil microorganisms were lower in areas of soil contamination. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area. The proposed methodology appears to offer an efficient and potentially cost saving tool for remedial investigations at contaminated sites.

  19. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    NASA Astrophysics Data System (ADS)

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  20. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils

    PubMed Central

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-01

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils. PMID:26739424

  1. Abundance, composition and activity of denitrifier communities in metal polluted paddy soils.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Zhou, Huimin; Li, Lianqing; Zheng, Jinwei; Zhang, Xuhui; Zheng, Jufeng; Pan, Genxing

    2016-01-07

    Denitrification is one of the most important soil microbial processes leading to the production of nitrous oxide (N2O). The potential changes with metal pollution in soil microbial community for N2O production and reduction are not well addressed. In this study, topsoil samples were collected both from polluted and non-polluted rice paddy fields and denitrifier communities were characterized with molecular fingerprinting procedures. All the retrieved nirK sequences could be grouped into neither α- nor β- proteobacteria, while most of the nosZ sequences were affiliated with α-proteobacteria. The abundances of the nirK and nosZ genes were reduced significantly in the two polluted soils. Thus, metal pollution markedly affected composition of both nirK and nosZ denitrifiers. While the total denitrifying activity and N2O production rate were both reduced under heavy metal pollution of the two sites, the N2O reduction rate showed no significant change. These findings suggest that N2O production activity could be sensitive to heavy metal pollution, which could potentially lead to a decrease in N2O emission in polluted paddies. Therefore, metal pollution could have potential impacts on soil N transformation and thus on N2O emission from paddy soils.

  2. Soil fertility and plant diversity enhance microbial performance in metal-polluted soils.

    PubMed

    Stefanowicz, Anna M; Kapusta, Paweł; Szarek-Łukaszewska, Grażyna; Grodzińska, Krystyna; Niklińska, Maria; Vogt, Rolf D

    2012-11-15

    This study examined the effects of soil physicochemical properties (including heavy metal pollution) and vegetation parameters on soil basal respiration, microbial biomass, and the activity and functional richness of culturable soil bacteria and fungi. In a zinc and lead mining area (S Poland), 49 sites were selected to represent all common plant communities and comprise the area's diverse soil types. Numerous variables describing habitat properties were reduced by PCA to 7 independent factors, mainly representing subsoil type (metal-rich mining waste vs. sand), soil fertility (exchangeable Ca, Mg and K, total C and N, organic C), plant species richness, phosphorus content, water-soluble heavy metals (Zn, Cd and Pb), clay content and plant functional diversity (based on graminoids, legumes and non-leguminous forbs). Multiple regression analysis including these factors explained much of the variation in most microbial parameters; in the case of microbial respiration and biomass, it was 86% and 71%, respectively. The activity of soil microbes was positively affected mainly by soil fertility and, apparently, by the presence of mining waste in the subsoil. The mining waste contained vast amounts of trace metals (total Zn, Cd and Pb), but it promoted microbial performance due to its inherently high content of macronutrients (total Ca, Mg, K and C). Plant species richness had a relatively strong positive effect on all microbial parameters, except for the fungal component. In contrast, plant functional diversity was practically negligible in its effect on microbes. Other explanatory variables had only a minor positive effect (clay content) or no significant influence (phosphorus content) on microbial communities. The main conclusion from this study is that high nutrient availability and plant species richness positively affected the soil microbes and that this apparently counteracted the toxic effects of metal contamination.

  3. Pollution evaluation of heavy metals in soil near smelting area by index of geoaccumulation (Igeo)

    NASA Astrophysics Data System (ADS)

    Huang, S. H.; Yang, Y.; Yuan, C. Y.; Li, Q.; Ouyang, K.; Wang, B.; Wang, Z. X.

    2017-01-01

    In order to investigate the heavy metal pollution conditions of soil of smelting area in Zijiang of Chenzhou, Hunan province, 42 samples were studied. The concentrations of heavy metals As, Pb, Cd, Zn and Cu in the soil were determined by using atomic absorption spectrometry(AAS) and atomic fluorescence spectrometry(AFS). Then the potential pollution risks of heavy metal in the soil were evaluated by method of geological acumination index (Igeo). The results indicated that the average concentrations of As, Pb, Cd, Zn and Cu were 187.79, 2074.52, 15.72, 2178.89, 39.69 mg/kg respectively. The geological evaluation of the cumulative index results showed that the contamination degree of 5 heavy metals follow the sequence of Cd> Zn >Pb > As >Cu. The results show that Cd reached extremely pollution degree, Zn reached strong pollution-extremely pollution levels, the pollution of Pb in the soil is classified as strong pollution degree, Cu and As of no pollution according to the results of Igeo based on the background value of heavy metals in the soil of Hunan Province.

  4. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution.

    PubMed

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution.

  5. Application of portable XRF and VNIR sensors for rapid assessment of soil heavy metal pollution

    PubMed Central

    Hu, Bifeng; Chen, Songchao; Hu, Jie; Xia, Fang; Xu, Junfeng; Li, Yan; Shi, Zhou

    2017-01-01

    Rapid heavy metal soil surveys at large scale with high sampling density could not be conducted with traditional laboratory physical and chemical analyses because of the high cost, low efficiency and heavy workload involved. This study explored a rapid approach to assess heavy metals contamination in 301 farmland soils from Fuyang in Zhejiang Province, in the southern Yangtze River Delta, China, using portable proximal soil sensors. Portable X-ray fluorescence spectroscopy (PXRF) was used to determine soil heavy metals total concentrations while soil pH was predicted by portable visible-near infrared spectroscopy (PVNIR). Zn, Cu and Pb were successfully predicted by PXRF (R2 >0.90 and RPD >2.50) while As and Ni were predicted with less accuracy (R2 <0.75 and RPD <1.40). The pH values were well predicted by PVNIR. Classification of heavy metals contamination grades in farmland soils was conducted based on previous results; the Kappa coefficient was 0.87, which showed that the combination of PXRF and PVNIR was an effective and rapid method to determine the degree of pollution with soil heavy metals. This study provides a new approach to assess soil heavy metals pollution; this method will facilitate large-scale surveys of soil heavy metal pollution. PMID:28234944

  6. Soil quality changes in response to their pollution by heavy metals, Georgia.

    PubMed

    Matchavariani, Lia; Kalandadze, Besik; Lagidze, Lamzira; Gokhelashvili, Nino; Sulkhanishvili, Nino; Paichadze, Nino; Dvalashvili, Giorgi

    2015-01-01

    The present study deals with the composition, migration and accumulation of heavy metals in irrigated soils, plants and partially natural waters; and also, establishing the possible sources of pollution and their impact on environmental situation. The content of toxic elements in the irrigated soils adjacent to ore mining and processing enterprise were studied. Content of toxic elements in the irrigated soils adjacent to ore mining, showed that more than half of territory was seriously polluted by copper and zinc. Some part of the area were considered catastrophically polluted. Expressed technogenesis taking place influenced irrigation. Heavy metals like copper, zinc and manganese negative by effected the properties of soil, thus composition and soil-forming processes taking place in the soil. It was especially well represented in the deterioration of hydro-physical potential of the soil. Irrigation of agricultural land plots by water, polluted with heavy metals changed the pH. Balanced correlation among solid, liquid and gas phases was disrupted. In highly polluted soil, the cementing processes took place that sharply increased the bulk density of the soil, deteriorated the porosity of soil and reduced water permeability critically.

  7. Impact of Soil Heavy Metal Pollution on Food Safety in China

    PubMed Central

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China. PMID:26252956

  8. Impact of Soil Heavy Metal Pollution on Food Safety in China.

    PubMed

    Zhang, Xiuying; Zhong, Taiyang; Liu, Lei; Ouyang, Xiaoying

    2015-01-01

    Food safety is a major concern for the Chinese public. This study collected 465 published papers on heavy metal pollution rates (the ratio of the samples exceeding the Grade II limits for Chinese soils, the Soil Environmental Quality Standard-1995) in farmland soil throughout China. The results showed that Cd had the highest pollution rate of 7.75%, followed by Hg, Cu, Ni and Zn, Pb and Cr had the lowest pollution rates at lower than 1%. The total pollution rate in Chinese farmland soil was 10.18%, mainly from Cd, Hg, Cu, and Ni. The human activities of mining and smelting, industry, irrigation by sewage, urban development, and fertilizer application released certain amounts of heavy metals into soil, which resulted in the farmland soil being polluted. Considering the spatial variations of grain production, about 13.86% of grain production was affected due to the heavy metal pollution in farmland soil. These results many provide valuable information for agricultural soil management and protection in China.

  9. Efficiently Evaluating Heavy Metal Urban Soil Pollution Using an Improved Entropy-Method-Based Topsis Model.

    PubMed

    Liu, Jie; Liu, Chun; Han, Wei

    2016-10-01

    Urban soil pollution is evaluated utilizing an efficient and simple algorithmic model referred to as the entropy method-based Topsis (EMBT) model. The model focuses on pollution source position to enhance the ability to analyze sources of pollution accurately. Initial application of EMBT to urban soil pollution analysis is actually implied. The pollution degree of sampling point can be efficiently calculated by the model with the pollution degree coefficient, which is efficiently attained by first utilizing the Topsis method to determine evaluation value and then by dividing the evaluation value of the sample point by background value. The Kriging interpolation method combines coordinates of sampling points with the corresponding coefficients and facilitates the formation of heavy metal distribution profile. A case study is completed with modeling results in accordance with actual heavy metal pollution, proving accuracy and practicality of the EMBT model.

  10. Interaction of Soil Heavy Metal Pollution with Industrialisation and the Landscape Pattern in Taiyuan City, China

    PubMed Central

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning. PMID:25251460

  11. Interaction of soil heavy metal pollution with industrialisation and the landscape pattern in Taiyuan city, China.

    PubMed

    Liu, Yong; Su, Chao; Zhang, Hong; Li, Xiaoting; Pei, Jingfei

    2014-01-01

    Many studies indicated that industrialization and urbanization caused serious soil heavy metal pollution from industrialized age. However, fewer previous studies have conducted a combined analysis of the landscape pattern, urbanization, industrialization, and heavy metal pollution. This paper was aimed at exploring the relationships of heavy metals in the soil (Pb, Cu, Ni, As, Cd, Cr, Hg, and Zn) with landscape pattern, industrialisation, urbanisation in Taiyuan city using multivariate analysis. The multivariate analysis included correlation analysis, analysis of variance (ANOVA), independent-sample T test, and principal component analysis (PCA). Geographic information system (GIS) was also applied to determine the spatial distribution of the heavy metals. The spatial distribution maps showed that the heavy metal pollution of the soil was more serious in the centre of the study area. The results of the multivariate analysis indicated that the correlations among heavy metals were significant, and industrialisation could significantly affect the concentrations of some heavy metals. Landscape diversity showed a significant negative correlation with the heavy metal concentrations. The PCA showed that a two-factor model for heavy metal pollution, industrialisation, and the landscape pattern could effectively demonstrate the relationships between these variables. The model explained 86.71% of the total variance of the data. Moreover, the first factor was mainly loaded with the comprehensive pollution index (P), and the second factor was primarily loaded with landscape diversity and dominance (H and D). An ordination of 80 samples could show the pollution pattern of all the samples. The results revealed that local industrialisation caused heavy metal pollution of the soil, but such pollution could respond negatively to the landscape pattern. The results of the study could provide a basis for agricultural, suburban, and urban planning.

  12. Microbial community composition and functions are resilient to metal pollution along two forest soil gradients.

    PubMed

    Azarbad, Hamed; Niklińska, Maria; Laskowski, Ryszard; van Straalen, Nico M; van Gestel, Cornelis A M; Zhou, Jizhong; He, Zhili; Wen, Chongqing; Röling, Wilfred F M

    2015-01-01

    Despite the global importance of forests, it is virtually unknown how their soil microbial communities adapt at the phylogenetic and functional level to long-term metal pollution. Studying 12 sites located along two distinct gradients of metal pollution in Southern Poland revealed that functional potential and diversity (assessed using GeoChip 4.2) were highly similar across the gradients despite drastically diverging metal contamination levels. Metal pollution level did, however, significantly impact bacterial community structure (as shown by MiSeq Illumina sequencing of 16S rRNA genes), but not bacterial taxon richness and community composition. Metal pollution caused changes in the relative abundance of specific bacterial taxa, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Planctomycetes and Proteobacteria. Also, a group of metal-resistance genes showed significant correlations with metal concentrations in soil. Our study showed that microbial communities are resilient to metal pollution; despite differences in community structure, no clear impact of metal pollution levels on overall functional diversity was observed. While screens of phylogenetic marker genes, such as 16S rRNA genes, provide only limited insight into resilience mechanisms, analysis of specific functional genes, e.g. involved in metal resistance, appears to be a more promising strategy.

  13. Residual impact of aged nZVI on heavy metal-polluted soils.

    PubMed

    Fajardo, C; Gil-Díaz, M; Costa, G; Alonso, J; Guerrero, A M; Nande, M; Lobo, M C; Martín, M

    2015-12-01

    In the present study, the residual toxicity and impact of aged nZVI after a leaching experiment on heavy metal (Pb, Zn) polluted soils was evaluated. No negative effects on physico-chemical soil properties were observed after aged nZVI exposure. The application of nZVI to soil produced a significant increase in Fe availability. The impact on soil biodiversity was assessed by fluorescence in situ hybridization (FISH). A significant effect of nZVI application on microbial structure has been recorded in the Pb-polluted soil nZVI-treated. Soil bacteria molecular response, evaluated by RT-qPCR using exposure biomarkers (pykA, katB) showed a decrease in the cellular activity (pykA) due to enhanced intracellular oxidative stress (katB). Moreover, ecotoxicological standardised test on Caenorhabditis elegans (C. elegans) showed a decrease in the growth endpoint in the Pb-polluted soil, and particularly in the nZVI-treated. A different pattern has been observed in Zn-polluted soils: no changes in soil biodiversity, an increase in biological activity and a significant decrease of Zn toxicity on C. elegans growth were observed after aged nZVI exposure. The results reported indicated that the pollutant and its nZVI interaction should be considered to design soil nanoremediation strategies to immobilise heavy metals.

  14. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter.

    PubMed

    Wang, YuanPeng; Shi, JiYan; Wang, Hui; Lin, Qi; Chen, XinCai; Chen, YingXu

    2007-05-01

    The environmental risk of heavy metal pollution is pronounced in soils adjacent to large industrial complexes. It is important to investigate the functioning of soil microorganisms in ecosystems exposed to long-term contamination by heavy metals. We studied the potential effects of heavy metals on microbial biomass, activity, and community composition in soil near a copper smelter in China. The results showed that microbial biomass C was negatively affected by the elevated metal levels and was closely correlated with heavy metal stress. Enzyme activity was greatly depressed by conditions in the heavy metal-contaminated sites. Good correlation was observed between enzyme activity and the distance from the smelter. Elevated metal loadings resulted in changes in the activity of the soil microbe, as indicated by changes in their metabolic profiles from correlation analysis. Significant decrease of soil phosphatase activities was found in the soils 200 m away from the smelter. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis demonstrated that heavy metals pollution had a significant impact on bacterial and actinomycetic community structure. There were negative correlations between soil microbial biomass, phosphatase activity, and NH(4)NO(3) extractable heavy metals. The soil microorganism activity and community composition could be predicted significantly using the availability of Cu and Zn. By combining different monitoring approaches from different viewpoints, the set of methods applied in this study were sensitive to site differences and contributed to a better understanding of heavy metals effects on the structure, size and activity of microbial communities in soils. The data presented demonstrate the role of heavy metals pollution in understanding the heavy metal toxicity to soil microorganism near a copper smelter in China.

  15. Remediation of metal polluted hotspot areas through enhanced soil washing--evaluation of leaching methods.

    PubMed

    Fedje, Karin Karlfeldt; Yillin, Li; Strömvall, Ann-Margret

    2013-10-15

    Soil washing offers a permanent remediation alternative for metal polluted sites. In addition, the washed out metals can be recovered from the leachate and re-introduced into the social material cycle instead of landfilled. In this paper, soil, bark and bark-ash washing was tested on four different metal polluted soil and bark samples from hotspots at former industrial sites. Six different leaching agents; HCl, NH4Cl, lactic acid, EDDS and two acidic process waters from solid waste incineration, were tested, discussed and evaluated. For the soil washing processes, the final pH in the leachate strongly influences the metal leachability. The results show that a pH < 2 is needed to achieve a high leaching yield, while <50 w% of most metals were leached when the pH was higher than 2 or below 10. The acidic process waste waters were generally the most efficient at leaching metals from all the samples studied, and as much as 90-100 w% of the Cu was released from some samples. Initial experiments show that from one of these un-purified leachates, Cu metal (>99% purity) could be recovered. After a single leaching step, the metal contents of the soil residues still exceed the maximum limits according to the Swedish guidelines. An additional washing step is needed to reduce the contents of easy soluble metal compounds in the soil residues. The overall results from this study show that soil and bark-ash washing followed by metal recovery is a promising on-site permanent alternative to remediate metal polluted soils and to utilize non-used metal resources.

  16. Benefits of the Use of Sewage Sludge over EDTA to Remediate Soils Polluted with Heavy Metals.

    PubMed

    Hernández, Ana J; Gutiérrez-Ginés, María J; Pastor, Jesús

    2015-09-01

    Sewage sludges from urban wastewater treatment plants are often used to remediate degraded soils. However, the benefits of their use in metal-polluted soils remain unclear and need to be assessed in terms of factors besides soil fertility. This study examines the use of thermal-dried sewage sludge (TDS) as an amendment for heavy metal-polluted soil in terms of its effects on soil chemical properties, leachate composition, and the growth of native plant communities. To assess the response of the soil and its plant community to an increase in metal mobilization, the effects of TDS amendment were compared with those of the addition of a chelating agent (ethylenediaminetetraacetic acid [EDTA]). The experimental design was based on a real-case scenario in which soils from of an abandoned mine site were used in a greenhouse bioassay. Two doses of TDS and EDTA were applied to a soil containing high Pb, Zn, Cu, and Cd levels (4925, 5675, 404, and 25 mg kg, respectively). Soil pH was 6.4, and its organic matter content was 5.53%. The factors examined after soil amendment were soil fertility and heavy metal contents, leachate element losses, the plant community arising from the seed bank (plant cover, species richness and biodiversity, above/below ground biomass), and phytotoxic effects (chemical contents of abundant species). Thermal-dried sewage sludge emerged as a good phytostabilizer of Pb, Zn, Cu, and Cd given its capacity to reduce the plant uptake of metals and achieve rapid plant cover. This amendment also enhanced the retention of other elements in the plant root system and overall showed a better capacity to remediate soils polluted with several heavy metals. The addition of EDTA led to plant productivity losses and nutritional imbalances because it increased the mobility of several elements in the soil and its leachates.

  17. Toxicity and DNA damage in tobacco and potato plants growing on soil polluted with heavy metals.

    PubMed

    Gichner, Tomás; Patková, Zdenka; Száková, Jirina; Demnerová, Katerina

    2006-11-01

    Heterezygous tobacco (Nicotiana tabacum var. xanthi) and potato (Solanum tuberosum var. Korela) plants were cultivated on soil from the site Strimice which is highly polluted with heavy metals and on nonpolluted soil from the recreational site Jezerí, both in North Bohemia, Czech Republic. The total content, the content of bioavailable, easily mobile, and potentially mobile components of heavy metals (Cd, Cu, Pb, and Zn) in the tested soils, and the accumulation of these metals in the above-ground biomass and roots of tested plants were analyzed by flame atomic absorption spectrometry or flameless atomic absorption spectrometry. The average tobacco leaf area and potato plant height were significantly reduced in plants growing on the polluted soil. We have measured the DNA damage in nuclei of leaves of both plant species using the Comet assay. A small but significant increase in DNA damage was noted in plants growing on the polluted soil versus controls. As the tobacco and potato plants with increased DNA damage were severely injured (inhibited growth, distorted leaves), this increase may be associated with necrotic or apoptotic DNA fragmentation. No increase in the frequency of somatic mutation was detected in tobacco plants growing on the polluted soil. Thus, the polluted soil probably induced toxic but not genotoxic effects on tobacco and potato plants.

  18. Modern approaches to remediation of heavy metal polluted soils: A review

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.

    2014-07-01

    The main principles and approaches to remediation of in situ polluted soils aimed at the removal or control of heavy metals (washing, stabilization, phytoremediation, and natural restoration) are analyzed. The prospects of gentle methods of stabilization oriented at the reduction of the mobility and biological availability of heavy metals due to the processes of adsorption, ionic exchange, and precipitation are emphasized. The use of sorbents and the traditional application of liming and phosphates to fix metal pollutants in soils is considered. The necessary conditions for successful soil remediation are the assessment of its economic efficiency, the analysis of the ecological risks, and confirming the achievement of the planned purposes related to the content of available metals in the soils.

  19. [Distribution of Urban Soil Heavy Metal and Pollution Evaluation in Different Functional Zones of Yinchuan City].

    PubMed

    Wang, You-qi; Bai, Yi-ru; Wang, Jian-yu

    2016-02-15

    Surface soil samples (0-20 cm) from eight different functional areas in Yinchuan city were collected. There were 10 samples respectively in each functional area. The urban soil heavy metals (Zn, Cd, Pb, Mn, Cu and Cr) pollution characteristics and sources in eight different functional areas were evaluated by mathematical statistics and geostatistical analysis method. Meanwhile, the spatial distributions of heavy metals based on the geography information system (GIS) were plotted. The average values of total Zn, Cd, Pb, Mn, Cu and Cr were 74.87, 0.15, 29.02, 553.55, 40.37 and 80.79 mg x kg(-1), respectively. The results showed that the average value of soil heavy metals was higher than the soil background value of Ningxia, which indicated accumulation of the heavy metals in urban soil. The single factor pollution index of soil heavy metals was in the sequence of Cu > Pb > Zn > Cr > Cd > Mn. The average values of total Zn, Cd, Pb and Cr were higher in north east, south west and central city, while the average values of Mn and Cu were higher in north east and central city. There was moderate pollution in road and industrial area of Yinchuan, while the other functional areas showed slight pollution according to Nemoro synthesis index. The pollution degree of different functional areas was as follows: road > industrial area > business district > medical treatment area > residential area > public park > development zone > science and education area. The results indicated that the soil heavy metal pollution condition in Yinchuan City has been affected by human activities with the development of economy.

  20. Migration of radionuclides and heavy metals during the bioremediation of a polluted cinnamonic soil

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nikolova, Marina

    2013-04-01

    A fresh sample of cinnamonic soil polluted with radionuclides (U, Ra) and toxic heavy metals (Cu, Pb, Zn) was subjected to bioremediation in large-scale lysimeters by means of moulching. The aim of soil treatment was solubilization of pollutants located in horizon A, the migration of their dissolved complexes through the soil profile, and the pollutants` precipitation in the rich-in-clays below-lying horizons. The solubilization was due to the joint action of natural soil microflora and leach waters containing ammonium and phosphate ions, and in some variants-hydrocarbonate ions. The precipitation of pollutants was due to the enhanced activity of the indigenous microflora in which iron- and sulphate-reducing bacteria were the prevalent groups. After 24 months of treatment, each of the soil profiles in different lysimeters was divided into five sections reflecting the relevant soil layers (horizon A and the sub-horizons B1, B2, B3, and B4). The soil in these sections was subjected to a detailed chemical analysis and the obtained data were compared with the relevant data obtained before the start of soil bioremediation. It was found that considerable portions of the pollutants were removed from the horizon A and were migrated to the sub-horizons B3 and B4, mainly. In these sub-horizons the non-ferrous metals were precipitated mainly as the relevant sulphides, uranium was precipitated as uraninite (UO2), and radium-mainly as adsorbed ions and complexes.

  1. Current Status of Trace Metal Pollution in Soils Affected by Industrial Activities

    PubMed Central

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J. C.

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (Igeo), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution. PMID:22645468

  2. Current status of trace metal pollution in soils affected by industrial activities.

    PubMed

    Kabir, Ehsanul; Ray, Sharmila; Kim, Ki-Hyun; Yoon, Hye-On; Jeon, Eui-Chan; Kim, Yoon Shin; Cho, Yong-Sung; Yun, Seong-Taek; Brown, Richard J C

    2012-01-01

    There is a growing public concern over the potential accumulation of heavy metals in soil, owing to rapid industrial development. In an effort to describe the status of the pollutions of soil by industrial activities, relevant data sets reported by many studies were surveyed and reviewed. The results of our analysis indicate that soils were polluted most significantly by metals such as lead, zinc, copper, and cadmium. If the dominant species are evaluated by the highest mean concentration observed for different industry types, the results were grouped into Pb, Zn, Ni, Cu, Fe, and As in smelting and metal production industries, Mn and Cd in the textile industry, and Cr in the leather industry. In most cases, metal levels in the studied areas were found to exceed the common regulation guideline levels enforced by many countries. The geoaccumulation index (I(geo)), calculated to estimate the enrichment of metal concentrations in soil, showed that the level of metal pollution in most surveyed areas is significant, especially for Pb and Cd. It is thus important to keep systematic and continuous monitoring of heavy metals and their derivatives to manage and suppress such pollution.

  3. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China

    PubMed Central

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-01-01

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg−1, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety. PMID:26703698

  4. Heavy Metal Pollution in a Soil-Rice System in the Yangtze River Region of China.

    PubMed

    Liu, Zhouping; Zhang, Qiaofen; Han, Tiqian; Ding, Yanfei; Sun, Junwei; Wang, Feijuan; Zhu, Cheng

    2015-12-22

    Heavy metals are regarded as toxic trace elements in the environment. Heavy metal pollution in soil or rice grains is of increasing concern. In this study, 101 pairs of soil and rice samples were collected from the major rice-producing areas along the Yangtze River in China. The soil properties and heavy metal (i.e., Cd, Hg, Pb and Cr) concentrations in the soil and rice grains were analyzed to evaluate the heavy metal accumulation characteristics of the soil-rice systems. The results showed that the Cd, Hg, Pb and Cr concentrations in the soil ranged from 0.10 to 4.64, 0.01 to 1.46, 7.64 to 127.56, and 13.52 to 231.02 mg·kg(-)¹, respectively. Approximately 37%, 16%, 60% and 70% of the rice grain samples were polluted by Cd, Hg, Pb, and Cr, respectively. The degree of heavy metal contamination in the soil-rice systems exhibited a regional variation. The interactions among the heavy metal elements may also influence the migration and accumulation of heavy metals in soil or paddy rice. The accumulation of heavy metals in soil and rice grains is related to a certain extent to the pH and soil organic matter (SOM). This study provides useful information regarding heavy metal accumulation in soil to support the safe production of rice in China. The findings from this study also provide a robust scientific basis for risk assessments regarding ecological protection and food safety.

  5. Influence of the soil sealing on the geoaccumulation index of heavy metals and various pollution factors.

    PubMed

    Charzyński, Przemysław; Plak, Andrzej; Hanaka, Agnieszka

    2017-02-01

    Soil sealing belongs to the most destructive and damaging processes to the soil environment. Soil sealing interrupts or greatly restricts the exchange of matter and energy between the biosphere, hydrosphere, and atmosphere and the soil environment. The aim of this study was to compare the content of heavy metals (Cd, Cr, Cu, Hg, Fe, Ni, Pb, Zn) of Ekranic Technosols by applying indicators such as geoaccumulation index (I geo), enrichment factor (EF), and pollution load index (PLI), which allowed to determine quantitatively the impact of the soil sealing degree on the content of heavy metals and to distinguish natural from anthropogenic sources of origin of heavy metals. In general, 42 soils from different parts of the city of Toruń (NW Poland) were sampled and divided into three groups according to the degree of soil sealing: completely sealed with asphalt or concrete (A), semi-permeable (partially sealed with cobblestones and concrete paving slabs (B)), and reference (non-sealed) (C). The results indicate that the artificial sealing in urban areas slightly affects the content of heavy metals in soils. However, based on PLI, I geo, and EF, it was found that the sealing has influence on soil properties and unsealed soil is the most exposed to the accumulation of pollutants.

  6. Impact of Metal Pollution and Thlaspi caerulescens Growth on Soil Microbial Communities▿

    PubMed Central

    Epelde, Lur; Becerril, José M.; Kowalchuk, George A.; Deng, Ye; Zhou, Jizhong; Garbisu, Carlos

    2010-01-01

    Soil microorganisms drive critical functions in plant-soil systems. As such, various microbial properties have been proposed as indicators of soil functioning, making them potentially useful in evaluating the recovery of polluted soils via phytoremediation strategies. To evaluate microbial responses to metal phytoextraction using hyperaccumulators, a microcosm experiment was carried out to study the impacts of Zn and/or Cd pollution and Thlaspi caerulescens growth on key soil microbial properties: basal respiration; substrate-induced respiration (SIR); bacterial community structure as assessed by PCR-denaturing gradient gel electrophoresis (DGGE); community sizes of total bacteria, ammonia-oxidizing bacteria, and chitin-degrading bacteria as assessed by quantitative PCR (Q-PCR); and functional gene distributions as determined by functional gene arrays (GeoChip). T. caerulescens proved to be suitable for Zn and Cd phytoextraction: shoots accumulated up to 8,211 and 1,763 mg kg−1 (dry weight [DW]) of Zn and Cd, respectively. In general, Zn pollution led to decreased levels of basal respiration and ammonia-oxidizing bacteria, while T. caerulescens growth increased the values of substrate-induced respiration (SIR) and total bacteria. In soils polluted with 1,000 mg Zn kg−1 and 250 mg Cd kg−1 (DW), soil bacterial community profiles and the distribution of microbial functional genes were most affected by the presence of metals. Metal-polluted and planted soils had the highest percentage of unique genes detected via the GeoChip (35%). It was possible to track microbial responses to planting with T. caerulescens and to gain insight into the effects of metal pollution on soilborne microbial communities. PMID:20935131

  7. [Heavy metal pollution characteristics and ecological risk analysis for soil around Haining electroplating industrial park].

    PubMed

    Li, Jiong-Hui; Weng, Shan; Fang, Jing; Huang, Jia-Lei; Lu, Fang-Hua; Lu, Yu-Hao; Zhang, Hong-Ming

    2014-04-01

    The pollution status and potential ecological risks of heavy metal in soils around Haining electroplating industrial park were studied. Hakanson index approach was used to assess the ecological hazards of heavy metals in soils. Results showed that average concentrations of six heavy metals (Cu, Ni, Pb, Zn, Cd and Cr) in the soils were lower than the secondary criteria of environmental quality standard for soils, indicating limited harmful effects on the plants and the environment in general. Though the average soil concentrations were low, heavy metal concentrations in six sampling points located at the side of road still exceeded the criteria, with excessive rate of 13%. Statistic analysis showed that concentrations of Cu and Cd in roadside soils were significantly higher than those in non-roadside soils, indicating that the excessive heavy metal accumulations in the soil closely related with traffic transport. The average potential ecological hazard index of soils around Haining electroplating industrial park was 46.6, suggesting a slightly ecological harm. However, the potential ecological hazard index of soils with excessive heavy metals was 220-278, suggesting the medium ecological hazards. Cd was the most seriously ecological hazard factor.

  8. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review

    NASA Astrophysics Data System (ADS)

    Koptsik, G. N.

    2014-09-01

    The current state, problems, and prospects of phymoremediation of heavy metal polluted soils are analyzed. The main attention is paid to the phytoextraction and phytostabilization as the most widespread and alternative methods of soil phytoremediation. The efficiency of phymoremediation is related to the natural capability of plants for the accumulation and translocation of metals, their tolerance to a high content of metals, the plant biomass, and the amendments applied. The advantages and disadvantages of phytoremediation as compared to other methods of remediation of polluted soils in situ are considered. Examples of successful phytoextraction and phytomining for cleaning up of contaminated soils in Rasteburg (South Africa) and the phytostabilization of technogenic barrens nearby the copper-nickel plants in Sudbury (Ontario, Canada) and in the Kola Subarctic (Russia) are presented.

  9. Remediation of metal polluted mine soil with compost: co-composting versus incorporation.

    PubMed

    Tandy, Susan; Healey, John R; Nason, Mark A; Williamson, Julie C; Jones, Davey L

    2009-02-01

    Trace element contamination of post-industrial sites represents a major environmental problem and sustainable management options for remediating them are required. This study compared two strategies for immobilizing trace elements (Cu, Pb, Zn, and As) in mine spoil: (1) co-composting contaminated soil with organic wastes and (2) conventional incorporation of mature compost into contaminated soil. Sequential chemical extraction of the soil was performed to determine temporal changes in trace element fractionation and bioavailability during composting and plant growth. We show that mine spoil can be co-composted successfully and this action causes significant shifts in metal availability. However, co-composting did not lead to significant differences in metal partitioning in soil or in plant metal uptake compared with simply mixing mine spoil with mature compost. Both treatments promoted plant growth and reduced metal accumulation in plants. We conclude that co-composting provides little additional benefit for remediating trace-element-polluted soil compared with incorporation of compost.

  10. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G.

    2014-02-01

    Anthropogenic activities are resulting in an increase of the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment, having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the state of the art of the scientific research on phytoremediation and biochar application to remediate heavy-metal-contaminated soils. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both, and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.

  11. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates.

    PubMed

    Santorufo, Lucia; Van Gestel, Cornelis A M; Maisto, Giulia

    2012-07-01

    This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties.

  12. Pollution in the urban soils of Lianyungang, China, evaluated using a pollution index, mobility of heavy metals, and enzymatic activities.

    PubMed

    Li, Yu; Li, Hong-Guan; Liu, Fu-Cheng

    2017-01-01

    Soil samples from 16 urban sites in Lianyungang, China were collected and analyzed. A pollution index was used to assess the potential ecological risk of heavy metals and a sequential extraction procedure was used to evaluate the relative distribution of Cu, Zn, Pb, Cd, Cr, and As in exchangeable, carbonate, Fe/Mn oxide, organic/sulfide, and residual fractions. The mobility of heavy metals and urease (URE) activity, alkaline phosphatase (ALP) activity, and invertase (INV) activity of soils was determined. The results showed that the average concentrations of Cu, Zn, Pb, Cd, Cr, and As in Lianyungang soils were much higher than those in the coastal city soil background values of Jiangsu and China. Among the five studied regions (utilities, commercial, industrial, tourism, and roadside), the industrial region had the highest metal concentrations demonstrating that land use had a significant impact on the accumulation of heavy metals in Lianyungang soils. Compared to the other metals, Cd showed the highest ecological risk. According to chemical partitioning, Cu was associated with the organic/sulfides and Pb and Zn were mainly in the carbonate and the Fe/Mn oxide phase. The greatest amounts of Cd were found in exchangeable and carbonate fractions, while Cr and As were mainly in the residual fraction. Cd had the highest mobility of all metals, and the order of mobility (highest to lowest) of heavy metals in Lianyungang soils was Cd > Zn > Pb > Cu > As > Cr. Soil urease activity, alkaline phosphatase activity, and invertase activity varied considerably in different pollution degree sites. Soil enzyme activities had the lowest levels in roadside and industrial regions. Across all the soil data in the five regions, the total Cu, Zn, Pb, Cd, Cr, and As level was negatively correlated with urease activity, alkaline phosphatase activity, and invertase activity, but the relationship was not significant. In the industrial region, alkaline phosphatase activity had

  13. Pollution Status of Pakistan: A Retrospective Review on Heavy Metal Contamination of Water, Soil, and Vegetables

    PubMed Central

    Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health. PMID:25276818

  14. Pollution status of Pakistan: a retrospective review on heavy metal contamination of water, soil, and vegetables.

    PubMed

    Waseem, Amir; Arshad, Jahanzaib; Iqbal, Farhat; Sajjad, Ashif; Mehmood, Zahid; Murtaza, Ghulam

    2014-01-01

    Trace heavy metals, such as arsenic, cadmium, lead, chromium, nickel, and mercury, are important environmental pollutants, particularly in areas with high anthropogenic pressure. In addition to these metals, copper, manganese, iron, and zinc are also important trace micronutrients. The presence of trace heavy metals in the atmosphere, soil, and water can cause serious problems to all organisms, and the ubiquitous bioavailability of these heavy metal can result in bioaccumulation in the food chain which especially can be highly dangerous to human health. This study reviews the heavy metal contamination in several areas of Pakistan over the past few years, particularly to assess the heavy metal contamination in water (ground water, surface water, and waste water), soil, sediments, particulate matter, and vegetables. The listed contaminations affect the drinking water quality, ecological environment, and food chain. Moreover, the toxicity induced by contaminated water, soil, and vegetables poses serious threat to human health.

  15. Ion activity and distribution of heavy metals in acid mine drainage polluted subtropical soils.

    PubMed

    Li, Yong-Tao; Becquer, Thierry; Dai, Jun; Quantin, Cécile; Benedetti, Marc F

    2009-04-01

    The oxidative dissolution of mine wastes gives rise to acidic, metal-enriched mine drainage (AMD) and has typically posed an additional risk to the environment. The poly-metallic mine Dabaoshan in South China is an excellent test site to understand the processes affecting the surrounding polluted agricultural fields. Our objectives were firstly to investigate metal ion activity in soil solution, distribution in solid constituents, and spatial distribution in samples, secondly to determine dominant environment factors controlling metal activity in the long-term AMD-polluted subtropical soils. Soil Column Donnan Membrane Technology (SC-DMT) combined with sequential extraction shows that unusually large proportion of the metal ions are present as free ion in the soil solutions. The narrow range of low pH values prevents any pH effects during the binding onto oxides or organic matter. The differences in speciation of the soil solutions may explain the different soil degradation observed between paddy and non-paddy soils.

  16. Hydrogenic heavy metal pollution of alluvial soils in the city of Perm

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Vasil'Ev, A. A.; Vlasov, M. N.

    2008-11-01

    The differences in the sources and compositions of the pollutants among the alluvial soils within the city of Perm were revealed. Heavy metal pollution of hydrogenic origin is caused by unpurified sewage water. The main source of pollution of the urbanozems and replantozems of the city is the aerial input of heavy metals. The lead content in the alluvial soils of the city was twice lower and the mean Zn and Ni contents were 1.5 and 4.0 times higher than in the urbanozems and replantozems, respectively. The concentrations of Sr, Zn, Ni, Cu, and Cr did not correlate positively with the content of clay particles in the fine earth of the alluvial soils. The higher pollution of the light-textured soils showed that, nowadays, its main source was sewage water but not sludge. In the alluvial soils, small Fe-rohrensteins are formed. They serve as microgeochemical barriers for some part of the microelements. The Pb and Zn contents in the rohrensteins of the soils of the Las’va river basin reached 440 and 890 mg/kg, respectively. In the upper horizon of this soil, the contents of Pb and Zn in the rohrensteins were 42 and 17% of their concentration in the fine earth, respectively.

  17. Heavy metal pollution in soils from abandoned Taizhou Chemical Industry Zone in Zhejiang province.

    PubMed

    Yu, Binbin; Zhang, Huimin; Chen, Tao; Mou, Yijun; Wu, Zucheng

    2015-01-01

    Heavy metal (HM) pollution in soils from an abandoned Taizhou Chemical Industry Zone (TCIZ) was investigated. By analysing soils, including sediments, collected from the study zone, the main pollutants were quantitatively identified and their spatial distribution patterns were clearly displayed. Eleven types of HM pollutants were obtained and the results indicated a significant correlation in most of the elements of the soil and sediment. A pollution index Pi was employed to classify the degree of contamination and characterize the main pollutant, which was controlled with the evaluation standard value instead of background one. As was characterized to be one of the main pollutants with the mean concentrations at the pollution source, in the surrounding area, and in the sediment of 603, 20.4, and 22.5 mg/kg, respectively. Our study suggested that the contaminated area of TCIZ may necessitate remediation before it can be considered for reuse. Pollution index method could be a useful tool for assessing soils quality to provide comparable criteria.

  18. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation.

    PubMed

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices.

  19. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    PubMed Central

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  20. Pollution-induced community tolerance and functional redundancy in a decomposer food web in metal-stressed soil.

    PubMed

    Salminen, J; van Gestel, C A; Oksanen, J

    2001-10-01

    Pollution may lead to the development of pollution-induced community tolerance (PICT) in a stressed community. We studied the presence of PICT in soil food webs using soil microcosms. Soil microcosms containing soil invertebrates and microbes were collected from polluted and unpolluted areas and exposed to a range of soil zinc concentrations. A pine seedling was planted in each microcosm to measure the effects of the origin of the community and Zn pollution on above-ground plant production. The effects of the treatments on nutrient content in the soil were also measured. The diversity of soil microarthropods and the soil's mineral nutrient content were low at the Zn-polluted site. We did not observe an increasing Zn tolerance among the soil organisms in the polluted soil. However, low population growth rates of soil invertebrates from the polluted site may indicate the deleterious effects on fitness of long-lasting pollution. In the soil from the nonpolluted site, Zn additions caused changes in the invertebrate food web structure. These changes were explained by the good physiological condition of the animals and their insensitivity to Zn. The fact that the food web structure in soil from the polluted site did not change can be used as a rough indicator of PICT. Structural stability is presumed by the lack of Zn-sensitive species at this site and the inability of populations to acclimate by altering their growth or reproduction patterns in response to changing soil conditions. Although microbial-based soil decomposer systems may have a high functional redundancy, our results indicate that metal stress at the polluted site exceeds the tolerance limits of the system. As a consequence, ecosystem function at this site is endangered. This study also shows that the evolution of metal tolerance by soil decomposer organisms may not be a common reaction to soil pollution, although changes of population and community structure indicated severe metal stress on organisms.

  1. [Characteristics of heavy metal pollution in soil and dust of urban parks in Shanghai].

    PubMed

    Shi, Gui-Tao; Chen, Zhen-Lou; Xu, Shi-Yuan; Wang, Li; Zhang, Ju; Li, Hai-Wen; Li, Li-Na

    2007-02-01

    The contents of heavy metals in soils and dust of urban parks in Shanghai were studied, and the spatial distribution of heavy metals was also analyzed. The results showed that the average contents of Pb (55.06 mg x kg(-1)), Zn(198.54 mg x kg(-1)), Cu(44.57 mg x kg(-1)), Cr (77.01 mg x kg(-1)), Cd (0.40 mg x kg(-1)) and Ni (31.17 mg x kg(-1)) in soils were lower than them in the dust, which were 416.63 mg x kg(-1), 906.29 mg x kg(-1), 235.89 mg x kg(-1), 162.59 mg x kg(-1), 1.58 mg x kg(-1) and 92.19 mg x kg(-1) respectively. The heavy metals in soils except Ni and all the six heavy metals in dust were higher than the background values in Shanghai more or less. The heavy metals average contents in dust in the parks of city central area were lower than them in the parks of city surrounding area, and the heavy metals in soils have similar spatial distribution patterns except for Zn. However, in different districts, the distribution of heavy metals in the soils and dust were not regular. Pearson correlative analysis and principal component analysis indicated that the heavy meals accumulation of the soils and dust were induced by anthropogenic input, furthermore traffic and industry were the main pollution sources.

  2. Heavy metal pollution in surface soils of Pearl River Delta, China.

    PubMed

    Jinmei, Bai; Xueping, Liu

    2014-12-01

    Heavy metal pollution is an increasing environmental problem in Chinese regions undergoing rapid economic and industrial development, such as the Pearl River Delta (PRD), southern China. We determined heavy metal concentrations in surface soils from the PRD. The soils were polluted with heavy metals, as defined by the Chinese soil quality standard grade II criteria. The degree of pollution decreased in the order Cd > Cu > Ni > Zn > As > Cr > Hg > Pb. The degree of heavy metal pollution by land use decreased in the order waste treatment plants (WP) > urban land (UL) > manufacturing industries (MI) > agricultural land (AL) > woodland (WL) > water sources (WS). Pollution with some of the metals, including Cd, Cu, Ni, and Zn, was attributed to the recent rapid development of the electronics and electroplating industries. Cd, Hg, and Pb (especially Cd) pose high potential ecological risks in all of the zones studied. The soils posing significantly high and high potential ecological risks from Cd covered 73.3 % of UL, 50 % of MI and WP land, and 48.5 % of AL. The potential ecological risks from heavy metals by land use decreased in the order UL > MI > AL > WP > WL > WS. The control of Cd, Hg, and Pb should be prioritized in the PRD, and emissions in wastewater, residue, and gas discharges from the electronics and electroplating industry should be decreased urgently. The use of chemical fertilizers and pesticides should also be decreased.

  3. [Analysis of heavy metals distribution characteristics and pollution assessment in agricultural region soils of Huaihe basin].

    PubMed

    Xiao, Xue; Zhao, Nan-Jing; Yuan, Jing; Ma, Ming-Jun; Fang, Li; Wang, Yin; Meng, De-Shuo; Yu, Yang; Tang, Jie; Zhang, Xiao-Ling; Dai, Yuan; Zhang, Yu-Jun; Liu, Jian-Guo; Liu, Wen-Qing

    2014-07-01

    By means of field sampling and laboratory analysis, the content distribution characteristics of Cd, Cr, Cu, Ni, Pb and Zn in agricultural region soils of Huaihe basin in Anhui province were analyzed. Assessment of heavy metal pollutions was conducted using enrichment factor, geoaccumulation index and potential ecological risk index. The results showed that the average mass fraction of Cd and Cu was 0.113 5 and 22.09 mg x kg(-1) respectively in the study area soil, which were above the background values 0.097 and 20.4 mg x kg(-1) in Anhui Province. The average mass fraction of other four heavy metals did not exceed the average values of Anhui Province. The results of the evaluations from geoaccumulation index and ecological risk assessment discovered that Cd is the strongest pollution metal among six heavy metals in the study area soil. For some samples of the study soil, Cd was slight risk for the ecosystem. The ecosystem risks caused by the other five heavy metals were not obviously for the sampling points. The entire study area soils were mid integrated potential ecological risk.

  4. Phytoremediation of heavy metal polluted soils and water: Progresses and perspectives*

    PubMed Central

    Lone, Mohammad Iqbal; He, Zhen-li; Stoffella, Peter J.; Yang, Xiao-e

    2008-01-01

    Environmental pollution affects the quality of pedosphere, hydrosphere, atmosphere, lithosphere and biosphere. Great efforts have been made in the last two decades to reduce pollution sources and remedy the polluted soil and water resources. Phytoremediation, being more cost-effective and fewer side effects than physical and chemical approaches, has gained increasing popularity in both academic and practical circles. More than 400 plant species have been identified to have potential for soil and water remediation. Among them, Thlaspi, Brassica, Sedum alfredii H., and Arabidopsis species have been mostly studied. It is also expected that recent advances in biotechnology will play a promising role in the development of new hyperaccumulators by transferring metal hyperaccumulating genes from low biomass wild species to the higher biomass producing cultivated species in the times to come. This paper attempted to provide a brief review on recent progresses in research and practical applications of phytoremediation for soil and water resources. PMID:18357623

  5. Soil Heavy Metal Pollution and Risk Assessment in Shenyang Industrial District, Northeast China

    PubMed Central

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources. PMID:25997173

  6. Soil heavy metal pollution and risk assessment in Shenyang industrial district, Northeast China.

    PubMed

    Jiao, Xudong; Teng, Yanguo; Zhan, Yanhong; Wu, Jin; Lin, Xueyu

    2015-01-01

    To investigate the soil heavy metal pollution characteristics and ecological risk factors, 42 samples and six typical soil profiles were collected from the Shenyang industrial district in northeast China and were analyzed for contents of titanium (Ti), copper (Cu), lead (Pb), zinc (Zn), cobalt (Co), nickel (Ni), chromium (Cr) and arsenic (As). Through statistical analysis, it was found that the mean concentrations were higher than their background values (Ti = 4.77>3.8g/kg, Cu = 33.75>22.6 mg/kg, Pb = 45.95>26 mg/kg, Zn = 81.54>74.2 mg/kg, Co = 12.91>12.7 mg/kg, Ni = 32.26>26.9 mg/kg, Cr = 83.36>61 mg/kg and As = 13.69>11.2 mg/kg) but did not exceed their corresponding pollution limits for the Chinese Environmental Quality Standard for Soils (State Environmental Protection Administration of China, 1995). There were contamination hotspots that may be caused by human activities such as smelting plants and sewage irrigation. The Enrichment Factor and Ecological Risk Index were used to identify the anthropogenic contamination and ecological risks of heavy metals. Soil in the study area could be considered lightly or partially polluted by heavy metals. According to clustering analysis, distinct groups of heavy metals were discriminated between natural or anthropogenic sources.

  7. [Assessment of heavy metal pollution and potential ecological risks of urban soils in Kaifeng City, China].

    PubMed

    Li, Yi-Meng; Ma, Jian-Hua; Liu, De-Xin; Sun, Yan-Li; Chen, Yan-Fang

    2015-03-01

    Ninety-nine topsoil (0-15 cm) samples were collected from Kaifeng City, China using the grid method, and then the concentrations of As, Cd, Cr, Cu, Ni, Pb and Zn in the samples were measured by standard methods. Soil pollution levels and potential ecological risks of the heavy metals were assessed using the pollution load index (PLI) and potential ecological risk index (RI), respectively. Ordinary Kriging interpolation technique was employed to investigate the spatial distribution of PLI and RI of the city. The results showed that high pollution of Cd occurred in Kaifeng urban soils, and there was moderate pollution of Zn, slight pollution of Pb and Cu, and no pollution of Ni, Cr and As. Very high ecological risk was posed by Cd and low risk by other metals. The mean PLI of the 7 metals from all sample points was 2.53, which was categorized as moderate pollution. The average RI was 344.58 which represented a considerable ecological risk. PLI and RI shared a similar spatial distribution with high values centralized in the old industrial area in the southeast and railway stations for passengers and goods in the south of the city, followed by the old town within the ancient city wall, and low values located in the north and west areas. Cadmium was the main factor for both soil pollution and potential ecological risk primarily due to farmland topsoil in the eastern suburb of Kaifeng City with high Cd concentrations resulted from sewage irrigation deposited in the urban area by wind, human activities such as soot discharged from the chemical fertilizer plant of Kaifeng, transportation and coal combustion.

  8. Modeling the plant-soil interaction in presence of heavy metal pollution and acidity variations.

    PubMed

    Guala, Sebastián; Vega, Flora A; Covelo, Emma F

    2013-01-01

    On a mathematical interaction model, developed to model metal uptake by plants and the effects on their growth, we introduce a modification which considers also effects on variations of acidity in soil. The model relates the dynamics of the uptake of metals from soil to plants and also variations of uptake according to the acidity level. Two types of relationships are considered: total and available metal content. We suppose simple mathematical assumptions in order to get as simple as possible expressions with the aim of being easily tested in experimental problems. This work introduces modifications to two versions of the model: on the one hand, the expression of the relationship between the metal in soil and the concentration of the metal in plants and, on the other hand, the relationship between the metal in the soil and total amount of the metal in plants. The fine difference of both versions is fundamental at the moment to consider the tolerance and capacity of accumulation of pollutants in the biomass from the soil.

  9. Total and available heavy metal concentrations in soils of the Thriassio plain (Greece) and assessment of soil pollution indexes.

    PubMed

    Massas, Ioannis; Kalivas, Dionisios; Ehaliotis, Constantions; Gasparatos, Dionisios

    2013-08-01

    The Thriassio plain is located 25 km west of Athens city, the capital of Greece. Two major towns (Elefsina and Aspropyrgos), heavy industry plants, medium to large-scale manufacturing, logistics plants, and agriculture comprise the main land uses of the studied area. The aim of the present study was to measure the total and available concentrations of Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe in the top soils of the plain, and to asses soil contamination by these metals by using the geoaccumulation index (I geo), the enrichment factor (EF), and the availability ratio (AR) as soil pollution indexes. Soil samples were collected from 90 sampling sites, and aqua regia and DTPA extractions were carried out to determine total and available metal forms, respectively. Median total Cr, Zn, Ni, Pb, Co, Mn, Ba, Cu, and Fe concentrations were 78, 155, 81, 112, 24, 321, 834, 38, and 16 × 10(3) mg kg(-1), respectively. The available fractions showed much lower values with medians of 0.4, 5.6, 1.7, 6.9, 0.8, 5.7, 19.8, 2.1, and 2.9 mg kg(-1). Though median total metal concentrations are not considered as particularly high, the I geo and the EF values indicate moderate to heavy soil enrichment. For certain metals such as Cr, Ni, Cu, and Ba, the different distribution patterns between the EFs and the ARs suggest different origin of the total and the available metal forms. The evaluation of the EF and AR data sets for the soils of the two towns further supports the argument that the EFs can well demonstrate the long-term history of soil pollution and that the ARs can adequately portray the recent history of soil pollution.

  10. Performance of rose scented geranium (Pelargonium graveolens) in heavy metal polluted soil vis-à-vis phytoaccumulation of metals.

    PubMed

    Chand, Sukhmal; Singh, Geetu; Patra, D D

    2016-08-02

    An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg-1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg-1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.

  11. A thermographic step-heating technique for metallic pollutant detection in soils

    NASA Astrophysics Data System (ADS)

    Hidalgo-Gato, R.; González de Ulloa, L.; Andrés, J. R.; Martínez, S.; Pérez, A.; Madruga, F. J.; López-Higuera, J. M.

    2015-03-01

    A feasibility study of the detection of metallic pollutants in soil with thermographic measurement techniques is presented in this paper. This study proposes an alternative method to current techniques for detection and identification of contaminated soils by non-destructive testing to reduce costs and the required execution time. For this purpose, step-heating thermography is used as measurement technique. Taking into account the soil thermal models, different pre-processing methods are applied to the captured thermogram sequences to characterize the soil thermal response data; and Artificial Neural Networks (ANN) are used as a processing tool to discern the presence or absence of contaminants in soil. The selected ANN configuration will determine the contaminated soil identification rates, making the false negative rate worse with the false positive improvement.

  12. [Study on pollution evaluation of heavy metal in surface soil of the original site of Qingdao North Station].

    PubMed

    Zhu, Lei; Jia, Yong-gang; Pan, Yu-ying

    2013-09-01

    The determination of pollution extent and health risk assessment are the premise of heavy metal contaminated site remediation. The content of Cu, Cr, Pb, Cd, Zn, Ni in Qingdao North Station was detected, and the correlation of the 6 kinds of heavy metal content was analyzed. The pollution extent in excess of background values was characterized by anthropogenic influence multiple, and the pollution of heavy metal in soil was evaluated using geoaccumulation index and a new method which connects geoaccumulation index with Nemero index. Finally, human health risk assessment was carried out with health risk assessment model for heavy metal content. The results showed that Qingdao North Station soil were polluted by heavy metals. Six heavy metal pollution levels were: Cd > Cu > Ni > Pb > Cr > Zn, and Cd had reached the severity pollution level, Cu and Ni followed by, Cr, Pb and Zn were in minor pollution level. The order of coefficient variation in all heavy metals was: Cd > Ni > Cr > Zn > Pb > Cu. Within the study area soil heavy metal distribution was different, but overall discrepancy was small. The order of non-cancer hazards of heavy metals in soil was Cr > Pb > Cu > Ni > Cd > Zn, and the order of carcinogen risks of heavy metals was Ni > Cd. The non-cancer hazard and carcinogen risks values of metals were both lower than that their threshold values. They were not the direct threats to human health.

  13. Assessment of heavy metal pollution in urban soils of Havana city, Cuba.

    PubMed

    Rizo, O Díaz; Castillo, F Echeverría; López, J O Arado; Merlo, M Hernández

    2011-10-01

    Concentrations of Co, Ni, Cu, Zn, Pb and Fe in the top-soils (0-10 cm) from urbanized and un-urbanized areas of Havana city were measured by X-ray fluorescence analysis. The mean Co, Ni, Cu, Zn and Pb contents in the urban topsoil samples (13.9 ± 4.1, 66 ± 26, 101 ± 51, 240 ± 132 and 101 ± 161 mg kg(-1), respectively) were compared with mean concentrations for other cities around the world. The results revealed the highest concentrations of metals in topsoil samples from industrial sites. Lowest metal contents were determined in the un-urbanized areas. The comparison with Dutch soil quality guidelines showed a slight contamination with Co, Ni Cu and Zn in all studied sites and with Pb in industrial soils. On the other hand, the metal-to-iron normalisation using Earth crust contents as background showed that soils from urbanized areas in Havana city (industrial sites, parks and school grounds) are moderately enriched with zinc, moderately to severe enriched (city parks and school grounds) and severe enriched (industrial sites) with lead. The values of integrated pollution index (IPI) indicated that industrial soils are middle and high contaminated by heavy metals (1.19 ≤ IPI ≤ 7.54), but enrichment index values (EI) shows that metal concentrations on the studied locations are not above the permissible levels for urban agriculture, except soils from power and metallurgical plants surroundings.

  14. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    PubMed

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  15. [Effects of heavy metals pollution on soil microbial communities metabolism and soil enzyme activities in coal mining area of Tongchuan, Shaanxi Province of Northwest China].

    PubMed

    Guo, Xing-Liang; Gu, Jie; Chen, Zhi-Xue; Gao, Hua; Qin, Qing-Jun; Sun, Wei; Zhang, Wei-Juan

    2012-03-01

    This paper studied the metabolism of soil microbes, functions of soil microbial communities, and activities of soil enzymes in a coal mining area of Tongchuan. In the coal mining area, the concentrations of soil Cu, Zn, Cd, and Pb were significantly higher than those in the non-mining area, of which, Cd contributed most to the heavy metals pollution. By adopting Biolog method combining with principal component analysis (PCA) and cluster analysis, it was found that the metabolic characteristics of different soil microbial communities varied significantly with increasing soil heavy metals pollution, and the variation was mainly manifested in the metabolic patterns of carbon sources such as saccharides and amino acids. In slightly and moderately polluted soils, the utilization of carbon sources by soil microbial communities was activated; while in heavily polluted soils, the carbon sources utilization was inhibited. The activities of soil urease, protease, alkaline phosphatase, and catalase all tended to decline with intensifying soil heavy metals pollution. The soil urease, protease, alkaline phosphatase, and catalase activities in the coal mining area were 50.5%-65.1%, 19.1%-57.1%, 87.2%-97.5%, and 77.3%-86.0% higher than those in the non-mining area, respectively. The activities of soil sucrase and cellulase were activated in slightly and moderately polluted soils, but inhibited in heavily polluted soils.

  16. [Distribution characteristic and assessment of soil heavy metal pollution in the iron mining of Baotou in Inner Mongolia].

    PubMed

    Guo, Wei; Zhao, Ren-Xin; Zhang, Jun; Bao, Yu-Ying; Wang, Hong; Yang, Ming; Sun, Xiao-Li; Jin, Fan

    2011-10-01

    The pollution status and total concentration of soil heavy metals were analyzed around tailing reservoir of Baotou and iron mining of Bayan Obo located in Inner Mongolia grassland ecosystem. Aim of the study is to control soil heavy metal pollution of grassland mining area and provide the basic information. The results indicated that the soils from different directions of the tailing reservoir were contaminated by Pb, Cu, Zn and Mn. According to the single factor pollution index, the pollution degree was Mn > Zn > Pb > Cu. According to Nemerow integrated pollution index, the indexes of the northeast, southeast, southwest, and northwest of the tailing reservoir, were 2.43, 10.2, 1.88, 1.64. Soils from the southeast had the most serious heavy metal contamination because of the dominant wind of northwest. Within 50 m from the edge of tailing reservoir, heavy metal contamination was most serious except Cu. With regard to Bayan Obo iron mining, the single factor pollution index indicated that the soils from the six surveyed regions were contaminated by Pb, Cu, Zn and Mn. The integrated pollution index indicated that the indexes of the six regions, such as the mining area, the dump, outside the dump, outside the urban area, east region of the railway, and west region of the railway, were 14.3, 4.30, 2.69, 3.41, 2.88, and 2.20, respectively. The soil pollution degree of the mining area was the highest. Additionally, the transport of ore resulted in soil heavy metal pollution along railway. In general, soils of the two studied areas had the similar pollution characteristic, and the elements of heavy metal contamination were corresponding with the concentrations of tailings. The health and stabilization of grassland ecosystem are being threatened by soil heavy metals.

  17. Pollution of Flooded Arable Soils with Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs).

    PubMed

    Ciesielczuk, Tomasz; Kusza, Grzegorz; Poluszyńska, Joanna; Kochanowska, Katarzyna

    2014-01-01

    Soils that are exposed to floodwaters because of shallow groundwater and periodical wetlands are, to a large extent, exposed to contamination by organic and inorganic compounds. These are mainly compounds that have drifted along with the inflow of heavily laden floodwater and are produced within the soil profile by the anaerobic transformation of organic matter. Heavy metals and polycyclic aromatic hydrocarbon (PAH) compounds are absorbed by the soil of the floodwaters, and moving in the soil profile, they pose a threat to groundwater. What is more, after a flood, they may be absorbed by the crops. This paper focuses on the effects of Odra River (Poland) floods, heavy metals, and PAHs on soil and the possibilities of the migration of these pollutants into the soil profile. In the tested sludge samples of floodwater and soil, there were no abnormal concentrations of heavy metals, but the flooding time positively affected the amount listed in the test samples. Concentrations of PAHs increased, but they also exceeded the standards for arable soils in the case of single compounds.

  18. The Extent and Prediction of Heavy Metal Pollution in Soils of Shahrood and Damghan, Iran.

    PubMed

    Sakizadeh, Mohamad; Mirzaei, Rouhollah; Ghorbani, Hadi

    2015-12-01

    The levels of 12 heavy metals (Ag, Ba, Be, Cd, Co, Cr, Cu, Ni, Pb, Tl, V, Zn) were considered in 229 soil samples in Semnan Province, Iran. To discriminate between natural and anthropogenic inputs of heavy metals, factor analysis was used. Seven factors accounting for 90.5 % of the total variance were extracted. The mining and agricultural activities along with geogenic sources have been attributed as the main causes of the levels of heavy metals in the study area. The partial least squares regression was utilized to predict the level of soil pollution index (SPI) considering the concentrations of 12 heavy metals. The eigenvectors from the first three PLS represented more than 98 % of the overall variance. The correlation coefficient between the observed and predicted SPI was 0.99 indicating the high efficiency of this method. The resultant coefficient of determination for three PLS components was 0.984 confirming the predictive ability of this method.

  19. Potential ecological risk assessment and prediction of soil heavy-metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Zhao, H. Q.; Yang, Q. C.; Yang, Z. P.

    2014-06-01

    The aim of the present study is to evaluate the potential ecological risk and trend of soil heavy-metal pollution around a coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy-metal pollution. The potential ecological risk in the order of ER(Cd) > ER(Pb) > ER(Cu) > ER(Cr) > ER(Zn) have been obtained, which showed that Cd was the most important factor leading to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, then the fixed number of years exceeding the standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metals and the relationship between sampling points and variables. These findings provided some useful insights for making appropriate management strategies to prevent or decrease heavy-metal pollution around a coal gangue dump in the Yangcaogou coal mine and other similar areas elsewhere.

  20. Potential ecological risk assessment and prediction of soil heavy metal pollution around coal gangue dump

    NASA Astrophysics Data System (ADS)

    Jiang, X.; Lu, W. X.; Yang, Q. C.; Yang, Z. P.

    2014-03-01

    Aim of the present study is to evaluate the potential ecological risk and predict the trend of soil heavy metal pollution around a~coal gangue dump in Jilin Province (Northeast China). The concentrations of Cd, Pb, Cu, Cr and Zn were monitored by inductively coupled plasma mass spectrometry (ICP-MS). The potential ecological risk index method developed by Hakanson (1980) was employed to assess the potential risk of heavy metal pollution. The potential ecological risk in an order of E(Cd) > E(Pb) > E(Cu) > E(Cr) > E(Zn) have been obtained, which showed that Cd was the most important factor led to risk. Based on the Cd pollution history, the cumulative acceleration and cumulative rate of Cd were estimated, and the fixed number of years exceeding standard prediction model was established, which was used to predict the pollution trend of Cd under the accelerated accumulation mode and the uniform mode. Pearson correlation analysis and correspondence analysis are employed to identify the sources of heavy metal, and the relationship between sampling points and variables. These findings provide some useful insights for making appropriate management strategies to prevent and decrease heavy metal pollution around coal gangue dump in Yangcaogou coal mine and other similar areas elsewhere.

  1. Microbial leaching of toxic metals and arsenic from a heap consisting of heavily polluted soil

    NASA Astrophysics Data System (ADS)

    Groudev, Stoyan; Georgiev, Plamen; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Soil heavily polluted with toxic heavy metals (mainly Cu, Zn, Cd) and arsenic was subjected to microbial cleanup in a heap specially constructed for this purpose. The heap was located on an impermeable geomembrane, had the shape of a truncated pyramid and contained about 240 tons of soil collected mainly from the horizon A. The soil was highly acidic (with an initial pH of about 3.2) and was preliminarily crushed to minus 2.5 cm particle size. The pollutants were present mainly as the relevant sulphide minerals and the soil was inhabited by different microorganisms, including some acidophilic chemolithotrophic bacteria able to oxidize sulphides and to solubilize the relevant toxic elements. The heap possessed systems for irrigation and aeration and was surrounded by ditches to collect the drainage heap effluents containing the dissolved pollutants. The treatment of the soil was carried out by means of interrupted irrigation with leach solutions containing diluted sulphuric acid (to maintain pH in the heap within the range of about 2.5 - 2.8) and ammonium and phosphate ions to maintain the microbial growth. The treatment was carried out for a period of about two years during different climatic seasons. After the end of leaching the soil was subjected to some conventional melioration procedures such as liming, grassing, moulching, addition of fertilizers and animal manure and periodic ploughing and irrigation to increase its quality to levels suitable for agricultural utilization.

  2. Decomposer animal communities in forest soil along heavy metal pollution gradient.

    PubMed

    Haimi, J; Siira-Pietikäinen, A

    1996-03-01

    Responses of soil decomposer animals to heavy metal contamination and to concomitant changes in organic matter quality and quantity and in soil microbial biomasses have been studied along a pollution gradient from a Cu-Ni smelter. Samples have been taken separately for nematodes, enchytraeids and microarthropods 0.5, 2 and 8 km from the smelter. Special attention has been paid to the changes in the collembolan fauna. The sampling sites have been located in homogeneous Scots pine ( Pinus sylvestris) forests with podsolic soil profiles. In addition, an experiment has been carried out in which intact soil cores have been transferred in mesh baskets between the sites 2 and 8 km from the smelter (control samples have been transferred within the sites). Although most soil animals seemed to be quite resistant to direct and indirect effects of heavy metals, results indicate that certain soil animals like enchytraeids can be useful and easy to monitor when the effects of heavy metals on soil decomposition systems are assessed.

  3. Metal pollution (Cd, Pb, Zn, and As) in agricultural soils and soybean, Glycine max, in southern China.

    PubMed

    Zhao, Yunyun; Fang, Xiaolong; Mu, Yinghui; Cheng, Yanbo; Ma, Qibin; Nian, Hai; Yang, Cunyi

    2014-04-01

    Crops produced on metal-polluted agricultural soils may lead to chronic toxicity to humans via the food chain. To assess metal pollution in agricultural soils and soybean in southern China, 30 soybean grain samples and 17 soybean-field soil samples were collected from 17 sites in southern China, and metal concentrations of samples were analyzed by graphite furnace atomic absorption spectrophotometer. The integrated pollution index was used to evaluate if the samples were contaminated by Cd, Pb, Zn and As. Results showed that Cd concentration of 12 samples, Pb concentration of 2 samples, Zn concentration of 2 samples, and As concentrations of 2 samples were above the maximum permissible levels in soils. The integrated pollution index indicated that 11 of 17 soil samples were polluted by metals. Metal concentrations in soybean grain samples ranged from 0.11 to 0.91 mg kg(-1) for Cd; 0.34 to 2.83 mg kg(-1) for Pb; 42 to 88 mg kg(-1) for Zn; and 0.26 to 5.07 mg kg(-1) for As, which means all 30 soybean grain samples were polluted by Pb, Pb/Cd, Cd/Pb/As or Pb/As. Taken together, our study provides evidence that metal pollution is an important concern in agricultural soils and soybeans in southern China.

  4. Assessment of heavy metal pollution in vegetables and relationships with soil heavy metal distribution in Zhejiang province, China.

    PubMed

    Ye, Xuezhu; Xiao, Wendan; Zhang, Yongzhi; Zhao, Shouping; Wang, Gangjun; Zhang, Qi; Wang, Qiang

    2015-06-01

    There are increasing concerns on heavy metal contaminant in soils and vegetables. In this study, we investigated heavy metal pollution in vegetables and the corresponding soils in the main vegetable production regions of Zhejiang province, China. A total of 97 vegetable samples and 202 agricultural soil samples were analyzed for the concentrations of Cd, Pb, As, Hg, and Cr. The average levels of Cd, Pb, and Cr in vegetable samples [Chinese cabbage (Brassica campestris spp. Pekinensis), pakchoi (Brassica chinensis L.), celery (Apium graveolens), tomato (Lycopersicon esculentum), cucumber (Colletotrichum lagenarium), cowpea (Vigna unguiculata), pumpkin (Cucurbita pepo L.), and eggplant (Solanum melongena)] were 0.020, 0.048, and 0.043 mg kg(-1), respectively. The Pb and Cr concentrations in all vegetable samples were below the threshold levels of the Food Quality Standard (0.3 and 0.5 mg kg(-1), respectively), except that two eggplant samples exceeded the threshold levels for Cd concentrations (0.05 mg kg(-1)). As and Hg contents in vegetables were below the detection level (0.005 and 0.002 mg kg(-1), respectively). Soil pollution conditions were assessed in accordance with the Chinese Soil Quality Criterion (GB15618-1995, Grade II); 50 and 68 soil samples from the investigated area exceeded the maximum allowable contents for Cd and Hg, respectively. Simple correlation analysis revealed that there were significantly positive correlations between the metal concentrations in vegetables and the corresponding soils, especially for the leafy and stem vegetables such as pakchoi, cabbage, and celery. Bio-concentration factor values for Cd are higher than those for Pb and Cr, which indicates that Cd is more readily absorbed by vegetables than Pb and Cr. Therefore, more attention should be paid to the possible pollution of heavy metals in vegetables, especially Cd.

  5. Bioaccumulation in Porcellio scaber (Crustacea, Isopoda) as a measure of the EDTA remediation efficiency of metal-polluted soil.

    PubMed

    Udovic, Metka; Drobne, Damjana; Lestan, Domen

    2009-10-01

    Leaching using EDTA applied to a Pb, Zn and Cd polluted soil significantly reduced soil metal concentrations and the pool of metals in labile soil fractions. Metal mobility (Toxicity Characteristic Leaching Procedure), phytoavailability (diethylenetriaminepentaacetic acid extraction) and human oral-bioavailability (Physiologically Based Extraction Test) were reduced by 85-92%, 68-91% and 88-95%, respectively. The metal accumulation capacity of the terrestrial isopod Porcellio scaber (Crustacea) was used as in vivo assay of metal bioavailability, before and after soil remediation. After feeding on metal contaminated soil for two weeks, P. scaber accumulated Pb, Zn and Cd in a concentration dependent manner. The amounts of accumulated metals were, however, higher than expected on the basis of extraction (in vitro) tests. The combined results of chemical extractions and the in vivo test with P. scaber provide a more relevant picture of the availability stripping of metals after soil remediation.

  6. Endophytic Cultivable Bacteria of the Metal Bioaccumulator Spartina maritima Improve Plant Growth but Not Metal Uptake in Polluted Marshes Soils

    PubMed Central

    Mesa, Jennifer; Mateos-Naranjo, Enrique; Caviedes, Miguel A.; Redondo-Gómez, Susana; Pajuelo, Eloisa; Rodríguez-Llorente, Ignacio D.

    2015-01-01

    Endophytic bacterial population was isolated from Spartina maritima tissues, a heavy metal bioaccumulator cordgrass growing in the estuaries of Tinto, Odiel, and Piedras River (south west Spain), one of the most polluted areas in the world. Strains were identified and ability to tolerate salt and heavy metals along with plant growth promoting and enzymatic properties were analyzed. A high proportion of these bacteria were resistant toward one or several heavy metals and metalloids including As, Cu, and Zn, the most abundant in plant tissues and soil. These strains also exhibited multiple enzymatic properties as amylase, cellulase, chitinase, protease and lipase, as well as plant growth promoting properties, including nitrogen fixation, phosphates solubilization, and production of indole-3-acetic acid (IAA), siderophores and 1-aminocyclopropane-1-carboxylate (ACC) deaminase. The best performing strains (Micrococcus yunnanensis SMJ12, Vibrio sagamiensis SMJ18, and Salinicola peritrichatus SMJ30) were selected and tested as a consortium by inoculating S. maritima wild plantlets in greenhouse conditions along with wild polluted soil. After 30 days, bacterial inoculation improved plant photosynthetic traits and favored intrinsic water use efficiency. However, far from stimulating plant metal uptake, endophytic inoculation lessened metal accumulation in above and belowground tissues. These results suggest that inoculation of S. maritima with indigenous metal-resistant endophytes could mean a useful approach in order to accelerate both adaption and growth of this indigenous cordgrass in polluted estuaries in restorative operations, but may not be suitable for rhizoaccumulation purposes. PMID:26733985

  7. Assessment of heavy metal pollution in surface soils and plant material in the post-industrial city of Katowice, Poland.

    PubMed

    Steindor, Karolina A; Franiel, Izabella J; Bierza, Wojciech M; Pawlak, Beata; Palowski, Bernard F

    2016-01-01

    This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L. and soil from the sampling sites were used to perform heavy metals pollution monitoring in urban areas with different pollution sources, as well to investigate the suitability of the leaves and bark as bioindicators of Pb, Zn, Cd and Cu pollution. Plant samples were collected at nine locations classified into three pollution groups based on metal content in the soils. The chosen pollution indices were used to assess the level of contamination according to background values. Soils in the Katowice area are found to be relatively heavily contaminated with Pb, Zn and Cd. Both of the maple tree species did not statistically differ in terms of the investigated elements' concentration in leaves or bark. Only bark samples reflected the pollution level, showing differences between the sampling points, and therefore are recommended for biomonitoring purposes.

  8. Remediation of metal polluted soils by phytorremediation combined with biochar addition

    NASA Astrophysics Data System (ADS)

    Méndez, Ana; Paz-Ferreiro, Jorge; Gómez-Limón, Dulce; César Arranz, Julio; Saa, Antonio; Gascó, Gabriel

    2016-04-01

    The main objective of this work is to optimize and quantify the treatment of metal polluted soils through phytoremediation techniques combined with the addition of biochar. Biochar is a carbon rich material obtained by thermal treatment of biomass in inert atmosphere. In recent years, it has been attracted considerable interest due to their positive effect after soil addition. The use of biochar also seems appropriate for the treatment of metal-contaminated soils decreasing their mobility. Biochar properties highly depend on the raw material composition and manufacturing conditions. This paper is based on the use of manure wastes, rich in nutrients and therefore interesting raw materials for biochar production, especially when combined with phytoremediation techniques since the biochar act as conditioner and slow release fertilizer. We are very grateful to Ministerio de Economia y Competitividad (Spain) for financial support under Project CGL2014-58322-R.

  9. Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review

    NASA Astrophysics Data System (ADS)

    Paz-Ferreiro, J.; Lu, H.; Fu, S.; Méndez, A.; Gascó, G.

    2013-11-01

    Anthropogenic activities are resulting in an increase on the use and extraction of heavy metals. Heavy metals cannot be degraded and hence accumulate in the environment having the potential to contaminate the food chain. This pollution threatens soil quality, plant survival and human health. The remediation of heavy metals deserves attention, but it is impaired by the cost of these processes. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. This review provides an overview of the current state of knowledge phytoremediation and biochar application to remediate heavy metal contaminated soils, discussing the advantages and disadvantages of both individual approaches. Research to date has attempted only in a limited number of occasions to combine both techniques, however we discuss the potential advantages of combining both remediation techniques and the potential mechanisms involved in the interaction between phytoremediators and biochar. We identified specific research needs to ensure a sustainable use of phytoremediation and biochar as remediation tools.

  10. [Heavy metal pollution characteristics and ecological risk analysis for soil in Phyllostachys praecox stands of Lin'an].

    PubMed

    Fang, Xiao-bo; Shi, Han; Liao, Xin-feng; Lou, Zhong; Zhou, Lyu-yan; Yu, Hai-xia; Yao, Lin; Sun, Li-ping

    2015-06-01

    An investigation was carried out in an attempt to reveal the characteristics of heavy metals contamination in the soils of Phyllostachys praecox forest in Lin' an. Based on the concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in 160 topsoil samples, the pollution status and ecological risks of heavy metals in the soils were assessed by single factor pollution index, Nemerow integrated pollution index and Hankanson potential ecological risk index. The spatial variability of heavy metal concentrations in the soils closely related to the distribution of traffic, industrial and livestock pollution sources. The average concentrations of Hg, As, Cu, Pb, Zn, Cd, Cr, Ni, Co and Mn in the soils were 0.16, 7.41, 34.36, 87.98, 103.98, 0.26, 59.12, 29.56, 11.44 and 350.26 mg · kg(-1), respectively. Pb, Cd, Zn and Cu concentrations were as 2.89, 1.70, 1.12 and 1.12 times as the background values of soil in Zhejiang Province, respectively. But their concentrations were all lower than the threshold values of the National Environmental Quality Standard for Soil (GB 15618-1995). The average single factor pollution index revealed that the level of heavy metal pollution in the soils was in order of Pb>Cd>Cu= Zn>Hg>As>Ni>Co>Cr>Mn. Pb pollution was of moderate level while Cd, Cu and Zn pollutions were slight. There was no soil pollution caused by the other heavy metals. However, the Nemerow integrated pollution index showed that all the 160 soil samples were contaminated by heavy metals to a certain extent. Among total 160 soil samples, slight pollution level, moderate pollution level and heavy pollution level accounted for 55.6%, 29.4% and 15.0%, respectively. The average single factor potential ecological risk index (Er(i)) implied that the potential ecological risk related to Cd reached moderate level, while the others were of slight level. Furthermore, Cd and Hg showed higher potential ecological risk indices which reached up to 256.82 and 187.33 respectively

  11. Analysis of Soil Heavy Metal Pollution and Pattern in Central Transylvania

    PubMed Central

    Suciu, Ioan; Cosma, Constantin; Todică, Mihai; Bolboacă, Sorana D.; Jäntschi, Lorentz

    2008-01-01

    The concentration of five soil heavy metals (Pb, Co, Cr, Cu, Hg) was measured in forty sampling sites in central Transylvania, Romania, regions known as centres of pollution due to the chemical and metallurgical activities. The soil samples were collected from locations where the ground is not sliding and the probability of alluvial deposits is small. The concentration of heavy metals was measured by using the Inductively Coupled Plasma Spectrometry method. Data were verified by using the Neutron Activation Analysis method. In some locations, the concentration for the investigated heavy metals exceeds the concentration admitted by the Romanian guideline. The highest concentration of lead (1521.8 ppm) and copper (1197.6 ppm) was found in Zlatna. The highest concentration of chromium was found in Târnăveni (1080 ppm). The maximum admitted concentrations in the sensitive areas revealed to be exceed from five to forty times. PMID:19325760

  12. Heavy metal content (Cd, Ni, Cr and Pb) in soil amendment with a low polluted biosolid

    NASA Astrophysics Data System (ADS)

    Gomez Lucas, Ignacio; Lag Brotons, Alfonso; Navarro-Pedreño, Jose; Belén Almendro-Candel, Maria; Jordán, Manuel M.; Bech, Jaume; Roca, Nuria

    2016-04-01

    The progressively higher water quality standards in Europe has led to the generation of large quantities of sewage sludge derived from wastewater treatment (Fytili and Zabaniotou 2008). Composting is an effective method to minimize these risks, as pathogens are biodegraded and heavy metals are stabilized as a result of organic matter transformations (Barker and Bryson 2002; Noble and Roberts 2004). Most of the studies about sewage sludge pollution are centred in medium and high polluted wastes. However, the aim of this study was to assess the effects on soil heavy metal content of a low polluted sewage sludge compost in order to identify an optimal application rate based in heavy metal concentration under a period of cultivation of a Mediterranean horticultural plant (Cynara carducnculus). The experiment was done between January to June: rainfall was 71 mm, the volume of water supplied every week was 10.5 mm, mean air temperatures was 14.2, 20.4 (maximum), and 9.2◦C (minimum). The soil was a clay-loam anthrosol (WRB 2006). The experimental plot (60 m2) was divided into five subplots with five treatments corresponding to 0, 2, 4, 6, and 8 kg compost/m2. Three top-soil (first 20 cm) samples from each treatment were taken (January, April and June) and these parameters were analysed: pH, electrical conductivity, organic matter and total content of heavy metals (microwave acid digestion followed by AAS-spectrometry determination). The results show that sewage sludge compost treatments increase the organic matter content and salinity (electrical conductivity of the soils) and diminish the pH. Cd and Ni total content in top-soil was affected and both slightly reduce their concentration. Pb and Cr show minor changes. In general, the application of this low polluted compost may affect the mobility of Cd and Ni due to the pH modification and the water added by irrigation along time but Pb and Cr remain their content in the top-soil. References Barker, A.V., and G.M. Bryson

  13. [Distribution and pollution assessment of heavy metals in soil of relocation areas from the Danjiangkou Reservoir].

    PubMed

    Zhang, Lei; Qin, Yan-Wen; Zheng, Bing-Hui; Shi, Yao; Han, Chao-Nan

    2013-01-01

    The aim of this article is to explore the pollution level and potential ecological risk of heavy metals in soil of the relocation areas from the Danjiangkou Reservoir. The contents and spatial distribution of Cd, Pb, Cu, Zn, Cr and As in soil of the relocation areas from the Danjiangkou Reservoir were analyzed. The integrated pollution index and potential ecological risk index were used to evaluate the contamination degree and potential ecological risk of these elements. The results indicated that the average contents of Cd, Pb, Cu, Zn, Cr and As in the samples were 0.61, 23.11, 58.25, 22.65, 58.99 and 16.95 mg x kg(-1), respectively. Compared with the background value of soils from Henan province, all these 6 elements except Zn were enriched to some extent, especially Cd. Similar patterns were observed for the spatial distribution of Cu, Zn, and Pb. Compared with the contents of heavy metals in surface sediments of the typical domestic reservoirs, Cd and As in soil of the relocation areas from the Danjiangkou Reservoir were heavily accumulated. The correlation analysis showed that there were significant positive correlations among Pb, Cu, and Zn. And there was also significant positive correlation between Cr and Pb. In contrast, negative correlation was found between Cr and As. To sum up, the comprehensive assessment results showed that Cd was the primary element with high ecological risk.

  14. Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil.

    PubMed

    Deng, Linjing; Zeng, Guangming; Fan, Changzheng; Lu, Lunhui; Chen, Xunfeng; Chen, Ming; Wu, Haipeng; He, Xiaoxiao; He, Yan

    2015-10-01

    Due to the emerging environmental issues related to heavy metals, concern about the soil quality of farming lands near manufacturing district is increasing. Investigating the function of soil microorganisms exposed to long-term heavy metal contamination is meaningful and important for agricultural soil utilization. This article studied the potential influence of several heavy metals on microbial biomass, activity, abundance, and community composition in arable soil near industrial estate in Zhuzhou, Hunan province, China. The results showed that soil organic contents (SOC) were significantly positive correlated with heavy metals, whereas dehydrogenase activity (DHA) was greatly depressed by the heavy metal stress. Negative correlation was found between heavy metals and basal soil respiration (BSR), and no correlation was found between heavy metals and microbial biomass content (MBC). The quantitative PCR (QPCR) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) analysis could suggest that heavy metal pollution has significantly decreased abundance of bacteria and fungi and also changed their community structure. The results could contribute to evaluate heavy metal pollution level in soil. By combining different environmental parameters, it would promote the better understanding of heavy metal effect on the size, structure, and activity of microbial community in arable soil.

  15. Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution.

    PubMed

    Mazurek, Ryszard; Kowalska, Joanna; Gąsiorek, Michał; Zadrożny, Paweł; Józefowska, Agnieszka; Zaleski, Tomasz; Kępka, Wojciech; Tymczuk, Maryla; Orłowska, Kalina

    2017-02-01

    In most cases, in soils exposed to heavy metals accumulation, the highest content of heavy metals was noted in the surface layers of the soil profile. Accumulation of heavy metals may occur both as a result of natural processes as well as anthropogenic activities. The quality of the soil exposed to heavy metal contamination can be evaluated by indices of pollution. On the basis of determined heavy metals (Pb, Zn, Cu, Mn, Ni and Cr) in the soils of Roztocze National Park the following indices of pollution were calculated: Enrichment Factor (EF), Geoaccumulation Index (Igeo), Nemerow Pollution Index (PINemerow) and Potential Ecological Risk (RI). Additionally, we introduced and calculated the Biogeochemical Index (BGI), which supports determination of the ability of the organic horizon to accumulate heavy metals. A tens of times higher content of Pb, Zn, Cu and Mn was found in the surface layers compared to their content in the parent material. This distribution of heavy metals in the studied soils was related to the influence of anthropogenic pollution (both local and distant sources of emission), as well as soil properties such as pH, organic carbon and total nitrogen content.

  16. Influence of the activity of Allobophora molleri in microbial activity and metal availability of arsenic-polluted soils.

    PubMed

    Tejada, Manuel; Gómez, Isidoro; Hernández, Teresa; García, Carlos

    2013-10-01

    We investigate the use of Allolobophora molleri as a biomarker of arsenic (As)-polluted soils and study the influence of A. molleri on the metabolic activity and microbial biodiversity of soil polluted with As. Because there are no experimental data available regarding the effect of the pollutant rate of As on A. molleri, we determined the LC₅₀ that was 143.5 mg As kg(-1). Sodium arsenite was added at two rates, equivalent to 143.5 and 71.8 mg As kg(-1) soil, to a soil that was then maintained with and without worms for 120 days. In addition, a nonpolluted soil without and with earthworms was used as the control. The As concentration in the soil was measured after 7 and 120 and the worm weight and As concentration after 120 days of exposure. Soil enzymatic activities and the structure of the soil microbial community, by analysis of phospholipid fatty acids, were determined. At the end of the experiment, the highest earthworm As contents were found in soils polluted with the highest rate of As. Earthworm weights significantly decreased in soil polluted with 143.5 or 71.8 mg As kg(-1), by 49.9 and 29.8% of initial weight, because the worm consumption rate decreased. These results suggest that A. molleri can be used as a good biomarker of the As toxicity. The As available fraction decreased in polluted soil with worms because the metal was accumulated in worm tissues. However, this assimilation was lower than other worms such as L. rubbellus or L. terrestris. Soil enzymatic activities were decreased in As-polluted soils but were increased significantly by the presence of earthworms. The earthworms modified the soil microbial diversity. In this respect, A. molleri significantly increased (p < 0.05) the bacterial and fungal populations. Soil As pollution decreased microbial biodiversity but to a lesser extent in the presence of A. molleri.

  17. Heavy metal pollution decreases microbial abundance, diversity and activity within particle-size fractions of a paddy soil.

    PubMed

    Chen, Junhui; He, Feng; Zhang, Xuhui; Sun, Xuan; Zheng, Jufeng; Zheng, Jinwei

    2014-01-01

    Chemical and microbial characterisations of particle-size fractions (PSFs) from a rice paddy soil subjected to long-term heavy metal pollution (P) and nonpolluted (NP) soil were performed to investigate whether the distribution of heavy metals (Cd, Cu, Pb and Zn) regulates microbial community activity, abundance and diversity at the microenvironment scale. The soils were physically fractionated into coarse sand, fine sand, silt and clay fractions. Long-term heavy metal pollution notably decreased soil basal respiration (a measurement of the total activity of the soil microbial community) and microbial biomass carbon (MBC) across the fractions by 3-45% and 21-53%, respectively. The coarse sand fraction was more affected by pollution than the clay fraction and displayed a significantly lower MBC content and respiration and dehydrogenase activity compared with the nonpolluted soils. The abundances and diversities of bacteria were less affected within the PSFs under pollution. However, significant decreases in the abundances and diversities of fungi were noted, which may have strongly contributed to the decrease in MBC. Sequencing of denaturing gradient gel electrophoresis bands revealed that the groups Acidobacteria, Ascomycota and Chytridiomycota were clearly inhibited under pollution. Our findings suggest that long-term heavy metal pollution decreased the microbial biomass, activity and diversity in PSFs, particularly in the large-size fractions.

  18. Application of aragonite shells for the removal of aqueous metals in polluted soils and wastewaters.

    NASA Astrophysics Data System (ADS)

    Bucca, M.; Köhler, S. J.; Dietzel, M.

    2009-04-01

    In the present study the use of coupled precipitation/dissolution processes for metal (Me) removal from polluted soils and waters by biogenic carbonate (CaCO3) shell surfaces is proposed, according to the following overall reaction: CaCO3 + Me2+ = MeCO3 + Ca2+ This reaction has been investigated at fixed experimental conditions using synthetic model systems consisting in columns, batch, and reactors (e.g. lead, zinc, and cadmium artificial solutions mixed with aragonite shells) that allowed quantifying the kinetics of the process of metal carbonate formation. The above mentioned process has the potential of being used in three different areas of water treatment: a) use of shells as a cheap and effective geologic barrier for contaminated ground or surface waters, b) use as a material in filter beds or fluidized bed for selective cleaning of waste water with the potential of partial metal recovery and c) use as seed crystals during the elimination of metals through precipitation with soda (Na2CO3). Acidic wastewaters containing several pollutants, including heavy and trace metals, are created during production of pesticides, paper, lubricating oil, batteries, acid/alkali, or in ship repair manufacturing, mines drainage systems, metalworking and metal plating industries. Biogenic shells are a waste product in many coastal countries and may thus be more favorable than other solid phases such as clays or zeolithes from an economic viewpoint. Our metal elimination study aims at setting up a low-cost effective elimination system for various types of metal rich waste waters. A number of experimental techniques such as batch, column and flow through reactors were used to optimize the metal removal efficiency in both synthetic and waste waters from the metal finishing industry. Solid liquid ratio, initial and final pH, metal concentration and combination of metals have been varied. Measurements of pH, metal concentration, conductivity and alkalinity were recorded over the

  19. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia.

    PubMed

    Marrugo-Negrete, José; Pinedo-Hernández, José; Díez, Sergi

    2017-04-01

    The presence of metals in agricultural soils from anthropogenic activities such as mining and agricultural use of metals and metal-containing compounds is a potential threat for human health through the food chain. In this study, the concentration of heavy metals in 83 agricultural soils irrigated by the Sinú River, in northern Colombia, affected by mining areas upstream and inundated during seasonal floods events were determined to evaluate their sources and levels of pollution. The average concentrations of Cu, Ni, Pb, Cd, Hg and Zn were 1149, 661, 0.071, 0.040, 0.159 and 1365mg/kg respectively and exceeded the world normal averages, with the exception of Pb and Cd. Moreover, all values surpassed the background levels of soils in the same region. Soil pollution assessment was carried out using contamination factor (CF), enrichment factor (EF), geoaccumulation index (Igeo) and a risk assessment code (RAC). According to these indexes, the soils show a high degree of pollution of Ni and a moderate to high contamination of Zn and Cu; whereas, Pb, Cd and Hg present moderate pollution. However, based on the RAC index, a low environmental risk is found for all the analysed heavy metals. Multivariate statistical analyses, principal component and cluster analyses, suggest that soil contamination was mainly derived from agricultural practices, except for Hg, which was caused probably by atmospheric and river flow transport from upstream gold mining. Finally, high concentrations of Ni indicate a mixed pollution source from agricultural and ferronickel mining activities.

  20. Copper and lead isotopic and metallic pollution record in soils from the Kombat mining area, Namibia

    NASA Astrophysics Data System (ADS)

    Mihaljevic, Martin; Ettler, Vojtech; Vanek, Ales; Chrastny, Vladislav; Kribek, Bohdan; Penizek, Vit; Sracek, Ondrej

    2013-04-01

    Copper (Cu) and lead (Pb) concentration, isotopic composition (206Pb/207Pb, 65Cu/63Cu) and speciation were studied in soils from the Kombat mining area. The Cu and Pb concentrations in the studied soils ranged between 21 mg/kg - 757 mg/kg, and 19 mg/kg - 815 mg/kg respectively. In the sequential extractions, the largest part of soil Cu appeared in the residual and reducible fractions and Pb was predominantly bound in reducible and residual fractions and was more mobile compared to Cu. Copper and Pb concentration are higher in soils close to the slime deposit. Concentration of both metals increased with increasing soil depth in irrigated and cultivated soils. In soils not contaminated by dust eroded from the slime deposit, Cu and Pb contents are not dependent on the soil depth. The Pb isotopic signatures (206Pb/207Pb) ranged between 1.15 - 1.21 in soils from the Kombat area. In most of soil samples, surface horizons exhibited lower 206Pb/207Pb ratio, which originates from the slime dust pollution (206Pb/207Pb ~ 1.15) compared to deeper soil horizons, with lithogenic Pb signatures (206Pb/207Pb > 1.2). Isotopic composition of Cu differs on contaminated and uncontaminated sites and cultivated and non-cultivated sites. The δ65Cu in the studied soil horizon ranged between -0.373 ‰ and 0.561 ‰. The most pronounced variations occurred in contaminated non cultivated and non-irrigated soils (0.529 ‰). The contaminated top horizons are enriched in isotopically heavier Cu (tailing materials), and δ65Cu decreased with depth. Irrigated (cultivated) and contaminated soils exhibited heavier Cu in the surface horizons (originated from tailing dust δ65Cu = 0.260), decrease of δ65Cu in Bt horizons (biological uptake of light isotope by crop, and their incorporation in this horizons) and increase of δ65Cu in Bc horizons. The Bc horizons of cultivated and irrigated Phaeozems are enriched in Mn nodules (0.2 - 1.5 cm diameter, prevailing Mn phase pyrochroite Mn(OH)2) which

  1. Comparison of soil heavy metal pollution caused by e-waste recycling activities and traditional industrial operations.

    PubMed

    He, Kailing; Sun, Zehang; Hu, Yuanan; Zeng, Xiangying; Yu, Zhiqiang; Cheng, Hefa

    2017-02-23

    The traditional industrial operations are well recognized as an important source of heavy metal pollution, while that caused by the e-waste recycling activities, which have sprouted in some developing countries, is often overlooked. This study was carried out to compare the status of soil heavy metal pollution caused by the traditional industrial operations and the e-waste recycling activities in the Pearl River Delta, and assess whether greater attention should be paid to control the pollution arising from e-waste recycling activities. Both the total contents and the chemical fractionation of major heavy metals (As, Cr, Cd, Ni, Pb, Cu, and Zn) in 50 surface soil samples collected from the e-waste recycling areas and 20 soil samples from the traditional industrial zones were determined. The results show that the soils in the e-waste recycling areas were mainly polluted by Cu, Zn, As, and Cd, while Cu, Zn, As, Cd, and Pb were the major heavy metals in the soils from the traditional industrial zones. Statistical analyses consistently show that Cu, Cd, Pb, and Zn in the surface soils from both types of sites were contributed mostly by human activities, while As, Cr, and Ni in the soils were dominated by natural background. No clear distinction was found on the pollution characteristic of heavy metals in the surface soils between the e-waste recycling areas and traditional industrial zones. The potential ecological risk posed by heavy metals in the surface soils from both types of sites, which was dominated by that from Cd, ranged from low to moderate. Given the much shorter development history of e-waste recycling and its largely unregulated nature, significant efforts should be made to crack down on illegal e-waste recycling and strengthen pollution control for related activities.

  2. Effectiveness of amendments on the spread and phytotoxicity of contaminants in metal-arsenic polluted soil.

    PubMed

    González, V; García, I; Del Moral, F; Simón, M

    2012-02-29

    A metal-arsenic polluted soil from sulphide-mine waste was treated, in all possible combinations, with two different amounts of marble sludge (98% CaCO3), compost (41% organic carbon), and Byferrox (70% Fe). Lixiviate and pore water from each treated and untreated soil were analysed, and lettuce-seed bioassays were performed. None of the treatments decreased the electrical conductivity of lixiviates or the concentrations of all pollutants found in both solutions. Marble sludge and compost increased the pH values and decreased the zinc, cadmium, copper, and lead concentrations in both solutions while increasing the arsenic concentrations in the lixiviates. Byferrox did not alter the physicochemical parameters or the concentrations of zinc, cadmium, copper, or lead in either solution but significantly decreased the arsenic concentrations in pore water. Compared with the Byferrox treatment, the mixture of marble sludge and Byferrox decreased redox potential values, increasing the arsenic concentrations in both solutions and the electrical conductivity of the pore water. All lixiviates were highly phytotoxic and seeds did not germinate. Pore-water phytotoxicity was related to electrical conductivity values and heavy-metal concentrations. The combination of marble sludge and compost was most effective at diminishing toxicity in lettuce. The soils treated with Byferrox, alone or mixed with marble sludge or compost, were the most phytotoxic.

  3. Environmental risk of heavy metal pollution and contamination sources using multivariate analysis in the soils of Varanasi environs, India.

    PubMed

    Singh, Shubhra; Raju, N Janardhana; Nazneen, Sadaf

    2015-06-01

    This study assessed soil pollution in the Varanasi environs of Uttar Pradesh in India. Assessing the concentration of potentially harmful heavy metals in the soils is imperative in order to evaluate the potential risks to human. To identify the concentration and sources of heavy metals and assess the soil environmental quality, 23 samples were collected from different locations covering dumping, road and agricultural area. The average concentrations of the heavy metals were all below the permissible limits according to soil quality guidelines except Cu (copper) and Pb (lead) in dumping and road soils. Soil heavy metal contamination was assessed on the basis of geoaccumulation index (Igeo), pollution index (PI) and integrated pollution index (IPI). The IPI of the metals ranged from 0.59 to 9.94, with the highest IPI observed in the dumping and road soils. A very significant correlation was found between Pb and Cu. The result of principal component analysis suggested that PC1 was mainly affected by the use of agrochemicals, PC2 was affected by vehicular emission and PC3 was affected by dumping waste. Meanwhile, PC4 was mainly controlled by parent material along with anthropogenic activities. Appropriate measures should be taken to minimize the heavy metal levels in soils and thus protect human health.

  4. The identification of 'hotspots' of heavy metal pollution in soil-rice systems at a regional scale in eastern China.

    PubMed

    Li, Wanlu; Xu, Binbin; Song, Qiujin; Liu, Xingmei; Xu, Jianming; Brookes, Philip C

    2014-02-15

    Chinese agricultural soils and crops are suffering from increasing damage from heavy metals, which are introduced from various pollution sources including agriculture, traffic, mining and especially the flourishing private metal recycling industry. In this study, 219 pairs of rice grain and corresponding soil samples were collected from Wenling in Zhejiang Province to identify the spatial relationship and pollution hotspots of Cd, Cu, Ni and Zn in the soil-rice system. The mean soil concentrations of heavy metals were 0.316 mg kg(-1) for Cd, 47.3 mg kg(-1) for Cu, 31.7 mg kg(-1) for Ni and 131 mg kg(-1) for Zn, and the metal concentrations in rice grain were 0.132 mg kg(-1) for Cd, 2.46 mg kg(-1) for Cu, 0.223 mg kg(-1) for Ni and 17.4 mg kg(-1) for Zn. The coefficient of variability (CV) of soil Cd, Cu and rice Cd were 147%, 146% and 180%, respectively, indicating an extensive variability. While the CVs of other metals ranged from 23.4% to 84.3% with a moderate variability. Kriging interpolation procedure and the Local Moran's I index detected the locations of pollution hotspots of these four metals. Cd and Cu had a very similar spatial pattern, with contamination hotspots located simultaneously in the northwestern part of the study area, and there were obvious hotspots for soil Zn in the north area, while in the northeast for soil Ni. The existence of hotspots may be due to industrialization and other anthropogenic activities. An Enrichment Index (EI) was employed to measure the uptake of heavy metals by rice. The results indicated that the accumulation and availability of heavy metals in the soil-rice system may be influenced by both soil heavy metal concentrations and soil physico-chemical properties. Cross-correlograms quantitatively illustrated that EIs were significantly correlated with soil properties. Soil pH and organic matter were the most important factors controlling the uptake of heavy metals by rice. As results, positive measures should be taken into

  5. A novel approach for soil contamination assessment from heavy metal pollution: a linkage between discharge and adsorption.

    PubMed

    Dong, Xiaoqing; Li, Chaolin; Li, Ji; Wang, Jiaxin; Liu, Suting; Ye, Bin

    2010-03-15

    Soil protection from heavy metal contamination requires scientific assessment on the linkage between site-specific pollutant discharge and environmental effects. However, this kind of linkage is usually disregarded due to the lack of assessment tools in environmental policies, e.g., some developed coastal cities in China have forced their highly polluting industries out to less developed interior areas without consideration of the impacts from pollution transfer. This paper developed a soil adsorption fraction (SAF) model to characterize the emissions-to-adsorption relationship between heavy metal emission and the adsorption by soil. Case studies were carried out for two adjacent southern cities in China, i.e., Guangzhou and Shaoguan. The results indicated that the average SAF of cadmium was 5.38 x 10(-3) for Shaoguan and 1.28 x 10(-3) for Guangzhou, i.e., cadmium released from Shaoguan threatened the soil environment 4.2 times of that from Guangzhou. Further analysis showed the polluting pathway and abundance of water resources were the main influencing factors on SAF. Soil contamination will be exaggerated by relocating heavy metal polluting industries from coastal areas to interior areas. The results should be useful to prompt site-specific policies on heavy metal pollution control.

  6. Trace metals accumulation in soil irrigated with polluted water and assessment of human health risk from vegetable consumption in Bangladesh.

    PubMed

    Islam, Md Atikul; Romić, Davor; Akber, Md Ali; Romić, Marija

    2017-01-18

    Trace metals accumulation in soil irrigated with polluted water and human health risk from vegetable consumption was assessed based on the data available in the literature on metals pollution of water, soil, sediment and vegetables from the cites of Bangladesh. The quantitative data on metal concentrations, their contamination levels and their pollution sources have not been systematically gathered and studied so far. The data on metal concentrations, sources, contamination levels, sample collection and analytical tools used were collected, compared and discussed. The USEPA-recommended method for health risk assessment was used to estimate human risk from vegetable consumption. Concentrations of metals in water were highly variable, and the mean concentrations of Cd, Cr, Cu and As in water were found to be higher than the FAO irrigation water quality standard. In most cases, mean concentrations of metals in soil were higher than the Bangladesh background value. Based on geoaccumulation index (I geo) values, soils of Dhaka city are considered as highly contaminated. The I geo shows Cd, As, Cu, Ni, Pb and Cr contamination of agricultural soils and sediments of the cities all over the Bangladesh. Polluted water irrigation and agrochemicals are identified as dominant sources of metals in agricultural soils. Vegetable contamination by metals poses both non-carcinogenic and carcinogenic risks to the public. Based on the results of the pollution and health risk assessments, Cd, As, Cr, Cu, Pb and Ni are identified as the priority control metals and the Dhaka city is recommended as the priority control city. This study provides quantitative evidence demonstrating the critical need for strengthened wastewater discharge regulations in order to protect residents from heavy metal discharges into the environment.

  7. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils.

    PubMed

    Ma, Ying; Rajkumar, Mani; Rocha, Inês; Oliveira, Rui S; Freitas, Helena

    2014-01-01

    The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria-plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils.

  8. Serpentine bacteria influence metal translocation and bioconcentration of Brassica juncea and Ricinus communis grown in multi-metal polluted soils

    PubMed Central

    Ma, Ying; Rajkumar, Mani; Rocha, Inês; Oliveira, Rui S.; Freitas, Helena

    2015-01-01

    The aim of this study was to assess the effects of inoculation of rhizosphere or endophytic bacteria (Psychrobacter sp. SRS8 and Pseudomonas sp. A3R3, respectively) isolated from a serpentine environment on the plant growth and the translocation and accumulation of Ni, Zn, and Fe by Brassica juncea and Ricinus communis on a multi-metal polluted serpentine soil (SS). Field collected SS was diluted to 0, 25, 50, and 75% with pristine soil in order to obtain a range of heavy metal concentrations and used in microcosm experiments. Regardless of inoculation with bacteria, the biomass of both plant species decreased with increase of the proportion of SS. Inoculation of plants with bacteria significantly increased the plant biomass and the heavy metal accumulation compared with non-inoculated control in the presence of different proportion of SS, which was attributed to the production of plant growth promoting and/or metal mobilizing metabolites by bacteria. However, SRS8 showed a maximum increase in the biomass of the test plants grown even in the treatment of 75% SS. In turn, A3R3 showed maximum effects on the accumulation of heavy metals in both plants. Regardless of inoculation of bacteria and proportion of SS, both plant species exhibited low values of bioconcentration factor (<1) for Ni and Fe. The inoculation of both bacterial strains significantly increased the translocation factor (TF) of Ni while decreasing the TF of Zn in both plant species. Besides this contrasting effect, the TFs of all metals were <1, indicating that all studied bacteria–plant combinations are suitable for phytostabilization. This study demonstrates that the bacterial isolates A3R3 and SRS8 improved the growth of B. juncea and R. communis in SS soils and have a great potential to be used as inoculants in phytostabilization scenarios of multi-metal contaminated soils. PMID:25601876

  9. Evaluating the potential use of Tamarix gallica L. for phytoremediation practices in heavy-metal polluted soils

    NASA Astrophysics Data System (ADS)

    Abou Jaoudé, R.; Pricop, A.; Laffont-Schwob, I.; Prudent, P.; Rabier, J.; Masotti, V.; de Dato, G.; De Angelis, P.

    2012-04-01

    The rapid growth of population, the increased urbanisation and the expansion of industrial activities have provoked an augmented occurrence of soil contamination by heavy-metals. Important sources of contamination are industrial, mining and military infrastructures, which are often abandoned without performing the appropriate reclamation work. In the Mediterranean Basin, where coastal areas are largely affected by human overexploitation, the use of species able to tolerate heavy-metals and other abiotic stresses may represent a low-cost solution for phytoremediation in these harsh environments. Tamarix gallica L. is a widespread species in coastal Mediterranean areas, showing a high adaptability to different environments and a high tolerance of adversity. With the objective of testing local species as candidates for phytoremediation practices in heavy-metal contaminated coastal soils, cuttings of T. gallica from a wild population around Marseille (France) were planted in pots containing: 1) control soil (loamy soil and sand (2/1)), 2) half-polluted soil (loamy soil, sand and heavy-metal polluted soil (1/1/1)), and 3) polluted soil (sand and heavy-metal polluted soil (1/2)). The contaminated soils were collected in the surrounding of a former lead industry of Marseille littoral and characterised by the presence of Fe, Pb, Zn, As and Al. After three months from planting, leaf functionality was evaluated by measuring leaf gas exchanges, leaf chlorophyll fluorescence and, chlorophyll, phenols, flavonoids and anthocyanins contents. SEM observations coupled to EDXS analysis were used to determine elements (Pb, As and Al) presence and location on the leaf surface and in leaf and root tissues. T. gallica was moderately affected by the presence of heavy-metals in the soil treatments. In fact, a reduction in stomatal conductance was only observed in plants grown in the polluted soil. This reduction did not cause a significant decrease in CO2 assimilation rates. Moreover, the

  10. Application of reconstructed background in assessing heavy metal pollution of soils near Jilin Section of the Songhua River, China

    NASA Astrophysics Data System (ADS)

    Hao, Libo; Tian, Mi; Zhao, Xinyun; Wang, Tong

    2017-01-01

    The distinguishing and evaluation of natural and anthropogenic sources of heavy metals in soils have always been the important issues in the field of environmental science. In this research, natural sources of heavy metals in soils are calculated according to the relationships between major oxides and heavy metals. The individual sample has independent backgrounds of heavy metals, which is more reasonable. If the single environmental background is used as baseline, anomalies in regions with low background might be decreased or hided and those in regions with high background will be overstated. In this study, enrichment factor is defined as the ratio of measured concentration and reconstructed background of heavy metals, which is of specific significance in practical applications with no assumptions. The agricultural soils near Jilin section of the Songhua River are polluted by Hg seriously with more than half samples polluted greatly. And the soils are polluted by Cd moderately. A few samples are polluted by Zn moderately. The other heavy metals in soils are almost in the level of background with little human disturbance.

  11. Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale.

    PubMed

    Wang, Qi; Xie, Zhiyi; Li, Fangbai

    2015-11-01

    This study aims to identify and apportion multi-source and multi-phase heavy metal pollution from natural and anthropogenic inputs using ensemble models that include stochastic gradient boosting (SGB) and random forest (RF) in agricultural soils on the local scale. The heavy metal pollution sources were quantitatively assessed, and the results illustrated the suitability of the ensemble models for the assessment of multi-source and multi-phase heavy metal pollution in agricultural soils on the local scale. The results of SGB and RF consistently demonstrated that anthropogenic sources contributed the most to the concentrations of Pb and Cd in agricultural soils in the study region and that SGB performed better than RF.

  12. The Utility of a Consortium of Microbial Enzymes as an Early Warning Tool for Monitoring Soil Pollution with Heavy Metals

    NASA Astrophysics Data System (ADS)

    Wahsha, Mohammad; Bini, Claudio; Fornasier, Flavio; Al-Rshaidat, Mamoon M. D.

    2013-04-01

    Potentially Toxic Substances (PTS) in soils are of increasingly growing concern worldwide. Heavy metals are acting as one of the most serious groups of environmental contaminants, and their release into the environment has strongly increased over the last decades. Heavy metals can cause acute and long-term toxic effects on both human health and the ecosystems around. Toxic effects of heavy metals reach soil biota in general and affect the microbial community biomass and metabolic activities related to such communities. Although all members of the soil biota respond relatively to soil pollution, microbial communities are considered to be the first and most swift responders to such environmental pollutants. This study focused on the state of the art of developing a consortium of different enzymes and how their collective activities could be used for the assessment and monitoring of soil in response to heavy metal pollution. By measuring microbial community biomass and activity from soil samples from Imperina Valley; an abandoned mine in Italy. Measurements covered heavy metal concentrations; soil physiochemical parameters, and enzymatic activity and biomass of soil's microbial community. Results showed significant contamination at the sampled sites with different heavy metals (p ≤ 0.05). With averages above the allowed limits in Italy: 2.12 mg Cd kg- 1, 2.33 mg Cu kg- 1, 9.63 mg Pb kg- 1, 1.23 mg Zn kg- 1 and 3.05 mg Fe kg- 1. Enzymatic activities varied widely among the sampled sites, and were positively correlated with organic matter content. Strong positive correlation was observed between leucyl aminopeptidase/chitinase, leucyl aminopeptidase/β-glucosidase, and β-glucosidase/chitinase, (0.999), (0.992), and (0.992), respectively. The above enzymes showed positive linear correlation with the organic carbon content of the sampled soils, with alkaline phosphatase showing the most significant correlation (0.726) among all. This study clearly highlights in situ

  13. Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil.

    PubMed

    Jiang, Chun-yu; Sheng, Xia-fang; Qian, Meng; Wang, Qing-ya

    2008-05-01

    A heavy metal-resistant bacterial strain was isolated from heavy metal-contaminated soils and identified as Burkholderia sp. J62 based on the 16S rDNA gene sequence analysis. The heavy metal- and antibiotic resistance, heavy metal solubilization of the isolate were investigated. The isolate was also evaluated for promoting plant growth and Pb and Cd uptakes of the plants from heavy metal-contaminated soils in pot experiments. The isolate was found to exhibit different multiple heavy metal and antibiotic resistance characteristics. Atomic absorption spectrometer analysis showed increased bacterial solubilization of lead and cadmium in solution culture and in soils. The isolate produced indole acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. The isolate also solubilized inorganic phosphate. Inoculation with the isolate was found to significantly (p<0.05) increase the biomass of maize and tomato plants. Increase in tissue Pb and Cd contents varied from 38% to 192% and from 5% to 191% in inoculated plants growing in heavy metal-contaminated soils compared to the uninoculated control, respectively. These results show that heavy metal-solubilizing and plant growth promoting bacteria are important for plant growth and heavy metal uptake which may provide a new microbial enhanced-phytoremediation of metal-polluted soils.

  14. Lithological and land-use based assessment of heavy metal pollution in soils surrounding a cement plant in SW Europe.

    PubMed

    Cutillas-Barreiro, Laura; Pérez-Rodríguez, Paula; Gómez-Armesto, Antía; Fernández-Sanjurjo, María José; Álvarez-Rodríguez, Esperanza; Núñez-Delgado, Avelino; Arias-Estévez, Manuel; Nóvoa-Muñoz, Juan Carlos

    2016-08-15

    We study the influence of phasing out a cement plant on the heavy metal (Hg, Pb and Cr) content in the surrounding soils, taking into account factors often neglected, such as contributions due to local lithology or land use. The range of total Hg was 10-144µg kg(-1), reaching up to 41 and 145mgkg(-1) for total contents of Pb and Cr, respectively. Forest soils showed higher concentration of Hg than prairie soils, indicating the importance of land use on the accumulation of volatile heavy metals in soils. In forest soils, total Hg showed a trend to decrease with soil depth, whereas in prairie soils the vertical pattern of heavy metal concentrations was quite homogeneous. In most cases, the distance to the cement plant was not a factor of influence in the soils content of the analyzed heavy metals. Total Pb and Cr contents in soils nearby the cement plant were quite similar to those found in the local lithology, resulting in enrichment factor values (EF's) below 2. This suggests that soil parent material is the main source of these heavy metals in the studied soils, while the contribution of the cement plant to Pb and Cr soil pollution was almost negligible. On the contrary, the soils surrounding the cement plant accumulate a significant amount of Hg, compared to the underlying lithology. This was especially noticeable in forest soils, where Hg EF achieved values up to 36. These results are of relevance, bearing in mind that Hg accumulation in soils may be an issue of environmental concern, particularly in prairie soils, where temporal flooding can favor Hg transformation to highly toxic methyl-Hg. In addition, the concurrence of acid soils and total-Cr concentrations in the range of those considered phytotoxic should be also stressed.

  15. Field isotopic study of lead fate and compartmentalization in earthworm-soil-metal particle systems for highly polluted soil near Pb recycling factory.

    PubMed

    Goix, Sylvaine; Mombo, Stéphane; Schreck, Eva; Pierart, Antoine; Lévêque, Thibaut; Deola, Frédéric; Dumat, Camille

    2015-11-01

    Earthworms are important organisms in soil macrofauna and play a key role in soil functionality, and consequently in terrestrial ecotoxicological risk assessments. Because they are frequently observed in soils strongly polluted by metals, the influence of earthworm bioturbation on Pb fate could therefore be studied through the use of Pb isotopes. Total Pb concentrations and isotopic composition ((206)Pb, (207)Pb and (208)Pb) were then measured in earthworms, casts and bulk soils sampled at different distance from a lead recycling factory. Results showed decreasing Pb concentrations with the distance from the factory whatever the considered matrix (bulk soils, earthworm bodies or cast samples) with higher concentrations in bulk soils than in cast samples. The bivariate plot (208)Pb/(206)Pb ratios versus (206)Pb/(207)Pb ratios showed that all samples can be considered as a linear mixing between metallic process particulate matter (PM) and geochemical Pb background. Calculated anthropogenic fraction of Pb varied between approximately 84% and 100%. Based on Pb isotopic signatures, the comparison between casts, earthworms and bulk soils allowed to conclude that earthworms preferentially ingest the anthropogenic lead fraction associated with coarse soil organic matter. Actually, soil organic matter was better correlated with Pb isotopic ratios than with Pb content in soils. The proposed hypothesis is therefore a decrease of soil organic matter turnover due to Pb pollution with consequences on Pb distribution in soils and earthworm exposure. Finally, Pb isotopes analysis constitutes an efficient tool to study the influence of earthworm bioturbation on Pb cycle in polluted soils.

  16. Assessment of airborne heavy metal pollution in soil and lichen in the Meric-Ergene Basin, Turkey.

    PubMed

    Hanedar, Asude

    2015-01-01

    In the present study, accumulations of airborne heavy metals in lichen and soil samples were determined on the basis of pollutant source groups by conducting Zinc (Zn), Lead (Pb), Iron (Fe), Copper (Cu), Chromium (Cr), Cadmium (Cd), Arsenic (As), Cobalt (Co) and Manganese (Mn) analyses on a total of 48 samples collected in the periods of May 2014 and August 2014 from 12 sampling points in a heavily industrialized area, a mixed industrial and residential area, an agricultural area and a background area in the Meric-Ergene Basin, and pH and total organic carbon determination was carried out on soil samples. With the obtained data, heavy metal levels were statistically assessed in detail by being associated with each other and with their probable sources; the accumulations found in soil and lichen samples were compared and spatial variances were set forth. Based on the results, it was observed that heavy metal pollution is at high levels particularly in industrialized areas, and that the differences between the cleanest and most polluted levels determined from soil samples for As, Cr, Cd and Pb reach 10 folds. The highest levels of all heavy metals were determined in both the soil and lichen samples collected from the areas in the south-east part of the region, where industrial activities and particularly leather and chemical industries are concentrated. With the comparison of the indication properties of soil and lichen, it was determined that significant and comparable results can be observed in both matrices.

  17. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze Delta of China.

    PubMed

    Xu, Xianghua; Zhao, Yongcun; Zhao, Xiaoyan; Wang, Yudong; Deng, Wenjing

    2014-10-01

    The rapid industrialization and urbanization in developing countries have increased pollution by heavy metals, which is a concern for human health and the environment. In this study, 230 surface soil samples (0-20cm) were collected from agricultural areas of Jiaxing, a rapidly industrializing area in the Yangtze Delta of China. Sequential Gaussian simulation (SGS) and multivariate factorial kriging analysis (FKA) were used to identify and explore the sources of heavy metal pollution for eight metals (Cu, Zn, Pb, Cr, Ni, Cd, Hg and As). Localized hot-spots of pollution were identified for Cu, Zn, Pb, Cr, Ni and Cd with area percentages of 0.48 percent, 0.58 percent, 2.84 percent, 2.41 percent, 0.74 percent, and 0.68 percent, respectively. The areas with Hg pollution covered approximately 38 percent whereas no potential pollution risk was found for As. The soil parent material and point sources of pollution had significant influences on Cr, Ni, Cu, Zn and Cd levels, except for the influence of agricultural management practices also accounted for micro-scale variations (nugget effect) for Cu and Zn pollution. Short-range (4km) diffusion processes had a significant influence on Cu levels, although they did not appear to be the dominant sources of Zn and Cd variation. The short-range diffusion pollution arising from current and historic industrial emissions and urbanization, and long-range (33km) variations in soil parent materials and/or diffusion jointly determined the current concentrations of soil Pb. The sources of Hg pollution risk may be attributed to the atmosphere deposition of industrial emission and historical use of Hg-containing pesticides.

  18. Nutrient and pollutant metals within earthworm residues are immobilized in soil during decomposition.

    PubMed

    Richardson, J B; Renock, D J; Görres, J H; Jackson, B P; Webb, S M; Friedland, A J

    2016-10-01

    Earthworms are known to bioaccumulate metals, making them a potential vector for metal transport in soils. However, the fate of metals within soil upon death of earthworms has not been characterized. We compared the fate of nutrient (Ca, Mg, Mn) and potentially toxic (Cu, Zn, Pb) metals during decomposition of Amynthas agrestis and Lumbricus rubellus in soil columns. Cumulative leachate pools, exchangeable pools (0.1 M KCl + 0.01 M acetic acid extracted), and stable pools (16 M HNO3 + 12 M HCl extracted) were quantified in the soil columns after 7, 21, and 60 days of decomposition. Soil columns containing A. agrestis and L. rubellus had significantly higher cumulative leachate pools of Ca, Mn, Cu, and Pb than Control soil columns. Exchangeable and stable pools of Cu, Pb, and Zn were greater for A. agrestis and L. rubellus soil columns than Control soil columns. However, we estimated that > 98 % of metals from earthworm residues were immobilized in the soil in an exchangeable or stable form over the 60 days using a mass balance approach. Micro-XRF images of longitudinal thin sections of soil columns after 60 days containing A. agrestis confirm metals immobilization in earthworm residues. Our research demonstrates that nutrient and toxic metals are stabilized in soil within earthworm residues.

  19. Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions.

    PubMed

    Kapusta, Paweł; Sobczyk, Łukasz

    2015-12-01

    We studied enchytraeid communities in several habitats polluted by heavy metals from Zn-Pb mining and smelting activities. We sampled 41 sites that differed in the type of substratum (carbonate rock, metal-rich carbonate mining waste, siliceous sand) and land management (planting Scots pine, topsoiling, leaving to natural succession), and the distance from the smelter. Our main aims were to determine which pollution variables and natural factors most influenced enchytraeid species composition, richness and density, and examine what was the effect of planting Scots pine (reclamation) on enchytraeid communities. The soils harboured on average 1 to 5 enchytraeid species and 700 to 18,300 individuals per square metre, depending on the habitat. These figures were generally lower than those reported from unpolluted regions. Redundancy and multiple regression analyses confirmed the negative impact of heavy metal pollution on both enchytraeid community structure and abundance. Among pollution variables, the distance from the smelter best explained the variation in enchytraeid communities. The concentrations of heavy metals in the soil had less (e.g. total Pb and exchangeable Zn) or negligible (water-soluble forms) explanatory power. Natural soil properties were nearly irrelevant for enchytraeids, except for soil pH, which determined the species composition. Plant species richness was an important explanatory variable, as it positively affected most parameters of enchytraeid community. The results of two-by-two factorial comparisons (planting Scots pine vs. natural succession; carbonate mining waste vs. siliceous sand) suggest that reclamation can improve soil quality for biota, since it increased the diversity and abundance of enchytraeids; this effect was not dependent on the type of substratum. In conclusion, enchytraeids responded negatively to heavy metal pollution and their response was consistent and clear. These animals can be used as indicators of metal toxicity

  20. Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile.

    PubMed

    Ginocchio, Rosanna; Carvallo, Gastón; Toro, Ignacia; Bustamante, Elena; Silva, Yasna; Sepúlveda, Nancy

    2004-01-01

    Soil chemical changes produced by metal smelters have mainly been studied on a large scale. In terms of plant survival, determination of small scale variability may be more important because less toxic microhabitats may represent safe sites for successful recruitment and thus for plant survival. Three dominant microhabitats (open spaces and areas below the canopy of Sphaeralcea obtusiloba and Baccharis linearis shrubs) were defined in a heavily polluted area near a copper smelter and characterised in terms of microclimate, general soil chemistry, total and extractable metal concentrations in the soil profile (A0 horizon, 0-5 and 15-20 cm depth), and seedling densities. Results indicated a strong variability in microclimate and soil chemistry not only in the soil profile but also among microhabitats. Air/soil temperatures, radiation and wind speed were much lower under the canopy of shrubs, particularly during the plant growth season. Soil acidification was detected on top layers (0-5 cm depth) of all microhabitats while higher concentrations of N, Cu and Cd were detected on litter and top soil layers below shrubs when compared to open spaces; however, high organic matter content below shrubs decreased bioavailability of metals. Plant recruitment was concentrated under shrub canopies; this may be explained as a result of the nursery effect exerted by shrubs in terms of providing a more favourable microclimate, along with better soil conditions in terms of macronutrients and metal bioavailability.

  1. Pollution of intensively managed greenhouse soils by nutrients and heavy metals in the Yellow River Irrigation Region, Northwest China.

    PubMed

    Kong, Xiaole; Cao, Jing; Tang, Rangyun; Zhang, Shengqiang; Dong, Fang

    2014-11-01

    The present study aimed to assess the potential ecological risk of heavy metals and nutrient accumulation in polytunnel greenhouse soils in the Yellow River irrigation region (YRIR), Northwest China, and to identify the potential sources of these heavy metals using principal component analysis. Contents of available nitrogen (AN), phosphorus (AP), and potassium (AK) in the surface polytunnel greenhouse soils (0-20 cm) varied from 13.42 to 486.78, from 39.10 to 566.97, and from 21.64 to 1,156.40 mg kg(-1), respectively, as well as AP, soil organic matter (SOM) and AK contents tended to increase significantly at the 0-20- and 20-40-cm soil layers. Heavy metal accumulations occurred in the polytunnel greenhouse soils as compared to arable soils, especially at a depth of 20 cm where Cd, Zn and Cu contents were significantly higher than arable soil. Cd and As were found to be the two main polluting elements in the greenhouse soils because their contents exceeded the thresholds established for greenhouse vegetable production HJ333-2006 in China and the background of Gansu province. It has been shown that Cd, Cu, Pb and Zn at the 0-20-cm soil layer were derived mainly from agricultural production activities, whereas contents of Cr and Ni at the same soil layer were determined by 'natural' factors and As originated from natural sources, deposition and irrigation water.

  2. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.

    PubMed

    Jelusic, Masa; Lestan, Domen

    2014-03-15

    We applied a multi-level approach assessing the quality, toxicity and functioning of Pb, Zn and Cd contaminated/remediated soil from a vegetable garden in Meza Valley, Slovenia. Contaminated soil was extracted with EDTA and placed into field experimental plots equipped with lysimeters. Soil properties were assessed by standard pedological analysis. Fractionation and leachability of toxic metals were analyzed by sequential extraction and TCLP and metal bioaccessibility by UBM tests. Soil respiration and enzyme activities were measured as indicators of soil functioning. Remediation reduced the metal burden by 80, 28 and 72% for Pb, Zn and Cd respectively, with a limited impact on soil pedology. Toxic metals associated with labile soil fractions were largely removed. No shifts between labile and residual fractions were observed during the seven months of the experiment. Initial metal leaching measured through lysimeters eventually ceased. However, remediation significantly diminished potential soil enzyme activity and no trends were observed of the remediated soil recovering its biological properties. Soil washing successfully removed available forms of Pb, Zn and Cd and thus lowered the human and environmental hazards of the remediated soil; however, remediation also extracted the trace elements essential for soil biota. In addition to reduced water holding capacity, soil health was not completely restored.

  3. Assessment of heavy metal pollution and human health risk in urban soils of steel industrial city (Anshan), Liaoning, Northeast China.

    PubMed

    Qing, Xiao; Yutong, Zong; Shenggao, Lu

    2015-10-01

    The purpose of this study was to determine the concentrations and health risk of heavy metals in urban soils from a steel industrial district in China. A total of 115 topsoil samples from Anshan city, Liaoning, Northeast China were collected and analyzed for Cr, Cd, Pb, Zn, Cu, and Ni. The geoaccumulation index (Igeo), pollution index (PI), and potential ecological risk index (PER) were calculated to assess the pollution level in soils. The hazard index (HI) and carcinogenic risk (RI) were used to assess human health risk of heavy metals. The average concentration of Cr, Cd, Pb, Zn, Cu, and Ni were 69.9, 0.86, 45.1, 213, 52.3, and 33.5mg/kg, respectively. The Igeo and PI values of heavy metals were in the descending order of Cd>Zn>Cu>Pb>Ni>Cr. Higher Igeo value for Cd in soil indicated that Cd pollution was moderate. Pollution index indicated that urban soils were moderate to highly polluted by Cd, Zn, Cu, and Pb. The spatial distribution maps of heavy metals revealed that steel industrial district was the contamination hotspots. Principal component analysis (PCA) and matrix cluster analysis classified heavy metals into two groups, indicating common industrial sources for Cu, Zn, Pb, and Cd. Matrix cluster analysis classified the sampling sites into four groups. Sampling sites within steel industrial district showed much higher concentrations of heavy metals compared to the rest of sampling sites, indicating significant contamination introduced by steel industry on soils. The health risk assessment indicated that non-carcinogenic values were below the threshold values. The hazard index (HI) for children and adult has a descending order of Cr>Pb>Cd>Cu>Ni>Zn. Carcinogenic risks due to Cr, Cd, and Ni in urban soils were within acceptable range for adult. Carcinogenic risk value of Cr for children is slightly higher than the threshold value, indicating that children are facing slight threat of Cr. These results provide basic information of heavy metal pollution control

  4. Toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus changes under a global warming perspective: Variations in air temperature and soil moisture content.

    PubMed

    González-Alcaraz, M Nazaret; van Gestel, Cornelis A M

    2016-12-15

    This study aimed to assess how the current global warming perspective, with increasing air temperature (20°C vs. 25°C) and decreasing soil moisture content (50% vs. 30% of the soil water holding capacity, WHC), affected the toxicity of a metal(loid)-polluted agricultural soil to Enchytraeus crypticus. Enchytraeids were exposed for 21d to a dilution series of the agricultural soil with Lufa 2.2 control soil under four climate situations: 20°C+50% WHC (standard conditions), 20°C+30% WHC, 25°C+50% WHC, and 25°C+30% WHC. Survival, reproduction and bioaccumulation of As, Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn were obtained as endpoints. Reproduction was more sensitive to both climate factors and metal(loid) pollution. High soil salinity (electrical conductivity~3dSm(-1)) and clay texture, even without the presence of high metal(loid) concentrations, affected enchytraeid performance especially at drier conditions (≥80% reduction in reproduction). The toxicity of the agricultural soil increased at drier conditions (10% reduction in EC10 and EC50 values for the effect on enchytraeid reproduction). Changes in enchytraeid performance were accompanied by changes in As, Fe, Mn, Pb and Zn bioaccumulation, with lower body concentrations at drier conditions probably due to greater competition with soluble salts in the case of Fe, Mn, Pb and Zn. This study shows that apart from high metal(loid) concentrations other soil properties (e.g. salinity and texture) may be partially responsible for the toxicity of metal(loid)-polluted soils to soil invertebrates, especially under changing climate conditions.

  5. Heavy metal uptake and leaching from polluted soil using permeable barrier in DTPA-assisted phytoextraction.

    PubMed

    Zhao, Shulan; Shen, Zhiping; Duo, Lian

    2015-04-01

    Application of sewage sludge (SS) in agriculture is an alternative technique of disposing this waste. But unreasonable application of SS leads to excessive accumulation of heavy metals in soils. A column experiment was conducted to test the availability of heavy metals to Lolium perenne grown in SS-treated soils following diethylene triamine penta acetic acid (DTPA) application at rates of 0, 10 and 20 mmol kg(-1) soil. In order to prevent metal leaching in DTPA-assisted phytoextraction process, a horizontal permeable barrier was placed below the treated soil, and its effectiveness was also assessed. Results showed that DTPA addition significantly increased metal uptake by L. perenne shoots and metal leaching. Permeable barriers increased metal concentrations in plant shoots and effectively decreased metal leaching from the treated soil. Heavy metals in SS-treated soils could be gradually removed by harvesting L. perenne many times in 1 year and adding low dosage of DTPA days before each harvest.

  6. Ecotoxicological characteristic of a soil polluted by radioactive elements and heavy metals before and after its bioremediation

    NASA Astrophysics Data System (ADS)

    Georgiev, P.; Groudev, S.; Spasova, I.; Nikolova, M.

    2012-04-01

    Cinnamon soils from southeastern Bulgaria are heavily polluted with radionuclides (uranium, radium) and toxic heavy metals (copper and lead) due to the winds transportation of fine particles from flotation dumps to the soil surface. As a result of this, the polluted soils are characterized by a slightly alkaline pH (7.82) and positive net neutralization potential (+136.8 kg CaCO3/t). A fresh sample of cinnamon soil was subjected to remediation under laboratory conditions in four lysimeters each containing 70 kg of soil. The preliminary study revealed that most of the pollutants were presented as carbonate, reducible and oxidisable mobility fractions, i.e. pollutants ions were specifically adsorbed by carbonate and ferric iron minerals or were capsulated in sulfides. The applied soil treatment was connected with leaching of the pollutants located mainly in the horizon A, their transportation through the soil profile as soluble forms, and their precipitation in the rich-in-clay subhorizon B3. The efficiency of leaching depended on the activity of the indigenous microflora and on the chemical processes connected with solubilization of pollutants and formation of stable complexes with some organic compounds, chloride and hydrocarbonate ions. These processes were considerably enhanced by adding hay to the horizon A and irrigating the soil with water solutions containing the above-mentioned ions and some nutrients. After 18 months of treatment, each of the soil profiles in the different lysimeters was divided into five sections reflecting the different soil layers. The soil in these sections was subjected to a detailed chemical analysis and the data obtained were compared with the relevant data obtained before the start of the experiment. The best leaching of pollutants from horizon A was measured in the variants where soil mulching was applied. For example, the best leaching of lead (54.5 %) was found in the variant combining this technique and irrigation with solutions

  7. [Transportation and risk assessment of heavy metal pollution in water-soil from the Riparian Zone of Daye Lake, China].

    PubMed

    Zhang, Jia-quan; Li, Xiu; Zhang, Quan-fa; Li, Qiong; Xiao, Wen-sheng; Wang, Yong-kui; Zhang, Jian-chun; Gai, Xi-guang

    2015-01-01

    Each 20 water samples and soil samples (0-10 cm, 10-20 cm) were collected from the riparian zone of Daye Lake in dry season during March 2013. Heavy metals (Cu, Ph, Cd, Zn) have been detected by flame atomic absorption spectrometric (FAAS). The results showed that the average concentrations of Cu, Pb, Cd, Zn in the water were 7.14, 25.94, 15.72 and 37.58 microg x L(-1), respectively. The concentration of Cu was higher than the five degree of the surface water environment quality standard. The average concentrations of Cu, Pb, Cd, Zn in soil(0-10 cm) were 108.38, 53.92, 3.55, 139.26 mg x kg(-1) in soil (10-20 cm) were 93.00, 51.72, 2.08, 171.00 mg x kg(-1), respectively. The Cd concentrations were higher than the three grade value of the national soil environment quality standard. The transportation of Pb from soil to water was relatively stable, and Zn was greatly influenced by soil property and the surrounding environment from soil to water. The transformation of heavy metal in west riparian zone was higher than that of east riparian zone. The potential environmental risk was relatively high. Cu, Pb, Cd, Zn were dominated by residue fraction of the modified BCR sequential extraction method. The overall migration order of heavy metal element was: Pb > Cu > Cd > Zn. There were stronger transformation and higher environmental pollution risk of Cu, Pb. The index of assessment and potential ecological risk coefficient indicated that heavy metal pollution in soil (0-10 cm) was higher than the soil (10-20 cm), Cd was particularly serious.

  8. Resilience of the rhizosphere Pseudomonas and ammonia-oxidizing bacterial populations during phytoextraction of heavy metal polluted soil with poplar.

    PubMed

    Frey, Beat; Pesaro, Manuel; Rüdt, Andreas; Widmer, Franco

    2008-06-01

    We assessed the effects of phytoextraction on the dynamics of Pseudomonas spp. and ammonia-oxidizing bacterial populations in a heavy metal (HM) polluted soil. Hybrid poplars were grown in two-compartment root containers with a medium history (> 4 years) of HM pollution for 13 weeks. Bulk and poplar rhizosphere soils were analysed by denaturing gradient gel electrophoresis (DGGE) of Pseudomonas (sensu stricto) 16S rRNA and amoA gene fragments. DGGE patterns revealed that Pseudomonas and amoA-containing populations in the contaminated soils were markedly different from those in the uncontaminated soils. Pseudomonas and amoA profiles appeared to be stable over time in the bulk soils. In contrast, contaminated rhizosphere soils revealed a clear shift of populations with removal of HM becoming similar or at least shifted to the populations of the uncontaminated soils. The effect of phytoextraction was, however, not evident in the bulk samples, which still contained large amounts of HM. Cloning and sequencing of dominant DGGE bands revealed that Pseudomonas were phylogenetically related to the Pseudomonas fluorescens cluster and the amoA sequences to Nitrosospira spp. At the last sampling, major prominent band sequences from contaminated rhizosphere soils were identical to sequences obtained from uncontaminated rhizosphere soils, indicating that the populations were dominated by the same phylotypes. This study suggests that two taxonomically different populations are able to recover after the relief of HM stress by phytoextraction practices, whereas bulk microbial activities still remained depressed.

  9. Heavy metal accumulation and ecosystem engineering by two common mine site-nesting ant species: implications for pollution-level assessment and bioremediation of coal mine soil.

    PubMed

    Khan, Shbbir R; Singh, Satish K; Rastogi, Neelkamal

    2017-04-01

    The present study focuses on the abundance, heavy metal content, and the impact of ecosystem engineering activities of two coal mine site-inhabiting ant species, Cataglyphis longipedem and Camponotus compressus. The abundance of Ct. longipedem increased while that of C. compressus decreased, with increasing soil pollution. Correspondence analysis reveals a close association between soil heavy metal concentrations and Ct. longipedem abundance, but this association is lacking in the case of C. compressus. Cataglyphis ants which occupy stress-characterized niches appear to be pre-adapted to tolerate heavy metal pollution. Higher concentrations of Zn and Mn in Ct. longipedem may contribute to the strengthening of the cuticular structures, necessary for nest excavation in the hard, arid soil and for single load carrying. C. compressus ants appear to be pollution sensitive. Their higher Fe content may be related to metal uptake via plant-derived liquids and species-specific regulatory mechanisms. The metal pollution index and biota-to-soil accumulation factors, calculated by using the ant body metal content of the two species, indicate an overall decrease of soil heavy metal concentrations with increase of the site age, which reflects the degree of pollution related to the mine site age. The concentrations of total and available heavy metals (Fe, Zn, Mn, Pb, and Cu) were significantly lower in the ant nest debris soil as compared to the reference soil. The results of the present study highlight the role of ants as bioindicators and in bioremediation of contaminated soil.

  10. Impacts of one century of wastewater discharge on soil transformation through ferrolysis and related metal pollutant distributions.

    PubMed

    van Oort, Folkert; Thiry, Médard; Foy, Eddy; Fujisaki, Kenji; Delarue, Ghislaine; Dairon, Romain; Jongmans, Toine

    2017-07-15

    Discharge of wastewater leading to notable soil surface contamination is widely reported. But few works highlight the fast dynamics of soils and their morphological transformations that may result from such anthropogenic activities. Near Paris (France), sandy Luvisols were irrigated with urban wastewater since the 1890s. Within and outside the discharge area, the soil cover presents decameter-sized cryogenic structures. We studied macro morphological soil characteristics, soil chemistry and clay mineralogy on selected bulk samples, as well as contemporary pedofeatures and related metal pollutant distribution patterns in soil thin sections from subsurface horizons. Annual repetitive waterlogging and drying cycles initiated a hydromorphic soil forming process: ferrolysis, based on iron reduction producing alkalinity under anaerobic conditions, and iron oxidation producing acidity in aerobic conditions. Its intensity was enhanced at the top of thick clay-rich B-horizons in the center of cryogenic structures. The polygonal soil structure favored the evacuating of soil water and alkalinity. Within one century, such recurrent alternating redox conditions have led to clay destruction, removal of iron, strong bleaching of the E horizon and formation of abiotic Fe-rich pedofeatures at depth. In addition, between anaerobic clay-rich B and aerated E or C horizons, the contrasting hydrodynamic conditions enhanced manganese (Mn) oxidizing fungal activity and the formation of biotic Mn-rich pedofeatures. Both types of pedofeatures trapped metal pollutants in deep soil horizons. In our work, the impacts of centenary anthropogenic activity were amplified by millenary cryogenic structures, acting together to promote fast soil dynamics, within a few decades.

  11. [Pollution Assessment and Spatial Distribution Characteristics of Heavy Metals in Soils of Coal Mining Area in Longkou City].

    PubMed

    Liu, Shuo; Wu, Quan-yuan; Cao, Xue-jiang; Wang, Ji-ning; Zhang, Long-long; Cai, Dong-quan; Zhou, Li-yuan; Liu, Na

    2016-01-15

    The present paper takes the coal mining area of Longkou City as the research area. Thirty-six topsoil (0-20 cm) samples were collected and the contents of 5 kinds of heavy metals were determined, including Cd, As, Ni, Ph, Cr. Geo-statistics analysis was used to analyze the spatial distribution of heavy metals. Principal component analysis (PCA) was used to explore the pollution sources of heavy metals and the degree of heavy metals pollution was evaluated by weighted average comprehensive pollution evaluation method. The results showed that enrichment phenomenon was significant for the 5 kinds of heavy metals. Taking secondary standard of National Environment Quality Standard for Soil as the background value, their exceed standard rates were 72.22%, 100%, 100%, 91.67%, 100%, respectively. Average contents of heavy metals in the soil samples were all over the national standard level two and were 1.53, 11.86, 2.40, 1.31, 4.09 times of the background value. In addition, the average contents were much higher than the background value of the topsoil in the eastern part of Shandong Province and were 9.85, 39.98, 8.85, 4.29, 12.71 times of the background value. According to the semivariogram model, we obtained the nugget-effects of 5 kinds of heavy metals and their values were in the order of As (0.644) > Cd (0.627) > Cr (0.538) > Ni (0.411) > Pb (0.294), all belonging to moderate spatial correlation. On the whole, the central part of the Sangyuan Coal Mine and its surrounding areas were the most seriously polluted, while the pollution of heavy metals in the east and west of the study area was relatively light. Principal component analysis suggested that the enrichment of Cd, As, Ni, Cr was due to irrigation of wastewater, the discharge of industry and enterprise, and the industrial activity. Automobile exhaust and coal combustion were the main pollution sources of Pb. The single-factor assessment of heavy metals pollution showed that the degree of different heavy metals

  12. Potential of siderophore production by bacteria isolated from heavy metal: polluted and rhizosphere soils.

    PubMed

    Hussein, Khalid A; Joo, Jin Ho

    2014-06-01

    Recently, heavy metals have been shown to have a stimulating effect on siderophore biosynthesis in various bacteria. In addition, several studies have found that siderophore production is greater in bacteria isolated from soil near plant roots. The aim of this study was to compare the production of siderophores by bacterial strains isolated from heavy metal-contaminated and uncontaminated soils. Chrome azurol sulphonate was used to detect siderophore secretion by several bacterial strains isolated from heavy metal-contaminated and rhizosphere-uncontaminated soils with both a qualitative disc diffusion method and a quantitative ultraviolet spectrophotometric method. Siderophore production by rhizosphere bacteria was significantly greater than by bacteria isolated from contaminated soil. The Pearson's correlation test indicated a positive correlation between the amount of siderophore produced by bacteria isolated from the rhizosphere using the quantitative and qualitative detection methods and the amount of heavy metal in the soil. However, a significant negative correlation was observed between the amount of siderophore produced by bacteria isolated from heavy metal-contaminated soil and the amount of heavy metal (r value of -0.775, P < 0.001).

  13. Heavy metal pollution and ecological risk assessment of the paddy soils near a zinc-lead mining area in Hunan.

    PubMed

    Lu, Sijin; Wang, Yeyao; Teng, Yanguo; Yu, Xuan

    2015-10-01

    Soil pollution by Cd, Hg, As, Pb, Cr, Cu, and Zn was characterized in the area of the mining and smelting of metal ores at Guiyang, northeast of Hunan Province. A total of 150 topsoil (0-20 cm) samples were collected in May 2012 with a nominal density of one sample per 4 km(2). High concentrations of heavy metals especially, Cd, Zn, and Pb were found in many of the samples taken from surrounding paddy soil, indicating a certain extent of spreading of heavy metal pollution. Sequential extraction technique and risk assessment code (RAC) were used to study the mobility of chemical forms of heavy metals in the soils and their ecological risk. The results reveal that Cd represents a high ecological risk due to its highest percentage of the exchangeable and carbonate fractions. The metals of Zn and Cu pose a medium risk, and the rest of the metals represent a low environmental risk. The range of the potential ecological risk of soil calculated by risk index (RI) was 123.5~2791.2 and revealed a considerable-high ecological risk in study area especially in the neighboring and surrounding the mining activities area. Additionally, cluster analyses suggested that metals such as Pb, As, Hg, Zn, and Cd could be from the same sources probably related to the acidic drainage and wind transport of dust. Cluster analysis also clearly distinguishes the samples with similar characteristics according to their spatial distribution. The results could be used during the ecological risk screening stage, in conjunction with total concentrations and metal fractionation values to better estimate ecological risk.

  14. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution.

    PubMed

    Kotrba, Pavel; Najmanova, Jitka; Macek, Tomas; Ruml, Tomas; Mackova, Martina

    2009-01-01

    Phytoremediation to clean up metal- and metalloid-contaminated soil or sediments has gained increasing attention as environmental friendly and cost effective. Achievements of the last decade suggest that genetic engineering of plants can be instrumental in improving phytoremediation. Transgenic approaches successfully employed to promote phytoextraction of metals (mainly Cd, Pb, Cu) and metalloids (As, Se) from soil by their accumulation in the aboveground biomass involved mainly implementation of metal transporters, improved production of enzymes of sulphur metabolism and production of metal-detoxifying chelators - metallothioneins and phytochelatins. Plants producing bacterial mercuric reductase and organomercurial lyase can covert the toxic ion or organomercury to metallic Hg volatized from the leaf surface. Phytovolatization of selenium compounds was promoted in plants overexpressing genes encoding enzymes involved in production of gas methylselenide species. This paper provides a broad overview of the evidence supporting suitability and prospects of transgenic research in phytoremediation of heavy metals and metalloids.

  15. Soil Heavy Metal Pollution along Subin River in Kumasi, Ghana; Using X-Ray Fluorescence (XRF) Analysis

    NASA Astrophysics Data System (ADS)

    Kodom, K.; Wiafe-Akenten, J.; Boamah, D.

    2010-04-01

    This study is aimed to analyze and assess the existence of heavy metal pollution in the surface soils along Subin River in the Kumasi metropolis using X-Ray Fluorescence (XRF) analysis. Twenty (20) soil samples were collected along the River at regular interval of 5 m (covering entire area of about 100 m2), with the aid of a core sampler. The samples were suitably packaged and conveyed into the laboratory for sample preparation and analysis. The concentration of heavy metals (Cr, Cu, Pb, Hg, Ni, Zn, Tl, V and Cd) were measured and quantified (mgkg-1) after the elemental analysis using XRF spectrometry, and their respective average concentrations (121.89 mgkg-1, 49.24 mgkg-1, 80.84 mgkg-1, 2.52 mgkg-1, 17.01 mgkg-1, 148.08 mgkg-1, 3.21 mgkg-1, 84.40 mgkg-1, and 4.05 mgkg-1) were attained. According to these results, the presence of heavy metals such as (Pb, Cd and Hg) present in the soil, were highly recorded above their threshold limit values (TLVs) by an amount of 60.84 mgkg-1, 3.05 mgkg-1 and 1.52 mgkg-1 respectively. These metals are highly toxic even in very low concentrations and their toxicity and poisoning in living organisms often occur through exchange and co-ordination mechanisms in the soft tissues. These high excess concentration values alarmingly depict that, the study site is highly polluted with those metals, and the Subin river-body and the inhabitants who reside closely to the polluted river, are at serious risk. The extent to which the study area is polluted, was successfully and statistically analyzed from the standard deviation (σ) and difference between the average concentration values recorded, and the TLVs.

  16. Survey of heavy metal pollution in four chinese crude drugs and their cultivated soils.

    PubMed

    Wu, Jialun; Zou, Yaohua; Zhan, Xiuping; Chen, Shifei; Lu, Guangzhao; Lai, Fugen

    2008-12-01

    A two-year survey on the residues of heavy metals in four Chinese crude drugs and their cultivated soils was conducted. Targeted heavy metals were copper (Cu), arsenic (As), lead (Pb), nickel (Ni), and cadmium (Cd). Herbs surveyed include White Peony Root (Radix Paeoniae Alba), Turmeric Root Tuber (Radix Curcumae), Thunberg Fritillary Bulb (Bulbus Fritillariae Thumbergii), and Tuber of Dwarf Lilyturf (Radix Ophiopogonis). Concentrations of all heavy metals were under the permitted levels except cadmium, which exceeded the permitted level in some samples of Thunberg Fritillary Bulb, White Peony Root, and Turmeric Root Tuber. Concentration coefficients were less than 1.0 for all heavy metals except cadmium. The concentration coefficient of cadmium in Turmeric Root Tuber was 14.0. Lower pH and high Zn concentration in the soil may facilitate the transfer of cadmium from cultivated soil into the herbs.

  17. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 9: Microscale Recovery of a Soil Metal Pollutant and Its Extractant

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Balderas-Hernandez, Patricia; Garcia-Pintor, Elizabeth; Barba-Gonzalez, Sandy Nohemi; Doria-Serrano, Ma. del Carmen; Hernaiz-Arce, Lorena; Diaz-Perez, Armando; Lozano-Cusi, Ana

    2011-01-01

    Many soils throughout the world are contaminated with metal salts of diverse toxicity. We have developed an experiment to demonstrate the removal of a metal from an insoluble surrogate soil pollutant, CuCO[subscript 3] multiplied by Cu(OH)[subscript 2], by complexation followed by the simultaneous electrochemical recovery of the ligand (i.e.,…

  18. In-Situ Decontamination of Metal-Polluted Soils by Metal-Accumulator Plants

    DTIC Science & Technology

    1993-04-01

    technology. In: Agricultural and Environmental Biotechnology: Biodiagnosis, Biocontrols, Bioprocesses . Abstracts of the International Conference, 15-17...uftgirqdwL In ?et kunma. wpor4m. kletnsehelige expernImnt int* plentme(~ a wordt *eti hWg met* Ab - hiS van aware metslan . b- .4 I Ith van aware metalen...industrialI where metals occur naturally in Unknown to those experi- degree. land where lead lined buildings land a truly green one. ... while busy bacteria

  19. Metal pollution of estuarine sediments caused by leaching of acid sulphate soils

    NASA Astrophysics Data System (ADS)

    Nordmyr, Linda; Åström, Mats; Peltola, Pasi

    2008-01-01

    This study tracks changes in metal distribution in estuarine sediments as a result of leakage from acid sulphate (AS) soil landscapes in the Boreal Zone (Finland). The main objective was to identify the impact of these nasty soils on sediment geochemistry in a biologically sensitive and shallow brackish-water estuary. In order to do this four sediment cores were sampled in a profile extending seawards from the mouth of the Vörå River, which is one of the most heavily AS soil-impacted rivers in Finland and Europe. Two of the cores were rather deep (2.5 m and 4.0 m) and the others were shallow (0.4 m and 0.8 m). The results showed that an appreciable amount of aluminium (Al), cobalt (Co), cadmium (Cd), copper (Cu), manganese (Mn), nickel (Ni) and zinc (Zn) were elevated in the surface and sub-surface of the sampled bottom sediments compared to the deeper sediment background levels. These metals are all known to be abundantly leached from the AS soils. At the site approximately 4 km away from the river mouth, the concentrations of Cd, Co, Mn, Ni and Zn were elevated 5-100 times as compared to the background levels and showed an intriguing cyclic pattern, most likely reflecting seasonal leaching dynamics in the AS soil landscapes. In contrast, metals that are not abundantly leached from AS soils, i.e. chromium (Cr), iron (Fe) and vanadium (V) had consistently low concentrations throughout all sediment cores. The elevated metal concentrations in the top layers of the sediments in the estuary are alarming. The continuous land uplift of the region combined with the episodic rapid declines in pH may result in short and long term extensive release of metals. This, in turn, may have significant effects on the trace-metal contents in the Gulf of Bothnia and the entire Baltic Sea.

  20. Field evaluation of willow under short rotation coppice for phytomanagement of metal-polluted agricultural soils.

    PubMed

    Van Slycken, Stijn; Witters, Nele; Meiresonne, Linda; Meers, Erik; Ruttens, Ann; Van Peteghem, Pierre; Weyens, Nele; Tack, Filip M G; Vangronsveld, Jaco

    2013-01-01

    Short rotation coppice (SRC) of willow and poplar might be a promising phytoremediation option since it uses fast growing, high biomass producing tree species with often a sufficient metal uptake. This study evaluates growth, metal uptake and extraction potentials of eight willow clones (Belders, Belgisch Rood, Christina, Inger, Jorr, Loden, Tora and Zwarte Driebast) on a metal-contaminated agricultural soil, with total cadmium (Cd) and zinc (Zn) concentrations of 6.5 +/- 0.8 and 377 +/- 69 mg kg(-1) soil, respectively. Although, during the first cycle, on average generally low productivity levels (3.7 ton DM (dry matter) ha(-1) y(-1)) were obtained on this sandy soil, certain clones exhibited quite acceptable productivity levels (e.g. Zwarte Driebast 12.5 ton DM ha(-1) y(-1)). Even at low biomass productivity levels, SRC of willow showed promising removal potentials of 72 g Cd and 2.0 kg Zn ha(-1) y(-1), which is much higher than e.g. energy maize or rapeseed grown on the same soil Cd and Zn removal can be increased by 40% if leaves are harvested as well. Nevertheless, nowadays the wood price remains the most critical factor in order to implement SRC as an acceptable, economically feasible alternative crop on metal-contaminated agricultural soils.

  1. Comparison of natural humic substances and synthetic ethylenediaminetetraacetic acid and nitrilotriacetic acid as washing agents of a heavy metal-polluted soil.

    PubMed

    Soleimani, Mohsen; Hajabbasi, Mohammad A; Afyuni, Majid; Akbar, Samira; Jensen, Julie K; Holm, Peter E; Borggaard, Ole K

    2010-01-01

    Ethylenediaminetetraacetic acid (EDTA), nitrilotriacetic acid (NTA), and other synthetic polycarboxylic acids have been shown to possess substantial capacity as washing agents of heavy metal-polluted soils, but they are environmentally problematic. Therefore, a sample of natural soluble humic substances (HS) was tested as a possible substitute. The efficiency of HS to extract cadmium (Cd), copper (Cu), and lead (Pb) from a strongly polluted calcareous urban soil was compared with that of EDTA and NTA. The influence of extractant concentration (25-100 mmol L(-1) C), solution/soil ratio (5-100 L kg(-1)), and single-step vs. multistep extraction on heavy metal removal from the soil was investigated. The extracted pools were assessed by sequential extraction. Ethylenediaminetetraacetic acid and NTA extracted up to 86, 77, and 30% of total soil Cd, Cu, and Pb, respectively, whereas HS extracted 44, 53, and 4%. Extracted amounts of Cd, Cu, and Pb increased with increasing extractant concentration and solution/soil ratio in the range 5 to 100 L kg(-1). Single-step extraction removed about the same amounts of the three metals as multiple-step extraction. The metal-extracted pools of the soil depended on the metal and on the extractant. The overall conclusion is that soluble HS can replace synthetic EDTA and NTA as washing agents for Cd- and Cu-polluted soils, whereas HS is not a promising substitute of EDTA or NTA for cleaning Pb-polluted, calcareous soils.

  2. Tracing transfer processes of metal pollutants from soils to surface water using environmental magnetic techniques - results from Paris suburbia (France)

    NASA Astrophysics Data System (ADS)

    Franke, Christine; Lamy, Isabelle; van Oort, Folkert; Thiesson, Julien; Barsalini, Luca

    2015-04-01

    Major river systems in Europe are potential sinks for environmental pollutions and therefore reflect the consequences of European industrialization and urbanization. Surface water pollution is a major concern for the health of the population and its related ecosystems as well as for the water quality. Within the variety of different typical pollutants in a river watershed, the metallic fraction embraces many toxic/dangerous contaminants. Each of these elements comprises different sources and follows specific processes throughout its pathways from its origin to and within the river system. But the detection, estimation and follow up of the different contaminants is highly complex. Physico-chemical techniques such as environmental and rock magnetics are powerful complementary tools to traditional methods because they comprise the possibility to trace the entire metal fraction and do offer the possibility to perform spatio-temporal analyze campaigns directly in the field and on a relative high number of samples from both the river and the adjacent areas (suspended particular matter, soils, dust, sediments, etc). In this study, we took advantages of the recent results on the Seine river (France) that have shown the high potential of environmental magnetic methods to estimate the metal fraction in suspended particular matter samples, and to allow the discrimination of its natural detrital, biogenic or anthropogenic origin (see parallel EGU abstract of Kayvantash et al. in this session). We focused on a suburban agricultural area west of Paris (Pierrelaye-Bessancourt) adjacent to the Seine river, which suffers from a high accumulation of heavy metal pollutants caused by long-term historical irrigation with urban waste waters. For the time being, these heavy metals seem to be geochemically fixed in the surface layer mainly by the soil organic matter. Future land use planning, however, arises questions on the fate of these pollutants and their potential remobilization by

  3. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.

    PubMed

    Udovic, Metka; Lestan, Domen

    2012-07-01

    The environmental risk of potentially toxic metals (PTMs) in soil can be diminished by their removal. Among the available remediation techniques, soil leaching with various solutions is one of the most effective but data about the impact on soil chemical and biological properties are still scarce. We studied the effect of two common leaching agents, hydrochloric acid (HCl) and a chelating agent (EDTA) on Pb, Zn, Cd removal and accessibility and on physico-chemical and biological properties in one calcareous, pH neutral soil and one non-calcareous acidic soil. EDTA was a more efficient leachant compared to HCl: up to 133-times lower chelant concentration was needed for the same percentage (35%) of Pb removal. EDTA and HCl concentrations with similar PTM removal efficiency decreased PTM accessibility in both soils but had different impacts on soil properties. As expected, HCl significantly dissolved carbonates from calcareous soil, while EDTA leaching increased the pH of the acidic soil. Enzyme activity assays showed that leaching with HCl had a distinctly negative impact on soil microbial and enzyme activity, while leaching with EDTA had less impact. Our results emphasize the importance of considering the ecological impact of remediation processes on soil in addition to the capacity for PTM removal.

  4. Immobilization of heavy metals in polluted soils by the addition of zeolitic material synthesized from coal fly ash.

    PubMed

    Querol, Xavier; Alastuey, Andrés; Moreno, Natàlia; Alvarez-Ayuso, Esther; García-Sánchez, Antonio; Cama, Jordi; Ayora, Carles; Simón, Mariano

    2006-01-01

    The use of zeolitic material synthesized from coal fly ash for the immobilization of pollutants in contaminated soils was investigated in experimental plots in the Guadiamar Valley (SW Spain). This area was affected by a pyrite slurry spill in April 1998. Although reclamation activities were completed in a few months, residual pyrite slurry mixed with soil accounted for relatively high leachable levels of trace elements such as Zn, Pb, As, Cu, Sb, Co, Tl and Cd. Phytoremediation strategies were adopted for the final recovery of the polluted soils. The immobilization of metals had previously been undertaken to avoid leaching processes and the consequent groundwater pollution. To this end, 1100 kg of high NaP1 (Na6[(AlO2)6(SiO2)10] .15H2O) zeolitic material was synthesized using fly ash from the Teruel power plant (NE Spain), in a 10 m3 reactor. This zeolitic material was manually applied using different doses (10000-25000 kg per hectare), into the 25 cm topsoil. Another plot (control) was maintained without zeolite. Sampling was carried out 1 and 2 years after the zeolite addition. The results show that the zeolitic material considerably decreases the leaching of Cd, Co, Cu, Ni, and Zn. The sorption of metals in soil clay minerals (illite) proved to be the main cause contributing to the immobilization of these pollutants. This sorption could be a consequence of the rise in pH from 3.3 to 7.6 owing to the alkalinity of the zeolitic material added (caused by traces of free lime in the fly ash, or residual NaOH from synthesis).

  5. Leaching behavior of heavy metals and transformation of their speciation in polluted soil receiving simulated acid rain.

    PubMed

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.

  6. Leaching Behavior of Heavy Metals and Transformation of Their Speciation in Polluted Soil Receiving Simulated Acid Rain

    PubMed Central

    Zheng, Shun-an; Zheng, Xiangqun; Chen, Chun

    2012-01-01

    Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects. PMID:23185399

  7. Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions.

    PubMed

    Mateos-Naranjo, E; Andrades-Moreno, L; Redondo-Gómez, S

    2011-10-01

    Spartina densiflora has demonstrated a high tolerance to heavy metal contamination and a high capacity for accumulating metal in its tissues. In the Gulf of Cadiz this species has colonized habitats with different degrees of metal pollution. The aim of this study is to analyse the responses of populations of Spartina densiflora to this pollution. Germination, growth, photosynthesis and metal uptake of two populations of Spartina densiflora collected from contaminated sites (Odiel and Tinto marshes) and of one population from a clean site (Piedras marshes) were examined through two reciprocal experiments, in which seeds and adult plants were exposed to metal-contaminated and uncontaminated soil under greenhouse conditions. The seeds of Spartina densiflora were able to germinate in all sediments with little differences between populations, even in more contaminated soils. However, these conditions decreased the growth and survival of the seedlings to a similar degree for all populations. Likewise, no differences were recorded in relation to physiological and metal uptake. Contrarily, in the adult experiment, we found that the Odiel population differed from the other populations in growth and metal uptake, with overall greater values. These differences in growth were strongly supported by lower photosynthetic rates and stomatal conductance in the Piedras and Tinto populations. The reduction in photosynthetic performance was largely due to the reduction in photosynthetic pigment concentration in both populations. Despite these differences, there was insufficient evidence to support that Spartina has evolved to heavy-tolerant ecotypes, since all Spartina densiflora populations proved to have a great capacity for accumulating heavy metals in its roots. Nonetheless, this finding suggests that the Odiel population could have a greater phytoremediation potential.

  8. Enhancing cleanup of heavy metal-polluted landfill soils and improving soil microbial activity using green technology with ferrous sulfate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Landfills have led to some of the most intense battles over pollution that has ever been seen. With the population skyrocketing worldwide, these landfills will only become more of a public issue as time goes on. Heavy metals from several sources especially in landfills are an increasingly urgent pro...

  9. Influence of climate change on the multi-generation toxicity to Enchytraeus crypticus of soils polluted by metal/metalloid mining wastes.

    PubMed

    Barmentlo, S Henrik; van Gestel, Cornelis A M; Álvarez-Rogel, José; González-Alcaraz, M Nazaret

    2017-03-01

    This study aimed at assessing the effects of increased air temperature and reduced soil moisture content on the multi-generation toxicity of a soil polluted by metal/metalloid mining wastes. Enchytraeus crypticus was exposed to dilution series of the polluted soil in Lufa 2.2 soil under different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC) over three generations standardized on physiological time. Generation time was shorter with increasing air temperature and/or soil moisture content. Adult survival was only affected at 30% WHC (∼30% reduction at the highest percentages of polluted soil). Reproduction decreased with increasing percentage of polluted soil in a dose-related manner and over generations. Toxicity increased at 30% WHC (>50% reduction in EC50 in F0 and F1 generations) and over generations in the treatments at 20 °C (40-60% reduction in EC50 in F2 generation). At 25 °C, toxicity did not change when combined with 30% WHC and only slightly increased with 50% WHC. So, higher air temperature and/or reduced soil moisture content does affect the toxicity of soils polluted by metal/metalloid mining wastes to E. crypticus and this effect may exacerbate over generations.

  10. Phospholipid Fatty Acid Composition and Heavy Metal Tolerance of Soil Microbial Communities along Two Heavy Metal-Polluted Gradients in Coniferous Forests

    PubMed Central

    Pennanen, T.; Frostegard, A.; Fritze, H.; Baath, E.

    1996-01-01

    The effects of long-term heavy metal deposition on microbial community structure and the level of bacterial community tolerance were studied along two different gradients in Scandinavian coniferous forest soils. One was near the Harjavalta smelter in Finland, and one was at Ronnskar in Sweden. Phospholipid fatty acid (PLFA) analysis revealed a gradual change in soil microbial communities along both pollution gradients, and most of the individual PLFAs changed similarly to metal pollution at both sites. The relative quantities of the PLFAs br18:0, br17:0, i16:0, and i16:1 increased with increasing heavy metal concentration, while those of 20:4 and 18:2(omega)6, which is a predominant PLFA in many fungi, decreased. The fungal part of the microbial biomass was found to be more sensitive to heavy metals. This resulted in a decreased fungal/bacterial biomass ratio along the pollution gradient towards the smelters. The thymidine incorporation technique was used to study the heavy metal tolerance of the bacteria. The bacterial community at the Harjavalta smelter, exposed mainly to Cu deposition, exhibited an increased tolerance to Cu but not to Cd, Ni, and Zn. At the Ronnskar smelter the deposition consisting of a mixture of metals increased the bacterial community tolerance to all tested metals. Both the PLFA pattern and the bacterial community tolerance were affected at lower soil metal concentrations than were bacterial counts and bacterial activities. At Harjavalta the increased Cu tolerance of the bacteria and the change in the PLFA pattern of the microbial community were found at the same soil Cu concentrations. This indicated that the altered PLFA pattern was at least partly due to an altered, more metal-tolerant bacterial community. At Ronnskar, where the PLFA data varied more, a correlation between bacterial community tolerance and an altered PLFA pattern was found up to 10 to 15 km from the smelter. Farther away changes in the PLFA pattern could not be explained

  11. Biotic contexts alter metal sequestration and AMF effects on plant growth in soils polluted with heavy metals.

    PubMed

    Glassman, Sydney I; Casper, Brenda B

    2012-07-01

    Investigating how arbuscular mycorrhizal fungi (AMF)-plant interactions vary with edaphic conditions provides an opportunity to test the context-dependency of interspecific interactions. The relationship between AMF and their host plants in the context of other soil microbes was studied along a gradient of heavy metal contamination originating at the site of zinc smelters that operated for a century. The site is currently under restoration. Native C3 grasses have reestablished, and C4 grasses native to the region but not the site were introduced. Interactions involving the native mycorrhizal fungi, non-mycorrhizal soil microbes, soil, one C3 grass (Deschampsia flexuosa), and one C4 grass (Sorghastrum nutans) were investigated using soils from the two extremes of the contamination gradient in a full factorial greenhouse experiment. After 12 weeks, plant biomass and root colonization by AMF and non-mycorrhizal microbes were measured. Plants from both species grew much larger in soil from low-contaminated (LC) origin than high-contaminated (HC) origin. For S. nutans, the addition of a non-AMF soil microbial wash of either origin increased the efficacy of AMF from LC soils but decreased the efficacy of AMF from HC soils in promoting plant growth. Furthermore, there was high mortality of S. nutans in HC soil, where plants with AMF from HC died sooner. For D. flexuosa, plant biomass did not vary with AMF source or the microbial wash treatment or their interaction. While AMF origin did not affect root colonization of D. flexuosa by AMF, the presence and origin of AMF did affect the number of non-mycorrhizal (NMF) morphotypes and NMF root colonization. Adding non-AMF soil biota reduced Zn concentrations in shoots of D. flexuosa. Thus the non-AMF biotic context affected heavy metal sequestration and associated NMF in D. flexuosa, and it interacted with AMF to affect plant biomass in S. nutans. Our results should be useful for improving our basic ecological understanding of

  12. Assessing soil heavy metal pollution in the water-level-fluctuation zone of the Three Gorges Reservoir, China.

    PubMed

    Ye, Chen; Li, Siyue; Zhang, Yulong; Zhang, Quanfa

    2011-07-15

    The water-level-fluctuation zone (WLFZ) between the elevations of 145-175 m in China's Three Gorges Reservoir has experienced a novel hydrological regime with half a year (May-September) exposed in summer and another half (October-April) submerged in winter. In September 2008 (before submergence) and June 2009 (after submergence), soil samples were collected in 12 sites in the WLFZ and heavy metals (Hg, As, Cr, Cd, Pb, Cu, Zn, Fe, and Mn) were determined. Enrichment factor (EF), factor analysis (FA), and factor analysis-multiple linear regression (FA-MLR) were employed for heavy metal pollution assessment, source identification, and source apportionment, respectively. Results demonstrate spatial variability in heavy metals before and after submergence and elements of As, Cd, Pb, Cu, and Zn are higher in the upper and low reaches. FA and FA-MLR reveal that As and Cd are the primary pollutants before submergence, and over 45% of As originates from domestic sewage and 59% of Cd from industrial wastes. After submergence, the major contaminants are Hg, Cd, and Pb, and traffic exhaust contributes approximately 81% to Hg and industrial effluent accounts about 36% and 73% for Cd and Pb, respectively. Our results suggest that increased shipping and industrial wastes have deposited large amounts of heavy metals which have been accumulated in the WLFZ during submergence period.

  13. Toxicokinetics of metals in the earthworm Lumbricus rubellus exposed to natural polluted soils--relevance of laboratory tests to the field situation.

    PubMed

    Giska, Iwona; van Gestel, Cornelis A M; Skip, Borys; Laskowski, Ryszard

    2014-07-01

    The aim of this study was to estimate the bioavailability of essential (Zn, Cu) and non-essential metals (Cd, Pb) to the earthworm Lumbricus rubellus exposed to soils originating from a gradient of metal pollution in Southern Poland. Metal uptake and elimination kinetics were determined and related to soils properties. Experimental results were compared with tissue metal concentrations observed in earthworms from the studied transect. Cd and Pb were intensively accumulated by the earthworms, with very slow or no elimination. Their uptake rate constants, based on 0.01 M CaCl2-extractable concentrations in the soils, increased with soil pH. Internal concentrations of Cu and Zn were maintained by the earthworms at a stable level, suggesting efficient regulation of these metals by the animals. The estimated uptake and elimination kinetics parameters enabled fairly accurate prediction of metal concentrations reached within a life span of L. rubellus in nature.

  14. Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability.

    PubMed

    Chehregani, Abdolkarim; Noori, Mitra; Yazdi, Hossein Lari

    2009-07-01

    Heavy metal pollution is a worldwide problem. Phytoremediation is an effective and low-cost interesting technology. This study was conducted in a dried waste pool of a lead and zinc mine in Angouran (Iran) to find accumulator plant(s). Concentrations of heavy metals were determined both in the soil and the plants that were grown in the mine and out of mine. The concentration of total Cu, Fe, Zn, Pb and Ni in the mine area were higher than the control soil. The results showed that five dominant vegetations namely Amaranthus retroflexus, Polygonum aviculare, Gundelia tournefortii, Noea mucronata and Scariola orientalis accumulated heavy metals. Based on the results, it was concluded that N. mucronata is the best accumulator for Pb, Zn, Cu, Cd and Ni, but the best Fe accumulator is A. retroflexus. Phytoremediation ability of N. mucronata was evaluated in experimental pots. The study showed that the amounts of heavy metals were decreased in polluted soils during experiments. The accumulation of metals in the root, leave and shoot portions of N. mucronata varied significantly but all the concentrations were more than natural soils. The results indicated that N. mucronata is an effective accumulator plant for phytoremediation of heavy-metals-polluted soils.

  15. Concentrations of persistent organic pollutants (POPs) and heavy metals in soil from San Luis Potosí, México.

    PubMed

    Perez-Vazquez, Francisco Javier; Flores-Ramirez, Rogelio; Ochoa-Martinez, Angeles Catalina; Orta-Garcia, Sandra Teresa; Hernandez-Castro, Berenice; Carrizalez-Yañez, Leticia; Pérez-Maldonado, Iván N

    2015-01-01

    The aim of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), p,p'-dichlorodiphenyltrichloroethane (DDT), p,p'-dichlorodiphenyldichloroethylene (DDE), and four heavy metals (arsenic, cadmium, lead, and mercury) in soil from the city of San Luis Potosí in Mexico. In order to confirm the presence of the previously mentioned compounds, outdoor surface soil samples were collected and analyzed by gas chromatography/mass spectrometer for PBDEs, PCBs, DDT, and DDE. Meanwhile, heavy metals were quantified using the atomic absorption spectrophotometry technique. The total PBDEs levels ranged from 5.0 to 134 μg/kg dry weight (dw), with a total mean PBDEs level of 22.0 ± 32.5 μg/kg dw (geometric mean ± standard deviation). For PCBs, the total mean level in the studied soil was 21.6 ± 24.7 μg/kg dw (range, soil samples (100 %) had detectable levels of the metabolite DDE. Moreover, the total mean DDT level (∑ DDT and DDE) was approximately 5.50 ± 4.50 μg/kg dw. The mean levels for arsenic, mercury, cadmium, and lead in soil samples were 7.20 ± 10.7 (range, 15.0 to 265 mg/kg dw), 0.45 ± 0.48 (range, pollutants (POPs) and four heavy metals in soil samples from the city of San Luis Potosí, Mexico, and considering that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the city of San Luis Potosi is necessary.

  16. Assessing heavy metal pollution in the water level fluctuation zone of China's Three Gorges Reservoir using geochemical and soil microbial approaches.

    PubMed

    Ye, Chen; Li, Siyue; Zhang, Yulong; Tong, Xunzhang; Zhang, Quanfa

    2013-01-01

    The water level fluctuation zone (WLFZ) in the Three Gorges Reservoir is located in the intersection of terrestrial and aquatic ecosystems, and assessing heavy metal pollution in the drown zone is critical for ecological remediation and water conservation. In this study, soils were collected in June and September 2009 in natural recovery area and revegetation area of the WLFZ, and geochemical approaches including geoaccumulation index (I (geo)) and factor analysis and soil microbial community structure were applied to assess the spatial variability and evaluate the influence of revegetation on metals in the WLFZ. Geochemical approaches demonstrated the moderate pollutant of Cd, the slight pollutant of Hg, and four types of pollutant sources including industrial and domestic wastewater, natural rock weathering, traffic exhaust, and crustal materials in the WLFZ. Our results also demonstrated significantly lower concentrations for elements of As, Cd, Pb, Zn, and Mn in the revegetation area. Moreover, soil microbial community structure failed to monitor the heavy metal pollution in such a relatively clean area. Our results suggest that revegetation plays an important role in controlling heavy metal pollution in the WLFZ of the Three Gorges Reservoir, China.

  17. Relationships between soil heavy metal pollution and enzyme activities in mining areas of northern Hunan province, Central South China

    NASA Astrophysics Data System (ADS)

    Hu, Xue-Feng; Jiang, Ying; Shu, Ying

    2014-05-01

    Hunan province, Central South China, is a well-known nonferrous metal base in China. Mine exploiting and processing there, however, often lead to heavy metal pollution of farmland. To study the effects of mining activities on the soil environmental quality, four representative paddy fields, the HSG, SNJ, NT and THJ, in Y county, northern Hunan province, were investigated. It was found that the streams running through the HSG, SNJ and NT are severely contaminated due to the long-term discharge of untreated mineral wastewater from local indigenous mining factories. The stream at the HSG, for example, is brownish red in color, with high concentrations of Cu, Zn, Cd, Fe and Mn. The concentrations of Cu, Zn and Cd in all the stream water of the HSG, SNJ and NT exceed the maximum allowable levels of the Agricultural Irrigation Water Criteria of China. Correspondingly, the HSG, SNJ and NT are heavily polluted by Cu, Zn and Cd due to the long-term irrigation with the contaminated stream water. In comparison, both stream water and paddy fields of the THJ, far away from mining areas, are not contaminated by any heavy metals and hence regarded as a control in this study. The rice grain produced at the HSG, SNJ and NT has a high risk of Cd contamination. The rate of rice grain produced in the four paddy fields in Y county with Cd exceeding the safe level (Cd, 0.2 μg g-1) specified by the National Standards for Rice Quality and Safety of China reaches 90%. Cd content in the rice grain is positively significantly correlated with that in the paddy fields, especially with the content of diethylenetriaminepentaacetic acid (DTPA) - extracted Cd, suggesting that the heavy metal pollution of paddy fields has already posed a high risk to rice safety and human health. Soil enzyme activities and microbial biomass are significantly inhibited by the heavy metal pollution of the paddy fields. Microbial biomass C and N (MBC and MBN) at a severely contaminated site of the HSG are only 31

  18. Assessing heavy metal pollution in the surface soils of a region that had undergone three decades of intense industrialization and urbanization.

    PubMed

    Hu, Yuanan; Liu, Xueping; Bai, Jinmei; Shih, Kaimin; Zeng, Eddy Y; Cheng, Hefa

    2013-09-01

    Heavy metals in the surface soils from lands of six different use types in one of the world's most densely populated regions, which is also a major global manufacturing base, were analyzed to assess the impact of urbanization and industrialization on soil pollution. A total of 227 surface soil samples were collected and analyzed for major heavy metals (As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Ni, Pb, and Zn) by using microwave-assisted acid digestion and inductively coupled plasma-mass spectrometry (ICP-MS). Multivariate analysis combined with enrichment factors showed that surface soils from the region (>7.2 × 10(4) km(2)) had mean Cd, Cu, Zn, and As concentrations that were over two times higher than the background values, with Cd, Cu, and Zn clearly contributed by anthropogenic sources. Soil pollution by Pb was more widespread than the other heavy metals, which was contributed mostly by anthropogenic sources. The results also indicate that Mn, Co, Fe, Cr, and Ni in the surface soils were primarily derived from lithogenic sources, while Hg and As contents in the surface soils were controlled by both natural and anthropogenic sources. The pollution level and potential ecological risk of the surface soils both decreased in the order of: urban areas > waste disposal/treatment sites ∼ industrial areas > agricultural lands ∼ forest lands > water source protection areas. These results indicate the significant need for the development of pollution prevention and reduction strategies to reduce heavy metal pollution for regions undergoing fast industrialization and urbanization.

  19. Combining a finite mixture distribution model with indicator kriging to delineate and map the spatial patterns of soil heavy metal pollution in Chunghua County, central Taiwan.

    PubMed

    Lin, Yu-Pin; Cheng, Bai-You; Shyu, Guey-Shin; Chang, Tsun-Kuo

    2010-01-01

    This study identifies the natural background, anthropogenic background and distribution of contamination caused by heavy metal pollutants in soil in Chunghua County of central Taiwan by using a finite mixture distribution model (FMDM). The probabilities of contaminated area distribution are mapped using single-variable indicator kriging and multiple-variable indicator kriging (MVIK) with the FMDM cut-off values and regulation thresholds for heavy metals. FMDM results indicate that Cr, Cu, Ni and Zn can be individually fitted by a mixture model representing the background and contamination distributions of the four metals in soil. The FMDM cut-off values for contamination caused by the metals are close to the regulation thresholds, except for the cut-off value of Zn. The receiver operating characteristic (ROC) curve validates that indicator kriging and MVIK with FMDM cut-off values can reliably delineate heavy metals contamination, particularly for areas lacking background information and high heavy metal concentrations in soil.

  20. Influence of heavy metals and PCBs pollution on the enzyme activity and microbial community of paddy soils around an e-waste recycling workshop.

    PubMed

    Tang, Xianjin; Hashmi, Muhammad Z; Long, Dongyan; Chen, Litao; Khan, Muhammad I; Shen, Chaofeng

    2014-03-14

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg-1) and Cu (69.2 mg·kg-1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg-1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination.

  1. Influence of Heavy Metals and PCBs Pollution on the Enzyme Activity and Microbial Community of Paddy Soils around an E-Waste Recycling Workshop

    PubMed Central

    Tang, Xianjin; Hashmi, Muhammad Z.; Long, Dongyan; Chen, Litao; Khan, Muhammad I.; Shen, Chaofeng

    2014-01-01

    Due to the emerging environmental issues related to e-waste there is concern about the quality of paddy soils near e-waste workshops. The levels of heavy metals and PCBs and their influence on the enzyme activity and microbial community of paddy soils obtained from the immediate vicinity of an e-waste workshop were investigated in the present study. The results indicated that the heavy metal and PCB pollution did not differ significantly with an increase of the sampling point distances (5 to 30 m). The concentration of Cd (2.16 mg·kg−1) and Cu (69.2 mg·kg−1) were higher, and the PCB pollution was also serious, ranging from 4.9 to 21.6 μg·kg−1. The highest enzyme activity was found for urease compared to phosphatase and catalase, and a fluctuating trend in soil enzyme activity was observed in soils from different sampling sites. The microbial analysis revealed that there was no apparent correlation between the microbial community and the pollutants. However, a slight influence for soil microbial communities could be found based on DGGE, the Shannon index and PCA analysis. The present study suggests that the contamination stress of heavy metals and PCBs might have a slight influence on microbial activity in paddy soils. This study provides the baseline data for enzyme activities and microbial communities in paddy soil under the influence of mixed contamination. PMID:24637907

  2. [Concentrations and pollution assessment of soil heavy metals at different water-level altitudes in the draw-down areas of the Three Gorges Reservoir].

    PubMed

    Wang, Ye-Chun; Lei, Bo; Yang, San-Ming; Zhang, Sheng

    2012-02-01

    To investigate the effect of 175 m trial impounding (2008 and 2009) of the Three Gorges Reservoir on soil heavy metals, three draw-down areas with similar geological environment and history of land-use in Zhongxian County were chosen. Altogether 36 surface soil samples (including 0-10 cm and 10-20 cm soil layer) from water-level altitude of 160 m and 170 m were obtained, and their heavy metals concentrations (As, Cd, Cr, Cu, Ni, Pb and Zn) were measured by the X-ray fluorescence spectrometric method. Geoaccumulation index (I(geo)) and Håkanson potential ecological risk index were applied to assess the heavy metals pollution status and potential ecological risk, respectively. Results indicated that although the inundation period of 160 m was 224 d longer than that of 170 m, significant difference in concentrations of heavy metals were not found between the two water-level altitudes. Except for Cd, most of the heavy metals highly related with each other positively. According to the geoaccumulation index, the pollution extent of the heavy metals followed the order: As > Cd > Cu > Ni > Zn = Pb > Cr. The I(geo) value of As, Cd and Cu were 0.45, 0.39 and 0.06, respectively, indicating that the soil was only lightly polluted by these heavy metals. Håkanson single potential ecological risk index followed the order: Cd > As > Cu > Pb > Ni > Cr > Zn. Cd with E(i) values of 59.10, had a medium potential for ecological risk,while As, Cr, Cu, Pb, Ni and Zn only had a light potential. Consequently, although As, Cd and Cu were the major heavy metals with potential ecological risk for surface soil pollution in the draw-down areas in Zhongxian County, the Three Gorges Reservoir.

  3. Impacts from Land Use Pattern on Spatial Distribution of Cultivated Soil Heavy Metal Pollution in Typical Rural-Urban Fringe of Northeast China

    PubMed Central

    Li, Wenbo; Wang, Dongyan; Wang, Qing; Liu, Shuhan; Zhu, Yuanli; Wu, Wenjun

    2017-01-01

    Under rapid urban sprawl in Northeast China, land conversions are not only encroaching on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food security. This study’s aim is to explore the spatial relationship between comprehensive cultivated soil heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial lag regression to analyze the relationship between PLI (pollution load index) and influencing factors of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical case. The results indicate the following: (1) Similar spatial distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in the central region, and the residential community of Lanjia County in the west, are the main hotspots for eight heavy metals and PLI. Beihu Wetland Park, with a larger-area distribution of ecological land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial distribution characteristics of cultivated heavy metals are related to types of surrounding land use and industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression. The regression results indicate the inverse relationship between heavy metal pollution degree and distance from long-standing residential land and surface water. Following rapid urban land expansion and a longer accumulation period, residential land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban river water in the suburbs will have a higher tendency for heavy metal pollution. PMID:28327541

  4. Impacts from Land Use Pattern on Spatial Distribution of Cultivated Soil Heavy Metal Pollution in Typical Rural-Urban Fringe of Northeast China.

    PubMed

    Li, Wenbo; Wang, Dongyan; Wang, Qing; Liu, Shuhan; Zhu, Yuanli; Wu, Wenjun

    2017-03-22

    Under rapid urban sprawl in Northeast China, land conversions are not only encroaching on the quantity of cultivated lands, but also posing a great threat to black soil conservation and food security. This study's aim is to explore the spatial relationship between comprehensive cultivated soil heavy metal pollution and peri-urban land use patterns in the black soil region. We applied spatial lag regression to analyze the relationship between PLI (pollution load index) and influencing factors of land use by taking suburban cultivated land of Changchun Kuancheng District as an empirical case. The results indicate the following: (1) Similar spatial distribution characteristics are detected between Pb, Cu, and Zn, between Cr and Ni, and between Hg and Cd. The Yitong River catchment in the central region, and the residential community of Lanjia County in the west, are the main hotspots for eight heavy metals and PLI. Beihu Wetland Park, with a larger-area distribution of ecological land in the southeast, has low level for both heavy metal concentrations and PLI values. Spatial distribution characteristics of cultivated heavy metals are related to types of surrounding land use and industry; (2) Spatial lag regression has a better fit for PLI than the ordinary least squares regression. The regression results indicate the inverse relationship between heavy metal pollution degree and distance from long-standing residential land and surface water. Following rapid urban land expansion and a longer accumulation period, residential land sprawl is going to threaten cultivated land with heavy metal pollution in the suburban black soil region, and cultivated land irrigated with urban river water in the suburbs will have a higher tendency for heavy metal pollution.

  5. Rapid metal extractability tests from polluted mining soils by ultrasound probe sonication and microwave-assisted extraction systems.

    PubMed

    García-Salgado, Sara; Quijano, M Ángeles

    2016-12-01

    Ultrasonic probe sonication (UPS) and microwave-assisted extraction (MAE) were used for rapid single extraction of Cd, Cr, Cu, Ni, Pb, and Zn from soils polluted by former mining activities (Mónica Mine, Bustarviejo, NW Madrid, Spain), using 0.01 mol L(-1) calcium chloride (CaCl2), 0.43 mol L(-1) acetic acid (CH3COOH), and 0.05 mol L(-1) ethylenediaminetetraacetic acid (EDTA) at pH 7 as extracting agents. The optimum extraction conditions by UPS consisted of an extraction time of 2 min for both CaCl2 and EDTA extractions and 15 min for CH3COOH extraction, at 30% ultrasound (US) amplitude, whereas in the case of MAE, they consisted of 5 min at 50 °C for both CaCl2 and EDTA extractions and 15 min at 120 °C for CH3COOH extraction. Extractable concentrations were determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). The proposed methods were compared with a reduced version of the corresponding single extraction procedures proposed by the Standards, Measurements and Testing Programme (SM&T). The results obtained showed a great variability on extraction percentages, depending on the metal, the total concentration level and the soil sample, reaching high values in some areas. However, the correlation analysis showed that total concentration is the most relevant factor for element extractability in these soil samples. From the results obtained, the application of the accelerated extraction procedures, such as MAE and UPS, could be considered a useful approach to evaluate rapidly the extractability of the metals studied.

  6. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    PubMed

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  7. Chemical Speciation and Quantitative Evaluation of Heavy Metal Pollution Hazards in Two Army Shooting Range Backstop Soils.

    PubMed

    Islam, Mohammad Nazrul; Nguyen, Xuan Phuc; Jung, Ho-Young; Park, Jeong-Hun

    2016-02-01

    The chemical speciation and ecological risk assessment of heavy metals in two shooting range backstop soils in Korea were studied. Both soils were highly contaminated with Cd, Cu, Pb, and Sb. The chemical speciation of heavy metals reflected the present status of contamination, which could help in promoting management practices. We-rye soil had a higher proportion of exchangeable and carbonate bound metals and water-extractable Cd and Sb than the Cho-do soil. Bioavailable Pb represented 42 % of the total Pb content in both soils. A significant amount of Sb was found in the two most bioavailable fractions, amounting to ~32 % in the soil samples, in good agreement with the batch leaching test using water. Based on the values of ecological risk indices, both soils showed extremely high potential risk and may represent serious environmental problems.

  8. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2013-04-16

    As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.

  9. Affects of wastewater discharge from mining on soil heavy metal pollution and enzyme activities in northern Hunan province, Central South China

    NASA Astrophysics Data System (ADS)

    Jiang, Ying; Hu, Xue-Feng; Shu, Ying; Yan, Xiao-Juan; Luo, Fan

    2013-04-01

    Hunan province, Central South China, is rich in mineral resources and also a well-known nonferrous metal base in China. Mining and ore processing there, however, are mostly conducted in indigenous methods, and thus causing heavy metal pollution of abundant farmland. Situated in northern Hunan province, Y county has antimony, manganese, vanadium, and pyrite mines, but still belongs to a region of rice cultivation, of which, paddy fields make up 84.5% of the total farmland. Our investigations found that irrigation water is threatened by the release of mining wastewater in the county. For example, a stream used for irrigation turns dark-red after long-term receiving wastewater discharged from a pyrite company at HS Town of the county. Concentrations of Cu, Zn, Cd, Fe and Mn in the stream water reach 0.03 mg kg-1, 2.14 mg kg-1, 0.02 mg kg-1, 96.0 mg kg-1 and 11.5 mg kg-1, respectively; these in the paddy soils nearby are 67.3 mg kg-1, 297 mg kg-1, 4.0 mg kg-1, 33.1 mg g-1 and 463 mg kg-1 on average, respectively, with a maximum of Cd reaching 16.8 mg kg-1. Microbial biomass and activities are significantly reduced by metal toxicity in the soils. The counts of fungal, actinomycin and bacterial colonies in the polluted soils are 8.8×103 /g (Fresh soil), 4.9×105 /g (Fresh soil) and 6.4×105 /g (Fresh soil), respectively, which are only 4.68%, 10.3% and 20.9% of these in non-polluted soils in Y county, respectively. Likewise, the microbial biomass (MB) - C and MB - N of the polluted soils are only 36.8% and 50.3% of these in the non-polluted, respectively. The activities of dehydrogenase, urease, catalase, acid and neutral phosphatase and sucrase in the polluted soils are only 41.2%, 49.8%, 56.8%, 69.9%, 80.7% and 81.0% of these in the non-polluted, respectively. There are significant negative correlations between Cu, Zn and Cd contents and the activities of dehydrogenase and catalase, suggesting that the two enzymes are the most sensitive to heavy metal toxicity in the

  10. Microbial reduction of ferric iron oxyhydroxides as a way for remediation of grey forest soils heavily polluted with toxic metals by infiltration of acid mine drainage

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2015-04-01

    The abandoned uranium mine Curilo is a permanent source of acid mine drainage (AMD) which steadily contaminated grey forest soils in the area. As a result, the soil pH was highly acidic and the concentration of copper, lead, arsenic, and uranium in the topsoil was higher than the relevant Maximum Admissible Concentration (MAC) for soils. The leaching test revealed that approximately half of each pollutant was presented as a reducible fraction as well as the ferric iron in horizon A was presented mainly as minerals with amorphous structure. So, the approach for remediation of the AMD-affected soils was based on the process of redoxolysis carried out by iron-reducing bacteria. Ferric iron hydroxides reduction and the heavy metals released into soil solutions was studied in the dependence on the source of organic (fresh or silage hay) which was used for growth and activity of soil microflora, initial soil pH (3.65; 4.2; and 5.1), and the ion content of irrigation solutions. The combination of limestone (2.0 g/ kg soil), silage addition (at rate of 45 g dry weight/ kg soil) in the beginning and reiterated at 6 month since the start of soil remediation, and periodical soil irrigation with slightly acidic solutions containing CaCl2 was sufficient the content of lead and arsenic in horizon A to be decreased to concentrations similar to the relevant MAC. The reducible, exchangeable, and carbonate mobile fractions were phases from which the pollutants was leached during the applied soil remediation. It determined the higher reduction of the pollutants bioavailability also as well as the process of ferric iron reduction was combined with neutralization of the soil acidity to pH (H2O) 6.2.

  11. Lime and compost promote plant re-colonization of metal-polluted, acidic soils.

    PubMed

    Ulriksen, Christopher; Ginocchio, Rosanna; Mench, Michel; Neaman, Alexander

    2012-09-01

    The revegetation of soils affected by historic depositions of an industrial complex in Central Chile was studied. The plant re-colonization from the existing soil seed bank and changes in the physico-chemical properties of the soil were evaluated in field plots amended with lime and/or compost. We found that the application of lime and/or compost decreased the Cu2+ ion activity in the soil solution and the exchangeable Cu in the soil, showing an effective Cu immobilization in the topsoil. Whereas lime application had no effect on plant productivity in comparison with the unamended control, the application of compost and lime+compost increased the plant cover and aboveground biomass due to the higher nutrient availability and water-holding capacity of the compost-amended soils. Although the Cu2+ activity and the exchangeable Cu were markedly lower in the amended soils than in the unamended control, the shoot Cu concentrations of Lolium spp. and Eschscholzia californica did not differ between the treatments.

  12. Identification of heavy metal pollutants using multivariate analysis and effects of land uses on their accumulation in urban soils in Beijing, China.

    PubMed

    Wang, Meie; Markert, Bernd; Chen, Weiping; Peng, Chi; Ouyang, Zhiyun

    2012-10-01

    In order to evaluate the current state of the environmental quality of soils in Beijing, we investigated contents of 14 metals in Beijing urban soils inside the 5th ring road by even grids sampling. Statistic analyses were conducted to identify possible heavy metal pollutants, as well as the effects of land uses on their accumulation. Our results revealed that the urban soils in Beijing were contaminated by Cd, Pb, Cu, and Zn. Land uses and urbanization ages affected the accumulation of the four heavy metals in soils significantly. Soils in industrial areas have the highest average Cu and Zn contents, while Pb contents in park areas and Cd in agricultural areas are the highest. The accumulations of Pb and Zn in urban soils increase significantly with sampling plots approaching the city center. And Pb, Cd, and Zn contents in soils in traffic areas also tend to increase in the city center. However, residential areas have the lowest contents of all the four heavy metals.

  13. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    PubMed

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper

  14. Management with willow short rotation coppice increase the functional gene diversity and functional activity of a heavy metal polluted soil.

    PubMed

    Xue, K; van Nostrand, J D; Vangronsveld, J; Witters, N; Janssen, J O; Kumpiene, J; Siebielec, G; Galazka, R; Giagnoni, L; Arenella, M; Zhou, J-Z; Renella, G

    2015-11-01

    We studied the microbial functional diversity, biochemical activity, heavy metals (HM) availability and soil toxicity of Cd, Pb and Zn contaminated soils, kept under grassland or short rotation coppice (SRC) to attenuate the risks associated with HM contamination and restore the soil ecological functions. Soil microbial functional diversity was analyzed by the GeoChip, a functional gene microarray containing probes for genes involved in nutrient cycling, metal resistance and stress response. Soil under SRC showed a higher abundance of microbial genes involved in C, N, P and S cycles and resistance to various HM, higher microbial biomass, respiration and enzyme activity rates, and lower HM availability than the grassland soil. The linkages between functional genes of soil microbial communities and soil chemical properties, HM availability and biochemical activity were also investigated. Soil toxicity and N, P and Pb availability were important factors in shaping the microbial functional diversity, as determined by CCA. We concluded that in HM contaminated soils the microbial functional diversity was positively influenced by SRC management through the reduction of HM availability and soil toxicity increase of nutrient cycling. The presented results can be important in predicting the long term environmental sustainability of plant-based soil remediation.

  15. Heavy metal stress detection and monitoring via LED-induced chlorophyll fluorescence analysis of Zea mays L. seedlings aimed at polluted soil phytoremediation

    NASA Astrophysics Data System (ADS)

    Gouveia-Neto, Artur S.; Silva, Elias A., Jr.; da Silva, Airon José; do Nascimento, Clístenes W. A.

    2012-03-01

    Chlorophyll fluorescence spectroscopy is employed to detect and study the time evolution of metal stress of Zea mays L. seedlings aiming polluted soil phytoremediation. The chlorophyll fluorescence spectra of intact leaves are analyzed using 405 nm LED excitation. Red (Fr) and far-red (FFr) emissions around 685 nm and 735 nm, respectively, are examined as a function of the heavy metal concentration. The fluorescence ratio Fr/FFr was employed to monitor the effect of heavy metal upon the physiological state of the plants before signs of visual stress became apparent. The chlorophyll fluorescence analysis permitted detection and evaluation of the damage caused by heavy metal soil contamination in the early stages of the plants growing process, which is not feasible using conventional in vitro spectral analysis.

  16. Recovery of soil properties after seedlings Inoculation with AM fungi and addition of composted olive mill waste in the regeneration of a heavy metal polluted environment

    NASA Astrophysics Data System (ADS)

    curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; del Mar Alguacil, Maria; Caravaca, Fuensanta; Roldan, Antonio

    2014-05-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) on the establishment of Tetraclinis articulata and soil properties in a heavy metal polluted soil. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96% and 60% respectively. These treatments trended to improve the soils properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided G-mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs; because it promotes soil properties, a better performance of plants for supporting the stress in heavy-metal contaminated soils derived from mining process, and also can be a good way for olive mill wastes disposal.

  17. Characteristics of immune-competent amoebocytes non-invasively retrieved from populations of the sentinel earthworm Lumbricus rubellus (Annelida; Oligochaeta; Lumbricidae) inhabiting metal polluted field soils.

    PubMed

    Plytycz, Barbara; Cygal, Malgorzata; Lis-Molenda, Urszula; Klimek, Malgorzata; Mazur, Agnieszka Irena; Duchnowski, Michał; Morgan, A John

    2011-05-01

    Lumbricus rubellus is a cosmopolitan earthworm devoid of riboflavin-storing eleocytes; its immune competent coelomocytes are predominantly amoebocytes. Our aim was to determine whether amoebocyte cytometrics in L. rubellus are robust biomarkers for innate immunological responses to environmental pollutants. Investigations were conducted on populations inhabiting three unpolluted and five metalliferous (mainly Pb+Zn+Cd) habitats in the UK and Poland. Inter-population differences in worm mass and amoebocyte numbers did not consistently reflect soil or tissue metal concentrations. Flow cytometry indicated that autofluorescence of the amoebocytes differs between cells from the unpolluted and metal-polluted worms, and pinocytosis of neutral red by amoebocytes was lower (especially at 15 versus 60 min incubation) in worms from the polluted Poland site compared with the reference population. To conclude, amoebocyte cytometrics and functionality are potentially useful for environmental diagnostics; deployment is contingent on better understanding potential confounders.

  18. Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO₂, Fe₃O₄, SnO₂, TiO₂) or metallic (Ag, Co, Ni) engineered nanoparticles.

    PubMed

    Vittori Antisari, Livia; Carbone, Serena; Gatti, Antonietta; Vianello, Gilmo; Nannipieri, Paolo

    2015-02-01

    The influence of exposure to engineered nanoparticles (NPs) was studied in tomato plants, grown in a soil and peat mixture and irrigated with metal oxides (CeO2, Fe3O4, SnO2, TiO2) and metallic (Ag, Co, Ni) NPs. The morphological parameters of the tomato organs, the amount of component metals taken up by the tomato plants from NPs added to the soil and the nutrient content in different tomato organs were also investigated. The fate, transport and possible toxicity of different NPs and nutrients in tomato tissues from soils were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES). The tomato yield depended on the NPs: Fe3O4-NPs promoted the root growth, while SnO2-NP exposure reduced it (i.e. +152.6 and -63.1 % of dry matter, respectively). The NP component metal mainly accumulated in the tomato roots; however, plants treated with Ag-, Co- and Ni-NPs showed higher concentration of these elements in both above-ground and below-ground organs with respect to the untreated plants, in addition Ag-NPs also contaminated the fruits. Moreover, an imbalance of K translocation was detected in some plants exposed to Ag-, Co- and Fe3O4-NPs. The component metal concentration of soil rhizosphere polluted with NPs significantly increased compared to controls, and NPs were detected in the tissues of the tomato roots using electron microscopy (ESEM-EDS).

  19. Prospective application of Leucaena leucocephala for phytoextraction of Cd and Zn and nitrogen fixation in metal polluted soils.

    PubMed

    Saraswat, Shweta; Rai, J P N

    2011-03-01

    The study deals with phytoextraction of Zn and Cd by Leucaena leucocephala grown on effluent fed and low nitrogen soils collected from S1, S2, and S3 sites, representing decreasing metal content with increasing distance from the effluent drain. Plant nitrogen fixation potential and soil micro-biochemical attributes against metal stress were also assessed. Increasing soil metal content and plant growth enhanced metal accumulation. Relatively greater amount of Zn than Cd was accumulated by L. leucocephala, which exceeded in roots with that of other parts. Remediation factor for Cd was maximum (3.6%) in S2 grown plant. Nodule numbers, their biomass, nitrogenase activity, and leghaemoglobin content were maximum in plants grown in S3 and minimum in S1 soil having maximum metals. Maximum soil organic C, total N, C(mic), and N(mic), respiration rate, ATP content, and enzymatic activities in response to phytoremediation was recorded in S3 followed by S2 and S1. Phytoremediation for a year enhanced extractable Zn and Cd by 36% and 45%, and their total removal by 20% and 30%, respectively from S2, which suggests the possible application of L. leucocephala for the remediation of metal contaminated sites and their fertility restoration by improving microbial functionalities and N-pool.

  20. Heavy metals pollution in soil profiles from seasonal-flooding riparian wetlands in a Chinese delta: Levels, distributions and toxic risks

    NASA Astrophysics Data System (ADS)

    Zhang, Guangliang; Bai, Junhong; Zhao, Qingqing; Jia, Jia; Wen, Xiaojun

    2017-02-01

    Soil profile samples were collected in seasonal-flooding riparian wetlands in the Yellow River Delta (YRD) of China in autumn and spring to investigate the levels, distributions and toxic risks of heavy metals in soil profiles. Total elemental contents of Al, As, Cd, Cr, Cu, Ni, Pb and Zn were determined using inductively coupled plasma atomic absorption spectrometry (ICP-AAS). Results indicated that the contents of determined heavy metals showed non-negligible depth variations (coefficient of variation > 10%), and their distribution patterns were irregular. Compared with other heavy metals, both As and Cd presented higher enrichment factors (EF) based on the classification of EF values (moderate enrichment for As while significant enrichment for Cd). Cluster analysis (CA) and principal components analysis (PCA) revealed that Cr, Cu, Ni, Pb and Zn might derive from the common source, while As and Cd shared another similar source. The toxic unit (TU) values of these heavy metals did not exceed probable effect levels (PEL) except for Ni. Both As and Ni showed higher contributions to the sum of TU (∑TUs), which indicated they were the primary concerns of heavy metals pollution. Generally, As, Cd and Ni should be paid more attention for wetlands managers and policy makers to avoid potential ecotoxicity in the study area. The findings of this study could contribute to the prevention and control of heavy metals pollution in estuarine wetlands.

  1. The influence of bacterial-humus preparations on the biological activity of soils polluted with oil products and heavy metals

    NASA Astrophysics Data System (ADS)

    Kozlova, E. N.; Stepanov, A. L.; Lysak, L. V.

    2015-04-01

    The influence of bacterial-humus preparations based on Gumigel ( Agrosintez Company) on the biological activity of soddy-podzolic soil polluted with Pb(CH3COO)2 and gasoline was studied in a model experiment. Some indicators of biological activity are shown to depend on soil pollution to different extents. The process of nitrogen fixation and the activity of dehydrogenase and phosphatase were mostly inhibited by Pb(CH3COO)2 and gasoline. Gasoline compared to Pb(CH3COO)2 inhibited the soil biological activity to a greater extent. The bacterial-humus preparations exerted a significant positive effect on the biological activity of the polluted soils manifested in the increase of the total number of bacteria and of the enzyme activity (1.5-5.0 times), in the intensification of nitrogen fixation and denitrification (3-8 times), as well as in the increase in the biomass of the plants grown (1.5-2.0 times). The application of bacterial suspensions of pure cultures or the microbial complex without the preparations of humic acids did not always give a positive effect.

  2. Chemical dynamics of acidity and heavy metals in a mine water-polluted soil during decontamination using clean water.

    PubMed

    Chen, A; Lin, C; Lu, W; Ma, Y; Bai, Y; Chen, H; Li, J

    2010-03-15

    A column leaching experiment was conducted to investigate the chemical dynamics of the percolating water and washed soil during decontamination of an acidic mine water-polluted soil. The results show that leaching of the contaminated soil with clean water rapidly reduced soluble acidity and ion concentrations in the soils. However, only <20% of the total actual acidity in the soil column was eliminated after 30 leaching cycles. It is likely that the stored acidity continues to be released to the percolating water over a long period of time. During the column leaching, dissolved Cu and Pb were rapidly leached out, followed by mobilization of colloidal Cu and Pb from the exchangeable and the oxide-bound fractions as a result of reduced ionic strength in the soil solution. The soluble Fe contained in the soil was rare, probably because the soil pH was not sufficiently low; marked mobility of colloidal Fe took place after the ionic strength of the percolating water was weakened and the mobilized Fe was mainly derived from iron oxides. In contrast with Cu, Pb and Fe, the concentration of leachate Zn and Mn showed a continuously decreasing trend during the entire period of the experiment.

  3. Changes in soil microbial community functionality and structure in a metal-polluted site: The effect of digestate and fly ash applications.

    PubMed

    Garcia-Sánchez, M; Garcia-Romera, I; Cajthaml, T; Tlustoš, P; Száková, J

    2015-10-01

    Soil from Trhové Dušníky (Příbram, Czech Republic) is characterized by its high polymetallic accumulations in Pb-Ag-Zn due to mining and smelting activities. In previous studies performed in our research group, we have evaluated the potential use of amendments that would reduce the mobility and availability of metals such as Hg. We have observed that the application of digestate and fly ash in metal-polluted soil has an impact in immobilizing these metals. However, until now we have lacked information about the effect of these amendments on soil microbial functionality and communities. The multi-contaminated soil was used to grow wheat in a pot experiment to evaluate the impact of digestate and fly ash application in soil microbial communities. Soil samples were collected after 30 and 60 days of treatment. The digestate application improved chemical attributes such as the content in total organic carbon (TOC), water soluble carbon (WSOC), total soluble carbon (C), total soluble nitrogen (N), and inorganic N forms (NO3(-)) as consequence of high content in C and N which is contained in digestate. Likewise, microbial activity was greatly enhanced by digestate application, as was physiological diversity. Bacterial and fungal communities were increased, and the microbial biomass was highly enhanced. These effects were evident after 30 and 60 days of treatment. In contrast, fly ash did not have a remarkable effect when compared to digestate, but soil microbial biomass was positively affected as a consequence of macro- and micro-nutrient sources applied by the addition of fly ash. This study indicates that digestate can be used successfully in the remediation of metal-contaminated soil.

  4. Risk Assessment of Heavy Metals Pollution in Agricultural Soils of Siling Reservoir Watershed in Zhejiang Province, China

    PubMed Central

    Naveedullah; Hashmi, Muhammad Zaffar; Yu, Chunna; Shen, Hui; Duan, Dechao; Lou, Liping; Chen, Yingxu

    2013-01-01

    Presence of heavy metals in agriculture soils above the permissible limit poses threats to public health. In this study, concentrations of seven metals were determined in agricultural soils from Yuhang county, Zhejiang, China. Multivariate statistical approaches were used to study the variation of metals in soils during summer and winter seasons. Contamination of soils was evaluated on the basis of enrichment factor (EF), geoaccumulation index (Igeo), contamination factor (Cf), and degree of contamination (Cdeg). Heavy metal concentrations were observed higher in winter as compared to summer season. Cr and Cd revealed random distribution with diverse correlations in both seasons. Principal component analysis and cluster analysis showed significant anthropogenic intrusions of Zn, Cd, Pb, Cr, and Cu in the soils. Enrichment factor revealed significant enrichment (EF > 5) of Zn, Cd, and Pb, whereas geoaccumulation index and contamination factor exhibited moderate to high contamination for Zn, Cr, Cd, and Pb. In light of the studied parameters, permissible limit to very high degree of contamination (Cdeg > 16) was observed in both seasons. PMID:24151611

  5. Risk assessment of heavy metals pollution in agricultural soils of siling reservoir watershed in Zhejiang Province, China.

    PubMed

    Naveedullah; Hashmi, Muhammad Zaffar; Yu, Chunna; Shen, Hui; Duan, Dechao; Shen, Chaofeng; Lou, Liping; Chen, Yingxu

    2013-01-01

    Presence of heavy metals in agriculture soils above the permissible limit poses threats to public health. In this study, concentrations of seven metals were determined in agricultural soils from Yuhang county, Zhejiang, China. Multivariate statistical approaches were used to study the variation of metals in soils during summer and winter seasons. Contamination of soils was evaluated on the basis of enrichment factor (EF), geoaccumulation index (I(geo)), contamination factor (C(f)), and degree of contamination (C(deg)). Heavy metal concentrations were observed higher in winter as compared to summer season. Cr and Cd revealed random distribution with diverse correlations in both seasons. Principal component analysis and cluster analysis showed significant anthropogenic intrusions of Zn, Cd, Pb, Cr, and Cu in the soils. Enrichment factor revealed significant enrichment (EF > 5) of Zn, Cd, and Pb, whereas geoaccumulation index and contamination factor exhibited moderate to high contamination for Zn, Cr, Cd, and Pb. In light of the studied parameters, permissible limit to very high degree of contamination (C(deg) > 16) was observed in both seasons.

  6. Assessment of the risk of pollution by sulfur compounds and heavy metals in soils located in the proximity of a disused for 20 years sulfur mine (SE Poland).

    PubMed

    Sołek-Podwika, Katarzyna; Ciarkowska, Krystyna; Kaleta, Dorota

    2016-09-15

    The study assessed the long-term effects of anthropogenic pressure of the sulfur industry on turf-covered soils located in the vicinity of the sulfur mine Grzybów. The study assumes that 20 years which elapsed since the end of the exploitation of sulfur is a period sufficiently long for the content of sulfur compounds in soils not to exceed the permissible level and that soil of the region can be classified as not contaminated. A part of the study involved identification of changes in the contents Stot. and SSO4(2-) in soils collected in the 1970s and early twenty-first century. It was also traced the relationship between the content of sulfur compounds and selected soil properties and estimated risk of soil environment pollution by heavy metals. Mean contents of trace elements studied amounted to 10.2-10.8 mg kg(-1) for Pb, 14.3-39.4 mg kg(-1) for Zn, 0.2-0.4 mg kg(-1) for Cd, 3.8-32.2 mg kg(-1) for Cr, 2.7-15.1 mg kg(-1) for Cu and 2.9-18.7 mg kg(-1) for Ni. Based on the results of SSO4(2-) content in soils collected at a distance of 1 km from the mine, it was found out that despite the passage of years, the amount of this type of sulfur still is increased and exceeds 0.14 g kg(-1). As the distance from the mine grew lower (from 0.017 to 0.03 g kg(-1)) average content of the sulfur form was observed. In the studied soil material we found generally positive, strong correlation between the Stot. and SSO4(2-) content and analyzed trace elements. The degree of contamination of examined soils with heavy metals was estimated on the basis of the integrated pollution index, which pointed to a moderate and low level of antropogenization of this area. In addition, the relationship between the determined characteristics of soils (Corg. contents, the fraction <0.002 mm and pH) and heavy metals confirms that the trace elements present in soils do not occur in mobile forms in the soil solution.

  7. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils.

    PubMed

    Sharaff, Murali; Kamat, Shalmali; Archana, G

    2017-04-01

    Agricultural sites irrigated for long term with water polluted by industrial effluents containing heavy metals might adversely affect the soil microbial communities and crop yield. Hence it is important to study rhizobacterial communities and their metal tolerance in such affected agricultural fields to restore soil fertility and ecosystem. Present work deals with the study of rhizobacterial communities from plants grown in copper (Cu) contaminated agricultural fields along the industrial zone of Gujarat, India and are compared with communities from a Cu mine site. Microbial communities from rhizosphere soil samples varied in the magnitude of their Cu tolerance index indicating differences in long term pollution effects. Culture dependent denaturing gradient gel electrophoresis (CD-DGGE) of bacterial communities revealed the diverse composition at the sampling sites and a reduced total diversity due to Cu toxicity. Analysis of 16S rRNA gene diversity of Cu tolerant rhizobacteria revealed the predominance of Enterobacter spp. and Pseudomonas spp. under Cu stress conditions. Cu tolerant bacterial isolates that were able to promote growth of mung bean plants in vitro under Cu stress were obtained from these samples. Cu tolerant rhizobacterium P36 identified as Enterobacter sp. exhibited multiple plant growth promoting traits and significantly alleviated Cu toxicity to mung bean plants by reducing the accumulation of Cu in plant roots and promoted the plant growth in CuSO4 amended soils.

  8. Evaluation of heavy metal pollution in water wells and soil using common leafy green plant indicators in the Al-Kharj region, Saudi Arabia.

    PubMed

    Al-Hammad, Bushra Ahmed; Abd El-Salam, Magda Magdy

    2016-06-01

    This study was performed to determine the levels of eight heavy metals in irrigation well water and soil and to assess the suitability of some leafy green plants that are commonly cultivated in the Al-Kharj region, Saudi Arabia, for human consumption using an atomic absorption spectrometer. The mean concentrations of metals ranged from 0.0001 to 0.436 mg/L in well water and from 0.248 to 164.52 mg/kg in soil. The heavy metal concentrations showed significant differences among the different leafy green plants studied. Parsley (4.98 mg/kg) exhibited higher levels of Pb than other leafy green plants, whereas mallow (0.097 mg/kg) revealed greater amounts of Cd than other plants. All of the leafy green plants retained essential metals (Cu, Zn, Fe and Mn) more than the toxic metals (Pb and Cd). The levels of some of the metals in the leafy green plants were found to meet the FAO/WHO-recommended limits. The monitoring of heavy metals in leafy green plants must be continued because these plants are the main source of food for humans in many parts of the world and are considered to be bio-indicators for environmental pollution.

  9. Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment.

    PubMed

    Sharma, Atul Prakash; Tripathi, B D

    2008-03-01

    The Singrauli region in the southeastern part of Uttar Pradesh, India is one of the most polluted industrial sites of Asia. It encompasses 11 open cast coal mines and six thermal power stations that generate about 7,500 MW (about 10% of India's installed generation capacity) electricity. Thermal power plants represent the main source of pollution in this region, emitting six million tonnes of fly-ash per annum. Fly-ash is deposited on soils over a large area surrounding thermal power plants. Fly-ashes have high surface concentrations of several toxic elements (heavy metals) and high atmospheric mobility. Fly ash is produced through high-temperature combustion of fossil fuel rich in ferromagnetic minerals. These contaminants can be identified using rock-magnetic methods. Magnetic susceptibility is directly linked to the concentration of ferromagnetic minerals, primarily high values of magnetite. In this study, magnetic susceptibility of top soil samples collected from surrounding areas of a bituminous-coal-fired power plant were measured to identify areas of high emission levels and to chart the spatial distribution of airborne solid particles. Sites close to the power plant have shown higher values of susceptibility that decreases with increasing distance from the source. A significant correlation between magnetic susceptibility and heavy metal content in soils is found. A comparison of the spatial distribution of magnetic susceptibility with heavy-metal concentrations in soil samples suggests that magnetic measurements can be used as a rapid and inexpensive method for proxy mapping of air borne pollution due to industrial activity.

  10. The associations of heavy metals with crystalline iron oxides in the polluted soils around the mining areas in Guangdong Province, China.

    PubMed

    Yin, Hui; Tan, Nianhao; Liu, Chuanping; Wang, Juju; Liang, Xiaoliang; Qu, Mingkai; Feng, Xionghan; Qiu, Guohong; Tan, Wenfeng; Liu, Fan

    2016-10-01

    In current selective sequential extraction (SSE) methods, heavy metals associated well-crystallized iron oxyhydroxides are not well defined and considered, and usually fall into residual forms, which actually make their mobility and environmental risk underestimated. This study compared various fractions of heavy metals in samples of mining tailings and nearby soils under different land uses in Guangdong Province of China. Iron oxides in these soils were mainly Al-substituted goethites and/or hematites. Independent of the land uses, the percentages of various Cd fractions in the soils decrease in the order of well-crystallized iron oxyhydroxides-associated (27.2-91.2%) > residual (2.1-37.0%) > reducible FeMn oxides (3.2-45.7%) > exchangeable (1.0-28.2%) > organic-associated form (0-5.1%). Pb mainly existes in the residual fraction (25.9-74.5%), followed by crystalline iron oxyhydroxides-associated (0.4-69.0%) and reducible fractions (2.4-40.4%). Zn mainly exists in the residual fraction (25.4-85.9%), followed by the well-crystallized iron oxyhydroxides-associated fraction (6.4-55.0%). However, Cu mainly existes in the residual form and the fractionation of Cu varies obviously between samples. The association of these metals with crystalline iron oxyhydroxides in the soils decreases in the sequence of Cd > Pb > Zn > Cu. These results suggest that in heavy-metal-polluted weathered soils in tropical and subtropical areas enriched with iron oxides, it is essential to assess potential bioavailability and toxicity of heavy metals bound to well-crystallized iron oxyhydroxides with appropriate procedures in the fractionation measurement. The modified Tessier method present here can be used to quantify the fractions of heavy metals in such areas.

  11. Assessment of health risk of trace metal pollution in surface soil and road dust from e-waste recycling area in China.

    PubMed

    Yekeen, Taofeek Akangbe; Xu, Xijin; Zhang, Yuling; Wu, Yousheng; Kim, Stephani; Reponen, Tiina; Dietrich, Kim N; Ho, Shuk-Mei; Chen, Aimin; Huo, Xia

    2016-09-01

    Informal recycling of e-waste and the resulting heavy metal pollution has become a serious burden on the ecosystem in Guiyu, China. In this investigation, we evaluated the trace metal concentration of community soil and road dust samples from 11 locations in Guiyu and 5 locations (consisting of residential areas, kindergarten/school, and farm field) in a reference area using graphite furnace atomic absorption spectrophotometer. The study spanned four seasons, 2012-2013, with a view to assess the risk associated with e-waste recycling in the study area. The concentrations of Pb, Cd, Cr, and Mn were 448.73, 0.71, 63.90, and 806.54 mg/kg in Guiyu soil and 589.74, 1.94, 69.71, and 693.74 mg/kg, in the dust, respectively. Pb and Cd values were significantly higher (P ≤ 0.05) than the reference area, and the mixed model analysis with repeated seasonal measurements revealed soil Pb and Cd levels that were 2.32 and 4.34 times, while the ratios for dust sample were 4.10 and 3.18 times higher than the reference area. Contamination factor, degree of contamination, and pollution load index indicated that all sampling points had a high level of metal contamination except farm land and kindergarten compound. The cumulative hazard index of Pb, Cd, Cr, and Mn for children in exposed area was 0.99 and 1.62 for soil and dust, respectively, suggesting non-cancer health risk potential. The significant accumulation of trace metals in the e-waste recycling area predisposes human life, especially children, to a potentially serious health risk.

  12. Effect of polluted water on soil and plant contamination by heavy metals in El-Mahla El-Kobra, Egypt

    NASA Astrophysics Data System (ADS)

    Kasem Mahmoud, Esawy; Ghoneim, Adel Mohamed

    2016-04-01

    The discharge of untreated waste water in Zefta drain and drain no. 5 is becoming a problem for many farmers in the El-Mahla El-Kobra area, Egypt. The discharged water contains high levels of contaminants considered hazardous to the ecosystem. Some plants, soil, water, and sediment samples were collected from the El-Mahla El-Kobra area to evaluate the contamination by heavy metals. The results showed that the heavy metals, pH, sodium adsorption ratio (SAR), biochemical oxygen demand (BOD), and chemical oxygen demand (COD) in the water of Zefta drain and drain no. 5 exceeded permissible limits for irrigation. In rice and maize shoots grown in soils irrigated by contaminated water from Zefta drain and drain no. 5, the bioaccumulation factors for Cd, Pb, Zn, Cu, and Mn were higher than 1.0. The heavy metals content of irrigated soils from Zefta drain and drain no. 5 exceeded the upper limit of background heavy metals. In this study, the mean contaminant factor values of the drain no. 5 sediments revealed that Zn, Mn, Cu, Cd, Pb, and Ni > 6, indicating very high contamination. The bioaccumulation coefficient values of Cynodon dactylon, Phragmites australis, and Typha domingensis aquatic plants growing in Zefta drain are high. These species can be considered as hyperaccumulators for the decontamination of contaminated water.

  13. Remediation of grey forest soils heavily polluted with heavy metals by means of their leaching at acidic pH followed by the soil reclamation by means of neutralization and bacterial manure addition

    NASA Astrophysics Data System (ADS)

    Georgiev, Plamen; Groudev, Stoyan; Spasova, Irena; Nicolova, Marina

    2014-05-01

    Some grey forest soils in Western Bulgaria are heavily polluted with heavy metals (copper, lead, and zinc), arsenic, and uranium due to the infiltration of acid mine drainage generated at the abandoned uranium mine Curilo. This paper presents some results from a study about soil remediation based on the contaminants leaching from the topsoil by means of irrigation with solutions containing sulphuric acid or its in situ generation by means of sulphur-oxidizing chemolithotrophic bacteria in or without the presence of finely cut straw. These methods were tested in large scale zero suction lysimeters. The approaches based on S° and finely cut straw addition was the most efficient amongst the tested methods and for seven months of soil remediation the concentration of all soil contaminants were decreased below the relevant Maximum Admissible Concentration (MAC). Neutralization of the soil acidity was applied as a next stage of soil reclamation by adding CaCO3 and cow manure. As a result, soil pH increased from strongly acidic (2.36) to slightly acidic (6.15) which allowed subsequent addition of humic acids and bacterial manure to the topsoil. The soil habitat changed in this way facilitated the growth of microorganisms which restored the biogeochemical cycles of nitrogen and carbon to the levels typical for non-polluted grey forest soil.

  14. Persistent Organic Pollutants and Heavy Metal Concentrations in Soil from the Metropolitan Area of Monterrey, Nuevo Leon, Mexico.

    PubMed

    Orta-García, Sandra Teresa; Ochoa-Martinez, Angeles Catalina; Carrizalez-Yáñez, Leticia; Varela-Silva, José Antonio; Pérez-Vázquez, Francisco Javier; Pruneda-Álvarez, Lucia Guadalupe; Torres-Dosal, Arturo; Guzmán-Mar, Jorge Luis; Pérez-Maldonado, Iván N

    2016-04-01

    The purpose of this study was to assess the levels of polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethane (DDE), and four heavy metals (arsenic, cadmium, and lead) in outdoor surface soils (50 samples) collected from the metropolitan area of Monterrey in Mexico. Total PBDEs levels ranged from 1.80 to 127 µg/kg, with mean total PBDEs level of 14.2 ± 21.5 µg/kg (geometric mean ± standard deviation). For PCBs, the mean total level in the studied soils was 23.5 ± 20.2 µg/kg (range 4.0-65.5 µg/kg). An important finding in our study was that all soil samples (100%) had detectable levels of the metabolite p,p'-DDE. Moreover, the mean total DDT level (∑p'p-DDT and p'p-DDE) was approximately 132 ± 175 µg/kg. The mean levels for arsenic, cadmium, and lead in soil were 5.30 ± 1.35 (range 1.55-7.85) mg/kg, 2.20 ± 1.20 (range 0.65-6.40) mg/kg, and 455 ± 204 (range 224-1230) mg/kg, respectively. Our study has several limitations, the most notable of which is the small sample of soils evaluated. However, this screening study provided concentration data for the occurrence of POPs and four heavy metals in soil from the metropolitan area of Monterrey, Nuevo Leon, Mexico, and taking into consideration that soil is an important pathway of exposure for people, a biomonitoring program for the surveillance of the general population in the metropolitan area of Monterrey, Nuevo Leon is deemed necessary.

  15. Sources and Spatial Distribution of Metal Pollutants in Soils near the El Paso Smelter: A Forensic Study with Pb and Pu Isotopes.

    NASA Astrophysics Data System (ADS)

    Ketterer, Michael; Moan, Matthew; Gremillion, Paul

    2010-05-01

    Lead and copper smelting has been conducted at El Paso since the late 1800's, and as a result, environmental media near the smelter have become contaminated. A study has been conducted to investigate the sources and spatial distribution of metal pollutants (Pb, Cd, Zn, Hg, As, Cu) and concomitant tracers (Ag, In, Sb, Bi) in soils from the smelter vicinity. Sampled locations were residential and non-residential locations in El Paso (Texas, USA), Anapra (New Mexico, USA) and Ciudad Juarez (Chihuahua, Mexico). Lead isotope studies indicate that the soil Pb is derived from smelting, and is consistent with two-component mixing between lead ores from Chihuahua (northern Mexico) having 206Pb/204Pb of 18.6 - 18.8 and ores from the Hanover, New Mexico (USA) mining district with 206Pb/204Pb of ~ 17.6. The Pb isotope results also exclude other common anthropogenic Pb sources such as paint and gasoline emissions as being major contributors. Concentrations of Hg and Pb of up to 10 and 11,000 ppm were found in surface soils within 1 km of the smelter. The metal concentration results clearly indicate that soils near the smelter (< 5 km) exhibit much higher concentrations of smelter-related elements than do soils from control locations (> 10 km distant). A general trend of decreasing concentrations vs. distance from the smelter was also observed. However, the results indicate that metal concentrations vary widely even at a fixed distance from the smelter point source. This phenomenon results from a combination of natural and anthropogenic processes that disturb and re-distribute soils in the surface environment. The site conditions consist of a very arid environment with little vegetation cover that is frequently disturbed by high winds and severe episodic rainfall. To study these effects, we have investigated stratospheric fallout plutonium (239+240Pu) as a proxy measure of disturbed vs. undisturbed soil conditions. The premise is that 'undisturbed' locations will have high 239

  16. Towards an integrative soil health assessment strategy: a three tier (integrative biomarker response) approach with Eisenia fetida applied to soils subjected to chronic metal pollution.

    PubMed

    Asensio, Vega; Rodríguez-Ruiz, Amaia; Garmendia, Larraitz; Andre, Jane; Kille, Peter; Morgan, Andrew John; Soto, Manu; Marigómez, Ionan

    2013-01-01

    This is a pilot study for assessing soil ecosystem health in chronically polluted sites on the basis of a 3-tier approach (screening+scoring+understanding) designed to be cost-effective and scientifically based, and to provide straightforward advice and support to managers and stakeholders involved in environmental protection. For the initial screening (Tier 1), the use of a highly sensitive, low-cost biomarker such as neutral red uptake (NRU) in earthworm coelomocytes is proposed. In sites where an alteration in NRU has been established, the stress level may be further assessed by utilising a suite of low-cost and rapid biomarkers of effect integrated in an integrative biological response (IBR) index to obtain an objective (scored) assessment of the induced stress syndrome (Tier 2). The IBR/n index is based on the integration of biomarkers at different levels of biological organisation. Acyl-CoA oxidase activity (AOX), catalase activity (CAT), lipofuscin optical density (LOD%), NRU and the mean epithelial thickness (MET) have been used to calculate the IBR/n index. Biomarkers are determined in earthworms, Eisenia fetida, exposed ex situ to real soils (three mining sites and a reference) for 3, 10 and 17d. The 3d NRU (Tier 1) provided signal of stress. After 3d, PCA, based on the suite of biomarkers (Tier 2), discriminated reference and polluted sites according to toxicity profiles and at 17d, the most polluted site is segregated from less polluted and reference sites. Soils were classified as harmful, unhealthy (not apparently toxic) or healthy. Soils were investigated by microarray transcriptomics (Tier 3), to understand the causes (aetiology) and consequences (prognosis) of health impairment. Tier 3 discriminates, according to stress syndrome traits, soils that did not fall into the category of highly stressed and revealed the main agent causing toxicity at each site by identifying the toxicity mechanisms and biological responses.

  17. A three-year in-situ study on the persistence of a combined amendment (limestone+sepiolite) for remedying paddy soil polluted with heavy metals.

    PubMed

    Wu, Yu-Jun; Zhou, Hang; Zou, Zi-Jin; Zhu, Wei; Yang, Wen-Tao; Peng, Pei-Qin; Zeng, Min; Liao, Bo-Han

    2016-08-01

    In order to study the persistence of a combined amendment (LS, limestone+sepiolite) for remedying paddy soil polluted with the heavy metals Pb and Cd, a three-year in-situ experiment was conducted in a paddy soil near a mining area in southern Hunan, China. LS was applied at rates of 0, 2, 4, and 8g/kg (w/w); rice was subsequently planted for the three consecutive years of 2012 (first season), 2013 (second season), and 2014 (third season). Experimental results indicated that LS significantly increased soil pH values for all three seasons, and the enhancement ranked as follows: first season>second season>third season. Under the experimental conditions, the effect of LS on decreasing exchangeable concentrations of soil Pb and Cd was as follows: first season (97.6-99.8% for Pb and 88.3-98.9% for Cd)>second season (80.7-97.7% for Pb and 28.3-88.0% for Cd)>third season (32.6-97.7% for Pb and 8.3-71.4% for Cd); the effect of LS on reducing Pb concentrations in brown rice was: first season (73.5-81.2%)>third season (29.6-68.1%)>second season (0-9.7%), and that for reducing Cd concentrations in brown rice was third season (72.7-81.0%)>first season (56.1-66.8%)>second season (20.9-32.3%). For all three seasons, the effect of LS on reducing Cd content in brown rice was better than that for Pb. The highest translocation factors for Pb and Cd were from rice straw to husk, implying that the husk of rice plants was the main organ in which heavy metals accumulated. The effect of LS for decreasing soil exchangeable Cd content was relatively persistent, but that for Pb gradually decreased with time, implying that LS was more suitable for the long-term remediation of Cd-polluted soil than Pb-polluted soil.

  18. Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution.

    PubMed

    Lu, Zhibo; Cai, Minghong; Wang, Juan; Yang, Haizhen; He, Jianfeng

    2012-11-01

    Metal contents (Al, Ca, Cd, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Ti, and Zn) have been measured in 30 surface soils on Fildes Peninsula, King George Island, Antarctica, yielding values (in milligrams kilogram(-1)) of 41.57-80.65 (Zn), 2.76-60.52 (Pb), 0.04-0.34 (Cd), 7.18-25.03 (Ni), 43,255-70,534 (Fe), 449-1,401 (Mn), 17.10-64.90 (Cr), 1,440-25,684 (Mg), 10,941-49,354 (Ca), 51.10-176.50 (Cu), 4,388-12,707 (Ti), 28,038-83,849 (Al), and for Hg (in nanograms gram(-1)) 0.01-0.06. Relative cumulative frequency analysis was used to determine the baseline values for the 13 metals. Compared with adjacent areas in Antarctica, Mg and Ni are significantly lower, but Cu is significantly higher than that of McMurdo Station. Enrichment factor analysis and the geo-accumulation index method were applied in order to determine the extent of anthropogenic contamination, and both show that Pb, Cd, and Hg have been significantly increased by human activities. Principal component analysis was used to identify the sources of metals in these soil samples.

  19. Behaviour of metalloids and metals from highly polluted soil samples when mobilized by water--evaluation of static versus dynamic leaching.

    PubMed

    Wennrich, Rainer; Daus, Birgit; Müller, Karsten; Stärk, Hans-Joachim; Brüggemann, Lutz; Morgenstern, Peter

    2012-06-01

    The mobilization behaviour of metalloids and metals when leached by water from highly polluted soil/sediment samples was studied using static and dynamic approaches employing batch methodology and rotating coiled columns (RCC), respectively. Increasing the solution-to-solid ratios during batch leaching resulted in different enhanced mobilization rates, which are element-specific and matrix-specific. When dynamic leaching is employed with continuous replacement of the eluent, a higher portion is mobilized than when using batch elution with an identical solid-to-water ratio. Using RCC the time-resolved leaching of the elements was monitored to demonstrate the leaching patterns. For the majority of elements a significant decrease could be shown in the mobilized portion of the elements with ongoing leaching process. The data were discussed targeted at solid liquid partitioning coefficients of the metal(loid)s. The capabilities in application of K(d) values was demonstrated for dynamic leaching which is relevant for environmental processes.

  20. Characterization and mobility of arsenic and heavy metals in soils polluted by the destruction of arsenic-containing shells from the Great War.

    PubMed

    Thouin, Hugues; Le Forestier, Lydie; Gautret, Pascale; Hube, Daniel; Laperche, Valérie; Dupraz, Sebastien; Battaglia-Brunet, Fabienne

    2016-04-15

    Destruction of chemical munitions from World War I has caused extensive local top soil contamination by arsenic and heavy metals. The biogeochemical behavior of toxic elements is poorly documented in this type of environment. Four soils were sampled presenting different levels of contamination. The range of As concentrations in the samples was 1937-72,820mg/kg. Concentrations of Zn, Cu and Pb reached 90,190mg/kg, 9113mg/kg and 5777mg/kg, respectively. The high clay content of the subsoil and large amounts of charcoal from the use of firewood during the burning process constitute an ample reservoir of metals and As-binding materials. However, SEM-EDS observations showed different forms of association for metals and As. In metal-rich grains, several phases were identified: crystalline phases, where arsenate secondary minerals were detected, and an amorphous phase rich in Fe, Zn, Cu, and As. The secondary arsenate minerals, identified by XRD, were adamite and olivenite (zinc and copper arsenates, respectively) and two pharmacosiderites. The amorphous material was the principal carrier of As and metals in the central part of the site. This singular mineral assemblage probably resulted from the heat treatment of arsenic-containing shells. Microbial characterization included total cell counts, respiration, and determination of As(III)-oxidizing activities. Results showed the presence of microorganisms actively contributing to metabolism of carbon and arsenic, even in the most polluted soil, thereby influencing the fate of bioavailable As on the site. However, the mobility of As correlated mainly with the availability of iron sinks.

  1. Effects of phytoremediation and application of organic amendment on the mobility of heavy metals in a polluted soil profile.

    PubMed

    Zubillaga, Marta Susana; Bressan, Emiliano; Lavado, Raúl S

    2012-03-01

    This research aims to assess the effect of the application of biosolids compost and phytoremediation on the mobility of total and biodisponibles (DTPA) fractions of cadmium, copper, lead, and zinc from different horizons of a superficially contaminated soil. Leaching experiment in soil columns was proposed. Treatments contemplated application of compost biosolid and phytoremediation. Two destructive samplings were performed. Total and DTPA trace metals were identified in each horizon. The overall performance of the various elements in its total and DTPA forms show greater concentration in horizon A and fewer gradients between horizons Bt and BC, thus assuming that the high content of clay in horizon Bt (62.9%) limits its movement through the horizons. In the mobile nutrients, a greater mobility was evidenced in DTPA fractions if compared to Total fractions. In the horizon A, the more mobile metals, such as Zn and Cd, evidenced a greater percentage of DTPA/Total fractions in all treatments. The application of compost with or without plant diminished the mobilization of Zn, Cu, and Cd Total, thus limiting a potential leaching to inferior horizons. However, this effect was not observed in the DTPA fraction.

  2. Retention and mitigation of metals in sediment, soil, water, and plant of a newly constructed root-channel wetland (China) from slightly polluted source water.

    PubMed

    Wang, Baoling; Wang, Yu; Wang, Weidong

    2014-01-01

    Constructed root-channel wetland (CRCW) is a term for pre-pond/wetland/post-pond complexes, where the wetland includes plant-bed/ditch landscape and root-channel structure. Source water out of pre-ponds flows through alternate small ditches and plant beds with root-channels via a big ditch under hydraulic regulation. Then source water flows into post-ponds to finish final polishing. This article aims to explore the potential of components of a pilot CRCW in China on mitigating metals in micro-polluted source water during its initial operation stage. We investigated six heavy metals (Cd, Cr, Cu, Ni, Zn, and Pb) in surface sediment, plant-bed subsurface soil, water, and aquatic plants during 2012-2013. Monitoring results showed that pond/ditch sediments and plant-bed soil retained a significant amount of Cr, Ni, and Zn with 93.1%, 72.4%, and 57.5% samples showing contamination factor above limit 1 respectively. Remarkably the high values of metal enrichment factor (EF) occurred in root-channel zones. Water monitoring results indicated that Ni, Zn, and Pb were removed by 78.5% (66.7%), 57.6% (59.6%), and 26.0% (7.5%) in east (west) wetland respectively. Mass balance estimation revealed that heavy metal mass in the pond/ditch sediments accounted for 63.30% and that in plant-bed soil 36.67%, while plant uptake occupied only 0.03%. The heavy metal accretion flux in sediments was 0.41 - 211.08 μg · cm(-2) · a(-1), less than that in plant-bed soil (0.73 - 543.94 μg · cm(-2) · a(-1)). The 1.83 ha wetland has retained about 86.18 kg total heavy metals within 494 days after operation. This pilot case study proves that constructed root-channel wetland can reduce the potential ecological risk of purified raw water and provide a new and effective method for the removal of heavy metals from drinking water sources.

  3. Tracing metal pollution sources of plants and soils in Güzelhisar Basin of Aegean Region, Turkey

    NASA Astrophysics Data System (ADS)

    Czarnecki, Sezin; Görsch, Carolin; Colak Esetlili, Bihter; Esetlili, Tolga; Tepecik, Mahmut; Kurucu, Yusuf; Anac, Dilek; Düring, Rolf-Alexander

    2016-04-01

    The study area Güzelhisar Basin is 6 km far from the city Aliaga, Aegean Region in the west part of Turkey which represents a rather industrialized area having five large iron and steel mills, but also areas of agriculture. A grid system of 2.5 km to the east and 2.5 km to the west of the Güzelhisar Stream was studied. The area was grouped into three main areas as West, Middle, and East region. Every 500 meters soil samples were taken after the rainfall (April-May) in 2014 from the GPS determined points at 0-30 and 30-60 cm depth. Soil reaction of the study area was determined within the range from 5.87 to 6.61. Even though, the West and the Middle regions had weak carbonate concentrations, the East region was poor in carbonates and relatively high electrical conductivity was measured. Topsoil contamination was examined by all investigated elements with the exception of Cd. An increase in pseudo total metal contents of Cr, Cu, Mn, Ni, and Zn was observed with the increasing distance from the coast with a simultaneous decrease in pH. Moreover, high plant metal concentrations [mg kg-¹, ± sd] were detected for B [20.7 ± 23.9], Cu [7.99 ± 5.17], Mn (79.3 ± 89.2), Ni (3.50 ± 3.48), and Zn (25.5 ± 20.1). Transfer of the elements from soil to plants increased in the following order: Co < As < Cr < Pb < Mn < Ni < Cu < Zn < Cd << B.

  4. Dark septate endophyte (DSE) fungi isolated from metal polluted soils: their taxonomic position, tolerance, and accumulation of heavy metals in vitro.

    PubMed

    Zhang, Yujie; Zhang, Yan; Liu, Maojun; Shi, Xiaodong; Zhao, Zhiwei

    2008-12-01

    To understand the possible role of the plant root associated fungi on metal tolerance, their role in the uptake of heavy metals and the potential transfer of these metal ions to the plant, three strains of dark septate endophytic (DSE) fungi were isolated from a waste smelter site in southwest China, and one strain was isolated from a non-contaminated site. According to molecular phylogenetic analysis of the ITS 1-5.8S rDNA-ITS 2 gene regions and morphological characteristics, one is identified as Exophiala pisciphila, and the other three are non-sporulating fungi under the experiment condition with the nearest phylogenetic affinities to the Thysanorea papuana strain EU041814. Tolerance and accumulation abilities of the three DSE strains for metals were investigated in liquid culture. Minimum inhibitory concentrations (MIC) of Pb, Zn, and Cd were determined. It was demonstrated that the tolerance of the DSE strains varied between metal species and strains. The E. pisciphila strain is able to accumulate lead and cadmium over 20% and 5% of dry weight of biomass, respectively. Partial of the sequestrated metals can be washed with CaCh. Morphological and enzyme activity changes taking place in the presence of excessive Pb, Cd, and/or Zn also indicate that the mechanism of heavy metal tolerance and accumulation of the DSE strains would be a complex process. The findings indicated promising tolerance and accumulation of the DSE strains with potential values in metal cycling and restoration of soil and water system.

  5. Heavy metal water pollution associated with the use of sewage sludge compost and limestone outcrop residue for soil restoration: effect of saline irrigation.

    NASA Astrophysics Data System (ADS)

    Pérez-Gimeno, Ana; Navarro-Pedreño, Jose; Gómez, Ignacio; Belén Almedro-Candel, María; Jordán, Manuel M.; Bech, Jaume

    2015-04-01

    The use of composted sewage sludge and limestone outcrop residue in soil restoration and technosol making can influence the mobility of heavy metals into groundwater. The use of compost from organic residues is a common practice in soil and land rehabilitation, technosol making, and quarry restoration (Jordán et al. 2008). Compost amendments may improve the physical, chemical, and biological properties of soils (Jordão et al. 2006; Iovieno et al. 2009). However, the use of compost and biosolids may have some negative effects on the environment (Karaca 2004; Navarro-Pedreño et al. 2004). This experiment analyzed the water pollution under an experimental design based on the use of columns (0-30 cm) formed by both wastes. Two waters of different quality (saline and non-saline) were used for irrigation. The presence of heavy metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn) in the leachates was checked under controlled conditions inside a greenhouse (mean values: 20°±5°C and around 60% relative humidity). Sixteen 30-cm tall columns made of PVC pipe with internal diameters of 10.5 cm were prepared. The columns were filled with one of these materials: either sewage sludge compost (SW) or limestone outcrop residue (LR), fraction (<4 mm). The columns were irrigated with 2000 mL/week (230 mm) for twelve weeks (April to July). Half of them were irrigated with non-saline water (NS) and the others were so with saline water (S) from the beginning of the experiment. Four treatments combining the quality of the irrigation water (saline and non-saline) and wastes were studied: SW-NS, SW-S, LR-NS, and LR-S. After 24 hours of irrigation on the first day of each week, the leachates were taken and analyzed the heavy metal content (AAS-ES espectometer). The environmental risk due to the presence of heavy metals associated with the use of these materials was very low in general (under 0.1 mg/L). The use of sewage sludge favoured the presence of these metals in the lecheates and no effect

  6. [Distribution of soil heavy metal and pollution evaluation on the different sampling scales in farmland on Yellow River irrigation area of Ningxia: a case study in Xingqing County of Yinchuan City].

    PubMed

    Wang, You-Qi; Bai, Yi-Ru; Wang, Jian-Yu

    2014-07-01

    Determining spatial distributions and analyses contamination condition of soil heavy metals play an important role in evaluation of the quality of agricultural ecological environment and the protection of food safety and human health. Topsoil samples (0-20 cm) from 223 sites in farmland were collected at two scales of sampling grid (1 m x 1 m, 10 m x 10 m) in the Yellow River irrigation area of Ningxia. The objectives of this study were to investigate the spatial variability of total copper (Cu), total zinc (Zn), total chrome (Cr), total cadmium (Cd) and total lead (Pb) on the two sampling scales by the classical and geostatistical analyses. The single pollution index (P(i)) and the Nemerow pollution index (P) were used to evaluate the soil heavy metal pollution. The classical statistical analyses showed that all soil heavy metals demonstrated moderate variability, the coefficient of variation (CV) changed in the following sequence: Cd > Pb > Cr > Zn > Cu. Geostatistical analyses showed that the nugget coefficient of Cd on the 10 m x 10 m scale and Pb on the 1 m x 1 m scale were 100% with pure nugget variograms, which showed weak variability affected by random factors. The nugget coefficient of the other indexes was less than 25%, which showed a strong variability affected by structural factors. The results combined with P(i) and P indicated that most soil heavy metals have slight pollution except total copper, and in general there were the trend of heavy metal accumulation in the study area.

  7. Heavy metal pollution of soils and sediments at the historical smelting site of the Rudawy Janowickie Mountains (Lower Silesia, Poland).

    NASA Astrophysics Data System (ADS)

    Kierczak, Jakub; Néel, Catherine; Pietranik, Anna

    2010-05-01

    Multidisciplinary studies of historical slags are mostly focused on exploring how metallurgy evolved through human history. Another purpose for studying historical slags are potentially harmful interactions between slags, surrounding soils, sediments and waters. Metallurgical slags generally concentrate potentially toxic elements (PTE) such as arsenic, copper and lead. These elements may be mobilized and transferred into immediate surroundings. The main aim of our work is to identify factors controlling migration of metals at the historical smelting site of the Rudawy Janowickie Mountains. This study involves detailed analyzes of historical slags (older than 300 years) containing PTE, as well as surrounding soils and sediments. The Rudawy Janowickie Mountains represented an important centre of copper mining and smelting in Poland until 1925 with metallurgical activities being documented as early as in the XIV century. The exploitation of Cu ores has left large amounts of mine tailings and slags extending over ca. 35ha. The slags were deposited on ground and no barriers between the slags and environment were set. Therefore, they were continuously affected by variable factors, for example, changing weather conditions. Soils located in the study area are derived from granitic rocks. They are shallow (< 1 meter depth) and skeletic (containing > 50 wt. % of coarse fragments). Their pHw is acidic and varies from 3.4 to 4.5 from the topsoil to the deeper horizons in which slags are widespread. Mineral composition of soils and sediments is dominated by quartz, alkali feldspar, plagioclase and biotite. However, some samples may contain additionally numerous slag fragments. At present, the slags occur within three types of environments: (1) at the surface, (2) in soils and (3) in sediments from two streams: Janówka and Smelter Stream. Studied slags were sampled in the vicinity of both streams from (1) surface, (2) soil profiles and (3) streambeds. Furthermore, samples of

  8. Effect of heavy metals on soil fungi

    NASA Astrophysics Data System (ADS)

    Sosak-Świderska, Bożena

    2010-05-01

    Fungi constitute a high proportion of the microbial biomass in soil.Being widespread in soil their large surface-to-volume ratio and high metabolic activity, fungi can contribute significantly to heavy metal dynamics in soil. At neutral pH heavy metals in soils tend to be immobilized to precipitation and/or absorption to cation exchange sites of clay minerals. In the acidic soils, metals are more mobile and enter food webs easier. Microbial production of acids and chelating agents can mobilize to toxic metals. Mobilization is often by uptake and intracellular accumulation of the heavy metlas, and in this way, the bioavailability of metals towards other organisms can be more reduced. Fungi were isolated from soils from Upper Silesia in Poland and belonged to widespread genera: Aspergillus, Cladosporium, Penicillium and Trichoderma. Fungi from different taxonomic groups differ greatly in their tolerance to heavy metals. This could be related to their wall structure and chemistry as well as biochemical and physiological characteristics of fungi. Localization of metals in fungal cells was studied using electron microscopy analysis. Metal biosorption in the cell wall can be complex as melanin granules. Fungal vacuoles have an important role in the regulation of the cytosolic concentration of metal ions, and may contribute to heavy metal tolerance.In polluted soils with heavy metals, fungal species composition can be changed and their physiological activity can be changed, too.

  9. Arsenic and heavy metal pollution in wetland soils from tidal freshwater and salt marshes before and after the flow-sediment regulation regime in the Yellow River Delta, China

    NASA Astrophysics Data System (ADS)

    Bai, Junhong; Xiao, Rong; Zhang, Kejiang; Gao, Haifeng

    2012-07-01

    SummarySoil samples were collected in tidal freshwater and salt marshes in the Yellow River Delta (YRD), northern China, before and after the flow-sediment regulation. Total concentrations of arsenic (As), cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) were determined using inductively coupled plasma atomic absorption spectrometry to investigate the characteristics of heavy metal pollution in tidal wetlands before and after the regulation regime. The results demonstrated that marsh soils in both marshes had higher silt and total P contents, higher bulk density and lower sand contents after the flow-sediment regulation; moreover, soil salinity was significantly decreased in the tidal salt marsh. As and Cd concentrations were significantly higher in both marsh soils after the regulation than before, and there were no significant differences in the concentrations of Cu, Pb and Zn measured before and after the regulation. No significant differences in heavy metal concentrations were observed between freshwater and salt marsh soils, either before or after the regulation. Before the regulation regime, soil organic matter, pH and sulfer (S) were the main factors influencing heavy metal distribution in tidal freshwater marshes, whereas for tidal salt marshes, the main factors are soil salinity and moisture, pH and S. However, bulk density and total P became the main influencing factors after the regulation. The sediment quality guidelines and geoaccumulation indices showed moderately or strongly polluted levels of As and Cd and unpolluted or moderately polluted levels of Cu, Pb and Zn; As and Cd pollution became more serious after the regulation. Factor analysis indicated thatthese heavy metals including As were closely correlated and orginated from common pollution sources before the flow-sediment regulation; however, the sources of As and Cd separated from the sources of Cu, Pb and Zn after the regulation regime, implying that the flow-sediment regulation regime

  10. METAL FINISHING FACILITY POLLUTION PREVENTION TOOL (MFFPPT)

    EPA Science Inventory

    The Metal Finishing Facility Pollution Tool (MFFPPT) is being developed to allow the metal finishing industry an easy method to evaluate potential pollution prevention options. In order to reduce the quantity of pollutants generated by a process, the sources of pollutants within ...

  11. [Hyperspectral remote sensing in monitoring the vegetation heavy metal pollution].

    PubMed

    Li, Na; Lü, Jian-sheng; Altemann, W

    2010-09-01

    Mine exploitation aggravates the environment pollution. The large amount of heavy metal element in the drainage of slag from the mine pollutes the soil seriously, doing harm to the vegetation growing and human health. The investigation of mining environment pollution is urgent, in which remote sensing, as a new technique, helps a lot. In the present paper, copper mine in Dexing was selected as the study area and China sumac as the study plant. Samples and spectral data in field were gathered and analyzed in lab. The regression model from spectral characteristics for heavy metal content was built, and the feasibility of hyperspectral remote sensing in environment pollution monitoring was testified.

  12. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, T.C.

    1991-03-04

    A method is described for identifying soil microbial strains which may be bacterial degraders of pollutants. This method includes: Placing a concentration of a pollutant in a substantially closed container; placing the container in a sample of soil for a period of time ranging from one minute to several hours; retrieving the container and collecting its contents; microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to innoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  13. Dustfall Heavy Metal Pollution During Winter in North China.

    PubMed

    Xiong, Qiu-lin; Zhao, Wen-ji; Guo, Xiao-yu; Shu, Tong-tong; Chen, Fan-tao; Zheng, Xiao-xia; Gong, Zhao-ning

    2015-10-01

    In order to study heavy metal pollution in dustfall during Winter in North China, forty-four dustfall samples were collected in North China Region from November 2013 to March 2014. Then forty trace elements content were measured for each sample by inductively coupled plasma-mass spectrometry. Finally, the contamination characteristics of the main heavy metals were studied through a multi-method analysis, including variability analysis, Pearson correlation analysis and principal component analysis. Results showed that the relative contents of cadmium (Cd), zinc (Zn), copper (Cu), bismuth (Bi), lead (Pb) exceeded the standards stipulated in Chinese soil elements background values by amazing 4.9 times. In this study, conclusions were drawn that dustfall heavy metal pollution in the region was mainly caused by transport pollution, metallurgy industrial pollution, coal pollution and steel industrial pollution.

  14. CORRELATING METAL SPECIATION IN SOILS

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  15. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11.

    PubMed

    Huang, Gui-Hai; Tian, Hui-Hui; Liu, Hai-Ying; Fan, Xian-Wei; Liang, Yu; Li, You-Zhi

    2013-01-01

    Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process.

  16. Multidimensional evaluation of soil pollution from railway tracks.

    PubMed

    Wierzbicka, Małgorzata; Bemowska-Kałabun, Olga; Gworek, Barbara

    2015-05-01

    Railway transport is a source of pollution to soils and living organisms by e.g. PAHs, PCBs, oil-derived products, pesticides and heavy metals. Soil toxicity evaluation requires chemical analyses, indicating the type and content of particular pollutants, as well as biological analyses, which allow assessing the reaction of organisms to these pollutants. This paper is focused on a multi-aspect evaluation of the degree of toxicity and pollution of soil in selected railway areas from north-eastern Poland by application of numerous biotests and chemical analyses. The soils were sampled on railway tracks from the following railway stations: Białystok Fabryczny, Siemianówka, Hajnówka, Iława Główna and Waliły. The most toxic soils occur on the railway tracks at Białystok Fabryczny and Siemianówka. They had a significant toxic effect on test organisms from various trophic levels. The contents of PAHs, PCBs, heavy metals, oil-derived hydrocarbons and pesticide residues were determined in the examined soils. In all cases the detected pollutants did not exceed the admissible levels. The highest content of oil-derived substances was noted in soils from Białystok Fabryczny and concentrations were moderate in soils from Siemianówka. Although the pollutants determined in soils from railway tracks did not exceed the admissible values, they had a toxic effect on numerous test organisms from different trophic levels. This suggests a synergistic effect of low concentrations (within the admissible levels) of several pollutants together, which resulted in a toxic effect on the organisms. Thus, there is a strong need of not only chemical, but also ecotoxicological analyses during the evaluation of environmental conditions. Based on data obtained from biological and chemical analyses, we concluded that railway transport may pose a hazard to the natural environment to a larger extent that hitherto expected.

  17. Metal pollution of river Msimbazi, Tanzania

    SciTech Connect

    Ak'habuhaya, J.; Lodenius, M. )

    1988-01-01

    The Misimbazi River in Dar es Salaam is polluted with industrial, urban and agricultural waste waters. A preliminary investigation on the extent of metal pollution (Hg, Cr, Cu, Zn, Fe, Ni, Cd, Mn, Al) was made from samples of sediments and biological indicators. The metal concentrations were in general low, but some of our results indicated industrial pollution.

  18. A preliminary investigation of pollution in the River Yamuna, Delhi, India: Metal concentrations in river bank soils and plants.

    PubMed

    Farago, M E; Mehra, A; Banerjee, D K

    1989-12-01

    A preliminary study of inorganic elements in the river bank soil and plants from the River Yamuna in Delhi has been carried out. Soil at Okhla, near the Water Works plant has a high zinc content (1,215 μg g(-1) and this is reflected in the high concentration of zinc (2,029 μg g(-1)) in Eichhornia plants growing in the river at this point. Although in general the aluminium content of the soils is low in comparison with the world mean, soil near the effluent from the ash settling basins of the Indraprathsa Power Station contains elevated aluminium.Eichhornia plants growing near this effluent are stunted and unhealthy, and is suggested that, taking into account the high pH, possible causes are toxicity from aluminium or boron.

  19. Soil pollution in Central district of Saint-Petersburg (Russia)

    NASA Astrophysics Data System (ADS)

    Terekhina, Natalia; Ufimtseva, Margarita

    2015-04-01

    Analysis of soil samples of upper horizon for the content of chemical elements (Fe, Mn, Cu, Zn, Pb, Ni, Cr, Co, Cd, Ba, Sr) was carried out by atomic emission with inductively coupled plasma. A relative indicator of soil contamination degree is a concentration coefficient, representing the ratio of metal content in tested soil samples to the local background value of the corresponding element. Total pollution index is calculated by the concentration coefficients, which are greater than 1, taking into account the hazard class of metals (1 class - Zn, Pb ,Cd; 2 - class Cr, Ni, Cu ,Со; 3 class - Fe, Mn, Sr, Ba). Analysis of trace element of urban soils demonstrated mosaic patterns of pollution for Central district. The method of correlation sets constructing and factor analysis revealed three groups of chemical elements having a strong and significant association with each other: Pb-Cu-Cd-Zn-Ba, Ni-Cr-Co, Fe-Mn. Elements of the first group are characterized by high values of concentration coefficient and are the main pollutants - their average content is 3-11 times higher than background values. Strontium does not have strong correlation with the other elements, and its lowest concentration coefficient indicates that the element can not be regarded as a pollutant. The spatial distribution of the total pollution index identified several sources of pollution, the origin of which may be different. The main reason is probably the impact of vehicle emissions, although local pollution of soil is possible (the soils, contaminated during reconstruction of lawns, dumping of construction materials, etc.). Differentiated assessment of database shows that 48% of samples refer to dangerous pollution category, 37% - to moderately dangerous category, 15% - to allowable category. Thus, almost half of the district is characterized as dangerous in terms of soil contamination. Solution of the problem of soil contamination is recommended in three ways: reducing the intensity of

  20. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties.

    PubMed

    Xian, Yu; Wang, Meie; Chen, Weiping

    2015-11-01

    Soil enzyme activities are greatly influenced by soil properties and could be significant indicators of heavy metal toxicity in soil for bioavailability assessment. Two groups of experiments were conducted to determine the joint effects of heavy metals and soil properties on soil enzyme activities. Results showed that arylsulfatase was the most sensitive soil enzyme and could be used as an indicator to study the enzymatic toxicity of heavy metals under various soil properties. Soil organic matter (SOM) was the dominant factor affecting the activity of arylsulfatase in soil. A quantitative model was derived to predict the changes of arylsulfatase activity with SOM content. When the soil organic matter content was less than the critical point A (1.05% in our study), the arylsulfatase activity dropped rapidly. When the soil organic matter content was greater than the critical point A, the arylsulfatase activity gradually rose to higher levels showing that instead of harm the soil microbial activities were enhanced. The SOM content needs to be over the critical point B (2.42% in our study) to protect its microbial community from harm due to the severe Pb pollution (500mgkg(-1) in our study). The quantitative model revealed the pattern of variation of enzymatic toxicity due to heavy metals under various SOM contents. The applicability of the model under wider soil properties need to be tested. The model however may provide a methodological basis for ecological risk assessment of heavy metals in soil.

  1. Decontaminating soil organic pollutants with manufactured nanoparticles.

    PubMed

    Li, Qi; Chen, Xijuan; Zhuang, Jie; Chen, Xin

    2016-06-01

    Organic pollutants in soils might threaten the environmental and human health. Manufactured nanoparticles are capable to reduce this risk efficiently due to their relatively large capacity of sorption and degradation of organic pollutants. Stability, mobility, and reactivity of nanoparticles are prerequisites for their efficacy in soil remediation. On the basis of a brief introduction of these issues, this review provides a comprehensive summary of the application and effectiveness of various types of manufactured nanoparticles for removing organic pollutants from soil. The main categories of nanoparticles include iron (oxides), titanium dioxide, carbonaceous, palladium, and amphiphilic polymeric nanoparticles. Their advantages (e.g., unique properties and high sorption capacity) and disadvantages (e.g., high cost and low recovery) for soil remediation are discussed with respect to the characteristics of organic pollutants. The factors that influence the decontamination effects, such as properties, surfactants, solution chemistry, and soil organic matter, are addressed.

  2. Inoculation with arbuscular mycorrhizal fungi and addition of composted olive-mill waste enhance plant establishment and soil properties in the regeneration of a heavy metal-polluted environment.

    PubMed

    Curaqueo, Gustavo; Schoebitz, Mauricio; Borie, Fernando; Caravaca, Fuensanta; Roldán, Antonio

    2014-06-01

    A greenhouse experiment was carried out in order to investigate the effects of arbuscular mycorrhizal (AM) fungi inoculation and the use of composted olive waste (COW) in the establishment of Tetraclinis articulata and soil properties in a heavy metal-polluted soil. The treatments assayed were as follows: AM + 0% COW, AM + 1% COW, and AM + 3% COW. The higher doses of COW in combination with AM fungi increased shoot and root biomass production of T. articulata by 96 and 60%, respectively. These treatments trended to improve the soil properties evaluated, highlighting the C compounds and N as well as the microbiological activities. In relation to the metal translocation in T. articulata, doses of COW applied decreased the Cr, Ni, and Pb contents in shoot, as well as Cr and As in root, although the most of them reached low levels and far from phytotoxic. The COW amendment aided Glomus mosseae-inoculated T. articulata plants to thrive in contaminated soil, mainly through an improvement in both nutrients uptake, mainly P and soil microbial function. In addition, the combined use of AM fungi plus COW could be a feasible strategy to be incorporated in phytoremediation programs because it promotes soil properties, a better performance of plants for supporting the stress in heavy metal-contaminated soils derived from the mining process, and also can be a good way for olive-mill waste disposal.

  3. Impact of metals on the biodegradation of organic pollutants.

    PubMed Central

    Sandrin, Todd R; Maier, Raina M

    2003-01-01

    Forty percent of hazardous waste sites in the United States are co-contaminated with organic and metal pollutants. Data from both aerobic and anaerobic systems demonstrate that biodegradation of the organic component can be reduced by metal toxicity. Metal bioavailability, determined primarily by medium composition/soil type and pH, governs the extent to which metals affect biodegradation. Failure to consider bioavailability rather than total metal likely accounts for much of the enormous variability among reports of inhibitory concentrations of metals. Metals appear to affect organic biodegradation through impacting both the physiology and ecology of organic degrading microorganisms. Recent approaches to increasing organic biodegradation in the presence of metals involve reduction of metal bioavailability and include the use of metal-resistant bacteria, treatment additives, and clay minerals. The addition of divalent cations and adjustment of pH are additional strategies currently under investigation. PMID:12826480

  4. Heavy metal pollutants and chemical ecology: exploring new frontiers.

    PubMed

    Boyd, Robert S

    2010-01-01

    Heavy metals are an important class of pollutants with both lethal and sublethal effects on organisms. The latter are receiving increased attention, as these may have harmful ecological outcomes. For example, recent explorations of heavy metals in freshwater habitats reveal that they can modify chemical communication between individuals, resulting in "info-disruption" that can impact ecological relationships within and between species. Info-disruption can affect animal behavior and social structure, which in turn can modify both intraspecies and interspecies interactions. In terrestrial habitats, info-disruption by metals is not well studied, but recent demonstrations of chemical signaling between plants via both roots and volatile organic molecules provide potential opportunities for info-disruption. Metals in terrestrial habitats also can form elemental plant defenses, in which they can defend a plant against natural enemies. For example, hyperaccumulation of metals by terrestrial plants has been shown to provide defensive benefits, although in almost all known cases the metals are not anthropogenic pollutants but are naturally present in soils inhabited by these plants. Info-disruption among microbes is another arena in which metal pollutants may have ecological effects, as recent discoveries regarding quorum sensing in bacteria provide an avenue for metals to affect interactions among bacteria or between bacteria and other organisms. Metal pollutants also may influence immune responses of organisms, and thus affect pathogen/host relationships. Immunomodulation (modification of immune system function) has been tied to some metal pollutants, although specific metals may boost or reduce immune system function depending on dose. Finally, the study of metal pollutants is complicated by their frequent occurrence as mixtures, either with other metals or with organic pollutants. Most studies of metal pollutants focus on single metals and therefore oversimplify complex

  5. Soil pollution associated to the El Borracho Pb-Ag mine (Badajoz Province, Spain). Metal transfer to biota: oak-tree and moss.

    NASA Astrophysics Data System (ADS)

    López-Berdonces, Miguel Angel; María Esbrí, José; Fernández-Calderón, Sergio; Naharro, Elena; García-Noguero, Eva Maria; Higueras, Pablo

    2014-05-01

    El Borracho mine was active since Roman times, but with its higher production period on 19th Century. Mine closure occured without restoration works and nowadays the mining area is dedicated to deer hunting activities. In order to evaluate heavy metals distribution on mining tailings and surrounding soils of the studied area, 40 samples of dumps, soils and sediments were taken. Samples from the mine tailings were collected with an Eijkelkamp soil core sampler for undisturbed samples, with a vertical constant spacing of 25 cm. With this procedure, a total of 21 samples were taken in two points at main dump. Samples of Oak-tree leaves and moss were taken to evaluate metal transfer to biota. Analytical determinations have included soil parameters (pH, conductivity, organic matter content), and total metal contents in geological and biological samples by EDXRF. Analytical determinations shows higher metal contents in dumps, especially in surficial samples, 17,700 mg kg-1 and 470 mg kg-1 in average of Pb and Zn respectively, and lower contents in soils, 5,200 mg kg-1 and 300 mg kg-1, and sediments, 3,500 mg kg-1 and 120 mg kg-1. Metal contents in tailings profiles shows higher levels of Pb, Zn and Cu at 3.5 meters depth, a zone with lower grainsize and higher moisture. Differences in efficiency of extraction techniques and metal remobilization inside the dump can be an explanation for this enrichment level. Metal contents in agricultural soils exceeded maximum allowed levels by European Community (300 mg kg-1 for Pb and Zn and 140 mg kg-1 for Cu). Metal contents in biota evidence that Oak-tree bioaccumulates some metals, especially those with higher mobility in acidic conditions like Zn and Sb, with averages Bioaccumulation factor (BAF = plant concentration/soil concentration) of 0.48 and 0.85 respectively. Moss reaches high concentrations of Pb and Zn (3,000 mg kg-1 and 175 mg kg-1 in average respectively). Uptake pattern of Pb and Zn by plants leaves and mosses seems

  6. Effects of historic metal(loid) pollution on earthworm communities.

    PubMed

    Lévêque, Thibaut; Capowiez, Yvan; Schreck, Eva; Mombo, Stéphane; Mazzia, Christophe; Foucault, Yann; Dumat, Camille

    2015-04-01

    The effects of metal(loid)s (Pb, Cd, Cu, Zn, As and Sb) from atmospheric fallout on earthworm communities were investigated in a fallow meadow located close to a 60-year-old lead recycling factory. We examined abundance and species diversity as well as the ratio of adult-to-juvenile earthworms, along five 140 m parallel transects. The influence of soil pollution on the earthworm community at the plot scale was put in context by measuring some physico-chemical soil characteristics (OM content, N content, pH), as well as total and bioavailable metal(loid) concentrations. Earthworms were absent in the highly polluted area (concentration from 30,000 to 5000 mg Pb·kg(-1) of dried soil), just near the factory (0-30 m area). A clear and almost linear relationship was observed between the proportion of juvenile versus mature earthworms and the pollution gradient, with a greater proportion of adults in the most polluted zones (only adult earthworms were observed from 30 to 50 m). Apporectodea longa was the main species present just near the smelter (80% of the earthworms were A. longa from 30 to 50 m). The earthworm density was found to increase progressively from five individuals·m(-2) at 30 m to 135 individuals·m(-2) at 140 m from the factory. On average, metal(loid) accumulation in earthworm tissues decreased linearly with distance from the factory. The concentration of exchangeable metal(loid)s in earthworm surface casts was higher than that of the overall soil. Finally, our field study clearly demonstrated that metal(loid) pollution has a direct impact on earthworm communities (abundance, diversity and proportion of juveniles) especially when Pb concentrations in soil were higher than 2050 mg·kg(-1).

  7. Chemotactic selection of pollutant degrading soil bacteria

    DOEpatents

    Hazen, Terry C.

    1994-01-01

    A method for identifying soil microbial strains which may be bacterial degraders of pollutants comprising the steps of placing a concentration of a pollutant in a substantially closed container, placing the container in a sample of soil for a period of time ranging from one minute to several hours, retrieving the container, collecting the contents of the container, and microscopically determining the identity of the bacteria present. Different concentrations of the pollutant can be used to determine which bacteria respond to each concentration. The method can be used for characterizing a polluted site or for looking for naturally occurring biological degraders of the pollutant. Then bacteria identified as degraders of the pollutant and as chemotactically attracted to the pollutant are used to inoculate contaminated soil. To enhance the effect of the bacteria on the pollutant, nutrients are cyclicly provided to the bacteria then withheld to alternately build up the size of the bacterial colony or community and then allow it to degrade the pollutant.

  8. Soil ingestion by sheep grazing the metal enriched floodplain soils of mid-Wales.

    PubMed

    Abrahams, Peter W; Steigmajer, Jörg

    2003-03-01

    Floodplain soils within and downstream from the mineralised and mined areas of mid-Wales, are contaminated by metals, especially Pb, because of historical and contemporary fluvial pollution. Rates of soil ingestion by sheep grazing these sites have been quantified to establish the relative importance of the soil-plant-animal and soil-animal pathway of metals. The highest rates of soil ingestion occurred during the winter/spring period. During March, soil ingestion exceeded 30% of the D.M. intake at 2 of the 11 sites investigated. The total daily intake of metals by sheep reflects the degree of soil metal enrichment, and is elevated during the winter/spring period, coincident with the higher rates of soil ingestion and the generally higher pasture herbage metal concentrations. Because the soil-plant transfer of Pb is low, ingested soil is often the major pathway of this metal to sheep. This is especially evident in March and May when on average 80.0 and 82.9%, respectively of the Pb intake was via soil ingestion. At one site in May, 97% of the Pb intake was attributable to ingested soil. Even when soil-plant transfers are not so low, as found for Cu and Zn, ingested soil can occasionally supply greater than 60% of these metals to the animal. However, despite the potential importance of soil ingestion, little is known about the availability to and absorption of soil-borne metals by animals.

  9. Mangrove soils in removing pollutants from municipal wastewater of different salinities

    SciTech Connect

    Tam, N.F.Y.; Wong, Y.S.

    1999-03-01

    Soil leaching experiments were conducted to assess the capacity of mangrove soils in purifying synthetic wastewater containing pollutant concentrations four times of that found in local municipal sewage and of two salinities (fresh vs. saline water). Results on leachate nutrient and heavy metal concentrations reveal that the mangrove soils were capable of removing certain amount of pollutants from wastewater, and the removal efficiency varied between pollutants. The soils were most effective in retaining heavy metals such as Cu but were less effective for Mn and Zn. Similarly, the wastewater-borne NH{sub 4}{sup +} was more easily leached than P. The soil data show that most pollutants were accumulated in the top layer of the soil tray, with little downward migration. Differences between treated and control soil nutrient and heavy metal concentrations were not found in the soil masses below the surface 1.5 cm. In the surface layer, the mangrove soils treated with wastewater had significantly higher concentrations of NH{sub 4}{sup +}-N, total and extractable P, total and extractable Cu, Cd, Zn and Mn. On the other hand, there was no significant elevation in total nitrogen content in mangrove soils treated with wastewater when compared with the control. Soils receiving wastewater prepared in deionized water (fresh) had slightly higher pollutant concentrations, and larger enrichment factors than that treated with saline wastewater. These results suggest that mangrove soils could retain pollutants from wastewater but its efficiency would slightly be affected by salinity.

  10. The Effects of Organic Pollutants in Soil on Human Health

    NASA Astrophysics Data System (ADS)

    Burgess, Lynn

    2013-04-01

    The soil has always been depository of the organic chemicals produced naturally or anthropogenically. Soil contamination is a serious human and environmental problem. A large body of evidence has shown the risks of adverse health effects with the exposure to contaminated soil due to the large quantities of organic chemicals used in agriculture and urban areas that have a legacy of environmental pollution linked to industrial activities, coal burning, motor vehicle emissions, waste incineration and waste dumping. In agricultural areas, because of the effort to provide adequate quantities of agricultural products, farmers have been using an increasing amount of organic chemicals, but the resulting pollution has enormous potential for environmental damage. The types of organic pollutants commonly found in soils are polychlorinated biphenyls, polybrominated biphenyls, polychlorinated dibenzofurans, polycyclic aromatic hydrocarbons, organophosphorus and carbamate insecticides, herbicides and organic fuels, especially gasoline and diesel. Another source of soil pollution is the complex mixture of organic chemicals, metals and microorganisms in the effluent from septic systems, animal wastes and other sources of biowaste. The soils of the world are a vast mixture of chemicals and although conditions are such that an individual is rarely exposed to a single compound, the great majority of people are exposed to a vast chemical mixture of organics, their metabolites, and other compounds at low concentrations Human exposure to organic pollutants in the soil is an area of toxicology that is very difficult to study due to the low concentration of the pollutants. The toxicological studies of single organic pollutants found in soils are limited and research on the metabolites and of chemical mixtures is very limited. The majority of toxicological studies are conducted at relatively high doses and for short periods of exposure. This makes the application of this data to exposure

  11. Limitations for phytoextraction management on metal polluted soils with poplar short rotation coppice - evidence from a 6 year field trial.

    PubMed

    Annicaert, B; De Moor, S; Van Nevel, L; Michels, E; De Fraeye, M; Meiresonne, L; Vangronsveld, J; Tack, F M G; Meers, E

    2016-12-08

    Poplar clones were studied for their phytoextraction capacity in the second growth cycle (6 growth years) on a site in the Belgian Campine region which is contaminated with Cd and Zn via historic atmospheric deposition of nearby zinc smelter activities. The field trial revealed regrowth problems for some clone that could not be predicted in the first growth cycle. Four allometric relations were assessed for their capacity to predict biomass yield in the second growth cycle. A power function based on the shootdiameter best estimate the biomass production of poplar with R² values between 0.94 and 0.98. The woody biomass yield ranged from 2.1 to 4.8 ton woody DM ha(-1) y(-1). The primary goal was to reduce soil concentrations of metals caused by phytoextraction. Nevertheless increased metal concentrations were determined in the topsoil. This increase can partially be explained by the input of metals from deeper soil layers in the top soil through litter fall. The phytoextraction option with poplar short rotation coppice in this setup did not lead to the intended soil remediation in a reasonable time span. Therefore, harvest of the leaf biomass is put forward as a crucial part of the strategy for soil remediation through Cd/Zn phytoextraction.

  12. Effect of soil properties, heavy metals and emerging contaminants in the soil nematodes diversity.

    PubMed

    Gutiérrez, Carmen; Fernández, Carlos; Escuer, Miguel; Campos-Herrera, Raquel; Beltrán Rodríguez, M Eulalia; Carbonell, Gregoria; Rodríguez Martín, Jose Antonio

    2016-06-01

    Among soil organisms, nematodes are seen as the most promising candidates for bioindications of soil health. We hypothesized that the soil nematode community structure would differ in three land use areas (agricultural, forest and industrial soils), be modulated by soil parameters (N, P, K, pH, SOM, CaCO3, granulometric fraction, etc.), and strongly affected by high levels of heavy metals (Cd, Pb, Zn, Cr, Ni, Cu, and Hg) and emerging contaminants (pharmaceuticals and personal care products, PPCPs). Although these pollutants did not significantly affect the total number of free-living nematodes, diversity and structure community indices vastly altered. Our data showed that whereas nematodes with r-strategy were tolerant, genera with k-strategy were negatively affected by the selected pollutants. These effects diminished in soils with high levels of heavy metals given their adaptation to the historical pollution in this area, but not to emerging pollutants like PPCPs.

  13. Magnetic evidence for heavy metal pollution of topsoil in Shanghai, China

    NASA Astrophysics Data System (ADS)

    Wang, Guan; Liu, Yuan; Chen, Jiao; Ren, Feifan; Chen, Yuying; Ye, Fangzhou; Zhang, Weiguo

    2017-03-01

    This study presents the results obtained from magnetic susceptibility and heavy metal (Cu, Zn, Pb, and Cr) concentration measurements of soil profiles collected from arable land and urban parks in Baoshan District, an industrial district of Shanghai, China. The study focuses on the investigation of vertical variations in magnetic susceptibilities and heavy metal concentrations and on correlations between magnetic susceptibilities and heavy metal concentrations in soil profiles. The results demonstrate that magnetic enhancement in the surface layer of the soil profile is associated with increased heavy metal pollution. The enrichment factors (EF) and the Tomlinson Pollution Load Index (PLI-EF) are calculated for estimating the level of heavy metal pollution of soil profiles in the study. The significant positive correlations between heavy metal contents, enrichment factors (EF), Tomlinson pollution load index (PLI-CF), modified Tomlinson pollution load index (PLI-EF), and magnetic susceptibility (c) indicate that much of the heavy metal contamination in the study area is linked to combustion derived particulate emissions. The results confirm that the combined magnetic measurement and heavy metal concentration analysis could provide useful information for soil monitoring in urban environments. However, the use of magnetic technique to locate the heavy metal pollution boundary in the soil profile of this studied area should be confirmed by further geochemical analysis.

  14. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  15. Coal combustion and heavy metals pollution

    SciTech Connect

    Danihelka, P.; Ochodek, T.; Borovec, K.

    1996-12-31

    Combustion of coal may be an important source of heavy metals pollution. The major environmental risks of heavy metals are connected to their toxicity and mobility in the environment. In the flame, heavy metals are re-distributed with respect to their volatility. Enrichment of fine particles by volatile metals is the most important mechanism for most of the metals. Nevertheless, Hg is emitted mainly in gaseous form and some metals like Mn are concentrated rather in coarse particles. Heavy metals pollution caused by emissions from combustion of coal may be decreased by fine particles removal; other possibilities (metals extraction from the coal, changes of condition in the flame) are limited. Fly ashes from the most important Czech power plants were examined with respect to the heavy metals content. The easily leachable elements with high volatility in the flame (arsenic, zinc, lead) were recognized as the most important fly ash pollutants. The average concentrations of these metals in fly ash were: bituminous coal 46{+-}18 ppm As, 196{+-}93 ppm Zn, 126{+-}46 ppm Pb; brown coal 283{+-}260 ppm As, 60{+-}28 ppm Pb and 212{+-}116 ppm Zn. When ESP and cyclones are used in series, fly ashes from ESP have higher concentration of volatile heavy metals, mainly Pb, Zn and As. Presence of chlorine in fuel increases the volatility of metals.

  16. Effects of plant species coexistence on soil enzyme activities and soil microbial community structure under Cd and Pb combined pollution.

    PubMed

    Gao, Yang; Zhou, Pei; Mao, Liang; Zhi, Yueer; Zhang, Chunhua; Shi, Wanjun

    2010-01-01

    The relationship between plant species coexistence and soil microbial communities under heavy metal pollution has attracted much attention in ecology. However, whether plant species coexistence could offset the impacts of heavy metal combined pollution on soil microbial community structure and soil enzymes activities is not well studied. The modified ecological dose model and PCR-RAPD method were used to assess the effects of two plant species coexistence on soil microbial community and enzymes activities subjected to Cd and Pb combined stress. The results indicated that monoculture and mixed culture would increased microbe populations under Cd and Pb combined stress, and the order of sensitivity of microbial community responding to heavy metal stress was: actinomycetes > bacteria > fungi. The respirations were significantly higher in planted soil than that in unplanted soil. The plant species coexistence could enhance soil enzyme activities under Cd and Pb combined. Furthermore, planted soil would be helpful to enhance soil genetic polymorphisms, but Cd and Pb pollution would cause a decrease on soil genetic polymorphisms. Mixed culture would increase the ecological dose 50% (EDs50) values, and the ED50 values for soil enzyme activities decreased with increasing culture time. The dehydrogenase was most sensitive to metal addition and easily loses activity under low dose of heavy metal. However, it was difficult to fully inhibit the phoshpatase activity, and urease responded similarly with phosphatase.

  17. Decontamination of metals, pentachlorophenol, and polychlorined dibenzo-p-dioxins and dibenzofurans polluted soil in alkaline conditions using an amphoteric biosurfactant.

    PubMed

    Reynier, Nicolas; Blais, Jean-François; Mercier, Guy; Besner, Simon

    2014-01-01

    In this paper, flotation in acidic conditions and alkaline leaching soil washing processes were compared to decontaminate four soils with variable contamination with metals, pentachlorophenol (PCP), and polychlorodibenzo dioxins and furans (PCDD/F). The measured concentrations of the four soils prior treatment were between 50 and 250 mg/kg for As, 35 and 220mg/kg for Cr, 80 and 350mg/kg for Cu, and 2.5 and 30mg/kg for PCP. PCDD/F concentrations reached 1394, 1375, 3730, and 6289ng/kg for F1, S1, S2, and S3 soils, respectively. The tests were carried out with masses of 100g of soil (fraction 0-2 mm) in a 2 L beaker or in a 1 L flotation cell. Soil flotation in sulphuric acid for 1 h at 60 degreeC with three flotation cycles using the surfactant cocamidopropyl betaine (BW) at 1% allows the solubilization of metals and PCP with average removal yields of 85%, 51%, 90%, and 62% for As, Cr, Cu, and PCP, respectively. The alkaline leaching for 2 h at 80 degreeC solubilizes As, Cr, Cu, and PCP with average removal yields of 60%, 32%, 77%, and 87%, respectively. Tests on PCDD/F solubilization with different surfactants were carried out in combination with the alkaline leaching process. PCDD/F removal yields of 25%, 72%, 70%, and 74% for F1, S1, S2, and S3 soils, respectively, were obtained using the optimized conditions.

  18. Metal-binding proteins as metal pollution indicators.

    PubMed Central

    Hennig, H F

    1986-01-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass. PMID:3709437

  19. Metal-binding proteins as metal pollution indicators

    SciTech Connect

    Hennig, H.F.

    1986-03-01

    The fact that metal-binding proteins are a consequence of elevated metal concentration in organisms is well known. What has been overlooked is that the presence of these proteins provides a unique opportunity to reformulate the criteria of metal pollution. The detoxification effect of metal-binding proteins in animals from polluted areas has been cited, but there have been only very few studies relating metal-binding proteins to pollution. This lack is due partly to the design of most experiments, which were aimed at isolation of metal-binding proteins and hence were of too short duration to allow for correlation to adverse physiological effects on the organism. In this study metal-binding proteins were isolated and characterized from five different marine animals (rock lobster, Jasus lalandii; hermit crab, Diogenes brevirostris; sandshrimp, Palaemon pacificus; black mussel, Choromytilus meridionalis; and limpet, Patella granularis). These animals were kept under identical metal-enriched conditions, hence eliminating differences in method and seasons. The study animals belonged to different phyla; varied in size, mass, age, behavior, food requirements and life stages; and accumulated metals at different rates. It is possible to link unseasonal moulting in crustacea, a known physiological effect due to a metal-enriched environment, to the production of the metal-binding protein without evidence of obvious metal body burden. Thus a new concept of pollution is defined: the presence of metal-binding proteins confirms toxic metal pollution. This concept was then tested under field conditions in the whelk Bullia digitalis and in metal-enriched grass.

  20. Assessment of metal pollution in a former mining area in the NW Tunisia: spatial distribution and fraction of Cd, Pb and Zn in soil.

    PubMed

    Othmani, Mohamed Ali; Souissi, Fouad; Durães, Nuno; Abdelkader, Moussi; da Silva, Eduardo Ferreira

    2015-08-01

    This study aims to evaluate the impact of the former mining Touiref district (NW Tunisia) on the spatial distribution of metal contamination. In order to characterize the metal content of the tailings and to assess how far the soils from the district could be impacted by metals, a sampling campaign was conducted. According to the spatial distribution concentration maps of potential toxic elements (PTE), the highest concentrations occur near the flotation tailings and in mining facilities and decrease abruptly with distance. These results confirm that wind is the main agent capable of dispersing metals in a W-E direction, with concentrations exceeding the standards of soil quality for Cd, Pb and Zn over several hundred metres away from the source, facilitated by the small-size fraction and low cohesion of tailings particles. Chemical fractionation showed that Pb and Cd were mainly associated with the acid-soluble fraction (carbonates) and Fe-(oxy) hydroxides, while Zn was mainly associated with Fe-(oxy) hydroxides but also with sulphides. Thus, the immobilization of metals in solution may be favoured by the alkaline conditions, promoted by carbonates dissolution. However, being carbonate important-bearing phases of Cd and Pb (but also for Zn), the dissolution facility of these minerals may enhance the release of metals, particularly far away from the mine where the physicochemical conditions can be different. Also, the metal uptake by plants in these alkaline conditions may be favoured, especially if secondary phases with high sorption ability are reduced at this site. A remediation plan to this area is needed, with particularly attention in the confinement of the tailings.

  1. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.

    PubMed

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-03-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes.

  2. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils*

    PubMed Central

    Jing, Yan-de; He, Zhen-li; Yang, Xiao-e

    2007-01-01

    Heavy metal pollution of soil is a significant environmental problem and has its negative impact on human health and agriculture. Rhizosphere, as an important interface of soil and plant, plays a significant role in phytoremediation of contaminated soil by heavy metals, in which, microbial populations are known to affect heavy metal mobility and availability to the plant through release of chelating agents, acidification, phosphate solubilization and redox changes, and therefore, have potential to enhance phytoremediation processes. Phytoremediation strategies with appropriate heavy metal-adapted rhizobacteria have received more and more attention. This article paper reviews some recent advances in effect and significance of rhizobacteria in phytoremediation of heavy metal contaminated soils. There is also a need to improve our understanding of the mechanisms involved in the transfer and mobilization of heavy metals by rhizobacteria and to conduct research on the selection of microbial isolates from rhizosphere of plants growing on heavy metal contaminated soils for specific restoration programmes. PMID:17323432

  3. Earliest evidence of pollution by heavy metals in archaeological sites.

    PubMed

    Monge, Guadalupe; Jimenez-Espejo, Francisco J; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-21

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called "Anthropocene". According to its heavy metal concentration, these sediments meet the present-day standards of "contaminated soil". Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  4. Behavior of Metals in Soils

    EPA Pesticide Factsheets

    One of the major issues of concern to the Forum is the mobility of metals in soils as related to subsurface remediation. For the purposes of this Issue Paper, those metals most commonly found at Superfund sites will be discussed in terms of the processes..

  5. Temporal Trends in Metal Pollution: Using Bird Excrement as Indicator

    PubMed Central

    Berglund, Åsa M. M.; Rainio, Miia J.; Eeva, Tapio

    2015-01-01

    Past mining and smelting activities have resulted in metal polluted environments all over the world, but long-term monitoring data is often scarce, especially in higher trophic levels. In this study we used bird (Parus major and Ficedula hypoleuca) excrement to monitor metal pollution in the terrestrial environment following 16 years of continuously reduced emissions from a copper/nickel smelter in Finland. In the early 1990s, lead and cadmium concentrations dropped significantly in excrement, but the reduction did not directly reflect the changes in atmospheric emission from the smelter. This is likely due to a continuous contribution of metals also from the soil pool. We conclude that bird excrement can be used to assess changes in the environment as a whole but not specifically changes in atmospheric emission. Inter-annual variation in excrement concentration of especially copper and nickel demonstrates the importance of long-term monitoring to discern significant trends. PMID:25680108

  6. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils.

    PubMed

    Wong, M H

    2003-02-01

    This paper reviews the ecological aspects of mined soil restoration, with special emphasis on maintaining a long-term sustainable vegetation on toxic metal mine sites. The metal mined soils are man-made habitats which are very unstable and will become sources of air and water pollution. Establishment of a vegetation cover is essential to stabilize the bare area and to minimize the pollution problem. In addition to remediate the adverse physical and chemical properties of the sites, the choice of appropriate vegetation will be important. Phytostabilization and phytoextraction are two common phytoremediation techniques in treating metal-contaminated soils, for stabilizing toxic mine spoils, and the removal of toxic metals from the spoils respectively. Soil amendments should be added to aid stabilizing mine spoils, and to enhance metal uptake accordingly.

  7. Soil pollution indices conditioned by medieval metallurgical activity - A case study from Krakow (Poland).

    PubMed

    Kowalska, Joanna; Mazurek, Ryszard; Gąsiorek, Michał; Setlak, Marcin; Zaleski, Tomasz; Waroszewski, Jaroslaw

    2016-11-01

    The studied soil profile under the Main Market Square (MMS) in Krakow was characterised by the influence of medieval metallurgical activity. In the presented soil section lithological discontinuity (LD) was found, which manifests itself in the form of cultural layers (CLs). Moreover, in this paper LD detection methods based on soil texture are presented. For the first time, three different ways to identify the presence of LD in the urban soils are suggested. The presence of LD had an influence on the content and distribution of heavy metals within the soil profile. The content of heavy metals in the CLs under the MMS in Krakow was significantly higher than the content in natural horizons. In addition, there were distinct differences in the content of heavy metals within CLs. Profile variability and differences in the content of heavy metals and phosphorus within the CLs under the MMS were activity indicators of Krakow inhabitants in the past. This paper presents alternative methods for the assessment of the degree of heavy metal contamination in urban soils using selected pollution indices. On the basis of the studied total concentration of heavy metals (Zn, Pb, Cu, Mn, Cr, Cd, Ni, Sn, Ag) and total phosphorus content, the Geoaccumulation Index (Igeo), Enrichment Factor (EF), Sum of Pollution Index (PIsum), Single Pollution Index (PI), Nemerow Pollution Index (PINemerow) and Potential Ecological Risk (RI) were calculated using different local and reference geochemical backgrounds. The use of various geochemical backgrounds is helpful to evaluate the assessment of soil pollution. The individual CLs differed from each other according to the degree of pollution. The different values of pollution indices within the studied soil profile showed that LDS should not be evaluated in terms of contamination as one, homogeneous soil profile but each separate CL should be treated individually.

  8. Impacts of soil and water pollution on food safety and health risks in China.

    PubMed

    Lu, Yonglong; Song, Shuai; Wang, Ruoshi; Liu, Zhaoyang; Meng, Jing; Sweetman, Andrew J; Jenkins, Alan; Ferrier, Robert C; Li, Hong; Luo, Wei; Wang, Tieyu

    2015-04-01

    Environmental pollution and food safety are two of the most important issues of our time. Soil and water pollution, in particular, have historically impacted on food safety which represents an important threat to human health. Nowhere has that situation been more complex and challenging than in China, where a combination of pollution and an increasing food safety risk have affected a large part of the population. Water scarcity, pesticide over-application, and chemical pollutants are considered to be the most important factors impacting on food safety in China. Inadequate quantity and quality of surface water resources in China have led to the long-term use of waste-water irrigation to fulfill the water requirements for agricultural production. In some regions this has caused serious agricultural land and food pollution, especially for heavy metals. It is important, therefore, that issues threatening food safety such as combined pesticide residues and heavy metal pollution are addressed to reduce risks to human health. The increasing negative effects on food safety from water and soil pollution have put more people at risk of carcinogenic diseases, potentially contributing to 'cancer villages' which appear to correlate strongly with the main food producing areas. Currently in China, food safety policies are not integrated with soil and water pollution management policies. Here, a comprehensive map of both soil and water pollution threats to food safety in China is presented and integrated policies addressing soil and water pollution for achieving food safety are suggested to provide a holistic approach.

  9. Bioremediation of polluted soil through the combined application of plants, earthworms and organic matter.

    PubMed

    Macci, Cristina; Doni, Serena; Peruzzi, Eleonora; Ceccanti, Brunello; Masciandaro, Grazia

    2012-10-26

    Two plant species (Paulownia tomentosa and Cytisus scoparius), earthworms (Eisenia fetida), and organic matter (horse manure) were used as an ecological approach to bioremediate a soil historically contaminated by heavy metals and hydrocarbons. The experiment was carried out for six months at a mesoscale level using pots containing 90 kg of polluted soil. Three different treatments were performed for each plant: (i) untreated planted soil as a control (C); (ii) planted soil + horse manure (20:1 w/w) (M); (iii) planted soil + horse manure + 15 earthworms (ME). Both the plant species were able to grow in the polluted soil and to improve the soil's bio-chemical conditions, especially when organic matter and earthworms were applied. By comparing the two plant species, few significant differences were observed in the soil characteristics; Cytisus scoparius improved soil nutrient content more than Paulownia tomentosa, which instead stimulated more soil microbial metabolism. Regarding the pollutants, Paulownia tomentosa was more efficient in reducing the heavy metal (Pb, Cr, Cd, Zn, Cu, Ni) content, while earthworms were particularly able to stimulate the processes involved in the decontamination of organic pollutants (hydrocarbons). This ecological approach, validated at a mesoscale level, has recently been transferred to a real scale situation to carry out the bioremediation of polluted soil in San Giuliano Terme Municipality (Pisa, Italy).

  10. Assessment of metals pollution and health risk in dust from nursery schools in Xi'an, China.

    PubMed

    Lu, Xinwei; Zhang, Xiaolan; Li, Loretta Y; Chen, Hao

    2014-01-01

    Concentrations, pollution and health risks of metals in dust from nursery schools in Xi'an, China were determined. In comparison with local soil, dust samples have elevated metals concentrations except for Mn. The results indicate no distinct pollution of Mn, Ni, As and Ba in the dust, while Cu, Co and Zn are moderate pollution, Pb is significant pollution, and Cr with large pollution range. Most samples presented moderately polluted by metals. The non-cancer risks of the studied metals are within the safe range, and the cancer risks of As, Co, Cr and Ni are also within the currently acceptable range.

  11. Estimating the Pollution Risk of Cadmium in Soil Using a Composite Soil Environmental Quality Standard

    PubMed Central

    Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km2 area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs. PMID:24672364

  12. Estimating the pollution risk of cadmium in soil using a composite soil environmental quality standard.

    PubMed

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2014-01-01

    Estimating standard-exceeding probabilities of toxic metals in soil is crucial for environmental evaluation. Because soil pH and land use types have strong effects on the bioavailability of trace metals in soil, they were taken into account by some environmental protection agencies in making composite soil environmental quality standards (SEQSs) that contain multiple metal thresholds under different pH and land use conditions. This study proposed a method for estimating the standard-exceeding probability map of soil cadmium using a composite SEQS. The spatial variability and uncertainty of soil pH and site-specific land use type were incorporated through simulated realizations by sequential Gaussian simulation. A case study was conducted using a sample data set from a 150 km(2) area in Wuhan City and the composite SEQS for cadmium, recently set by the State Environmental Protection Administration of China. The method may be useful for evaluating the pollution risks of trace metals in soil with composite SEQSs.

  13. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale

    PubMed Central

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-01-01

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of “loading capacity” (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale. PMID:26675587

  14. Assessing the pollution risk of soil Chromium based on loading capacity of paddy soil at a regional scale.

    PubMed

    Qu, Mingkai; Li, Weidong; Zhang, Chuanrong; Huang, Biao; Zhao, Yongcun

    2015-12-17

    The accumulation of a trace metal in rice grain is not only affected by the total concentration of the soil trace metal, but also by crop variety and related soil properties, such as soil pH, soil organic matter (SOM) and so on. However, these factors were seldom considered in previous studies on mapping the pollution risk of trace metals in paddy soil at a regional scale. In this study, the spatial nonstationary relationships between rice-Cr and a set of perceived soil properties (soil-Cr, soil pH and SOM) were explored using geographically weighted regression; and the relationships were then used for calculating the critical threshold (CT) of soil-Cr concentration that may ensure the concentration of rice-Cr being below the permissible limit. The concept of "loading capacity" (LC) for Cr in paddy soil was then defined as the difference between the CT and the real concentration of Cr in paddy soil, so as to map the pollution risk of soil-Cr to rice grain and assess the risk areas in Jiaxing city, China. Compared with the information of the concentration of the total soil-Cr, such results are more valuable for spatial decision making in reducing the accumulation of rice-Cr at a regional scale.

  15. Electrorestoration of metal contaminated soils

    SciTech Connect

    Hicks, R.E.; Tondorf, S. )

    1994-11-01

    The removal of metals from contaminated soils using electric fields has been successfully demonstrated in the laboratory, yet field trials have yielded anomalous results. Poor performance may be attributed to interaction of the metals with naturally occurring electrolytes, humic substances, and co-disposed wastes. Immobilization of contaminants in a narrow band in the soil, analogous to isoelectric focusing, was reproduced experimentally and simulated with a mathematical model. It was shown that the focusing effect can be eliminated by controlling the pH at the cathode using a water rinse. Immobilization resulting from precipitation with carbonates and codisposed wastes may additionally require chelating agents and control of the redox potential to effect removal. Pourbaix diagrams provide a means for rapidly identifying pH and redox conditions suitable for mobilizing metal wastes. Optimum operating conditions can then be determined using a mathematical model that incorporates the appropriate metal speciation chemistry. 32 refs., 10 figs., 1 tab.

  16. Earliest evidence of pollution by heavy metals in archaeological sites

    NASA Astrophysics Data System (ADS)

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-09-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence.

  17. Earliest evidence of pollution by heavy metals in archaeological sites

    PubMed Central

    Monge, Guadalupe; Jimenez-Espejo, Francisco J.; García-Alix, Antonio; Martínez-Ruiz, Francisca; Mattielli, Nadine; Finlayson, Clive; Ohkouchi, Naohiko; Sánchez, Miguel Cortés; de Castro, Jose María Bermúdez; Blasco, Ruth; Rosell, Jordi; Carrión, José; Rodríguez-Vidal, Joaquín; Finlayson, Geraldine

    2015-01-01

    Homo species were exposed to a new biogeochemical environment when they began to occupy caves. Here we report the first evidence of palaeopollution through geochemical analyses of heavy metals in four renowned archaeological caves of the Iberian Peninsula spanning the last million years of human evolution. Heavy metal contents reached high values due to natural (guano deposition) and anthropogenic factors (e.g. combustion) in restricted cave environments. The earliest anthropogenic pollution evidence is related to Neanderthal hearths from Gorham's Cave (Gibraltar), being one of the first milestones in the so-called “Anthropocene”. According to its heavy metal concentration, these sediments meet the present-day standards of “contaminated soil”. Together with the former, the Gibraltar Vanguard Cave, shows Zn and Cu pollution ubiquitous across highly anthropic levels pointing to these elements as potential proxies for human activities. Pb concentrations in Magdalenian and Bronze age levels at El Pirulejo site can be similarly interpreted. Despite these high pollution levels, the contaminated soils might not have posed a major threat to Homo populations. Altogether, the data presented here indicate a long-term exposure of Homo to these elements, via fires, fumes and their ashes, which could have played certain role in environmental-pollution tolerance, a hitherto neglected influence. PMID:26388184

  18. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite.

    PubMed

    Malandrino, Mery; Abollino, Ornella; Buoso, Sandro; Giacomino, Agnese; La Gioia, Carmela; Mentasti, Edoardo

    2011-01-01

    We evaluated the distribution of 15 metal ions, namely Al, Cd, Cu, Cr, Fe, La, Mn, Ni, Pb, Sc, Ti, V, Y, Zn and Zr, in the soil of a contaminated site in Piedmont (Italy). This area was found to be heavily contaminated with Cu, Cr and Ni. The availability of these metal ions was studied using Tessier's sequential extraction procedure: the fraction of mobile species, which potentially is the most harmful for the environment, was much higher than that normally present in unpolluted soils. This soil was hence used to evaluate the effectiveness of treatment with vermiculite to reduce the availability of the pollutants to two plants, Lactuca sativa and Spinacia oleracea, by pot experiments. The results indicated that the addition of vermiculite significantly reduces the uptake of metal pollutants by plants, confirming the possibility of using this clay in amendment treatments of metal-contaminated soils. The effect of plant growth on metal fractionation in soils was investigated. Finally, the sum of the metal percentages extracted into the first two fractions of Tessier's protocol was found to be suitable in predicting the phytoavailability of most of the pollutants present in the investigated soil.

  19. Genome-wide genetic diversity of rove beetle populations along a metal pollution gradient.

    PubMed

    Giska, Iwona; Babik, Wiesław; van Gestel, Cornelis A M; van Straalen, Nico M; Laskowski, Ryszard

    2015-09-01

    To what extent chemical contamination affects genetic diversity of wild populations remains an open question in ecotoxicology. Here we used a genome-wide approach (615 nuclear RADseq loci containing 3017 SNPs) and a mtDNA fragment (ATP6) to analyze the effect of long-term exposure to elevated concentrations of metals (Cd, Pb, Zn) on genetic diversity in rove beetle (Staphylinus erythropterus) populations living along a pollution gradient in Poland. In total, 96 individuals collected from six sites at increasing distance from the source of pollution were analyzed. We found weak differentiation between populations suggesting extensive gene flow. The highest genetic diversity was observed in a population inhabiting the polluted site with the highest metal availability. This may suggest increased mutation rates, possibly in relation to elevated oxidative stress levels. The polluted site could also act as an ecological sink receiving numerous migrants from neighboring populations. Despite higher genetic diversity at the most polluted site, there was no correlation between the genetic diversity and metal pollution or other soil properties. We did not find a clear genomic signature of local adaptation to metal pollution. Like in some other cases of metal tolerance in soil invertebrates, high mobility may counteract possible effects of local selective forces associated with soil pollution.

  20. CORRELATING METAL SPECIATION IN SOILS TO RISK

    EPA Science Inventory

    Understanding bioavailability of metals from exposure to contaminated soils is a challenging aspect of environmental research. This presentation will examine three areas of research with respect to metal speciation in soils as it relates to bioavailability: 1) Pb immobilization a...

  1. Heavy metal retention of different roadside soils

    NASA Astrophysics Data System (ADS)

    Werkenthin, Moritz; Kluge, Björn; Wessolek, Gerd

    2014-05-01

    Emissions from major highways contain different kinds of contaminants such as heavy metals, polycyclic aromatic hydrocarbons and road salts which can occur in both particulate and dissolved form. Pollutants are transferred to the environment via aerial transport or the infiltration of road runoff and spray water. A significant rate of the road runoff infiltrates into the Embankment which is usually built during road construction and located next to the road edge. Especially in the long term development there is an increasing problem of soil contamination and groundwater pollution. According to valid German law, newly constructed hard shoulders have to provide a specific bear-ing capacity to enable trafficability in emergency cases. Therefore the applicable materials consist of accurately defined gravel-soil mixtures, which can fulfil this requirement. To determine and com-pare the total and dissolved concentrations of Pb, Cd, Zn, Cu, Ni, Cr in the road runoff and seep-age water of newly constructed embankments, we installed 6 Lysimeter along the edge of the German highway A115. Three lysimeter were filled with different materials which are recently used for embankment construction in Germany. Three further lysimeter where installed and filled with plain gravel, to observe the distribution, quantity and quality of road runoff. Fist results showed that heavy metal concentrations determined in the road runoff were compara-ble to literature values. The solute concentrations in the seepage water of the different embank-ment materials do not show considerable differences and exceed the trigger values of the German Federal Soil Protection & Contamination Ordinance (BBodSchV) only sporadically. Total concentra-tions of the seepage water are significantly higher than solute concentrations and clearly differ be-tween stable and non stable variant. In order to estimate the risk of groundwater pollution further monitoring of seepage water quality is necessary.

  2. Urban soil pollution and the playfields of small children

    NASA Astrophysics Data System (ADS)

    Jartun, M.; Ottesen, R. T.; Steinnes, E.

    2003-05-01

    The chemical composition of urban surface soil in Tromsø, northern Norway has been mapped to describe the environmental load of toxic elements in different parts of the city. Surface soil samples were collected from 275 locations throughout the city center and nearby suburban areas. Natural background concentrations were determined in samples of the local bedrock. Surface soil in younger, suburban parts of the city shows low concentrations of heavy metals, reflecting the local geochemistry. The inner and older parts of the city are generally polluted with lead (Pb), zinc (Zn) and tin (Sn). The most important sources of this urban soil pollution are probably city fires, industrial and domestic waste, traffic, and shipyards. In this paper two different approaches have been used. First, as a result of the general mapping, 852 soil and sand samples from kindergartens and playgrounds were analyzed. In this study concentrations of arsenic (As) up to 1800ppm were found, most likely due to the extensive use of CCA (copper, chromium, arsenic) impregnated wood in sandboxes and other playground equipment. This may represent a significant health risk especially to children having a high oral intake of contaminated sand and soil. Secondly a pattern of tin (Sn) concentrations was found in Tromsøcity with especially high values near shipyards. Further investigation indicated that this pattern most probably reflected the use of the highty toxic tributyltin (TBT). Thus détermination of total Sn in surface soils could be a cost-effective way to localize sources of TBT contamination in the environment.

  3. In situ bioremediation through mulching of soil polluted by a copper-nickel smelter.

    PubMed

    Kiikkilä, O; Perkiömäki, J; Barnette, M; Derome, J; Pennanen, T; Tulisalo, E; Fritze, H

    2001-01-01

    Bioremediation of a heavy metal-polluted soil was investigated in a 3-yr field experiment by adding mulch to a polluted forest floor. The mulch consisted of a mixture of compost and woodchips. The remediation treatment decreased the toxicity of the soil solution to bacteria as determined by the [3H]-thymidine incorporation technique, that is, by measuring the growth rate of soil bacteria extracted from unpolluted humus after exposing them to soil solution containing heavy metals from the experimental plots. Canonical correlation analysis was performed in order to identify the chemical and microbiological changes in the soil. The pH of the mulched organic layer increased by one unit. The concentration of complexed Cu increased and that of free Cu2+ decreased in the soil solution from the mulch treatment. According to basal respiration and litter decomposition, microbial activity increased during the 3 yr following the remediation treatment. The [3H]-thymidine incorporation technique was also used to study the growth rate and tolerance of bacteria to Cu. The bacterial growth rate increased and the Cu tolerance decreased on the treated plots. The structure of the microbial community, as determined by phospholipid fatty acid (PLFA) analysis, remained unchanged. The results indicate that remediation of the polluted soil had occurred, and that adding a mulch to the forest floor is a suitable method for remediating heavy metal-polluted soil.

  4. Energy reserves and accumulation of metals in the ground beetle Pterostichus oblongopunctatus from two metal-polluted gradients.

    PubMed

    Bednarska, Agnieszka J; Stachowicz, Izabela; Kuriańska, Ligia

    2013-01-01

    Living in an area chronically polluted with metals is usually associated with changes in the energy distribution in organisms due to increased energy expenses associated with detoxification and excretion processes. These expenses may be reflected in the available energy resources, such as lipids, carbohydrates, and proteins. In this context, the energy status of Pterostichus oblongopunctatus (Coleoptera: Carabidae) was studied in two metal pollution gradients near Olkusz and Miateczko Śląskie in southern Poland. Both regions are rich in metal ores, and the two largest Polish zinc smelters have been operating there since the 1970s. Beetles were collected from five sites at each gradient. Zinc and cadmium concentrations were measured in both the soil and the beetles. The possible reduction in energy reserves as a cost of detoxifying assimilated metals was evaluated biochemically by determining the total lipid, carbohydrates, and protein contents. At the most polluted sites, the Zn concentration in the soil organic layer reached 2,906 mg/kg, and the Cd concentration reached 55 mg/kg. Body Zn and Cd concentrations increased with increasing soil Zn and Cd concentrations (p = 0.003 and p = 0.0001, respectively). However, no relationship between pollution level and energetic reserves was found. The results suggest that populations of P. oblongopunctatus inhabiting highly metal-polluted sites are able to survive without any serious impact on their energy reserves, though they obviously have to cope with elevated body metal concentrations.

  5. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  6. Phytoremediation of Metal-Contaminated Soils

    SciTech Connect

    Shtangeeva, I.; Laiho, J.V-P.; Kahelin, H.; Gobran, G.R.

    2004-03-31

    Recent concerns regarding environmental contamination have necessitated the development of appropriate technologies to assess the presence and mobility of metals in soil and estimate possible ways to decrease the level of soil metal contamination. Phytoremediation is an emerging technology that may be used to cleanup contaminated soils. Successful application of phytoremediation, however, depends upon various factors that must be carefully investigated and properly considered for specific site conditions. To efficiently affect the metal removal from contaminated soils we used the ability of plants to accumulate different metals and agricultural practices to improve soil quality and enhance plant biomass. Pot experiments were conducted to study metal transport through bulk soil to the rhizosphere and stimulate transfer of the metals to be more available for plants' form. The aim of the experimental study was also to find fertilizers that could enhance uptake of metals and their removal from contaminated soil.

  7. Construction of a chemical ranking system of soil pollution substances for screening of priority soil contaminants in Korea.

    PubMed

    Jeong, Seung-Woo; An, Youn-Joo

    2012-04-01

    The Korean government recently proposed expanding the number of soil-quality standards to 30 by 2015. The objectives of our study were to construct a reasonable protocol for screening priority soil contaminants for inclusion in the planned soil quality standard expansion. The chemical ranking system of soil pollution substances (CROSS) was first developed to serve as an analytical tool in chemical scoring and ranking of possible soil pollution substances. CROSS incorporates important parameters commonly used in several previous chemical ranking and scoring systems and the new soil pollution parameters. CROSS uses soil-related parameters in its algorithm, including information related to the soil environment, such as soil ecotoxicological data, the soil toxic release inventory (TRI), and soil partitioning coefficients. Soil TRI and monitoring data were incorporated as local specific parameters. In addition, CROSS scores the transportability of chemicals in soil because soil contamination may result in groundwater contamination. Dermal toxicity was used in CROSS only to consider contact with soil. CROSS uses a certainty score to incorporate data uncertainty. CROSS scores the importance of each candidate substance and assigns rankings on the basis of total scores. Cadmium was the most highly ranked. Generally, metals were ranked higher than other substances. Pentachlorophenol, phenol, dieldrin, and methyl tert-butyl ether were ranked the highest among chlorinated compounds, aromatic compounds, pesticides, and others, respectively. The priority substance list generated from CROSS will be used in selecting substances for possible inclusion in the Korean soil quality standard expansion; it will also provide important information for designing a soil-environment management scheme.

  8. Chemometric interpretation of heavy metal patterns in soils worldwide.

    PubMed

    Skrbić, Biljana; Durisić-Mladenović, Natasa

    2010-09-01

    Principal component analysis (PCA) was applied on data sets containing levels of six heavy metals (Pb, Cu, Zn, Cd, Ni, Cr) in soils from different parts of the world in order to investigate the information captured in the global heavy metal patterns. Data used in this study consisted of the heavy metal contents determined in 23 soil samples from and around the Novi Sad city area in the Vojvodina Province, northern part of Serbia, together with those from the city of Banja Luka, the second largest city in Bosnia and Herzegovina, and the ones reported previously in the relevant literature in order to evaluate heavy metal distribution pattern in soils of different land-use types, as well as spatial and temporal differences in the patterns. The chemometric analysis was applied on the following input data sets: the overall set with all data gathered in this study containing 264 samples, and two sub sets obtained after dividing the overall set in accordance to the soil metal index, SMI, calculated here, i.e. the set of unpolluted soils having SMIs<100%, and the set of polluted soils with SMIs>100%. Additionally, univariate descriptive statistics and the Spearman's non-parametric rank correlation coefficients were calculated for these three sets. A Box-Cox transformation was used as a data pretreatment before the statistical methods applied. According to the results, it was seen that anthropogenic and background sources had different impact on the data variability in the case of polluted and unpolluted soils. The sample discrimination regarding the land-use types was more evident for the unpolluted soils than for the polluted ones. Using linear discriminant analysis, content of Cu was determined as a variable with a major discriminant capacity. The correct classification of 73.3% was achieved for predefined land-use types. Classification of the samples in accordance to the pollution level expressed as SMI was necessary in order to avoid the "masking" effect of the

  9. Characteristics of current roadside pollution of soils in Upper Silesia

    NASA Astrophysics Data System (ADS)

    Wawer, M.; Szuszkiewicz, M.; Magiera, T.

    2012-04-01

    The aim of the study was qualitative recognition of contemporary roadside pollutants deposited on topsoils in areas located in close vicinity to roads with high traffic volume (main roads, ring roads). So far, the determination of pollutant content in soil samples has shown only the amount of pollutants deposited on soils over long time period, without the possibility to assess the quality changes in type of deposition and to determine the present structure of roadside pollution. Moreover, in many cases, it is difficult to distinguish roadside pollution from other industrial sources. In order to avoid this issue and recognize currently emergent threats of road traffic origin, three monitoring plots filled with quartz sand had been installed in Zabrze, Gliwice and Opole (Poland) close to arteries with high traffic volume. For installation of monitoring plots 7 cm of topsoil had been removed and replaced by boxes filled with clean quartz sand with known chemical composition and neutral magnetic properties (diamagnetic). This sand was treated as neutral matrix for the accumulation of traffic pollution. Results of chemical analyses of heavy metal contents and magnetic susceptibility measurements of removed topsoils have shown that the highest content of Fe, Mn, Zn, Pb, Cu, Cr and Ni were observed in Zabrze. Amount of Zn and Pb exceeded threshold values. Magnetic susceptibility values were also the highest in Zabrze. In all investigated areas magnetic susceptibility values and heavy metal contents decreased with the distance from the road. Measurements of sand from monitoring plots which were executed after 3, 6 and 12 months of exposure have shown that values of magnetic susceptibility have increased during these time periods. It is visible especially in surface layer of sand. Initially magnetic susceptibility value of quartz sand which was used as matrix after first year of exposure increased from 0,25 - 10-8 m3kg-1 to 300 in Zabrze, 50 in Gliwice and 30- 10-8 m3kg-1

  10. Abundance, composition and activity of ammonia oxidizer and denitrifier communities in metal polluted rice paddies from South China.

    PubMed

    Liu, Yuan; Liu, Yongzhuo; Ding, Yuanjun; Zheng, Jinwei; Zhou, Tong; Pan, Genxing; Crowley, David; Li, Lianqing; Zheng, Jufeng; Zhang, Xuhui; Yu, Xinyan; Wang, Jiafang

    2014-01-01

    While microbial nitrogen transformations in soils had been known to be affected by heavy metal pollution, changes in abundance and community structure of the mediating microbial populations had been not yet well characterized in polluted rice soils. Here, by using the prevailing molecular fingerprinting and enzyme activity assays and comparisons to adjacent non-polluted soils, we examined changes in the abundance and activity of ammonia oxidizing and denitrifying communities of rice paddies in two sites with different metal accumulation situation under long-term pollution from metal mining and smelter activities. Potential nitrifying activity was significantly reduced in polluted paddies in both sites while potential denitrifying activity reduced only in the soils with high Cu accumulation up to 1300 mg kg-1. Copy numbers of amoA (AOA and AOB genes) were lower in both polluted paddies, following the trend with the enzyme assays, whereas that of nirK was not significantly affected. Analysis of the DGGE profiles revealed a shift in the community structure of AOA, and to a lesser extent, differences in the community structure of AOB and denitrifier between soils from the two sites with different pollution intensity and metal composition. All of the retrieved AOB sequences belonged to the genus Nitrosospira, among which species Cluster 4 appeared more sensitive to metal pollution. In contrast, nirK genes were widely distributed among different bacterial genera that were represented differentially between the polluted and unpolluted paddies. This could suggest either a possible non-specific target of the primers conventionally used in soil study or complex interactions between soil properties and metal contents on the observed community and activity changes, and thus on the N transformation in the polluted rice soils.

  11. Peach leaf responses to soil and cement dust pollution.

    PubMed

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  12. Analytical techniques for estimation of heavy metals in soil ecosystem: a tabulated review.

    PubMed

    Soodan, Rajneet Kour; Pakade, Yogesh B; Nagpal, Avinash; Katnoria, Jatinder Kaur

    2014-07-01

    Soil, an important environmental medium, is exposed to a number of pollutants including toxic heavy metals by various natural and anthropogenic activities. Consequently heavy metal contaminated soil has the potential to pose severe health risks and hazards to humans as well as other living creatures of the ecosystem through various routes of exposure such as direct ingestion, contaminated drinking ground water, food crops, contact with contaminated soil and through food chain. Therefore, it is mandatory to explore various techniques that could efficiently determine the occurrence of heavy metals in soil. A number of methods have been developed by several regulatory agencies and private laboratories and are applied routinely for the quantification and monitoring of soil matrices. The present review is an initiative to summarize the work on pollution levels of soil ecosystem and thus pertains to various extraction and quantification procedures used worldwide to analyze heavy metals in soil.

  13. Earthworm bioturbation influences the phytoavailability of metals released by particles in cultivated soils.

    PubMed

    Leveque, Thibaut; Capowiez, Yvan; Schreck, Eva; Xiong, Tiantian; Foucault, Yann; Dumat, Camille

    2014-08-01

    The influence of earthworm activity on soil-to-plant metal transfer was studied by carrying out six weeks mesocosms experiments with or without lettuce and/or earthworms in soil with a gradient of metal concentrations due to particles fallouts. Soil characteristics, metal concentrations in lettuce and earthworms were measured and soil porosity in the mesocosms was determined. Earthworms increased the soil pH, macroporosity and soil organic matter content due to the burying of wheat straw provided as food. Earthworm activities increased the metals concentrations in lettuce leaves. Pb and Cd concentrations in lettuce leaves can increase up to 46% with earthworm activities … These results and the low correlation between estimated by CaCl2 and EDTA and measured pollutant phytoavailability suggest that earthworm bioturbation was the main cause of the increase. Bioturbation could affect the proximity of pollutants to the roots and soil organic matter.

  14. Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition.

    PubMed

    Subrahmanyam, Gangavarapu; Shen, Ju-Pei; Liu, Yu-Rong; Archana, Gattupalli; Zhang, Li-Mei

    2016-02-01

    Although numerous studies have addressed the influence of exogenous pollutants on microorganisms, the effect of long-term industrial waste effluent (IWE) pollution on the activity and diversity of soil bacteria was still unclear. Three soil samples characterized as uncontaminated (R1), moderately contaminated (R2), and highly contaminated (R3) receiving mixed organic and heavy metal pollutants for more than 20 years through IWE were collected along the Mahi River basin, Gujarat, western India. Basal soil respiration and in situ enzyme activities indicated an apparent deleterious effect of IWE on microbial activity and soil function. Community composition profiling of soil bacteria using 16S rRNA gene amplification and denaturing gradient gel electrophoresis (DGGE) method indicated an apparent bacterial community shift in the IWE-affected soils. Cloning and sequencing of DGGE bands revealed that the dominated bacterial phyla in polluted soil were affiliated with Firmicutes, Acidobacteria, and Actinobacteria, indicating that these bacterial phyla may have a high tolerance to pollutants. We suggested that specific bacterial phyla along with soil enzyme activities could be used as relevant biological indicators for long-term pollution assessment on soil quality. Graphical Abstract Bacterial community profiling and soil enzyme activities in long-term industrial waste effluent polluted soils.

  15. [Research advances in heavy metals pollution ecology of diatom].

    PubMed

    Ding, Teng-Da; Ni, Wan-Min; Zhang, Jian-Ying

    2012-03-01

    Diatom, due to its high sensitivity to environmental change, is one of the bio-indicators of aquatic ecosystem health, and some typical diatom species have been applied to indicate the heavy metals pollution of water body. With the focus on the surface water heavy metals pollution, this paper reviewed the research advances in the toxic effect of heavy metals pollution on diatom, biosorption and bioaccumulation of heavy metals by diatom, ecological adaptation mechanisms of diatom to heavy metals pollution, and roles of diatom as bio-indicator and in ecological restoration of heavy metals pollution. The growth tendency of diatom and the morphological change of frustule under heavy metals pollution as well as the differences in heavy metals biosorption and bioaccumulation by diatom, the ecological adaptation mechanisms of diatom on heavy metals surface complexation and ion exchange, and the roles of diatom as bio-indicator and in ecological restoration of heavy metals polluted water body were also discussed. This review could provide scientific evidences for the prevention of aquatic ecosystems heavy metals pollution and related early warning techniques.

  16. Magnetic Properties and Heavy Metals in topsoils from Mexico City: Implications for Pollution

    NASA Astrophysics Data System (ADS)

    Morton-Bermea, O.; Hernandez-Alvarez, E.; Acosta, T.; Martinez, E.; Soler-Arechalde, A. M.; Urrutia-Fucugauchi, J.

    2006-12-01

    Initial results of a long-term geochemical and magnetic mineralogy study of the heavy metal pollution as recorded in topsoils in Mexico City are reported. We concentrate on investigating the contents and distribution of heavy metals and magnetic minerals in sediments associated to atmospheric particulate pollutants. The geological setting, environmental characteristics and development history of Mexico City make this extensive urban and industrial area a natural laboratory to investigate air-, land- and water-pollution. Thirty-eight samples from surface soils were collected from localities within the metropolitan area, which represent different traffic conditions and heavy metal pollution levels. Elemental determinations are made with induced-coupled plasma mass spectrometry (ICP-MS). Magnetic mineralogy is investigated by low-field susceptibility, remanence intensity, magnetic hysteresis and coercivity spectra analyses on natural and laboratory-induced magnetizations. Soils show high pollution levels indicated by increase concentrations of heavy metals such as Pb, Zn, Cu and Cd, and by high contents of iron minerals (iron-titanium oxides). Urban soils close to dense slow traffic condition zones show the higher heavy metal concentrations, like it was to be expected, some of them exceeding the allowed limits.

  17. Rehabilitation of oil polluted soils by bioremediation

    NASA Astrophysics Data System (ADS)

    Dumitru, Mihail; Parvan, Lavinia; Cioroianu, Mihai; Carmen, Sirbu; Constantin, Carolina

    2015-04-01

    In Romania about 50,000 ha are polluted with oil and/or brine. The main sources of pollution are the different activities using petroleum products: extraction, transport, treatment, refining and distribution. Taking into acoount the large areas and the cost per unit area, bioremediation was tested as a method of rehabilitation. To stimulate the performance of the bioremediation process for a polluted soil (luvisol) by 3% oil, different methods were tested: -application of a bacterial inoculum consisting of species of the Pseudomonas and Arthrobacter genera;- application of two types of absorbent materials, 16 t/ha peat and 16, respectively, 32 kg/ha Zeba (starch-based polymer, superabsorbent); -mineral fertilization with N200P200K200 and 5 different liquid fertilizer based on potassium humates extracted from lignite in a NPK matrix with micronutrients and added monosaccharides (4 and 8%). After 45 days from the treatment (60 days from pollution) the following observations have been noticed: • the application of only bacterial inoculum had no significant effect on the degradation of petroleum hydrocarbons; • the use of 650 l/ha AH-SH fertilizer (potassium humate in a NPK matrix) led to a 47% decrease of TPH (total petroleum hydrocarbons); • the application of 16 t/ha peat, together with the bacterial inoculum and the AH-SG2 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 8% monosaccharides, in which the nitrogen is amide form) led to a 50% decrease of the TPH content; • the application of 16 kg/ha Zeba absorbent together with bacterial inoculum and 650 l/ha AH-SG1 liquid fertilizer (containing humates of potassium in a NPK matrix with microelements and 4% monosaccharide in which the nitrogen is in amide form) led to a 57% decrease of the TPH content; • the application of 32 kg/ha Zeba absorbent, together with the AH-SG2 fertilizer, led to a 58% decrease of the TPH content.

  18. Multiple evaluations of the removal of pollutants in road runoff by soil infiltration.

    PubMed

    Murakami, Michio; Sato, Nobuyuki; Anegawa, Aya; Nakada, Norihide; Harada, Arata; Komatsu, Toshiya; Takada, Hideshige; Tanaka, Hiroaki; Ono, Yoshiro; Furumai, Hiroaki

    2008-05-01

    Groundwater replenishment by infiltration of road runoff is expected to be a promising option for ensuring a sustainable urban water cycle. In this study, we performed a soil infiltration column test using artificial road runoff equivalent to approximately 11-12 years of rainfall to evaluate the removal of pollutants by using various chemical analyses and bioassay tests. These results indicated that soil infiltration treatment works effectively to remove most of the pollutants such as organic matter (chemical oxygen demand (CODMn) and dissolved organic carbon (DOC)), P species, polycyclic aromatic hydrocarbons (PAHs), numerous heavy metals and oestrogenic activities. Bioassay tests, including algal growth inhibition test, Microtox and mutagen formation potential (MFP) test, also revealed effective removal of toxicities by the soils. However, limited amounts of NO3, Mn, Ni, alkaline earth metals, perfluorooctane sulphonate (PFOS) and perfluorooctane sulphonamide (FOSA) were removed by the soils and they possibly reach the groundwater and cause contamination.

  19. Trace metal mobilization in soil by bacterial polymers

    SciTech Connect

    Chen, Jyh-Herng; Czajka, D.R.; Lion, L.W.

    1995-02-01

    Enhanced transport of trace metal in porous media can occur in the presence of a ligand or {open_quotes}carrier{close_quotes} that has a high affinity for binding the pollutant, is dispersed and mobile in the soil environment, is recalcitrant with respect to microbial degradation, and is acceptable to the public. These aspects of the facilitated transport to trace metals are discussed with respect to a naturally occurring carrier; extracellular polymers of bacterial origin. The literature is reviewed regarding the production and composition of bacterial extracellular polymers, the processes relevant to the facilitated transport of trace metals in soil by bacterial polymers, and potential for transformation of polymers in soils by microbial degradation. Model calculations of contaminant retardation are presented for the case of polymer-mediated transport of cadmium in a sandy aquifer material. The available information suggests that extracellular polymers can bind metal ions and are mobile in the soil environment. Extracellular polymers also appear to be relatively slowly degraded by soil microorganisms. These properties and the supporting model calculations indicate that extracellular polymers of bacterial origin merit consideration as agents that may be applied to contaminated soils to enhance trace metal mobility. 58 refs., 3 figs.

  20. The relationship between metal composition, phenolic acid and flavonoid content in Imleria badia from non-polluted and polluted areas.

    PubMed

    Gąsecka, Monika; Rzymski, Piotr; Mleczek, Mirosław; Siwulski, Marek; Budzyńska, Sylwia; Magdziak, Zuzanna; Niedzielski, Przemysław; Sobieralski, Krzysztof

    2017-03-04

    The aim of this study was to determine the elemental composition, phenolic content and composition and antioxidant properties of Imleria badia (Fr.) Vizzini (former names Boletus badius (Fr.) Fr., and Xerocomus badius (Fr.) E.-J. Gilbert) fruiting bodies collected from sites with different levels of pollution. Imleria badia was relatively tolerant to soil contamination with toxic elements and was able to grow in As, Cd, Hg and Pb concentrations exceeding 15, 2.9, 0.4 and 77 mg kg(-1), respectively. The concentration of elements in soil was reflected in the element content in I. badia. The fruiting bodies from polluted sites exhibited significantly higher content of all the analyzed elements. Among 21 individual phenolic compounds only protocatechiuc and caffeic acids, and quercetin were determined in fruiting bodies of I. badia. The differences between the concentration of the quantified phenolic compounds and the total flavonoid content in fruiting bodies of I. badia from unpolluted and polluted sites were not significant. However, the greatest total phenolic content was found in fruiting bodies from the polluted areas. The antioxidative capacity of mushrooms collected from heavily polluted sites was lower than those growing in unpolluted areas. The concentrations of some metals in soil and fruiting soil were positively correlated with phenolic content and IC50.

  1. Heavy metal speciation and risk assessment in dry land and paddy soils near mining areas at Southern China.

    PubMed

    Liu, Guannan; Wang, Juan; Zhang, Erxi; Hou, Jing; Liu, Xinhui

    2016-05-01

    Heavy metal contamination of soils has been a long-standing environmental problem in many parts of the world, and poses enormous threats to ecosystem and human health. Speciation of heavy metals in soils is crucial to assessing environmental risks from contaminated soils. In this study, total concentrations and speciation of As, Cd, Cr, Cu, Mn, Ni, Pb, and Zn were measured for agricultural soils near mines along the Diaojiang River in Guangxi Zhuang Autonomy Region, China. The sources of heavy metals in soils also were identified to assess their effect on speciation distribution of soil heavy metals. Furthermore, the speciation distribution of Cd and Zn, main soil heavy metal pollutants, in dry land and paddy soils were compared. Results showed that there were two severely polluted regions near mine area reaching alarming pollution level. As, Cd, Pb, and Zn were more affected by mining activities, showing very strong pollution level in soils. The mean percentage of exchangeable and carbonate fraction was highest and up to 46.8 % for Cd, indicating a high environmental risk. Greater bioavailable fractions of As, Cd, Cu, Mn, Pb, and Zn were found in soils heavily polluted by mining activities, whereas Cr and Ni as geogenic elements in the stable residual fraction. In addition, in the dry land soils, reducible fraction proportion of Cd was higher than that in the paddy soils, whereas exchangeable and carbonate fraction of Cd was lower than that in the paddy soils. Oxidizable fraction of Zn was higher in the paddy soils than that in the dry land soils. The results indicate that the sources of soil heavy metals and land types affect heavy metal speciation in the soil and are significant for environmental risk assessment of soil heavy metal pollutions.

  2. The impact of chemical pollution on the resilience of soils under multiple stresses: A conceptual framework for future research.

    PubMed

    Schaeffer, Andreas; Amelung, Wulf; Hollert, Henner; Kaestner, Matthias; Kandeler, Ellen; Kruse, Jens; Miltner, Anja; Ottermanns, Richard; Pagel, Holger; Peth, Stephan; Poll, Christian; Rambold, Gerhard; Schloter, Michael; Schulz, Stefanie; Streck, Thilo; Roß-Nickoll, Martina

    2016-10-15

    Soils are faced with man-made chemical stress factors, such as the input of organic or metal-containing pesticides, in combination with non-chemical stressors like soil compaction and natural disturbance like drought. Although multiple stress factors are typically co-occurring in soil ecosystems, research in soil sciences on this aspect is limited and focuses mostly on single structural or functional endpoints. A mechanistic understanding of the reaction of soils to multiple stressors is currently lacking. Based on a review of resilience theory, we introduce a new concept for research on the ability of polluted soil (xenobiotics or other chemical pollutants as one stressor) to resist further natural or anthropogenic stress and to retain its functions and structure. There is strong indication that pollution as a primary stressor will change the system reaction of soil, i.e., its resilience, stability and resistance. It can be expected that pollution affects the physiological adaption of organisms and the functional redundancy of the soil to further stress. We hypothesize that the recovery of organisms and chemical-physical properties after impact of a follow-up stressor is faster in polluted soil than in non-polluted soil, i.e., polluted soil has a higher dynamical stability (dynamical stability=1/recovery time), whereas resilience of the contaminated soil is lower compared to that of not or less contaminated soil. Thus, a polluted soil might be more prone to change into another system regime after occurrence of further stress. We highlight this issue by compiling the literature exemplarily for the effects of Cu contamination and compaction on soil functions and structure. We propose to intensify research on effects of combined stresses involving a multidisciplinary team of experts and provide suggestions for corresponding experiments. Our concept offers thus a framework for system level analysis of soils paving the way to enhance ecological theory.

  3. Comparative Analysis for Polluted Agricultural Soils with Arsenic, Lead, and Mercury in Mexico

    SciTech Connect

    Yarto-Ramirez, Mario; Santos-Santos, Elvira; Gavilan-Garcia, Arturo; Castro-Diaz, Jose; Gavilan-Garcia, Irma Cruz; Rosiles, Rene; Suarez, Sara

    2004-03-31

    The use of mercury in Mexico has been associated with the mining industry of Zacatecas. This activity has polluted several areas currently used for agriculture. The main objective of this study was to investigate the heavy metal concentration (Hg, As and Pb) in soil of Guadalupe Zacatecas in order to justify a further environmental risk assessment in the site. A 2X3 km grid was used for the sampling process and 20 soil samples were taken. The analysis was developed using EPA SW 846: 3050B/6010B method for arsenic and metals and EPA SW 846: 7471A for total mercury. It was concluded that there are heavy metals in agricultural soils used for corn and bean farming. For this it is required to make an environmental risk assessment and a bioavailability study in order to determine if there's a risk for heavy metals bioaccumulation in animals or human beings or metal lixiviation to aquifers.

  4. [Heavy Metals Accmultio in the Caofeidian Reclamation Soils: Indicated by Soil Magnetic Susceptibility].

    PubMed

    Xue, Yong; Zhou, Qian; Li, Yuan; Zhang, Hai-bo; Hu, Xue-feng; Luo, Yong-ming

    2016-04-15

    The environmental magnetism method has been widely applied to identify soil heavy metal pollution, which is characterized by simplicity, efficiency, non-destructivity and sensitivity. The present study used magnetic susceptibility to assess the accumulation of heavy metals in soils of the Caofeidian industrial zone which is a typical reclamation area in northern China. The study area was divided into three sub-zones based on the function, including industrial zone, living zone, natural tidal flat and wetland. A total of 35 topsoil samples (0-10 cm) and 3 soil profiles were collected from the three sub-zones. Magnetic susceptibility (X(lf)), iron oxide (Fe2O3) contents and heavy metals contents (Cr, Ni, Cu, Zn, As, Pb, Mn and V) of the samples were analyzed. The results showed that X(lf) values and heavy metals contents exhibited higher spatial variability in the top soil of the industrial zone, indicating the severe impacts of industrial activities. In the soil profiles of the industrial and living zones, all heavy metals were enriched to different degrees in the upper layer (0-20 cm). However, there was no significant change of heavy metal contents in the soil profiles of tidal flat which was far from the industrial area. The X(lf) value was significantly (P < 0.01) positively correlated with the contents of Fe2O3, Ni, Cu, As and V in the industrial top soil. This indicated that X(lf) could be used as an indicator for heavy metal accumulation in the industrial zone. However, the X(lf) value was not suitable to be an indicator to show the heavy metal accumulation in the soils of living zone and natural tidal flat. This might be associated with the different sources of magnetic materials among the different sub-zones and the special characteristics of the soils in the tidal flat and wetland.

  5. Industrial pollution with copper and other heavy metals in a beef cattle ranch

    SciTech Connect

    Parada, R.; Gonzalez, S.; Bergqvist, E.

    1987-04-01

    Experimental evidence of air borne heavy metal pollution as the cause of a disease of unknown etiology in beef cattle was obtained. Analysis of metals in natural grasses and leaves of tree defined Cu, Zn and Pb as the major pollutants, with Cd being a minor one. Emissions from a Cu smelter were traced as the main source of metallic pollution. No evidence of metal accumulation in the soil was found, mainly because of the short duration and intermittent pattern of pollution. A progressive intake of the several heavy metals contained in dusts deposited on the grasses was considered the cause of the sickness; this was associated with the grazing of cattle on contaminated grasses. The most severe cases were found in the most polluted pastures. With the exception of Cd, the concentrations of the metals in the livers and kidneys of affected cattle were high. No overlapping of the respective ranges between test and control samples from both organs was found. Mean hepatic levels of Cu (925.7 mg/kg DM), Zn (491.2 mg/kg) and Pb (26.7 mg/kg) reflected the decreasing order of the concentrations of these elements in the polluted grasses. The main clinical and pathological features of this disease were discussed in light of the organic levels of the investigated metals. Disease could not be ascribed to a pure chronic toxicosis with any one of these.

  6. Industrial pollution with copper and other heavy metals in a beef cattle ranch.

    PubMed

    Parada, R; Gonzalez, S; Bergqvist, E

    1987-04-01

    Experimental evidence of air borne heavy metal pollution as the cause of a disease of unknown etiology in beef cattle was obtained. Analysis of metals in natural grasses and leaves of tree defined Cu, Zn and Pb as the major pollutants, with Cd being a minor one. Emissions from a Cu smelter were traced as the main source of metallic pollution. No evidence of metal accumulation in the soil was found, mainly because of the short duration and intermittent pattern of pollution. A progressive intake of the several heavy metals contained in dusts deposited on the grasses was considered the cause of the sickness; this was associated with the grazing of cattle on contaminated grasses. The most severe cases were found in the most polluted pastures. Excepting Cd, the concentrations of the metals in the livers and kidneys of affected cattle were high. No overlapping of the respective ranges between test and control samples from both organs was found. Mean hepatic levels of Cu (925.7 mg/kg DM), Zn (491.2 mg/kg) and Pb (26.7 mg/kg) reflected the decreasing order of the concentrations of these elements in the polluted grasses. The main clinical and pathological features of this disease were discussed in light of the organic levels of the investigated metals. Disease could not be ascribed to a pure chronic toxicosis with any one of these.

  7. Evaluation of remediation techniques in soils affected by residual contamination with heavy metals and arsenic.

    PubMed

    García-Carmona, M; Romero-Freire, A; Sierra Aragón, M; Martínez Garzón, F J; Martín Peinado, F J

    2017-04-15

    Residual soil pollution from the Aznalcóllar mine spill is still a problem in some parts of the affected area, today converted in the Guadiamar Green Corridor. Dispersed spots of polluted soils, identified by the absence of vegetation, are characterized by soil acid pH and high concentrations of As, Pb, Cu and Zn. Ex situ remediation techniques were performed with unrecovered soil samples. Landfarming, Composting and Biopiles techniques were tested in order to immobilize pollutants, to improve soil properties and to promote vegetation recovery. The effectiveness of these techniques was assessed by toxicity bioassays: Lactuca sativa L. root elongation test, Vibrio fischeri bioluminescence reduction test, soil induced respiration test, and Eisenia andrei survival and metal bioaccumulation tests. Landfarming and Composting were not effective techniques, mainly due to the poor improvement of soil properties which maintained high soluble concentrations of Zn and Cu after treatments. Biopile technique, using adjacent recovered soils in the area, was the most effective action in the reduction of soil toxicity; the improvement of soil properties and the reduction in pollutants solubility were key to improve the response of the tested organisms. Therefore, the mixture of recovered soils with polluted soils in the areas affected by residual contamination is considered a more suitable technique to reduce the residual pollution and to promote the complete soil recovery in the Guadiamar Green Corridor.

  8. Investigation of cadmium pollution in the spruce saplings near the metal production factory.

    PubMed

    Hashemi, Seyed Armin; Farajpour, Ghasem

    2016-02-01

    Toxic metals such as lead and cadmium are among the pollutants that are created by the metal production factories and disseminated in the nature. In order to study the quantity of cadmium pollution in the environment of the metal production factories, 50 saplings of the spruce species at the peripheries of the metal production factories were examined and the samples of the leaves, roots, and stems of saplings planted around the factory and the soil of the environment of the factory were studied to investigate pollution with cadmium. They were compared to the soil and saplings of the spruce trees planted outside the factory as observer region. The results showed that the quantity of pollution in the leaves, stems, and roots of the trees planted inside the factory environment were estimated at 1.1, 1.5, and 2.5 mg/kg, respectively, and this indicated a significant difference with the observer region (p < 0.05). The quantity of cadmium in the soil of the peripheries of the metal production factory was estimated at 6.8 mg/kg in the depth of 0-10 cm beneath the level of the soil. The length of roots in the saplings planted around the factory of metal production stood at 11 and 14.5 cm in the observer region which had a significant difference with the observer region (p < 0.05). The quantity of soil resources and spruce species' pollution with cadmium in the region has been influenced by the production processes in the factory.

  9. A Review of Flood-Related Storage and Remobilization of Heavy Metal Pollutants in River Systems.

    PubMed

    Ciszewski, Dariusz; Grygar, Tomáš Matys

    Recently observed rapid climate changes have focused the attention of researchers and river managers on the possible effects of increased flooding frequency on the mobilization and redistribution of historical pollutants within some river systems. This text summarizes regularities in the flood-related transport, channel-to-floodplain transfer, and storage and remobilization of heavy metals, which are the most persistent environmental pollutants in river systems. Metal-dispersal processes are essentially much more variable in alluvia than in soils of non-inundated areas due to the effects of flood-sediment sorting and the mixing of pollutants with grains of different origins in a catchment, resulting in changes of one to two orders of magnitude in metal content over distances of centimetres. Furthermore, metal remobilization can be more intensive in alluvia than in soils as a result of bank erosion, prolonged floodplain inundation associated with reducing conditions alternating with oxygen-driven processes of dry periods and frequent water-table fluctuations, which affect the distribution of metals at low-lying strata. Moreover, metal storage and remobilization are controlled by river channelization, but their influence depends on the period and extent of the engineering works. Generally, artificial structures such as groynes, dams or cut-off channels performed before pollution periods favour the entrapment of polluted sediments, whereas the floodplains of lined river channels that adjust to new, post-channelization hydraulic conditions become a permanent sink for fine polluted sediments, which accumulate solely during overbank flows. Metal mobilization in such floodplains takes place only by slow leaching, and their sediments, which accrete at a moderate rate, are the best archives of the catchment pollution with heavy metals.

  10. [Research on the effect and technique of remediation for multi-metal contaminated tailing soils].

    PubMed

    Zhu, Guang-xu; Guo, Qing-jun; Yang, Jun-xing; Zhang, Han-zhi; Wei, Rong-fei; Wang, Chun-yu; Marc, Peters

    2013-09-01

    Soil samples were collected from compound polluted tailings to analyze the contents of total heavy metals and their speciation in the soil. Laboratory batch tests were conducted to examine the effects of distilled water and different concentrations of oxalic acid, citric acid, acetic acid, HNO3 and EDTA on the removal of heavy metals from the polluted soils. The suitable eluent and its optimal conditions including liquid to soil ratio, reaction time and washing number were also optimized, and the total toxicity reduction index was proposed to evaluate the effect of the eluent on the remediation of polluted soil. The results showed that Cd and Pb were the most abundant heavy metals in the soil, reaching 52.2 mg x kg(-1) and 4836.5 m x kg(-1), respectively. There was significant difference in the removal efficiency for different heavy metals. Cr had a maximum removal efficiency of 2.7%, while the maximum Cd and Pb removal efficiency was both about 60%. Distilled water had little removal efficiency for heavy metals, with less than 0.1% removal rate; the heavy metal removal efficiency of oxalic acid and acetic acid was also quite low; EDTA in 0.1 mol x L(-1) was selected as the suitable eluent for the polluted soil. Evaluation of the total toxicity reduction index and the cost suggested that EDTA should be used with a liquid to soil ratio of 6:1, a reaction time of 3 h and 2 washings.

  11. [Research advances in eco-toxicological diagnosis of soil pollution].

    PubMed

    Liu, Feng; Teng, Hong-Hui; Ren, Bai-Xiang; Shi, Shu-Yun

    2014-09-01

    Soil eco-toxicology provides a theoretical basis for ecological risk assessment of contaminated soils and soil pollution control. Research on eco-toxicological effects and molecular mechanisms of toxic substances in soil environment is the central content of the soil eco-toxicology. Eco-toxicological diagnosis not only gathers all the information of soil pollution, but also provides the overall toxic effects of soil. Therefore, research on the eco-toxicological diagnosis of soil pollution has important theoretical and practical significance. Based on the research of eco-toxicological diagnosis of soil pollution, this paper introduced some common toxicological methods and indicators, with the advantages and disadvantages of various methods discussed. However, conventional biomarkers can only indicate the class of stress, but fail to explain the molecular mechanism of damage or response happened. Biomarkers and molecular diagnostic techniques, which are used to evaluate toxicity of contaminated soil, can explore deeply detoxification mechanisms of organisms under exogenous stress. In this paper, these biomarkers and techniques were introduced systematically, and the future research trends were prospected.

  12. The combined use of liming and Sarcocornia fruticosa development for phytomanagement of salt marsh soils polluted by mine wastes.

    PubMed

    González-Alcaraz, María Nazaret; Conesa, Héctor Miguel; Tercero, María del Carmen; Schulin, Rainer; Alvarez-Rogel, José; Egea, Consuelo

    2011-02-15

    The aim of this study was to evaluate the combined effects of liming and behaviour of Sarcocornia fruticosa as a strategy of phytomanagement of metal polluted salt marsh soils. Soils were taken from two polluted salt marshes (one with fine texture and pH∼6.4 and the other one with sandy texture and pH∼3.1). A lime amendment derived from the marble industry was added to each soil at a rate of 20 g kg(-1), giving four treatments: neutral soil with/without liming and acidic soil with/without liming. Cuttings of S. fruticosa were planted in pots filled with these substrates and grown for 10 months. The pots were irrigated with eutrophicated water. As expected, lime amendment decreased the soluble metal concentrations. In both soils, liming favoured the growth of S. fruticosa and enhanced the capacity of the plants to phytostabilise metals in roots.

  13. EPA'S METAL FINISHING FACILITY POLLUTION PREVENTION TOOL - 2002

    EPA Science Inventory

    To help metal finishing facilities meet the goal of profitable pollution prevention, the USEPA is developing the Metal Finishing Facility Pollution Prevention Tool (MFFP2T), a computer program that estimates the rate of solid, liquid waste generation and air emissions. This progr...

  14. Phytoextraction of heavy metals by canola (Brassica napus) and radish (Raphanus sativus) grown on multicontaminated soil.

    PubMed

    Marchiol, L; Assolari, S; Sacco, P; Zerbi, G

    2004-11-01

    Phytoextraction can provide an effective in situ technique for removing heavy metals from polluted soils. The experiment reported in this paper was undertaken to study the basic potential of phytoextraction of Brassica napus (canola) and Raphanus sativus (radish) grown on a multi-metal contaminated soil in the framework of a pot-experiment. Chlorophyll contents and gas exchanges were measured during the experiment; the heavy metal phytoextraction efficiency of canola and radish were also determined and the phytoextraction coefficient for each metal calculated. Data indicated that both species are moderately tolerant to heavy metals and that radish is more so than canola. These species showed relatively low phytoremediation potential of multicontaminated soils. They could possibly be used with success in marginally polluted soils where their growth would not be impaired and the extraction of heavy metals could be maintained at satisfying levels.

  15. Fluorine in the soils of the White Sea Basin and bioindication of pollution.

    PubMed

    Evdokimova, G A

    2001-01-01

    Assessment of the pollution level of soils and vegetation by fluorine and heavy metals and also of the state of the soil microflora in the impact zone of Kandalaksha aluminium factory is discussed. The significant pollution of natural media by fluorine in the basin of the White Sea is established. Concentration of the total fluorine in the organogenic horizon of the Al-Fe-humus podzol soil at a distance of 20 km in the northern direction from the source of emission exceeds the background level by a factor of 3. In the epicentre of emission the amount of total fluorine in the soil exceeds the background level by a factor of 7-8 (Tolerable Amount: 4-5-fold). It is noted that the soil becomes more alkaline under the influence of fluorine and the increased content of chromium along the soil profile exceeds PC by a factor of 3 in the vicinity of the factory. The differences in the dimensions of bacterial and fungi biomass along the gradient of pollution were not revealed in the impact zone. But the changes in the taxonomic structure of fungi and in the level of their domination along the gradient of pollution were estimated. Floristic composition of the soil algae is represented mainly by unicellular green algae with Chlamydomonas elliptica and Bracteacoccus minor predominating.

  16. Bioaugmentation of copper polluted soil microcosms with Amycolatopsis tucumanensis to diminish phytoavailable copper for Zea mays plants.

    PubMed

    Albarracín, Virginia Helena; Amoroso, María Julia; Abate, Carlos Mauricio

    2010-03-01

    Amycolatopsis tucumanensis DSM 45259, the strain of a recently recognized novel species of the genus Amycolatopsis with remarkable copper resistance, was used to bioaugment soil microcosms experimentally polluted with copper and for studying the ability of this strain to effectively diminish phytoavailable copper from soils. Our results demonstrated that A. tucumanensis was capable of profusely colonizing both, copper polluted and non-polluted soil. Copper bioimmobilization ability of A. tucumanensis on soil was assessed measuring the bioavailable copper in the soil solution extracted from polluted soil by using chemical and physical methods and, in this way, 31% lower amounts of the metal were found in soil solution as compared to non-bioaugmented soil. The results obtained when using Zea mays as bioindicator correlated well with the values obtained by the chemical and physical procedures: 20% and 17% lower tissue contents of copper were measured in roots and leaves, respectively. These data confirmed the efficiency of the bioremediation process using A. tucumanensis and at the same time proved that chemical, physical and biological methods for assessing copper bioavailability in soils were correlated. These results suggest a potential use of this strain at large scale in copper soil bioremediation strategies. To our knowledge, this work is the first to apply and to probe the colonization ability of an Amycolatopsis strain in soil microcosms and constitutes the first application of an Amycolatopsis strain on bioremediation of polluted soils.

  17. Humus-assisted cleaning of heavy metal contaminated soils

    NASA Astrophysics Data System (ADS)

    Borggaard, Ole K.; Rasmussen, Signe B.

    2016-04-01

    Contamination of soils with non-degradable heavy metals (HMs) because of human acticities is globally a serious problem threatening human health and ecosystem functioning. To avoid negative effects, HMs must be removed either on-site by plant uptake (phytoremediation) or off-site by extraction (soil washing). In both strategies, HM solubility must be augmented by means of a strong ligand (complexant). Often polycarboxylates such as EDTA and NTA are used but these ligands are toxic, synthetic (non-natural) and may promote HM leaching. Instead naturally occurring soluble humic substances (HS) were tested as means for cleaning HM contaminated soils; HS samples from beech and spruce litter, compost percolate and processed cow slurry were tested. Various long-term HM contaminated soils were extracted with solutions of EDTA, NTA or HS at different pH by single-step and multiple-step extraction mode. The results showed that each of the three complexant types increased HM solubility but the pH-dependent HM extraction efficiency decreased in the order: EDTA ≈ NTA > HS. However, the naturally occurring HS seems suitable for cleaning As, Cd, Cu and Zn contaminated soils both in relation to phytoremediation of moderately contaminated soils and washing of strongly contaminated soils. On the other hand, HS was found unsuited as cleaning agent for Pb polluted calcareous soils. If future field experiments confirm these laboratory results, we have a new cheap and environmentally friendly method for solving a great pollution problem, i.e. cleaning of heavy metal contaminated soils. In addition, humic substances possess additional benefits such as improving soil structure and stimulating microbial activity.

  18. Heavy Metal Contaminated Soil Treatment: Conceptual Development

    DTIC Science & Technology

    1987-02-01

    circuit without trans- ferring hear from a metallic resistance element. Contaminated soils may be accepted directly with little or (to pretreatment ...with metals has been demon-- strated. No pretreatment for organics destruction would be required. The system can also readily handle liquid wastes and...applications as a pretreatment /recovery step. J 38 0458Bi 3.7.3 Long term stability/performance. The process would remove metals from the soil. Therefore, if

  19. Cryptogamic community structure as a bioindicator of soil condition along a pollution gradient.

    PubMed

    Rola, Kaja; Osyczka, Piotr

    2014-09-01

    This study aims to determine changes in the structure of cryptogamic vegetation of poor psammophilous grassland along a pollution gradient near a zinc smelter to evaluate the potential of species assemblages as bioindicators of soil condition. Lichens and bryophytes were examined in study plots along six transects in four distance zones, and the physicochemical properties of corresponding soil samples were analysed. Four different responses of species to substrate contamination were identified, with a distinct group of species resistant to and favoured by metal contamination. Although species richness decreases as one approaches the smelter, the gradual replacement of certain sensitive species by resistant ones was observed along the pollution gradient. The results enabled us to develop a useful tool to diagnose strongly polluted sites. Two different cryptogamic assemblages of well-recognised key species characteristic for strongly polluted and lightly polluted sites were distinguished. We conclude that cryptogamic community structure clearly corresponds to the degree of soil contamination, thus demonstrating high bioindicative value. The study confirmed the high relevance of the community approach in metal pollution biomonitoring.

  20. Heavy metal pollution and assessment in the tidal flat sediments of Haizhou Bay, China.

    PubMed

    Zhang, Rui; Zhou, Li; Zhang, Fan; Ding, Yingjun; Gao, Jinrong; Chen, Jing; Yan, Hongqiang; Shao, Wei

    2013-09-15

    The heavy metal inventory and the ecological risk of the tidal flat sediments in Haizhou Bay were investigated. Results show that the average concentrations of heavy metals in the surface sediments exceeded the environment background values of Jiangsu Province coastal soil, suggesting that the surface sediments were mainly polluted by heavy metals (Cd, Cr, Cu, Mn, Pb and Zn). In addition, the profiles of heavy metals fluxes can reflect the socio-economic development of Lianyungang City, and heavy metals inputs were attributed to anthropogenic activities. Cr, Cu, Pb and Zn were mainly present in the non-bioavailable residual form in surface sediments, whereas Cd and Mn were predominantly in the highly mobile acid soluble and reducible fractions. The ecological risk of the polluted sediments stemmed mainly from Cd and Pb. According to the Sediment quality guidelines (SQGs), however, the adverse biological effects caused by the heavy metals occasionally occurred in tidal flat.

  1. [Impact of industrial pollution on emission of carbon dioxide by soils in the Kola Subarctic Region].

    PubMed

    Koptsik, G N; Kadulin, M S; Zakharova, A I

    2015-01-01

    Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration

  2. Spatial distribution of selected heavy metals and soil fertility status in south-eastern Serbia

    NASA Astrophysics Data System (ADS)

    Saljnikov, E.; Mrvic, V.; Cakmak, D.; Nikoloski, M.; Perovic, V.; Kostic, L.; Brebanovic, B.

    2009-04-01

    Environmental pollution by heavy metals is one of the most powerful factors destroying biosphere components that directly affecting agricultural production quality and therefore health of human and animals. Regional soil contamination by heavy metals occurs mainly in industrial areas and in big cities. However, pollutants can be air-and/or water-transferred to big distances and may accumulated far from industrial zone what makes difficult to distinguish original background concentrations of heavy metals in soil. Our study covers south-eastern part of Serbia and is a part of a big project studying soil fertility and heavy metal contamination all around Serbia. Diverse natural characteristics and heterogeneity of soil cover, as well as, human activity greatly influenced soil fertility parameters, while, diverse geological substrate and human activity determined the level of potential geochemical pollution. There are number of industrial factories functioning from the last century on the studied area. Also, close to studied area, there was a mining in the middle of the last century. About 600 soil samples from surface 0-30 cm were investigated for main soil fertility characteristics (pH, humus, available K and P) and concentrations of selected heavy metals (As, Cd, Cr, Ni and Pb). Soils graded as very acidic cover 46% of the area, which are mainly mountains with acidic parent materials. Content of humus in 41% of soil samples were below 3%. The most of the soils (71%) are weakly supplied available phosphorus. While available potassium in more than 70% is presented in the concentrations enough for good soil quality. So, about 75% of studied area is characterized with unfavorable soil fertility properties (extremly low soil pH, very low content of available P, about half of the area maintained low soil humus) that is located under forests, meadows and pastures. Content of heavy metals on studied area in 80% of sampled soils was below maximum allowed concentrations

  3. Method for Assessing the Integrated Risk of Soil Pollution in Industrial and Mining Gathering Areas

    PubMed Central

    Guan, Yang; Shao, Chaofeng; Gu, Qingbao; Ju, Meiting; Zhang, Qian

    2015-01-01

    Industrial and mining activities are recognized as major sources of soil pollution. This study proposes an index system for evaluating the inherent risk level of polluting factories and introduces an integrated risk assessment method based on human health risk. As a case study, the health risk, polluting factories and integrated risks were analyzed in a typical industrial and mining gathering area in China, namely, Binhai New Area. The spatial distribution of the risk level was determined using a Geographic Information System. The results confirmed the following: (1) Human health risk in the study area is moderate to extreme, with heavy metals posing the greatest threat; (2) Polluting factories pose a moderate to extreme inherent risk in the study area. Such factories are concentrated in industrial and urban areas, but are irregularly distributed and also occupy agricultural land, showing a lack of proper planning and management; (3) The integrated risks of soil are moderate to high in the study area. PMID:26580644

  4. Method for Assessing the Integrated Risk of Soil Pollution in Industrial and Mining Gathering Areas.

    PubMed

    Guan, Yang; Shao, Chaofeng; Gu, Qingbao; Ju, Meiting; Zhang, Qian

    2015-11-13

    Industrial and mining activities are recognized as major sources of soil pollution. This study proposes an index system for evaluating the inherent risk level of polluting factories and introduces an integrated risk assessment method based on human health risk. As a case study, the health risk, polluting factories and integrated risks were analyzed in a typical industrial and mining gathering area in China, namely, Binhai New Area. The spatial distribution of the risk level was determined using a Geographic Information System. The results confirmed the following: (1) Human health risk in the study area is moderate to extreme, with heavy metals posing the greatest threat; (2) Polluting factories pose a moderate to extreme inherent risk in the study area. Such factories are concentrated in industrial and urban areas, but are irregularly distributed and also occupy agricultural land, showing a lack of proper planning and management; (3) The integrated risks of soil are moderate to high in the study area.

  5. Phytoextraction of Cd and Zn as single or mixed pollutants from soil by rape (Brassica napus).

    PubMed

    Cojocaru, Paula; Gusiatin, Zygmunt Mariusz; Cretescu, Igor

    2016-06-01

    This paper analyses the capacity of the rape (Brassica napus) to extract Cd and Zn from the soil and the effect of these metals on the morphometric parameters of the plant (length, weight, surface area, fractal dimension of leaves). Rape plants were mostly affected by the combined toxicity of the Cd and Zn mixture that caused a significant reduction in the rate of seed germination, the plant biomass quantity and the fractal dimension. In the case of Cd soil pollution, the bioaccumulation factor (BAF), bioaccumulation coefficient (BAC) as well as the heavy metal root-to-stalk translocation factor (TF) were determined. The results showed that B. napus had a great potential as a cadmium hyperaccumulator but not as an accumulator of Zn or Cd + Zn mixture. The efficiency of phytoextraction rape was 0.8-1.22 % for a soil heavily polluted with cadmium.

  6. Leaching adapted for metals in soil

    SciTech Connect

    Fristad, W.E.; Weerts, K.E.

    1993-05-01

    The technical hurdle in metal leaching is coupling a leaching process, which effectively removes the contaminant metals from the soil, with a recovery process that isolates the metal in a form suitable for disposal or reuse. Problems associated with this process are described.

  7. [Pollution Characteristics and Potential Ecological Risk of Heavy Metals in Urban Surface Water Sediments from Yongkang].

    PubMed

    Qi, Peng; Yu, Shu-quan; Zhang, Chao; Liang, Li-cheng; Che, Ji-lu

    2015-12-01

    In order to understand the pollution characteristics of heavy metals in surface water sediments of Yongkang, we analyzed the concentrations of 10 heavy metals including Ti, Cr, Mn, Co, Ni, Cu, Zn, As, Pb and Fe in 122 sediment samples, explored the underlying source of heavy metals and then assessed the potential ecological risks of those metals by methods of the index of geo-accumulation and the potential ecological risk. The study results showed that: 10 heavy metal contents followed the order: Fe > Ti > Mn > Zn > Cr > Cu > Ph > Ni > As > Co, all heavy metals except for Ti were 1. 17 to 3.78 times higher than those of Zhejiang Jinhua- Quzhou basin natural soils background values; The concentrations of all heavy metals had a significantly correlation between each other, indicating that those heavy metals had similar sources of pollution, and it mainly came from industrial and vehicle pollutions; The pollution extent of heavy metals in sediments by geo-accumulation index (Igeo) followed the order: Cr > Zn > Ni > Cu > Fe > As > Pb >Mn > Ti, thereinto, Cr, Zn, Cu and Ni were moderately polluted or heavily polluted at some sampling sites; The potential ecological risk of 9 heavy metals in sediments were in the following order: Cu > As > Ni > Cr > Pb > Co > Zn > Mn > Ti, Cu and As contributed the most to the total potential ecological risk, accounting for 22.84% and 21. 62% , others had a total of 55.54% , through the ecological risk assessment, 89. 34% of the potential ecological risk indexes ( RI) were low and 10. 66% were higher. The contamination level of heavy metals in Yongkang was slight in total, but was heavy in local areas.

  8. Survey of phthalate pollution in arable soils in China.

    PubMed

    Hu, Xiao-yu; Wen, Bei; Shan, Xiao-quan

    2003-08-01

    The problem of pollution by phthalates is of global concern due to their widespread occurrence, toxicity and endocrine disruption properties. The contamination by phthalates such as dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) in 23 arable soils throughout China was investigated to evaluate the present pollution situation. The survey results demonstrated that phthalates were ubiquitous pollutants in soils in China. The total concentrations of phthalates differed from one location to another, and ranged from 0.89 to 10.03 mg kg(-1) with a median concentration of 3.43 mg kg(-1). Among the phthalates, DEHP was dominant and detected in all 23 soils. DEP and DBP were also in abundance, and DMP was rarely detected. Similar contamination patterns were observed in all 23 soils. A distinct feature of phthalate pollution in China was that the average concentration in northern China was higher than that in southern China. In addition, a close relationship was observed between the concentration of phthalates in soils and the consumption of agricultural film. The correlation showed that the application of agriculture film might be a significant pollution source of phthalates in arable soils of China. The potential risk of phthalates in soils was assessed on the basis of current guide values and limits.

  9. Improving the relationship between soil characteristics and metal bioavailability by using reactive fractions of soil parameters in calcareous soils.

    PubMed

    de Santiago-Martín, Ana; van Oort, Folkert; González, Concepción; Quintana, José R; Lafuente, Antonio L; Lamy, Isabelle

    2015-01-01

    The contribution of the nature instead of the total content of soil parameters relevant to metal bioavailability in lettuce was tested using a series of low-polluted Mediterranean agricultural calcareous soils offering natural gradients in the content and composition of carbonate, organic, and oxide fractions. Two datasets were compared by canonical ordination based on redundancy analysis: total concentrations (TC dataset) of main soil parameters (constituents, phases, or elements) involved in metal retention and bioavailability; and chemically defined reactive fractions of these parameters (RF dataset). The metal bioavailability patterns were satisfactorily explained only when the RF dataset was used, and the results showed that the proportion of crystalline Fe oxides, dissolved organic C, diethylene-triamine-pentaacetic acid (DTPA)-extractable Cu and Zn, and a labile organic pool accounted for 76% of the variance. In addition, 2 multipollution scenarios by metal spiking were tested that showed better relationships with the RF dataset than with the TC dataset (up to 17% more) and new reactive fractions involved. For Mediterranean calcareous soils, the use of reactive pools of soil parameters rather than their total contents improved the relationships between soil constituents and metal bioavailability. Such pool determinations should be systematically included in studies dealing with bioavailability or risk assessment.

  10. Effects of heavy metals on the litter consumption by the earthworm Lumbricus rubellus in field soils

    USGS Publications Warehouse

    Hobbelen, P.H.F.; Koolhaas, J.E.; van Gestel, C.A.M.

    2006-01-01

    Aim of this study was to determine effects of heavy metals on litter consumption by the earthworm Lumbricus rubellus in National Park the "Brabantsche Biesbosch", the Netherlands. Adult L. rubellus were collected from 12 polluted and from one unpolluted field site. Earthworms collected at the unpolluted site were kept in their native soil and in soil from each of the 12 Biesbosch sites. Earthworms collected in the Biesbosch were kept in their native soils. Non-polluted poplar (Populus sp.) litter was offered as a food source and litter consumption and earthworm biomass were determined after 54 days. Cd, Cu and Zn concentrations were determined in soil, pore water and 0.01 M CaCl2 extracts of the soil and in earthworms. In spite of low available metal concentrations in the polluted soils, Cd, Cu and Zn concentrations in L. rubellus were increased. The litter consumption rate per biomass was positively related to internal Cd and Zn concentrations of earthworms collected from the Biesbosch and kept in native soil. A possible explanation is an increased demand for energy, needed for the regulation and detoxification of heavy metals. Litter consumption per biomass of earthworms from the reference site and kept in the polluted Biesbosch soils, was not related to any of the determined soil characteristics and metal concentrations. ?? 2005 Elsevier GmbH. All rights reserved.

  11. Spatial distribution of soil lead pollution in Milwaukee County, Wisconsin

    SciTech Connect

    Brinkmann, R.

    1989-01-01

    The spatial distribution of lead pollution in soils of Milwaukee County, Wisconsin, was investigated to find the patterns and extent of health-threatening contamination. Samples were collected within three distinct land-use types: (i) lawns and gardens, (ii) major east-west arterials, and (iii) private properties at site-specific locations. Three-hundred and sixty-four soil samples were collected from lawns and gardens throughout the county; a total of 263 soil samples were collected along College Avenue, Oklahoma Avenue, Greenfield Avenue, Wisconsin Avenue, North Avenue, Capitol Drive, and Brown Deer Road, and a total of 55 soil samples were collected from three private properties. Several distinct patterns emerged from the mapped data. Broadly, soil lead pollution in lawns and gardens was highest in the central city and decreased north, south, and west toward the county lines and suburban fringe. Also, soil lead pollution along major arterials decreased away from busy intersections and was generally eliminated east of 42nd Street. At the three locations of intense sampling for site-specific examination, soil lead was concentrated within one meter of painted structures. Peripheral to the one meter zone, background levels of lead were found except in the central city where elevated soil lead levels were found in lawns. Health-threatening lead levels (>500 ppm) were found in soils collected using all three approaches: 24% of 11 soils collected from lawns and gardens; 43% of soils collected from major east-west arterials; and 27% of the soils collected from all three intensely examined properties. The sources of lead pollution in soil were more clearly suggested in intense sampling within small private properties. Lead-based paint caused contamination within one meter of painted structures and airborne lead from automobile exhaust outside that zone.

  12. Risk of boron and heavy metal pollution from agro-industrial wastes applied for plant nutrition.

    PubMed

    Seçer, Müzeyyen; Ceylan, Safak; Elmaci, Omer Lütfü; Akdemir, Hüseyin

    2010-09-01

    In this study, the effects of various agro-industrial wastes were investigated when applied to soil alone or in combination with chemical fertilizers, regarding the risks of boron and heavy metal pollution of soils and plants. Nine combinations of production residues from various agro-industries, urban wastes, and mineral fertilizers were applied to potatoes in a field experiment. The content of available boron in the soil differed significantly (p < 0.05) among the applications. Generally, B values were found to be slightly higher when soapstock, prina, and blood were used alone or in combination. Although total Co, Cd, and Pb contents of soils showed no significant differences between the applications, Cr content differed significantly (p < 0.05). No pollution risk was observed in soil in respect to total Co, Cd, Pb, and Cr contents. The amount of boron and heavy metals in leaves showed no significant differences among the applications. Cobalt, Cd, and Pb in leaves were at normal levels whereas Cr was slightly above normal but well under the critical level. Boron was low in tubers and varied significantly between applications such as Co and Cd. The Co content of tubers was high, Cd and Cr contents were below average, and Pb content was between the given values. Some significant correlations were found between soil characteristics and the boron and heavy metal content of soil, leaves, and tubers.

  13. Chelant soil-washing technology for metal-contaminated soil.

    PubMed

    Voglar, David; Lestan, Domen

    2014-01-01

    We demonstrate here, in a pilot-scale experiment, the feasibility of ethylenediaminetetraacetate (EDTA)based washing technology for soils contaminated with potentially toxic metals. Acid precipitation coupled to initial alkaline toxic metal removal and an electrochemical advanced oxidation process were used for average recovery of 76 +/- 2% of EDTA per batch and total recycle of water in a closed process loop. No waste water was generated; solid wastes were efficiently bitumen-stabilized before disposal. The technology embodiment, using conventional process equipment, such as a mixer for soil extraction, screen for soil/gravel separation, filter chamber presses for soil/liquid and recycled EDTA separation and soil rinsing, continuous centrifuge separator for removal of precipitated metals and electrolytic cells for process water cleansing, removed up to 72%, 25% and 66% of Pb, Zn and Cd from garden soil contaminated with up to 6960, 3797 and 32.6 mg kg(-1) of Pb, Zn and Cd, respectively, in nine 60kg soil batches. Concentrations of Pb and Zn remaining in the remediated soil and bioaccessible from the simulated human intestinal phase soil were reduced by 97% and 96% and were brought under the level of determination for Cd. In the most cost-effective operation mode, the material and energy costs of remediation amounted to 50.5 Euros ton(-1) soil and the total cost to 299 Euros ton(-1).

  14. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wu, Jin; Wang, Jinsheng

    2016-02-01

    Understanding the exposure risks of trace metals in contamination soils and apportioning their sources are the basic preconditions for soil pollution prevention and control. In this study, a detailed investigation was conducted to assess the health risks of trace metals in surface soils of Beijing which is one of the most populated cities in the world and to apportion their potential sources. The data set of metals for 12 elements in 240 soil samples was collected. Pollution index and enrichment factor were used to identify the general contamination characteristic of soil metals. The probabilistic risk model was employed for health risk assessment, and a chemometrics technique, multivariate curve resolution-weighted alternating least squares (MCR-WALS), was applied to apportion sources. Results suggested that the soils in Beijing metropolitan region were contaminated by Hg, Cd, Cu, As, and Pb in varying degree, lying in the moderate pollution level. As a whole, the health risks posed by soil metals were acceptable or close to tolerable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Atmospheric deposition, fertilizers and agrochemicals, and natural source were apportioned as the potential sources determining the contents of trace metals in soils of Beijing area with contributions of 15.5%-16.4%, 5.9%-7.7% and 76.0%-78.6%, respectively.

  15. Effects of pyrite sludge pollution on soil enzyme activities: ecological dose-response model.

    PubMed

    Hinojosa, M Belén; Carreira, José A; Rodríguez-Maroto, José M; García-Ruíz, Roberto

    2008-06-25

    A laboratory study was conducted to evaluate the response of soil enzyme activities (acid and alkaline phosphatase, beta-glucosidase, arylsulfatase, urease and dehydrogenase) to different levels of trace elements pollution in soils representative of the area affected by the pyrite sludge mining spill of Aznalcóllar (Guadiamar basin, SW Spain). Three uncontaminated soils from the study area were mixed with different loads of pyrite sludge to resemble field conditions and criteria applied for reclamation practices following the pollution incident: 0% ("reference" or background level), 1.3% ("attention level", further monitoring required), 4% ("intervention level", further cleaning and liming required) and 13% (ten times the "attention level"). Enzyme activities were analysed 4, 7, 14, 21, 34 and 92 days after pollutant addition and those measured after 92 days were used to calculate the ecological dose value (ED50). Soil enzyme activities and pH decreased after the pyrite sludge addition with respect to the "reference level" (0% pyrite sludge), whereas soil bioavailable (DTPA-extractable) trace elements concentration increased. Arylsulfatase, beta-glucosidase and phosphatase activities were reduced by more than 50% at 1.3% pyrite sludge dose. Arylsulfasate was the most sensitive soil enzyme (in average, ED50=0.99), whereas urease activity showed the lowest inhibition (in average, ED50=7.87) after pyrite sludge addition. Our results showed that the ecological dose concept, applied to enzyme activities, was satisfactory to quantify the effect of a multi-metalic pollutant (pyrite sludge) on soil functionality, and would provide manageable data to establish permissible limits of trace elements in polluted soils. Additionally, we evaluate the recovery of enzyme activities after addition of sugar-beet lime (calcium carbonate) to each experimentally polluted soil. The amount of lime added to each soil was enough to raise the pH to the original value (equal to control soil

  16. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana.

    PubMed

    Bortey-Sam, Nesta; Nakayama, Shouta M M; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-09-11

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (C(deg)) in some communities such as, Wangarakrom (11), Badukrom (13) and T-Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (C(i)(f)), C(deg), monomial ecological risk (E(i)(r)) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role.

  17. Ecological Risk of Heavy Metals and a Metalloid in Agricultural Soils in Tarkwa, Ghana

    PubMed Central

    Bortey-Sam, Nesta; Nakayama, Shouta M. M.; Akoto, Osei; Ikenaka, Yoshinori; Baidoo, Elvis; Mizukawa, Hazuki; Ishizuka, Mayumi

    2015-01-01

    Heavy metals and a metalloid in agricultural soils in 19 communities in Tarkwa were analyzed to assess the potential ecological risk. A total of 147 soil samples were collected in June, 2012 and analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb and Zn. Mean concentrations (mg/kg dw) of heavy metals in the communities decreased in order of Zn (39) ˃ Cr (21) ˃ Pb (7.2) ˃ Cu (6.2) ˃ As (4.4) ˃ Ni (3.7) ˃ Co (1.8) ˃ Hg (0.32) ˃ Cd (0.050). Correlations among heavy metals and soil properties indicated that soil organic matter could have substantial influence on the total contents of these metals in soil. From the results, integrated pollution (Cdeg) in some communities such as, Wangarakrom (11), Badukrom (13) and T–Tamso (17) indicated high pollution with toxic metals, especially from As and Hg. Potential ecological risk (RI) indices indicated low (Mile 7) to high risks (Wangarakrom; Badukrom) of metals. Based on pollution coefficient (Cif), Cdeg, monomial ecological risk (Eir) and RI, the investigated soils fall within low to high contamination and risk of heavy metals to the ecological system especially plants, soil invertebrates and/or mammalian wildlife. This represented moderate potential ecological risk in the study area, and mining activities have played a significant role. PMID:26378563

  18. The phytoremediation of an organic and inorganic polluted soil: A real scale experience.

    PubMed

    Macci, C; Peruzzi, E; Doni, S; Poggio, G; Masciandaro, G

    2016-01-01

    A phytoremediation process with horse manure, plants (Populus alba, Cytisus scoparius, Paulownia tomentosa) and naturally growing vegetation was carried out at a real-scale in order to phytoremediate and functionally recover a soil contaminated by metals (Zn, Pb, Cd, Ni, Cu, Cr), hydrocarbons (TPH) and polychlorobiphenyls (PCB). All the plants were effective in two years in the reclamation of the polluted soil, showing an average reduction of about 35%, 40%, and 70% in metals, TPH and PCB content, respectively. As regards the plants, the poplar contributed the most to organic removal. In fact, its ability to take up and detoxify organic pollutants is well known. Paulownia tomentosa, instead, showed high metal removal. The Cytisus scoparius was the least effective plant in soil decontamination. The recovery of soil functionality was followed by enzyme activities, expressing the biochemical processes underway, and nutrient content useful for plant growth and development. Throughout the area, an enhancement of metabolic processes and soil chemical quality was observed. All the enzymatic activities showed a general increase over time (until 3-4 fold than the initial value for urease and β-glucosidase). Moreover, Cytisus scoparius, even though it showed a lower decontamination capability, was the most effective in soil metabolic stimulation.

  19. Metal Pollutant Exposure and Behavior Disorders: Implications for School Practices.

    ERIC Educational Resources Information Center

    Marlowe, Mike

    1986-01-01

    The article summarizes research on relationships between low (below metal poisoning) metal exposure and childhood behavior disorders. Symptoms, assessment techniques (hair analysis), and environmental and dietary factors that may increase the risk of metal pollutant exposure are described. School programs emphasizing education and the role of…

  20. Soil quality assessment using GIS-based chemometric approach and pollution indices: Nakhlak mining district, Central Iran.

    PubMed

    Moore, Farid; Sheykhi, Vahideh; Salari, Mohammad; Bagheri, Adel

    2016-04-01

    This paper is a comprehensive assessment of the quality of soil in the Nakhlak mining district in Central Iran with special reference to potentially toxic metals. In this regard, an integrated approach involving geostatistical, correlation matrix, pollution indices, and chemical fractionation measurement is used to evaluate selected potentially toxic metals in soil samples. The fractionation of metals indicated a relatively high variability. Some metals (Mo, Ag, and Pb) showed important enrichment in the bioavailable fractions (i.e., exchangeable and carbonate), whereas the residual fraction mostly comprised Sb and Cr. The Cd, Zn, Co, Ni, Mo, Cu, and As were retained in Fe-Mn oxide and oxidizable fractions, suggesting that they may be released to the environment by changes in physicochemical conditions. The spatial variability patterns of 11 soil heavy metals (Ag, As, Cd, Co, Cr, Cu, Mo, Ni, Pb, Sb, and Zn) were identified and mapped. The results demonstrated that Ag, As, Cd, Mo, Cu, Pb, Sb, and Zn pollution are associated with mineralized veins and mining operations in this area. Further environmental monitoring and remedial actions are required for management of soil heavy metals in the study area. The present study not only enhanced our knowledge regarding soil pollution in the study area but also introduced a better technique to analyze pollution indices by multivariate geostatistical methods.

  1. Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile

    PubMed Central

    2012-01-01

    Background Copper mining has led to Cu pollution in agricultural soils. In this report, the effects of Cu pollution on bacterial communities of agricultural soils from Valparaiso region, central Chile, were studied. Denaturing gradient gel electrophoresis (DGGE) of the 16S rRNA genes was used for the characterization of bacterial communities from Cu-polluted and non-polluted soils. Cu-resistant bacterial strains were isolated from Cu-polluted soils and characterized. Results DGGE showed a similar high number of bands and banding pattern of the bacterial communities from Cu-polluted and non-polluted soils. The presence of copA genes encoding the multi-copper oxidase that confers Cu-resistance in bacteria was detected by PCR in metagenomic DNA from the three Cu-polluted soils, but not in the non-polluted soil. The number of Cu-tolerant heterotrophic cultivable bacteria was significantly higher in Cu-polluted soils than in the non-polluted soil. Ninety two Cu-resistant bacterial strains were isolated from three Cu-polluted agricultural soils. Five isolated strains showed high resistance to copper (MIC ranged from 3.1 to 4.7 mM) and also resistance to other heavy metals. 16S rRNA gene sequence analyses indicate that these isolates belong to the genera Sphingomonas, Stenotrophomonas and Arthrobacter. The Sphingomonas sp. strains O12, A32 and A55 and Stenotrophomonas sp. C21 possess plasmids containing the Cu-resistance copA genes. Arthrobacter sp. O4 possesses the copA gene, but plasmids were not detected in this strain. The amino acid sequences of CopA from Sphingomonas isolates (O12, A32 and A55), Stenotrophomonas strain (C21) and Arthrobacter strain (O4) are closely related to CopA from Sphingomonas, Stenotrophomonas and Arthrobacter strains, respectively. Conclusions This study suggests that bacterial communities of agricultural soils from central Chile exposed to long-term Cu-pollution have been adapted by acquiring Cu genetic determinants. Five bacterial isolates

  2. Traditional agricultural practices enable sustainable remediation of highly polluted soils in Southern Spain for cultivation of food crops.

    PubMed

    Madejón, P; Barba-Brioso, C; Lepp, N W; Fernández-Caliani, J C

    2011-07-01

    This study relates elemental content of a range of edible crops grown in soils severely polluted by metals and metalloids as affected by traditional smallholder management practices. Five agricultural plots close to a sulfidic waste dump were monitored. Soil analysis demonstrated elevated concentrations of As, Cu, Pb and Zn that were greatly in excess of maximum statutory limits for agricultural soils in the studied region. The main vegetables (lettuce, chard, onion, potatoes) and lemon, together with their associated soils, were measured for elemental content. Extractable soil element concentrations were very low. There were differences in elemental accumulation between crops, but none exceeded statutory concentrations in edible parts. Soil-plant transfer factors were uniformly low for all elements and crops. It is concluded that traditional soil management practices (annual liming and application of animal manures) have created conditions for sustainable long-term safety use, with potential for multiple end-use, of these highly polluted soils.

  3. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils

    SciTech Connect

    Del Val, C.; Barea, J.M.; Azcon-Aguilar, C.

    1999-02-01

    High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. The authors conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils.

  4. Diversity of arbuscular mycorrhizal fungus populations in heavy-metal-contaminated soils.

    PubMed

    Del Val, C; Barea, J M; Azcón-Aguilar, C

    1999-02-01

    High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. We conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils.

  5. Diversity of Arbuscular Mycorrhizal Fungus Populations in Heavy-Metal-Contaminated Soils

    PubMed Central

    Del Val, C.; Barea, J. M.; Azcón-Aguilar, C.

    1999-01-01

    High concentrations of heavy metals have been shown to adversely affect the size, diversity, and activity of microbial populations in soil. The aim of this work was to determine how the diversity of arbuscular mycorrhizal (AM) fungi is affected by the addition of sewage-amended sludge containing heavy metals in a long-term experiment. Due to the reduced number of indigenous AM fungal (AMF) propagules in the experimental soils, several host plants with different life cycles were used to multiply indigenous fungi. Six AMF ecotypes were found in the experimental soils, showing consistent differences with regard to their tolerance to the presence of heavy metals. AMF ecotypes ranged from very sensitive to the presence of metals to relatively tolerant to high rates of heavy metals in soil. Total AMF spore numbers decreased with increasing amounts of heavy metals in the soil. However, species richness and diversity as measured by the Shannon-Wiener index increased in soils receiving intermediate rates of sludge contamination but decreased in soils receiving the highest rate of heavy-metal-contaminated sludge. Relative densities of most AMF species were also significantly influenced by soil treatments. Host plant species exerted a selective influence on AMF population size and diversity. We conclude based on the results of this study that size and diversity of AMF populations were modified in metal-polluted soils, even in those with metal concentrations that were below the upper limits accepted by the European Union for agricultural soils. PMID:9925606

  6. Multivariate statistical analysis of heavy metal concentration in soils of Yelagiri Hills, Tamilnadu, India - Spectroscopical approach

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, A.; Ravisankar, R.; Harikrishnan, N.; Satapathy, K. K.; Prasad, M. V. R.; Kanagasabapathy, K. V.

    2015-02-01

    Anthropogenic activities increase the accumulation of heavy metals in the soil environment. Soil pollution significantly reduces environmental quality and affects the human health. In the present study soil samples were collected at different locations of Yelagiri Hills, Tamilnadu, India for heavy metal analysis. The samples were analyzed for twelve selected heavy metals (Mg, Al, K, Ca, Ti, Fe, V, Cr, Mn, Co, Ni and Zn) using energy dispersive X-ray fluorescence (EDXRF) spectroscopy. Heavy metals concentration in soil were investigated using enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI) to determine metal accumulation, distribution and its pollution status. Heavy metal toxicity risk was assessed using soil quality guidelines (SQGs) given by target and intervention values of Dutch soil standards. The concentration of Ni, Co, Zn, Cr, Mn, Fe, Ti, K, Al, Mg were mainly controlled by natural sources. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were applied for the identification of heavy metal sources (anthropogenic/natural origin). Geo-statistical methods such as kirging identified hot spots of metal contamination in road areas influenced mainly by presence of natural rocks.

  7. Removal of PAHs and pesticides from polluted soils by enhanced electrokinetic-Fenton treatment.

    PubMed

    Bocos, Elvira; Fernández-Costas, Carmen; Pazos, Marta; Sanromán, M Ángeles

    2015-04-01

    In this study, electrokinetic-Fenton treatment was used to remediate a soil polluted with PAHs and the pesticide pyrimethanil. Recently, this treatment has emerged as an interesting alternative to conventional soil treatments due to its peculiar advantages, namely the capability of treating fine and low-permeability materials, as well as that of achieving a high yield in the removals of salt content and inorganic and organic pollutants. In a standard electrokinetic-Fenton treatment, the maximum degradation of the pollutant load achieved was 67%, due to the precipitation of the metals near the cathode chamber that reduces the electro-osmotic flow of the system and thus the efficiency of the treatment. To overcome this problem, different complexing agents and pH control in the cathode chamber were evaluated to increase the electro-osmotic flux as well as to render easier the solubilization of the metal species present in the soil. Four complexing agents (ascorbic acid, citric acid, oxalic acid and ethylenediaminetetraacetic acid) in the Fenton-like treatment were evaluated. Results revealed the citric acid as the most suitable complexing agent. Thereby its efficiency was tested as pH controller by flushing it in the cathode chamber (pH 2 and 5). For the latter treatments, near total degradation was achieved after 27 d. Finally, phytotoxicity tests for polluted and treated samples were carried out. The high germination levels of the soil treated under enhanced conditions concluded that nearly complete restoration was achieved.

  8. The effects of the Qinghai-Tibet railway on heavy metals enrichment in soils.

    PubMed

    Zhang, Hua; Wang, Zhaofeng; Zhang, Yili; Hu, Zhongjun

    2012-11-15

    The impact of land transportation on local soil environments is an important topic in environmental and ecological sciences. The rapid development of transportation infrastructure lends increasing importance to studies that identify and evaluate related heavy metal pollution. This paper discusses the effects of railways on soil heavy metal enrichments in the Tibetan plateau. At a representative area along the Haergai-Delingha railway, lead, cadmium, copper, zinc, chromium, nickel, cobalt, and vanadium were measured in 127 topsoil samples (0-10 cm depth). The results indicate that railway transport has a significant effect on the concentration of Zn, Cd and Pb in the soil, with levels of enrichment ranging from no pollution to significant pollution. The affected area was within 20 m of the railway. The soil at Delingha was the most contaminated soil with heavy metals, and the enrichment level of Cd in the soil was the highest along the Qinghai-Tibet railway. The horizontal distributions of the three heavy metals present different characteristics at different sampling sites, which may be due to discrepancies in terrain and vegetation types. Alkaline soils and guardrails along the railway might reduce the effect of soil pollution on local people and animals.

  9. Meta-analysis of biochar potential for pollutant immobilization and stabilization in contaminated soils

    NASA Astrophysics Data System (ADS)

    Soja, Gerhard; Marsz, Aleksandra; Fristak, Vladimir

    2015-04-01

    -reviewed literature about the immobilizing potential of biochar for pollutants, we could use about 1300 comparisons of biochar application versus no application for a range of organic and inorganic pollutants in a soil environment. Our assessments have shown that in the average of all studies biochar decreased the availability of cationic heavy metals and organic pollutants significantly by 40-50 %. We could confirm that an increasing biochar application rate also increases contaminant sorption. The only exception was found for anionic heavy metals like As or Mo that are clearly mobilized by biochar applications. Differences in sorption efficiency depend on the type of biochar, on different pollutants and on the compartment where the reduction of bioavailability has been studied.

  10. [Heavy Metals Pollution in Topsoil from Dagang Industry Area and Its Ecological Risk Assessment].

    PubMed

    Zhang, Qian; Chen, Zong-juan; Peng, Chang-sheng; Li, Fa-sheng; Gu, Qing-bao

    2015-11-01

    Based on previous studies and field investigation of Dagang industry area in Tianjin, a total of 128 topsoil samples were collected, and contents of 10 heavy metals (As, Cd, Cr, Co, Cu, Pb, Ni, V, Zn and Hg) were determined. The geoaccumulation index and geostatistics were applied to examine the degree of contamination and spatial distribution of heavy metals in topsoil. The assessment on ecological risk of heavy metals was carried out using Hakanson's method, and the main resources of the heavy metals were analyzed as well. It was found that As, Cd and Co had the highest proportions exceeding Tianjin background value, which were 100%, 97.66% and 96.88%, respectively; the heavy-metal content increased to some extent comparing with that in 2004, and the pollutions of As and Cd were the worst, and other metals were at moderate pollution level or below. The ecological risks of heavy metals were different in topsoil with different land use types, the farmland soil in the southwest as well as soils adjacent to the industrial land were at relatively high potential ecological risk level, and the integrated ecological risk index reached up to 1 437.37. Analysis of correlation and principal component showed that traffic and transportation as well as agricultural activities might be the main resources of heavy metals in the area, besides, the industrial activities in the region might also affect the accumulation of heavy metals.

  11. [Bioremediation of heavy metal pollution by edible fungi: a review].

    PubMed

    Liu, Jian-Fei; Hu, Liu-Jie; Liao, Dun-Xiu; Su, Shi-Ming; Zhou, Zheng-Ke; Zhang, Sheng

    2011-02-01

    Bioremediation is the method of using organisms and their derivatives to absorb heavy metals from polluted environment, with the characteristics of low cost, broad sources, and no secondary pollution. Heavy metals enrichment by edible fungi is an important research focus of bioremediation, because it can decrease the eco-toxicity of heavy metals via the uptake by edible fungi, and thereby, take a definite role in heavy metal remediation. This paper reviewed the research progress on the enrichment of heavy metal copper, cadmium, lead, zinc, arsenic, and chromium by edible fungi and the possible enrichment mechanisms, and prospected the development and applications of heavy metal enrichment by edible fungi in the management of polluted environment.

  12. Copper pollution decreases the resistance of soil microbial community to subsequent dry-rewetting disturbance.

    PubMed

    Li, Jing; Wang, Jun-Tao; Hu, Hang-Wei; Ma, Yi-Bing; Zhang, Li-Mei; He, Ji-Zheng

    2016-01-01

    Dry-rewetting (DW) disturbance frequently occurs in soils due to rainfall and irrigation, and the frequency of DW cycles might exert significant influences on soil microbial communities and their mediated functions. However, how microorganisms respond to DW alternations in soils with a history of heavy metal pollution remains largely unknown. Here, soil laboratory microcosms were constructed to explore the impacts of ten DW cycles on the soil microbial communities in two contrasting soils (fluvo-aquic soil and red soil) under three copper concentrations (zero, medium and high). Results showed that the fluctuations of substrate induced respiration (SIR) decreased with repeated cycles of DW alternation. Furthermore, the resistance values of substrate induced respiration (RS-SIR) were highest in non-copper-stressed (zero) soils. Structural equation model (SEM) analysis ascertained that the shifts of bacterial communities determined the changes of RS-SIR in both soils. The rate of bacterial community variance was significantly lower in non-copper-stressed soil compared to the other two copper-stressed (medium and high) soils, which might lead to the higher RS-SIR in the fluvo-aquic soil. As for the red soil, the substantial increase of the dominant group WPS-2 after DW disturbance might result in the low RS-SIR in the high copper-stressed soil. Moreover, in both soils, the bacterial diversity was highest in non-copper-stressed soils. Our results revealed that initial copper stress could decrease the resistance of soil microbial community structure and function to subsequent DW disturbance.

  13. Physiological impacts of soil pollution and arsenic uptake in three plant species: Agrostis capillaris, Solanum nigrum and Vicia faba.

    PubMed

    Austruy, A; Wanat, N; Moussard, C; Vernay, P; Joussein, E; Ledoigt, G; Hitmi, A

    2013-04-01

    In order to revegetate an industrial soil polluted by trace metals and metalloids (As, Pb, Cu, Cd, Sb), the impact of pollution on three plant species, Solanum nigrum and Agrostis capillaris, both native species in an industrial site, and Vicia faba, a plant model species, is studied. Following the study of soil pollution from the industrial wasteland of Auzon, it appears that the As is the principal pollutant. Particular attention is given to this metalloid, both in its content and its speciation in the soil that the level of its accumulation in plants. In V. faba and A. capillaris, the trace metals and metalloids inhibit the biomass production and involve a lipid peroxidation in the leaves. Furthermore, these pollutants cause a photosynthesis perturbation by stomatal limitations and a dysfunction of photosystem II. Whatever the plant, the As content is less than 0.1 percent of dry matter, the majority of As absorbed is stored in the roots which play the role of trap organ. In parallel, the culture of S. nigrum decreases significantly the exchangeable and weakly adsorbed fraction of As in rhizospheric soil. This study has highlighted the ability of tolerance to trace metals of S. nigrum and to a lesser extent A. capillaris. Our data indicate that V. faba is not tolerant to soil pollution and is not a metallophyte species.

  14. Exposure scenarios and guidance values for urban soil pollutants.

    PubMed

    Boyd, H B; Pedersen, F; Cohr, K H; Damborg, A; Jakobsen, B M; Kristensen, P; Samsøe-Petersen, L

    1999-12-01

    In general, risk assessments of urban soil pollution are prepared by comparing the levels of pollutants with soil quality criteria. However, large urban areas are contaminated with concentrations of pollutants far exceeding the existing soil quality criteria and would consequently be considered to be of potential risk to humans. This is, however, a rather rigid approach, and for risk management purposes it would be desirable to have more than just one level of soil quality criteria. Therefore, a generic risk assessment model was developed for five different use scenarios: child-care centers, kitchen gardens, ornamental gardens, parks, and sports grounds. In each of the scenarios, three different types of expected behavior are described for children and adults, respectively, resulting in different levels of exposure to the pollutants. For risk management purposes, various guidance values can then be derived for each use scenario. Below a lower guidance value, a free use of the area according to the defined use is possible without an unacceptable risk to the public. Above an upper value, a cutoff of the exposure is necessary. In between, the use may be regulated by different types of advice. The model is still preliminary but was, however, used for derivation of guidance values for five commonly found soil pollutants, of which the results for benzo[a]pyrene and lead are presented.

  15. Evaluating Metal Probe Meters for Soil Testing.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1992-01-01

    Inexpensive metal probe meters that are sold by garden stores can be evaluated by students for their accuracy in measuring soil pH, moisture, fertility, and salinity. The author concludes that the meters are inaccurate and cannot be calibrated in standard units. However, the student evaluations are useful in learning the methods of soil analysis…

  16. Soil and plant factors influencing the accumulation of heavy metals by plants.

    PubMed Central

    Cataldo, D A; Wildung, R E

    1978-01-01

    The use of plants to monitor heavy metal pollution in the terrestrial environment must be based on a cognizance of the complicated, integrated effects of pollutant source and soil-plant variables. To be detectable in plants, pollutant sources must significantly increase the plant available metal concentration in soil. The major factor governing metal availability to plants in soils is the solubility of the metal associated with the solid phase, since in order for root uptake to occur, a soluble species must exist adjacent to the root membrane for some finite period. The rate of release and form of this soluble species will have a strong influence on the rate and extent of uptake and, perhaps, mobility and toxicity in the plant and consuming animals. The factors influencing solubility and form of available metal species in soil vary widely geographically and include the concentration and chemical form of the element entering soil, soil properties (endogenous metal concentration, mineralogy, particle size distribution), and soil processes (e.g., mineral weathering, microbial activity), as these influence the kinetics of sorption reactions, metal concentration in solution and the form of soluble and insoluble chemical species. The plant root represents the first barrier to the selective accumulation of ions present in soil solution. Uptake and kinetic data for nutrient ions and chemically related nonnutrient analogs suggest that metabolic processes associated with root absorption of nutrients regulate both the affinity and rate of absorption of specific nonnutrient ions. Detailed kinetic studies of Ni, Cd, and Tl uptake by intact plants demonstrate multiphasic root absorption processes over a broad concentration range, and the use of transport mechanisms in place for the nutrient ions Cu, Zn, and K. Advantages and limitations of higher plants as indicators of increased levels of metal pollution are discussed in terms of these soil and plant phenomena. PMID:367766

  17. Assessment of Trace Metals in Soil, Vegetation and Rodents in Relation to Metal Mining Activities in an Arid Environment.

    PubMed

    Méndez-Rodríguez, Lia C; Alvarez-Castañeda, Sergio Ticul

    2016-07-01

    Areas where abandoned metal-extraction mines are located contain large quantities of mineral wastes derived from environmentally unsafe mining practices. These wastes contain many pollutants, such as heavy metals, which could be released to the environment through weathering and leaching, hence becoming an important source of environmental metal pollution. This study evaluates differences in the levels of lead, iron, nickel, manganese, copper and cadmium in rodents sharing the same type of diet under different microhabitat use in arid areas with past mining activities. Samples of soil, roots, branches and seeds of Palo Adán (Fouquieria diguetii) and specimens of two rodent species (Chaetodipus arenarius and C. spinatus) were collected in areas with impact from past metal mining activities as well as from areas with no mining impact. Both rodent species mirrored nickel and iron levels in soil and seeds, as well as lead levels in soil; however, C. arenarius accumulated higher levels of manganese, copper and cadmium.

  18. Biotests and biosensors in ecotoxicological risk assessment of field soils polluted with zinc, lead, and cadmium.

    PubMed

    Kahru, Anne; Ivask, Angela; Kasemets, Kaja; Põllumaa, Lee; Kurvet, Imbi; François, Matthieu; Dubourguier, Henri-Charles

    2005-11-01

    The combined chemical and ecotoxicological hazard evaluation study was conducted on 60 smelter-influenced soils containing 1 to 13, 50 to 653, and 100 to 1,198 mg/kg of Cd, Pb, and Zn, respectively. For these soils (liquid-to-soil ratio = 10), water extractability of Zn, Cd, and Pb was less than 0.19% (median values). Acetic acid (0.11 M) extracted 23, 9.7, and 0.7% of Cd, Zn, and Pb, respectively. Although heavy metal concentrations in the studied soils were high, the toxic effects of water extracts were observed only in few samples and in few biotests (algae Selenastrum capricornutum and metal detector assay). For most of the aquatic test organisms (e.g., crustaceans, photobacteria), the bioavailable concentrations of metals in soil-water extracts were either subtoxic, or the adverse effects were compensated by soil nutrients, etc. However, analysis of the soils with recombinant Cd sensor Bacillus subtilis (pTOO24) showed that about 65% of these apparently subtoxic samples contained bioavailable Cd when analyzed in the suspension assay (detection limit 1.5 mg Cd/kg soil), indicating the desorption of Cd induced by direct contact of bacteria with soil particles. The median bioavailable fraction of Cd (1%) was 23-fold lower than the fraction extracted by acetic acid. The Pb-Cd sensor Staphylococcus aureus (pT0024) detected bioavailable Pb only in the suspensions of five of the most lead-polluted soils (>417 mg Pb/kg): the median bioavailability of Pb was 0.42%. Consequently, the hazard assessment relying on total metal levels in soils should be revised by critical comparison with data obtained from bioassays. Development and use of biosensors (excellent tools for mechanistic studies and signaling hazard already at subtoxic level) should be encouraged.

  19. Semiconducting Metal Oxide Based Sensors for Selective Gas Pollutant Detection

    PubMed Central

    Kanan, Sofian M.; El-Kadri, Oussama M.; Abu-Yousef, Imad A.; Kanan, Marsha C.

    2009-01-01

    A review of some papers published in the last fifty years that focus on the semiconducting metal oxide (SMO) based sensors for the selective and sensitive detection of various environmental pollutants is presented. PMID:22408500

  20. Soil pollution assessment and identification of hyperaccumulating plants in chromated copper arsenate (CCA) contaminated sites, Korea.

    PubMed

    Usman, Adel R A; Lee, Sang Soo; Awad, Yasser M; Lim, Kyoung Jae; Yang, Jae E; Ok, Yong Sik

    2012-05-01

    In recent decades, heavy metal contamination in soil adjacent to chromated copper arsenate (CCA) treated wood has received increasing attention. This study was conducted to determine the pollution level (PL) based on the concentrations of Cr, Cu and As in soils and to evaluate the remediative capacity of native plant species grown in the CCA contaminated site, Gangwon Province, Korea. The pollution index (PI), integrated pollution index (IPI), bioaccumulation factors (BAF(shoots) and BAF(roots)) and translocation factor (TF) were determined to ensure soil contamination and phytoremediation availability. The 19 soil samples from 10 locations possibly contaminated with Cr, Cu and As were collected. The concentrations of Cr, Cu and As in the soil samples ranged from 50.56-94.13 mg kg(-1), 27.78-120.83 mg kg(-1), and 0.13-9.43 mg kg(-1), respectively. Generally, the metal concentrations decreased as the distance between the CCA-treated wood structure and sampling point increased. For investigating phytoremediative capacity, the 19 native plant species were also collected in the same area with soil samples. Our results showed that only one plant species of Iris ensata, which presented the highest accumulations of Cr (1120 mg kg(-1)) in its shoot, was identified as a hyperaccumulator. Moreover, the relatively higher values of BAF(shoot) (3.23-22.10) were observed for Typha orientalis, Iris ensata and Scirpus radicans Schk, suggesting that these plant species might be applicable for selective metal extraction from the soils. For phytostabilization, the 15 plant species with BAF(root) values>1 and TF values<1 were suitable; however, Typha orientalis was the best for Cr.

  1. Heavy metals in urban soils of the Granada city (Spain)

    NASA Astrophysics Data System (ADS)

    Delgado, Gabriel; Sánchez-Marañón, Manuel; Bech, Jaume; Sartini, Alessandra; Martín-García, Juan Manuel; Delgado, Rafael

    2013-04-01

    Urban soils (Anthrosols, Technosols, and the remaining natural patches) are essential components of the city ecosystems influencing the quality of life for people. Unfortunately, because of the high concentration of matter and energy that occurs in any city, these soils might accumulate potentially toxic pollutants such as heavy metals, organic compounds, pathogens, pharmaceuticals, and soluble salts. Contamination by heavy metals has been considered especially dangerous because they can affect human health via inhalation of dust, ingestion, or skin contact with soils. Children are the more exposed citizens in gardens and parks. Accordingly, our objective was to analyze the content of heavy metals in soils of the two most emblematic, extensive, and visited landscaped areas of the Granada city (Salón Garden, which dates back to 1612, and Federico García Lorca Park, opened since 1993) for assessing the health hazard. Using a composite sampling of 20-30 points chosen at random, we collected the upper soil (10 cm) of five representative plots for each landscaped area. We determined soil characteristics by routine procedures and metal elements using ICP-mass. From high to low concentration we found Mn, Ba, Pb, Zn, V, Sn, Cr, Cu, Ni, Sb, Y, As, Sc, Co, Th, Au, U, Mo, Be, Bi, Tl, Cd, and In; the first 10 metals ranging between 478 and 22 ppm. Mn, Ba, and other trace elements were strongly correlated with soil properties suggesting the inheritance as a possible source of metal variation, especially in the soils of younger Park, where the materials used to build gardens in the five sampled plots seemed to be more variable (carbonates: 10-40%, clay: 18-26%, pH: 7.6-7.9, organic matter: 3-7%, free iron 0.5-1.1%). The content of many other metals measured in the sampled plots, however, were independent of soil material and management. On the other hand, compared to agricultural and native soils of the surroundings, our urban soils had obviously greater content in organic

  2. Rapid identification of soil cadmium pollution risk at regional scale based on visible and near-infrared spectroscopy.

    PubMed

    Chen, Tao; Chang, Qingrui; Clevers, J G P W; Kooistra, L

    2015-11-01

    Soil heavy metal pollution due to long-term sewage irrigation is a serious environmental problem in many irrigation areas in northern China. Quickly identifying its pollution status is an important basis for remediation. Visible-near-infrared reflectance spectroscopy (VNIRS) provides a useful tool. In a case study, 76 soil samples were collected and their reflectance spectra were used to estimate cadmium (Cd) concentration by partial least squares regression (PLSR) and back propagation neural network (BPNN). To reduce noise, six pre-treatments were compared, in which orthogonal signal correction (OSC) was first used in soil Cd estimation. Spectral analysis and geostatistics were combined to identify Cd pollution hotspots. Results showed that Cd was accumulated in topsoil at the study area. OSC can effectively remove irrelevant information to improve prediction accuracy. More accurate estimation was achieved by applying a BPNN. Soil Cd pollution hotspots could be identified by interpolating the predicted values obtained from spectral estimates.

  3. Geostatistical Microscale Study of Magnetic Susceptibility in Soil Profile and Magnetic Indicators of Potential Soil Pollution.

    PubMed

    Zawadzki, Jarosław; Fabijańczyk, Piotr; Magiera, Tadeusz; Rachwał, Marzena

    Directional variograms, along the soil profile, can be useful and precise tool that can be used to increase the precision of the assessment of soil pollution. The detail analysis of spatial variability in the soil profile can be also an important part of the standardization of soil magnetometry as a screening method for an assessment of soil pollution related to the dust deposition. The goal of this study was to investigate the correlation between basic parameters of spatial correlations of magnetic susceptibility in the soil profile, such as a range of correlation and a sill, and selected magnetometric indicators of soil pollution. Magnetic indicators were an area under the curve of magnetic susceptibility versus a depth in the soil profile, values of magnetic susceptibility at depths ranging from 1 to 10 cm, and maximum and background values of magnetic susceptibility in the soil profile. These indicators were previously analyzed in the literature. The results showed that a range of correlation of magnetic susceptibility was significantly correlated with magnetic susceptibility measured at depths 1, 2, and 3 cm. It suggests that a range of correlation is a good measure of pollutants' dispersion in the soil profile. The sill of the variogram of magnetic susceptibility was found to be significantly correlated with the area under the curve of plot of magnetic susceptibility that is related to the soil pollution. In consequence, the parameters of microscale spatial variability of magnetic susceptibility in s soil profile are important measures that take into consideration the spatial aspect of s soil pollution.

  4. Occurrences and toxicological risk assessment of eight heavy metals in agricultural soils from Kenya, Eastern Africa.

    PubMed

    Mungai, Teresiah Muciku; Owino, Anita Awino; Makokha, Victorine Anyango; Gao, Yan; Yan, Xue; Wang, Jun

    2016-09-01

    The concentration distribution and toxicological assessment of eight heavy metals including lead (Pb), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), mercury (Hg), arsenic (As), and zinc (Zn) in agricultural soils from Kenya, Eastern Africa, were investigated in this study. The results showed mean concentrations of eight heavy metals of Zn, Pb, Cr, Cu, As, Ni, Hg, and Cd in agricultural soils as 247.39, 26.87, 59.69, 88.59, 8.93, 12.56, 8.06, and 0.42 mg kg(-1), respectively. These mean values of eight heavy metals were close to the toxicity threshold limit of USEPA standard values of agricultural soils, indicating potential toxicological risk to the food chain. Pollution index values revealed that eight heavy metals severely decreased in the order Hg > Cd > As > Cu > Pb > Zn > Ni > Cr and the mean value of the overall pollution index of Hg and Cd was 20.31, indicating severe agriculture ecological risk. Potential pollution sources of eight heavy metals in agricultural soils were mainly from anthropogenic activities and natural dissolution. The intensification of human agricultural activities, the growing industrialization, and the rapid urbanization largely influenced the concentration levels of heavy metals in Kenya, Eastern Africa. Moreover, the lack of agricultural normalization management and poor enforcement of environmental laws and regulations further intensified the widespread pollution of agricultural soils in Kenya.

  5. Pollution and health risk of potentially toxic metals in urban road dust in Nanjing, a mega-city of China.

    PubMed

    Liu, Enfeng; Yan, Ting; Birch, Gavin; Zhu, Yuxin

    2014-04-01

    Spatial variations in concentrations of a suite of potentially toxic metals (Ba, Cr, Cu, Fe, Mn, Ni, Pb and Zn) and Ca in road dusts (n=99) from urban trunk roads (TR) in Nanjing, a mega-city in China, were established. Metal pollution levels, sources and human health risk (non-carcinogenic) were studied. In contrast to previous studies, we labeled the indicative metals relating to non-exhaust traffic emissions by comparing metal pollution between crossroad and park road dusts, and then anthropogenic sources of metals in TR dusts were assessed combining their spatial pollution patterns, principal component analysis and Pb isotopic compositions. Results showed that the metals were enriched in TR dusts compared to background soil concentrations with mean enrichment factors (EFs) of 2.2-23, indicating considerable anthropogenic influence. The degrees of metal pollution ranged from minimal to extremely high and ranked by Ca>Cu>Pb≈Zn>Cr≈Fe>Ni≈Ba>Mn on average. Pollution of Cr, Cu, Fe, Mn, Ni, Pb and Zn in TR dusts resulted primarily from industrial emissions (e.g., coal combustion and smelting) and high pollution levels were found close to suburb industrial complexes, whereas pollution of Ba and Ca was mainly related to construction/demolition sources and was generally distributed homogeneously. The relatively minor contribution of non-exhaust traffic emissions to metal pollution in TR dusts was considered to be due to overwhelming industrial and construction/demolition contributions, as well as to the dilution effect of natural soil particles. Ingestion appears to be the major route of exposure for road dust for both adults and children, followed by dermal contact. The non-carcinogenic health risk resulting from exposure to the potentially toxic metals in TR dusts was within the safe level based on the Hazard Index (HI), except in pollution hotspots where exposure to Pb, Cr, and Cu may be hazardous to children.

  6. Contamination features and health risk of soil heavy metals in China.

    PubMed

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wang, Jinsheng

    2015-04-15

    China faces a big challenge of environmental deterioration amid its rapid economic development. To comprehensively identify the contamination characteristics of heavy metals in Chinese soils on a national scale, data set of the first national soil pollution survey was employed to evaluate the pollution levels using several pollution indicators (pollution index, geoaccumulation index and enrichment factor) and to quantify their exposure risks posed to human health with the risk assessment model recommended by the US Environmental Protection Agency. The results showed that, due to the drastically increased industrial operations and fast urban expansion, Chinese soils were contaminated by heavy metals in varying degrees. As a whole, the exposure risk levels of soil metals in China were tolerable or close to acceptable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Cadmium and mercury have been identified as the priority control metals due to their higher concentrations in soils or higher health risks posed to the public, as well as, arsenic, lead, chromium and nickel. Spatial distribution pattern analysis implied that the soil metal pollutions in southern provinces of China were relatively higher than that in other provinces, which would be related to the higher geochemical background in southwest regions and the increasing human activities in southeast areas. Meanwhile, it should be noticed that Beijing, the capital of China, also has been labeled as the priority control province for its higher mercury concentration. These results will provide basic information for the improvement of soil environment management and heavy metal pollution prevention and control in China.

  7. Comparison of the multifractal characteristics of heavy metals in soils within two areas of contrasting economic activities in China

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Li, Xiangling; Yuan, Feng; Jowitt, Simon M.; Zhou, Taofa; Yang, Kui; Zhou, Jie; Hu, Xunyu; Li, Yang

    2016-09-01

    Industrial and agricultural activities can generate heavy metal pollution that can cause a number of negative environmental and health impacts. This means that evaluating heavy metal pollution and identifying the sources of these pollutants, especially in urban or developed areas, is an important first step in mitigating the effects of these contaminating but necessary economic activities. Here, we present the results of a heavy metal (Cu, Pb, Zn, Cd, As, and Hg) soil geochemical survey in Hefei city. We used a multifractal spectral technique to identify and compare the multifractality of heavy metal concentrations of soils within the industrial Daxing and agricultural Yicheng areas. This paper uses three multifractal parameters (Δα, Δf(α), and τ''(1)) to indicate the overall amount of multifractality within the soil geochemical data. The results show all of the elements barring Hg have larger Δα, Δf(α), and τ''(1) values in the Daxing area compared to the Yicheng area. The degree of multifractality suggests that the differing economic activities in Daxing and Yicheng generate very different heavy metal pollution loads. In addition, the industrial Daxing area contains significant Pb and Cd soil contamination, whereas Hg is the main heavy metal present in soils within the Yicheng area, indicating that differing clean-up procedures and approaches to remediating these polluted areas are needed. The results also indicate that multifractal modelling and the associated generation of multifractal parameters can be a useful approach in the evaluation of heavy metal pollution in soils.

  8. Heavy metals and hydrocarbons contents in soils of urban areas of Yamal autonomous region (Russia)

    NASA Astrophysics Data System (ADS)

    Alekseev, Ivan; Abakumov, Evgeny; Shamilishvili, George

    2016-04-01

    This investigation is devoted to evaluation of heavy metals and hydrocarbons contents in soils of different functional localities within the Yamalo-Nenets autonomous region (YaNAR, North-Western Siberia, Russia). Geo-accumulation indices Igeo (Müller 1988) were calculated in order to assess soil contamination levels with heavy metals (Cu, Pb, Cd, Zn, Ni, As, Hg) in the studied settlements: Harsaim, Aksarka, Labytnangy, Harp and Salekhard. The degree of soil pollution was assessed according to seven contamination classes (Förstner et al. 1990) in order of increasing numerical value of the index. Cd's regional soil background concentrations of the Yamal peninsula (Moskovchenko 2010), Hg's Earth crust clarke (Greenwood & Earnshaw 2008) and concentrations of the rest trace elements in natural sandy soil from the Beliy island, YaNAR (Tomashunas & Abakumov, 2014) were used in calculations. In general terms, obtained Igeo values in all samples were under or slightly above the 0 level, indicating low to moderate pollution of the studied soils. However, considerable Igeo values of Zn, Pb and Ni were revealed in several samples, suggesting different soil pollution levels, namely: Zn Igeo in Harsaim soil sample of 2.22 - moderate polluted to highly polluted soil; Pb Igeo in Aksarka soil sample of 4.04 - highly polluted to extremely polluted soil; Ni Igeo in Harp soil sample of 4.34 - highly polluted to extremely polluted soil. Soil contamination level was additionally evaluated, comparing with the maximal permissible concentrations (MPCs) of the trace elements in soil (SANPIN 4266-87), established by the national legislation. Almost all samples exceeded the MPC for As in soils (2 mg•kg-1). Concentrations of Ni in several soil samples taken in Harp were 19 times higher than recommended level (20 mg•kg-1). Moderate excess of Zn, Pb and Cu MPCs was also noted. Data obtained will be used in further environmental researches and environmental management purposes in this key

  9. Assessment of trace metal toxicity in soils of Raniganj Coalfield, India.

    PubMed

    Das, Supriyo Kumar; Chakrapani, Govind J

    2011-06-01

    Soil, rock and water samples were collected from India's oldest coalfield Raniganj to investigate trace metal contamination from mining activity. Our data reveal that trace metal concentration in soil samples lies above the average world soil composition; especially, Cr, Cu, Ni and Zn concentrations exceed the maximum allowable concentration proposed by the European Commission for agricultural soils. In particular, Cr, Cu and Ni exceed the ecotoxicological limit, and Ni exceeds the typical value for cultivated soils. Mineral dissolution from overburden material and high adsorption capacity of laterite soil are responsible for the elevated concentrations. This is evident from enrichment factor (E (f)), geoaccumulation index (I (geo)) and metal pollution index values. Sediment quality guideline index indicates toxicity to local biota although enrichment index suggests no threat from consuming crops cultivated in the contaminated soil.

  10. Multivariate analysis combined with GIS to source identification of heavy metals in soils around an abandoned industrial area, Eastern China.

    PubMed

    Zhou, Jie; Feng, Ke; Pei, Zongping; Meng, Fang; Sun, Jian

    2016-03-01

    Heavy metals in soils polluted by industrial production are a meaningful topic worldwide. The purpose of this study is to understand the pollution status and spatial distribution of heavy metals in soils. The result can help decision-makers apportion possible soil heavy metals sources and formulate effective pollution control policies. In this paper, 155 soil samples (0-20 cm) were collected and analyzed for eight heavy metals (Cd, Hg, As, Cu, Pb, Cr, Zn, and Ni) from an abandoned industrial area of Tong County, located in Jiangsu Province of Eastern China. The multivariate analysis (including I(geo), Ei/RI, EF, PCA, and CA) and geostatistics (GIS) were used to assess the enrichment level and pollution level of soil heavy metals and identify their sources. The results indicated that eight heavy metals in soils had moderate variations, with CVs ranging from 19.63 to 63.34%. The pollution level of I(geo) of soil heavy metals decreased in the order of Cd~Zn > Cu > Hg~As~Pb~Cr~Ni. The enrichment level of soil heavy metals decreased in the order of Cd > Zn > Hg > Cu > Pb > Ni > As > Cr. According to the Ei, except Cd and Hg were in the significant and moderate ecological risk levels respectively, other soil heavy metals were in the clean or light ecological risk levels, the level of potential ecological risk (RI) of the whole industrial area was moderate. Finally, the source identification of soil heavy metals indicated that Cd and Zn were primarily controlled by human activities, and Hg and Cu were controlled by natural and anthropogenic sources, and As, Pb, Cr, and Ni were mainly controlled by soil parent materials.

  11. Use of ecotoxicity test and ecoscores to improve the management of polluted soils: case of a secondary lead smelter plant.

    PubMed

    Foucault, Yann; Durand, Marie-José; Tack, Karine; Schreck, Eva; Geret, Florence; Leveque, Thibaut; Pradere, Philippe; Goix, Sylvaine; Dumat, Camille

    2013-02-15

    With the rise of sustainable development, rehabilitation of brownfield sites located in urban areas has become a major concern. Management of contaminated soils in relation with environmental and sanitary risk concerns is therefore a strong aim needing the development of both useful tools for risk assessment and sustainable remediation techniques. For soils polluted by metals and metalloids (MTE), the criteria for landfilling are currently not based on ecotoxicological tests but on total MTE concentrations and leaching tests. In this study, the ecotoxicity of leachates from MTE polluted soils sampled from an industrial site recycling lead-acid batteries were evaluated by using both modified Escherichia coli strains with luminescence modulated by metals and normalized Daphnia magna and Alivibrio fischeri bioassays. The results were clearly related to the type of microorganisms (crustacean, different strains of bacteria) whose sensitivity varied. Ecotoxicity was also different according to sample location on the site, total concentrations and physico-chemical properties of each soil. For comparison, standard leaching tests were also performed. Potentially phytoavailable fraction of MTE in soils and physico-chemical measures were finally performed in order to highlight the mechanisms. The results demonstrated that the use of a panel of microorganisms is suitable for hazard classification of polluted soils. In addition, calculated eco-scores permit to rank the polluted soils according to their potentially of dangerousness. Influence of soil and MTE characteristics on MTE mobility and ecotoxicity was also highlighted.

  12. Surfactant remediation of diesel fuel polluted soil.

    PubMed

    Khalladi, Razika; Benhabiles, Ouassila; Bentahar, Fatiha; Moulai-Mostefa, Naji

    2009-05-30

    Soil contamination with petroleum hydrocarbons has caused critical environmental and health defects and increasing attention has been paid for developing innovative technology for cleaning up this contamination. In this work, the washing process of a soil column by ionic surfactant sodium dodecyl sulfate (SDS) was investigated. Water flow rate and the contamination duration (age) have been studied. The performance of water in the removal of diesel fuel was found to be non-negligible, while water contributed by 24.7% in the global elimination of n-alkanes. The effect of SDS is significant beyond a concentration of 8mM. After 4h of treatment with surfactant solution, the diesel soil content remains constant, which shows the existence of a necessary contact time needed to the surfactant to be efficient. The soil washing process at a rate of 3.2 mL/min has removed 97% of the diesel fuel. This surfactant soil remediation process was shown to be governed by the first-order kinetics. These results are of practical interest in developing effective surfactant remediation technology of diesel fuel contaminated soils.

  13. Improvement of soil quality after "alperujo" compost application to two contaminated soils characterised by differing heavy metal solubility.

    PubMed

    Alburquerque, J A; de la Fuente, C; Bernal, M P

    2011-03-01

    Reclamation of trace element polluted soils often requires the improvement of the soil quality by using appropriate organic amendments. Low quality compost from municipal solid waste has been tested for reclamation of soils, but these materials can provide high amounts of heavy metals. Therefore, a high-quality compost, with low levels of heavy metals, produced from the main by-product of the Spanish olive oil extraction industry ("alperujo") was evaluated for remediation of soils affected by a pyritic mine sludge. Two contaminated soils were selected from the same area: they were characterised by differing pH values (4.6 and 7.3) and total metal concentrations, which greatly affected the fractionation of the metals. Compost was applied to soil at two rates (equivalent to 48 and 72 Tm ha(-1)) and compared with an inorganic fertiliser treatment. Compost acted as an available nutrient source (C, N and P) and showed a low mineralisation rate, suggesting a slow release of nutrients and thus favouring long term soil fertility. In addition, the liming effect of the compost led to a significant reduction of toxicity for soil microorganisms in the acidic soil and immobilisation of soil heavy metals (especially Mn and Zn), resulting in a clear increase in both soil microbial biomass and nitrification. Such positive effects were clearly greater than those provoked by the mineral fertiliser even at the lowest compost application rate, which indicates that this type of compost can be very useful for bioremediation programmes (reclamation and revegetation of polluted soils) based on phytostabilisation strategies.

  14. Trace metal accumulation in soil and their phytoavailability as affected by greenhouse types in north China.

    PubMed

    Yang, Lanqin; Huang, Biao; Mao, Mingcui; Yao, Lipeng; Hickethier, Martina; Hu, Wenyou

    2015-05-01

    Long-term heavy organic fertilizer application has linked greenhouse vegetable production (GVP) with trace metal contamination in north China. Given that trace metals release from fertilizers and their availability may be affected by discrepant environmental conditions, especially temperature under different greenhouses, this study investigated Cd, Cu, Pb, and Zn accumulation and contamination extent in soil as well as their phytoavailability under two major greenhouses in Tongshan, north China, namely solar greenhouse (SG) and round-arched plastic greenhouse (RAPG), to evaluate their presumed difference. The results showed significant Cd, Cu, Pb, and Zn accumulation in GVP soil by comparing with those in open-field soil, but their accumulation extent and rates were generally greater in SG than those in RAPG. This may be related to more release of trace metals to soil due to the acceleration of decomposition and humification process of organic fertilizers under higher soil temperature in SG relative to that in RAPG. Overall, soil in both greenhouses was generally less polluted or moderately polluted by the study metals. Similarly, decreased soil pH and elevated soil available metals in SG caused higher trace metals in leaf vegetables in SG than those in RAPG, although there was no obvious risk via vegetable consumption under both greenhouses. Lower soil pH may be predominantly ascribed to more intensive farming practices in SG while elevated soil available metals may be attributed to more release of dissolved organic matter-metal complexes from soil under higher temperature in SG. The data provided in this study may assist in developing reasonable and sustainable fertilization strategies to abate trace metal contamination in both greenhouses.

  15. The use of dialdehyde starch derivatives in the phytoremediation of soils contaminated with heavy metals.

    PubMed

    Antonkiewicz, Jacek; Para, Andrzej

    2016-01-01

    Products of the reaction between dialdehyde starch and Y-NH2 compounds (e.g. semicarbazide or hydrazine) are effective ligands for metal ions. The usefulness of these derivatives was tested in the experiment, both in terms of the immobilization of heavy metal ions in soil and the potential application in phytoextraction processes. The experimental model comprised maize and the ions of such metals as: Zn(II), Pb(II), Cu(II), Cd(II), and Ni(II). The amount of maize yield, as well as heavy metal content and uptake by the aboveground parts and roots of maize, were studied during a three-year pot experiment. The results of the study indicate the significant impact of heavy metals on reduced yield and increased heavy metal content in maize. Soil-applied dialdehyde starch derivatives resulted in lower yields, particularly disemicarbazone (DASS), but in heavy metal-contaminated soils they largely limited the negative impact of these metals both on yielding and heavy metal content in plants, particularly dihydrazone (DASH). It was demonstrated that the application of dihydrazone (DASH) to a soil polluted with heavy metals boosted the uptake of Zn, Pb, Cu, and Cd from the soil, hence there is a possibility to use this compound in the phytoextraction of these metals from the soil. Decreased Ni uptake was also determined, hence the possibility of using this compound in the immobilization of this metal. The study showed that dialdehyde starch disemicarbazone was ineffective in the discussed processes.

  16. Evaluation of groundwater and soil pollution in a landfill area using electrical resistivity imaging survey.

    PubMed

    Ahmed, A M; Sulaiman, W N

    2001-11-01

    Landfills are sources of groundwater and soil pollution due to the production of leachate and its migration through refuse. This study was conducted in order to determine the extent of groundwater and soil pollution within and around the landfill of Seri Petaling located in the State of Selangor, Malaysia. The condition of nearby surface water was also determined. An electrical resistivity imaging survey was used to investigate the leachate production within the landfill. Groundwater geochemistry was carried out and chemical analysis of water samples was conducted upstream and downstream of the landfill. Surface water was also analyzed in order to determine its quality. Soil chemical analysis was performed on soil samples taken from different locations within and around the landfill in the vadose zone (unsaturated zone) and below the water table (in the soil saturated zone). The resistivity image along line L-L1 indicated the presence of large zones of decomposed waste bodies saturated with highly conducting leachate. Analysis of trace elements indicated their presence in very low concentrations and did not reflect any sign of heavy metal pollution of ground and surface water or of soil. Major ions represented by Na, K, and Cl were found in anomalous concentrations in the groundwater of the downstream bore hole, where they are 99.1%, 99.2%, and 99.4%, respectively, higher compared to the upstream bore hole. Electrical conductivity (EC) was also found in anomalous concentration downstream. Ca and Mg ions represent the water hardness (which is comparatively high downstream). There is a general trend of pollution towards the downstream area. Sulfates (SO4) and nitrates (NO3) are found in the area in low concentrations, even below the WHO standards for drinking water, but are significantly higher in the surface water compared to the groundwater. Phosphate (PO4) and nitrite (NO2), although present in low levels, are significantly higher at the downstream. There is no

  17. [Assessment of Soil Fluorine Pollution in Jinhua Fluorite Ore Areas].

    PubMed

    Ye, Qun-feng; Zhou, Xiao-ling

    2015-07-01

    The contents of. soil total fluorine (TF) and water-soluble fluorine (WF) were measured in fluorite ore areas located in Jinhua City. The single factor index, geoaccumulation index and health risk assessment were used to evaluate fluorine pollution in soil in four fluorite ore areas and one non-ore area, respectively. The results showed that the TF contents in soils were 28. 36-56 052. 39 mg.kg-1 with an arithmetic mean value of 8 325.90 mg.kg-1, a geometric mean of 1 555. 94 mg.kg-1, and a median of 812. 98 mg.kg-1. The variation coefficient of TF was 172. 07% . The soil WF contents ranged from 0. 83 to 74. 63 mg.kg-1 with an arithmetic mean value of 16. 94 mg.kg-1, a geometric mean of 10. 59 mg.kg-1, and a median of 10. 17 mg.kg-1. The variation coefficient of WF was 100. 10%. The soil TF and WF contents were far higher than the national average level of the local fluorine epidemic occurrence area. The fluoride pollution in soil was significantly affected by human factors. Soil fluorine pollution in Yangjia, Lengshuikeng and Huajie fluorite ore areas was the most serious, followed by Daren fluorite ore area, and in non-ore area there was almost no fluorine pollution. Oral ingestion of soils was the main exposure route. Sensitivity analysis of model parameters showed that children's weight exerted the largest influence over hazard quotient. Furthermore, a significant positive correlation was found among the three kinds of evaluation methods.

  18. Soil chemistry and pollution study of a closed landfill site at Ampar Tenang, Selangor, Malaysia.

    PubMed

    Mohd Adnan, Siti Nur Syahirah Binti; Yusoff, Sumiani; Piaw, Chua Yan

    2013-06-01

    A total of 20 landfills are located in State of Selangor, Malaysia. This includes the Ampar Tenang landfill site, which was closed on 26 January 2010. It was reported that the landfill has been upgraded to a level I type of sanitary classification. However, the dumpsite area is not being covered according to the classification. In addition, municipal solid waste was dumped directly on top of the unlined natural alluvium formation. This does not only contaminate surface and subsurface soils, but also initiates the potential risk of groundwater pollution. Based on previous studies, the Ampar Tenang soil has been proven to no longer be capable of preventing pollution migration. In this study, metal concentrations of soil samples up to 30 m depth were analyzed based on statistical analysis. It is very significant because research of this type has not been carried out before. The subsurface soils were significantly polluted by arsenic (As), lead (Pb), iron (Fe), copper (Cu) and aluminium (Al). As and Pb exceeded the safe limit values of 5.90 mg/kg and 31.00 mg/kg, respectively, based on Provincial Sediment Quality Guidelines for Metals and the Interim Sediment Quality Values. Furthermore, only Cu concentrations showed a significantly decreasing trend with increasing depth. Most metals were found on clay-type soils based on the cluster analysis method. Moreover, the analysis also differentiates two clusters: cluster I-Pb, As, zinc, Cu, manganese, calcium, sodium, magnesium, potassium and Fe; cluster II-Al. Different clustering may suggest a different contamination source of metals.

  19. Prospecting metal-tolerant rhizobia for phytoremediation of mining soils from Morocco using Anthyllis vulneraria L.

    PubMed

    El Aafi, N; Saidi, N; Maltouf, A Filali; Perez-Palacios, P; Dary, M; Brhada, F; Pajuelo, E

    2015-03-01

    The aim of this work was using the legume plant Anthyllis vulneraria L. (ecotype metallicolous) as a trap plant, in order to isolate metal-tolerant rhizobial strains from metal-contaminated soils from Morocco, with pollution indexes spanning three orders of magnitude. As bioindicator, soil bacterial density was inversely correlated to the pollution index. Forty-three bulk soil bacteria and sixty two bacteria from nodules were isolated. The resistance of bacteria from nodules to heavy metals was four to ten times higher than that of bulk soil bacteria, reaching high maximum tolerable concentrations for Cd (2 mM), Cu (2 mM), Pb (7 mM), and Zn (3 mM). Besides, some strains show multiple metal-tolerant abilities and great metal biosorption onto the bacterial surface. Amplification and restriction analysis of ribosomal 16S rDNA (ARDRA) and 16S ribosomal DNA (rDNA) sequencing were used to assess biodiversity and phylogenetic position among bacteria present in nodules. Our results suggest that a great diversity of non-rhizobial bacteria (alpha- and gamma-proteobacteria) colonize nodules of Anthyllis plants in contaminated soils. Taking together, our results evidence that, in polluted soils, rhizobia can be displaced by non-rhizobial (and hence, non-fixing) strains from nodules. Thus, the selection of metal-resistant rhizobia is a key step for using A. vulneraria symbioses for in situ phytoremediation.

  20. Utilization of air pollution control residues for the stabilization/solidification of trace element contaminated soil.

    PubMed

    Travar, I; Kihl, A; Kumpiene, J

    2015-12-01

    The aim of this study was to evaluate the stabilization/solidification (S/S) of trace element-contaminated soil using air pollution control residues (APCRs) prior to disposal in landfill sites. Two soil samples (with low and moderate concentrations of organic matter) were stabilized using three APCRs that originated from the incineration of municipal solid waste, bio-fuels and a mixture of coal and crushed olive kernels. Two APCR/soil mixtures were tested: 30% APCR/70% soil and 50% APCR/50% soil. A batch leaching test was used to study immobilization of As and co-occurring metals Cr, Cu, Pb and Zn. Solidification was evaluated by measuring the unconfined compression strength (UCS). Leaching of As was reduced by 39-93% in APCR/soil mixtures and decreased with increased amounts of added APCR. Immobilization of As positively correlated with the amount of Ca in the APCR and negatively with the amount of soil organic matter. According to geochemical modelling, the precipitation of calcium arsenate (Ca3(AsO4)2/4H2O) and incorporation of As in ettringite (Ca6Al2(SO4)3(OH)12 · 26H2O) in soil/APCR mixtures might explain the reduced leaching of As. A negative effect of the treatment was an increased leaching of Cu, Cr and dissolved organic carbon. Solidification of APCR/soil was considerably weakened by soil organic matter.

  1. Water hyacinth as indicator of heavy metal pollution the tropics

    SciTech Connect

    Gonzalez, H.; Otero, M. ); Lodenius, M. )

    1989-12-01

    The water hyacinth (Eichhornia crassipes) is a common aquatic plant in many tropical countries. Its ability absorb nutrients and other elements from the water has made it possible to use it for water purification purposes. Eichhornia, especially stems and leaves, have been successfully used as indicators of heavy metal pollution in tropical countries. The uptake of heavy metals in this plant is stronger in the roots than in the floating shoots. Metallothionein-like compounds have been found from roots of this species after cadmium exposure. The purpose of this investigation was to study the possibilities of using roots of water hyacinth as a biological indicator of metal pollution in tropical aquatic ecosystems.

  2. Pollution by metals: Is there a relationship in glycemic control?

    PubMed

    González-Villalva, Adriana; Colín-Barenque, Laura; Bizarro-Nevares, Patricia; Rojas-Lemus, Marcela; Rodríguez-Lara, Vianey; García-Pelaez, Isabel; Ustarroz-Cano, Martha; López-Valdez, Nelly; Albarrán-Alonso, Juan Carlos; Fortoul, Teresa I

    2016-09-01

    There are evidences of environmental pollution and health effects. Metals are pollutants implicated in systemic toxicity. One of the least studied effects, but which is currently becoming more important, is the effect of metals on glycemic control. Metals have been implicated as causes of chronic inflammation and oxidative stress and are associated to obesity, hyperglycemia and even diabetes. Arsenic, iron, mercury, lead, cadmium and nickel have been studied as a risk factor for hyperglycemia and diabetes. There is another group of metals that causes hypoglycemia such as vanadium, chromium, zinc and magnesium by different mechanisms. Zinc, magnesium and chromium deficiency is associated with increased risk of diabetes. This review summarizes some metals involved in glycemic control and pretends to alert health professionals about considering environmental metals as an important factor that could explain the poor glycemic control in patients. Further studies are needed to understand this poorly assessed problem.

  3. Field effects of pollutants in dynamic environments. A case study on earthworm populations in river floodplains contaminated with heavy metals.

    PubMed

    Klok, Chris; Goedhart, Paul W; Vandecasteele, Bart

    2007-05-01

    In industrialized countries river floodplains can be strongly polluted with heavy metals. Published studies on effects of heavy metal pollution on soil invertebrates in floodplains, however, are inconclusive. This is unexpected since studies in other less dynamic environments reported clear effects at even lower levels of pollution. Flooding induces extra variation in invertebrate biomass and abundance which may reduce the probability to detect heavy metal effects. In this paper we combine reported data from studies on river floodplains in The Netherlands and Belgium and statistically analyze the effect of heavy metals on species composition, biomass, density and individual weight of earthworms. Interaction effects of heavy metal stress and flooding are also considered. The results suggest clear effects of zinc and copper on all variables and interaction of heavy metals and flooding for individual weight.

  4. Bioindication capacity of metal pollution of native and transplanted Pleurozium schreberi under various levels of pollution.

    PubMed

    Kosior, G; Samecka-Cymerman, A; Kolon, K; Kempers, A J

    2010-09-01

    During a period of 90d assays were carried out with the moss Pleurozium schreberi transplanted from an uncontaminated control site to 27 sites selected in one of the most polluted regions of Upper Silesia (Poland). The native mosses of this species were collected from the polluted sites. Concentrations of Cd, Cr, Cu, Pb and Zn were determined in P. schreberi and in the soil of all of the sites. The sites were divided into more and less polluted ones. The obtained results indicate that the native P. schreberi from the more polluted sites accumulated significantly more Cd, Cr, Cu, Pb and Zn than the transplanted moss from the same sites. The transplanted P. schreberi from the less polluted sites accumulated significantly more Cr, Pb, Zn, significantly less Cu and comparable amounts of Cd, as compared to the native moss. The selection of native versus transplant P. schreberi as a bioindicator depends on the level of pollution.

  5. Air born soil pollution assessment and mitigation in the south of ukraine

    NASA Astrophysics Data System (ADS)

    Titarenko, Olga; Kharytonov, Mykola; Moschner, Christin; Khlopova, Valentina M.

    2016-04-01

    different. Summary torch formed over each industrial city from the merger of numerous enterprises emissions, under the influence of wind can spread in the long distances.The main sources of soil pollution in Pavlograd city and suburban territories are mine tailings, heat supply companies, operating in Western Donbass coal, other industrial enterprises and transport. The coal and mine rocks contain significant amounts of heavy metals and rare earth elements, lead, zinc, vanadium, manganese, cobalt, chromium, germanium, cerium and others. Settling on the earth's surface, they form insoluble compounds and accumulate in the upper parts of the soil cover. The detection of acid rain impact for the vast number of analyzed soil samples (95 %) were weakly acidic pH (6.3 - 6.8). As a result of consistent mapping of pollution in the city of Pavlograd six heavy metals was obtained corresponding GIS map. Follow to the analysis of the GIS map, it becomes possible to select multiple halos increased density of total soil contamination with heavy metals. The total pollution index of multipollution level of soil contamination was calculated for generalization of the obtained results. For most of the analyzed samples, according to the above gradation, the environmental situation of the contamination of soils by heavy metals is changed from "moderately threatening" to "threatening". The conception of step by step integrated approach using phytostabilization and phytoremediation measures has been completed. Some rocks as sorbents for detoxification of contaminated soils with heavy metals were studied. The coefficients of heavy metals accumulation for some crops were established in model experiments.

  6. Interaction of heavy metals and pyrene on their fates in soil and tall fescue (Festuca arundinacea).

    PubMed

    Lu, Mang; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Min; Xu, Yu-Xin; Wu, Xue-Jiao

    2014-01-21

    90-Day growth chamber experiments were performed to investigate the interactive effect of pyrene and heavy metals (Cu, Cd, and Pb) on the growth of tall fescue and its uptake, accumulation, and dissipation of heavy metals and pyrene. Results show that plant growth and phytomass production were impacted by the interaction of heavy metals and pyrene. They were significantly decreased with heavy metal additions (100-2000 mg/kg), but they were only slightly declined with pyrene spiked up to 100 mg/kg. The addition of a moderate dosage of pyrene (100 mg/kg) lessened heavy metal toxicity to plants, resulting in enhanced plant growth and increased metal accumulation in plant tissues, thus improving heavy metal removal by plants. In contrast, heavy metals always reduced both plant growth and pyrene dissipation in soils. The chemical forms of Cu, Cd, and Pb in plant organs varied with metal species and pyrene addition. The dissipation and mineralization of pyrene tended to decline in both planted soil and unplanted soils with the presence of heavy metals, whereas they were enhanced with planting. The results demonstrate the complex interactive effects of organic pollutants and heavy metals on phytoremediation in soils. It can be concluded that, to a certain extent, tall fescue may be useful for phytoremediation of pyrene-heavy metal-contaminated sites. Further work is needed to enhance methods for phytoremediation of heavy metal-organics co-contaminated soil.

  7. Effects of natural factors on the spatial distribution of heavy metals in soils surrounding mining regions.

    PubMed

    Ding, Qian; Cheng, Gong; Wang, Yong; Zhuang, Dafang

    2017-02-01

    Various studies have shown that soils surrounding mining areas are seriously polluted with heavy metals. Determining the effects of natural factors on spatial distribution of heavy metals is important for determining the distribution characteristics of heavy metals in soils. In this study, an 8km buffer zone surrounding a typical non-ferrous metal mine in Suxian District of Hunan Province, China, was selected as the study area, and statistical, spatial autocorrelation and spatial interpolation analyses were used to obtain descriptive statistics and spatial autocorrelation characteristics of As, Pb, Cu, and Zn in soil. Additionally, the distributions of soil heavy metals under the influences of natural factors, including terrain (elevation and slope), wind direction and distance from a river, were determined. Layout of sampling sites, spatial changes of heavy metal contents at high elevations and concentration differences between upwind and downwind directions were then evaluated. The following results were obtained: (1) At low elevations, heavy metal concentrations decreased slightly, then increased considerably with increasing elevation. At high elevations, heavy metal concentrations first decreased, then increased, then decreased with increasing elevation. As the slope increased, heavy metal contents increased then decreased. (2) Heavy metal contents changed consistently in the upwind and downwind directions. Heavy metal contents were highest in 1km buffer zone and decreased with increasing distance from the mining area. The largest decrease in heavy metal concentrations was in 2km buffer zone. Perennial wind promotes the transport of heavy metals in downwind direction. (3) The spatial extent of the influence of the river on Pb, Zn and Cu in the soil was 800m. (4) The influence of the terrain on the heavy metal concentrations was greater than that of the wind. These results provide a scientific basis for preventing and mitigating heavy metal soil pollution in

  8. Heavy metals in Iberian soils: Removal by current adsorbents/amendments and prospective for aerogels.

    PubMed

    Vareda, João P; Valente, Artur J M; Durães, Luisa

    2016-11-01

    Heavy metals are dangerous pollutants that in spite of occurring naturally are released in major amounts to the environment due to anthropogenic activities. After being released in the environment, the heavy metals end up in the soils where they accumulate as they do not degrade, adversely affecting the biota. Because of the dynamic equilibria between soil constituents, the heavy metals may be present in different phases such as the solid phase (immobilized contaminants) or dissolved in soil solution. The latter form is the most dangerous because the ions are mobile, can leach and be absorbed by living organisms. Different methods for the decontamination of polluted soils have been proposed and they make use of two different approaches: mobilizing the heavy metals, which allows their removal from soil, or immobilization that maintains the metal concentrations in soils but keeps them in an inert form due to mechanisms like precipitation, complexation or adsorption. Mobilization of the heavy metals is known to cause leaching and increase plant uptake, so this treatment can cause greater problems. Aerogels are incredible nanostructured, lightweight materials with high surface area and tailorable surface chemistry. Their application in environmental cleaning has been increasing in recent years and very promising results have been obtained. The functionalization of the aerogels can give them the ability to interact with heavy metals, retaining the latter via strong adsorptive interactions. Thus, this review surveys the existing literature for remediation of soils using an immobilization approach, i.e. with soil amendments that increase the soil sorption/retention capacity for heavy metals. The considered framework was a set of heavy metals with relevance in polluted Iberian soils, namely Cd, Cr, Cu, Ni, Pb and Zn. Moreover, other adsorbents, especially aerogels, have been used for the removal of these contaminants from aqueous media; because groundwater and soil

  9. Method of degrading pollutants in soil

    DOEpatents

    Hazen, T.C.; Lopez-De-Victoria, G.

    1994-07-05

    Disclosed are a method and system for enhancing the motility of microorganisms. This is accomplished by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figures.

  10. Method of degrading pollutants in soil

    DOEpatents

    Hazen, Terry C.; Lopez-De-Victoria, Geralyne

    1994-01-01

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  11. Urban legacies and soil management affect the concentration and speciation of trace metals in Los Angeles community garden soils.

    PubMed

    Clarke, Lorraine Weller; Jenerette, G Darrel; Bain, Daniel J

    2015-02-01

    Heavy metals in urban soils can compromise human health, especially in urban gardens, where gardeners may ingest contaminated dust or crops. To identify patterns of urban garden metal contamination, we measured concentrations and bioavailability of Pb, As, and Cd in soils associated with twelve community gardens in Los Angeles County, CA. This included sequential extractions to partition metals among exchangeable, reducible, organic, or residual fractions. Proximity to road increased all metal concentrations, suggesting vehicle emissions sources. Reducible Pb increased with neighborhood age, suggesting leaded paint as a likely pollutant source. Exchangeable Cd and As both increased with road proximity. Only cultivated soils showed an increase in exchangeable As with road proximity, potentially due to reducing humic acid interactions while Cd bioavailability was mitigated by organic matter. Understanding the geochemical phases and metal bioavailability allows incorporation of contamination patterns into urban planning.

  12. Travel of pollution, and purification en route, in sandy soils

    PubMed Central

    Baars, J. K.

    1957-01-01

    The travel of pollution in sandy soils, and the extent to which purification takes place en route, are discussed, with special reference to the possible contamination of ground water—a problem which is of particular importance in the Netherlands, where the water-supply for many of the large towns is drawn from the water underneath the dunes. Specifically, two types of soil pollution are considered: (a) severe pollution of the surface layers with matter concentrated in a small volume of water (e.g., faecal matter from pit privies at camping-sites); and (b) moderate pollution of the surface layers with matter contained in large quantities of water (e.g., organic matter and bacteria in river water used for the artificial recharge of ground water). It is shown that in both these types of pollution the self-purification is sufficient to prevent contamination of the ground water, provided that the soil is very fine and—in the case of the first type—dry and well aerated, and provided that the ground-water level is not too high or the rate of infiltration too great. PMID:13472428

  13. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review.

    PubMed

    Mahar, Amanullah; Wang, Ping; Ali, Amjad; Awasthi, Mukesh Kumar; Lahori, Altaf Hussain; Wang, Quan; Li, Ronghua; Zhang, Zengqiang

    2016-04-01

    Mining operations, industrial production and domestic and agricultural use of metal and metal containing compound have resulted in the release of toxic metals into the environment. Metal pollution has serious implications for the human health and the environment. Few heavy metals are toxic and lethal in trace concentrations and can be teratogenic, mutagenic, endocrine disruptors while others can cause behavioral and neurological disorders among infants and children. Therefore, remediation of heavy metals contaminated soil could be the only effective option to reduce the negative effects on ecosystem health. Thus, keeping in view the above facts, an attempt has been made in this article to review the current status, challenges and opportunities in the phytoremediation for remediating heavy metals from contaminated soils. The prime focus is given to phytoextraction and phytostabilization as the most promising and alternative methods for soil reclamation.

  14. Immobilization of Ni by synthesising zeolite at low temperatures in a polluted soil.

    PubMed

    Belviso, Claudia; Cavalcante, Francesco; Ragone, Pietro; Fiore, Saverio

    2010-02-01

    Over the last few years a great deal of research has been carried out in order to develop remediation methods for reducing environmental risks due to polluting metals. Zeolite formation in contaminated soils mixed with coal fly ash could be a useful method to reduce both the availability and the mobility of metals in contaminated areas. In this study a soil sample--treated with coal fly ash and artificially contaminated with a high concentration of Ni--was used for synthesizing zeolite at low temperatures. The role played by this mineral in the immobilization of heavy metal was investigated. The materials were analysed chemically (sequential extraction) and by XRD and SEM-EDS analyses. The synthesis was carried out both in the laboratory and on a bench-scale for 1 year. Zeolite crystallization readily occurred after a month. The presence of Ni does not exert any influence on zeolite formation. On the other hand newly-formed zeolites reduce the toxicity of the element in the polluted soil. A reduction in heavy metal availability was observed after ammonium acetate extraction. The use of the modified BCR three-step sequential extraction (sequential extraction protocol developed by Community Bureau of Reference of the Commission of the European Communities) suggests that Ni mobilization takes place when zeolite structure collapses after the BCR second step. The Ni thus available was mobilized in the third step.

  15. Heavy metal pollution in Ancient Nara, Japan, during the eighth century

    NASA Astrophysics Data System (ADS)

    Kawahata, Hodaka; Yamashita, Shusuke; Yamaoka, Kyoko; Okai, Takashi; Shimoda, Gen; Imai, Noboru

    2014-12-01

    We quantitatively investigated the eighth century heavy metal pollution in Heijo-kyo (Ancient Nara), the first large, international city of Japan. In this metropolis, mercury, copper, and lead levels in soil were increased by urban activity and by the construction of the Great Buddha statue, Nara Daibutsu. Mercury and copper pollution associated with the construction of the statue was particularly high in the immediate vicinity of the statue, but markedly lower in the wider city environment. We therefore reject the hypothesis that extensive mercury pollution associated with the construction of the Nara Daibutsu made it necessary to abandon Ancient Nara, even though severe lead pollution was detected at several sites. The isotopic composition of the lead indicated that it originated mainly from the Naganobori mine in Yamaguchi, which was a major source of the copper for the Nara Daibutsu.

  16. Small mammals as biomonitors of metal pollution: a case study in Slovenia.

    PubMed

    Al Sayegh Petkovšek, Samar; Kopušar, Nataša; Kryštufek, Boris

    2014-07-01

    The transfer of lead, cadmium, zinc, mercury, copper and molybdenum from soil to the tissues of small mammals inhabiting differently polluted areas in Slovenia was investigated. Metals were determined in soil samples and in the livers of 139 individuals of five small mammal species, collected in 2012 in the vicinity of a former lead smelter, the largest Slovenian thermal power plant, along a main road and in a control area. The area in the vicinity of former lead smelter differs considerably from other study areas. The soil from that area is heavily polluted with Pb and Cd. The mean metal concentrations in the liver, irrespective of species, varied in the following ranges-Pb: 0.40-7.40 mg/kg fw and Cd: 0.27-135 mg/kg fw and reached effect concentrations at which toxic effects can be expected in a significant proportion of the livers of the small mammal specimens (Pb 40 %, Cd 67 %). These findings indicate that the majority of small mammals trapped in the area of the former lead smelter are at risk of toxic effects due to the very high bioaccumulation of Pb and Cd in the organism. On the contrary, Pd and Cd concentrations in the livers of small mammals sampled in the vicinity of the thermal power plant and along the main road were comparable with reference values and considerably lower than effect concentrations. Additionally, the study suggests that Apodemus flavicollis and Myodes glareolus are very suitable biomonitors of metal pollution.

  17. Heavy metals pollution in the environment of Kathmandu

    NASA Astrophysics Data System (ADS)

    Shrestha, H. D.

    2003-05-01

    Nepal situated on the lap of mighty Himalayas is now threatened by heavy metals pollution in her atmosphere, land and river system. The indigenious technology of Nepal heavily depends on the use of mercury in gold plating technique. The mercury vapours are released to the atmosphere, when gold-amalgam smeared untesils and idols are strongly heated. Absence of control mechanism to collect mercury vapours has not only polluted atmosphere but it has also caused health hazard to the workers working in the poorly ventilated workshop. The craftsmen and articians have been victim of mercury poisoining. Another heavy metal that has caused atmospheric pollution in Nepal is lead. The lead containing gasoline used in greater amount in vehicles has released more and more lead in the from of exhaust gas into the atmosphere. The atmospheric pollution has been more acute in Nepal due to the use of lead gasoline in used vehicles. Likewise the river system of the urban areas of Nepal is polluted by heavy metals like cadmium, lead salt, ferrous salt, etc. The effulents of battery industries, leather factories, dye factories are directly dumped into the river system of urban areas. This has killed many aquatic animals of rivers. Thus Nepal is facing the problem of heavy metals pollution in her environnent.

  18. Using soil health to assess ecotoxicological impacts of pollutants on soil microflora.

    PubMed

    Bécaert, Valérie; Deschênes, Louise

    2006-01-01

    Microorganisms are essential for a properly functioning soil ecosystem. However, few methods allow an ecotoxicological evaluation of pollutant impact on the soil microbial community. This review proposes the use of the concept of soil health as an ecotoxicological evaluation tool for soil microflora. Initially limited to sustainable agriculture, the concept of soil health is now being applied to novel situations including contaminated and remediated soils. A large amount of work has been published in the last few decades on soil health indicators, and a review of the most relevant studies is presented here. The most cited work is that of the S-5518 committee set up in 1997 by the Soil Science Society of America (SSSA), which proposed to define soil quality as being "the capacity of a soil to function within the limits of an ecosystem, to support biological production, to maintain environmental quality and to support fauna and flora health." The soil health indicators reviewed here are the ones based on this definition because it relates well to sustainability and durability of the soil functions. Several indicators proposed in these studies could be employed in the evaluation of the ecotoxicological impact of pollutants on the soil microbial community, including microbial diversity, microbial activity, and functional stability. However, research is still required to unify the concept, to set threshold values, and to standardize methodologies.

  19. Common plants as alternative analytical tools to monitor heavy metals in soil

    PubMed Central

    2012-01-01

    Background Herbaceous plants are common vegetal species generally exposed, for a limited period of time, to bioavailable environmental pollutants. Heavy metals contamination is the most common form of environmental pollution. Herbaceous plants have never been used as natural bioindicators of environmental pollution, in particular to monitor the amount of heavy metals in soil. In this study, we aimed at assessing the usefulness of using three herbaceous plants (Plantago major L., Taraxacum officinale L. and Urtica dioica L.) and one leguminous (Trifolium pratense L.) as alternative indicators to evaluate soil pollution by heavy metals. Results We employed Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) to assess the concentration of selected heavy metals (Cu, Zn, Mn, Pb, Cr and Pd) in soil and plants and we employed statistical analyses to describe the linear correlation between the accumulation of some heavy metals and selected vegetal species. We found that the leaves of Taraxacum officinale L. and Trifolium pratense L. can accumulate Cu in a linearly dependent manner with Urtica dioica L. representing the vegetal species accumulating the highest fraction of Pb. Conclusions In this study we demonstrated that common plants can be used as an alternative analytical tool for monitoring selected heavy metals in soil. PMID:22594441

  20. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    PubMed

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments.

  1. Characterization of heavy metal contamination in the soil and sediment of the Three Gorges Reservoir, China.

    PubMed

    Wang, Tujin; Pan, Jin; Liu, Xuelian

    2017-02-23

    This paper analyzes the concentration, distribution, bioavailability, and potential heavy metal contamination risk of Cu, Pb, Cd, Zn, and Cr in the soil and sediment of the Three Gorges Reservoir (TGR). In this paper, 14 stations that cover the upper reaches to the lower reaches of the TGR were selected. The spatial distribution of heavy metals in the TGR showed that the average concentrations of Cu, Pb, Cd, Zn, and Cr were higher in the upper and lower reaches than those in the middle reaches because of industrial and agricultural activities as well as natural processes (e.g., soil erosion, rock weathering). The results also indicated that multiple pollution sources and complex geomorphological, geochemical and biological processes resulted in remarkably higher heavy metal concentrations in the soils of the water-level-fluctuation zone (WLFZ) than in the soils of the banks. The Cu, Pb, Cd, Zn, and Cr concentrations in the soils of the TGR did not exceed their respective maximum allowable concentration (MAC) values for agricultural soils in China, indicating that the soil in the TGR was not seriously contaminated with Cu, Pb, Cd, Zn, or Cr. However, the mean concentrations of all the studied metals in the sediments were higher than the geochemical background values and much higher than those in the soils, thus indicating the effect of the pollution sources and the altered hydrologic conditions that occurred after the impoundment of the TGR. A geoaccumulation index analysis indicated that the TGR sediments were moderately polluted with Cu and Cd, unpolluted to moderately polluted with Pb and Cr, and unpolluted with Zn. Fractionation studies indicated that Cd was mainly present in the non-residual fractions and exhibited great instability and bioavailability; furthermore, the alternating wetting and drying of the WFLZ soils enhance the mobility and bioavailability of Cd. Thus, greater attention should be paid to Cd pollution in the TGR because of its higher risk

  2. Phytoextraction of As and Fe using Hibiscus cannabinus L. from soil polluted with landfill leachate.

    PubMed

    Meera, M; Agamuthu, P

    2012-02-01

    Terrestrial plants as potential phytoremediators for remediation of surface soil contaminated with toxic metals have gained attention in clean-up technologies. The potential of kenaf (Hibiscus cannabinus L.) to offer a cost-effective mechanism to remediate Fe and As from landfill leachate-contaminated soil was investigated. Pot experiment employing soil polluted with treatments of Jeram landfill leachate was conducted for 120 days. Plants were harvested after 8th, 12th, and 16th weeks of growth. Accumulation of Fe and As was assessed based on Bioconcentration Factor and Translocation Factor. Results showed sequestration of 0.06-0.58 mg As and 66.82-461.71 mg Fe per g plant dry weight in kenaf root, which implies that kenaf root can be an bioavailable sink for toxic metals. Insignificant amount of Fe and As was observed in the aerial plant parts (< 12% of total bioavailable metals). The ability of kenaf to tolerate these metals and avoid phytotoxicity could be attributed to the stabilization of the metals in the roots and hence reduction of toxic metal mobility (TF < 1). With the application of leachate, kenaf was also found to have higher biomass and subsequently recorded 11% higher bioaccumulation capacity, indicating its suitability for phytoextraction of leachate contaminated sites.

  3. BIOAVAILABILITY OF METALS IN CONTAMINATED SOIL AND DUST

    EPA Science Inventory

    Due to widespread metal contamination, it is necessary to characterize soils suspected of metal contamination and determine if the metal levels in these soils pose a hazard. Metal toxicity is often not directly related to the total concentration of metals present due to a numb...

  4. [Temporal-spatial difference of ecotoxicity and heavy metals pollution in Shima catchment, Dongguan].

    PubMed

    Gao, Lei; Chen, Jian-Yao; Ke, Zhi-Ting; Wang, Jiang; Yang, Xue-Yun; Shimizu, Yuta

    2013-08-01

    Shima River, a tributary of Dongjiang River, located in Dongguan City of Guangdong Province, has been seriously polluted in the last 30 years. Water samples were collected from the river and the aquifer and the soil samples were collected as well in the wet (June) and dry (February) season to investigate the temporal and spatial variations of water quality in terms of heavy metal concentrations and inhibition rate of the luminescent bacterium (Vibrio fischeri, LUMIStox 300). Heavy metal concentrations and inhibition rate in river water were found decreasing from the upstream to the downstream, with metal concentrations exceeding the national surface water quality standard (Class I) for all samples and a highest inhibition of 38.34% (equivalent to moderate toxic) at R1 in the dry season. Significant difference (P < 0.01 or P < 0.001) in the wet and dry season was identified in both metal concentrations and inhibition rate, except at R11, which showed a inhibition rate of 15.56%, higher than those in all other samples in the wet season. Inhibition rate at GW4, GW5 and GW6 showed significant difference (P < 0.01 or P < 0.001) in the two periods, and the highest inhibition rate (15.88%) at GW6 in the dry season was considered as low in toxicity. The positive correlations (P < 0.05 or P < 0.01) between heavy metals (Zn, Fe, Mn and Ni) and inhibition rate were identified with correlation coefficients of 0.452, 0.567, 0.726 and 0.475, respectively. Heavy metal pollution of soil (Cu, Ni and Zn) near the river was due to the interaction between the river and the groundwater. Cd was heavily accumulated in the soil, while elevated concentrations of Fe and Mn were found in the river and the groundwater was heavily polluted by Ni.

  5. Analysis of the Metals in Soil-Water Interface in a Manganese Mine.

    PubMed

    Ren, Bozhi; Wang, Qian; Chen, Yangbo; Ding, Wenjie; Zheng, Xie

    2015-01-01

    In order to reveal the influence of the metals of soil-water interface in a manganese mine (Xiangtan, China), on local water environment, there are six kinds of metals (Mn, Ni, Cu, Zn, Cd, and Pb) characterized by measuring their concentration, correlation, source, and special distribution using principal component analysis, single factor, and Nemero comprehensive pollution index. The results showed that the corresponding average concentration was 0.3358, 0.045, 0.0105, 0.0148, 0.0067, and 0.0389 mg/L. The logarithmic concentration of Mn, Zn, and Pb was normal distribution. The correlation coefficients (between Mn and Pb, Mn and Zn, Mn and Ni, Cu and Zn, Cu and Pb, and Zn and Cd) were found to range from 0.5 to 0.6, and those between Cu and Ni and Cu and Cd were below 0.3. It was found that Zn and Mn pollution were caused primarily by ore mining, mineral waste transportation, tailing slag, and smelting plants, while Cu and Ni mainly originate from the mining industry activities and the traffic transportation in the mining area. In addition, the Cd was considered to be produced primarily from the agricultural or anthropogenic activities. The pollution indexes indicated that metal pollution degree was different in soil-water interface streams as listed in increasing order of pollution level as Zn > Ni > Cu > Pb > Mn > Cd. For all of the pollution of the soil-water interface streams, there was moderate metal pollution but along the eastern mine area the pollution seemed to get more serious. There was only a small amount of soil-water interface streams not contaminated by the metals.

  6. Analysis of the Metals in Soil-Water Interface in a Manganese Mine

    PubMed Central

    Ren, Bozhi; Wang, Qian; Chen, Yangbo; Ding, Wenjie; Zheng, Xie

    2015-01-01

    In order to reveal the influence of the metals of soil-water interface in a manganese mine (Xiangtan, China), on local water environment, there are six kinds of metals (Mn, Ni, Cu, Zn, Cd, and Pb) characterized by measuring their concentration, correlation, source, and special distribution using principal component analysis, single factor, and Nemero comprehensive pollution index. The results showed that the corresponding average concentration was 0.3358, 0.045, 0.0105, 0.0148, 0.0067, and 0.0389 mg/L. The logarithmic concentration of Mn, Zn, and Pb was normal distribution. The correlation coefficients (between Mn and Pb, Mn and Zn, Mn and Ni, Cu and Zn, Cu and Pb, and Zn and Cd) were found to range from 0.5 to 0.6, and those between Cu and Ni and Cu and Cd were below 0.3. It was found that Zn and Mn pollution were caused primarily by ore mining, mineral waste transportation, tailing slag, and smelting plants, while Cu and Ni mainly originate from the mining industry activities and the traffic transportation in the mining area. In addition, the Cd was considered to be produced primarily from the agricultural or anthropogenic activities. The pollution indexes indicated that metal pollution degree was different in soil-water interface streams as listed in increasing order of pollution level as Zn > Ni > Cu > Pb > Mn > Cd. For all of the pollution of the soil-water interface streams, there was moderate metal pollution but along the eastern mine area the pollution seemed to get more serious. There was only a small amount of soil-water interface streams not contaminated by the metals. PMID:26167333

  7. The use of mosses as environmental metal pollution indicators.

    PubMed

    Aceto, Maurizio; Abollino, Ornella; Conca, Raffaele; Malandrino, Mery; Mentasti, Edoardo; Sarzanini, Corrado

    2003-01-01

    The possibility of using mosses as environmental indicators of metal pollution has been investigated. Mosses of the species Bryum argenteum were collected from different parts of Piedmont (Italy), ranging from highly polluted areas to nearly uncontaminated mountain areas. Periodical samplings were planned in every site on a monthly base, in order to check variations of metal uptake throughout one year; correlations with pluviometric and thermal patterns were investigated for all sampling stations. On every moss sample 20 elements, ranging from major (K, P, Al, Ca, Fe and Mg) to minor (Mn, Na, Ti and Zn) and trace (As, Ba, Cd, Co, Cr, Cu, Li, Ni, Pb and Sr), were quantitatively determined by inductively coupled plasma-atomic emission spectrometry or graphite furnace-atomic absorption spectrometry, depending on the needed sensitivity. Statistical analyses, carried out with principal component analysis and cluster analysis methods, revealed that a good correlation exists between metal content in mosses and pollution degree in the areas sampled.

  8. The impact of environmental Pollution on soil and climate change, and how to deal with.

    NASA Astrophysics Data System (ADS)

    Kaadan, M. Ihsan

    2010-05-01

    introduction: Every person on Earth contributes to the state of our planet, because we all use natural resources and produce waste materials. The more people there are, the more damage they do through pollution. results: Pollution can kill or sicken plants, animals, and people. Pollution can change the environment. Pollution can get into the air. Pollution can also get into soil and water. From there, pollutants can get into the food chain. methods: Laws can stop factories from dumping poisonous chemicals in lakes, rivers, and the ocean. Engineers can build cars that burn less gasoline. Scientists are looking for fuels to replace coal and oil. They are looking for ways to use the power in wind and in rays from the Sun. We can help cut down on the amount of garbage we make. We can recycle paper, plastic, glass bottles, and metal cans. Recycled material gets used over again. Recycling helps cut down on pollution. Discussion: Humans are very inventive and intelligent, as well as very destructive and careless. If we understand that our environment is fragile, then we can all help to save it, and the precious and life-giving resources that it provides.

  9. Heavy metal pollution in Tianjin, China—its bioavailability prediction and mitigation practice

    NASA Astrophysics Data System (ADS)

    Sun, Hongwen; Wang, Ting; Zhang, Yanfeng; Jiang, Chunxiao; Wang, Jing

    2010-05-01

    Irrigation of sewage water has been applied for agriculture production in Tianjin for over 50 years, for Tianjin is a city lacking water resource. Based on the result of an extensive investigation on heavy metals in the farmland of Tianjin in 2005, 21 samples (including soil and lettuce) were collected from most the polluted areas along the three sewage rivers. Nine of the 21 soil samples exceeded the National Soil Quality Standard for cadmium (0.6 mg/kg) and 7 exceeded the standard for mercury (1.0 mg/kg). However, the heavy metal contents in lettuce did not correlate the heavy metal concentrations in soil. The bioavailability changed with soil properties. The part extracted by diethylene-triaminepentaacetic acid (DTPA) and another mixed extraction solvent, M3, were used to predict the bioavailability of heavy metals. The solvent extraction gave good prediction on Cd absorbance in lettuce, with correlative coefficient larger than 0.9. However, it failed for Hg. This may be because Hg is relatively volatile, and the absorption patterns are complex for Hg. To set up a mitigation method for heavy metal pollution in farm land, friendly to agricultural production, in-situ fixing strategy was adopted. Bacillus subtilis and Candida tropicalis were induced by ultraviolet (UV) radiation and HNO2 treatment to get mutated strains that can tolerate and accumulate higher level of cadmium. A strain of B38 from B. subtilis showed the highest Cd tolerance, and was used for further experiment. Though B38 could accumulate Cd from water solution, but it did not fix Cd in soil. This is due to that the amended microorganisms could not propagate well in the polluted soil. Novogro, which is produced from the waste of an enzyme factory, was selected out from several materials to amend together with B38. After the co-amendment of Novogro and B38, the DTPA extractable Cd decreased by 72%, and B38 could propagate efficiently as indicated by DGGE test. Applying conditions, such as amendment

  10. Heavy Metal Phytoremediation: Microbial Indicators of Soil Health for the Assessment of Remediation Efficiency

    NASA Astrophysics Data System (ADS)

    Epelde, Lur; Ma Becerril, José; Alkorta, Itziar; Garbisu, Carlos

    Phytoremediation is an effective, non-intrusive, inexpensive, aesthetically pleasing, socially accepted, promising phytotechnology for the remediation of polluted soils. The objective of any soil remediation process must be not only to remove the contaminant(s) from the soil but, most importantly, to restore the continued capacity of the soil to perform or function according to its potential (i.e., to recover soil health). Hence, indicators of soil health are needed to properly assess the efficiency of a phytoremediation process. Biological indicators of soil health, especially those related to the size, activity and diversity of the soil microbial communities, are becoming increasingly used, due to their sensitivity and capacity to provide information that integrates many environmental factors. In particular, microbial indicators of soil health are valid tools to evaluate the success of metal phytoremediation procedures such as phytoextraction and phytostabilization processes.

  11. Effects of heavy metal pollution on oak leaf microorganisms.

    PubMed

    Bewley, R J

    1980-12-01

    During the growing season, comparisons were made of the leaf surface microflora of (i) two groups of mature oak trees, one in the vicinity of a smelting complex contaminated by heavy metals and the other at a relatively uncontaminated site, and (ii) two groups of oak saplings at the uncontaminated site, one of which was sprayed with zinc, lead, and cadmium to simulate the heavy metal pollution from the smelter without the complicating effects of other pollutants. Total viable counts of bacteria, yeasts, and filamentous fungi (isolated by leaf washing) were generally little affected by the spraying treatment, whereas polluted leaves of mature trees supported fewer bacteria compared with leaves of mature trees at the uncontaminated site. Numbers of pigmented yeasts were lower on polluted oaks and on metal-dosed saplings compared with their respective controls. Polluted leaves of mature trees supported both greater numbers of Aureobasidium pullulans and Cladosporium spp. and a greater percentage of metal-tolerant fungi compared with oak leaves at the uncontaminated site. There were no significant overall differences in the degree of mycelial growth between the two groups of saplings or the mature trees.

  12. Elevated concentrations of trace elements in soil do not necessarily reflect metals available to plants.

    PubMed

    Antonious, George F; Silitonga, Maifan R; Tsegaye, Teferi D; Unrine, Jason M; Coolong, Timothy; Snyder, John C

    2013-01-01

    Bioaccumulation and entry of trace elements from soil into the food chain have made trace-elements major environmental pollutants. The main objective of this investigation was to study the impact of mixing native agricultural soil with municipal sewage sludge (SS) or SS mixed with yard waste (SS+YW) compost on total concentration of trace elements in soil, metals available to plants, and mobility of metals from soil into peppers and melon fruits. Regardless of soil treatment, the average concentrations of Ni, Cd, Pb, Cr, Cu, Zn, and Mo in melon fruits were 5.2, 0.7, 3.9, 0.9, 34.3, 96.1, and 3.5μg g(-1), respectively. Overall concentrations of Ni, Cd, Pb, and Zn in melon fruits were significantly greater (P < 0.05) than pepper fruits. No significant differences were found in Cr, Cu, and Mo concentrations between pepper and melon fruits at harvest time. Total metal concentrations and metal ions in soil available to melon and pepper plants were also determined. Total concentration of each metal in the soil was significantly greater than concentration of metal ions available to plants. Elevated Ni and Mo bioaccumulation factor (BAF > 1) of melon fruits of plants grown in SS+YW mixed soil is a characteristic that would be less favorable when plants grown on sites having high concentrations of these metals.

  13. EFFECT OF BIOSOLIDS APPLICATION ON SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY

    EPA Science Inventory

    Addition of biosolids to soils increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) and alters the chemistry and phytoavailability of these metals. This alteration in phytoavailability associated with biosolids amended soil was recognized and utilized ...

  14. Ecological effects of combined pollution associated with e-waste recycling on the composition and diversity of soil microbial communities.

    PubMed

    Liu, Jun; He, Xiao-Xin; Lin, Xue-Rui; Chen, Wen-Ce; Zhou, Qi-Xing; Shu, Wen-Sheng; Huang, Li-Nan

    2015-06-02

    The crude processing of electronic waste (e-waste) has led to serious contamination in soils. While microorganisms may play a key role in remediation of the contaminated soils, the ecological effects of combined pollution (heavy metals, polychlorinated biphenyls, and polybrominated diphenyl ethers) on the composition and diversity of microbial communities remain unknown. In this study, a suite of e-waste contaminated soils were collected from Guiyu, China, and the indigenous microbial assemblages were profiled by 16S rRNA high-throughput sequencing and clone library analysis. Our data revealed significant differences in microbial taxonomic composition between the contaminated and the reference soils, with Proteobacteria, Acidobacteria, Bacteroidetes, and Firmicutes dominating the e-waste-affected communities. Genera previously identified as organic pollutants-degrading bacteria, such as Acinetobacter, Pseudomonas, and Alcanivorax, were frequently detected. Canonical correspondence analysis revealed that approximately 70% of the observed variation in microbial assemblages in the contaminated soils was explained by eight environmental variables (including soil physiochemical parameters and organic pollutants) together, among which moisture content, decabromodiphenyl ether (BDE-209), and copper were the major factors. These results provide the first detailed phylogenetic look at the microbial communities in e-waste contaminated soils, demonstrating that the complex combined pollution resulting from improper e-waste recycling may significantly alter soil microbiota.

  15. Remediation processes for heavy metals contaminated soils

    SciTech Connect

    Torma, G.A.; Torma, A.E.; Hsu, Pei-Cheng

    1996-12-31

    This paper provides information on selected technologies available for remediation of metal contaminated soils and industrial effluent solutions. Because some of the industrial sites are contaminated with organics (solvents, gasolines and oils), an effort has been made to introduce the most frequently used cost-effective cleanup methods, such as {open_quotes}bioventing{close_quotes} and {open_quotes}composting.{close_quotes} The microorganisms involved in these processes are capable of degrading organic soil contaminants to environmentally harmless compounds: water and carbon dioxide. Heavy metals and radionuclides contaminated mining and industrial sites can be remediated by using adapted heap and dump leaching technologies, which can be chemical in nature or bio-assisted. The importance of volume reduction by physical separation is discussed. A special attention is devoted to the remediation of soils by leaching (soil washing) to remove heavy metal contaminants, such as chromium, lead, nickel and cadmium. Furthermore, the applicability of biosorption technology in the remediation of heavy metals and radionuclides contaminated industrial waste waters and acidic mining effluent solutions was indicated. 60 refs., 9 figs.

  16. Environmental Pollution Studies in an Underdeveloped Country: (1) Heavy Metal Pollution in Ibadan, Nigeria.

    ERIC Educational Resources Information Center

    Onianwa, P. C.

    1993-01-01

    Reviews research studies related to the monitoring of trace heavy metals in environmental samples such as plants, water, soils, and other natural resources in the city of Ibadan, Nigeria. Research results indicate a significant increase in toxic heavy metal levels has occurred, implying the need for environmental education. (Contains 31…

  17. Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash.

    PubMed

    Terzano, Roberto; Spagnuolo, Matteo; Medici, Luca; Vekemans, Bart; Vincze, Laszlo; Janssens, Koen; Ruggiero, Pacifico

    2005-08-15

    This study deals with the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 degrees C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30 degrees C and 40% at 60 degrees C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques. These techniques were used for the visualization of the spatial distribution and the speciation of Cu in and/or on the neo-formed zeolite particles. In particular, micro XRF (X-ray fluorescence) tomography showed direct evidence that Cu can be entrapped as clusters inside the porous zeolitic structures while mu-XANES (X-ray absorption near edge structure) spectroscopy determinations revealed Cu to be present mainly as Cu(ll) hydroxide and Cu(ll) oxide. The reported results could be useful as a basic knowledge for planning new technologies for the on site physicochemical stabilization of heavy metals in heavily polluted soils.

  18. Copper stabilization by zeolite synthesis in polluted soils treated with coal fly ash

    SciTech Connect

    Roberto Terzano; Matteo Spagnuolo; Luca Medici; Bart Vekemans; Laszlo Vincze; Koen Janssens; Pacifico Ruggiero

    2005-08-15

    This paper reports on the process of zeolite formation in an agricultural soil artificially polluted by high amounts of Cu (15 mg of Cu/g of soil dry weight) and treated with fused coal fly ash at 30 and 60 C and how this process affects the mobility and availability of the metal. As a consequence of the treatment, the amount of dissolved Cu, and thus its mobility, was strongly reduced, and the percentage of the metal stabilized in the solid phase increased over time, reaching values of 30% at 30{sup o}C and 40% at 60{sup o}C. The physicochemical phenomena responsible for Cu stabilization in the solid phase have been evaluated by EDTA sequential extractions and synchrotron radiation based X-ray microanalytical techniques. These techniques were used for the visualization of the spatial distribution and the speciation of Cu in and/or on the neo-formed zeolite particles. In particular, micro XRF (X-ray fluorescence) tomography showed direct evidence that Cu can be entrapped as clusters inside the porous zeolitic structures while -{mu}XANES (X-ray absorption near edge structure) spectroscopy determinations revealed Cu to be present mainly as Cu(II) hydroxide and Cu(II) oxide. The reported results could be useful as a basic knowledge for planning new technologies for the on-site physicochemical stabilization of heavy metals in heavily polluted soils. 32 refs., 5 figs.

  19. Bivalve mollusks in metal pollution studies: from bioaccumulation to biomonitoring.

    PubMed

    Zuykov, Michael; Pelletier, Emilien; Harper, David A T

    2013-09-01

    Contemporary environmental challenges have emphasized the need to critically assess the use of bivalve mollusks in chemical monitoring (identification and quantification of pollutants) and biomonitoring (estimation of environmental quality). Many authors, however, have considered these approaches within a single context, i.e., as a means of chemical (e.g. metal) monitoring. Bivalves are able to accumulate substantial amounts of metals from ambient water, but evidence for the drastic effects of accumulated metals (e.g. as a TBT-induced shell deformation and imposex) on the health of bivalves has not been documented. Metal bioaccumulation is a key tool in biomonitoring; bioavailability, bioaccumulation, and toxicity of various metals in relation to bivalves are described in some detail including the development of biodynamic metal bioaccumulation model. Measuring metal in the whole-body or the tissue of bivalves themselves does not accurately represent true contamination levels in the environment; these data are critical for our understanding of contaminant trends at sampling sites. Only rarely has metal bioaccumulation been considered in combination with data on metal concentrations in parts of the ecosystem, observation of biomarkers and environmental parameters. Sclerochemistry is in its infancy and cannot be reliably used to provide insights into the pollution history recorded in shells. Alteration processes and mineral crystallization on the inner shell surface are presented here as a perspective tool for environmental studies.

  20. Trace metal dynamics in floodplain soils of the river Elbe: a review.

    PubMed

    Schulz-Zunkel, Christiane; Krueger, Frank

    2009-01-01

    This paper reviews trace metal dynamics in floodplain soils using the Elbe floodplains in Germany as an example of extraordinary importance because of the pollution level of its sediments and soils. Trace metal dynamics are determined by processes of retention and release, which are influenced by a number of soil properties including pH value, redox potential, organic matter, type and amount of clay minerals, iron-, manganese- and aluminum-oxides. Today floodplains act as important sinks for contaminants but under changing hydraulic and geochemical conditions they may also act as sources for pollutants. In floodplains such changes may be extremes in flooding or dry periods that particularly lead to altered redox potentials and that in turn influence the pH value, the mineralization of organic matter as well as the charge of the pedogenic oxides. Such reactions may affect the bioavailability of trace metals in soils and it can be clearly seen that the bioavailability of metals is an important factor for estimating trace metal remobilization in floodplain soils. However as bioavailability is not a constant factor, there is still a lack of quantification of metal mobilization particularly on the basis of changing geochemical conditions. Moreover, mobile amounts of metals in the soil solution do not indicate to which extent remobilized metals will be transported to water bodies or plants and therefore potentially have toxicological effects. Consequently, floodplain areas still need to be taken into consideration when studying the role and behavior of sediments and soils for transporting pollutants within river systems, particularly concerning the Water Framework Directive.

  1. Efficiency of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from contaminated soil.

    PubMed

    Singh, Anil Kumar; Cameotra, Swaranjit Singh

    2013-10-01

    This study describes the potential application of lipopeptide biosurfactants in removal of petroleum hydrocarbons and heavy metals from the soil samples collected from industrial dumping site. High concentrations of heavy metals (like iron, lead, nickel, cadmium, copper, cobalt and zinc) and petroleum hydrocarbons were present in the contaminated soil samples. Lipopeptide biosurfactant, consisting of surfactin and fengycin was obtained from Bacillus subtilis A21. Soil washing with biosurfactant solution removed significant amount of petroleum hydrocarbon (64.5 %) and metals namely cadmium (44.2 %), cobalt (35.4 %), lead (40.3 %), nickel (32.2 %), copper (26.2 %) and zinc (32.07 %). Parameters like surfactant concentration, temperature, agitation condition and pH of the washing solution influenced the pollutant removing ability of biosurfactant mixture. Biosurfactant exhibited substantial hydrocarbon solubility above its critical micelle concentration. During washing, 50 % of biosurfactant was sorbed to the soil particles decreasing effective concentration during washing process. Biosurfactant washed soil exhibited 100 % mustard seed germination contradictory to water washed soil where no germination was observed. The results indicate that the soil washing with mixture of lipopeptide biosurfactants at concentrations above its critical micelle concentration can be an efficient and environment friendly approach for removing pollutants (petroleum hydrocarbon and heavy metals) from contaminated soil.

  2. Magnetic response to air pollution recorded by soil and dust-loaded leaves in a changing industrial environment

    NASA Astrophysics Data System (ADS)

    Cao, Liwan; Appel, Erwin; Hu, Shouyun; Yin, Gang; Lin, Hai; Rösler, Wolfgang

    2015-10-01

    Linfen city is one of the World's most polluted cities due to uncontrolled industrial activities of coal combustion releasing huge amounts of heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) into the atmosphere. We used soil and leaves as receptors for atmospheric particulate matter to test the efficiency of magnetic approach for assessing and discriminating past and present pollution. The results indicate that strong magnetic particles in topsoil and leaf samples are mainly low-coercivity magnetite, occurring in a larger grain-size range than in background soil, which is helpful to separate anthropogenic and natural sources. Topsoil magnetic signals reflect pollutants, which accumulated over the last decades. Differences in the vertical distribution of magnetic properties between undisturbed and disturbed (cultivated) soil profiles show that the plowing depth is the most important factor for migration of pollutants in cultivated soils. Magnetic susceptibility (MS) values of leaf samples reflect the present state of pollution and can even trace seasonal changes. Spatial maps of MS identify differences of the past and present environmental conditions caused by the shutdown of industrial sites within the last decade. Correlation coefficients between analyzed HM contents (Fe, Cr, Ni, Cu, Pb) and MS values are significantly positive in leaf samples, and still moderate in topsoil samples. Our results demonstrate the practical and economical value of magnetic techniques for pollution assessment, also for the studied case with a complex pollution history, a relatively high magnetic background and disturbing land use.

  3. Metal immobilization in soils using synthetic zeolites.

    PubMed

    Oste, Leonard A; Lexmond, Theo M; Van Riemsdijk, Willem H

    2002-01-01

    In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca.

  4. [Bioremediation of oil-polluted soil with an association including the fungus Pleurotus ostreatus and soil microflora].

    PubMed

    Pozdniakova, N N; Nikitina, V E; Turkovskaia, O V

    2008-01-01

    The possibility of application of the Pleurotus ostreatus D1-soil microflora to bioremediation of oil-polluted soils was studied. The fungus degraded mainly the aromatic fraction, whereas soil microflora intensely degraded paraffin and naphthene oil fractions. Introduction of the fungus Pleurotus ostreatus D to soil induces degradation of a wider range of oil hydrocarbons. It is reasonable to further investigate the discovered phenomenon in order to improve procedures of remediation of oil-polluted soils.

  5. Experimental assessment of the microbocenosis stability in chemically polluted soils

    NASA Astrophysics Data System (ADS)

    Sorokin, N. D.; Grodnitskaya, I. D.; Shapchenkova, O. A.; Evgrafova, S. Yu.

    2009-06-01

    Water solutions of fluorine and sulfur-containing salts of sodium—NaF, Na2SO3, and NaF + Na2SO3 (30, 150, and 300 MPC, respectively)—and salts of heavy metals—(Cu(NO3)2 · 3H2O, NiSO4, and Pb(NO3)2 (10, 25, and 50 MPC, respectively)—were applied as pollutants to dark gray forest soils of experimental plots (1 m2) in Siberian larch ( Larix sibirica Ledeb.) plantations once per growing period. The soil samples for the determination of the microbial biomass, respiration, and enzymatic activity (urease, protease, invertase, and catalase) were taken from the mineral soil layer (0-5 cm) at the beginning of the growing seasons before the application of the pollutants then in 14- to 18-day intervals every month. The fluorine and sulfur-containing compounds applied activated the respiration, lowered the enzymatic activity of the microorganisms, and decreased the microbial biomass by 1.3-2.2 times in the soils of the test plots as compared to the control one. The single application of Cu, Ni, and Pb increased the microbial biomass, while the changes in the basal respiration were compatible with its natural variability. Two months after the beginning of the experiment, all the parameters characterizing the functioning of the soil microbocenoses were restored.

  6. Screening model for volatile pollutants in dual porosity soils

    NASA Astrophysics Data System (ADS)

    Hantush, Mohamed M.; Govindaraju, Rao. S.; Mariño, Miguel A.; Zhang, Zhonglong

    2002-03-01

    This paper develops mass fraction models for transport and fate of agricultural pollutants in structured two-region soils. Mass fraction index models, based on a semi-infinite domain solution, are derived that describe leaching at depth, vapor losses through soil surface, absorption, and degradation in the dynamic- and stagnant-water soil regions. The mo