Sample records for metal reduction progress

  1. Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts.

    PubMed

    Zion, Noam; Friedman, Ariel; Levy, Naomi; Elbaz, Lior

    2018-04-23

    One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such as metal-organic frameworks and polymeric networks, all with nonpyrolyzed, well-defined molecular catalysts for oxygen reduction reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Beyond alkyl transfer: Synthesis of main group metal (Mg, Ca, Zn) silyl and tris(oxazolinyl)borato complexes and their stoichiometric and catalytic reactions with borane Lewis acids and carbonyls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lampland, Nicole Lynn

    2015-05-09

    Recently, the fundamental knowledge of main group metal chemistry has grown. This progress is crucial for the further development of main group metal compounds in silicon chemistry and catalysis and for advancing their applications as green alternatives to many rare earth and transition metal compounds. This thesis focuses on reactivity beyond the welldocumented alkyl-transfer applications for main group metals, and it highlights examples of reactions with Lewis acids and the reduction of carbonyls.

  3. Semiconductor-Based Photoelectrochemical Conversion of Carbon Dioxide: Stepping Towards Artificial Photosynthesis.

    PubMed

    Pang, Hong; Masuda, Takuya; Ye, Jinhua

    2018-01-18

    The photoelectrochemical (PEC) carbon dioxide reduction process stands out as a promising avenue for the conversion of solar energy into chemical feedstocks, among various methods available for carbon dioxide mitigation. Semiconductors derived from cheap and abundant elements are interesting candidates for catalysis. Whether employed as intrinsic semiconductors or hybridized with metallic cocatalysts, biocatalysts, and metal molecular complexes, semiconductor photocathodes exhibit good performance and low overpotential during carbon dioxide reduction. Apart from focusing on carbon dioxide reduction materials and chemistry, PEC cells towards standalone devices that use photohybrid electrodes or solar cells have also been a hot topic in recent research. An overview of the state-of-the-art progress in PEC carbon dioxide reduction is presented and a deep understanding of the catalysts of carbon dioxide reduction is also given. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Amelioration of municipal sludge by Pistia stratiotes L.: role of antioxidant enzymes in detoxification of metals.

    PubMed

    Tewari, Anamika; Singh, Ragini; Singh, Naveen Kumar; Rai, U N

    2008-12-01

    Pistia stratiotes when exposed to mixture of municipal sludge and effluent accumulated substantial amount of metals in the fronds and roots. With the increase in the metal accumulation by the plants, a reduction in the concentration of metals was found in leachates. The treated plants showed reduced level in chlorophylls but enhanced level of carotenoids and protein. The plant showed a concomitant increase in the activities of antioxidant enzymes; superoxide dismutase, guiacol peroxidase and also an enhanced level of lipid peroxidation. The activities were more in the root tissues as compared to frond. Initially a reduced level of cysteine content in roots of sludge treated plant as compared to control was found, but with time duration it increased progressively. The level of non-protein thiols also increased gradually at all the durations in both fronds and roots. Thus, beside the reduction of metals from municipal sludge, the ability of P. stratiotes to combat metal generated damages by induced synthesis of antioxidant enzymes and other metal binding ligands shows its suitability for the phytoremediation of the waste.

  5. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals.

    PubMed

    Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan; Jin, Zhong

    2018-01-01

    The worldwide unrestrained emission of carbon dioxide (CO 2 ) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO 2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO 2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO 2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal-organic complexes, metals, metal alloys, inorganic metal compounds and carbon-based metal-free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO - ), monoxide carbon (CO), formaldehyde (HCHO), methane (CH 4 ), ethylene (C 2 H 4 ), methanol (CH 3 OH), ethanol (CH 3 CH 2 OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO 2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO 2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO 2 electroreduction.

  6. Progress in the Development of Oxygen Reduction Reaction Catalysts for Low-Temperature Fuel Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Dongguo; Lv, Haifeng; Kang, Yijin

    2016-04-06

    In this paper, we present a brief summary on the most recent progress in the design of catalysts for electrochemical reduction of oxygen. The main challenge in the wide spread of fuel cell technology is to lower the content of, or even eliminate, Pt and other precious metals in catalysts without sacrificing their performance. Pt-based nanosized catalysts with novel and refined architectures continue to dominate in catalytic performance, and formation of Pt-skin-like surfaces is key to achieving the highest values in activity. Moreover, durability has also been improved in Pt-based systems with addition of Au, which plays an important rolemore » in stabilizing the Pt topmost layers against dissolution. However, various carbon-based materials without precious metal have shown improvement in activity and durability and have been explored to serve as catalyst supports. Finally, understanding how the doped elements interact with each other and/or carbon is challenging and necessary in the design of robust fuel cell catalysts.« less

  7. Substrate-Influenced Thermo-Mechanical Fatigue of Copper Metallizations: Limits of Stoney’s Equation

    PubMed Central

    Bigl, Stephan; Wurster, Stefan; Cordill, Megan J.

    2017-01-01

    Rapid progress in the reduction of substrate thickness for silicon-based microelectronics leads to a significant reduction of the device bending stiffness and the need to address its implication for the thermo-mechanical fatigue behavior of metallization layers. Results on 5 µm thick Cu films reveal a strong substrate thickness-dependent microstructural evolution. Substrates with hs = 323 and 220 µm showed that the Cu microstructure exhibits accelerated grain growth and surface roughening. Moreover, curvature-strain data indicates that Stoney’s simplified curvature-stress relation is not valid for thin substrates with regard to the expected strains, but can be addressed using more sophisticated plate bending theories. PMID:29120407

  8. Pristine Metal-Organic Frameworks and their Composites for Energy Storage and Conversion.

    PubMed

    Liang, Zibin; Qu, Chong; Guo, Wenhan; Zou, Ruqiang; Xu, Qiang

    2017-11-22

    Metal-organic frameworks (MOFs), a new class of crystalline porous organic-inorganic hybrid materials, have recently attracted increasing interest in the field of energy storage and conversion. Herein, recent progress of MOFs and MOF composites for energy storage and conversion applications, including photochemical and electrochemical fuel production (hydrogen production and CO 2 reduction), water oxidation, supercapacitors, and Li-based batteries (Li-ion, Li-S, and Li-O 2 batteries), is summarized. Typical development strategies (e.g., incorporation of active components, design of smart morphologies, and judicious selection of organic linkers and metal nodes) of MOFs and MOF composites for particular energy storage and conversion applications are highlighted. A broad overview of recent progress is provided, which will hopefully promote the future development of MOFs and MOF composites for advanced energy storage and conversion applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. NASA Space Engineering Research Center for Utilization of Local Planetary Resources

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Lewis, John S.

    1989-01-01

    Progress toward the goal of exploiting extraterrestrial resources for space missions is documented. Some areas of research included are as follows: Propellant and propulsion optimization; Automation of propellant processing with quantitative simulation; Ore reduction through chlorination and free radical production; Characterization of lunar ilmenite and its simulants; Carbothermal reduction of ilmenite with special reference to microgravity chemical reactor design; Gaseous carbonyl extraction and purification of ferrous metals; Overall energy management; and Information management for space processing.

  10. Recent Advances in Inorganic Heterogeneous Electrocatalysts for Reduction of Carbon Dioxide.

    PubMed

    Zhu, Dong Dong; Liu, Jin Long; Qiao, Shi Zhang

    2016-05-01

    In view of the climate changes caused by the continuously rising levels of atmospheric CO2 , advanced technologies associated with CO2 conversion are highly desirable. In recent decades, electrochemical reduction of CO2 has been extensively studied since it can reduce CO2 to value-added chemicals and fuels. Considering the sluggish reaction kinetics of the CO2 molecule, efficient and robust electrocatalysts are required to promote this conversion reaction. Here, recent progress and opportunities in inorganic heterogeneous electrocatalysts for CO2 reduction are discussed, from the viewpoint of both experimental and computational aspects. Based on elemental composition, the inorganic catalysts presented here are classified into four groups: metals, transition-metal oxides, transition-metal chalcogenides, and carbon-based materials. However, despite encouraging accomplishments made in this area, substantial advances in CO2 electrolysis are still needed to meet the criteria for practical applications. Therefore, in the last part, several promising strategies, including surface engineering, chemical modification, nanostructured catalysts, and composite materials, are proposed to facilitate the future development of CO2 electroreduction. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Recent progress in solution plasma-synthesized-carbon-supported catalysts for energy conversion systems

    NASA Astrophysics Data System (ADS)

    Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro

    2018-01-01

    Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.

  12. Metals removal and recovery in bioelectrochemical systems: A review.

    PubMed

    Nancharaiah, Y V; Venkata Mohan, S; Lens, P N L

    2015-11-01

    Metal laden wastes and contamination pose a threat to ecosystem well being and human health. Metal containing waste streams are also a valuable resource for recovery of precious and scarce elements. Although biological methods are inexpensive and effective for treating metal wastewaters and in situ bioremediation of metal(loid) contamination, little progress has been made towards metal(loid) recovery. Bioelectrochemical systems are emerging as a new technology platform for removal and recovery of metal ions from metallurgical wastes, process streams and wastewaters. Biodegradation of organic matter by electroactive biofilms at the anode has been successfully coupled to cathodic reduction of metal ions. Until now, leaching of Co(II) from LiCoO2 particles, and removal of metal ions i.e. Co(III/II), Cr(VI), Cu(II), Hg(II), Ag(I), Se(IV), and Cd(II) from aqueous solutions has been demonstrated. This article reviews the state of art research of bioelectrochemical systems for removal and recovery of metal(loid) ions and pertaining removal mechanisms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Ligand exchange in ionic systems and its effect on silver nucleation and growth.

    PubMed

    Abbott, Andrew P; Azam, Muhammad; Frisch, Gero; Hartley, Jennifer; Ryder, Karl S; Saleem, Saima

    2013-10-28

    The electrodeposition of metals from ionic solutions is intrinsically linked to the reactivity of the solute ions. When metal salts dissolve, the exchange of the anion with the molecular and ionic components from solution affects the speciation and therefore the characteristics of metal reduction. This study investigates the nucleation mechanism, deposition kinetics, metal speciation and diffusion coefficients of silver salts dissolved in Deep Eutectic Solvents. The electrochemical reduction of AgCl, AgNO3 and Ag2O is studied in 1 : 2 choline chloride : ethylene glycol and 1 : 2 choline chloride : urea. Cyclic voltammetry is used to evaluate electrochemical kinetics. Detailed analysis of chronoamperometric data shows that silver deposits form via multiple 3D nucleation with mass transport controlled hemispherical growth. The nucleation mechanism was found to be potential dependent, varying from progressive to instantaneous as the reduction potential becomes more cathodic. Diffusion coefficients are determined using three different methods. Trends are rationalised in terms of solvent viscosity and silver speciation analysis with EXAFS. The morphology of electroreduced silver is investigated with scanning electron microscopy and shows that deposits from the urea based liquid form more dense morphologies than those from the ethylene glycol based liquid.

  14. Richland five-year O2 R and D Program. Integrated site operation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1966-07-11

    The technical feasibility of using an electrolytic reduction process to reduce metal scrap and oxide to usable uranium metal is being studied. The incentives for using electrolytic reduction at Richland may be summarized as follows: (1) reduce the unit and total costs of producing plutonium; (2) increase the flexibility of the Richland reactors for producing isotopes, particularly U-236; and (3) simplify the present fuel cycle complex. The scope of the mission is limited to the evaluation of hollow extruded I and E cores, the evaluation of electro-reduced uranium, an investigation of the solution rate of UO{sub 2} in the electrolyte,more » and small-scale irradiations of UO{sub 2} fuels in the N and K Reactors. Progress during FY 1966 is summarized.« less

  15. Homogeneously Catalyzed Electroreduction of Carbon Dioxide-Methods, Mechanisms, and Catalysts.

    PubMed

    Francke, Robert; Schille, Benjamin; Roemelt, Michael

    2018-05-09

    The utilization of CO 2 via electrochemical reduction constitutes a promising approach toward production of value-added chemicals or fuels using intermittent renewable energy sources. For this purpose, molecular electrocatalysts are frequently studied and the recent progress both in tuning of the catalytic properties and in mechanistic understanding is truly remarkable. While in earlier years research efforts were focused on complexes with rare metal centers such as Re, Ru, and Pd, the focus has recently shifted toward earth-abundant transition metals such as Mn, Fe, Co, and Ni. By application of appropriate ligands, these metals have been rendered more than competitive for CO 2 reduction compared to the heavier homologues. In addition, the important roles of the second and outer coordination spheres in the catalytic processes have become apparent, and metal-ligand cooperativity has recently become a well-established tool for further tuning of the catalytic behavior. Surprising advances have also been made with very simple organocatalysts, although the mechanisms behind their reactivity are not yet entirely understood. Herein, the developments of the last three decades in electrocatalytic CO 2 reduction with homogeneous catalysts are reviewed. A discussion of the underlying mechanistic principles is included along with a treatment of the experimental and computational techniques for mechanistic studies and catalyst benchmarking. Important catalyst families are discussed in detail with regard to mechanistic aspects, and recent advances in the field are highlighted.

  16. Preparation of porous lead from shape-controlled PbO bulk by in situ electrochemical reduction in ChCl-EG deep eutectic solvent

    NASA Astrophysics Data System (ADS)

    Ru, Juanjian; Hua, Yixin; Xu, Cunying; Li, Jian; Li, Yan; Wang, Ding; Zhou, Zhongren; Gong, Kai

    2015-12-01

    Porous lead with different shapes was firstly prepared from controlled geometries of solid PbO bulk by in situ electrochemical reduction in choline chloride-ethylene glycol deep eutectic solvents at cell voltage 2.5 V and 353 K. The electrochemical behavior of PbO powders on cavity microelectrode was investigated by cyclic voltammetry. It is indicated that solid PbO can be directly reduced to metal in the solvent and a nucleation loop is apparent. Constant voltage electrolysis demonstrates that PbO pellet can be completely converted to metal for 13 h, and the current efficiency and specific energy consumption are about 87.79% and 736.82 kWh t-1, respectively. With the electro-deoxidation progress on the pellet surface, the reduction rate reaches the fastest and decreases along the distance from surface to inner center. The morphologies of metallic products are porous and mainly consisted of uniform particles which connect with each other by finer strip-shaped grains to remain the geometry and macro size constant perfectly. In addition, an empirical model of the electro-deoxidation process from spherical PbO bulk to porous lead is also proposed. These findings provide a novel and simple route for the preparation of porous metals from oxide precursors in deep eutectic solvents at room temperature.

  17. Progress and Perspective of Electrocatalytic CO2 Reduction for Renewable Carbonaceous Fuels and Chemicals

    PubMed Central

    Zhang, Wenjun; Hu, Yi; Ma, Lianbo; Zhu, Guoyin; Wang, Yanrong; Xue, Xiaolan; Chen, Renpeng; Yang, Songyuan

    2017-01-01

    Abstract The worldwide unrestrained emission of carbon dioxide (CO2) has caused serious environmental pollution and climate change issues. For the sustainable development of human civilization, it is very desirable to convert CO2 to renewable fuels through clean and economical chemical processes. Recently, electrocatalytic CO2 conversion is regarded as a prospective pathway for the recycling of carbon resource and the generation of sustainable fuels. In this review, recent research advances in electrocatalytic CO2 reduction are summarized from both experimental and theoretical aspects. The referred electrocatalysts are divided into different classes, including metal–organic complexes, metals, metal alloys, inorganic metal compounds and carbon‐based metal‐free nanomaterials. Moreover, the selective formation processes of different reductive products, such as formic acid/formate (HCOOH/HCOO−), monoxide carbon (CO), formaldehyde (HCHO), methane (CH4), ethylene (C2H4), methanol (CH3OH), ethanol (CH3CH2OH), etc. are introduced in detail, respectively. Owing to the limited energy efficiency, unmanageable selectivity, low stability, and indeterminate mechanisms of electrocatalytic CO2 reduction, there are still many tough challenges need to be addressed. In view of this, the current research trends to overcome these obstacles in CO2 electroreduction field are summarized. We expect that this review will provide new insights into the further technique development and practical applications of CO2 electroreduction. PMID:29375961

  18. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; Zhao, Linduo; Marts, Amy R.; Farquhar, Erik; Tierney, David L.; Almquist, Catherine B.; Briggs, Brandon R.

    2015-01-01

    Despite significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70 °C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations using 1,5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to 1.9 μM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ∼70 °C.

  19. Oxidative Addition and Reductive Elimination at Main-Group Element Centers.

    PubMed

    Chu, Terry; Nikonov, Georgii I

    2018-04-11

    Oxidative addition and reductive elimination are key steps in a wide variety of catalytic reactions mediated by transition-metal complexes. Historically, this reactivity has been considered to be the exclusive domain of d-block elements. However, this paradigm has changed in recent years with the demonstration of transition-metal-like reactivity by main-group compounds. This Review highlights the substantial progress achieved in the past decade for the activation of robust single bonds by main-group compounds and the more recently realized activation of multiple bonds by these elements. We also discuss the significant discovery of reversible activation of single bonds and distinct examples of reductive elimination at main-group element centers. The review consists of three major parts, starting with oxidative addition of single bonds, proceeding to cleavage of multiple bonds, and culminated by the discussion of reversible bond activation and reductive elimination. Within each subsection, the discussion is arranged according to the type of bond being cleaved or formed and considers elements from the left to the right of each period and down each group of the periodic table. The majority of results discussed in this Review come from the past decade; however, earlier reports are also included to ensure completeness.

  20. Serial magnetic resonance imaging of metal-on-metal total hip replacements. Follow-up of a cohort of 28 mm Ultima TPS THRs.

    PubMed

    Ebreo, D; Bell, P J; Arshad, H; Donell, S T; Toms, A; Nolan, J F

    2013-08-01

    Metal artefact reduction (MAR) MRI is now widely considered to be the standard for imaging metal-on-metal (MoM) hip implants. The Medicines and Healthcare Products Regulatory Agency (MHRA) has recommended cross-sectional imaging for all patients with symptomatic MoM bearings. This paper describes the natural history of MoM disease in a 28 mm MoM total hip replacement (THR) using MAR MRI. Inclusion criteria were patients with MoM THRs who had not been revised and had at least two serial MAR MRI scans. All examinations were reported by an experienced observer and classified as A (normal), B (infection) or C1-C3 (mild, moderate, severe MoM-related abnormalities). Between 2002 and 2011 a total of 239 MRIs were performed on 80 patients (two to four scans per THR); 63 initial MRIs (61%) were normal. On subsequent MRIs, six initially normal scans (9.5%) showed progression to a disease state; 15 (15%) of 103 THRs with sequential scans demonstrated worsening disease on subsequent imaging. Most patients with a MoM THR who do not undergo early revision have normal MRI scans. Late progression (from normal to abnormal, or from mild to more severe MoM disease) is not common and takes place over several years.

  1. Parkinson Disease Protein DJ-1 Binds Metals and Protects against Metal-induced Cytotoxicity*

    PubMed Central

    Björkblom, Benny; Adilbayeva, Altynai; Maple-Grødem, Jodi; Piston, Dominik; Ökvist, Mats; Xu, Xiang Ming; Brede, Cato; Larsen, Jan Petter; Møller, Simon Geir

    2013-01-01

    The progressive loss of motor control due to reduction of dopamine-producing neurons in the substantia nigra pars compacta and decreased striatal dopamine levels are the classically described features of Parkinson disease (PD). Neuronal damage also progresses to other regions of the brain, and additional non-motor dysfunctions are common. Accumulation of environmental toxins, such as pesticides and metals, are suggested risk factors for the development of typical late onset PD, although genetic factors seem to be substantial in early onset cases. Mutations of DJ-1 are known to cause a form of recessive early onset Parkinson disease, highlighting an important functional role for DJ-1 in early disease prevention. This study identifies human DJ-1 as a metal-binding protein able to evidently bind copper as well as toxic mercury ions in vitro. The study further characterizes the cytoprotective function of DJ-1 and PD-mutated variants of DJ-1 with respect to induced metal cytotoxicity. The results show that expression of DJ-1 enhances the cells' protective mechanisms against induced metal toxicity and that this protection is lost for DJ-1 PD mutations A104T and D149A. The study also shows that oxidation site-mutated DJ-1 C106A retains its ability to protect cells. We also show that concomitant addition of dopamine exposure sensitizes cells to metal-induced cytotoxicity. We also confirm that redox-active dopamine adducts enhance metal-catalyzed oxidation of intracellular proteins in vivo by use of live cell imaging of redox-sensitive S3roGFP. The study indicates that even a small genetic alteration can sensitize cells to metal-induced cell death, a finding that may revive the interest in exogenous factors in the etiology of PD. PMID:23792957

  2. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges.

    PubMed

    Xie, Junfeng; Xie, Yi

    2016-03-07

    Electrocatalytic energy conversion has been considered as one of the most efficient and promising pathways for realizing energy storage and energy utilization in modern society. To improve electrocatalytic reactions, specific catalysts are needed to lower the overpotential. In the search for efficient alternatives to noble metal catalysts, transition metal nitrides have attracted considerable interest due to their high catalytic activity and unique electronic structure. Over the past few decades, numerous nitride-based catalysts have been explored with respect to their ability to drive various electrocatalytic reactions, such as the hydrogen evolution reaction and the oxygen evolution reaction to achieve water splitting and the oxygen reduction reaction coupled with the methanol oxidation reaction to construct fuel cells or rechargeable Li-O2 batteries. This Minireview provides a brief overview of recent progress on electrocatalysts based on transition metal nitrides, and outlines the current challenges and future opportunities. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Microstructural Variations Across a Dissimilar 316L Austenitic: 9Cr Reduced Activation Ferritic Martensitic Steel Weld Joint

    NASA Astrophysics Data System (ADS)

    Thomas Paul, V.; Karthikeyan, T.; Dasgupta, Arup; Sudha, C.; Hajra, R. N.; Albert, S. K.; Saroja, S.; Jayakumar, T.

    2016-03-01

    This paper discuss the microstructural variations across a dissimilar weld joint between SS316 and 9Cr-RAFM steel and its modifications on post weld heat treatments (PWHT). Detailed characterization showed a mixed microstructure of austenite and martensite in the weld which is in agreement with the phases predicted using Schaeffler diagram based on composition measurements. The presence of very low volume fraction of δ-ferrite in SS316L has been identified employing state of the art electron back-scattered diffraction technique. PWHT of the ferritic steel did not reduce the hardness in the weld metal. Thermal exposure at 973 K (700 °C) showed a progressive reduction in hardness of weld joint with duration of treatment except in austenitic base metal. However, diffusion annealing at 1073 K (800 °C) for 100 hours resulted in an unexpected increase in hardness of weld metal, which is a manifestation of the dilution effects and enrichment of Ni on the transformation characteristics of the weld zone. Migration of carbon from ferritic steel aided the precipitation of fine carbides in the austenitic base metal on annealing at 973 K (700 °C); but enhanced diffusion at 1073 K (880 °C) resulted in coarsening of carbides and thereby reduction of hardness.

  4. Removal of toxic metals during biological treatment of landfill leachates.

    PubMed

    Robinson, T

    2017-05-01

    Progressive implementation of the European Water Framework Directive has resulted in substantial changes in limits for discharges of heavy metals both to watercourses, and to sewer. The objective of this paper is to provide original, real, full-scale data obtained for removal of metals during aerobic biological leachate treatment, and also to report on studies carried out to look at further trace metal removal. Polishing technologies examined and investigated include; the incorporation of ultrafiltration (UF) membranes into biological treatment systems, the use of ion exchange, and of activated carbon polishing processes. Ultrafiltration was able to provide a 60 percent reduction in COD values in treated leachates, compared with COD values found in settled/clarified effluents. Removal rates for COD varied from 30.5 to 79.8 percent. Additionally, ultrafiltration of treated leachates significantly reduced both chromium and nickel concentrations of effluents by 61.6% and 34.3% respectively (median values). Despite mean reductions of chromium (9.7%) and nickel (13.7%) noted during the ion exchange trials, these results would not justify use of this technology for metals removal at full-scale. Further preliminary studies used pulverized activated carbon (PAC) polishing of UF effluents to demonstrate that significant (up to 80 per cent) removal of COD, TOC and heavy metals could readily be achieved by doses of up to 10g/l of suitable activated carbons. Additional evidence is provided that many trace metals are present not in ionic form, but as organic complexes; this is likely to make their removal to low levels more difficult and expensive. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Lithium metal reduction of plutonium oxide to produce plutonium metal

    DOEpatents

    Coops, Melvin S.

    1992-01-01

    A method is described for the chemical reduction of plutonium oxides to plutonium metal by the use of pure lithium metal. Lithium metal is used to reduce plutonium oxide to alpha plutonium metal (alpha-Pu). The lithium oxide by-product is reclaimed by sublimation and converted to the chloride salt, and after electrolysis, is removed as lithium metal. Zinc may be used as a solvent metal to improve thermodynamics of the reduction reaction at lower temperatures. Lithium metal reduction enables plutonium oxide reduction without the production of huge quantities of CaO--CaCl.sub.2 residues normally produced in conventional direct oxide reduction processes.

  6. Recent temporal variations of trace metal content in an Italian white wine.

    PubMed

    Illuminati, Silvia; Annibaldi, Anna; Truzzi, Cristina; Scarponi, Giuseppe

    2014-09-15

    For the first time in Italy, the temporal variations of Cd, Pb and Cu content in an Italian white wine were studied over the period 1995-2010. A previously set up and optimized Square-Wave Anodic Stripping Voltammetric technique was used. Cd showed a first decrease (∼30%) due to the use of pesticides with progressively low Cd residues. Since 2000 Cd had constant and extremely low values (0.17±0.07 μg L(-1)). A significant decrease (∼74%) from 1995 to 2010 was observed for Pb (mean concentration, 18±10 μg L(-1)) probably due to the recent decrease in Pb emissions in the atmosphere following the phasing out of metal from gasoline (in Italy since 2002). The Cu reduction (mean value, 32±15 μg L(-1)) of ∼74% from 1995 to 2010 was related to the use of phytoiatric products with a progressively low Cu content. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Anchoring and promotion effects of metal oxides on silica supported catalytic gold nanoparticles.

    PubMed

    Luo, Jingjie; Ersen, Ovidiu; Chu, Wei; Dintzer, Thierry; Petit, Pierre; Petit, Corinne

    2016-11-15

    The understanding of the interactions between the different components of supported metal doped gold catalysts is of crucial importance for selecting and designing efficient gold catalysts for reactions such as CO oxidation. To progress in this direction, a unique supported nano gold catalyst Au/SS was prepared, and three doped samples (Au/SS@M) were elaborated. The samples before and after test were characterized by Transmission Electron Microscopy (TEM) and X-ray Photoelectron Spectroscopy (XPS). It is found that the doping metal species prefer to be located on the surface of gold nanoparticles and that a small amount of additional reductive metal leads to more efficient reaction. During the catalytic test, the nano-structure of the metal species transforms depending on its chemical nature. This study allows one to identify and address the contribution of each metal on the CO reaction in regard to oxidative species of gold, silica and dopants. Metal doping leads to different exposure of interface sites between Au and metal oxide, which is one of the key factors for the change of the catalytic activity. The metal oxides help the activation of oxygen by two actions: mobility inside the metal bulk and transfer of water species onto of gold nanoparticles. Copyright © 2016. Published by Elsevier Inc.

  8. Improved Image Quality in Head and Neck CT Using a 3D Iterative Approach to Reduce Metal Artifact.

    PubMed

    Wuest, W; May, M S; Brand, M; Bayerl, N; Krauss, A; Uder, M; Lell, M

    2015-10-01

    Metal artifacts from dental fillings and other devices degrade image quality and may compromise the detection and evaluation of lesions in the oral cavity and oropharynx by CT. The aim of this study was to evaluate the effect of iterative metal artifact reduction on CT of the oral cavity and oropharynx. Data from 50 consecutive patients with metal artifacts from dental hardware were reconstructed with standard filtered back-projection, linear interpolation metal artifact reduction (LIMAR), and iterative metal artifact reduction. The image quality of sections that contained metal was analyzed for the severity of artifacts and diagnostic value. A total of 455 sections (mean ± standard deviation, 9.1 ± 4.1 sections per patient) contained metal and were evaluated with each reconstruction method. Sections without metal were not affected by the algorithms and demonstrated image quality identical to each other. Of these sections, 38% were considered nondiagnostic with filtered back-projection, 31% with LIMAR, and only 7% with iterative metal artifact reduction. Thirty-three percent of the sections had poor image quality with filtered back-projection, 46% with LIMAR, and 10% with iterative metal artifact reduction. Thirteen percent of the sections with filtered back-projection, 17% with LIMAR, and 22% with iterative metal artifact reduction were of moderate image quality, 16% of the sections with filtered back-projection, 5% with LIMAR, and 30% with iterative metal artifact reduction were of good image quality, and 1% of the sections with LIMAR and 31% with iterative metal artifact reduction were of excellent image quality. Iterative metal artifact reduction yields the highest image quality in comparison with filtered back-projection and linear interpolation metal artifact reduction in patients with metal hardware in the head and neck area. © 2015 by American Journal of Neuroradiology.

  9. Novel duplex vapor electrochemical method for silicon solar cells

    NASA Technical Reports Server (NTRS)

    Kapur, V.; Sancier, K. M.; Sanjurjo, A.; Leach, S.; Westphal, S.; Bartlett, R.; Nanis, L.

    1978-01-01

    Progress in the development of low-cost solar arrays is reported. Topics covered include: (1) development of a simplified feed system for the Na used in the Na-SiF4 reactor; (2) production of high purity silicon through the reduction of sodium fluosilicate with sodium metal; (3) the leaching process for recovering silicon from the reaction products of the SiF4-Na reaction; and (4) silicon separation by the melting of the reaction product.

  10. Photoelectrochemical cell for simultaneous electricity generation and heavy metals recovery from wastewater.

    PubMed

    Wang, Dawei; Li, Yi; Li Puma, Gianluca; Lianos, Panagiotis; Wang, Chao; Wang, Peifang

    2017-02-05

    The feasibility of simultaneous recovery of heavy metals from wastewater (e.g., acid mining and electroplating) and production of electricity is demonstrated in a novel photoelectrochemical cell (PEC). The photoanode of the cell bears a nanoparticulate titania (TiO 2 ) film capped with the block copolymer [poly(ethylene glycol)-b-poly(propylene glycol)-b-poly(ethylene glycol)] hole scavenger, which consumed photogenerated holes, while the photogenerated electrons transferred to a copper cathode reducing dissolved metal ions and produced electricity. Dissolved silver Ag + , copper Cu 2+ , hexavalent chromium as dichromate Cr 2 O 7 2- and lead Pb 2+ ions in a mixture (0.2mM each) were removed at different rates, according to their reduction potentials. Reduced Ag + , Cu 2+ and Pb 2+ ions produced metal deposits on the cathode electrode which were mechanically recovered, while Cr 2 O 7 2- reduced to the less toxic Cr 3+ in solution. The cell produced a current density J sc of 0.23mA/cm 2 , an open circuit voltage V oc of 0.63V and a maximum power density of 0.084mW/cm 2 . A satisfactory performance of this PEC for the treatment of lead-acid battery wastewater was observed. The cathodic reduction of heavy metals was limited by the rate of electron-hole generation at the photoanode. The PEC performance decreased by 30% after 9 consecutive runs, caused by the photoanode progressive degradation. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of a metal artifacts reduction algorithm applied to postinterventional flat panel detector CT imaging.

    PubMed

    Stidd, D A; Theessen, H; Deng, Y; Li, Y; Scholz, B; Rohkohl, C; Jhaveri, M D; Moftakhar, R; Chen, M; Lopes, D K

    2014-01-01

    Flat panel detector CT images are degraded by streak artifacts caused by radiodense implanted materials such as coils or clips. A new metal artifacts reduction prototype algorithm has been used to minimize these artifacts. The application of this new metal artifacts reduction algorithm was evaluated for flat panel detector CT imaging performed in a routine clinical setting. Flat panel detector CT images were obtained from 59 patients immediately following cerebral endovascular procedures or as surveillance imaging for cerebral endovascular or surgical procedures previously performed. The images were independently evaluated by 7 physicians for metal artifacts reduction on a 3-point scale at 2 locations: immediately adjacent to the metallic implant and 3 cm away from it. The number of visible vessels before and after metal artifacts reduction correction was also evaluated within a 3-cm radius around the metallic implant. The metal artifacts reduction algorithm was applied to the 59 flat panel detector CT datasets without complications. The metal artifacts in the reduction-corrected flat panel detector CT images were significantly reduced in the area immediately adjacent to the implanted metal object (P = .05) and in the area 3 cm away from the metal object (P = .03). The average number of visible vessel segments increased from 4.07 to 5.29 (P = .1235) after application of the metal artifacts reduction algorithm to the flat panel detector CT images. Metal artifacts reduction is an effective method to improve flat panel detector CT images degraded by metal artifacts. Metal artifacts are significantly decreased by the metal artifacts reduction algorithm, and there was a trend toward increased vessel-segment visualization. © 2014 by American Journal of Neuroradiology.

  12. Progress in bioleaching: part B: applications of microbial processes by the minerals industries.

    PubMed

    Brierley, Corale L; Brierley, James A

    2013-09-01

    This review presents developments and applications in bioleaching and mineral biooxidation since publication of a previous mini review in 2003 (Olson et al. Appl Microbiol Biotechnol 63:249-257, 2003). There have been discoveries of newly identified acidophilic microorganisms that have unique characteristics for effective bioleaching of sulfidic ores and concentrates. Progress has been made in understanding and developing bioleaching of copper from primary copper sulfide minerals, chalcopyrite, covellite, and enargite. These developments point to low oxidation-reduction potential in concert with thermophilic bacteria and archaea as a potential key to the leaching of these minerals. On the commercial front, heap bioleaching of nickel has been commissioned, and the mineral biooxidation pretreatment of sulfidic-refractory gold concentrates is increasingly used on a global scale to enhance precious metal recovery. New and larger stirred-tank reactors have been constructed since the 2003 review article. One biooxidation-heap process for pretreatment of sulfidic-refractory gold ores was also commercialized. A novel reductive approach to bioleaching nickel laterite minerals has been proposed.

  13. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus

    DOE PAGES

    Singh, Rajesh; Dong, Hailiang; Liu, Deng; ...

    2014-10-22

    Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H 2/CO 2 as substrate with various Cr 6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K 2Cr 2O 7). Time-course measurements of aqueous Cr 6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of themore » 0.2 and 0.4 mM Cr 6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr 6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr 6+ to cells at this concentration range. At these higher Cr 6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr 6+ bioreduction rates decreased with increased initial concentrations of Cr 6+ from 13.3 to1.9 μM h ₋1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr 6+ to insoluble Cr 3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr 3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr 6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr 6+ to less toxic Cr 3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ~70°C.« less

  14. DNA-Templated Pd Conductive Metallic Nanowires

    NASA Astrophysics Data System (ADS)

    Nguyen, K.; Monteverde, M.; Lyonnais, S.; Campidelli, S.; Bourgoin, J.-Ph.; Filoramo, A.

    2008-10-01

    Because of its unique recognition properties, its size and the sub-nanometric resolution, DNA is of particular interest for positioning and organizing nanomaterials. However, in DNA-directed nanoelectronic it can be envisioned to use DNA not only as a positioning scaffold, but also as a support for the conducting element. To ensure this function a metallization process is necessary and among the various DNA metallization methods the Pd based ones are of particular interest for carbon nanotube transistor connections. In this field, the major drawback of the existing methods is the fast kinetics of the process which lead to a stochastic growth. Here, we present a novel approach to DNA Pd metalization where the DNA molecule is previously deposited on a dry substrate in a typical nanodevice configuration. In our approach the progressive growth of nanowires is achieved by the slow and selective precipitation of PdO, followed by a subsequent reduction step. Thanks to this strategy we fabricated homogeneous, continuous and conductive Pd nanowires on the DNA scaffolds of very thin diameter (20-25 nm).

  15. In situ metal ion contamination and the effects on proton exchange membrane fuel cell performance

    NASA Astrophysics Data System (ADS)

    Sulek, Mark; Adams, Jim; Kaberline, Steve; Ricketts, Mark; Waldecker, James R.

    Automotive fuel cell technology has made considerable progress, and hydrogen fuel cell vehicles are regarded as a possible long-term solution to reduce carbon dioxide emissions, reduce fossil fuel dependency and increase energy efficiency. Even though great strides have been made, durability is still an issue. One key challenge is controlling MEA contamination. Metal ion contamination within the membrane and the effects on fuel cell performance were investigated. Given the possible benefits of using stainless steel or aluminum for balance-of-plant components or bipolar plates, cations of Al, Fe, Ni and Cr were studied. Membranes were immersed in metal sulfide solutions of varying concentration and then assembled into fuel cell MEAs tested in situ. The ranking of the four transition metals tested in terms of the greatest reduction in fuel cell performance was: Al 3+ ≫ Fe 2+ > Ni 2+, Cr 3+. For iron-contaminated membranes, no change in cell performance was detected until the membrane conductivity loss was greater than approximately 15%.

  16. 2D Transition-Metal-Dichalcogenide-Nanosheet-Based Composites for Photocatalytic and Electrocatalytic Hydrogen Evolution Reactions.

    PubMed

    Lu, Qipeng; Yu, Yifu; Ma, Qinglang; Chen, Bo; Zhang, Hua

    2016-03-09

    Hydrogen (H2) is one of the most important clean and renewable energy sources for future energy sustainability. Nowadays, photocatalytic and electrocatalytic hydrogen evolution reactions (HERs) from water splitting are considered as two of the most efficient methods to convert sustainable energy to the clean energy carrier, H2. Catalysts based on transition metal dichalcogenides (TMDs) are recognized as greatly promising substitutes for noble-metal-based catalysts for HER. The photocatalytic and electrocatalytic activities of TMD nanosheets for the HER can be further improved after hybridization with many kinds of nanomaterials, such as metals, oxides, sulfides, and carbon materials, through different methods including the in situ reduction method, the hot-injection method, the heating-up method, the hydro(solvo)thermal method, chemical vapor deposition (CVD), and thermal annealing. Here, recent progress in photocatalytic and electrocatalytic HERs using 2D TMD-based composites as catalysts is discussed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Direct chemical reduction of neptunium oxide to neptunium metal using calcium and calcium chloride

    DOE PAGES

    Squires, Leah N.; Lessing, Paul

    2016-01-13

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  18. High-Resolution C-Arm CT and Metal Artifact Reduction Software: A Novel Imaging Modality for Analyzing Aneurysms Treated with Stent-Assisted Coil Embolization.

    PubMed

    Yuki, I; Kambayashi, Y; Ikemura, A; Abe, Y; Kan, I; Mohamed, A; Dahmani, C; Suzuki, T; Ishibashi, T; Takao, H; Urashima, M; Murayama, Y

    2016-02-01

    Combination of high-resolution C-arm CT and novel metal artifact reduction software may contribute to the assessment of aneurysms treated with stent-assisted coil embolization. This study aimed to evaluate the efficacy of a novel Metal Artifact Reduction prototype software combined with the currently available high spatial-resolution C-arm CT prototype implementation by using an experimental aneurysm model treated with stent-assisted coil embolization. Eight experimental aneurysms were created in 6 swine. Coil embolization of each aneurysm was performed by using a stent-assisted technique. High-resolution C-arm CT with intra-arterial contrast injection was performed immediately after the treatment. The obtained images were processed with Metal Artifact Reduction. Five neurointerventional specialists reviewed the image quality before and after Metal Artifact Reduction. Observational and quantitative analyses (via image analysis software) were performed. Every aneurysm was successfully created and treated with stent-assisted coil embolization. Before Metal Artifact Reduction, coil loops protruding through the stent lumen were not visualized due to the prominent metal artifacts produced by the coils. These became visible after Metal Artifact Reduction processing. Contrast filling in the residual aneurysm was also visualized after Metal Artifact Reduction in every aneurysm. Both the observational (P < .0001) and quantitative (P < .001) analyses showed significant reduction of the metal artifacts after application of the Metal Artifact Reduction prototype software. The combination of high-resolution C-arm CT and Metal Artifact Reduction enables differentiation of the coil mass, stent, and contrast material on the same image by significantly reducing the metal artifacts produced by the platinum coils. This novel image technique may improve the assessment of aneurysms treated with stent-assisted coil embolization. © 2016 by American Journal of Neuroradiology.

  19. When soils become sediments: Large-scale storage of soils in sandpits and lakes and the impact of reduction kinetics on heavy metals and arsenic release to groundwater.

    PubMed

    Vink, Jos P M; van Zomeren, Andre; Dijkstra, Joris J; Comans, Rob N J

    2017-08-01

    Simulating the storage of aerobic soils under water, the chemical speciation of heavy metals and arsenic was studied over a long-term reduction period. Time-dynamic and redox-discrete measurements in reactors were used to study geochemical changes. Large kinetic differences in the net-complexation quantities of heavy metals with sulfides was observed, and elevated pore water concentrations remained for a prolonged period (>1 year) specifically for As, B, Ba, Co, Mo, and Ni. Arsenic is associated to the iron phases as a co-precipitate or sorbed fraction to Fe-(hydr)oxides, and it is being released into solution as a consequence of the reduction of iron. The composition of dissolved organic matter (DOM) in reducing pore water was monitored, and relative contributions of fulvic, humic and hydrophylic compounds were measured via analytical batch procedures. Quantitative and qualitative shifts in organic compounds occur during reduction; DOM increased up to a factor 10, while fulvic acids become dominant over humic acids which disappear altogether as reduction progresses. Both the hydrophobic and hydrophilic fractions increase and may even become the dominant fraction. Reactive amorphous and crystalline iron phases, as well as dissolved FeII/FeIII speciation, were measured and used as input for the geochemical model to improve predictions for risk assessment to suboxic and anaerobic environments. The release of arsenic is related to readily reducible iron fractions that may be identified by 1 mM CaCl 2 extraction procedure. Including DOM concentration shifts and compositional changes during reduction significantly improved model simulations, enabling the prediction of peak concentrations and identification of soils with increased emission risk. Practical methods are suggested to facilitate the practice of environmentally acceptable soil storage under water. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Transformation and Precipitation of Toxic Metals by Pseudomonas maltophilia

    DTIC Science & Technology

    1990-05-31

    under investigation. This project could provide useful information toward the eventual exploitation of P . maltophilia and related organisms for the...Chromate . P CW1 I. SCUJ CLASWICATIN I | 5CUU1T CLAS31F ATON I. SCURFl’ CASSW CA1 .O- W MTA.nQN Of A&STIACT of REPQRT OP THIS PAGE 00 AASTRAC1...chromate (Cr04 or Cr(VI)), and lead (Pb(II)). Experimental progress to date is summarized below. (i) Reduction of selenite When P . maltophilia (strain OR-02

  1. Transition Metal Carbides and Nitrides in Energy Storage and Conversion

    PubMed Central

    Zhong, Yu; Shi, Fan; Zhan, Jiye; Tu, Jiangping

    2016-01-01

    High‐performance electrode materials are the key to advances in the areas of energy conversion and storage (e.g., fuel cells and batteries). In this Review, recent progress in the synthesis and electrochemical application of transition metal carbides (TMCs) and nitrides (TMNs) for energy storage and conversion is summarized. Their electrochemical properties in Li‐ion and Na‐ion batteries as well as in supercapacitors, and electrocatalytic reactions (oxygen evolution and reduction reactions, and hydrogen evolution reaction) are discussed in association with their crystal structure/morphology/composition. Advantages and benefits of nanostructuring (e.g., 2D MXenes) are highlighted. Prospects of future research trends in rational design of high‐performance TMCs and TMNs electrodes are provided at the end. PMID:27812464

  2. [Progress of research on the microbial fuel cells in the application of environment pollution treatment--a review].

    PubMed

    Yang, Yonggang; Sun, Guoping; Xu, Meiying

    2010-07-01

    Microbial fuel cells (MFCs) are bio-electrochemical reactors that have the capacity to convert chemical energy of biodegradable organic chemicals to electrical energy, and developed rapidly in the past few years. With an increasing concern for energy crisis and environment pollution, MFCs has became a promising technology in the researches of environment pollution treatments and biology electricity. In this paper, we offered a comprehensive review of the recent research progress of MFCs in environment pollution treatment, includes denitrification, desufurization, organic pollutants degradation, heavy metal reduction and landfill leachate treatment. Also, we pointed out the challenges and problems which were bottle necks for a wide application of MFCs and the potential future development.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Squires, Leah N.; Lessing, Paul

    A process of direct reduction of neptunium oxide to neptunium metal using calcium metal as the reducing agent is discussed. After reduction of the oxide to metal, the metal is separated by density from the other components of the reaction mixture and can easily removed upon cooling. Furthermore, the direct reduction technique consistently produces high purity (98%–99% pure) neptunium metal.

  4. NLF technology is ready to go

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    1988-01-01

    Natural laminar flow (NLF) can reduce drag on aircraft developed using modern structural design methods. Modern metal and composite construction methods can meet NLF requirements for subsonic commuter and business airframes. NLF research at NASA concentrates on expanding the practical application of NLF drag reduction technology; payoffs include progress with liquid-crystal flow visualization, NLF on three-dimensional bodies, and the effects of acoustics on laminar stability. Fuel savings from 2 to 4 percent are expected if laminar flow could be achieved over the forward 50 percent of engine nacelles on large transports depending on the configuration. It is concluded that the skill required to use NLF for drag reduction depends on understanding the conservative design corridors within which laminar flow is durable and reliable.

  5. Effects of Reduction Osteotomy on Gap Balancing During Total Knee Arthroplasty for Severe Varus Deformity.

    PubMed

    Niki, Yasuo; Harato, Kengo; Nagai, Katsuya; Suda, Yasunori; Nakamura, Masaya; Matsumoto, Morio

    2015-12-01

    This study aimed to assess the effects of down-sizing and lateralizing of the tibial component (reduction osteotomy) on gap balancing in TKA, and the clinical feasibility of an uncemented modular trabecular metal tibial tray in this technique. Reduction osteotomy was performed for 39 knees of 36 patients with knee OA with a mean tibiofemoral angle of 21° varus. In 20 knees, appropriate gap balance was achieved by release of the deep medial collateral ligament alone. Flexion gap imbalance could be reduced by approximately 1.7° and 2.8° for 4-mm osteotomy and 8-mm osteotomy, respectively. Within the first postoperative year, clinically-stable tibial component subsidence was observed in 9 knees, but it was not progressive, and the clinical results were excellent at a mean follow-up of 3.3 years. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Alkaline Fe(III) reduction by a novel alkali-tolerant Serratia sp. isolated from surface sediments close to Sellafield nuclear facility, UK.

    PubMed

    Thorpe, Clare L; Morris, Katherine; Boothman, Christopher; Lloyd, Jonathan R

    2012-02-01

    Extensive denitrification resulted in a dramatic increase in pH (from 6.8 to 9.5) in nitrate-impacted, acetate-amended sediment microcosms containing sediment representative of the Sellafield nuclear facility, UK. Denitrification was followed by Fe(III) reduction, indicating the presence of alkali-tolerant, metal-reducing bacteria. A close relative (99% 16S rRNA gene sequence homology) to Serratia liquefaciens dominated progressive enrichment cultures containing Fe(III)-citrate as the sole electron acceptor at pH 9 and was isolated aerobically using solid media. The optimum growth conditions for this facultatively anaerobic Serratia species were investigated, and it was capable of metabolizing a wide range of electron acceptors including oxygen, nitrate, FeGel, Fe-NTA and Fe-citrate and electron donors including acetate, lactate, formate, ethanol, glucose, glycerol and yeast extract at an optimum pH of c. 6.5 at 20 °C. The alkali tolerance of this strain extends the pH range of highly adaptable Fe(III)-reducing Serratia species from mildly acidic pH values associated with acid mine drainage conditions to alkali conditions representative of subsurface sediments stimulated for extensive denitrification and metal reduction. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  7. Electrolytic trichloroethene degradation using mixed metal oxide coated titanium mesh electrodes.

    PubMed

    Petersen, Matthew A; Sale, Thomas C; Reardon, Kenneth F

    2007-04-01

    Electrochemical systems provide a low cost, versatile, and controllable platform to potentially treat contaminants in water, including chlorinated solvents. Relative to bare metal or noble metal amended materials, dimensionally stable electrode materials such as mixed metal oxide coated titanium (Ti/MMO) have advantages in terms of stability and cost, important factors for sustainable remediation solutions. Here, we report the use of Ti/MMO as an effective cathode substrate for treatment of trichloroethene (TCE). TCE degradation in a batch reactor was measured as the decrease of TCE concentration over time and the corresponding evolution of chloride; notably, this occurred without the formation of commonly encountered chlorinated intermediates. The reaction was initiated when Ti/MMO cathode potentials were less than -0.8 V vs. the standard hydrogen electrode, and the rate of TCE degradation increased linearly with progressively more negative potentials. The maximum pseudo-first-order heterogeneous rate constant was approximately 0.05 cm min(-1), which is comparable to more commonly used cathode materials such as nickel. In laboratory-scale flow-though column reactors designed to simulate permeable reactive barriers (PRBs), TCE concentrations were reduced by 80-90%. The extent of TCE flux reduction increased with the applied potential difference across the electrodes and was largely insensitive to the spacing distance between the electrodes. This is the first report of the electrochemical reduction of a chlorinated organic contaminant at a Ti/MMO cathode, and these results support the use of this material in PRBs as a possible approach to manage TCE plume migration.

  8. Mechanochemical processing for metals and metal alloys

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Prisbrey, Keith

    2001-01-01

    A set of processes for preparing metal powders, including metal alloy powders, by ambient temperature reduction of a reducible metal compound by a reactive metal or metal hydride through mechanochemical processing. The reduction process includes milling reactants to induce and complete the reduction reaction. The preferred reducing agents include magnesium and calcium hydride powders. A process of pre-milling magnesium as a reducing agent to increase the activity of the magnesium has been established as one part of the invention.

  9. SU-E-T-329: Dosimetric Impact of Implementing Metal Artifact Reduction Methods and Metal Energy Deposition Kernels for Photon Dose Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Followill, D; Howell, R

    2015-06-15

    Purpose: To investigate two strategies for reducing dose calculation errors near metal implants: use of CT metal artifact reduction methods and implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) method. Methods: Radiochromic film was used to measure the dose upstream and downstream of titanium and Cerrobend implants. To assess the dosimetric impact of metal artifact reduction methods, dose calculations were performed using baseline, uncorrected images and metal artifact reduction Methods: Philips O-MAR, GE’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI imaging with metal artifact reduction software applied (MARs).To assess the impact of metal kernels, titaniummore » and silver kernels were implemented into a commercial collapsed cone C/S algorithm. Results: The CT artifact reduction methods were more successful for titanium than Cerrobend. Interestingly, for beams traversing the metal implant, we found that errors in the dimensions of the metal in the CT images were more important for dose calculation accuracy than reduction of imaging artifacts. The MARs algorithm caused a distortion in the shape of the titanium implant that substantially worsened the calculation accuracy. In comparison to water kernel dose calculations, metal kernels resulted in better modeling of the increased backscatter dose at the upstream interface but decreased accuracy directly downstream of the metal. We also found that the success of metal kernels was dependent on dose grid size, with smaller calculation voxels giving better accuracy. Conclusion: Our study yielded mixed results, with neither the metal artifact reduction methods nor the metal kernels being globally effective at improving dose calculation accuracy. However, some successes were observed. The MARs algorithm decreased errors downstream of Cerrobend by a factor of two, and metal kernels resulted in more accurate backscatter dose upstream of metals. Thus, these two strategies do have the potential to improve accuracy for patients with metal implants in certain scenarios. This work was supported by Public Health Service grants CA 180803 and CA 10953 awarded by the National Cancer Institute, United States of Health and Human Services, and in part by Mobius Medical Systems.« less

  10. Gaussian diffusion sinogram inpainting for X-ray CT metal artifact reduction.

    PubMed

    Peng, Chengtao; Qiu, Bensheng; Li, Ming; Guan, Yihui; Zhang, Cheng; Wu, Zhongyi; Zheng, Jian

    2017-01-05

    Metal objects implanted in the bodies of patients usually generate severe streaking artifacts in reconstructed images of X-ray computed tomography, which degrade the image quality and affect the diagnosis of disease. Therefore, it is essential to reduce these artifacts to meet the clinical demands. In this work, we propose a Gaussian diffusion sinogram inpainting metal artifact reduction algorithm based on prior images to reduce these artifacts for fan-beam computed tomography reconstruction. In this algorithm, prior information that originated from a tissue-classified prior image is used for the inpainting of metal-corrupted projections, and it is incorporated into a Gaussian diffusion function. The prior knowledge is particularly designed to locate the diffusion position and improve the sparsity of the subtraction sinogram, which is obtained by subtracting the prior sinogram of the metal regions from the original sinogram. The sinogram inpainting algorithm is implemented through an approach of diffusing prior energy and is then solved by gradient descent. The performance of the proposed metal artifact reduction algorithm is compared with two conventional metal artifact reduction algorithms, namely the interpolation metal artifact reduction algorithm and normalized metal artifact reduction algorithm. The experimental datasets used included both simulated and clinical datasets. By evaluating the results subjectively, the proposed metal artifact reduction algorithm causes fewer secondary artifacts than the two conventional metal artifact reduction algorithms, which lead to severe secondary artifacts resulting from impertinent interpolation and normalization. Additionally, the objective evaluation shows the proposed approach has the smallest normalized mean absolute deviation and the highest signal-to-noise ratio, indicating that the proposed method has produced the image with the best quality. No matter for the simulated datasets or the clinical datasets, the proposed algorithm has reduced the metal artifacts apparently.

  11. Electrochemical reduction of (U-40Pu-5Np)O 2 in molten LiCl electrolyte

    NASA Astrophysics Data System (ADS)

    Iizuka, Masatoshi; Sakamura, Yoshiharu; Inoue, Tadashi

    2006-12-01

    The electrochemical reduction of neptunium-containing MOX ((U-40Pu-5Np)O 2) was performed in molten lithium chloride melt at 923 K to investigate fundamental behavior of the transuranium elements and applicability of the method to reduction process for these materials. The Np-MOX was electrochemically reduced at the potential lower than -0.6 V vs. Bi-35 mol% Li reference electrode. The reduced metal grains in the surface region of the sample cohered with each other and made the layer of relatively high density, although it did not prevent the reduction of the sample toward the center. Complete reduction of the Np-MOX was shown by the weight change measurement through the electrochemical reduction and also by SEM-EDX observation. The chemical composition of the reduction products was homogeneous and agreed to that of the initial Np-MOX, which indicates that the reduction was completed and not selective among the actinides. The concentrations of the actinide elements, especially plutonium and americium in the electrolyte, increased with the progress of the tests, although their absolute values were very small. It is quite likely that plutonium and americium dissolve into the melt in the same manner as the lanthanide elements in the lithium reduction process.

  12. Chlorination of UO 2, PuO 2 and rare earth oxides using ZrCl 4 in LiCl-KCl eutectic melt

    NASA Astrophysics Data System (ADS)

    Sakamura, Yoshiharu; Inoue, Tadashi; Iwai, Takashi; Moriyama, Hirotake

    2005-04-01

    A new chlorination method using ZrCl 4 in a molten salt bath has been investigated for the pyrometallurgical reprocessing of nuclear fuels. ZrCl 4 has a high reactivity with oxygen but is not corrosive to refractory metals such as steel. Rare earth oxides (La 2O 3, CeO 2, Nd 2O 3 and Y 2O 3) and actinide oxides (UO 2 and PuO 2) were allowed to react with ZrCl 4 in a LiCl-KCl eutectic salt at 773 K to give a metal chloride solution and a precipitate of ZrO 2. An addition of zirconium metal as a reductant was effective in chlorinating the dioxides. When the oxides were in powder form, the reaction was observed to progress rapidly. Cyclic voltammetry provided a convenient way of establishing when the reaction was completed. It was demonstrated that the ZrCl 4 chlorination method, free from corrosive gas, was very simple and useful.

  13. Formation and characterization of metallic iron grains in coal-based reduction of oolitic iron ore

    NASA Astrophysics Data System (ADS)

    Sun, Yong-sheng; Han, Yue-xin; Li, Yan-feng; Li, Yan-jun

    2017-02-01

    To reveal the formation and characteristics of metallic iron grains in coal-based reduction, oolitic iron ore was isothermally reduced in various reduction times at various reduction temperatures. The microstructure and size of the metallic iron phase were investigated by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and a Bgrimm process mineralogy analyzer. In the results, the reduced Fe separates from the ore and forms metallic iron protuberances, and then the subsequent reduced Fe diffuses to the protuberances and grows into metallic iron grains. Most of the metallic iron grains exist in the quasi-spherical shape and inlaid in the slag matrix. The cumulative frequency of metallic iron grain size is markedly influenced by both reduction time and temperature. With increasing reduction temperature and time, the grain size of metallic iron obviously increases. According to the classical grain growth equation, the growth kinetic parameters, i.e., time exponent, growth activation energy, and pre-exponential constant, are estimated to be 1.3759 ± 0.0374, 103.18 kJ·mol-1, and 922.05, respectively. Using these calculated parameters, a growth model is established to describe the growth behavior of metallic iron grains.

  14. Comparative assessment of heavy metals content during the composting and vermicomposting of Municipal Solid Waste employing Eudrilus eugeniae.

    PubMed

    Soobhany, Nuhaa; Mohee, Romeela; Garg, Vinod Kumar

    2015-05-01

    This study was undertaken to have comparative assessment of heavy metals content during composting and vermicomposting processing of Municipal Solid Waste (MSW). Six scenarios were set up in which three experiments were for composting (controls) denoted as S1 for food waste, S2 for paper waste and S3 for yard waste and the corresponding replicates for vermicomposting processes were S4, S5 and S6. Vermicomposting caused significant reduction in Cd (43.3-73.5%), Cr (11.3-52.8%), Cu (18.9-62.5%), Co (21.4-47.6%), Zn (34.6%) and Ni (19.9-49.6%) compared to composting which showed a progressive increase. Addition of worms did not show any effect on Fe and Mn, most probably from the genesis of organic-bound complexes. The efficacy of utilizing Eudrilus eugeniae was indicated by the high values of bioconcentration factors (BCFs) which were in the order of Cd>Ni>Cu>Co>Cr>Zn and the increase amount of these metals in the earthworms' tissue after the vermicomposting processes. Different values of BCFs were obtained for different heavy metals and this accounted that earthworms exert different metabolic mechanisms. Regression analysis of the reduction percentages (R) in relation to BCF showed that RCdtot.S6, RCrtot.S5 and RCutot.S6 were significantly correlated with BCFCd.S6, BCFCr.S5 and BCFCu.S6 respectively. Thus, in comparison to simple composting processes, data analysis suggested the feasibility of inoculating E. eugeniae to MSW in order to mitigate the content of toxic heavy metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. The biodurability of covering materials for metallic stents in a bile flow phantom.

    PubMed

    Bang, Byoung Wook; Jeong, Seok; Lee, Don Haeng; Lee, Jung Il; Lee, Se Chul; Kang, Sung-Gwon

    2012-04-01

    Covered biliary metal stents have been introduced for the purpose of overcoming tumor ingrowth and treatment of benign biliary stricture. The aim of this study was to evaluate the biodurability of three commercially available biliary metal stent covering materials [e-PTFE (expanded polytetrafluoroethylene), silicone, and polyurethane] in a bile flow phantom. By operation of a peristaltic pump, human bile was circulated continuously in an experimental perfusion system containing covered metal stents. Each stent was removed, respectively, 1, 2, 4, and 6 months after bile exposure. We performed a gross inspection of the covered stents. The covering membrane was detached from the stent and observed by scanning electron microscopy (SEM). Finally, we measured tensile and tear strength of the membranes. Bile-staining of the membrane showed gradual progression after bile exposure; however, progress was the fastest in e-PTFE. SEM examination showed that the polyurethane surface was smooth, and the silicone surface was relatively smooth. However, e-PTFE had a rough and uneven surface. After bile exposure, there were no significant changes in polyurethane and silicone; however, biofilms and microcracks were observed in e-PTFE. In contrast to a gradual decrease of tensile/tear strength of polyurethane and silicone, those of e-PTFE showed a rapid reduction despite of the strongest baseline tensile and tear strength. e-PTFE tended to form biofilms more frequently than polyurethane and silicone during bile exposure. e-PTFE seemed to be less durable than silicone and polyurethane, however, as clinically applicable material because of strong absolute tensile/tear strengths.

  16. Visualizing the Cu/Cu2(O) Interface Transition in Nanoparticles with Environmental Scanning Transmission Electron Microscopy.

    PubMed

    LaGrow, Alec P; Ward, Michael R; Lloyd, David C; Gai, Pratibha L; Boyes, Edward D

    2017-01-11

    Understanding the oxidation and reduction mechanisms of catalytically active transition metal nanoparticles is important to improve their application in a variety of chemical processes. In nanocatalysis the nanoparticles can undergo oxidation or reduction in situ, and thus the redox species are not what are observed before and after reactions. We have used the novel environmental scanning transmission electron microscope (ESTEM) with 0.1 nm resolution in systematic studies of complex dynamic oxidation and reduction mechanisms of copper nanoparticles. The oxidation of copper has previously been reported to be dependent on its crystallography and its interaction with the substrate. By following the dynamic oxidation process in situ in real time with high-angle annular dark-field imaging in the ESTEM, we use conditions ideal to track the oxidation front as it progresses across a copper nanoparticle by following the changes in the atomic number (Z) contrast with time. The oxidation occurs via the nucleation of the oxide phase (Cu 2 O) from one area of the nanoparticle which then progresses unidirectionally across the particle, with the Cu-to-Cu 2 O interface having a relationship of Cu{111}//Cu 2 O{111}. The oxidation kinetics are related to the temperature and oxygen pressure. When the process is reversed in hydrogen, the reduction process is observed to be similar to the oxidation, with the same crystallographic relationship between the two phases. The dynamic observations provide unique insights into redox mechanisms which are important to understanding and controlling the oxidation and reduction of copper-based nanoparticles.

  17. Metaproteomics Identifies the Protein Machinery Involved in Metal and Radionuclide Reduction in Subsurface Microbiomes and Elucidates Mechanisms and U(VI) Reduction Immobilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfiffner, Susan M.; Löffler, Frank; Ritalahti, Kirsti

    The overall goal for this funded project was to develop and exploit environmental metaproteomics tools to identify biomarkers for monitoring microbial activity affecting U speciation at U-contaminated sites, correlate metaproteomics profiles with geochemical parameters and U(VI) reduction activity (or lack thereof), elucidate mechanisms contributing to U(VI) reduction, and provide remediation project managers with additional information to make science-based site management decisions for achieving cleanup goals more efficiently. Although significant progress has been made in elucidating the microbiology contribution to metal and radionuclide reduction, the cellular components, pathway(s), and mechanisms involved in U trans-formation remain poorly understood. Recent advances in (meta)proteomicsmore » technology enable detailed studies of complex samples, including environmental samples, which differ between sites and even show considerable variability within the same site (e.g., the Oak Ridge IFRC site). Additionally, site-specific geochemical conditions affect microbial activity and function, suggesting generalized assessment and interpretations may not suffice. This research effort integrated current understanding of the microbiology and biochemistry of U(VI) reduction and capitalize on advances in proteomics technology made over the past few years. Field-related analyses used Oak Ridge IFRC field ground water samples from locations where slow-release substrate biostimulation has been implemented to accelerate in situ U(VI) reduction rates. Our overarching hypothesis was that the metabolic signature in environmental samples, as deciphered by the metaproteome measurements, would show a relationship with U(VI) reduction activity. Since metaproteomic and metagenomic characterizations were computationally challenging and time-consuming, we used a tiered approach that combines database mining, controlled laboratory studies, U(VI) reduction activity measurements, phylogenetic analyses, and gene expression studies to support the metaproteomics characterizations. Growth experiments of target microorganisms (Anaeromyxobacter, Shewanella, Geobacter) revealed tremendous respiratory versatility, as evidenced by the ability to utilize a range of electron donors (e.g. acetate, hydrogen, pyruvate, lactate, succinate, formate) and electron acceptors (e.g. nitrate, fumarate, halogenated phenols, ferric iron, nitrous oxide, etc.). In particular, the dissimilatory metabolic reduction of metals, including radionuclides, by target microorganisms spurred interest for in situ bioremediation of contaminated soils and sediments. Distinct c-type cytochrome expression patterns were observed in target microorganisms grown with the different electron acceptors. For each target microorganism, the core proteome covered almost all metabolic pathways represented by their corresponding pan-proteomes. Unique proteins were detected for each target microorganism, and their expression and possible functionalities were linked to specific growth conditions through proteomics measurements. Optimization of the proteomic tools included in-depth comprehensive metagenomic and metaproteomic analyses on a limited number of samples. The optimized metaproteomic analyses were then applied to Oak Ridge IFRC field samples from the slow-release substrate biostimulation. Metaproteomic analysis and pathway mapping results demonstrated the distinct effects of metal and non-metal growth conditions on the proteome expression. With these metaproteomic tools, we identified which previously hypothetical metabolic pathways were active during the analyzed time points of the slow release substrate biostimulation. Thus, we demonstrated the utility of these tools for site assessment, efficient implementation of bioremediation and long-term monitoring. This research of detailed protein analysis linked with metal reduction activity did (1) show that c-type cytochrome isoforms, previously associated with radionuclide reduction activity, are suitable biomarkers, (2) identify new biomarker targets for site assessment and bioremediation monitoring, and (3) provide new information about specific proteins and mechanisms involved in U(VI) reduction and immobilization. This expanded metagenomic and metaproteomic toolbox contributed to implementing science-driven site management with broad benefits to the DOE mission.« less

  18. Uncovering the design rules for peptide synthesis of metal nanoparticles.

    PubMed

    Tan, Yen Nee; Lee, Jim Yang; Wang, Daniel I C

    2010-04-28

    Peptides are multifunctional reagents (reducing and capping agents) that can be used for the synthesis of biocompatible metal nanoparticles under relatively mild conditions. However, the progress in peptide synthesis of metal nanoparticles has been slow due to the lack of peptide design rules. It is difficult to establish sequence-reactivity relationships from peptides isolated from biological sources (e.g., biomineralizing organisms) or selected by combinatorial display libraries because of their widely varying compositions and structures. The abundance of random and inactive amino acid sequences in the peptides also increases the difficulty in knowledge extraction. In this study, a "bottom-up" approach was used to formulate a set of rudimentary rules for the size- and shape-controlled peptide synthesis of gold nanoparticles from the properties of the 20 natural alpha-amino acids for AuCl(4)(-) reduction and binding to Au(0). It was discovered that the reduction capability of a peptide depends on the presence of certain reducing amino acid residues, whose activity may be regulated by neighboring residues with different Au(0) binding strengths. Another finding is the effect of peptide net charge on the nucleation and growth of the Au nanoparticles. On the basis of these understandings, several multifunctional peptides were designed to synthesize gold nanoparticles in different morphologies (nanospheres and nanoplates) and with sizes tunable by the strategic placement of selected amino acid residues in the peptide sequence. The methodology presented here and the findings are useful for establishing the scientific basis for the rational design of peptides for the synthesis of metal nanostructures.

  19. Soil amendments for heavy metals removal from stormwater runoff discharging to environmentally sensitive areas

    NASA Astrophysics Data System (ADS)

    Trenouth, William R.; Gharabaghi, Bahram

    2015-10-01

    Concentrations of dissolved metals in stormwater runoff from urbanized watersheds are much higher than established guidelines for the protection of aquatic life. Five potential soil amendment materials derived from affordable, abundant sources have been tested as filter media using shaker tests and were found to remove dissolved metals in stormwater runoff. Blast furnace (BF) slag and basic oxygenated furnace (BOF) slag from a steel mill, a drinking water treatment residual (DWTR) from a surface water treatment plant, goethite-rich overburden (IRON) from a coal mine, and woodchips (WC) were tested. The IRON and BOF amendments were shown to remove 46-98% of dissolved metals (Cr, Co, Cu, Pb, Ni, Zn) in repacked soil columns. Freundlich adsorption isotherm constants for six metals across five materials were calculated. Breakthrough curves of dissolved metals and total metal accumulation within the filter media were measured in column tests using synthetic runoff. A reduction in system performance over time occurred due to progressive saturation of the treatment media. Despite this, the top 7 cm of each filter media removed up to 72% of the dissolved metals. A calibrated HYDRUS-1D model was used to simulate long-term metal accumulation in the filter media, and model results suggest that for these metals a BOF filter media thickness as low as 15 cm can be used to improve stormwater quality to meet standards for up to twenty years. The treatment media evaluated in this research can be used to improve urban stormwater runoff discharging to environmentally sensitive areas (ESAs).

  20. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    DOEpatents

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  1. Analyzing radiation absorption difference of dental substance by using Dual CT

    NASA Astrophysics Data System (ADS)

    Yu, H.; Lee, H. K.; Cho, J. H.; Yang, H. J.; Ju, Y. S.

    2015-07-01

    The purpose of this study was to evaluate the changes of noise and computer tomography (CT) number in each dental substance, by using the metal artefact reduction algorithm; we used dual CT for this study. For the study, we produced resin, titanium, gypsum, and wax that are widely used by dentists. In addition, we made nickel to increase the artefact. While making the study materials, we made sure that there is no difficulty when inserting the substances inside phantom. In order to study, we scanned before and after using the metal artefact reduction algorithm. We conducted an average analysis of CT number and noise, before and after using the metal artefact reduction algorithm. As a result, there was no difference in CT number and noise before and after using the metal artefact reduction algorithm. However, when it comes to the noise value in each substance, wax's noise value was the lowest whereas titanium's noise value was the highest, after applying the metal artefact reduction algorithm. In nickel, CT number and noise value from artefact area showed a decreased noise value when applying the metal artefact reduction algorithm. In conclusion, we assumed that we could increase the effectiveness of CT examination by applying dual energy's metal artefact reduction algorithm.

  2. Metal implants on CT: comparison of iterative reconstruction algorithms for reduction of metal artifacts with single energy and spectral CT scanning in a phantom model.

    PubMed

    Fang, Jieming; Zhang, Da; Wilcox, Carol; Heidinger, Benedikt; Raptopoulos, Vassilios; Brook, Alexander; Brook, Olga R

    2017-03-01

    To assess single energy metal artifact reduction (SEMAR) and spectral energy metal artifact reduction (MARS) algorithms in reducing artifacts generated by different metal implants. Phantom was scanned with and without SEMAR (Aquilion One, Toshiba) and MARS (Discovery CT750 HD, GE), with various metal implants. Images were evaluated objectively by measuring standard deviation in regions of interests and subjectively by two independent reviewers grading on a scale of 0 (no artifact) to 4 (severe artifact). Reviewers also graded new artifacts introduced by metal artifact reduction algorithms. SEMAR and MARS significantly decreased variability of the density measurement adjacent to the metal implant, with median SD (standard deviation of density measurement) of 52.1 HU without SEMAR, vs. 12.3 HU with SEMAR, p < 0.001. Median SD without MARS of 63.1 HU decreased to 25.9 HU with MARS, p < 0.001. Median SD with SEMAR is significantly lower than median SD with MARS (p = 0.0011). SEMAR improved subjective image quality with reduction in overall artifacts grading from 3.2 ± 0.7 to 1.4 ± 0.9, p < 0.001. Improvement of overall image quality by MARS has not reached statistical significance (3.2 ± 0.6 to 2.6 ± 0.8, p = 0.088). There was a significant introduction of artifacts introduced by metal artifact reduction algorithm for MARS with 2.4 ± 1.0, but minimal with SEMAR 0.4 ± 0.7, p < 0.001. CT iterative reconstruction algorithms with single and spectral energy are both effective in reduction of metal artifacts. Single energy-based algorithm provides better overall image quality than spectral CT-based algorithm. Spectral metal artifact reduction algorithm introduces mild to moderate artifacts in the far field.

  3. Precision Sheet Metal. Progress Record and Theory Outline.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Education, Hartford. Div. of Vocational-Technical Schools.

    This combination progress record and course outline is designed for use by individuals teaching a course in precision sheet metal. Included among the topics addressed in the course are the following: employment opportunities in metalworking, measurement and layout, orthographic projection, precision sheet metal drafting, simple layout, hand tools,…

  4. Direct electrochemical reduction of metal-oxides

    DOEpatents

    Redey, Laszlo I.; Gourishankar, Karthick

    2003-01-01

    A method of controlling the direct electrolytic reduction of a metal oxide or mixtures of metal oxides to the corresponding metal or metals. A non-consumable anode and a cathode and a salt electrolyte with a first reference electrode near the non-consumable anode and a second reference electrode near the cathode are used. Oxygen gas is produced and removed from the cell. The anode potential is compared to the first reference electrode to prevent anode dissolution and gas evolution other than oxygen, and the cathode potential is compared to the second reference electrode to prevent production of reductant metal from ions in the electrolyte.

  5. JOINING DISSIMILAR MATERIALS USING FRICTION STIR SCRIBE TECHNIQUE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-09-01

    Development of robust and cost effective method of joining dissimilar materials can provide a critical pathway to enable widespread use of multi-material design and components in mainstream industrial applications. The use of multi-material components such as Steel-Aluminum, Aluminum-Polymer allows design engineers to optimize material utilization based on service requirements and often lead weight and cost reductions. However producing an effective joint between materials with vastly different thermal, microstructural and deformation response is highly problematic using conventional joining and /or fastening methods. This is especially challenging in cost sensitive high volume markets that largely rely on low–cost joining solutions. Friction Stirmore » Scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like Magnesium and Aluminum to high temperature materials like Steels and Titanium. Additionally viable joints between polymer composites and metal can also be made using this method. This paper will present state of the art, progress made and challenges associated with this innovative derivative of Friction Stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  6. Joining Dissimilar Materials Using Friction Stir Scribe Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Upadhyay, Piyush; Hovanski, Yuri; Jana, Saumyadeep

    2016-10-03

    Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multi-material designs and components in mainstream industrial applications. The use of multi-material components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low costmore » joining solutions. Friction stir scribe technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding in reference to joining dissimilar metals and polymer/metal combinations.« less

  7. Supramolecular gel-assisted synthesis of double shelled Co@CoO@N-C/C nanoparticles with synergistic electrocatalytic activity for the oxygen reduction reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zexing; Wang, Jie; Han, Lili

    2016-01-19

    Investigating active, stable, and low-cost materials for the oxygen reduction reaction is one of the key challenges in fuel-cell research. In this work, we describe the formation of N-doped carbon shell coated Co@CoO nanoparticles supported on Vulcan XC-72 carbon materials (Co@CoO@N–C/C) based on a simple supramolecular gel-assisted method. The double-shelled Co@CoO@N–C/C core–shell nanoparticles exhibit superior electrocatalytic activities for the oxygen reduction reaction compared to N-doped carbon and cobalt oxides, demonstrating the synergistic effect of the hybrid nanomaterials. Notably, the Co@CoO@N–C/C nanoparticles give rise to a comparable four-electron selectivity, long-term stability, and high methanol tolerance; all show a multi-fold improvement overmore » the commercial Pt/C catalyst. As a result, the progress is of great importance in exploring advanced non-precious metal-based electrocatalysts for fuel cell applications.« less

  8. Late dislocation of rotating platform in New Jersey Low-Contact Stress knee prosthesis.

    PubMed

    Huang, Chun-Hsiung; Ma, Hon-Ming; Liau, Jiann-Jong; Ho, Fang-Yuan; Cheng, Cheng-Kung

    2002-12-01

    Five patients with late rotational dislocation of the rotating platform bearing in the New Jersey Low-Contact Stress total knee arthroplasty are reported. The prostheses had functioned well for 8 to 12 years before failure. Preoperative radiographs showed asymmetric femorotibial joint spaces. Entrapment of the dislocated bearing in three patients and spontaneous reduction of the dislocated bearing in another two patients were seen at revision. Femorotibial ligamentous instability was found after reduction. The retrieved polyethylene bearings showed advanced wear and cold flow deformities and the thickness was reduced. The revision arthroplasty was accomplished by replacement with a thicker bearing element. Progressive femorotibial ligament laxity and reduction of the thickness of polyethylene with wearing break down the originally well-balanced soft tissue tension of the knee. The rotational degree of the rotating platform bearing is unrestricted, which may result in late dislocation. Polyethylene wear is unavoidable in knee prostheses using metal contact with polyethylene even with a mobile-bearing design. Efforts to reduce polyethylene wear are mandatory.

  9. Laser and electron-beam powder-bed additive manufacturing of metallic implants: A review on processes, materials and designs.

    PubMed

    Sing, Swee Leong; An, Jia; Yeong, Wai Yee; Wiria, Florencia Edith

    2016-03-01

    Additive manufacturing (AM), also commonly known as 3D printing, allows the direct fabrication of functional parts with complex shapes from digital models. In this review, the current progress of two AM processes suitable for metallic orthopaedic implant applications, namely selective laser melting (SLM) and electron beam melting (EBM) are presented. Several critical design factors such as the need for data acquisition for patient-specific design, design dependent porosity for osteo-inductive implants, surface topology of the implants and design for reduction of stress-shielding in implants are discussed. Additive manufactured biomaterials such as 316L stainless steel, titanium-6aluminium-4vanadium (Ti6Al4V) and cobalt-chromium (CoCr) are highlighted. Limitations and future potential of such technologies are also explored. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  10. Dislocation-pipe diffusion in nitride superlattices observed in direct atomic resolution.

    PubMed

    Garbrecht, Magnus; Saha, Bivas; Schroeder, Jeremy L; Hultman, Lars; Sands, Timothy D

    2017-04-06

    Device failure from diffusion short circuits in microelectronic components occurs via thermally induced migration of atoms along high-diffusivity paths: dislocations, grain boundaries, and free surfaces. Even well-annealed single-grain metallic films contain dislocation densities of about 10 14  m -2 ; hence dislocation-pipe diffusion (DPD) becomes a major contribution at working temperatures. While its theoretical concept was established already in the 1950s and its contribution is commonly measured using indirect tracer, spectroscopy, or electrical methods, no direct observation of DPD at the atomic level has been reported. We present atomically-resolved electron microscopy images of the onset and progression of diffusion along threading dislocations in sequentially annealed nitride metal/semiconductor superlattices, and show that this type of diffusion can be independent of concentration gradients in the system but governed by the reduction of strain fields in the lattice.

  11. Displacement method and apparatus for reducing passivated metal powders and metal oxides

    DOEpatents

    Morrell,; Jonathan S. , Ripley; Edward, B [Knoxville, TN

    2009-05-05

    A method of reducing target metal oxides and passivated metals to their metallic state. A reduction reaction is used, often combined with a flux agent to enhance separation of the reaction products. Thermal energy in the form of conventional furnace, infrared, or microwave heating may be applied in combination with the reduction reaction.

  12. Metal Nanoparticles Covered with a Metal-Organic Framework: From One-Pot Synthetic Methods to Synergistic Energy Storage and Conversion Functions.

    PubMed

    Kobayashi, Hirokazu; Mitsuka, Yuko; Kitagawa, Hiroshi

    2016-08-01

    Hybrid materials composed of metal nanoparticles and metal-organic frameworks (MOFs) have attracted much attention in many applications, such as enhanced gas storage and catalytic, magnetic, and optical properties, because of the synergetic effects between the metal nanoparticles and MOFs. In this Forum Article, we describe our recent progress on novel synthetic methods to produce metal nanoparticles covered with a MOF (metal@MOF). We first present Pd@copper(II) 1,3,5-benzenetricarboxylate (HKUST-1) as a novel hydrogen-storage material. The HKUST-1 coating on Pd nanocrystals results in a remarkably enhanced hydrogen-storage capacity and speed in the Pd nanocrystals, originating from charge transfer from Pd nanocrystals to HKUST-1. Another material, Pd-Au@Zn(MeIM)2 (ZIF-8, where HMeIM = 2-methylimidazole), exhibits much different catalytic activity for alcohol oxidation compared with Pd-Au nanoparticles, indicating a design guideline for the development of composite catalysts with high selectivity. A composite material composed of Cu nanoparticles and Cr3F(H2O)2O{C6H3(CO2)3}2 (MIL-100-Cr) demonstrates higher catalytic activity for CO2 reduction into methanol than Cu/γ-Al2O3. We also present novel one-pot synthetic methods to produce composite materials including Pd/ZIF-8 and Ni@Ni2(dhtp) (MOF-74, where H4dhtp = 2,5-dihydroxyterephthalic acid).

  13. Roles of Cationic and Elemental Calcium in the Electro-Reduction of Solid Metal Oxides in Molten Calcium Chloride

    NASA Astrophysics Data System (ADS)

    Qiu, Guohong; Jiang, Kai; Ma, Meng; Wang, Dihua; Jin, Xianbo; Chen, George Z.

    2007-06-01

    Previous work, mainly from this research group, is re-visited on electrochemical reduction of solid metal oxides, in the form of compacted powder, in molten CaCl2, aiming at further understanding of the roles of cationic and elemental calcium. The discussion focuses on six aspects: 1.) debate on two mechanisms proposed in the literature, i. e. electro-metallothermic reduction and electro-reduction (or electro-deoxidation), for the electrolytic removal of oxygen from solid metals or metal oxides in molten CaCl2; 2.) novel metallic cavity working electrodes for electrochemical investigations of compacted metal oxide powders in high temperature molten salts assisted by a quartz sealed Ag/AgCl reference electrode (650 ºC- 950 ºC); 3.) influence of elemental calcium on the background current observed during electrolysis of solid metal oxides in molten CaCl2; 4.) electrochemical insertion/ inclusion of cationic calcium into solid metal oxides; 5.) typical features of cyclic voltammetry and chronoamperometry (potentiostatic electrolysis) of metal oxide powders in molten CaCl2; and 6.) some kinetic considerations on the electrolytic removal of oxygen.

  14. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous-Flow Nanocatalysis.

    PubMed

    Koga, Hirotaka; Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-06-22

    Continuous-flow nanocatalysis based on metal nanoparticle catalyst-anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle-anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The "paper reactor" offers hierarchically interconnected micro- and nanoscale pores, which can act as convective-flow and rapid-diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous-flow, aqueous, room-temperature catalytic reduction of 4-nitrophenol to 4-aminophenol, a gold nanoparticle (AuNP)-anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state-of-the-art AuNP-anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP-anchored paper reactors were also demonstrated while high reaction efficiency was maintained. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. Renewable Wood Pulp Paper Reactor with Hierarchical Micro/Nanopores for Continuous‐Flow Nanocatalysis

    PubMed Central

    Namba, Naoko; Takahashi, Tsukasa; Nogi, Masaya; Nishina, Yuta

    2017-01-01

    Abstract Continuous‐flow nanocatalysis based on metal nanoparticle catalyst‐anchored flow reactors has recently provided an excellent platform for effective chemical manufacturing. However, there has been limited progress in porous structure design and recycling systems for metal nanoparticle‐anchored flow reactors to create more efficient and sustainable catalytic processes. In this study, traditional paper is used for a highly efficient, recyclable, and even renewable flow reactor by tailoring the ultrastructures of wood pulp. The “paper reactor” offers hierarchically interconnected micro‐ and nanoscale pores, which can act as convective‐flow and rapid‐diffusion channels, respectively, for efficient access of reactants to metal nanoparticle catalysts. In continuous‐flow, aqueous, room‐temperature catalytic reduction of 4‐nitrophenol to 4‐aminophenol, a gold nanoparticle (AuNP)‐anchored paper reactor with hierarchical micro/nanopores provided higher reaction efficiency than state‐of‐the‐art AuNP‐anchored flow reactors. Inspired by traditional paper materials, successful recycling and renewal of AuNP‐anchored paper reactors were also demonstrated while high reaction efficiency was maintained. PMID:28394501

  16. Artifact reduction of different metallic implants in flat detector C-arm CT.

    PubMed

    Hung, S-C; Wu, C-C; Lin, C-J; Guo, W-Y; Luo, C-B; Chang, F-C; Chang, C-Y

    2014-07-01

    Flat detector CT has been increasingly used as a follow-up examination after endovascular intervention. Metal artifact reduction has been successfully demonstrated in coil mass cases, but only in a small series. We attempted to objectively and subjectively evaluate the feasibility of metal artifact reduction with various metallic objects and coil lengths. We retrospectively reprocessed the flat detector CT data of 28 patients (15 men, 13 women; mean age, 55.6 years) after they underwent endovascular treatment (20 coiling ± stent placement, 6 liquid embolizers) or shunt drainage (n = 2) between January 2009 and November 2011 by using a metal artifact reduction correction algorithm. We measured CT value ranges and noise by using region-of-interest methods, and 2 experienced neuroradiologists rated the degrees of improved imaging quality and artifact reduction by comparing uncorrected and corrected images. After we applied the metal artifact reduction algorithm, the CT value ranges and the noise were substantially reduced (1815.3 ± 793.7 versus 231.7 ± 95.9 and 319.9 ± 136.6 versus 45.9 ± 14.0; both P < .001) regardless of the types of metallic objects and various sizes of coil masses. The rater study achieved an overall improvement of imaging quality and artifact reduction (85.7% and 78.6% of cases by 2 raters, respectively), with the greatest improvement in the coiling group, moderate improvement in the liquid embolizers, and the smallest improvement in ventricular shunting (overall agreement, 0.857). The metal artifact reduction algorithm substantially reduced artifacts and improved the objective image quality in every studied case. It also allowed improved diagnostic confidence in most cases. © 2014 by American Journal of Neuroradiology.

  17. Carbothermic reduction of uranium oxides into solvent metallic baths

    NASA Astrophysics Data System (ADS)

    Guisard Restivo, Thomaz A.; Capocchi, José D. T.

    2004-09-01

    The carbothermic reduction of UO 2 and U 3O 8 is studied employing tin and silicon solvent metallic baths in thermal analysis equipment, under Ar inert and N 2 reactive atmospheres. The metallic solvents are expected to lower the U activity by several orders of magnitude owing to strong interactions among the metals. The reduction products are composed of the solvent metal matrix and intermetallic U compounds. Silicon is more effective in driving the reduction since there is no residual UO 2 after the reaction. The gaseous product detected by mass spectrometer (MS) during the reduction is CO. A kinetic study for the Si case was accomplished by the stepwise isothermal analysis (SAI) method, leading to the identification of the controlling mechanisms as chemical reaction at the surface and nucleation, for UO 2 and U 3O 8 charges, respectively. One example for another system containing Al 2O 3 is also shown.

  18. Metal-containing and related polymers for biomedical applications.

    PubMed

    Yan, Yi; Zhang, Jiuyang; Ren, Lixia; Tang, Chuanbing

    2016-10-07

    A survey of the most recent progress in the biomedical applications of metal-containing polymers is given. Due to the unique optical, electrochemical, and magnetic properties, at least 30 different metal elements, most of them transition metals, are introduced into polymeric frameworks for interactions with biology-relevant substrates via various means. Inspired by the advance of metal-containing small molecular drugs and promoted by the great progress in polymer chemistry, metal-containing polymers have gained momentum during recent decades. According to their different applications, this review summarizes the following biomedical applications: (1) metal-containing polymers as drug delivery vehicles; (2) metal-containing polymeric drugs and biocides, including antimicrobial and antiviral agents, anticancer drugs, photodynamic therapy agents, radiotherapy agents and biocides; (3) metal-containing polymers as biosensors, and (4) metal-containing polymers in bioimaging.

  19. Progress of Application Researches of Porous Fiber Metals

    PubMed Central

    Xi, Zhengping; Zhu, Jilei; Tang, Huiping; Ao, Qingbo; Zhi, Hao; Wang, Jianyong; Li, Cheng

    2011-01-01

    Metal fiber porous materials with intrinsic properties of metal and functional properties of porous materials have received a great deal of attention in the fundamental research and industry applications. With developments of the preparation technologies and industrial requirements, porous fiber metals with excellent properties are developed and applied in many industry areas, e.g., sound absorption, heat transfer, energy absorption and lightweight structures. The applied research progress of the metal fiber porous materials in such application areas based on the recent work in our group was reviewed in this paper. PMID:28879952

  20. Evidence for single metal two electron oxidative addition and reductive elimination at uranium.

    PubMed

    Gardner, Benedict M; Kefalidis, Christos E; Lu, Erli; Patel, Dipti; McInnes, Eric J L; Tuna, Floriana; Wooles, Ashley J; Maron, Laurent; Liddle, Stephen T

    2017-12-01

    Reversible single-metal two-electron oxidative addition and reductive elimination are common fundamental reactions for transition metals that underpin major catalytic transformations. However, these reactions have never been observed together in the f-block because these metals exhibit irreversible one- or multi-electron oxidation or reduction reactions. Here we report that azobenzene oxidises sterically and electronically unsaturated uranium(III) complexes to afford a uranium(V)-imido complex in a reaction that satisfies all criteria of a single-metal two-electron oxidative addition. Thermolysis of this complex promotes extrusion of azobenzene, where H-/D-isotopic labelling finds no isotopomer cross-over and the non-reactivity of a nitrene-trap suggests that nitrenes are not generated and thus a reductive elimination has occurred. Though not optimally balanced in this case, this work presents evidence that classical d-block redox chemistry can be performed reversibly by f-block metals, and that uranium can thus mimic elementary transition metal reactivity, which may lead to the discovery of new f-block catalysis.

  1. Aerosol reduction/expansion synthesis (A-RES) for zero valent metal particles

    DOEpatents

    Leseman, Zayd; Luhrs, Claudia; Phillips, Jonathan; Soliman, Haytham

    2016-04-12

    Various embodiments provide methods of forming zero valent metal particles using an aerosol-reductive/expansion synthesis (A-RES) process. In one embodiment, an aerosol stream including metal precursor compound(s) and chemical agent(s) that produces reducing gases upon thermal decomposition can be introduced into a heated inert atmosphere of a RES reactor to form zero valent metal particles corresponding to metals used for the metal precursor compound(s).

  2. Metal artefact reduction with cone beam CT: an in vitro study

    PubMed Central

    Bechara, BB; Moore, WS; McMahan, CA; Noujeim, M

    2012-01-01

    Background Metal in a patient's mouth has been shown to cause artefacts that can interfere with the diagnostic quality of cone beam CT. Recently, a manufacturer has made an algorithm and software available which reduces metal streak artefact (Picasso Master 3D® machine; Vatech, Hwaseong, Republic of Korea). Objectives The purpose of this investigation was to determine whether or not the metal artefact reduction algorithm was effective and enhanced the contrast-to-noise ratio. Methods A phantom was constructed incorporating three metallic beads and three epoxy resin-based bone substitutes to simulate bone next to metal. The phantom was placed in the centre of the field of view and at the periphery. 10 data sets were acquired at 50–90 kVp. The images obtained were analysed using a public domain software ImageJ (NIH Image, Bethesda, MD). Profile lines were used to evaluate grey level changes and area histograms were used to evaluate contrast. The contrast-to-noise ratio was calculated. Results The metal artefact reduction option reduced grey value variation and increased the contrast-to-noise ratio. The grey value varied least when the phantom was in the middle of the volume and the metal artefact reduction was activated. The image quality improved as the peak kilovoltage increased. Conclusion Better images of a phantom were obtained when the metal artefact reduction algorithm was used. PMID:22241878

  3. The bioenergetics mechanisms and applications of sulfate-reducing bacteria in remediation of pollutants in drainage: A review.

    PubMed

    Li, Xin; Lan, Shi-Ming; Zhu, Zhong-Ping; Zhang, Chang; Zeng, Guang-Ming; Liu, Yun-Guo; Cao, Wei-Cheng; Song, Biao; Yang, Hong; Wang, Sheng-Fan; Wu, Shao-Hua

    2018-04-20

    Sulfate-reducing bacteria (SRB), a group of anaerobic prokaryotes, can use sulfur species as a terminal electron acceptor for the oxidation of organic compounds. They not only have significant ecological functions, but also play an important role in bioremediation of contaminated sites. Although numerous studies on metabolism and applications of SRB have been conducted, they still remain incompletely understood and even controversial. Fully understanding the metabolism of SRB paves the way for allowing the microorganisms to provide more beneficial services in bioremediation. Here we review progress in bioenergetics mechanisms and application of SRB including: (1) electron acceptors and donors for SRB; (2) pathway for sulfate reduction; (3) electron transfer in sulfate reduction; (4) application of SRB for economical and concomitant treatment of heavy metal, organic contaminants and sulfates. Moreover, current knowledge gaps and further research needs are identified. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Carbon nanotube wires and cables: Near-term applications and future perspectives

    NASA Astrophysics Data System (ADS)

    Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian

    2011-11-01

    Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 106 S/m. This level of conductivity brings CNTs closer to copper (5.8 × 107 S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will require development in electrical contacting. Several methods for contacting bulk CNT materials to metals are demonstrated, including mechanical crimping and ultrasonic bonding, along with a method for reducing contact resistance by tailoring the CNT-metal interface via electroless plating. Collectively, these results summarize recent progress in CNT wiring technologies and illustrate that nanoscale conductors may become a disruptive technology in cabling designs.

  5. Carbon nanotube wires and cables: near-term applications and future perspectives.

    PubMed

    Jarosz, Paul; Schauerman, Christopher; Alvarenga, Jack; Moses, Brian; Mastrangelo, Thomas; Raffaelle, Ryne; Ridgley, Richard; Landi, Brian

    2011-11-01

    Wires and cables are essential to modern society, and opportunities exist to develop new materials with reduced resistance, mass, and/or susceptibility to fatigue. This article describes how carbon nanotubes (CNTs) offer opportunities for integration into wires and cables for both power and data transmission due to their unique physical and electronic properties. Macroscopic CNT wires and ribbons are presently shown as viable replacements for metallic conductors in lab-scale demonstrations of coaxial, USB, and Ethernet cables. In certain applications, such as the outer conductor of a coaxial cable, CNT materials may be positioned to displace metals to achieve substantial benefits (e.g. reduction in cable mass per unit length (mass/length) up to 50% in some cases). Bulk CNT materials possess several unique properties which may offer advantages over metallic conductors, such as flexure tolerance and environmental stability. Specifically, CNT wires were observed to withstand greater than 200,000 bending cycles without increasing resistivity. Additionally, CNT wires exhibit no increase in resistivity after 80 days in a corrosive environment (1 M HCl), and little change in resistivity with temperature (<1% from 170-330 K). This performance is superior to conventional metal wires and truly novel for a wiring material. However, for CNTs to serve as a full replacement for metals, the electrical conductivity of CNT materials must be improved. Recently, the conductivity of a CNT wire prepared through simultaneous densification and doping has exceeded 1.3 × 10(6) S/m. This level of conductivity brings CNTs closer to copper (5.8 × 10(7) S/m) and competitive with some metals (e.g. gold) on a mass-normalized basis. Developments in manipulation of CNT materials (e.g. type enrichment, doping, alignment, and densification) have shown progress towards this goal. In parallel with efforts to improve bulk conductivity, integration of CNT materials into cabling architectures will require development in electrical contacting. Several methods for contacting bulk CNT materials to metals are demonstrated, including mechanical crimping and ultrasonic bonding, along with a method for reducing contact resistance by tailoring the CNT-metal interface via electroless plating. Collectively, these results summarize recent progress in CNT wiring technologies and illustrate that nanoscale conductors may become a disruptive technology in cabling designs.

  6. Physical defect formation in few layer graphene-like carbon on metals: influence of temperature, acidity, and chemical functionalization.

    PubMed

    Schumacher, Christoph M; Grass, Robert N; Rossier, Michael; Athanassiou, Evagelos K; Stark, Wendelin J

    2012-03-06

    A systematical examination of the chemical stability of cobalt metal nanomagnets with a graphene-like carbon coating is used to study the otherwise rather elusive formation of nanometer-sized physical defects in few layer graphene as a result of acid treatments. We therefore first exposed the core-shell nanomaterial to well-controlled solutions of altering acidity and temperature. The release of cobalt into these solutions over time offered a simple tool to monitor the progress of particle degradation. The results suggested that the oxidative damage of the graphene-like coatings was the rate-limiting step during particle degradation since only fully intact or entirely emptied carbon shells were found after the experiments. If ionic noble metal species were additionally present in the acidic solutions, the noble metal was found to reduce on the surface of specific, defective particles. The altered electrochemical gradients across the carbon shells were however not found to lead to a faster release of cobalt from the particles. The suggested mechanistic insight was further confirmed by the covalent chemical functionalization of the particle surface with chemically inert aryl species, which leads to an additional thickening of the shells. This leads to reduced cobalt release rates as well as slower noble metal reduction rates depending on the augmentation of the shell thickness.

  7. Progress in cold roll bonding of metals

    PubMed Central

    Li, Long; Nagai, Kotobu; Yin, Fuxing

    2008-01-01

    Layered composite materials have become an increasingly interesting topic in industrial development. Cold roll bonding (CRB), as a solid phase method of bonding same or different metals by rolling at room temperature, has been widely used in manufacturing large layered composite sheets and foils. In this paper, we provide a brief overview of a technology using layered composite materials produced by CRB and discuss the suitability of this technology in the fabrication of layered composite materials. The effects of process parameters on bonding, mainly including process and surface preparation conditions, have been analyzed. Bonding between two sheets can be realized when deformation reduction reaches a threshold value. However, it is essential to remove surface contamination layers to produce a satisfactory bond in CRB. It has been suggested that the degreasing and then scratch brushing of surfaces create a strong bonding between the layers. Bonding mechanisms, in which the film theory is expressed as the major mechanism in CRB, as well as bonding theoretical models, have also been reviewed. It has also been showed that it is easy for bcc structure metals to bond compared with fcc and hcp structure metals. In addition, hardness on bonding same metals plays an important part in CRB. Applications of composites produced by CRB in industrial fields are briefly reviewed and possible developments of CRB in the future are also described. PMID:27877949

  8. Approaches to reducing photon dose calculation errors near metal implants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jessie Y.; Followill, David S.; Howell, Reb

    Purpose: Dose calculation errors near metal implants are caused by limitations of the dose calculation algorithm in modeling tissue/metal interface effects as well as density assignment errors caused by imaging artifacts. The purpose of this study was to investigate two strategies for reducing dose calculation errors near metal implants: implementation of metal-based energy deposition kernels in the convolution/superposition (C/S) dose calculation method and use of metal artifact reduction methods for computed tomography (CT) imaging. Methods: Both error reduction strategies were investigated using a simple geometric slab phantom with a rectangular metal insert (composed of titanium or Cerrobend), as well asmore » two anthropomorphic phantoms (one with spinal hardware and one with dental fillings), designed to mimic relevant clinical scenarios. To assess the dosimetric impact of metal kernels, the authors implemented titanium and silver kernels in a commercial collapsed cone C/S algorithm. To assess the impact of CT metal artifact reduction methods, the authors performed dose calculations using baseline imaging techniques (uncorrected 120 kVp imaging) and three commercial metal artifact reduction methods: Philips Healthcare’s O-MAR, GE Healthcare’s monochromatic gemstone spectral imaging (GSI) using dual-energy CT, and GSI with metal artifact reduction software (MARS) applied. For the simple geometric phantom, radiochromic film was used to measure dose upstream and downstream of metal inserts. For the anthropomorphic phantoms, ion chambers and radiochromic film were used to quantify the benefit of the error reduction strategies. Results: Metal kernels did not universally improve accuracy but rather resulted in better accuracy upstream of metal implants and decreased accuracy directly downstream. For the clinical cases (spinal hardware and dental fillings), metal kernels had very little impact on the dose calculation accuracy (<1.0%). Of the commercial CT artifact reduction methods investigated, the authors found that O-MAR was the most consistent method, resulting in either improved dose calculation accuracy (dental case) or little impact on calculation accuracy (spine case). GSI was unsuccessful at reducing the severe artifacts caused by dental fillings and had very little impact on calculation accuracy. GSI with MARS on the other hand gave mixed results, sometimes introducing metal distortion and increasing calculation errors (titanium rectangular implant and titanium spinal hardware) but other times very successfully reducing artifacts (Cerrobend rectangular implant and dental fillings). Conclusions: Though successful at improving dose calculation accuracy upstream of metal implants, metal kernels were not found to substantially improve accuracy for clinical cases. Of the commercial artifact reduction methods investigated, O-MAR was found to be the most consistent candidate for all-purpose CT simulation imaging. The MARS algorithm for GSI should be used with caution for titanium implants, larger implants, and implants located near heterogeneities as it can distort the size and shape of implants and increase calculation errors.« less

  9. Bimetallic nanoparticles synthesized in microemulsions: A computer simulation study on relationship between kinetics and metal segregation.

    PubMed

    Tojo, Concha; Buceta, David; López-Quintela, M Arturo

    2018-01-15

    Computer simulations were carried out to study the origin of the different metal segregation showed by bimetallic nanoparticles synthesized in microemulsions. Our hypothesis is that the kinetics of nanoparticle formation in microemulsions has to be considered on terms of two potentially limiting factors, chemical reaction itself and the rate of reactants exchange between micelles. From the kinetic study it is deduced that chemical reduction in microemulsions is a pseudo first-order process, but not from the beginning. At the initial stage of the synthesis, redistribution of reactants between micelles is controlled by the intermicellar exchange rate, meanwhile the core and middle layers are being built. This exchange control has a different impact depending on the reduction rate of the particular metal in relation to the intermicellar exchange rate. For the case of Au/Pt nanoparticles, the kinetic constant of Au (fast reduction) is strongly dependent on intermicellar exchange rate and reactant concentration. On the contrary, the kinetic constant of Pt (slower reduction) remains constant. Therefore, the fact that the reaction takes place in a microemulsion affects more or less depending on the reduction rate of the metals. As a consequence, the final nanostructure not only depends on difference between the reduction rates of both metals, but also on the reduction rate of each metal in relation to the intermicellar exchange rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOEpatents

    Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  11. Magnesium fluoride reduction-vessel liners. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Latham-Brown, C.E.

    1986-03-26

    The work described in this report details a program that demonstrated a method by which magnesium fluoride, the by-product of the reduction reaction of uranium tetrafluoride to uranium metal could be used to replace the present graphite used to line the reduction vessel. Utilization of magnesium fluoride (MgF2) as a reduction-vessel liner has the potential to decrease carbon contamination and thereby reduce DU derby rejects due to chemistry. Additionally, there would be the elimination of the cost of the graphite crucible liner and the associated disposal costs by replacement with the by-product of the reduction reaction, which is magnesium fluoride.more » The process would ultimately result in reduced manufacturing costs for derby metal and higher yield of finished penetrators. This was to be accomplished in such a manner as to produce uranium metal derbies which would be accommodated into the present Nuclear Metals-Carolina Metals penetrator production process with minimal changes in equipment and procedures.« less

  12. Theory of electron--photon scattering effects in metals. Progress report, December 1, 1976--November 30, 1977

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lawrence, W.E.

    1977-01-01

    The general areas in which the investigations were carried out are transport properties and quasiparticle lifetimes in normal metals and superconductors. The more specific research projects upon which progress is reported are (a) the calculation of order parameter relaxation times in aluminum, (b) transport coefficients of the noble metals (emphasizing deviations from Matthiessen's rule), (c) variational transport calculations for a superconductor, (d) some general results on quasiparticle relaxation time anisotropy in polyvalent metals, and (e) a clarification of the roles of electron-electron and electron-phonon scattering in somple metals at low temperatures.

  13. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    NASA Astrophysics Data System (ADS)

    Calderoni, P.; Sharpe, P.; Nishimura, H.; Terai, T.

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF + BeF 2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 °C, and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to levels close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimen corrosion progressed. Metallographic analysis of the samples after 500 h exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimen's surface.

  14. Control of molten salt corrosion of fusion structural materials by metallic beryllium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    P. Calderoni; P. Sharpe; H. Nishimura

    2009-04-01

    A series of tests have been performed between 2001 and 2006 at the Safety and Tritium Applied Research facility of the Idaho National Laboratory to demonstrate chemical compatibility between the molten salt flibe (2LiF+BeF2 in moles) and fusion structural materials once suitable fluoride potential control methods are established. The tests adopted metallic beryllium contact as main fluoride potential control, and the results have been published in recent years. A further step was to expose two specimens of low activation ferritic/martensitic steel 9Cr-2W to static corrosion tests that include an active corrosion agent (hydrofluoric gas) in controlled conditions at 530 C,more » and the results of the tests are presented in this paper. The results confirmed the expected correlation of the HF recovery with the concentration of metallic impurities dissolved in the salt because of specimen corrosion. The metals concentration dropped to level close to the detectable limit when the beryllium rod was inserted and increased once the content of excess beryllium in the system had been consumed by HF reduction and specimens corrosion progressed. Metallographic analysis of the samples after 500 hours exposure in reactive conditions showed evidence of the formation of unstable chromium oxide layers on the specimens surface.« less

  15. Reoxidation of uranium metal immersed in a Li2O-LiCl molten salt after electrolytic reduction of uranium oxide

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Jeon, Min Ku; Lee, Jeong; Kim, Sung-Wook; Lee, Sang Kwon; Lee, Sung-Jai; Heo, Dong Hyun; Kang, Hyun Woo; Jeon, Sang-Chae; Hur, Jin-Mok

    2017-03-01

    We present our findings that uranium (U) metal prepared by using the electrolytic reduction process for U oxide (UO2) in a Li2O-LiCl salt can be reoxidized into UO2 through the reaction between the U metal and Li2O in LiCl. Two salt types were used for immersion of the U metal: one was the salt used for electrolytic reduction, and the other was applied to the unused LiCl salts with various concentrations of Li2O and Li metal. Our results revealed that the degree of reoxidation increases with the increasing Li2O concentration in LiCl and that the presence of the Li metal in LiCl suppresses the reoxidation of the U metal.

  16. System and method for regeneration and recirculation of a reducing agent using highly exothermic reactions induced by mixed industrial slags

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, Jinichiro; Bennett, James P.; Nakano, Anna

    Embodiments relate to systems and methods for regenerating and recirculating a CO, H.sub.2 or combinations thereof utilized for metal oxide reduction in a reduction furnace. The reduction furnace receives the reducing agent, reduces the metal oxide, and generates an exhaust of the oxidized product. The oxidized product is transferred to a mixing vessel, where the oxidized product, a calcium oxide, and a vanadium oxide interact to regenerate the reducing agent from the oxidized product. The regenerated reducing agent is transferred back to the reduction furnace for continued metal oxide reductions.

  17. Metal anesthesia circuit components stop the progression of laser fires.

    PubMed

    Sosis, M B; Braverman, B

    1994-01-01

    To determine whether metallic Y-pieces and elbows would halt the progression of a laser-induced endotracheal tube fire. A segment of polyvinyl chloride endotracheal tube was attached to either an all-plastic anesthesia circle breathing system (n = 5) or a circuit consisting of a metal Y-piece and elbow with plastic hoses (n = 5). In each case, an Nd-YAG laser was used to ignite the endotracheal tube segment and attached anesthesia circuit as 5 L/min of oxygen was flowing through them. Research laboratory of a university-affiliated metropolitan medical center. The flames from the endotracheal tubes burned through the 22 mm hoses that were part of the all-plastic circuits in 49.5 +/- 8.8 seconds (mean +/- SD). In none of the trials with the metal components did the fire advance beyond the endotracheal tube's 15 mm adapter. Metal circuit components halt the progression of laser-induced endotracheal tube fires toward the anesthesia machine.

  18. Protonation at the aromatic ring of samarium benzophenone dianion species. Isolation and structural characterization of a samarium(III) enolate complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Z.; Yoshimura, Takashi; Wakatsuki, Yasuo

    1994-11-30

    The reduction of aromatic compounds into their dihydro derivatives by dissolving metal/alcohol systems (the Birch reduction) is a useful methodology in organic synthesis. Of particular importance is the reduction of aromatic carbonyl compounds such as aromatic acids, esters, amides, and monoaryl ketones, which usually generates in situ useful metal enolate intermediates that upon further reaction with electrophiles yield a variety of cyclohexadiene derivatives. One of the possible processes to generate these metal enolate intermediates is thought to be the monoprotonation of dianionic species at the para position of the aromatic rings. On the other hand, the reduction of diaryl ketonesmore » by alkali metals in liquid ammonia or by lanthanide metals in THF/HMPA or DME has been well known to afford the corresponding ketone dianions. The first X-ray structure of metal ketone dianion complexes, [Yb([mu]-[eta][sup 1],[eta][sup 2]-OCPh[sub 2]) (HMPA)[sub 2

  19. Supporting palladium metal on gold nanoparticles improves its catalysis for nitrite reduction

    NASA Astrophysics Data System (ADS)

    Qian, Huifeng; Zhao, Zhun; Velazquez, Juan C.; Pretzer, Lori A.; Heck, Kimberly N.; Wong, Michael S.

    2013-12-01

    Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions.Nitrate (NO3-) and nitrite (NO2-) anions are often found in groundwater and surface water as contaminants globally, especially in agricultural areas due to nitrate-rich fertilizer use. One popular approach to studying the removal of nitrite/nitrate from water has been their degradation to dinitrogen via Pd-based reduction catalysis. However, little progress has been made towards understanding how the catalyst structure can improve activity. Focusing on the catalytic reduction of nitrite in this study, we report that Au NPs supporting Pd metal ("Pd-on-Au NPs") show catalytic activity that varies with volcano-shape dependence on Pd surface coverage. At room temperature, in CO2-buffered water, and under H2 headspace, the NPs were maximally active at a Pd surface coverage of 80%, with a first-order rate constant (kcat = 576 L gPd-1 min-1) that was 15x and 7.5x higher than monometallic Pd NPs (~4 nm; 40 L gPd-1 min-1) and Pd/Al2O3 (1 wt% Pd; 76 L gPd-1 min-1), respectively. Accounting only for surface Pd atoms, these NPs (576 L gsurface-Pd-1 min-1) were 3.6x and 1.6x higher than monometallic Pd NPs (160 L gsurface-Pd-1 min-1) and Pd/Al2O3 (361 L gsurface-Pd-1 min-1). These NPs retained ~98% of catalytic activity at a chloride concentration of 1 mM, whereas Pd/Al2O3 lost ~50%. The Pd-on-Au nanostructure is a promising approach to improve the catalytic reduction process for nitrite and, with further development, also for nitrate anions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr04540d

  20. In-situ monitoring of undercoating corrosion damage by Direct Optical Interrogation (DOI)

    NASA Astrophysics Data System (ADS)

    Lopez-Garrity, Meng

    An approach referred to as "Direct Optical Interrogation" (DOI) has been developed as an extension of the thin film pitting approach developed and used by Frankel and others. Samples were prepared by depositing Al and Al-Cu alloy metallizations about 800 nm thick on glass substrates. These metallizations were then coated with various coatings and coating systems. Samples were introduced to aggressive environments and the progression of corrosion of the metallization under the coating was monitored in situ using low power videography. Because metallizations were thin, corrosion quickly penetrated through the metal layer to the glass substrate and then spread laterally. Measurement of the lateral spread of corrosion enabled non-electrochemical assessment of the corrosion kinetics. In Al-Cu thin films, both aged and as-deposited, corrosion sites are irregularly shaped because there is not enough cathodic current to propagate the entire corrosion site margin at equal rates. In a number of cases, corrosion propagates with a filamentary morphology resembling filiform corrosion. Cu played a strong role in determining under coating corrosion morphology and growth kinetics in experiments with Al-Cu thin films substrates. As-deposited Al-Cu metallizations were more corrosion resistant than aged metallization and both were more corrosion resistant than pure Al. Cu-rich dendrites were formed on the corrosion front. Corrosion rate (current density) was calculated using Faraday's law by collecting corrosion site perimeter and bottom area. Systematic exploration of the effects of a chromate and chromate-free conversion coatings, chromate and chromate-free primer coatings and the presence or absence of a polyurethane topcoat confirmed the extraordinary corrosion protection by chromates. A commercial praseodymium-pigmented primer coating was not particularly effective in retarding undercoating corrosion site growth unless paired with a chromate conversion coating. The presence of a topcoat dramatically reduces undercoating corrosion and masks many deficiencies of a conversion coating or primer. DOI was used to compare undercoating corrosion that developed due to exposure in ASTM B117, ASTM G85-A5 and outdoor environments. Similar corrosion morphologies developed in ASTM B117 and static immersion exposures. A single and stable corrosions site nucleated and propagated with a filamentary morphology. In general, salt spray exposure was more aggressive than static immersion. ASTM G85-A5 exposure produced different corrosion morphologies. Corrosion sites were round rather than filamentary. Massive nucleation of small corrosion sites across the whole surface also occurred. ASTM G85 environment was mild compared with the ASTM B117 and static immersion exposures. In outdoor exposure testing carried out for 5 months, no signs of corrosion was observed. To assess the extent to which oxygen reduction occurring on the coated surface supported corrosion site growth, a universal pH indicator was added to agar gels or PVB coatings applied on top of metallizations. Color changes indicating pH changes associated with local alkalization or acidification due to local cell action were assessed visually. Overall, the evidence is consistent with the idea that both hydrogen reduction and oxygen reduction support local corrosion site growth. In practical embodiments of corrosion protection, every effort should be made to restrict oxygen reduction to slow corrosion growth rates.

  1. Metal-phthalocyanine functionalized carbon nanotubes as catalyst for the oxygen reduction reaction: A theoretical study

    NASA Astrophysics Data System (ADS)

    Orellana, Walter

    2012-07-01

    The covalent functionalization of metallic single-walled carbon nanotubes (CNTs) with transition metal phthalocyanines (MPc, with M = Mn, Fe and Co) are addressed by density functional calculations. The CNT-MPc catalytic activity toward the oxygen reduction reaction (ORR) is investigated through the O2 stretching frequency adsorbed on the phthalocyanine metal center. We find better reduction abilities when the CNT functionalization occurs through sp2-like bonds. Multiple stable-spin states for the M-O2 adduct are also found for M = Mn and Fe, suggesting higher ORR rates. The CNT-MPc complexes show metallic characteristics, suggesting favorable conditions to work as ORR cathode catalysts in fuel cells.

  2. An investigation of new metal framework design for metal ceramic restorations.

    PubMed

    O'Boyle, K H; Norling, B K; Cagna, D R; Phoenix, R D

    1997-09-01

    Metal ceramic restorations have been implicated in the discoloration of associated gingival tissues. Attempts to remedy this by altering the design of the metal frameworks for such restorations may lead to unacceptable decreases in fracture resistance. This study evaluated a new metal framework design for metal-ceramic restorations. Twenty artificial crowns were fabricated with various degrees of facial metal reduction; 0, 1, 2, and 3 mm. The study was conducted in two parts. The first part evaluated changes in light transmission into adjacent root tissue. A light box was fabricated so sample crowns could be illuminated on a mounted natural tooth. The root of the tooth remained outside the light box, and the light transmitted through the crowns into root tissue was measured with a light meter. The second part of the study evaluated changes in fracture strength. The sample crowns were subjected to a vertical load until fracture with use of an Instron machine at a crosshead speed of 1 mm per minute. The load at fracture was recorded. Results indicated a statistically significant increase in light transmission with 1 mm framework reduction or greater, and fracture strengths did not decrease with up to 1 mm of framework reduction. A 1 mm facial axial reduction of the metal framework may be indicated for anterior metal-ceramic restorations.

  3. Reduction of metal artifacts in x-ray CT images using a convolutional neural network

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbo; Chu, Ying; Yu, Hengyong

    2017-09-01

    Patients usually contain various metallic implants (e.g. dental fillings, prostheses), causing severe artifacts in the x-ray CT images. Although a large number of metal artifact reduction (MAR) methods have been proposed in the past four decades, MAR is still one of the major problems in clinical x-ray CT. In this work, we develop a convolutional neural network (CNN) based MAR framework, which combines the information from the original and corrected images to suppress artifacts. Before the MAR, we generate a group of data and train a CNN. First, we numerically simulate various metal artifacts cases and build a dataset, which includes metal-free images (used as references), metal-inserted images and various MAR methods corrected images. Then, ten thousands patches are extracted from the databased to train the metal artifact reduction CNN. In the MAR stage, the original image and two corrected images are stacked as a three-channel input image for CNN, and a CNN image is generated with less artifacts. The water equivalent regions in the CNN image are set to a uniform value to yield a CNN prior, whose forward projections are used to replace the metal affected projections, followed by the FBP reconstruction. Experimental results demonstrate the superior metal artifact reduction capability of the proposed method to its competitors.

  4. Physicochemical properties of metal-doped activated carbons and relationship with their performance in the removal of SO2 and NO.

    PubMed

    Gao, Xiang; Liu, Shaojun; Zhang, Yang; Luo, Zhongyang; Cen, Kefa

    2011-04-15

    Several metal-doped activated carbons (Fe, Co, Ni, V, Mn, Cu and Ce) were prepared and characterized. The results of N(2) adsorption-desorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that some metals (Cu and Fe) were partly reduced by carbon during preparation. Activity tests for the removal of SO(2) and the selective catalytic reduction of NO with ammonia were carried out. Due to different physicochemical properties, different pathways for the SO(2) removal had been put out, i.e., catalytic oxidation, direct reaction and adsorption. This classification depended on the standard reduction potentials of metal redox pairs. Samples impregnated with V, Ce and Cu showed good activity for NO reduction by NH(3), which was also ascribed to the reduction potential values of metal redox pairs. Ce seemed to be a promising alternative to V due to the higher activity in NO reduction and the nontoxic property. A metal cation which could easily convert between the two valences seemed to be crucial to the good performance of both SO(2) and NO removal, just like V and Cu. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Metal artefact reduction for patients with metallic dental fillings in helical neck computed tomography: comparison of adaptive iterative dose reduction 3D (AIDR 3D), forward-projected model-based iterative reconstruction solution (FIRST) and AIDR 3D with single-energy metal artefact reduction (SEMAR).

    PubMed

    Yasaka, Koichiro; Kamiya, Kouhei; Irie, Ryusuke; Maeda, Eriko; Sato, Jiro; Ohtomo, Kuni

    To compare the differences in metal artefact degree and the depiction of structures in helical neck CT, in patients with metallic dental fillings, among adaptive iterative dose reduction three dimensional (AIDR 3D), forward-projected model-based iterative reconstruction solution (FIRST) and AIDR 3D with single-energy metal artefact reduction (SEMAR-A). In this retrospective clinical study, 22 patients (males, 13; females, 9; mean age, 64.6 ± 12.6 years) with metallic dental fillings who underwent contrast-enhanced helical CT involving the oropharyngeal region were included. Neck axial images were reconstructed with AIDR 3D, FIRST and SEMAR-A. Metal artefact degree and depiction of structures (the apex and root of the tongue, parapharyngeal space, superior portion of the internal jugular chain and parotid gland) were evaluated on a four-point scale by two radiologists. Placing regions of interest, standard deviations of the oral cavity and nuchal muscle (at the slice where no metal exists) were measured and metal artefact indices were calculated (the square root of the difference of the squares of them). In SEMAR-A, metal artefact was significantly reduced and depictions of all structures were significantly improved compared with those in FIRST and AIDR 3D (p ≤ 0.001, sign test). Metal artefact index for the oral cavity in AIDR 3D/FIRST/SEMAR-A was 572.0/477.7/88.4, and significant differences were seen between each reconstruction algorithm (p < 0.0001, Wilcoxon signed-rank test). SEMAR-A could provide images with lesser metal artefact and better depiction of structures than AIDR 3D and FIRST.

  6. Nitrate reduction

    DOEpatents

    Dziewinski, Jacek J.; Marczak, Stanislaw

    2000-01-01

    Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

  7. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2.

    PubMed

    Miner, Elise M; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.

  8. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2

    PubMed Central

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; Sun, Lei; Surendranath, Yogesh; Dincă, Mircea

    2016-01-01

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni3(HITP)2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni3(HITP)2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N4 sites are structurally reminiscent of the highly active and widely studied non-platinum group metal electrocatalysts containing M-N4 units. Ni3(HITP)2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. Such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications. PMID:26952523

  9. Electrochemical oxygen reduction catalysed by Ni 3(hexaiminotriphenylene) 2

    DOE PAGES

    Miner, Elise M.; Fukushima, Tomohiro; Sheberla, Dennis; ...

    2016-03-08

    Control over the architectural and electronic properties of heterogeneous catalysts poses a major obstacle in the targeted design of active and stable non-platinum group metal electrocatalysts for the oxygen reduction reaction. Here we introduce Ni 3(HITP) 2 (HITP=2, 3, 6, 7, 10, 11-hexaiminotriphenylene) as an intrinsically conductive metal-organic framework which functions as a well-defined, tunable oxygen reduction electrocatalyst in alkaline solution. Ni 3(HITP) 2 exhibits oxygen reduction activity competitive with the most active non-platinum group metal electrocatalysts and stability during extended polarization. The square planar Ni-N 4 sites are structurally reminiscent of the highly active and widely studied non-platinum groupmore » metal electrocatalysts containing M-N 4 units. Ni 3(HITP) 2 and analogues thereof combine the high crystallinity of metal-organic frameworks, the physical durability and electrical conductivity of graphitic materials, and the diverse yet well-controlled synthetic accessibility of molecular species. As a result, such properties may enable the targeted synthesis and systematic optimization of oxygen reduction electrocatalysts as components of fuel cells and electrolysers for renewable energy applications.« less

  10. Defining a Materials Database for the Design of Copper Binary Alloy Catalysts for Electrochemical CO2 Conversion.

    PubMed

    Lee, Chan Woo; Yang, Ki Dong; Nam, Dae-Hyun; Jang, Jun Ho; Cho, Nam Heon; Im, Sang Won; Nam, Ki Tae

    2018-01-24

    While Cu electrodes are a versatile material in the electrochemical production of desired hydrocarbon fuels, Cu binary alloy electrodes are recently proposed to further tune reaction directionality and, more importantly, overcome the intrinsic limitation of scaling relations. Despite encouraging empirical demonstrations of various Cu-based metal alloy systems, the underlying principles of their outstanding performance are not fully addressed. In particular, possible phase segregation with concurrent composition changes, which is widely observed in the field of metallurgy, is not at all considered. Moreover, surface-exposed metals can easily form oxide species, which is another pivotal factor that determines overall catalytic properties. Here, the understanding of Cu binary alloy catalysts for CO 2 reduction and recent progress in this field are discussed. From the viewpoint of the thermodynamic stability of the alloy system and elemental mixing, possible microstructures and naturally generated surface oxide species are proposed. These basic principles of material science can help to predict and understand metal alloy structure and, moreover, act as an inspiration for the development of new binary alloy catalysts to further improve CO 2 conversion and, ultimately, achieve a carbon-neutral cycle. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Reduction of methanol crossover by thin cracked metal barriers at the interface between membrane and electrode in direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Kim, Sungjun; Jang, Segeun; Kim, Sang Moon; Ahn, Chi-Yeong; Hwang, Wonchan; Cho, Yong-Hun; Sung, Yung-Eun; Choi, Mansoo

    2017-09-01

    This work reports the successful reduction in methanol crossover by creating a thin cracked metal barrier at the interface between a Nafion® membrane and an electrode in direct methanol fuel cells (DMFCs). The cracks are generated by simple mechanical stretching of a metal deposited Nafion® membrane as a result of the elastic mismatch between the two attached surfaces. The cracked metal barriers with varying strains (∼0.5 and ∼1.0) are investigated and successfully incorporated into the DMFC. Remarkably, the membrane electrode assembly with the thin metal crack exhibits comparable ohmic resistance as well as reduction of methanol crossover, which enhanced the device performance.

  12. Apparatus for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1993-01-01

    Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.

  13. Electrochemical Reduction of Oxygen in Aprotic Ionic Liquids Containing Metal Cations: A Case Study on the Na-O2 system.

    PubMed

    Azaceta, Eneko; Lutz, Lukas; Grimaud, Alexis; Vicent-Luna, Jose Manuel; Hamad, Said; Yate, Luis; Cabañero, German; Grande, Hans-Jurgen; Anta, Juan A; Tarascon, Jean-Marie; Tena-Zaera, Ramon

    2017-04-10

    Metal-air batteries are intensively studied because of their high theoretical energy-storage capability. However, the fundamental science of electrodes, electrolytes, and reaction products still needs to be better understood. In this work, the ionic liquid N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) was chosen to study the influence of a wide range of metal cations (M n+ ) on the electrochemical behavior of oxygen. The relevance of the theory of Lewis hard and soft acids and bases to predict satisfactorily the reduction potential of oxygen in electrolytes containing metal cations is demonstrated. Systems with soft and intermediate M n+ acidity are shown to facilitate oxygen reduction and metal oxide formation, whereas oxygen reduction is hampered by hard acid cations such as sodium and lithium. Furthermore, DFT calculations on the energy of formation of the resulting metal oxides rationalize the effect of M n+ on oxygen reduction. A case study on the Na-O 2 system is described in detail. Among other things, the Na + concentration of the electrolyte is shown to control the electrochemical pathway (solution precipitation vs. surface deposition) by which the discharge product grows. All in all, fundamental insights for the design of advanced electrolytes for metal-air batteries, and Na-air batteries in particular, are provided. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. METHOD FOR OBTAINING PLUTONIUM METAL FROM ITS TRICHLORIDE

    DOEpatents

    Reavis, J.G.; Leary, J.A.; Maraman, W.J.

    1962-08-14

    A method was developed for obtaining plutonium metal by direct reduction of plutonium chloride, without the use of a booster, using calcium and lanthamum as a reductant, the said reduction being carried out at temperature in the range of 700 to 850 deg C and at about atmospheric pressure. (AEC)

  15. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, A.J.; Dodge, C.J.; Gillow, J.B.

    1991-09-10

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solution and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal. 18 figures.

  16. Microbial stabilization and mass reduction of wastes containing radionuclides and toxic metals

    DOEpatents

    Francis, Arokiasamy J.; Dodge, Cleveland J.; Gillow, Jeffrey B.

    1991-01-01

    A process is provided to treat wastes containing radionuclides and toxic metals with Clostridium sp. BFGl to release a large fraction of the waste solids into solutin and convert the radionuclides and toxic metals to a more concentrated and stable form with concurrent volume and mass reduction. The radionuclides and toxic metals being in a more stable form are available for recovery, recycling and disposal.

  17. Operando Synchrotron XRD Investigation of Silver Metal Formation upon Electrochemical Reduction of Silver Iron Pyrophosphate (Ag 7Fe 3(P 2O 7) 4)

    DOE PAGES

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.; ...

    2017-05-11

    The formation of conductive metallic silver upon electrochemical reduction and lithiation of Ag 7Fe 3(P 2O 7) 4 is investigated. Alternating current impedance spectroscopy measurements show a 34% decrease in charge transfer resistance upon one electron equivalent (ee) of reduction, which is coincident with the formation of a Ag metal conductive network evidenced by both ex situ and operando X-ray diffraction. Quantitative assessment of Ag metal formation derived from operando XRD shows that only Ag + ions are reduced during the first 3ee, followed by simultaneous reduction of Ag + and Fe 3+ reduction for the next 5ee (3ee tomore » 8ee), culminating in reduction of the remaining Ag +. Scanning electron microscopy images show smaller Ag metal crystallite size and shorter nearest neighbor distance between and among Ag particles with higher depth of discharge. A high rate intermittent pulsatile discharge test is conducted where the cell delivers 12 total pulses during full discharge to probe the effect of Ag metal formation on the Li/Ag 7Fe 3(P 2O 7) 4 cell electrochemistry. The Ohmic resistance is derived from the voltage drop of each pulse. The resistance is 65 Ω initially, reaches its minimum of 26 Ω at 4.5 ee discharge, and levels off at 35 Ω after 7.0 ee reduction. In conclusion, the initial Ag reduction is more significant for the conductive network formation indicated by the decrease of both R ct and Ohmic resistance, which facilitates the high power output of the cell.« less

  18. Operando Synchrotron XRD Investigation of Silver Metal Formation upon Electrochemical Reduction of Silver Iron Pyrophosphate (Ag 7Fe 3(P 2O 7) 4)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Yiman; Kirshenbaum, Kevin C.; Marschilok, Amy C.

    The formation of conductive metallic silver upon electrochemical reduction and lithiation of Ag 7Fe 3(P 2O 7) 4 is investigated. Alternating current impedance spectroscopy measurements show a 34% decrease in charge transfer resistance upon one electron equivalent (ee) of reduction, which is coincident with the formation of a Ag metal conductive network evidenced by both ex situ and operando X-ray diffraction. Quantitative assessment of Ag metal formation derived from operando XRD shows that only Ag + ions are reduced during the first 3ee, followed by simultaneous reduction of Ag + and Fe 3+ reduction for the next 5ee (3ee tomore » 8ee), culminating in reduction of the remaining Ag +. Scanning electron microscopy images show smaller Ag metal crystallite size and shorter nearest neighbor distance between and among Ag particles with higher depth of discharge. A high rate intermittent pulsatile discharge test is conducted where the cell delivers 12 total pulses during full discharge to probe the effect of Ag metal formation on the Li/Ag 7Fe 3(P 2O 7) 4 cell electrochemistry. The Ohmic resistance is derived from the voltage drop of each pulse. The resistance is 65 Ω initially, reaches its minimum of 26 Ω at 4.5 ee discharge, and levels off at 35 Ω after 7.0 ee reduction. In conclusion, the initial Ag reduction is more significant for the conductive network formation indicated by the decrease of both R ct and Ohmic resistance, which facilitates the high power output of the cell.« less

  19. Complete reduction of high-density UO2 to metallic U in molten Li2O-LiCl

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Young; Lee, Jeong

    2017-10-01

    The large size and high density of spent fuel pellets make it difficult to use the pellets directly in electrolytic reduction (also called as oxide reduction, OR) for pyroprocessing owing to the slow diffusion of molten Li2O-LiCl salt electrolyte into the pellets. In this study, we investigated complete OR of high-density UO2 to metallic U without any remaining UO2. Only partial reductions near the surface of high-density UO2 pellets were observed under operation conditions employing fast electrolysis rate that allowed previously complete reduction of low-density UO2 pellets. Complete reduction of high-density UO2 pellets was observed at fast electrolysis rate when the pellet size was reduced. The complete reduction of high-density UO2 pellets without size reduction was achieved at slow electrolysis rate, which allowed sufficient chemical reduction of UO2 with the lithium metal generated by the cathode reaction.

  20. A New Method of Metallization for Silicon Solar Cells

    NASA Technical Reports Server (NTRS)

    Macha, M.

    1979-01-01

    The determination of the firing cycle in a horizontal tube furnace for MoO3: Sn ink composition applied by silk screening process on P or N structured solar cells is presented. In comparison with the strip heater used to determine the reaction mechanism, the reduction of MoO3 in the tube furnace progresses at a much faster rate and the Sn:Mo alloy forms at a much lower temperature. The device characteristics determined by the V-I curve showed a high resistance (approx. 10 Ohms) at peak temperatures between 600 C and 800 C. The high series resistance is attributed to the lack of formation of MoSi2 within the used temperature range.

  1. Chromate reduction and heavy metal fixation in soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwitzgebel, K.

    In situ reduction of chromates and the fixation of the metals Cr, Pb, Zn, Cu, Cd and Ni in soil was investigated using Fe II and soluble silica. Fe II fulfills two functions. It reduces chromates (CrVI) at soil pH to CrIII and the reaction products, Fe(OH)[sub 3] and Cr(OH)[sub 3], coprecipitate/adsorb heavy metals. In the absence of CrVI iron is added as FeIII. Destabilized silica also fulfills two functions. It reacts with the metal and metal hydroxides and reduces the soil permeability. The leaching rate (mg/m[sup 2]s) of a metal is the product of leachate flow rate ([ell]/M[sup 2]s)more » and the leachate concentration (mg/[ell]). The leachate flow rate is directly proportional to the hydraulic coefficient (Darcy's Law). Treatment with destabilized silica reduces the hydraulic coefficient of virgin soil (K[sub h] = 10[sup [minus]2]...10[sup [minus]4]) to K[sub h]=10[sup [minus]7] (cm/s) resulting in a flow rate reduction of 3--5 orders of magnitude. Iron plus silica treatment results in a leachate concentration reduction of up to 2 orders of magnitude (Cr:95--99%;Pb:99%;Zn 95--99%; Cd:93--99%; Ni:75--94%). Combined effect of flow rate reduction and leachate concentration reduction results in a potential leaching rate reduction of five to seven orders of magnitude. Iron-silica treatment may be developed into an efficient containment technology, provided the silica gel integrity does not change with time.« less

  2. Chromate reduction and heavy metal fixation in soil. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwitzgebel, K.

    In situ reduction of chromates and the fixation of the metals Cr, Pb, Zn, Cu, Cd and Ni in soil was investigated using Fe II and soluble silica. Fe II fulfills two functions. It reduces chromates (CrVI) at soil pH to CrIII and the reaction products, Fe(OH){sub 3} and Cr(OH){sub 3}, coprecipitate/adsorb heavy metals. In the absence of CrVI iron is added as FeIII. Destabilized silica also fulfills two functions. It reacts with the metal and metal hydroxides and reduces the soil permeability. The leaching rate (mg/m{sup 2}s) of a metal is the product of leachate flow rate ({ell}/M{sup 2}s)more » and the leachate concentration (mg/{ell}). The leachate flow rate is directly proportional to the hydraulic coefficient (Darcy`s Law). Treatment with destabilized silica reduces the hydraulic coefficient of virgin soil (K{sub h} = 10{sup {minus}2}...10{sup {minus}4}) to K{sub h}=10{sup {minus}7} (cm/s) resulting in a flow rate reduction of 3--5 orders of magnitude. Iron plus silica treatment results in a leachate concentration reduction of up to 2 orders of magnitude (Cr:95--99%;Pb:99%;Zn 95--99%; Cd:93--99%; Ni:75--94%). Combined effect of flow rate reduction and leachate concentration reduction results in a potential leaching rate reduction of five to seven orders of magnitude. Iron-silica treatment may be developed into an efficient containment technology, provided the silica gel integrity does not change with time.« less

  3. Pyroprocessing of oxidized sodium-bonded fast reactor fuel - An experimental study of treatment options for degraded EBR-II fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hermann, S.D.; Gese, N.J.; Wurth, L.A.

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electro-metallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li{sub 2}O at 650 C. degrees with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide.more » In the absence of zirconium or sodium oxide, the electrolytic reduction of MnO showed nearly complete conversion to metal. The electrolytic reduction of a blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O showed substantial reduction of manganese, but only 8.5% of the zirconium was found in the metal phase. The electrolytic reduction of the same blend of MnO-ZrO{sub 2} in LiCl - 1 wt% Li{sub 2}O - 6.2 wt% Na{sub 2}O showed substantial reduction of manganese, but zirconium reduction was even less at 2.4%. This study concluded that ZrO{sub 2} cannot be substantially reduced to metal in an electrolytic reduction system with LiCl - 1 wt% Li{sub 2}O at 650 C. degrees due to the perceived preferential formation of lithium zirconate. This study also identified a possible interference that sodium oxide may have on the same system by introducing a parasitic and cyclic reaction of dissolved sodium metal between oxidation at the anode and reduction at the cathode. When applied to oxidized sodium-bonded EBR-II fuel (e.g., U-10Zr), the prescribed electrolytic reduction system would not be expected to substantially reduce zirconium oxide, and the accumulation of sodium in the electrolyte could interfere with the reduction of uranium oxide, or at least render it less efficient.« less

  4. Hydrogen Peroxide as a Sustainable Energy Carrier: Electrocatalytic Production of Hydrogen Peroxide and the Fuel Cell.

    PubMed

    Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D

    2012-11-01

    This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.

  5. Homeostasis of metals in the progression of Alzheimer's disease.

    PubMed

    González-Domínguez, Raúl; García-Barrera, Tamara; Gómez-Ariza, José Luis

    2014-06-01

    In order to study the involvement of metals in the progression of Alzheimer's disease, serum samples from patients with Alzheimer and mild cognitive impairment were investigated. For this purpose, metal content was analyzed after size-fractionation of species and then, inter-element and inter-fraction ratios were computed. In this way, the analysis allowed discovering changes that could be used as markers of disease, but also provided a new insight into the interactions in the homeostasis of elements in neurodegeneration and its progression. Aluminum and labile forms of iron and copper were increased in demented patients, while manganese, zinc and selenium were reduced. Interestingly, levels of different elements, principally iron, aluminum and manganese, were closely inter-related, which could evidence a complex interdependency between the homeostasis of the different metals in this disorder. On the other hand, imbalances in metabolism of copper, zinc and selenium could be associated to abnormal redox status. Therefore, this study may contribute to our understanding of the pathological mechanisms related to metals in Alzheimer's disease.

  6. Electronic Structure and Band Gap of Fullerenes on Tungsten Surfaces: Transition from a Semiconductor to a Metal Triggered by Annealing.

    PubMed

    Monazami, Ehsan; McClimon, John B; Rondinelli, James; Reinke, Petra

    2016-12-21

    The understanding and control of molecule-metal interfaces is critical to the performance of molecular electronics and photovoltaics devices. We present a study of the interface between C 60 and W, which is a carbide-forming transition metal. The complex solid-state reaction at the interface can be exploited to adjust the electronic properties of the molecule layer. Scanning tunneling microscopy/spectroscopy measurements demonstrate the progression of this reaction from wide band gap (>2.5 eV) to metallic molecular surface during annealing from 300 to 800 K. Differential conduction maps with 10 4 scanning tunneling spectra are used to quantify the transition in the density of states and the reduction of the band gap during annealing with nanometer spatial resolution. The electronic transition is spatially homogeneous, and the surface band gap can therefore be adjusted by a targeted annealing step. The modified molecules, which we call nanospheres, are quite resistant to ripening and coalescence, unlike any other metallic nanoparticle of the same size. Densely packed C 60 and isolated C 60 molecules show the same transition in electronic structure, which confirms that the transformation is controlled by the reaction at the C 60 -W interface. Density functional theory calculations are used to develop possible reaction pathways in agreement with experimentally observed electronic structure modulation. Control of the band gap by the choice of annealing temperature is a unique route to tailoring molecular-layer electronic properties.

  7. Anaerobes into heavy metal: Dissimilatory metal reduction in anoxic environments

    USGS Publications Warehouse

    Lovley, D.R.

    1993-01-01

    Within the last decade, a novel form of microbial metabolism of major environmental significance has been elucidated. In this process, known as dissimilatory metal reduction, specialized microorganisms, living in anoxic aquatic sediments and ground water, oxidize organic compounds to carbon dioxide with metals serving as the oxidant. Recent studies have demonstrated that this metabolism explains a number of important geochemical phenomena in ancient and modern sedimentary environments, affecting not only the cycling of metals but also the fate of organic matter. Furthermore, this metabolism may have practical application in remediation of environments contaminated with toxic metals and/or organics.

  8. Assessment of Soft Vane and Metal Foam Engine Noise Reduction Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Parrott, Tony L.; Sutliff, Daniel L.; Hughes, Chris

    2009-01-01

    Two innovative fan-noise reduction concepts developed by NASA are presented - soft vanes and over-the-rotor metal foam liners. Design methodologies are described for each concept. Soft vanes are outlet guide vanes with internal, resonant chambers that communicate with the exterior aeroacoustic environment via a porous surface. They provide acoustic absorption via viscous losses generated by interaction of unsteady flows with the internal solid structure. Over-the-rotor metal foam liners installed at or near the fan rotor axial plane provide rotor noise absorption. Both concepts also provide pressure-release surfaces that potentially inhibit noise generation. Several configurations for both concepts are evaluated with a normal incidence tube, and the results are used to guide designs for implementation in two NASA fan rigs. For soft vanes, approximately 1 to 2 dB of broadband inlet and aft-radiated fan noise reduction is achieved. For over-the-rotor metal foam liners, up to 3 dB of fan noise reduction is measured in the low-speed fan rig, but minimal reduction is measured in the high-speed fan rig. These metal foam liner results are compared with a static engine test, in which inlet sound power level reductions up to 5 dB were measured. Brief plans for further development are also provided.

  9. [Regulation of sulfates, hydrogen sulfide and heavy metals in technogenic reservoirs by sulfate-reducing bacteria].

    PubMed

    Hudz', S P; Peretiatko, T B; Moroz, O M; Hnatush, S O; Klym, I R

    2011-01-01

    Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11 in the presence of sulfates and organic compounds in the medium reduce sulfates to hydrogen sulfide (dissimilatory sulfate reduction). Heavy metals in concentration over 2 mM inhibit this process. Pb2+, Zn2+, Ni2+, Co2+, Fe2+ and Cd2+ ions in concentration 1-1.5 mM display insignificant inhibiting effect on sulfate reduction process, and metals precipitate in the form of sulfides. At concentrations of heavy metals 2-3 mM one can observe a decrease of sulfates reduction intensity, and a percent of metals binding does not exceed 72%. Obtained results give reason to confirm, that sulfate-reducing bacteria play an important role in regulation of the level of sulfates, hydrogen sulfide and heavy metals in reservoirs and they may be used for purification of water environment from these compounds.

  10. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOEpatents

    Aardahl, Christopher L [Richland, WA; Balmer-Miller, Mari Lou [West Richland, WA; Chanda, Ashok [Peoria, IL; Habeger, Craig F [West Richland, WA; Koshkarian, Kent A [Peoria, IL; Park, Paul W [Peoria, IL

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  11. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts

    PubMed Central

    Varnell, Jason A.; Tse, Edmund C. M.; Schulz, Charles E.; Fister, Tim T.; Haasch, Richard T.; Timoshenko, Janis; Frenkel, Anatoly I.; Gewirth, Andrew A.

    2016-01-01

    The widespread use of fuel cells is currently limited by the lack of efficient and cost-effective catalysts for the oxygen reduction reaction. Iron-based non-precious metal catalysts exhibit promising activity and stability, as an alternative to state-of-the-art platinum catalysts. However, the identity of the active species in non-precious metal catalysts remains elusive, impeding the development of new catalysts. Here we demonstrate the reversible deactivation and reactivation of an iron-based non-precious metal oxygen reduction catalyst achieved using high-temperature gas-phase chlorine and hydrogen treatments. In addition, we observe a decrease in catalyst heterogeneity following treatment with chlorine and hydrogen, using Mössbauer and X-ray absorption spectroscopy. Our study reveals that protected sites adjacent to iron nanoparticles are responsible for the observed activity and stability of the catalyst. These findings may allow for the design and synthesis of enhanced non-precious metal oxygen reduction catalysts with a higher density of active sites. PMID:27538720

  12. Metal resistance sequences and transgenic plants

    DOEpatents

    Meagher, Richard Brian; Summers, Anne O.; Rugh, Clayton L.

    1999-10-12

    The present invention provides nucleic acid sequences encoding a metal ion resistance protein, which are expressible in plant cells. The metal resistance protein provides for the enzymatic reduction of metal ions including but not limited to divalent Cu, divalent mercury, trivalent gold, divalent cadmium, lead ions and monovalent silver ions. Transgenic plants which express these coding sequences exhibit increased resistance to metal ions in the environment as compared with plants which have not been so genetically modified. Transgenic plants with improved resistance to organometals including alkylmercury compounds, among others, are provided by the further inclusion of plant-expressible organometal lyase coding sequences, as specifically exemplified by the plant-expressible merB coding sequence. Furthermore, these transgenic plants which have been genetically modified to express the metal resistance coding sequences of the present invention can participate in the bioremediation of metal contamination via the enzymatic reduction of metal ions. Transgenic plants resistant to organometals can further mediate remediation of organic metal compounds, for example, alkylmetal compounds including but not limited to methyl mercury, methyl lead compounds, methyl cadmium and methyl arsenic compounds, in the environment by causing the freeing of mercuric or other metal ions and the reduction of the ionic mercury or other metal ions to the less toxic elemental mercury or other metals.

  13. TU-F-CAMPUS-J-04: Evaluation of Metal Artifact Reduction Technique for the Radiation Therapy Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeong, K; Kuo, H; Ritter, J

    Purpose: To evaluate the feasibility of using a metal artifact reduction technique in depleting metal artifact and its application in improving dose calculation in External Radiation Therapy Planning. Methods: CIRS electron density phantom was scanned with and without steel drill bits placed in some plug holes. Meta artifact reduction software with Metal Deletion Technique (MDT) was used to remove metal artifacts for scanned image with metal. Hounsfield units of electron density plugs from artifact free reference image and MDT processed images were compared. To test the dose calculation improvement after the MDT processed images, clinically approved head and neck planmore » with manual dental artifact correction was tested. Patient images were exported and processed with MDT and plan was recalculated with new MDT image without manual correction. Dose profiles near the metal artifacts were compared. Results: The MDT used in this study effectively reduced the metal artifact caused by beam hardening and scatter. The windmill around the metal drill was greatly improved with smooth rounded view. Difference of the mean HU in each density plug between reference and MDT images were less than 10 HU in most of the plugs. Dose difference between original plan and MDT images were minimal. Conclusion: Most metal artifact reduction methods were developed for diagnostic improvement purpose. Hence Hounsfield unit accuracy was not rigorously tested before. In our test, MDT effectively eliminated metal artifacts with good HU reproduciblity. However, it can introduce new mild artifacts so the MDT images should be checked with original images.« less

  14. Metallic nanocatalysts for electrochemical CO2 reduction in aqueous solutions.

    PubMed

    Wang, Yuanxing; Niu, Cailing; Wang, Dunwei

    2018-05-16

    How to effectively and efficiently reduce carbon dioxide (CO 2 ) to value-added chemicals represent a frontier in catalysis research. Due to the high activation energy needs and the endothermic nature of CO 2 reduction, the reactions are difficult to carry out. When H 2 O is present, hydrogen evolution reactions (HER) often compete favorably with CO 2 reduction reactions. For these reactions, catalysts are of critical importance to CO 2 reduction. In this article, we review the various metal nanocatalysts for electrochemical CO 2 reduction (ECR) reactions. In recognition of the importance of H 2 O to CO 2 reduction, we focus our discussions on systems in aqueous solutions. Nanostructured metal catalysts are chosen for the discussions because they represent the most effective catalysts for ECR. After a brief introduction of the fundamental principles of ECR, we devote the rest of the article on the discussions of various types of nanostructured metallic catalysts, which are categorized by their compositions and working mechanisms. Lastly, strategies for improving reaction efficiency and selectivity are discussed. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Metal artifact reduction in MRI-based cervical cancer intracavitary brachytherapy

    NASA Astrophysics Data System (ADS)

    Rao, Yuan James; Zoberi, Jacqueline E.; Kadbi, Mo; Grigsby, Perry W.; Cammin, Jochen; Mackey, Stacie L.; Garcia-Ramirez, Jose; Goddu, S. Murty; Schwarz, Julie K.; Gach, H. Michael

    2017-04-01

    Magnetic resonance imaging (MRI) plays an increasingly important role in brachytherapy planning for cervical cancer. Yet, metal tandem, ovoid intracavitary applicators, and fiducial markers used in brachytherapy cause magnetic susceptibility artifacts in standard MRI. These artifacts may impact the accuracy of brachytherapy treatment and the evaluation of tumor response by misrepresenting the size and location of the metal implant, and distorting the surrounding anatomy and tissue. Metal artifact reduction sequences (MARS) with high bandwidth RF selective excitations and turbo spin-echo readouts were developed for MRI of orthopedic implants. In this study, metal artifact reduction was applied to brachytherapy of cervical cancer using the orthopedic metal artifact reduction (O-MAR) sequence. O-MAR combined MARS features with view angle tilting and slice encoding for metal artifact correction (SEMAC) to minimize in-plane and through-plane susceptibility artifacts. O-MAR improved visualization of the tandem tip on T2 and proton density weighted (PDW) imaging in phantoms and accurately represented the diameter of the tandem. In a pilot group of cervical cancer patients (N  =  7), O-MAR significantly minimized the blooming artifact at the tip of the tandem in PDW MRI. There was no significant difference observed in artifact reduction between the weak (5 kHz, 7 z-phase encodes) and medium (10 kHz, 13 z-phase encodes) SEMAC settings. However, the weak setting allowed a significantly shorter acquisition time than the medium setting. O-MAR also reduced susceptibility artifacts associated with metal fiducial markers so that they appeared on MRI at their true dimensions.

  16. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder-Free Current Collectors of Li Ion Batteries.

    PubMed

    Lu, Liqiang; Andela, Paul; De Hosson, Jeff Th M; Pei, Yutao

    2018-05-25

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized. The reduction processes are scrutinized through X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The formation mechanism of the nanoporous metal is qualitatively explained. The as-prepared nanoporous Ni was tested as binder-free current collectors for nickel oxalate anodes of lithium ion batteries. The nanoporous Ni electrodes deliver enhanced reversible capacities and cyclic performances compared with commercial Ni foam. It is confirmed that this synthesis method has versatility not only because it is suitable for different types of metallic salts precursors but also for various other metals and alloys.

  17. Template-Free Synthesis of Nanoporous Nickel and Alloys as Binder-Free Current Collectors of Li Ion Batteries

    PubMed Central

    2018-01-01

    This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized. The reduction processes are scrutinized through X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The formation mechanism of the nanoporous metal is qualitatively explained. The as-prepared nanoporous Ni was tested as binder-free current collectors for nickel oxalate anodes of lithium ion batteries. The nanoporous Ni electrodes deliver enhanced reversible capacities and cyclic performances compared with commercial Ni foam. It is confirmed that this synthesis method has versatility not only because it is suitable for different types of metallic salts precursors but also for various other metals and alloys. PMID:29911687

  18. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation

    NASA Technical Reports Server (NTRS)

    Nealson, K. H.; Saffarini, D.

    1994-01-01

    Dissimilatory iron and/or manganese reduction is known to occur in several organisms, including anaerobic sulfur-reducing organisms such as Geobacter metallireducens or Desulfuromonas acetoxidans, and facultative aerobes such as Shewanella putrefaciens. These bacteria couple both carbon oxidation and growth to the reduction of these metals, and inhibitor and competition experiments suggest that Mn(IV) and Fe(III) are efficient electron acceptors similar to nitrate in redox abilities and capable of out-competing electron acceptors of lower potential, such as sulfate (sulfate reduction) or CO2 (methanogenesis). Field studies of iron and/or manganese reduction suggest that organisms with such metabolic abilities play important roles in coupling the oxidation of organic carbon to metal reduction under anaerobic conditions. Because both iron and manganese oxides are solids or colloids, they tend to settle downward in aquatic environments, providing a physical mechanism for the movement of oxidizing potential into anoxic zones. The resulting biogeochemical metal cycles have a strong impact on many other elements including carbon, sulfur, phosphorous, and trace metals.

  19. Recent advances in biosynthetic modeling of nitric oxide reductases and insights gained from nuclear resonance vibrational and other spectroscopic studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Saumen; Reed, Julian; Sage, Timothy

    This Forum Article focuses on recent advances in structural and spectroscopic studies of biosynthetic models of nitric oxide reductases (NORs). NORs are complex metalloenzymes found in the denitrification pathway of Earth's nitrogen cycle where they catalyze the proton-dependent twoelectron reduction of nitric oxide (NO) to nitrous oxide (N 2O). While much progress has been made in biochemical and biophysical studies of native NORs and their variants, a. clear mechanistic understanding of this important metalloenzyme related to its function is still elusive. We report herein UV vis and nuclear resonance vibrational spectroscopy (NRVS) studies of mononitrosylated intermediates of the NOR reactionmore » of a biosynthetic model. The ability to selectively substitute metals at either heme or nonheme metal sites allows the introduction of independent 57Fe probe atoms at either site, as well as allowing the preparation of analogues of stable reaction intermediates by replacing either metal with a redox inactive metal. Together with previous structural and spectroscopic results, we summarize insights gained from studying these biosynthetic models toward understanding structural features responsible for the NOR activity and its mechanism. As a result, the outlook on NOR modeling is also discussed, with an emphasis on the design of models capable of catalytic turnovers designed based on close mimics of the secondary coordination sphere of native NORs.« less

  20. Biogeochemistry of heavy metals in contaminated excessively moistened soils (Analytical review)

    NASA Astrophysics Data System (ADS)

    Vodyanitskii, Yu. N.; Plekhanova, I. O.

    2014-03-01

    The biogeochemical behavior of heavy metals in contaminated excessively moistened soils depends on the development of reducing conditions (either moderate or strong). Upon the moderate biogenic reduction, Cr as the metal with variable valence forms low-soluble compounds, which decreases its availability to plants and prevents its penetration into surface- and groundwater. Creation of artificial barriers for Cr fixation on contaminated sites is based on the stimulation of natural metal-reducing bacteria. Arsenic, being a metalloid with a variable valence, is mobilized upon the moderate biogenic reduction. The mobility of siderophilic heavy metals with a constant valence grows under the moderate reducing conditions at the expense of dissolution of iron (hydr)oxides as carriers of these metals. Zinc, which can enter the newly formed goethite lattice, is an exception. Strong reduction processes in organic excessively moist and flooded soils (usually enriched in S) lead to the formation of low-soluble sulfides of heavy elements with both variable (As) and constant (Cu, Ni, Zn, and Pb) valence. On changing aquatic regime in overmoistened soils and their drying, sulfides of heavy metals are oxidized, and previously fixed metals are mobilized.

  1. Transition Metal Oxides for the Oxygen Reduction Reaction: Influence of the Oxidation States of the Metal and its Position on the Periodic Table.

    PubMed

    Toh, Rou Jun; Sofer, Zdeněk; Pumera, Martin

    2015-11-16

    Electrocatalysts have been developed to meet the needs and requirements of renewable energy applications. Metal oxides have been well explored and are promising for this purpose, however, many reports focus on only one or a few metal oxides at once. Herein, thirty metal oxides, which were either commercially available or synthesized by a simple and scalable method, were screened for comparison with regards to their electrocatalytic activity towards the oxygen reduction reaction (ORR). We show that although manganese, iron, cobalt, and nickel oxides generally displayed the ability to enhance the kinetics of oxygen reduction under alkaline conditions compared with bare glassy carbon, there is no significant correlation between the position of a metal on the periodic table and the electrocatalytic performance of its respective metal oxides. Moreover, it was also observed that mixed valent (+2, +3) oxides performed the poorest, compared with their respective pure metal oxides. These findings may be of paramount importance in the field of renewable energy. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Reduction of metal artifacts from alloy hip prostheses in computer tomography.

    PubMed

    Wang, Fengdan; Xue, Huadan; Yang, Xianda; Han, Wei; Qi, Bing; Fan, Yu; Qian, Wenwei; Wu, Zhihong; Zhang, Yan; Jin, Zhengyu

    2014-01-01

    The objective of this study was to evaluate the feasibility of reducing artifacts from large metal implants with gemstone spectral imaging (GSI) and metal artifact reduction software (MARS). Twenty-three in-vivo cobalt-chromium-molybdenum alloy total hip prostheses were prospectively scanned by fast kV-switching GSI between 80 and 140 kVp. The computed tomography images were reconstructed with monochromatic energy and with/without MARS. Both subjective and objective measurements were performed to assess the severity of metal artifacts. Increasing photon energy was associated with reduced metal artifacts in GSI images (P < 0.001). Combination of GSI with MARS further diminished the metal artifacts (P < 0.001). Artifact reduction at 3 anatomical levels (femoral head, neck, and shaft) were evaluated, with data showing that GSI and MARS could reduce metal artifacts at all 3 levels (P = 0.011, P < 0.001, and P = 0.003, respectively). Nevertheless, in certain cases, GSI without MARS produced more realistic images for the clinical situation. Proper usage of GSI with/without MARS could reduce the computed tomography artifacts of large metal parts and improve the radiological evaluation of postarthroplasty patients.

  3. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions

    NASA Astrophysics Data System (ADS)

    Liu, Rongji; Liu, Huibiao; Li, Yuliang; Yi, Yuanping; Shang, Xinke; Zhang, Shuangshuang; Yu, Xuelian; Zhang, Suojiang; Cao, Hongbin; Zhang, Guangjin

    2014-09-01

    Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts.Fuel cells and metal-air batteries will only become widely available in everyday life when the expensive platinum-based electrocatalysts used for the oxygen reduction reactions are replaced by other efficient, low-cost and stable catalysts. We report here the use of nitrogen-doped graphdiyne as a metal-free electrode with a comparable electrocatalytic activity to commercial Pt/C catalysts for the oxygen reduction reaction in alkaline fuel cells. Nitrogen-doped graphdiyne has a better stability and increased tolerance to the cross-over effect than conventional Pt/C catalysts. Electronic supplementary information (ESI) available: Detailed RDE and RRDE experiments, additional tables and figures. See DOI: 10.1039/c4nr03185g

  4. Impact of trace metal concentrations on coccolithophore growth and morphology: species-specific responses in past and present ocean

    NASA Astrophysics Data System (ADS)

    Faucher, Giulia; Hoffmann, Linn; Bach, Lennart Thomas; Bottini, Cinzia; Erba, Elisabetta; Riebesell, Ulf

    2017-04-01

    The Cretaceous witnessed intervals of profound perturbation named "Oceanic Anoxic Events (OAEs)" characterized by volcanic injection of large amounts of CO2, ocean anoxia, eutrophication, and introduction of biologically relevant metals. Some of these extreme events were characterized by size reduction and/or morphological changes of a number of nannofossil species. To detect the cause/s of such changes in the fossil record is challenging. Evidence of a correspondence between intervals of high trace metals concentrations and nannofossil dwarfism may be suggestive for a negative effect of these elements on nannoplankton biocalcification process. In order to verify the hypothesis that anomalously high quantities of essential and/or toxic metals were the cause of coccolith dwarfism, we explored the toxicities of a mixture of trace metals on four living coccolithophores species, namely Emiliania huxleyi, Gephyrocapsa oceanica, Pleurochrysis carterae and Coccolithus pelagicus. The trace metals tested were chosen based upon concentration peaks identified in the geological record and upon known trace metal interaction with living coccolithophores algae. Our results demonstrate a species-specific response to trace metal enrichment in living coccolithophores: E. huxleyi, G. oceanica and C. pelagicus showed a decrease in their growth rate with progressively and exponentially increased trace metal concentrations, while P. carterae is unresponsive to trace metal content. Furthermore, E. huxleyi, G. oceanica and C. pelagicus evidenced a decrease in the cell diameter. Smaller coccoliths were detected in E. huxleyi and C. pelagicus, while coccolith of G. oceanica showed a decrease in size only at the highest trace metal concentrations tested. P. carterae size was unresponsive for changing trace metal concentration. Our results on living coccolithophore algae, demonstrate that elevated trace metal concentrations not only affect growth but also coccolith size and/or weight and that there are large differences between different species. These species-specific differences must be considered before morphological features of coccoliths are used to reconstruct paleo-chemical conditions. Following the laboratory experiment results, elevated trace metal conditions in the past oceans could have caused at least part of the observed morphological changes detected during some Mesozoic OAEs.

  5. Poverty Reduction and the World Bank. Progress in Fiscal 1996 and 1997.

    ERIC Educational Resources Information Center

    World Bank, Washington, DC.

    This report reviews progress in implementation of the World Bank's poverty reduction strategy during fiscal 1996-97. Chapter 1, "The World Bank's Poverty Reduction Strategy and Future Directions," outlines elements in the poverty reduction strategy: policies to promote broad-based labor-demanding growth and increase the productivity and…

  6. Thermodynamic Investigation of the Reduction-Distillation Process for Rare Earth Metals Production

    NASA Astrophysics Data System (ADS)

    Judge, W. D.; Azimi, G.

    2017-10-01

    Owing to their high vapor pressure, the four rare earth metals samarium, europium, thulium, and ytterbium are produced by reduction-distillation whereby their oxides are reduced with metallic lanthanum in vacuo, and the produced metal is subsequently vaporized off. Here, we performed a thorough thermodynamic investigation to establish a fundamental understanding of the reduction-distillation process. Thermodynamic functions including vapor pressures, Gibbs free energies, and enthalpies of reaction were calculated and compared with available experimental data. Furthermore, the kinetics of the process was explored and theoretical evaporation rates were calculated from thermodynamic data. The thermodynamic model developed in this work can help optimize processing conditions to maximize the yield and improve the overall process.

  7. Understanding the differences between the wear of metal-on-metal and ceramic-on-metal total hip replacements.

    PubMed

    Figueiredo-Pina, C G; Yan, Y; Neville, A; Fisher, J

    2008-04-01

    Hip simulator studies have been carried out extensively to understand and test artificial hip implants in vitro as an efficient alternative to obtaining long-term results in vivo. Recent studies have shown that a ceramic-on-metal material combination lowers the wear by up to 100 times in comparison with a typical metal-on-metal design. The reason for this reduction remains unclear and for this reason this study has undertaken simple tribometer tests to understand the fundamental material loss mechanisms in two material combinations: metal-on-metal and ceramic-on-ceramic. A simple-configuration reciprocating pin-on-plate wear study was performed under open-circuit potential (OCP) and with applied cathodic protection (CP) in a serum solution using two tribological couples: firstly, cobalt-chromium (Co-Cr) pins against Co-Cr plates; secondly, Co-Cr pins against alumina (Al2O3) plates. The pin and plate surfaces prior to and after testing were examined by profilometry and scanning electron microscopy. The results showed a marked reduction in wear when CP was applied, indicating that total material degradation under the OCP condition was attributed to corrosion processes. The substitution of the Co-Cr pin with an Al2O3 plate also resulted in a dramatic reduction in wear, probably due to the reduction in the corrosion-wear interactions between the tribological pair.

  8. Effects of metal ions on the reactivity and corrosion electrochemistry of Fe/FeS nanoparticles.

    PubMed

    Kim, Eun-Ju; Kim, Jae-Hwan; Chang, Yoon-Seok; Turcio-Ortega, David; Tratnyek, Paul G

    2014-04-01

    Nano-zerovalent iron (nZVI) formed under sulfidic conditions results in a biphasic material (Fe/FeS) that reduces trichloroethene (TCE) more rapidly than nZVI associated only with iron oxides (Fe/FeO). Exposing Fe/FeS to dissolved metals (Pd(2+), Cu(2+), Ni(2+), Co(2+), and Mn(2+)) results in their sequestration by coprecipitation as dopants into FeS and FeO and/or by electroless precipitation as zerovalent metals that are hydrogenation catalysts. Using TCE reduction rates to probe the effect of metal amendments on the reactivity of Fe/FeS, it was found that Mn(2+) and Cu(2+) decreased TCE reduction rates, while Pd(2+), Co(2+), and Ni(2+) increased them. Electrochemical characterization of metal-amended Fe/FeS showed that aging caused passivation by growth of FeO and FeS phases and poisoning of catalytic metal deposits by sulfide. Correlation of rate constants for TCE reduction (kobs) with electrochemical parameters (corrosion potentials and currents, Tafel slopes, and polarization resistance) and descriptors of hydrogen activation by metals (exchange current density for hydrogen reduction and enthalpy of solution into metals) showed the controlling process changed with aging. For fresh Fe/FeS, kobs was best described by the exchange current density for activation of hydrogen, whereas kobs for aged Fe/FeS correlated with electrochemical descriptors of electron transfer.

  9. Bioassessment of heavy metal toxicity and enhancement of heavy metal removal by sulfate-reducing bacteria in the presence of zero valent iron.

    PubMed

    Guo, Jing; Kang, Yong; Feng, Ying

    2017-12-01

    A simple and valid toxicity evaluation of Zn 2+ , Mn 2+ and Cr 6+ on sulfate-reducing bacteria (SRB) and heavy metal removal were investigated using the SRB system and SRB+Fe 0 system. The heavy metal toxicity coefficient (β) and the heavy metal concentration resulting in 50% inhibition of sulfate reduction (I) from a modeling process were proposed to evaluate the heavy metal toxicity and nonlinear regression was applied to search for evaluation indices β and I. The heavy metal toxicity order was Cr 6+  > Mn 2+  > Zn 2+ . Compared with the SRB system, the SRB+Fe 0 system exhibited a better capability for sulfate reduction and heavy metal removal. The heavy metal removal was above 99% in the SRB+Fe 0 system, except for Mn 2+ . The energy-dispersive spectroscopy (EDS) analysis showed that the precipitates were removed primarily as sulfide for Zn 2+ and hydroxide for Mn 2+ and Cr 6+ .The method of evaluating the heavy metal toxicity on SRB was of great significance to understand the fundamentals of the heavy metal toxicity and inhibition effects on the microorganism and regulate the process of microbial sulfate reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Effects of moisture content and initial pH in composting process on heavy metal removal characteristics of grass clipping compost used for stormwater filtration.

    PubMed

    Khan, Eakalak; Khaodhir, Sutha; Ruangrote, Darin

    2009-10-01

    Heavy metals are common contaminants in stormwater runoff. One of the devices that can be used to effectively and economically remove heavy metals from runoff is a yard waste compost stormwater filter. The primary goal of composting is to reduce waste volume rather than to produce stormwater filter media. Moisture content (MC) and initial pH, the two important parameters in composting, were studied for their effects on yard waste volume reduction and heavy metal adsorption performances of the compost. The main objective of this investigation was to examine whether the conditions that provided high yard waste volume reduction would also result in compost with good heavy metal removal performances. Manila grass was composted at different initial pHs (5-9) and MCs (30-70%) and the composts were used to adsorb cadmium, copper, lead and zinc from water. Results indicated that MC is more critical than initial pH for both volume reduction and production of compost with high metal adsorption performances. The most optimal conditions for the two attributes were not exactly the same but lower MCs of 30-40% and pH 7 or higher tended to satisfy both high volume reduction and effective metal adsorption.

  11. Broad specification fuels combustion technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1984-01-01

    Design and development efforts to evolve promising aircraft gas turbine combustor configurations for burning broadened-properties fuels were discussed. Design and experimental evaluations of three different combustor concepts in sector combustor rig tests was conducted. The combustor concepts were a state of the art single-annular combustor, a staged double-annular combustor, and a short single-annular combustor with variable geometry to control primary zone stoichiometry. A total of 25 different configurations of the three combustor concepts were evaluated. Testing was conducted over the full range of CF6-80A engine combustor inlet conditions, using four fuels containing between 12% and 14% hydrogen by weight. Good progress was made toward meeting specific program emissions and performance goals with each of the three combustor concepts. The effects of reduced fuel hydrogen content, including increased flame radiation, liner metal temperature, smoke, and NOx emissions were documented. The most significant effect on the baseline combustor was a projected 33% life reduction, for a reduction from 14% to 13% fuel hydrogen content, due to increased liner temperatures.

  12. Nanoscale perspective: Materials designs and understandings in lithium metal anodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Dingchang; Liu, Yayuan; Pei, Allen

    Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » nanoscale Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less

  13. Nanoscale perspective: Materials designs and understandings in lithium metal anodes

    DOE PAGES

    Lin, Dingchang; Liu, Yayuan; Pei, Allen; ...

    2017-05-19

    Li metal chemistry is a promising alternative with a much higher energy density than that of state-of-the-art Li-ion counterparts. However, significant challenges including safety issues and poor cyclability have severely impeded Li metal technology from becoming viable. In recent years, nanotechnologies have become increasingly important in materials design and fabrication for Li metal anodes, contributing to major progress in the field. In this review, we first introduce the main achievements in Li metal battery systems fulfilled by nanotechnologies, particularly regarding Li metal anode design and protection, ultrastrong separator engineering, safety monitoring, and smart functions. Next, we introduce recent studies onmore » nanoscale Li nucleation/deposition. Lastly, we discuss possible future research directions. We hope this review delivers an overall picture of the role of nanoscale approaches in the recent progress of Li metal battery technology and inspires more research in the future.« less

  14. Interactions between microbial iron reduction and metal geochemistry: effect of redox cycling on transition metal speciation in iron bearing sediments.

    PubMed

    Cooper, D Craig; Picardal, Flynn F; Coby, Aaron J

    2006-03-15

    Microbial iron reduction is an important biogeochemical process that can affect metal geochemistry in sediments through direct and indirect mechanisms. With respectto Fe(III) (hydr)oxides bearing sorbed divalent metals, recent reports have indicated that (1) microbial reduction of goethite/ferrihydrite mixtures preferentially removes ferrihydrite, (2) this process can incorporate previously sorbed Zn(II) into an authigenic crystalline phase that is insoluble in 0.5 M HCl, (3) this new phase is probably goethite, and (4) the presence of nonreducible minerals can inhibit this transformation. This study demonstrates that a range of sorbed transition metals can be selectively sequestered into a 0.5 M HCl insoluble phase and that the process can be stimulated through sequential steps of microbial iron reduction and air oxidation. Microbial reduction experiments with divalent Cd, Co, Mn, Ni, Pb, and Zn indicate that all metals save Mn experienced some sequestration, with the degree of metal incorporation into the 0.5 M HCl insoluble phase correlating positively with crystalline ionic radius at coordination number = 6. Redox cycling experiments with Zn adsorbed to synthetic goethite/ferrihydrite or iron-bearing natural sediments indicate that redox cycling from iron reducing to iron oxidizing conditions sequesters more Zn within authigenic minerals than microbial iron reduction alone. In addition, the process is more effective in goethite/ferrihydrite mixtures than in iron-bearing natural sediments. Microbial reduction alone resulted in a -3x increase in 0.5 M HCl insoluble Zn and increased aqueous Zn (Zn-aq) in goethite/ferrihydrite, but did not significantly affect Zn speciation in natural sediments. Redox cycling enhanced the Zn sequestration by approximately 12% in both goethite/ferrihydrite and natural sediments and reduced Zn-aq to levels equal to the uninoculated control in goethite/ferrihydrite and less than the uninoculated control in natural sediments. These data suggest that in situ redox cycling may serve as an effective method for

  15. Metal artifact reduction for CT-based luggage screening.

    PubMed

    Karimi, Seemeen; Martz, Harry; Cosman, Pamela

    2015-01-01

    In aviation security, checked luggage is screened by computed tomography scanning. Metal objects in the bags create artifacts that degrade image quality. Though there exist metal artifact reduction (MAR) methods mainly in medical imaging literature, they require knowledge of the materials in the scan, or are outlier rejection methods. To improve and evaluate a MAR method we previously introduced, that does not require knowledge of the materials in the scan, and gives good results on data with large quantities and different kinds of metal. We describe in detail an optimization which de-emphasizes metal projections and has a constraint for beam hardening and scatter. This method isolates and reduces artifacts in an intermediate image, which is then fed to a previously published sinogram replacement method. We evaluate the algorithm for luggage data containing multiple and large metal objects. We define measures of artifact reduction, and compare this method against others in MAR literature. Metal artifacts were reduced in our test images, even for multiple and large metal objects, without much loss of structure or resolution. Our MAR method outperforms the methods with which we compared it. Our approach does not make assumptions about image content, nor does it discard metal projections.

  16. The Reduction of Aqueous Metal Species on the Surfaces of Fe(II)-Containing Oxides: The Role of Surface Passivation

    USGS Publications Warehouse

    White, A.F.; Peterson, M.L.

    1998-01-01

    The reduction of aqueous transition metal species at the surfaces of Fe(II)- containing oxides has important ramifications in predicting the transport behavior in ground water aquifers. Experimental studies using mineral suspensions and electrodes demonstrate that structural Fe(II) heterogeneously reduces aqueous ferric, cupric, vanadate and chromate ions on magnetite and ilmenite surfaces. The rates of metal reduction on natural oxides is strongly dependent on the extent of surface passivation and redox conditions in the weathering environment. Synchrotron studies show that surface oxidation of Fe(II)-containing oxide minerals decreases their capacity for Cr(VI) reduction at hazardous waste disposal sites.

  17. Hybrid metasurfaces for microwave reflection and infrared emission reduction.

    PubMed

    Pang, Yongqiang; Li, Yongfeng; Yan, Mingbao; Liu, Dongqing; Wang, Jiafu; Xu, Zhuo; Qu, Shaobo

    2018-04-30

    Controlling of electromagnetic wave radiation is of great importance in many fields. In this work, a hybrid metasurface (HMS) is designed to simultaneously reduce the microwave reflection and the infrared emission. The HMS is composed of the metal/dielectric/metal/dielectric/metal configuration. The reflection reduction at microwave frequencies mainly results from the phase cancellation technique, while the infrared emission reduction is due to the reflection of the metal with a high filling ration in the top layer. It has been analytically indicated that reflection reduction with an efficiency larger than 10 dB can be achieved in the frequency band of 8.2-18 GHz, and this has been well verified by the simulated and experimental results. Meanwhile, the designed HMS displays a low emission performance in the infrared band, with the emissivity less than 0.27 from 3 to 14 μm. It is believed that our proposal may find the application of multispectral stealth technology.

  18. Partial replacement of fossil fuel in a cement plant: risk assessment for the population living in the neighborhood.

    PubMed

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2010-10-15

    In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO(2), but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM(10) levels remained constant, with a value of 16μgm(-3). In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO(2) emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. SU-F-J-73: Simple Approach for Quantification of Metal Artifact Reduction Capabalities of Dual-Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamichhane, N; Padgett, K; Li, X

    Purpose: To present a simple method for quantification of dual-energy CT metal artifact reduction capabilities Methods: A phantom was constructed from solid water and a steel cylinder. Solid water is commonly used for radiotherapy QA, while steel cylinders are readily available in hardware stores. The phantom was scanned on Siemens Somatom 64-slice dual-energy CT system. Three CTs were acquired at energies of 80kV (low), 120kV (nominal), and 140kV (high). The low and high energy acquisitions were used to generate dual-energy (DE) monoenergetic image sets, which also utilized metal artifact reduction algorithm (Maris). Several monoenergetic DE image sets, ranging from 70keVmore » to 190keV were generated. The size of the metal artifact was measured by two different approaches. The first approach measured the distance from the center of the steel cylinder to a location with nominal (undisturbed by metal) HU value for the 120kV, DE 70keV, and DE 190keV image sets. In the second approach, the distance from the center of the cylinder to the edge of the air pocket for the above mentioned three image sets was measured. Results: The DE 190keV synthetic image set demonstrated the largest reduction of the metal artifacts. The size of the artifact was more than three times the actual size of the milled hole in the solid water in the DE 190keV, as compared to more than 7.5 times larger as estimated from the 120kV uncorrected image Conclusion: A simple phantom for quantification of dual-energy CT metal artifact reduction capabilities was presented. This inexpensive phantom can be easily built from components available in every radiation oncology department. It allows quick assessment and quantification of the properties of different metal artifact reduction algorithms, available on modern dual-energy CT scanners.« less

  20. New plasmonic materials and fabrication tools for near- and mid-infrared sensing and spectroscopy

    NASA Astrophysics Data System (ADS)

    Black, Leo-Jay; Wang, Yudong; Abb, Martina; Boden, Stuart A.; de Groot, C. H.; Arbouet, Arnaud; Muskens, Otto L.

    2015-05-01

    With progress in nanofabrication, new strategies have become available that allow precise control of nanoscale optical fields using metallic nanostructures. Here we review recent progress in the control of optical resonances in metal nanostructures for applications in sensing and spectroscopy. We discuss the use of new techniques, such as helium-ion beam milling, which allow precise sculpting of nanometer-scale gaps; new materials such as metal oxides, which have a response somewhere inbetween that of conventional dielectrics and noble metals; and new designs such as L-shaped gap antennas which allow controlling the polarization state of light through near-field interactions between closely spaced antennas.

  1. 48 CFR 32.503-6 - Suspension or reduction of payments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GENERAL CONTRACTING REQUIREMENTS CONTRACT FINANCING Progress Payments Based on Costs 32.503-6 Suspension or reduction of payments. (a) General. The Progress Payments clause provides a Government right to reduce or suspend progress payments, or to increase the liquidation rate, under specified conditions...

  2. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirk, Charlotte; Chen, Leanne D.; Siahrostami, Samira

    Single transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity. We determined the electrochemical barriers for key proton–electron transfer steps using a state-of-the-art, fully explicit solvent model of the electrochemical interface. The accuracy of GGA-level functionals in describing these systems was also benchmarked against hybrid methods. We find the first proton transfer to form CHO from COmore » to be a critical step in C 1 product formation. On these single atom sites, the corresponding barrier scales more favorably with the CO binding energy than for 211 and 111 transition metal surfaces, in the direction of improved activity. Intermediates and transition states for the hydrogen evolution reaction were found to be less stable than those on transition metals, suggesting a higher selectivity for CO reduction. We present a rate volcano for the production of methane from CO. We identify promising candidates with high activity, stability, and selectivity for the reduction of CO. As a result, this work highlights the potential of these systems as improved electrocatalysts over pure transition metals for CO reduction.« less

  3. Theoretical Investigations of the Electrochemical Reduction of CO on Single Metal Atoms Embedded in Graphene

    DOE PAGES

    Kirk, Charlotte; Chen, Leanne D.; Siahrostami, Samira; ...

    2017-12-18

    Single transition metal atoms embedded at single vacancies of graphene provide a unique paradigm for catalytic reactions. We present a density functional theory study of such systems for the electrochemical reduction of CO. Theoretical investigations of CO electrochemical reduction are particularly challenging in that electrochemical activation energies are a necessary descriptor of activity. We determined the electrochemical barriers for key proton–electron transfer steps using a state-of-the-art, fully explicit solvent model of the electrochemical interface. The accuracy of GGA-level functionals in describing these systems was also benchmarked against hybrid methods. We find the first proton transfer to form CHO from COmore » to be a critical step in C 1 product formation. On these single atom sites, the corresponding barrier scales more favorably with the CO binding energy than for 211 and 111 transition metal surfaces, in the direction of improved activity. Intermediates and transition states for the hydrogen evolution reaction were found to be less stable than those on transition metals, suggesting a higher selectivity for CO reduction. We present a rate volcano for the production of methane from CO. We identify promising candidates with high activity, stability, and selectivity for the reduction of CO. As a result, this work highlights the potential of these systems as improved electrocatalysts over pure transition metals for CO reduction.« less

  4. Metal-Organic-Framework-Derived Dual Metal- and Nitrogen-Doped Carbon as Efficient and Robust Oxygen Reduction Reaction Catalysts for Microbial Fuel Cells.

    PubMed

    Tang, Haolin; Cai, Shichang; Xie, Shilei; Wang, Zhengbang; Tong, Yexiang; Pan, Mu; Lu, Xihong

    2016-02-01

    A new class of dual metal and N doped carbon catalysts with well-defined porous structure derived from metal-organic frameworks (MOFs) has been developed as a high-performance electrocatalyst for oxygen reduction reaction (ORR). Furthermore, the microbial fuel cell (MFC) device based on the as-prepared Ni/Co and N codoped carbon as air cathode catalyst achieves a maximum power density of 4335.6 mW m -2 and excellent durability.

  5. COMPLETE REDUCTION OF TELLURITE TO PURE TELLURIUM METAL BY MICROORGANISMS

    PubMed Central

    Tucker, Fayne L.; Walper, John F.; Appleman, Milo Don; Donohue, Jerry

    1962-01-01

    Tucker, Fayne L. (University of Southern California, Los Angeles), John F. Walper, Milo Don Appleman, and Jerry Donohue. Complete reduction of tellurite to pure tellurium metal by microorganisms. J. Bacteriol. 83:1313–1314. 1962—The black precipitate produced in the presence of potassium tellurite by growing cells of Streptococcus faecalis N83 and Corynebacterium diphtheriae was shown, by X-ray diffraction analysis, to consist of metallic tellurium. The metal was not complexed, to any significant degree, with any organic material. PMID:13922991

  6. Clinical Evaluation of Normalized Metal Artifact Reduction in kVCT Using MVCT Prior Images (MVCT-NMAR) for Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paudel, Moti Raj, E-mail: mpaudel@ualberta.ca; Mackenzie, Marc; Fallone, B. Gino

    Purpose: To evaluate the metal artifacts in diagnostic kilovoltage computed tomography (kVCT) images of patients that are corrected by use of a normalized metal artifact reduction (NMAR) method with megavoltage CT (MVCT) prior images: MVCT-NMAR. Methods and Materials: MVCT-NMAR was applied to images from 5 patients: 3 with dual hip prostheses, 1 with a single hip prosthesis, and 1 with dental fillings. The corrected images were evaluated for visualization of tissue structures and their interfaces and for radiation therapy dose calculations. They were compared against the corresponding images corrected by the commercial orthopedic metal artifact reduction algorithm in a Phillipsmore » CT scanner. Results: The use of MVCT images for correcting kVCT images in the MVCT-NMAR technique greatly reduces metal artifacts, avoids secondary artifacts, and makes patient images more useful for correct dose calculation in radiation therapy. These improvements are significant, provided the MVCT and kVCT images are correctly registered. The remaining and the secondary artifacts (soft tissue blurring, eroded bones, false bones or air pockets, CT number cupping within the metal) present in orthopedic metal artifact reduction corrected images are removed in the MVCT-NMAR corrected images. A large dose reduction was possible outside the planning target volume (eg, 59.2 Gy to 52.5 Gy in pubic bone) when these MVCT-NMAR corrected images were used in TomoTherapy treatment plans without directional blocks for a prostate cancer patient. Conclusions: The use of MVCT-NMAR corrected images in radiation therapy treatment planning could improve the treatment plan quality for patients with metallic implants.« less

  7. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles.

    PubMed

    Sathiyanarayanan, Ganesan; Dineshkumar, Krishnamoorthy; Yang, Yung-Hun

    2017-11-01

    Exopolysaccharides (EPSs) are structurally and functionally valuable biopolymer secreted by different prokaryotic and eukaryotic microorganisms in response to biotic/abiotic stresses and to survive in extreme environments. Microbial EPSs are fascinating in various industrial sectors due to their excellent material properties and less toxic, highly biodegradable, and biocompatible nature. Recently, microbial EPSs have been used as a potential template for the rapid synthesis of metallic nanoparticles and EPS-mediated metal reduction processes are emerging as simple, harmless, and environmentally benign green chemistry approaches. EPS-mediated synthesis of metal nanoparticles is a distinctive metabolism-independent bio-reduction process due to the formation of interfaces between metal cations and the polyanionic functional groups (i.e. hydroxyl, carboxyl and amino groups) of the EPS. In addition, the range of physicochemical features which facilitates the EPS as an efficient stabilizing or capping agents to protect the primary structure of the metal nanoparticles with an encapsulation film in order to separate the nanoparticle core from the mixture of composites. The EPS-capping also enables the further modification of metal nanoparticles with expected material properties for multifarious applications. The present review discusses the microbial EPS-mediated green synthesis/stabilization of metal nanoparticles, possible mechanisms involved in EPS-mediated metal reduction, and application prospects of EPS-based metal nanoparticles.

  8. PRODUCTION OF URANIUM METAL BY CARBON REDUCTION

    DOEpatents

    Holden, R.B.; Powers, R.M.; Blaber, O.J.

    1959-09-22

    The preparation of uranium metal by the carbon reduction of an oxide of uranium is described. In a preferred embodiment of the invention a charge composed of carbon and uranium oxide is heated to a solid mass after which it is further heated under vacuum to a temperature of about 2000 deg C to produce a fused uranium metal. Slowly ccoling the fused mass produces a dendritic structure of uranium carbide in uranium metal. Reacting the solidified charge with deionized water hydrolyzes the uranium carbide to finely divide uranium dioxide which can be separated from the coarser uranium metal by ordinary filtration methods.

  9. Reduction of radiation exposure in Japanese BWR Nuclear Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morikawa, Yoshitake

    1995-03-01

    The reduction of occupational exposure to radiation during the annual inspection and maintenance outages of Japanese boiling water reactors (BWR) is one of the most important objectives for stable and reliable operation. It was shown that this radiation exposure is caused by radionuclides, such as Co-60, Co-58 and Mn-54 which are produced from the metal elements Co, Ni, and Fe present in the corrosion products of structural materials that had been irradiated by neutrons. Therefore, to reduce radiation sources and exposures in Japanese BWRs, attempts have been reinforced to remove corrosion products and activated corrosion products from the primary coolantmore » system. This paper describes the progress of the application of these measures to Japanese BWRs. Most Japanese BWR-4 and BWR-5 type nuclear power plants started their commercial operations during the 1970s. With the elapse of time during operations, a problem came to the forefront, namely that occupational radiation exposure during plant outages gradually increased, which obstructed the smooth running of inspections and maintenance work. To overcome this problem, extensive studies to derive effective countermeasures for radiation exposure reduction were undertaken, based on the evaluation of the plants operation data.« less

  10. Effect of trace metals and electron shuttle on simultaneous reduction of reactive black-5 azo dye and hexavalent chromium in liquid medium by Pseudomonas sp.

    PubMed

    Mahmood, Shahid; Khalid, Azeem; Arshad, Muhammad; Ahmad, Riaz

    2015-11-01

    This study demonstrates the role of electron shuttles and trace metals in the biotransformation of azo dye reactive black-5 and hexavalent chromium (CrVI) that are released simultaneously in tannery effluent. Previously isolated bacterial strain Pseudomonas putida KI was used for the simultaneous reduction of the dye (100 mg L(-1)) and CrVI (2 mg L(-1)) in a mineral salts medium (MSM). Among various trace metals, only Cu(II) had a stimulating effect on the bacterial-mediated reduction process. Application of electron shuttles such as hydroquinone and uric acid at a low concentration (1mM) had a positive effect on the reduction process and caused simultaneous reduction of 100% dye and 97% CrVI in 12-18 h. Mannitol, EDTA and sodium benzoate at all concentrations (ranging from 1 to 9 mM) showed an inhibitory effect on the reduction of reactive black-5 and CrVI. An inverse linear relationship between the velocity of reaction (V) and the concentration [S] of electron shuttles was observed. The results imply that both types and concentration of an electron shuttle and trace metals can affect the simultaneous reduction of reactive black-5 and CrVI. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Metallization of DNA hydrogel: application of soft matter host for preparation and nesting of catalytic nanoparticles

    NASA Astrophysics Data System (ADS)

    Zinchenko, Anatoly; Che, Yuxin; Taniguchi, Shota; Lopatina, Larisa I.; G. Sergeyev, Vladimir; Murata, Shizuaki

    2016-07-01

    Nanoparticles (NPs) of Au, Ag, Pt, Pd, Cu and Ni of 2-3 nm average-size and narrow-size distributions were synthesized in DNA cross-linked hydrogels by reducing corresponding metal precursors by sodium borohydride. DNA hydrogel plays a role of a universal reactor in which the reduction of metal precursor results in the formation of 2-3 nm ultrafine metal NPs regardless of metal used. Hydrogels metallized with various metals showed catalytic activity in the reduction of nitroaromatic compounds, and the catalytic activity of metallized hydrogels changed as follows: Pd > Ag ≈ Au ≈ Cu > Ni > Pt. DNA hydrogel-based "soft catalysts" elaborated in this study are promising for green organic synthesis in aqueous media as well as for biomedical in vivo applications.

  12. METHOD OF PRODUCING DENSE CONSOLIDATED METALLIC REGULUS

    DOEpatents

    Magel, T.T.

    1959-08-11

    A methcd is presented for reducing dense metal compositions while simultaneously separating impurities from the reduced dense metal and casting the reduced parified dense metal, such as uranium, into well consolidated metal ingots. The reduction is accomplished by heating the dense metallic salt in the presence of a reducing agent, such as an alkali metal or alkaline earth metal in a bomb type reacting chamber, while applying centrifugal force on the reacting materials. Separation of the metal from the impurities is accomplished essentially by the incorporation of a constricted passageway at the vertex of a conical reacting chamber which is in direct communication with a collecting chamber. When a centrifugal force is applled to the molten metal and slag from the reduction in a direction collinear with the axis of the constricted passage, the dense molten metal is forced therethrough while the less dense slag is retained within the reaction chamber, resulting in a simultaneous separation of the reduced molten metal from the slag and a compacting of the reduced metal in a homogeneous mass.

  13. Manipulating the architecture of bimetallic nanostructures and their plasmonic properties

    NASA Astrophysics Data System (ADS)

    DeSantis, Christopher John

    There has been much interest in colloidal noble metal nanoparticles due to their fascinating plasmonic and catalytic properties. These properties make noble metal nanoparticles potentially useful for applications such as targeted drug delivery agents and hydrogen storage devices. Historically, shape-controlled noble metal nanoparticles have been predominantly monometallic. Recent synthetic advances provide access to bimetallic noble metal nanoparticles wherein their inherent multifunctionality and ability to fine tune or expand their surface chemistry and light scattering properties of metal nanoparticles make them popular candidates for many applications. Even so, there are currently few synthetic strategies to rationally design shape-controlled bimetallic nanocrystals; for this reason, few architectures are accessible. For example, the "seed-mediated method" is a popular means of achieving monodisperse shape-controlled bimetallic nanocrystals. In this process, small metal seeds are used as platforms for additional metal addition, allowing for conformal core shell nanostructures. However, this method has only been applied to single metal core/single metal shell structures; therefore, the surface compositions and architectures achievable are limited. This thesis expands upon the seed-mediated method by coupling it with co-reduction. In short, two metal precursors are simultaneously reduced to deposit metal onto pre-formed seeds in hopes that the interplay between two metal species facilitates bimetallic shell nanocrystals. Au/Pd was used as a test system due to favorable reduction potentials of metal precursors and good lattice match between Au and Pd. Alloyed shelled Au Au/Pd nanocrystals were achieved using this "seed-mediated co-reduction" approach. Symmetric eight-branched Au/Pd nanocrystals (octopods) are also prepared using this method. This thesis investigates many synthetic parameters that determine the shape outcome in Au/Pd nanocrystals during seed-mediated co-reduction. Plasmonic, catalytic, and assembly properties are also investigated in relation to nanocrystal shape and architecture. This work provides a foundation for the rational design of architecturally defined bimetallic nanostructures.

  14. Analysis of metal artifact reduction tools for dental hardware in CT scans of the oral cavity: kVp, iterative reconstruction, dual-energy CT, metal artifact reduction software: does it make a difference?

    PubMed

    De Crop, An; Casselman, Jan; Van Hoof, Tom; Dierens, Melissa; Vereecke, Elke; Bossu, Nicolas; Pamplona, Jaime; D'Herde, Katharina; Thierens, Hubert; Bacher, Klaus

    2015-08-01

    Metal artifacts may negatively affect radiologic assessment in the oral cavity. The aim of this study was to evaluate different metal artifact reduction techniques for metal artifacts induced by dental hardware in CT scans of the oral cavity. Clinical image quality was assessed using a Thiel-embalmed cadaver. A Catphan phantom and a polymethylmethacrylate (PMMA) phantom were used to evaluate physical-technical image quality parameters such as artifact area, artifact index (AI), and contrast detail (IQFinv). Metal cylinders were inserted in each phantom to create metal artifacts. CT images of both phantoms and the Thiel-embalmed cadaver were acquired on a multislice CT scanner using 80, 100, 120, and 140 kVp; model-based iterative reconstruction (Veo); and synthesized monochromatic keV images with and without metal artifact reduction software (MARs). Four radiologists assessed the clinical image quality, using an image criteria score (ICS). Significant influence of increasing kVp and the use of Veo was found on clinical image quality (p = 0.007 and p = 0.014, respectively). Application of MARs resulted in a smaller artifact area (p < 0.05). However, MARs reconstructed images resulted in lower ICS. Of all investigated techniques, Veo shows to be most promising, with a significant improvement of both the clinical and physical-technical image quality without adversely affecting contrast detail. MARs reconstruction in CT images of the oral cavity to reduce dental hardware metallic artifacts is not sufficient and may even adversely influence the image quality.

  15. Unveiling the chemistry behind the green synthesis of metal nanoparticles.

    PubMed

    Santos, Sónia A O; Pinto, Ricardo J B; Rocha, Sílvia M; Marques, Paula A A P; Pascoal Neto, Carlos; Silvestre, Armando J D; Freire, Carmen S R

    2014-09-01

    Nanobiotechnology has emerged as a fundamental domain in modern science, and metallic nanoparticles (NPs) are one of the largest classes of NPs studied because of their wide spectrum of possible applications in several fields. The use of plant extracts as reducing and stabilizing agents in their synthesis is an interesting and reliable alternative to conventional methodologies. However, the role of the different components of such extracts in the reduction/stabilization of metal ions has not yet been understood clearly. Here we studied the behavior of the main components of a Eucalyptus globulus Labill. bark aqueous extract during metal-ion reduction followed by advanced chromatographic techniques, which allowed us to establish their specific role in the process. The obtained results showed that phenolic compounds, particularly galloyl derivatives, are mainly responsible for the metal-ion reduction, whereas sugars are essentially involved in the stabilization of the NPs. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. MR Image Based Approach for Metal Artifact Reduction in X-Ray CT

    PubMed Central

    2013-01-01

    For decades, computed tomography (CT) images have been widely used to discover valuable anatomical information. Metallic implants such as dental fillings cause severe streaking artifacts which significantly degrade the quality of CT images. In this paper, we propose a new method for metal-artifact reduction using complementary magnetic resonance (MR) images. The method exploits the possibilities which arise from the use of emergent trimodality systems. The proposed algorithm corrects reconstructed CT images. The projected data which is affected by dental fillings is detected and the missing projections are replaced with data obtained from a corresponding MR image. A simulation study was conducted in order to compare the reconstructed images with images reconstructed through linear interpolation, which is a common metal-artifact reduction technique. The results show that the proposed method is successful in reducing severe metal artifacts without introducing significant amount of secondary artifacts. PMID:24302860

  17. Old metal oxide clusters in new applications: spontaneous reduction of Keggin and Dawson polyoxometalate layers by a metallic electrode for improving efficiency in organic optoelectronics.

    PubMed

    Vasilopoulou, Maria; Douvas, Antonios M; Palilis, Leonidas C; Kennou, Stella; Argitis, Panagiotis

    2015-06-03

    The present study is aimed at investigating the solid state reduction of a representative series of Keggin and Dawson polyoxometalate (POM) films in contact with a metallic (aluminum) electrode and at introducing them as highly efficient cathode interlayers in organic optoelectronics. We show that, upon reduction, up to four electrons are transferred from the metallic electrode to the POM clusters of the Keggin series dependent on addenda substitution, whereas a six electron reduction was observed in the case of the Dawson type clusters. The high degree of their reduction by Al was found to be of vital importance in obtaining effective electron transport through the cathode interface. A large improvement in the operational characteristics of organic light emitting devices and organic photovoltaics based on a wide range of different organic semiconducting materials and incorporating reduced POM/Al cathode interfaces was achieved as a result of the large decrease of the electron injection/extraction barrier, the enhanced electron transport and the reduced recombination losses in our reduced POM modified devices.

  18. Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

    NASA Astrophysics Data System (ADS)

    Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-03-01

    Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.

  19. Initial Reduction of CO2 on Pd-, Ru-, and Cu-Doped CeO2(111) Surfaces: Effects of Surface Modification on Catalytic Activity and Selectivity.

    PubMed

    Guo, Chen; Wei, Shuxian; Zhou, Sainan; Zhang, Tian; Wang, Zhaojie; Ng, Siu-Pang; Lu, Xiaoqing; Wu, Chi-Man Lawrence; Guo, Wenyue

    2017-08-09

    Surface modification by metal doping is an effective treatment technique for improving surface properties for CO 2 reduction. Herein, the effects of doped Pd, Ru, and Cu on the adsorption, activation, and reduction selectivity of CO 2 on CeO 2 (111) were investigated by periodic density functional theory. The doped metals distorted the configuration of a perfect CeO 2 (111) by weakening the adjacent Ce-O bond strength, and Pd doping was beneficial for generating a highly active O vacancy. The analyses of adsorption energy, charge density difference, and density of states confirmed that the doped metals were conducive for enhancing CO 2 adsorption, especially for Cu/CeO 2 (111). The initial reductive dissociation CO 2 → CO* + O* on metal-doped CeO 2 (111) followed the sequence of Cu- > perfect > Pd- > Ru-doped CeO 2 (111); the reductive hydrogenation CO 2 + H → COOH* followed the sequence of Cu- > perfect > Ru- > Pd-doped CeO 2 (111), in which the most competitive route on Cu/CeO 2 (111) was exothermic by 0.52 eV with an energy barrier of 0.16 eV; the reductive hydrogenation CO 2 + H → HCOO* followed the sequence of Ru- > perfect > Pd-doped CeO 2 (111). Energy barrier decomposition analyses were performed to identify the governing factors of bond activation and scission along the initial CO 2 reduction routes. Results of this study provided deep insights into the effect of surface modification on the initial reduction mechanisms of CO 2 on metal-doped CeO 2 (111) surfaces.

  20. IMPROVED RISK ASSESSMENT AND REMEDIATION OF SOIL METALS BASED ON BIOAVAILABILITY MEASUREMENTS

    EPA Science Inventory

    Heavy metals in soils can comprise risk through plant uptake or soil ingestion. Recent research results and progress in understandings of risks and methods for soil metal remediation will be presented. Beneficial use of composts/bosolids plus limestone to remediate metal killed e...

  1. Metal Fabricating Specialist (AFSC 55252).

    ERIC Educational Resources Information Center

    Air Univ., Gunter AFS, Ala. Extension Course Inst.

    This seven-volume student text is designed for use by Air Force personnel enrolled in a self-study extension course for metal fabricating specialists. Covered in the individual volumes are general subjects (career progression, management of activities and resources, shop mathematics, and characteristics of metals); sheet metal tools and equipment…

  2. Metal artefact reduction in gemstone spectral imaging dual-energy CT with and without metal artefact reduction software.

    PubMed

    Lee, Young Han; Park, Kwan Kyu; Song, Ho-Taek; Kim, Sungjun; Suh, Jin-Suck

    2012-06-01

    To assess the usefulness of gemstone spectral imaging (GSI) dual-energy CT (DECT) with/without metal artefact reduction software (MARs). The DECTs were performed using fast kV-switching GSI between 80 and 140 kV. The CT data were retro-reconstructed with/without MARs, by different displayed fields-of-view (DFOV), and with synthesised monochromatic energy in the range 40-140 keV. A phantom study of size and CT numbers was performed in a titanium plate and a stainless steel plate. A clinical study was performed in 26 patients with metallic hardware. All images were retrospectively reviewed in terms of the visualisation of periprosthetic regions and the severity of beam-hardening artefacts by using a five-point scale. The GSI-MARs reconstruction can markedly reduce the metal-related artefacts, and the image quality was affected by the prosthesis composition and DFOV. The spectral CT numbers of the prosthesis and periprosthetic regions showed different patterns on stainless steel and titanium plates. Dual-energy CT with GSI-MARs can reduce metal-related artefacts and improve the delineation of the prosthesis and periprosthetic region. We should be cautious when using GSI-MARs because the image quality was affected by the prosthesis composition, energy (in keV) and DFOV. The metallic composition and size should be considered in metallic imaging with GSI-MARs reconstruction. • Metal-related artefacts can be troublesome on musculoskeletal computed tomography (CT). • Gemstone spectral imaging (GSI) with dual-energy CT (DECT) offers a novel solution • GSI and metallic artefact reduction software (GSI-MAR) can markedly reduce these artefacts. • However image quality is influenced by the prosthesis composition and other parameters. • We should be aware about potential overcorrection when using GSI-MARs.

  3. Nonlinear plasmonic imaging techniques and their biological applications

    NASA Astrophysics Data System (ADS)

    Deka, Gitanjal; Sun, Chi-Kuang; Fujita, Katsumasa; Chu, Shi-Wei

    2017-01-01

    Nonlinear optics, when combined with microscopy, is known to provide advantages including novel contrast, deep tissue observation, and minimal invasiveness. In addition, special nonlinearities, such as switch on/off and saturation, can enhance the spatial resolution below the diffraction limit, revolutionizing the field of optical microscopy. These nonlinear imaging techniques are extremely useful for biological studies on various scales from molecules to cells to tissues. Nevertheless, in most cases, nonlinear optical interaction requires strong illumination, typically at least gigawatts per square centimeter intensity. Such strong illumination can cause significant phototoxicity or even photodamage to fragile biological samples. Therefore, it is highly desirable to find mechanisms that allow the reduction of illumination intensity. Surface plasmon, which is the collective oscillation of electrons in metal under light excitation, is capable of significantly enhancing the local field around the metal nanostructures and thus boosting up the efficiency of nonlinear optical interactions of the surrounding materials or of the metal itself. In this mini-review, we discuss the recent progress of plasmonics in nonlinear optical microscopy with a special focus on biological applications. The advancement of nonlinear imaging modalities (including incoherent/coherent Raman scattering, two/three-photon luminescence, and second/third harmonic generations that have been amalgamated with plasmonics), as well as the novel subdiffraction limit imaging techniques based on nonlinear behaviors of plasmonic scattering, is addressed.

  4. Decontamination of metals using chemical etching

    DOEpatents

    Lerch, Ronald E.; Partridge, Jerry A.

    1980-01-01

    The invention relates to chemical etching process for reclaiming contaminated equipment wherein a reduction-oxidation system is included in a solution of nitric acid to contact the metal to be decontaminated and effect reduction of the reduction-oxidation system, and includes disposing a pair of electrodes in the reduced solution to permit passage of an electrical current between said electrodes and effect oxidation of the reduction-oxidation system to thereby regenerate the solution and provide decontaminated equipment that is essentially radioactive contamination-free.

  5. Marginal Accuracy and Internal Fit of Dental Copings Fabricated by Modern Additive and Subtractive Digital Technologies.

    PubMed

    Nelson, Neha; K S, Jyothi; Sunny, Kiran

    2017-03-01

    The margins of copings for crowns and retainers of fixed partial dentures affect the progress of microleakage and dental caries. Failures occur due to altered fit which is also influenced by the method of fabrication. An in-vitro study was conducted to determine among the cast base metal, copy milled zirconia, computer aided designing computer aided machining/manufacturing zirconia and direct metal laser sintered copings which showed best marginal accuracy and internal fit. Forty extracted maxillary premolars were mounted on an acrylic model and reduced occlusally using a milling machine up to a final tooth height of 4 mm from the cementoenamel junction. Axial reduction was accomplished on a surveyor and a chamfer finish line was given. The impressions and dies were made for fabrication of copings which were luted on the prepared teeth under standardized loading, embedded in self-cure acrylic resin, sectioned and observed using scanning electron microscope for internal gap and marginal accuracy. The copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Comparison of mean between the four groups by ANOVA and post-hoc Tukey HSD tests showed a statistically significant difference between all the groups (p⟨0.05). It was concluded that the copings fabricated using direct metal laser sintering technique exhibited best marginal accuracy and internal fit. Additive digital technologies such as direct metal laser sintering could be cost-effective for the clinician, minimize failures related to fit and increase longevity of teeth and prostheses. Copyright© 2017 Dennis Barber Ltd.

  6. Exploration of the medical periodic table: towards new targets.

    PubMed

    Barry, Nicolas P E; Sadler, Peter J

    2013-06-07

    Metallodrugs offer potential for unique mechanisms of drug action based on the choice of the metal, its oxidation state, the types and number of coordinated ligands and the coordination geometry. We discuss recent progress in identifying new target sites and elucidating the mechanisms of action of anti-cancer, anti-bacterial, anti-viral, anti-parasitic, anti-inflammatory, and anti-neurodegenerative agents, as well as in the design of metal-based diagnostic agents. Progress in identifying and defining target sites has been accelerated recently by advances in proteomics, genomics and metal speciation analysis. Examples of metal compounds and chelating agents (enzyme inhibitors) currently in clinical use, clinical trials or preclinical development are highlighted.

  7. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications.

    PubMed

    Li, Hongbo; Dong, Xiaoling; da Silva, Evandro B; de Oliveira, Letuzia M; Chen, Yanshan; Ma, Lena Q

    2017-07-01

    Biochar produced by thermal decomposition of biomass under oxygen-limited conditions has received increasing attention as a cost-effective sorbent to treat metal-contaminated waters. However, there is a lack of information on the roles of different sorption mechanisms for different metals and recent development of biochar modification to enhance metal sorption capacity, which is critical for biochar field application. This review summarizes the characteristics of biochar (e.g., surface area, porosity, pH, surface charge, functional groups, and mineral components) and main mechanisms governing sorption of As, Cr, Cd, Pb, and Hg by biochar. Biochar properties vary considerably with feedstock material and pyrolysis temperature, with high temperature producing biochars with higher surface area, porosity, pH, and mineral contents, but less functional groups. Different mechanisms dominate sorption of As (complexation and electrostatic interactions), Cr (electrostatic interactions, reduction, and complexation), Cd and Pb (complexation, cation exchange, and precipitation), and Hg (complexation and reduction). Besides sorption mechanisms, recent advance in modifying biochar by loading with minerals, reductants, organic functional groups, and nanoparticles, and activation with alkali solution to enhance metal sorption capacity is discussed. Future research needs for field application of biochar include competitive sorption mechanisms of co-existing metals, biochar reuse, and cost reduction of biochar production. Published by Elsevier Ltd.

  8. Production and investigation of thin films of metal actinides (Pu, Am, Cm, Bk, Cf)

    NASA Astrophysics Data System (ADS)

    Radchenko, V. M.; Ryabinin, M. A.; Stupin, V. A.

    2010-03-01

    Under limited availability of transplutonium metals some special techniques and methods of their production have been developed that combine the process of metal reduction from a chemical compound and preparation of a sample for examination. In this situation the evaporation and condensation of metal onto a substrate becomes the only possible technology. Thin film samples of metallic 244Cm, 248Cm and 249Bk were produced by thermal reduction of oxides with thorium followed by deposition of the metals in the form of thin layers on tantalum substrates. For the production of 249Cf metal in the form of a thin layer the method of thermal reduction of oxide with lanthanum was used. 238Pu and 239Pu samples in the form of films were prepared by direct high temperature evaporation and condensation of the metal onto a substrate. For the production of 241Am films a gram sample of plutonium-241 metal was used containing about 18 % of americium at the time of production. Thermal decomposition of Pt5Am intermetallics in vacuum was used to produce americium metal with about 80% yield. Resistivity of the metallic 249Cf film samples was found to decrease exponentially with increasing temperature. The 249Cf metal demonstrated a tendency to form preferably a DHCP structure with the sample mass increasing. An effect of high specific activity on the crystal structure of 238Pu nuclide thin layers was studied either.

  9. Recovery of Iron from Chromium Vanadium-Bearing Titanomagnetite Concentrate by Direct Reduction

    NASA Astrophysics Data System (ADS)

    Wang, Mingyu; Zhou, Shengfan; Wang, Xuewen; Chen, Bianfang; Yang, Haoxiang; Wang, Saikui; Luo, Pengfei

    2016-10-01

    The recovery of iron from chromium vanadium-bearing titanomagnetite concentrate was investigated by direct reduction, followed by magnetic separation. The results indicated that the metallization rate of iron can reach 98.9% at a temperature of 1200°C for a reduction duration of 60 min with the addition of 16% graphite powder and 0.5% sodium oxalate. Although the addition of borax, sodium carbonate and sodium oxalate to the chromium vanadium-bearing titanomagnetite concentrate can all improve the metallization rate of iron, the effect of sodium oxalate was the best. Sodium oxalate not only increases the metallization rate of iron but also promotes the growth of metallic iron. After magnetic separating, the recovery of iron was 92.8% and the iron content of magnetic concentrate was 88.4%.

  10. Alloy formation and metal oxide segregation on Pt-Re/. gamma. -Al/sub 2/O/sub 3/ catalysts as investigated by temperature-programmed reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagstaff, N.; Prins, R.

    1979-10-15

    Catalysts resembling reforming catalysts were prepared to contain finely dispersed 0.75% Pt, 0.7% Re, or 0.35% Pt plus 0.1-2% Re on chlorided ..gamma..-alumina. The catalysts were dried in an oxidizing atmosphere and studied by temperature-programed reduction. Up to a Re/Pt ratio of 0.6:1 the metals were completely reduced in hydrogen below 255/sup 0/C, i.e., the platinum catalyzed rhenium reduction. A small amount of added water (< 50 ppm) also promoted rhenium reduction. Segregation of the metals occurred in oxygen above 200/sup 0/C, but at 100/sup 0/C, the rate of segregation was slow. These results suggested that under reforming conditions, Pt-Remore » catalysts are completely reduced bimetallic clusters. The mechanisms of reduction, cluster formation, and oxidative segregation are discussed.« less

  11. Reductive dechlorination of trichloroethene mediated by humic-metal complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Loughlin, E.J.; Burris, D.R.; Delcomyn, C.A.

    1999-04-01

    Experiments were conducted to determine if transition metal-humic acid complexes can act as e{sup {minus}} transfer mediators in the reductive dechlorination of trichloroethene (TCE) using Ti(III) citrate as the bulk reductant. In the presence of Ni-Aldrich humic acid (AHA) complexes, TCE reduction was rapid, with complete removal of TCE in less than 23 h. Cu-AHA complexes were less effective as e{sup {minus}} mediators than Ni-AHA complexes; only 60% of TCE was reduced after 150 h. Partially dechlorinated intermediates were observed during TCE reduction; however, they were transitory, and at no time accounted for more than 2% of the initial TCEmore » mass on a mole C basis. Ethane and ethene were the primary end products of TCE reduction; however, a suite of other non-chlorinated hydrocarbons consisting of methane and C{sub 3} to C{sub 6} alkanes and alkenes were also observed. The results suggest that humic-metal complexes may represent a previously unrecognized class of electron mediators in natural environments.« less

  12. Activities of Combined TiO2 Semiconductor Nanocatalysts Under Solar Light on the Reduction of CO2.

    PubMed

    Liu, Hongfang; Dao, Anh Quang; Fu, Chaoyang

    2016-04-01

    The materials based on TiO2 semiconductors are a promising option for electro-photocatalytic systems working as solar energy low-carbon fuels exchanger. These materials' structures are modified by doping metals and metal oxides, by metal sulfides sensitization, or by graphene supported membrane, enhancing their catalytic activity. The basic phenomenon of CO2 reduction to CH4 on Pd modified TiO2 under UV irradiation could be enhanced by Pd, or RuO2 co-doped TiO2. Sensitization with metal sulfide QDs is effective by moving of photo-excited electron from QDs to TiO2 particles. Based on characteristics of the catalysts various combinations of catalysts are proposed in order to creat catalyst systems with good CO2 reduction efficiency. From this critical review of the CO2 reduction to organic compounds by converting solar light and CO2 to storable fuels it is clear that more studies are still attractive and needed.

  13. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction

    NASA Astrophysics Data System (ADS)

    Liang, Hai-Wei; Zhuang, Xiaodong; Brüller, Sebastian; Feng, Xinliang; Müllen, Klaus

    2014-09-01

    Development of efficient, low-cost and stable electrocatalysts as the alternative to platinum for the oxygen reduction reaction is of significance for many important electrochemical devices, such as fuel cells, metal-air batteries and chlor-alkali electrolysers. Here we report a highly active nitrogen-doped, carbon-based, metal-free oxygen reduction reaction electrocatalyst, prepared by a hard-templating synthesis, for which nitrogen-enriched aromatic polymers and colloidal silica are used as precursor and template, respectively, followed by ammonia activation. Our protocol allows for the simultaneous optimization of both porous structures and surface functionalities of nitrogen-doped carbons. Accordingly, the prepared catalysts show the highest oxygen reduction reaction activity (half-wave potential of 0.85 V versus reversible hydrogen electrode with a low loading of 0.1 mg cm-2) in alkaline media among all reported metal-free catalysts. Significantly, when used for constructing the air electrode of zinc-air battery, our metal-free catalyst outperforms the state-of the-art platinum-based catalyst.

  14. Optical and infrared masers

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Ongoing research progress in the following areas is described: (1) tunable infrared light sources and applications; (2) precision frequency and wavelength measurements in the infrared with applications to atomic clocks; (3) zero-degree pulse propagation in resonant medium; (4) observation of Dicke superradiance in optically pumped HF gas; (5) unidirectional laser amplifier with built-in isolator; and (6) progress in infrared metal-to-metal point contact tunneling diodes.

  15. Sorption of Molecular Oxygen by Metal-Ion Exchanger Nanocomposites

    NASA Astrophysics Data System (ADS)

    Krysanov, V. A.; Plotnikova, N. V.; Kravchenko, T. A.

    2018-03-01

    Kinetic features are studied of the chemisorption and reduction of molecular oxygen from water by metal-ion exchanger nanocomposites that differ in the nature of the dispersed metal and state of oxidation. In the Pd < Ag < Cu series, the increasing chemical activity of metal nanoparticles raises the degree of oxygen sorption due to its chemisorption and subsequent reduction, while the role of the molecular chemisorption stage increases in the Cu < Ag < Pd series. Metal particles or their oxides are shown to act as adsorption sites on the surface and in the pores of the ion-exchanger matrix; the equilibrium sorption coefficient for oxygen dissolved in water ranges from 20 to 50, depending on the nature and oxidation state of the metal component.

  16. Metal artifact reduction in CT, a phantom study: subjective and objective evaluation of four commercial metal artifact reduction algorithms when used on three different orthopedic metal implants.

    PubMed

    Bolstad, Kirsten; Flatabø, Silje; Aadnevik, Daniel; Dalehaug, Ingvild; Vetti, Nils

    2018-01-01

    Background Metal implants may introduce severe artifacts in computed tomography (CT) images. Over the last few years dedicated algorithms have been developed in order to reduce metal artifacts in CT images. Purpose To investigate and compare metal artifact reduction algorithms (MARs) from four different CT vendors when imaging three different orthopedic metal implants. Material and Methods Three clinical metal implants were attached to the leg of an anthropomorphic phantom: cobalt-chrome; stainless steel; and titanium. Four commercial MARs were investigated: SmartMAR (GE); O-MAR (Philips); iMAR (Siemens); and SEMAR (Toshiba). The images were evaluated subjectively by three observers and analyzed objectively by calculating the fraction of pixels with CT number above 500 HU in a region of interest around the metal. The average CT number and image noise were also measured. Results Both subjective evaluation and objective analysis showed that MARs reduced metal artifacts and improved the image quality for CT images containing metal implants of steel and cobalt-chrome. When using MARs on titanium, all MARs introduced new visible artifacts. Conclusion The effect of MARs varied between CT vendors and different metal implants used in orthopedic surgery. Both in subjective evaluation and objective analysis the effect of applying MARs was most obvious on steel and cobalt-chrome implants when using SEMAR from Toshiba followed by SmartMAR from GE. However, MARs may also introduce new image artifacts especially when used on titanium implants. Therefore, it is important to reconstruct all CT images containing metal with and without MARs.

  17. Influence of dissimilatory metal reduction on fate of organic and metal contaminants in the subsurface

    USGS Publications Warehouse

    Lovely, Derek R.; Anderson, Robert T.

    2000-01-01

    Geobacter become dominant members of the microbial community when Fe(III)-reducing conditions develop as the result of organic contamination, or when Fe(III) reduction is artificially stimulated. These results suggest that further understanding of the ecophysiology of Geobacter species would aid in better prediction of the natural attenuation of organic contaminants under anaerobic conditions and in the design of strategies for the bioremediation of subsurface metal contamination.

  18. Development, implementation and evaluation of a dedicated metal artefact reduction method for interventional flat-detector CT.

    PubMed

    Prell, D; Kalender, W A; Kyriakou, Y

    2010-12-01

    The purpose of this study was to develop, implement and evaluate a dedicated metal artefact reduction (MAR) method for flat-detector CT (FDCT). The algorithm uses the multidimensional raw data space to calculate surrogate attenuation values for the original metal traces in the raw data domain. The metal traces are detected automatically by a three-dimensional, threshold-based segmentation algorithm in an initial reconstructed image volume, based on twofold histogram information for calculating appropriate metal thresholds. These thresholds are combined with constrained morphological operations in the projection domain. A subsequent reconstruction of the modified raw data yields an artefact-reduced image volume that is further processed by a combining procedure that reinserts the missing metal information. For image quality assessment, measurements on semi-anthropomorphic phantoms containing metallic inserts were evaluated in terms of CT value accuracy, image noise and spatial resolution before and after correction. Measurements of the same phantoms without prostheses were used as ground truth for comparison. Cadaver measurements were performed on complex and realistic cases and to determine the influences of our correction method on the tissue surrounding the prostheses. The results showed a significant reduction of metal-induced streak artefacts (CT value differences were reduced to below 22 HU and image noise reduction of up to 200%). The cadaver measurements showed excellent results for imaging areas close to the implant and exceptional artefact suppression in these areas. Furthermore, measurements in the knee and spine regions confirmed the superiority of our method to standard one-dimensional, linear interpolation.

  19. The reduction mechanism of chromite in the presence of a silica flux

    NASA Astrophysics Data System (ADS)

    Weber, P.; Eric, R. H.

    1993-12-01

    The reduction behavior of a natural chromite from the Bushveld Complex of South Africa was studied at 1300 °C to 1500 °C. Reduction was by graphite in the presence of silica. Thermo-gravimetric analysis, X-ray diffraction (XRD) analysis, energy-dispersive X-ray analysis (EDAX), and metallographic analysis were the experimental techniques used. Silica affected the reduction at and above 1400 °C. A two-stage reduction mechanism was established. The first stage, up to a reduction level of about 40 pct, is primarily confined to iron metallization, and zoning is observed in partially reduced chromites. In this stage, silica does not interfere with the reduction, which proceeds by an outward diffusion of Fe2+ ions and an inward diffusion of Mg2+ and Cr2+ ions. The second stage is primarily confined to chromium metallization, and formation of a silicate slag alters the reduction mechanism. The slag phase agglomerates and even embeds partially reduced chromite particles. An ion-exchange reaction between the re-ducible cations (Cr3+ and Fe2+) in the spinel and the dissolved cations (Al3+ and Mg2+) in the slag allows further reduction. Once the reducible cations are dissolved in the slag phase, they are reduced to the metallic state at sites where there is contact with the reductant.

  20. A combination of CoO and Co nanoparticles supported on electrospun carbon nanofibers as highly stable air electrodes

    NASA Astrophysics Data System (ADS)

    Alegre, Cinthia; Busacca, Concetta; Di Blasi, Orazio; Antonucci, Vincenzo; Aricò, Antonino Salvatore; Di Blasi, Alessandra; Baglio, Vincenzo

    2017-10-01

    Bifunctional materials able to catalyze both the oxygen reduction (ORR) and the oxygen evolution (OER) reactions in alkaline media are still a challenge for the progress of energy conversion and storage devices such as metal-air batteries or unitized regenerative fuel cells. In this work, carbon nanofibers synthesized by electrospinning are modified with a combination of cobalt oxide and metallic cobalt (CoO-Co/CNF) and studied as a bifunctional air electrode for metal-air batteries. The performance of CoO-Co/CNF for both reactions is compared with state-of-the-art catalysts such as Pt/C and IrO2. The combination of cobalt oxide and metallic cobalt, finely distributed on the surface of graphitic carbon nanofibers, leads to a bifunctional catalyst with a half-wave potential for the ORR slightly better than Pt/C and a reversibility (ΔEOER-ORR) of 809 mV. The stability of CoO-Co/CNF is assessed by means of different stress tests: polarizations at high electrochemical potentials (2 V vs. RHE), rapid charge-discharge cycles at ±80 mA cm-2 and long durability tests by charging for 12 h at 60 mA cm-2 and discharging for 8 h at -80 mA cm-2. CoO-Co/CNF shows a remarkable stability, maintaining, at least, an 82% of its performance for the ORR after the stress tests, even when cycled for more than 100 h.

  1. Progress in the biosensing techniques for trace-level heavy metals.

    PubMed

    Mehta, Jyotsana; Bhardwaj, Sanjeev K; Bhardwaj, Neha; Paul, A K; Kumar, Pawan; Kim, Ki-Hyun; Deep, Akash

    2016-01-01

    Diverse classes of sensors have been developed over the past few decades for on-site detections of heavy metals. Most of these sensor systems have exploited optical, electrochemical, piezoelectric, ion-selective (electrode), and electrochemical measurement techniques. As such, numerous efforts have been made to explore the role of biosensors in the detection of heavy metals based on well-known interactions between heavy metals and biomolecules (e.g. proteins, peptides, enzymes, antibodies, whole cells, and nucleic acids). In this review, we cover the recent progress made on different types of biosensors for the detection of heavy metals. Our major focus was examining the use of biomolecules for constructing these biosensors. The discussion is extended further to cover the biosensors' performance along with challenges and opportunities for practical utilization. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. RISK REDUCTION VIA GREENER SYNTHESIS OF NOBLE METAL NANOSTRUCTURES AND NANOCOMPOSITES

    EPA Science Inventory

    Aqueous preparation of nanoparticles using vitamins B2 and C which can function both as reducing and capping agents are described. Bulk and shape-controlled synthesis of noble nanostructures via microwave (MW)-assisted spontaneous reduction of noble metal salts using a-D-glucose,...

  3. Use of ion conductors in the pyrochemical reduction of oxides

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt

    1994-01-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO.sub.2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a .beta.-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca.degree. used for reducing UO.sub.2 and PuO.sub.2 to U and Pu.

  4. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)-Ion Batteries.

    PubMed

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Ma, Jianmin; Deng, Yonghong; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-10-01

    Lithium-ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium-ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated-graphite for LIBs, but also an effective strategy to develop diverse high-energy batteries for stationary energy storage in the future.

  5. Recent Progress in Graphite Intercalation Compounds for Rechargeable Metal (Li, Na, K, Al)‐Ion Batteries

    PubMed Central

    Xu, Jiantie; Dou, Yuhai; Wei, Zengxi; Li, Yutao; Liu, Huakun; Dou, Shixue

    2017-01-01

    Abstract Lithium‐ion batteries (LIBs) with higher energy density are very necessary to meet the increasing demand for devices with better performance. With the commercial success of lithiated graphite, other graphite intercalation compounds (GICs) have also been intensively reported, not only for LIBs, but also for other metal (Na, K, Al) ion batteries. In this Progress Report, we briefly review the application of GICs as anodes and cathodes in metal (Li, Na, K, Al) ion batteries. After a brief introduction on the development history of GICs, the electrochemistry of cationic GICs and anionic GICs is summarized. We further briefly summarize the use of cationic GICs and anionic GICs in alkali ion batteries and the use of anionic GICs in aluminium‐ion batteries. Finally, we reach some conclusions on the drawbacks, major progress, emerging challenges, and some perspectives on the development of GICs for metal (Li, Na, K, Al) ion batteries. Further development of GICs for metal (Li, Na, K, Al) ion batteries is not only a strong supplement to the commercialized success of lithiated‐graphite for LIBs, but also an effective strategy to develop diverse high‐energy batteries for stationary energy storage in the future. PMID:29051856

  6. Understanding the Role of Metal Ions in RNA Folding and Function: Lessons from RNase P, a Ribonucleoprotein Enzyme

    NASA Astrophysics Data System (ADS)

    Harris, Michael E.; Christian, Eric L.

    There is a large and rapidly growing literature relating RNA function to metal ion identity and concentration; however, due to the complexity and large number of interactions it remains a significant experimental challenge to tie the interactions of individual ions to specific aspects of RNA function. Investigation of the ribonculeopro-tein enzyme RNase P function has assisted in defining characteristics of RNA—metal ion interactions and provided a useful model system for understanding RNA catalysis and ribonucleoprotein assembly. The goal of this chapter is to review progress in understanding the physical basis of functional metal ion interactions with P RNA and relate this progress to the development of our understanding of RNA metal ion interactions in general. The research results reviewed here encompass: (1) Determination of the contribution of divalent metal ion binding to specific aspects of enzyme function, (2) Identification of individual metal ion binding sites in P RNA and their contribution to function, and (3) The effect of protein binding on RNA—metal ion affinity.

  7. Kinetic Study on the Formation of Bimetallic Core-Shell Nanoparticles via Microemulsions

    PubMed Central

    Tojo, Concha; Vila-Romeu, Nuria

    2014-01-01

    Computer calculations were carried out to determine the reaction rates and the mean structure of bimetallic nanoparticles prepared via a microemulsion route. The rates of reaction of each metal were calculated for a particular microemulsion composition (fixed intermicellar exchange rate) and varying reduction rate ratios between both metal and metal salt concentration inside the micelles. Model predictions show that, even in the case of a very small difference in reduction potential of both metals, the formation of an external shell in a bimetallic nanoparticle is possible if a large reactant concentration is used. The modification of metal arrangement with concentration was analyzed from a mechanistic point of view, and proved to be due to the different impact of confinement on each metal: the reaction rate of the faster metal is only controlled by the intermicellar exchange rate but the slower metal is also affected by a cage-like effect. PMID:28788260

  8. pH, dissolved oxygen, and adsorption effects on metal removal in anaerobic bioreactors.

    PubMed

    Willow, Mark A; Cohen, Ronald R H

    2003-01-01

    Anaerobic bioreactors were used to test the effect of the pH of influent on the removal efficiency of heavy metals from acid-rock drainage. Two studies used a near-neutral-pH, metal-laden influent to examine the heavy metal removal efficiency and hydraulic residence time requirements of the reactors. Another study used the more typical low-pH mine drainage influent. Experiments also were done to (i) test the effects of oxygen content of feed water on metal removal and (ii) the adsorptive capacity of the reactor organic substrate. Analysis of the results indicates that bacterial sulfate reduction may be a zero-order kinetic reaction relative to sulfate concentrations used in the experiments, and may be the factor that controls the metal mass removal efficiency in the anaerobic treatment systems. The sorptive capacities of the organic substrate used in the experiments had not been exhausted during the experiments as indicated by the loading rates of removal of metals exceeding the mass production rates of sulfide. Microbial sulfate reduction was less in the reactors receiving low-pH influent during experiments with short residence times. Sulfate-reducing bacteria may have been inhibited by high flows of low-pH water. Dissolved oxygen content of the feed waters had little effect on sulfate reduction and metal removal capacity.

  9. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts.

    PubMed

    Cheng, Fangyi; Chen, Jun

    2012-03-21

    Because of the remarkably high theoretical energy output, metal-air batteries represent one class of promising power sources for applications in next-generation electronics, electrified transportation and energy storage of smart grids. The most prominent feature of a metal-air battery is the combination of a metal anode with high energy density and an air electrode with open structure to draw cathode active materials (i.e., oxygen) from air. In this critical review, we present the fundamentals and recent advances related to the fields of metal-air batteries, with a focus on the electrochemistry and materials chemistry of air electrodes. The battery electrochemistry and catalytic mechanism of oxygen reduction reactions are discussed on the basis of aqueous and organic electrolytes. Four groups of extensively studied catalysts for the cathode oxygen reduction/evolution are selectively surveyed from materials chemistry to electrode properties and battery application: Pt and Pt-based alloys (e.g., PtAu nanoparticles), carbonaceous materials (e.g., graphene nanosheets), transition-metal oxides (e.g., Mn-based spinels and perovskites), and inorganic-organic composites (e.g., metal macrocycle derivatives). The design and optimization of air-electrode structure are also outlined. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of metal-air batteries (219 references).

  10. Low-temperature solvothermal approach to the synthesis of La4Ni3O8 by topotactic oxygen deintercalation.

    PubMed

    Blakely, Colin K; Bruno, Shaun R; Poltavets, Viktor V

    2011-07-18

    A chimie douce solvothermal reduction method is proposed for topotactic oxygen deintercalation of complex metal oxides. Four different reduction techniques were employed to qualitatively identify the relative reduction activity of each including reduction with H(2) and NaH, solution-based reduction using metal hydrides at ambient pressure, and reduction under solvothermal conditions. The reduction of the Ruddlesden-Popper nickelate La(4)Ni(3)O(10) was used as a test case to prove the validity of the method. The completely reduced phase La(4)Ni(3)O(8) was produced via the solvothermal technique at 150 °C--a lower temperature than by other more conventional solid state oxygen deintercalation methods.

  11. Natural stone muds as secondary raw materials: towards a new sustainable recovery process

    NASA Astrophysics Data System (ADS)

    Zichella, Lorena; Tori, Alice; Bellopede, Rossana; Marini, Paola

    2016-04-01

    The production of residual sludge is a topical issue, and has become essential to recover and reuse the materials, both for the economics and the environmental aspect. According to environmental EU Directives, in fact ,the stone cutting and processing should characterized by following objectives, targets and actions: the reduction of waste generated, the decreasing of use of critical raw material, the zero landfilling of sludge and decreasing in potential soil contamination, the prevention of transport of dangerous waste, the reduction of energy consumption, the zero impact on air pollution and the cost reduction . There are many industrial sector in which residual sludge have high concentrations of metals and/or elements deemed harmful and therefore hazardous waste. An important goal, for all industrial sectors, is an increase in productivity and a parallel reduction in costs. The research leads to the development of solutions with an always reduced environmental impact. The possibility to decrease the amount of required raw materials and at the same time the reduction in the amount of waste has become the aim for any industrial reality. From literature there are different approaches for the recovery of raw and secondary materials, and are often used for the purpose chemical products that separate the elements constituting the mud but at the same time make additional pollutants. The aim of the study is to find solutions that are environmentally sustainable for both industries and citizens. The present study is focused on three different Piedmont rocks: Luserna, Diorite from Traversella and Diorite from Vico, processed with three different stone machining technologies: cutting with diamond wire in quarry (blocks), in sawmill (slabs) and surface polishing. The steps are: chemical analysis, particle size analysis and mineralogical composition and characterization of the sludge obtained from the various machining operations for the recovery of the metal material by cutting and waste rock through an economical and simple method, without the use of chemical products. The technical feasibility of the use of stone mud for construction materials, and industrial mud for alloy reuse, is well known on a scientific and lab scale, but it is not industrially developed because of the wide variety of waste generated and logistic or organization difficulties of interaction among companies of different sectors. This can be realized implementing an existing plant with industrial technologies in order to valorize the product "mud", to reuse the heavy metals in the process and therefore to minimize the volume of sludge produced. A further progress to the previous researches, that is beyond the results obtained in this field, will be the identification of the best technique to eliminate the small amount of heavy metals in the mud fines. This is important because , removing all the toxic substances, the mud properties can be improved in order to be reuse in the other process as secondary raw material.

  12. Late Reduction Textures in Almahata Sitta Ureilite

    NASA Technical Reports Server (NTRS)

    Herrin, J. S.; Le, L.; Zolensky, M. E.; Ito, M.; Jenniskens, P.; Shaddad, M. H.

    2009-01-01

    The Almahata Sitta ureilite, derived from asteroid 2008 TC3, consists of many individual fragments recovered from the Nubian dessert strewn field [1]. Like most ureilites, it contains abundant carbon and exhibits examples of disequilibrium textures that record a late reduction event accompanied by rapid cooling (tens of degC/h) from high temperatures (1150-1300 C). Variations in Fe/Mg of silicate minerals are accompanied by variations in Fe/Mn, indicating loss of Fe into metal [2]. In coarser-grained fragments of Almahata Sitta, olivine exhibits irregular high mg# rims in contact with networks of interstitial metal 5- 20 microns in typical thickness. This is a common ureilite texture thought to be driven by the reaction of graphite to a CO gas phase and the concurrent reduction of FeO in olivine to Fe metal, with excess silica going primarily into pyroxene (2MgFeSiO4 + C approaches MgSiO4 + MgSiO3 + 2Fe + CO) [3, see also 4,5,6]. Other fragments of Almahata Sitta exhibit anomalous textures such as fine grain size, high porosity, and abundant graphite. Within these fragments pyroxene locally exhibits high-mg# rims in contact with metal and a discreet silica phase, suggesting that the reduction mechanism MgFeSi2O6 + C approaches MgSiO3 + Fe + SiO2 + CO. Metals in Almahata Sitta are particularly unaltered in comparison to ureilite finds. Variations in minor and trace element composition of this metal might partly result from localized dilution as iron is supplied by reduction of silicates.

  13. Metal-nitrogen doping of mesoporous carbon/graphene nanosheets by self-templating for oxygen reduction electrocatalysts.

    PubMed

    Li, Shuang; Wu, Dongqing; Liang, Haiwei; Wang, Jinzuan; Zhuang, Xiaodong; Mai, Yiyong; Su, Yuezeng; Feng, Xinliang

    2014-11-01

    We demonstrate a general and efficient self-templating strategy towards transition metal-nitrogen containing mesoporous carbon/graphene nanosheets with a unique two-dimensional (2D) morphology and tunable mesoscale porosity. Owing to the well-defined 2D morphology, nanometer-scale thickness, high specific surface area, and the simultaneous doping of the metal-nitrogen compounds, the as-prepared catalysts exhibits excellent electrocatalytic activity and stability towards the oxygen reduction reaction (ORR) in both alkaline and acidic media. More importantly, such a self-templating approach towards two-dimensional porous carbon hybrids with diverse metal-nitrogen doping opens up new avenues to mesoporous heteroatom-doped carbon materials as electrochemical catalysts for oxygen reduction and hydrogen evolution, with promising applications in fuel cell and battery technologies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Metal molybdate nanorods as non-precious electrocatalysts for the oxygen reduction

    NASA Astrophysics Data System (ADS)

    Wu, Tian; Zhang, Lieyu

    2015-12-01

    Development of non-precious electrocatalysts with applicable electrocatalytic activity towards the oxygen reduction reaction (ORR) is important to fulfill broad-based and large-scale applications of metal/air batteries and fuel cells. Herein, nickel and cobalt molybdates with uniform nanorod morphology are synthesized using a facile one-pot hydrothermal method. The ORR activity of the prepared metal molybdate nanorods in alkaline media are investigated by using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and chronoamperomety in rotating disk electrode (RDE) techniques. The present study suggests that the prepared metal molybdate nanorods exhibit applicable electrocatalytic activities towards the ORR in alkaline media, promising the applications as non-precious cathode in fuel cells and metal-air batteries.

  15. Metallic substrates for high temperature superconductors

    DOEpatents

    Truchan, Thomas G.; Miller, Dean J.; Goretta, Kenneth C.; Balachandran, Uthamalingam; Foley, Robert

    2002-01-01

    A biaxially textured face-centered cubic metal article having grain boundaries with misorientation angles greater than about 8.degree. limited to less than about 1%. A laminate article is also disclosed having a metal substrate first rolled to at least about 95% thickness reduction followed by a first annealing at a temperature less than about 375.degree. C. Then a second rolling operation of not greater than about 6% thickness reduction is provided, followed by a second annealing at a temperature greater than about 400.degree. C. A method of forming the metal and laminate articles is also disclosed.

  16. Reduction of metal oxides through mechanochemical processing

    DOEpatents

    Froes, Francis H.; Eranezhuth, Baburaj G.; Senkov, Oleg N.

    2000-01-01

    The low temperature reduction of a metal oxide using mechanochemical processing techniques. The reduction reactions are induced mechanically by milling the reactants. In one embodiment of the invention, titanium oxide TiO.sub.2 is milled with CaH.sub.2 to produce TiH.sub.2. Low temperature heat treating, in the range of 400.degree. C. to 700.degree. C., can be used to remove the hydrogen in the titanium hydride.

  17. Hybrid Nanoparticles as Oil Lubricant Additives for Friction and Wear Reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Bin; Dai, Sheng; Qu, Jun

    A new class of organic-inorganic/metallic hybrid nanoparticles (NPs), including oil-soluble polymer brush-grafted metal oxide NPs and organic-modified metallic NPs, was developed and used as oil lubricant additives for friction and wear reduction to improve engine energy efficiency. The tribological properties of these hybrid NPs in polyalphaolefin (PAO) base oil were investigated by high contact stress ball-on-flat reciprocating sliding tribological tests at 100 oC. Using surface-initiated “living”/controlled radical polymerization from initiator- or chain transfer agent-functionalized metal oxide (silica and titania) NPs, we synthesized a series of hairy NPs and systematically studied the effects of molecular weight and chemical composition of graftedmore » polymer brushes on oil dispersibility, stability, and lubrication properties of hairy NPs in PAO. In addition, several types of organic-modified metallic NPs, including silver and palladium NPs, were synthesized by using thiol compounds and ionic liquids (ILs) as ligands. Significant reductions in friction (up to 40%) and wear volume (up to 90%) were achieved by using PAO mixed with hairy NPs or organic-modified metal NPs compared to PAO base oil. Moreover, a positive effect on lubricating performance was observed when oil-soluble hairy silica NPs and an IL were used simultaneously as additives for PAO for friction reduction. The lubrication mechanisms of these hybrid NPs were elucidated by both experimental and simulation studies.« less

  18. Reductive dissolution of As(V)-Fe oxyhydroxides: an experimental insight at biogeochemical interfaces in soil

    NASA Astrophysics Data System (ADS)

    Dia, A.; Davranche, M.; Fakih, M.; Nowack, B.; Morin, G.; Gruau, G.

    2009-04-01

    Iron (III) oxides are ubiquitous components of soils, sediments, aquifers and geological materials. Trace metals associate with Fe (III) oxides as adsorbed or co-precipitated species and, consequently the biogeochemical cycles of Fe and trace metals are closely linked. Using a new monitoring tool recently developed, this study was dedicated to understand how do interplay biological and mineralogical (crystallographic and specific surface area) controls in the Fe oxyhydroxide reductive dissolution within soils and which can be the consequences on associated trace metal release. For this purpose, polymer slides covered by synthetic As-spiked ferrihydrite (As-Fh) or As-spiked lepidocrocite (As-Lp) were inserted into an organic-rich wetland soil in non conventional columns system under anaerobic conditions. This technique was developed to allow the insertion of slides into a structured soil without significant disturbance and to avoid the mechanical abrasion of oxides from slides that would occur in an equilibrium batch system under stirring. Slides were recovered after different periods of time to evaluate (i) the impact of (bio)reduction on both Fe-oxide dissolution and secondary mineral precipitation and, (ii) the subsequent effects on As mobility. XRF analyses of the slides were conducted before and after contact with the soil to determine the amount of Fe and associated As remaining on the slides. Fe(II), acetate, nitrate, sulphate and total metals of the soil solution was followed through time by ion chromatography and ICP-MS measurements. The important bacterial colonization and occurrence of biofilm evidenced by SEM analyses of the slides suggested the presence of biologically mediated processes. As previously shown elsewhere the kinetics of the suspected occurring bacterial reduction differ significantly from abiotic reduction data from literature. The important point is that conversely to what has been observed in published experimental data, the dissolution rates remained here fairly constant through time since the organic matter present in the interacting solution complexed the released Fe(II), which was therefore not able to accumulate onto the bacterial cell surfaces. The organic matter mediated complexation of Fe(II) prevented thus the progressive inhibition of the enzymatic reduction to occur as elsewhere evidenced with other experimental conditions. As expected, the reductive dissolution of the less crystallized ferrihydrite started quicker than that of lepidocrocite. The newly formed minerals were mostly composed of Fe-sulphides. Iron(II) complexation by organic molecules in solution likely prevented formation of secondary Fe(II, III)-rich minerals. The relative proportion of As(III) increased with time on the As-Fh slides, and was combined with a decrease of the Fe/As ratio, suggesting a partial adsorption of As(III) onto minerals. By contrast, for lepidocrocite, the Fe/As ratio increased, suggesting that As(III) was less readsorbed due the lower available site number and the deletion of As adsorption sites on the reduced lepidocrocite surface. Only a weak proportion of As(III) was sequestered by readsorption onto unreduced Fe-oxides and possibly on secondary Fe-sulphide minerals, especially when the iron oxide had a low surface area. Therefore, wetlands and their waterlogged soils could be a non negligible source of As within soils, migrating first through soil solutions and then to the whole hydrosystem.

  19. Metal artifact reduction in tomosynthesis imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxia; Yan, Ming; Tao, Kun; Xuan, Xiao; Sabol, John M.; Lai, Hao

    2015-03-01

    The utility of digital tomosynthesis has been shown for many clinical scenarios including post orthopedic surgery applications. However, two kinds of metal artifacts can influence diagnosis: undershooting and ripple. In this paper, we describe a novel metal artifact reduction (MAR) algorithm to reduce both of these artifacts within the filtered backprojection framework. First, metal areas that are prone to cause artifacts are identified in the raw projection images. These areas are filled with values similar to those in the local neighborhood. During the filtering step, the filled projection is free of undershooting due to the resulting smooth transition near the metal edge. Finally, the filled area is fused with the filtered raw projection data to recover the metal. Since the metal areas are recognized during the back projection step, anatomy and metal can be distinguished - reducing ripple artifacts. Phantom and clinical experiments were designed to quantitatively and qualitatively evaluate the algorithms. Based on phantom images with and without metal implants, the Artifact Spread Function (ASF) was used to quantify image quality in the ripple artifact area. The tail of the ASF with MAR decreases from in-plane to out-of-plane, implying a good artifact reduction, while the ASF without MAR remains high over a wider range. An intensity plot was utilized to analyze the edge of undershooting areas. The results illustrate that MAR reduces undershooting while preserving the edge and size of the metal. Clinical images evaluated by physicists and technologists agree with these quantitative results to further demonstrate the algorithm's effectiveness.

  20. Nonconsumable electrode assembly and use thereof for the electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor attached to a ceramic electrode body by a metal bond on a portion of the body having a level of free metal or metal alloy sufficient to effect a metal bond.

  1. Diffusion welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Vasudevan, Asuri K.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor diffusion welded to a portion of a ceramic electrode body having a level of free metal or metal alloy sufficient to effect a metal bond.

  2. Plasma in-liquid method for reduction of zinc oxide in zinc nanoparticle synthesis

    NASA Astrophysics Data System (ADS)

    Amaliyah, Novriany; Mukasa, Shinobu; Nomura, Shinfuku; Toyota, Hiromichi; Kitamae, Tomohide

    2015-02-01

    Metal air-batteries with high-energy density are expected to be increasingly applied in electric vehicles. This will require a method of recycling air batteries, and reduction of metal oxide by generating plasma in liquid has been proposed as a possible method. Microwave-induced plasma is generated in ethanol as a reducing agent in which zinc oxide is dispersed. Analysis by energy-dispersive x-ray spectrometry (EDS) and x-ray diffraction (XRD) reveals the reduction of zinc oxide. According to images by transmission electron microscopy (TEM), cubic and hexagonal metallic zinc particles are formed in sizes of 30 to 200 nm. Additionally, spherical fiber flocculates approximately 180 nm in diameter are present.

  3. Large Scale Metal Additive Techniques Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nycz, Andrzej; Adediran, Adeola I; Noakes, Mark W

    2016-01-01

    In recent years additive manufacturing made long strides toward becoming a main stream production technology. Particularly strong progress has been made in large-scale polymer deposition. However, large scale metal additive has not yet reached parity with large scale polymer. This paper is a review study of the metal additive techniques in the context of building large structures. Current commercial devices are capable of printing metal parts on the order of several cubic feet compared to hundreds of cubic feet for the polymer side. In order to follow the polymer progress path several factors are considered: potential to scale, economy, environmentmore » friendliness, material properties, feedstock availability, robustness of the process, quality and accuracy, potential for defects, and post processing as well as potential applications. This paper focuses on current state of art of large scale metal additive technology with a focus on expanding the geometric limits.« less

  4. Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers

    NASA Technical Reports Server (NTRS)

    Schryer, David R.; Upchurch, Billy T.; Hess, Robert V.; Wood, George M.; Sidney, Barry D.; Miller, Irvin M.; Brown, Kenneth G.; Vannorman, John D.; Schryer, Jacqueline; Brown, David R.

    1990-01-01

    Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed.

  5. Microbial links between sulfate reduction and metal retention in uranium- and heavy metal-contaminated soil.

    PubMed

    Sitte, Jana; Akob, Denise M; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E; Scheinost, Andreas C; Büchel, Georg; Küsel, Kirsten

    2010-05-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the (35)SO(4)(2-) radiotracer method, was restricted to reduced soil horizons with rates of < or =142 +/- 20 nmol cm(-3) day(-1). Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that approximately 80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [(13)C]acetate- and [(13)C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined < or =100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching < or =1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems.

  6. Microbial Links between Sulfate Reduction and Metal Retention in Uranium- and Heavy Metal-Contaminated Soil▿

    PubMed Central

    Sitte, Jana; Akob, Denise M.; Kaufmann, Christian; Finster, Kai; Banerjee, Dipanjan; Burkhardt, Eva-Maria; Kostka, Joel E.; Scheinost, Andreas C.; Büchel, Georg; Küsel, Kirsten

    2010-01-01

    Sulfate-reducing bacteria (SRB) can affect metal mobility either directly by reductive transformation of metal ions, e.g., uranium, into their insoluble forms or indirectly by formation of metal sulfides. This study evaluated in situ and biostimulated activity of SRB in groundwater-influenced soils from a creek bank contaminated with heavy metals and radionuclides within the former uranium mining district of Ronneburg, Germany. In situ activity of SRB, measured by the 35SO42− radiotracer method, was restricted to reduced soil horizons with rates of ≤142 ± 20 nmol cm−3 day−1. Concentrations of heavy metals were enriched in the solid phase of the reduced horizons, whereas pore water concentrations were low. X-ray absorption near-edge structure (XANES) measurements demonstrated that ∼80% of uranium was present as reduced uranium but appeared to occur as a sorbed complex. Soil-based dsrAB clone libraries were dominated by sequences affiliated with members of the Desulfobacterales but also the Desulfovibrionales, Syntrophobacteraceae, and Clostridiales. [13C]acetate- and [13C]lactate-biostimulated soil microcosms were dominated by sulfate and Fe(III) reduction. These processes were associated with enrichment of SRB and Geobacteraceae; enriched SRB were closely related to organisms detected in soils by using the dsrAB marker. Concentrations of soluble nickel, cobalt, and occasionally zinc declined ≤100% during anoxic soil incubations. In contrast to results in other studies, soluble uranium increased in carbon-amended treatments, reaching ≤1,407 nM in solution. Our results suggest that (i) ongoing sulfate reduction in contaminated soil resulted in in situ metal attenuation and (ii) the fate of uranium mobility is not predictable and may lead to downstream contamination of adjacent ecosystems. PMID:20363796

  7. Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity

    NASA Astrophysics Data System (ADS)

    Migliorelli, Carolina; Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Nowak, Rafał; Russi, Antonio

    2016-04-01

    Objective. Medical intractable epilepsy is a common condition that affects 40% of epileptic patients that generally have to undergo resective surgery. Magnetoencephalography (MEG) has been increasingly used to identify the epileptogenic foci through equivalent current dipole (ECD) modeling, one of the most accepted methods to obtain an accurate localization of interictal epileptiform discharges (IEDs). Modeling requires that MEG signals are adequately preprocessed to reduce interferences, a task that has been greatly improved by the use of blind source separation (BSS) methods. MEG recordings are highly sensitive to metallic interferences originated inside the head by implanted intracranial electrodes, dental prosthesis, etc and also coming from external sources such as pacemakers or vagal stimulators. To reduce these artifacts, a BSS-based fully automatic procedure was recently developed and validated, showing an effective reduction of metallic artifacts in simulated and real signals (Migliorelli et al 2015 J. Neural Eng. 12 046001). The main objective of this study was to evaluate its effects in the detection of IEDs and ECD modeling of patients with focal epilepsy and metallic interference. Approach. A comparison between the resulting positions of ECDs was performed: without removing metallic interference; rejecting only channels with large metallic artifacts; and after BSS-based reduction. Measures of dispersion and distance of ECDs were defined to analyze the results. Main results. The relationship between the artifact-to-signal ratio and ECD fitting showed that higher values of metallic interference produced highly scattered dipoles. Results revealed a significant reduction on dispersion using the BSS-based reduction procedure, yielding feasible locations of ECDs in contrast to the other two approaches. Significance. The automatic BSS-based method can be applied to MEG datasets affected by metallic artifacts as a processing step to improve the localization of epileptic foci.

  8. Experimental Observation of Redox-Induced Fe-N Switching Behavior as a Determinant Role for Oxygen Reduction Activity.

    PubMed

    Jia, Qingying; Ramaswamy, Nagappan; Hafiz, Hasnain; Tylus, Urszula; Strickland, Kara; Wu, Gang; Barbiellini, Bernardo; Bansil, Arun; Holby, Edward F; Zelenay, Piotr; Mukerjee, Sanjeev

    2015-12-22

    The commercialization of electrochemical energy conversion and storage devices relies largely upon the development of highly active catalysts based on abundant and inexpensive materials. Despite recent achievements in this respect, further progress is hindered by the poor understanding of the nature of active sites and reaction mechanisms. Herein, by characterizing representative iron-based catalysts under reactive conditions, we identify three Fe-N4-like catalytic centers with distinctly different Fe-N switching behaviors (Fe moving toward or away from the N4-plane) during the oxygen reduction reaction (ORR), and show that their ORR activities are essentially governed by the dynamic structure associated with the Fe(2+/3+) redox transition, rather than the static structure of the bare sites. Our findings reveal the structural origin of the enhanced catalytic activity of pyrolyzed Fe-based catalysts compared to nonpyrolyzed Fe-macrocycle compounds. More generally, the fundamental insights into the dynamic nature of transition-metal compounds during electron-transfer reactions will potentially guide rational design of these materials for broad applications.

  9. Design and Optimization of New Metallic Materials (Metal Foams) for the Reduction of the Noise of the Aeronautical Turbo Engines

    DTIC Science & Technology

    2005-02-01

    AApproved for Public Release Distribution Unlimited SANS MENTION DE PROTECTION MATERIALS AND STRUCTURES -1- ONERA BP 72 - 29. avenue de la Division Leclerc...reduction. Finding the best solution in terns balancing structural strength and acoustic properties was the main thrust of this project. Acoustic...material system for noise reduction. Finding the best solution in terms balancing structural strength and acoustic properties was the main thrust of this

  10. Molten salt applications in materials processing

    NASA Astrophysics Data System (ADS)

    Mishra, Brajendra; Olson, David L.

    2005-02-01

    The science of molten salt electrochemistry for electrowinning of reactive metals, such as calcium, and its in situ application in pyro-reduction has been described. Calcium electrowinning has been performed in a 5 10 wt% calcium oxide calcium chloride molten salt by the electrolytic dissociation of calcium oxide. This electrolysis requires the use of a porous ceramic sheath around the anode to keep the cathodically deposited calcium and the anodic gases separate. Stainless steel cathode and graphite anode have been used in the temperature range of 850 950 °C. This salt mixture is produced as a result of the direct oxide reduction (DOR) of reactive metal oxides by calcium in a calcium chloride bath. The primary purpose of this process is to recover the expensive calcium reductant and to recycle calcium chloride. Experimental data have been included to justify the suitability as well as limitations of the electrowinning process. Transport of oxygen ions through the sheath is found to be the rate controlling step. Under the constraints of the reactor design, a calcium recovery rate of approx. 150 g/h was achieved. Feasibility of a process to produce metals by pyrometallurgical reduction, using the calcium reductant produced electrolytically within the same reactor, has been shown in a hybrid process. Several processes are currently under investigation to use this electrowon calcium for in situ reduction of metal oxides.

  11. Efficacy and Clinical Utility of a High-Attenuation Object Artifact Reduction Algorithm in Flat-Detector Image Reconstruction Compared With Standard Image Reconstruction.

    PubMed

    Naehle, Claas P; Hechelhammer, Lukas; Richter, Heiko; Ryffel, Fabian; Wildermuth, Simon; Weber, Johannes

    To evaluate the effectiveness and clinical utility of a metal artifact reduction (MAR) image reconstruction algorithm for the reduction of high-attenuation object (HAO)-related image artifacts. Images were quantitatively evaluated for image noise (noiseSD and noiserange) and qualitatively for artifact severity, gray-white-matter delineation, and diagnostic confidence with conventional reconstruction and after applying a MAR algorithm. Metal artifact reduction reduces noiseSD and noiserange (median [interquartile range]) at the level of HAO in 1-cm distance compared with conventional reconstruction (noiseSD: 60.0 [71.4] vs 12.8 [16.1] and noiserange: 262.0 [236.8] vs 72.0 [28.3]; P < 0.0001). Artifact severity (reader 1 [mean ± SD]: 1.1 ± 0.6 vs 2.4 ± 0.5, reader 2: 0.8 ± 0.6 vs 2.0 ± 0.4) at level of HAO and diagnostic confidence (reader 1: 1.6 ± 0.7 vs 2.6 ± 0.5, reader 2: 1.0 ± 0.6 vs 2.3 ± 0.7) significantly improved with MAR (P < 0.0001). Metal artifact reduction did not affect gray-white-matter delineation. Metal artifact reduction effectively reduces image artifacts caused by HAO and significantly improves diagnostic confidence without worsening gray-white-matter delineation.

  12. Reflective Silvered Polyimide Films Via In Situ Thermal Reduction Silver (I) Complexes

    NASA Technical Reports Server (NTRS)

    Southward, Robin E. (Inventor); Thompson, David W. (Inventor); St.Clair, Anne K. (Inventor); Stoakley, Diane M. (Inventor)

    2000-01-01

    Self-metallizing. flexible polyimide films with highly reflective surfaces are prepared by an in situ self-metallization procedure involving thermally initiated reduction of polymer-soluble silver(I) complexes. Polyamic acid solutions are doped with silver(I) acetate and solubilizing agents. Thermally curing the silver(I) doped resins leads to flexible. metallized films which have reflectivities as high as 100%. abrasion-resistant surfaces. thermal stability and, in some cases, electrical conductivity, rendering them useful for space applications.

  13. Automation of NDE on RSRM Metal Components

    NASA Technical Reports Server (NTRS)

    Hartman, John; Kirby, Mark; McCool, Alex (Technical Monitor)

    2002-01-01

    An automated eddy current system has been designed and built, and is being implemented to inspect RSRM (Space Shuttle) metal components. The system provides a significant increase in inspection reliability, as well as other benefits such as data storage, chemical waste reduction and reduction in overall process time. This paper is in viewgraph form.

  14. MASS TRANSPORT EFFECTS ON THE KINETICS OF NITROBENZENE REDUCTION BY IRON METAL. (R827117)

    EPA Science Inventory

    To evaluate the importance of external mass transport on the overall rates of
    contaminant reduction by iron metal (Fe0), we have compared measured
    rates of surface reaction for nitrobenzene (ArNO2) to estimated rates
    of external mass transport...

  15. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon

    PubMed Central

    Girel, Kseniya V.; Panarin, Andrei; Terekhov, Sergei N.

    2018-01-01

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy. PMID:29883382

  16. Progress in the Development of SERS-Active Substrates Based on Metal-Coated Porous Silicon.

    PubMed

    Bandarenka, Hanna V; Girel, Kseniya V; Zavatski, Sergey A; Panarin, Andrei; Terekhov, Sergei N

    2018-05-21

    The present work gives an overview of the developments in surface-enhanced Raman scattering (SERS) with metal-coated porous silicon used as an active substrate. We focused this review on the research referenced to SERS-active materials based on porous silicon, beginning from the patent application in 2002 and enclosing the studies of this year. Porous silicon and metal deposition technologies are discussed. Since the earliest studies, a number of fundamentally different plasmonic nanostructures including metallic dendrites, quasi-ordered arrays of metallic nanoparticles (NPs), and metallic nanovoids have been grown on porous silicon, defined by the morphology of this host material. SERS-active substrates based on porous silicon have been found to combine a high and well-reproducible signal level, storage stability, cost-effective technology and handy use. They make it possible to identify and study many compounds including biomolecules with a detection limit varying from milli- to femtomolar concentrations. The progress reviewed here demonstrates the great prospects for the extensive use of the metal-coated porous silicon for bioanalysis by SERS-spectroscopy.

  17. Pyroprocessing of Oxidized Sodium-Bonded Fast Reactor Fuel -- an Experimental Study of Treatment Options for Degraded EBR-II Fuel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. D. Herrmann; L. A. Wurth; N. J. Gese

    An experimental study was conducted to assess pyrochemical treatment options for degraded EBR-II fuel. As oxidized material, the degraded fuel would need to be converted back to metal to enable electrorefining within an existing electrometallurgical treatment process. A lithium-based electrolytic reduction process was studied to assess the efficacy of converting oxide materials to metal with a particular focus on the impact of zirconium oxide and sodium oxide on this process. Bench-scale electrolytic reduction experiments were performed in LiCl-Li2O at 650 °C with combinations of manganese oxide (used as a surrogate for uranium oxide), zirconium oxide, and sodium oxide. The experimentalmore » study illustrated how zirconium oxide and sodium oxide present different challenges to a lithium-based electrolytic reduction system for conversion of select metal oxides to metal.« less

  18. A comparative evaluation on the emission characteristics of ceramic and metallic catalytic converter in internal combustion engine

    NASA Astrophysics Data System (ADS)

    Leman, A. M.; Jajuli, Afiqah; Rahman, Fakhrurrazi; Feriyanto, Dafit; Zakaria, Supaat

    2017-09-01

    Enforcement of a stricter regulation on exhaust emission by many countries has led to utilization of catalytic converter to reduce the harmful pollutant emission. Ceramic and metallic catalytic converters are the most common type of catalytic converter used. The purpose of this study is to evaluate the performance of the ceramic and metallic catalytic converter on its conversion efficiency using experimental measurement. Both catalysts were placed on a modified exhaust system equipped with a Mitshubishi 4G93 single cylinder petrol engine that was tested on an eddy current dynamometer under steady state conditions for several engine speeds. The experimental results show that the metallic catalytic converter reduced a higher percentage of CO up to 98.6% reduction emissions while ceramic catalytic converter had a better reduction efficiency of HC up to 85.4% and 87.2% reduction of NOx.

  19. Combination for electrolytic reduction of alumina

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-04-30

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises molten electrolyte having the following ingredients: AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound is, a fluoride; oxide, or carbonate. The metal is nickel, iron, copper, cobalt, or molybdenum. The bath is employed in a combination including a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the instant bath during electrolytic reduction of alumina to aluminum improves the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  20. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE PAGES

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe; ...

    2017-07-26

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  1. Electroreduction of CO2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    PubMed Central

    2017-01-01

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at −1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions. PMID:28852698

  2. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO 2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO 2 reduction. Here in this paper, we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site –1 s –1 and a Faradaic efficiency as high as 95% for CO 2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in anmore » organic/water mixed electrolyte. While the Zn center is critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO 2. This represents the first example of a transition-metal complex for CO 2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  3. Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yueshen; Jiang, Jianbing; Weng, Zhe

    Transition-metal-based molecular complexes are a class of catalyst materials for electrochemical CO2 reduction to CO that can be rationally designed to deliver high catalytic performance. One common mechanistic feature of these electrocatalysts developed thus far is an electrogenerated reduced metal center associated with catalytic CO2 reduction. Here we report a heterogenized zinc–porphyrin complex (zinc(II) 5,10,15,20-tetramesitylporphyrin) as an electrocatalyst that delivers a turnover frequency as high as 14.4 site–1 s–1 and a Faradaic efficiency as high as 95% for CO2 electroreduction to CO at -1.7 V vs the standard hydrogen electrode in an organic/water mixed electrolyte. While the Zn center ismore » critical to the observed catalysis, in situ and operando X-ray absorption spectroscopic studies reveal that it is redox-innocent throughout the potential range. Cyclic voltammetry indicates that the porphyrin ligand may act as a redox mediator. Chemical reduction of the zinc–porphyrin complex further confirms that the reduction is ligand-based and the reduced species can react with CO2. This represents the first example of a transition-metal complex for CO2 electroreduction catalysis with its metal center being redox-innocent under working conditions.« less

  4. Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals

    PubMed Central

    Tsui, Emily Y.; Agapie, Theodor

    2013-01-01

    Understanding the effect of redox-inactive metals on the properties of biological and heterogeneous water oxidation catalysts is important both fundamentally and for improvement of future catalyst designs. In this work, heterometallic manganese–oxido cubane clusters [MMn3O4] (M = Sr2+, Zn2+, Sc3+, Y3+) structurally relevant to the oxygen-evolving complex (OEC) of photosystem II were prepared and characterized. The reduction potentials of these clusters and other related mixed metal manganese–tetraoxido complexes are correlated with the Lewis acidity of the apical redox-inactive metal in a manner similar to a related series of heterometallic manganese–dioxido clusters. The redox potentials of the [SrMn3O4] and [CaMn3O4] clusters are close, which is consistent with the observation that the OEC is functional only with one of these two metals. Considering our previous studies of [MMn3O2] moieties, the present results with more structurally accurate models of the OEC ([MMn3O4]) suggest a general relationship between the reduction potentials of heterometallic oxido clusters and the Lewis acidities of incorporated cations that applies to diverse structural motifs. These findings support proposals that one function of calcium in the OEC is to modulate the reduction potential of the cluster to allow electron transfer. PMID:23744039

  5. Extracellular Saccharide-Mediated Reduction of Au3+ to Gold Nanoparticles: New Insights for Heavy Metals Biomineralization on Microbial Surfaces.

    PubMed

    Kang, Fuxing; Qu, Xiaolei; Alvarez, Pedro J J; Zhu, Dongqiang

    2017-03-07

    Biomineralization is a critical process controlling the biogeochemical cycling, fate, and potential environmental impacts of heavy metals. Despite the indispensability of extracellular polymeric substances (EPS) to microbial life and their ubiquity in soil and aquatic environments, the role played by EPS in the transformation and biomineralization of heavy metals is not well understood. Here, we used gold ion (Au 3+ ) as a model heavy metal ion to quantitatively assess the role of EPS in biomineralization and discern the responsible functional groups. Integrated spectroscopic analyses showed that Au 3+ was readily reduced to zerovalent gold nanoparticles (AuNPs, 2-15 nm in size) in aqueous suspension of Escherichia coli or dissolved EPS extracted from microbes. The majority of AuNPs (95.2%) was formed outside Escherichia coli cells, and the removal of EPS attached to cells pronouncedly suppressed Au 3+ reduction, reflecting the predominance of the extracellular matrix in Au 3+ reduction. XPS, UV-vis, and FTIR analyses corroborated that Au 3+ reduction was mediated by the hemiacetal groups (aldehyde equivalents) of reducing saccharides of EPS. Consistently, the kinetics of AuNP formation obeyed pseudo-second-order reaction kinetics with respect to the concentrations of Au 3+ and the hemiacetal groups in EPS, with minimal dependency on the source of microbial EPS. Our findings indicate a previously overlooked, universally significant contribution of EPS to the reduction, mineralization, and potential detoxification of metal species with high oxidation state.

  6. Application of a water cooling treatment and its effect on coal-based reduction of high-chromium vanadium and titanium iron ore

    NASA Astrophysics Data System (ADS)

    Yang, Song-tao; Zhou, Mi; Jiang, Tao; Guan, Shan-fei; Zhang, Wei-jun; Xue, Xiang-xin

    2016-12-01

    A water cooling treatment was applied in the coal-based reduction of high-chromium vanadium and titanium (V-Ti-Cr) iron ore from the Hongge region of Panzhihua, China. Its effects on the metallization ratio ( η), S removal ratio ( R S), and P removal ratio ( R P) were studied and analyzed on the basis of chemical composition determined via inductively coupled plasma optical emission spectroscopy. The metallic iron particle size and the element distribution of Fe, V, Cr, and Ti in a reduced briquette after water cooling treatment at 1350°C were determined and observed via scanning electron microscopy. The results show that the water cooling treatment improved the η, R S, and R P in the coal-based reduction of V-Ti-Cr iron ore compared to those obtained with a furnace cooling treatment. Meanwhile, the particle size of metallic iron obtained via the water cooling treatment was smaller than that of metallic iron obtained via the furnace cooling treatment; however, the particle size reached 70 μm at 1350°C, which is substantially larger than the minimum particle size required (20 μm) for magnetic separation. Therefore, the water cooling treatment described in this work is a good method for improving the quality of metallic iron in coal-based reduction and it could be applied in the coal-based reduction of V-Ti-Cr iron ore followed by magnetic separation.

  7. Use of ion conductors in the pyrochemical reduction of oxides

    DOEpatents

    Miller, W.E.; Tomczuk, Z.

    1994-02-01

    An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.

  8. An opposite view data replacement approach for reducing artifacts due to metallic dental objects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yazdi, Mehran; Lari, Meghdad Asadi; Bernier, Gaston

    Purpose: To present a conceptually new method for metal artifact reduction (MAR) that can be used on patients with multiple objects within the scan plane that are also of small sized along the longitudinal (scanning) direction, such as dental fillings. Methods: The proposed algorithm, named opposite view replacement, achieves MAR by first detecting the projection data affected by metal objects and then replacing the affected projections by the corresponding opposite view projections, which are not affected by metal objects. The authors also applied a fading process to avoid producing any discontinuities in the boundary of the affected projection areas inmore » the sinogram. A skull phantom with and without a variety of dental metal inserts was made to extract the performance metric of the algorithm. A head and neck case, typical of IMRT planning, was also tested. Results: The reconstructed CT images based on this new replacement scheme show a significant improvement in image quality for patients with metallic dental objects compared to the MAR algorithms based on the interpolation scheme. For the phantom, the authors showed that the artifact reduction algorithm can efficiently recover the CT numbers in the area next to the metallic objects. Conclusions: The authors presented a new and efficient method for artifact reduction due to multiple small metallic objects. The obtained results from phantoms and clinical cases fully validate the proposed approach.« less

  9. Identification of proteins capable of metal reduction from the proteome of the Gram-positive bacterium Desulfotomaculum reducens MI-1 using an NADH-based activity assay

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otwell, Annie E.; Sherwood, Roberts; Zhang, Sheng

    Metal reduction capability has been found in numerous species of environmentally abundant Gram-positive bacteria. However, understanding of microbial metal reduction is based almost solely on studies of Gram-negative organisms. In this study, we focus on Desulfotomaculum reducens MI-1, a Gram-positive metal reducer whose genome lacks genes with similarity to any characterized metal reductase. D. reducens has been shown to reduce not only Fe(III), but also the environmentally important contaminants U(VI) and Cr(VI). By extracting, separating, and analyzing the functional proteome of D. reducens, using a ferrozine-based assay in order to screen for chelated Fe(III)-NTA reduction with NADH as electron donor,more » we have identified proteins not previously characterized as iron reductases. Their function was confirmed by heterologous expression in E. coli. These are the protein NADH:flavin oxidoreductase (Dred_2421) and a protein complex composed of oxidoreductase FAD/NAD(P)-binding subunit (Dred_1685) and dihydroorotate dehydrogenase 1B (Dred_1686). Dred_2421 was identified in the soluble proteome and is predicted to be a cytoplasmic protein. Dred_1685 and Dred_1686 were identified in both the soluble as well as the insoluble (presumably membrane) protein fraction, suggesting a type of membrane-association, although PSORTb predicts both proteins are cytoplasmic. Furthermore, we show that these proteins have the capability to reduce soluble Cr(VI) and U(VI) with NADH as electron donor. This study is the first functional proteomic analysis of D. reducens, and one of the first analyses of metal and radionuclide reduction in an environmentally relevant Gram-positive bacterium.« less

  10. Monitoring Progress in Child Poverty Reduction: Methodological Insights and Illustration to the Case Study of Bangladesh

    ERIC Educational Resources Information Center

    Roche, Jose Manuel

    2013-01-01

    Important steps have been taken at international summits to set up goals and targets to improve the wellbeing of children worldwide. Now the world also has more and better data to monitor progress. This paper presents a new approach to monitoring progress in child poverty reduction based on the Alkire and Foster adjusted headcount ratio and an…

  11. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLs

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Gelger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2006-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water, The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles.

  12. Zero-Valent Metal Emulsion for Reductive Dehalogenation of DNAPLS

    NASA Technical Reports Server (NTRS)

    Reinhart, Debra R. (Inventor); Clausen, Christian (Inventor); Geiger, Cherie L. (Inventor); Quinn, Jacqueline (Inventor); Brooks, Kathleen (Inventor)

    2003-01-01

    A zero-valent metal emulsion is used to dehalogenate solvents, such as pooled dense non-aqueous phase liquids (DNAPLs), including trichloroethylene (TCE). The zero-valent metal emulsion contains zero-valent metal particles, a surfactant, oil and water. The preferred zero-valent metal particles are nanoscale and microscale zero-valent iron particles

  13. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1980-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  14. Impregnated metal-polymeric functional beads

    NASA Technical Reports Server (NTRS)

    Rembaum, Alan (Inventor); Volksen, Willi (Inventor)

    1978-01-01

    Amine containing polymeric microspheres such as polyvinyl pyridine are complexed with metal salts or acids containing metals such as gold, platinum or iron. After reduction with sodium borohydride, the salt is reduced to finely divided free metal or metal oxides, useful as catalysts. Microspheres containing covalent bonding sites can be used for labeling or separating proteins.

  15. Oxidative dissolution of pyrite surfaces by hexavalent chromium: Surface site saturation and surface renewal

    NASA Astrophysics Data System (ADS)

    Graham, Andrew M.; Bouwer, Edward J.

    2012-04-01

    In-situ reduction of toxic Cr(VI) to nontoxic Cr(III) represents an important natural attenuation process for Cr(VI)-impacted environments. This study investigates the stoichiometry and kinetics of Cr(VI) reduction by pyrite, a reduced iron-sulfur mineral ubiquitous in recent estuarine and marine sediments. Pyrite suspensions at surface loadings of 0.28-2.10 m2/L (typical of estuarine or marine sediments) were capable of completely reducing 7-120 μM Cr(VI) on the timescale of minutes to days, with the time to reaction completion decreasing with increasing pyrite loading, decreasing initial Cr(VI) concentration, and decreasing suspension pH. Analysis of metal species (Cr and Fe) and sulfur species in solution and at the mineral surface indicated that Cr(VI) oxidatively dissolved the pyrite surface, releasing ferrous iron and sulfate into solution as the reaction progressed. Surface disulfide groups were postulated as the Cr(VI)-reactive surface entity. Net production or consumption of aqueous Fe(II) was shown to depend upon the relative rates of proton-promoted Fe(II) release, Fe(II) release due to oxidative dissolution of pyrite in the presence of Cr(VI), and Fe(II) consumption due to homogeneous reaction with Cr(VI). Kinetics of Cr(VI) reduction by pyrite displayed a biphasic pattern, and the time to reaction completion increased dramatically with increasing initial Cr(VI) concentration. Rapid Cr(VI) removal occurred early in the reaction progress, attributable to Cr(VI) loss under an adsorption-limited regime. Slow, approximately zero-order, Cr(VI) removal occurred over the bulk of the time courses, and corresponded to Cr(VI) removal under surface site saturation conditions. Stoichiometric Cr(VI) reduction was able to proceed under surface site limited conditions owing to regeneration of reactive surface sites following desorption/dissolution of oxidized surface products, as demonstrated in repeat Cr(VI)-spiking experiments. The role of surface passivation was evaluated by comparing rates of Cr(VI) reduction in the presence and absence of the Cr(III)-complexing agent citrate. While citrate addition significantly enhanced Cr(III) solubility, rates of Cr(VI) reduction were only marginally accelerated, suggesting that Cr(OH)3(s) coatings did not completely block access of Cr(VI) to reactive surface sites on pyrite. Given the rapid rates of Cr(VI) reduction with pyrite under pH and surface coverage conditions typical of natural environments, we propose that Cr(VI) reduction by pyrite be considered in fate and transport models for Cr in contaminated sediments.

  16. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE PAGES

    Alfonso, Dominic R.; Kauffman, Douglas R.

    2017-08-14

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  17. Open framework metal chalcogenides as efficient photocatalysts for reduction of CO2 into renewable hydrocarbon fuel.

    PubMed

    Sasan, Koroush; Lin, Qipu; Mao, Chengyu; Feng, Pingyun

    2016-06-07

    Open framework metal chalcogenides are a family of porous semiconducting materials with diverse chemical compositions. Here we show that these materials containing covalent three-dimensional superlattices of nanosized supertetrahedral clusters can function as efficient photocatalysts for the reduction of CO2 to CH4. Unlike dense semiconductors, metal cations are successfully incorporated into the channels of the porous semiconducting materials to further tune the physical properties of the materials such as electrical conductivity and band gaps. In terms of the photocatalytic properties, the metal-incorporated porous chalcogenides demonstrated enhanced solar energy absorption and higher electrical conductivity and improved photocatalytic activity.

  18. Assessment of trends in the electrochemical CO 2 reduction and H 2 evolution reactions on metal nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alfonso, Dominic R.; Kauffman, Douglas R.

    Here, we used density functional theory to investigate the electrochemical CO 2 reduction and competing hydrogen evolution reaction on model Au, Ag, Cu, Ir, Ni, Pd, Pt, and Rh nanoparticles. On the coinage metal, the free energy of adsorbed COOH, CO, and H intermediates generally becomes more favorable with decreasing particle size. This pattern was also observed on all transition metals with the binding of the intermediates observed to be stronger on almost all of these metals. Comparative studies of the reaction profile reveal that H 2 evolution is the first reaction to be energetically allowed at zero applied bias

  19. Computed Tomography Imaging of a Hip Prosthesis Using Iterative Model-Based Reconstruction and Orthopaedic Metal Artefact Reduction: A Quantitative Analysis.

    PubMed

    Wellenberg, Ruud H H; Boomsma, Martijn F; van Osch, Jochen A C; Vlassenbroek, Alain; Milles, Julien; Edens, Mireille A; Streekstra, Geert J; Slump, Cornelis H; Maas, Mario

    To quantify the combined use of iterative model-based reconstruction (IMR) and orthopaedic metal artefact reduction (O-MAR) in reducing metal artefacts and improving image quality in a total hip arthroplasty phantom. Scans acquired at several dose levels and kVps were reconstructed with filtered back-projection (FBP), iterative reconstruction (iDose) and IMR, with and without O-MAR. Computed tomography (CT) numbers, noise levels, signal-to-noise-ratios and contrast-to-noise-ratios were analysed. Iterative model-based reconstruction results in overall improved image quality compared to iDose and FBP (P < 0.001). Orthopaedic metal artefact reduction is most effective in reducing severe metal artefacts improving CT number accuracy by 50%, 60%, and 63% (P < 0.05) and reducing noise by 1%, 62%, and 85% (P < 0.001) whereas improving signal-to-noise-ratios by 27%, 47%, and 46% (P < 0.001) and contrast-to-noise-ratios by 16%, 25%, and 19% (P < 0.001) with FBP, iDose, and IMR, respectively. The combined use of IMR and O-MAR strongly improves overall image quality and strongly reduces metal artefacts in the CT imaging of a total hip arthroplasty phantom.

  20. How Well Does Dual-Energy Computed Tomography With Metal Artifact Reduction Software Improve Image Quality and Quantify Computed Tomography Number and Iodine Concentration?

    PubMed

    Ohira, Shingo; Kanayama, Naoyuki; Wada, Kentaro; Karino, Tsukasa; Nitta, Yuya; Ueda, Yoshihiro; Miyazaki, Masayoshi; Koizumi, Masahiko; Teshima, Teruki

    2018-04-02

    The objective of this study was to assess the accuracy of the quantitative measurements obtained using dual-energy computed tomography with metal artifact reduction software (MARS). Dual-energy computed tomography scans (fast kV-switching) are performed on a phantom, by varying the number of metal rods (Ti and Pb) and reference iodine materials. Objective and subjective image analyses are performed on retroreconstructed virtual monochromatic images (VMIs) (VMI at 70 keV). The maximum artifact indices for VMI-Ti and VMI-Pb (5 metal rods) with MARS (without MARS) were 17.4 (166.7) and 34.6 (810.6), respectively; MARS significantly improved the mean subjective 5-point score (P < 0.05). The maximum differences between the measured Hounsfield unit and theoretical values for 5 mg/mL iodine and 2-mm core rods were -42.2% and -68.5%, for VMI-Ti and VMI-Pb (5 metal rods), respectively, and the corresponding differences in the iodine concentration were -64.7% and -73.0%, respectively. Metal artifact reduction software improved the objective and subjective image quality; however, the quantitative values were underestimated.

  1. Metals and Ceramics Division progress report for period ending June 30, 1984

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brogden, I.

    1984-09-01

    This progress report covers the research and development activities of the Metals and Ceramics Division from January 1, 1983, through June 30, 1984. The format of the report follows the organizational structure of the division. Short summaries of technical work in progress in the various experimental groups are presented in six parts. Chapter 1 deals with the research and development activities of the Engineering Materials Section, Chapter 2 with the Processing Science and Technology Section, Chapter 3 with the Materials Science Section, Chapter 4 with Project Activities, Chapter 5 with Specialized Research Facilities and Equipment, and Chapter 6 with Miscellaneousmore » Activities.« less

  2. Integrated optical sensors for 2D spatial chemical mapping (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Flores, Raquel; Janeiro, Ricardo; Viegas, Jaime

    2017-02-01

    Sensors based on optical waveguides for chemical sensing have attracted increasing interest over the last two decades, fueled by potential applications in commercial lab-on-a-chip devices for medical and food safety industries. Even though the early studies were oriented for single-point detection, progress in device size reduction and device yield afforded by photonics foundries have opened the opportunity for distributed dynamic chemical sensing at the microscale. This will allow researchers to follow the dynamics of chemical species in field of microbiology, and microchemistry, with a complementary method to current technologies based on microfluorescence and hyperspectral imaging. The study of the chemical dynamics at the surface of photoelectrodes in water splitting cells are a good candidate to benefit from such optochemical sensing devices that includes a photonic integrated circuit (PIC) with multiple sensors for real-time detection and spatial mapping of chemical species. In this project, we present experimental results on a prototype integrated optical system for chemical mapping based on the interaction of cascaded resonant optical devices, spatially covered with chemically sensitive polymers and plasmon-enhanced nanostructured metal/metal-oxide claddings offering chemical selectivity in a pixelated surface. In order to achieve a compact footprint, the prototype is based in a silicon photonics platform. A discussion on the relative merits of a photonic platform based on large bandgap metal oxides and nitrides which have higher chemical resistance than silicon is also presented.

  3. Advanced high-temperature batteries

    NASA Technical Reports Server (NTRS)

    Nelson, Paul A.

    1989-01-01

    The promise of very high specific energy and power was not yet achieved for practical battery systems. Some recent approaches are discussed for new approaches to achieving high performance for lithium/DeS2 cells and sodium/metal chloride cells. The main problems for the development of successful LiAl/FeS2 cells were the instability of the FeS2 electrode, which has resulted in rapidly declining capacity, the lack of an internal mechanism for accommodating overcharge of a cell, thus requiring the use of external charge control on each individual cell, and the lack of a suitable current collector for the positive electrode other than expensive molybdenum sheet material. Much progress was made in solving the first two problems. Reduction of the operating temperatures to 400 C by a change in electrolyte composition has increased the expected life to 1000 cycles. Also, a lithium shuttle mechanism was demonstrated for selected electrode compositions that permits sufficient overcharge tolerance to adjust for the normally expected cell-to-cell deviation in coulombic efficiency. Sodium/sulfur batteries and sodium/metal chloride batteries have demonstrated good reliability and long cycle life. For applications where very high power is desired, new electrolyte coinfigurations would be required. Design work was carried out for the sodium/metal chloride battery that demonstrates the feasibility of achieving high specific energy and high power for large battery cells having thin-walled high-surface area electrolytes.

  4. Terpyridine complexes of first row transition metals and electrochemical reduction of CO₂ to CO.

    PubMed

    Elgrishi, Noémie; Chambers, Matthew B; Artero, Vincent; Fontecave, Marc

    2014-07-21

    Homoleptic terpyridine complexes of first row transition metals are evaluated as catalysts for the electrocatalytic reduction of CO2. Ni and Co-based catalytic systems are shown to reduce CO2 to CO under the conditions tested. The Ni complex was found to exhibit selectivity for CO2 over proton reduction while the Co-based system generates mixtures of CO and H2 with CO : H2 ratios being tuneable through variation of the applied potential.

  5. Utility of Lithium in Rare-Earth Metal Reduction Reactions to Form Nontraditional Ln2+ Complexes and Unusual [Li(2.2.2-cryptand)]1+ Cations.

    PubMed

    Huh, Daniel N; Darago, Lucy E; Ziller, Joseph W; Evans, William J

    2018-02-19

    The utility of lithium compared to other alkali metals in generating Ln 2+ rare-earth metal complexes via reduction of Ln 3+ precursors in reactions abbreviated as LnA 3 /M (Ln = rare-earth metal; A = anionic ligand; M = alkali metal) is described. Lithium reduction of Cp' 3 Ln (Cp' = C 5 H 4 SiMe 3 ; Ln = Y, Tb, Dy, Ho) under Ar in the presence of 2.2.2-cryptand (crypt) forms new examples of crystallographically characterizable Ln 2+ complexes of these metals, [Li(crypt)][Cp' 3 Ln]. In each complex, lithium is found in an N 2 O 4 donor atom coordination geometry that is unusual for the cryptand ligand. Magnetic susceptibility data on these new examples of nontraditional divalent lanthanide complexes are consistent with 4f n 5d 1 electronic configurations. The Dy and Ho complexes have exceptionally high single-ion magnetic moments, 11.35 and 11.67 μ B , respectively. Lithium reduction of Cp' 3 Y under N 2 at -35 °C forms the Y 2+ complex (Cp' 3 Y) 1- , which reduces dinitrogen upon warming to room temperature to generate the (N 2 ) 2- complex [Cp' 2 Y(THF)] 2 (μ-η 2 :η 2 -N 2 ). These results provide insight on the factors that lead to reduced dinitrogen complexes and/or stable divalent lanthanide complexes as a function of the specific reducing agent and conditions.

  6. Usefulness of monochromatic imaging with metal artifact reduction software for computed tomography angiography after intracranial aneurysm coil embolization.

    PubMed

    Shinohara, Yuki; Sakamoto, Makoto; Iwata, Naoki; Kishimoto, Junichi; Kuya, Keita; Fujii, Shinya; Kaminou, Toshio; Watanabe, Takashi; Ogawa, Toshihide

    2014-10-01

    Recently, a newly developed fast-kV switching dual energy CT scanner with a gemstone detector generates virtual high keV images as monochromatic imaging (MI). Each MI can be reconstructed by metal artifact reduction software (MARS) to reduce metal artifact. To evaluate the degree of metal artifacts reduction and vessel visualization around the platinum coils using dual energy CT with MARS. Dual energy CT was performed using a Discovery CT750 HD scanner (GE Healthcare, Milwaukee, WI, USA). In a phantom study, we measured the mean standard deviation within regions of interest around a 10-mm-diameter platinum coil mass on MI with and without MARS. Thirteen patients who underwent CTA after endovascular embolization for cerebral aneurysm with platinum coils were included in a clinical study. We visually assessed the arteries around the platinum coil mass on MI with and without MARS. Each standard deviation near the coil mass on MI with MARS was significantly lower than that without MARS in a phantom study. On CTA of a clinical study, better visibility of neighboring arteries was obtained in 11 of 13 patients on MI with MARS compared to without MARS due to metal artifact reduction. Dual energy CT with MARS reduces metal artifact of platinum coils, resulting in favorable vessel visualization around the coil mass on CTA after embolization. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  7. Progress in MOSFET double-layer metalization

    NASA Technical Reports Server (NTRS)

    Gassaway, J. D.; Trotter, J. D.; Wade, T. E.

    1980-01-01

    Report describes one-year research effort in VLSL fabrication. Four activities are described: theoretical study of two-dimensional diffusion in SOS (silicon-on-sapphire); setup of sputtering system, furnaces, and photolithography equipment; experiments on double layer metal; and investigation of two-dimensional modeling of MOSFET's (metal-oxide-semiconductor field-effect transistors).

  8. Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984 - April 1, 1985

    DOE R&D Accomplishments Database

    Smalley, R. E.

    1985-01-01

    There have been four major areas of concentration for the study of bare metal cluster beams: neutral cluster, chemical reactivity, cold cluster ion source development (both positive and negative), bare cluster ion ICR (ion cyclotron resonance) development, and photofragmentation studies of bare metal cluster ions.

  9. Metal artefact reduction in MRI at both 1.5 and 3.0 T using slice encoding for metal artefact correction and view angle tilting

    PubMed Central

    Reichert, M; Morelli, J N; Nittka, M; Attenberger, U; Runge, V M

    2015-01-01

    Objective: To compare metal artefact reduction in MRI at both 3.0 T and 1.5 T using different sequence strategies. Methods: Metal implants of stainless steel screw and plate within agarose phantoms and tissue specimens as well as three patients with implants were imaged at both 1.5 T and 3.0 T, using view angle tilting (VAT), slice encoding for metal artefact correction with VAT (SEMAC-VAT) and conventional sequence. Artefact reduction in agarose phantoms was quantitatively assessed by artefact volume measurements. Blinded reads were conducted in tissue specimen and human imaging, with respect to artefact size, distortion, blurring and overall image quality. Wilcoxon and Friedman tests for multiple comparisons and intraclass correlation coefficient (ICC) for interobserver agreement were performed with a significant level of p < 0.05. Results: Compared with conventional sequences, SEMAC-VAT significantly reduced metal artefacts by 83% ± 9% for the screw and 89% ± 3% for the plate at 1.5 T; 72% ± 7% for the screw and 38% ± 13% for the plate at 3.0 T (p < 0.05). In qualitative analysis, SEMAC-VAT allowed for better visualization of tissue structures adjacent to the implants and produced better overall image quality with good interobserver agreement for both tissue specimen and human imaging (ICC = 0.80–0.99; p < 0.001). In addition, VAT also markedly reduced metal artefacts compared with conventional sequence, but was inferior to SEMAC-VAT. Conclusion: SEMAC-VAT and VAT techniques effectively reduce artefacts from metal implants relative to conventional imaging at both 1.5 T and 3.0 T. Advances in knowledge: The feasibility of metal artefact reduction with SEMAC-VAT was demonstrated at 3.0-T MR. SEMAC-VAT significantly reduced metal artefacts at both 1.5 and 3.0 T. SEMAC-VAT allowed for better visualization of the tissue structures adjacent to the metal implants. SEMAC-VAT produced consistently better image quality in both tissue specimen and human imaging. PMID:25613398

  10. Method for Synthesizing Metal Nanowires in Anodic Alumina Membranes Using Solid State Reduction

    NASA Technical Reports Server (NTRS)

    Martinez-Inesta, Maria M (Inventor); Feliciano, Jennie (Inventor); Quinones-Fontalvo, Leonel (Inventor)

    2016-01-01

    The invention proposes a novel method for the fabrication of regular arrays of MNWs using solid-state reduction (SSR). Using this method copper (Cu), silver (Ag), and palladium (Pd) nanowire (NWs) arrays were synthesized using anodic alumina membranes (AAMs) as templates. Depending on the metal loading used the NWs reached different diameters.

  11. The impact of the worldwide Millennium Development Goals campaign on maternal and under-five child mortality reduction: 'Where did the worldwide campaign work most effectively?'

    PubMed

    Cha, Seungman

    2017-01-01

    As the Millennium Development Goals campaign (MDGs) came to a close, clear evidence was needed on the contribution of the worldwide MDG campaign. We seek to determine the degree of difference in the reduction rate between the pre-MDG and MDG campaign periods and its statistical significance by region. Unlike the prevailing studies that measured progress in 1990-2010, this study explores by percentage how much MDG progress has been achieved during the MDG campaign period and quantifies the impact of the MDG campaign on the maternal and under-five child mortality reduction during the MDG era by comparing observed values with counterfactual values estimated on the basis of the historical trend. The low accomplishment of sub-Saharan Africa toward the MDG target mainly resulted from the debilitated progress of mortality reduction during 1990-2000, which was not related to the worldwide MDG campaign. In contrast, the other regions had already achieved substantial progress before the Millennium Declaration was proclaimed. Sub-Saharan African countries have seen the most remarkable impact of the worldwide MDG campaign on maternal and child mortality reduction across all different measurements. In sub-Saharan Africa, the MDG campaign has advanced the progress of the declining maternal mortality ratio and under-five mortality rate, respectively, by 4.29 and 4.37 years. Sub-Saharan African countries were frequently labeled as 'off-track', 'insufficient progress', or 'no progress' even though the greatest progress was achieved here during the worldwide MDG campaign period and the impact of the worldwide MDG campaign was most pronounced in this region in all respects. It is time to learn from the success stories of the sub-Saharan African countries. Erroneous and biased measurement should be avoided for the sustainable development goals to progress.

  12. CHROTRAN, 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Scott K.; Pandey, Sachin; Karra, Satish

    2017-04-13

    CHROTRAN is a fork of the widely-used PFLOTRAN flow and reactive transport numerical simulation code. It implements custom physics and chemistry appropriate to the design of in-situ reduction of heavy metals such as Cr(VI) in groundwater. CHROTRAN includes full dynamics for five species: the metal to be remediated, an electron donor, biofilm, a nontoxic conservative bio-inhibitor, and a biocide. Direct abiotic reduction by donor-metal interaction as well as donor-driven biomass growth and bio-reduction are modeled, along with crucial processes such as donor sorption, and biofilm inactivation. The software implementation handles heterogeneous flow fields, arbitrarily many chemical species and amendment injectionmore » points, and features full coupling between flow and reactive transport, allowing for assessment of the effect of bio-fouling.« less

  13. Self-sustained reduction of multiple metals in a microbial fuel cell-microbial electrolysis cell hybrid system.

    PubMed

    Li, Yan; Wu, Yining; Liu, Bingchuan; Luan, Hongwei; Vadas, Timothy; Guo, Wanqian; Ding, Jie; Li, Baikun

    2015-09-01

    A self-sustained hybrid bioelectrochemical system consisting of microbial fuel cell (MFC) and microbial electrolysis cell (MEC) was developed to reduce multiple metals simultaneously by utilizing different reaction potentials. Three heavy metals representing spontaneous reaction (chromium, Cr) and unspontaneous reaction (lead, Pb and nickel, Ni) were selected in this batch-mode study. The maximum power density of the MFC achieved 189.4 mW m(-2), and the energy recovery relative to the energy storage circuit (ESC) was ∼ 450%. At the initial concentration of 100 mg L(-1), the average reduction rate of Cr(VI) was 30.0 mg L(-1) d(-1), Pb(II) 32.7 mg L(-1) d(-1), and Ni(II) 8.9 mg L(-1) d(-1). An electrochemical model was developed to predict the change of metal concentration over time. The power output of the MFC was sufficient to meet the requirement of the ESC and MEC, and the "self-sustained metal reduction" was achieved in this hybrid system. Published by Elsevier Ltd.

  14. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.; Parmelee, R.; Carreiro, M.

    1995-09-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the adundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less

  15. Changes in the structure and function of soil ecosystems in soils contaminated with heavy metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuperman, R.; Parmelee, R.; Carreiro, M.

    1995-06-01

    The structure and function of soil communities in an area with a wide range of concentrations of heavy metals was studied in portions of the U.S. Army`s Aberdeen Proving Ground, Maryland. The study included survey of soil macro- and microinvertebrate communities, soil microorganisms, enzyme activities and the rates of nutrient dynamics in soil. Soil macroinvertebrate communities showed significant reductions in the abundance of several taxonomic and functional groups in contaminated areas. The total numbers of nematodes and numbers of fungivore, bacterivore and omnivore-predator nematodes were lower in the more contaminated areas. The numbers of active bacteria and fungi were lowermore » in areas of soil contamination. Significant reduction in the activities of all enzymes closely paralleled the increase in heavy metal concentrations. Ten-to-fifty fold reductions in enzyme activities were observed as heavy metal concentrations increased. These results suggest that soil contamination with heavy metals may have detrimental effects on soil biota and the rates of organic matter degradation and subsequent release of nutrients to aboveground communities in the area.« less

  16. Reduced Cu–Co–Al Mixed Metal Oxides for the Ring-Opening of Furfuryl Alcohol to Produce Renewable Diols

    DOE PAGES

    Sulmonetti, Taylor P.; Hu, Bo; Lee, Sungsik; ...

    2017-08-08

    In this study, the ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H 2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques includingmore » TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Finally, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors« less

  17. Reduced Cu–Co–Al Mixed Metal Oxides for the Ring-Opening of Furfuryl Alcohol to Produce Renewable Diols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sulmonetti, Taylor P.; Hu, Bo; Lee, Sungsik

    In this study, the ring-opening of furfuryl alcohol to diol products, including 1,2-pentanediol and 1,5- pentanediol, is investigated over reduced Cu-Co-Al mixed metal oxides in a liquid phase batch reactor under H 2 pressure. These catalysts are synthesized through the calcination of layered double hydroxides (LDH) to yield well-dispersed, porous mixed metal oxides, which upon reduction displayed activity towards diols, mainly the valuable monomer 1,5-pentanediol. The addition of Cu facilitated the reduction of Co oxide species at lower temperatures, and under optimized conditions a yield towards 1,5-pentanediol of 44% (total diol yield of 62%) was achieved. Various characterization techniques includingmore » TPR, XPS, and XAS are employed to elucidate the structure of the catalysts, suggesting the formation of both metallic (Co and Cu) and oxide (CoO) species after reduction and passivation. Finally, this study demonstrates the promising characteristics that non-precious multi-metal catalysts have for the conversion of biomass derived platform molecules to plastic precursors« less

  18. Effect Of Imposed Anaerobic Conditions On Metals Release From Acid-Mine Drainage Contaminated Streambed Sediments

    EPA Science Inventory

    Remediation of streams influenced by mine-drainage may require removal and burial of metal-containing bed sediments. Burial of aerobic sediments into an anaerobic environment may release metals, such as through reductive dissolution of metal oxyhydroxides. Mining-impacted aerob...

  19. Effect of Foot Progression Angle and Lateral Wedge Insole on a Reduction in Knee Adduction Moment.

    PubMed

    Tokunaga, Ken; Nakai, Yuki; Matsumoto, Ryo; Kiyama, Ryoji; Kawada, Masayuki; Ohwatashi, Akihiko; Fukudome, Kiyohiro; Ohshige, Tadasu; Maeda, Tetsuo

    2016-10-01

    This study evaluated the effect of foot progression angle on the reduction in knee adduction moment caused by a lateral wedged insole during walking. Twenty healthy, young volunteers walked 10 m at their comfortable velocity wearing a lateral wedged insole or control flat insole in 3 foot progression angle conditions: natural, toe-out, and toe-in. A 3-dimensional rigid link model was used to calculate the external knee adduction moment, the moment arm of ground reaction force to knee joint center, and the reduction ratio of knee adduction moment and moment arm. The result indicated that the toe-out condition and lateral wedged insole decreased the knee adduction moment in the whole stance phase. The reduction ratio of the knee adduction moment and the moment arm exhibited a close relationship. Lateral wedged insoles decreased the knee adduction moment in various foot progression angle conditions due to decrease of the moment arm of the ground reaction force. Moreover, the knee adduction moment during the toe-out gait with lateral wedged insole was the smallest due to the synergistic effect of the lateral wedged insole and foot progression angle. Lateral wedged insoles may be a valid intervention for patients with knee osteoarthritis regardless of the foot progression angle.

  20. Catalytic reduction of NO to N2O by a designed heme copper center in myoglobin: implications for the role of metal ions.

    PubMed

    Zhao, Xuan; Yeung, Natasha; Russell, Brandy S; Garner, Dewain K; Lu, Yi

    2006-05-31

    The effects of metal ions on the reduction of nitric oxide (NO) with a designed heme copper center in myoglobin (F43H/L29H sperm whale Mb, CuBMb) were investigated under reducing anaerobic conditions using UV-vis and EPR spectroscopic techniques as well as GC/MS. In the presence of Cu(I), catalytic reduction of NO to N2O by CuBMb was observed with turnover number of 2 mol NO.mol CuBMb-1.min-1, close to 3 mol NO.mol enzyme-1.min-1 reported for the ba3 oxidases from T. thermophilus. Formation of a His-heme-NO species was detected by UV-vis and EPR spectroscopy. In comparison to the EPR spectra of ferrous-CuBMb-NO in the absence of metal ions, the EPR spectra of ferrous-CuBMb-NO in the presence of Cu(I) showed less-resolved hyperfine splitting from the proximal histidine, probably due to weakening of the proximal His-heme bond. In the presence of Zn(II), formation of a five-coordinate ferrous-CuBMb-NO species, resulting from cleavage of the proximal heme Fe-His bond, was shown by UV-vis and EPR spectroscopic studies. The reduction of NO to N2O was not observed in the presence of Zn(II). Control experiments using wild-type myoglobin indicated no reduction of NO in the presence of either Cu(I) or Zn(II). These results suggest that both the identity and the oxidation state of the metal ion in the CuB center are important for NO reduction. A redox-active metal ion is required to deliver electrons, and a higher oxidation state is preferred to weaken the heme iron-proximal histidine toward a five-coordinate key intermediate in NO reduction.

  1. METAL PRODUCTION AND CASTING

    DOEpatents

    Magel, T.T.

    1958-03-01

    This patent covers a method and apparatus for collecting the molten metal produced by high temperature metal salt reduction. It consists essentially of subjecting the reaction vessel to centrifugal force in order to force the liberatcd molten metal into a coherent molten mass, and allowing it to solidify there. The apparatus is particularly suitable for use with small quantities of rare metals.

  2. SU-E-J-218: Evaluation of CT Images Created Using a New Metal Artifact Reduction Reconstruction Algorithm for Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niemkiewicz, J; Palmiotti, A; Miner, M

    2014-06-01

    Purpose: Metal in patients creates streak artifacts in CT images. When used for radiation treatment planning, these artifacts make it difficult to identify internal structures and affects radiation dose calculations, which depend on HU numbers for inhomogeneity correction. This work quantitatively evaluates a new metal artifact reduction (MAR) CT image reconstruction algorithm (GE Healthcare CT-0521-04.13-EN-US DOC1381483) when metal is present. Methods: A Gammex Model 467 Tissue Characterization phantom was used. CT images were taken of this phantom on a GE Optima580RT CT scanner with and without steel and titanium plugs using both the standard and MAR reconstruction algorithms. HU valuesmore » were compared pixel by pixel to determine if the MAR algorithm altered the HUs of normal tissues when no metal is present, and to evaluate the effect of using the MAR algorithm when metal is present. Also, CT images of patients with internal metal objects using standard and MAR reconstruction algorithms were compared. Results: Comparing the standard and MAR reconstructed images of the phantom without metal, 95.0% of pixels were within ±35 HU and 98.0% of pixels were within ±85 HU. Also, the MAR reconstruction algorithm showed significant improvement in maintaining HUs of non-metallic regions in the images taken of the phantom with metal. HU Gamma analysis (2%, 2mm) of metal vs. non-metal phantom imaging using standard reconstruction resulted in an 84.8% pass rate compared to 96.6% for the MAR reconstructed images. CT images of patients with metal show significant artifact reduction when reconstructed with the MAR algorithm. Conclusion: CT imaging using the MAR reconstruction algorithm provides improved visualization of internal anatomy and more accurate HUs when metal is present compared to the standard reconstruction algorithm. MAR reconstructed CT images provide qualitative and quantitative improvements over current reconstruction algorithms, thus improving radiation treatment planning accuracy.« less

  3. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.

    1995-06-06

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.

  4. Process for continuous production of metallic uranium and uranium alloys

    DOEpatents

    Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.

    1995-01-01

    A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.

  5. Probabilistic Multi-Scale, Multi-Level, Multi-Disciplinary Analysis and Optimization of Engine Structures

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2000-01-01

    Aircraft engines are assemblies of dynamically interacting components. Engine updates to keep present aircraft flying safely and engines for new aircraft are progressively required to operate in more demanding technological and environmental requirements. Designs to effectively meet those requirements are necessarily collections of multi-scale, multi-level, multi-disciplinary analysis and optimization methods and probabilistic methods are necessary to quantify respective uncertainties. These types of methods are the only ones that can formally evaluate advanced composite designs which satisfy those progressively demanding requirements while assuring minimum cost, maximum reliability and maximum durability. Recent research activities at NASA Glenn Research Center have focused on developing multi-scale, multi-level, multidisciplinary analysis and optimization methods. Multi-scale refers to formal methods which describe complex material behavior metal or composite; multi-level refers to integration of participating disciplines to describe a structural response at the scale of interest; multidisciplinary refers to open-ended for various existing and yet to be developed discipline constructs required to formally predict/describe a structural response in engine operating environments. For example, these include but are not limited to: multi-factor models for material behavior, multi-scale composite mechanics, general purpose structural analysis, progressive structural fracture for evaluating durability and integrity, noise and acoustic fatigue, emission requirements, hot fluid mechanics, heat-transfer and probabilistic simulations. Many of these, as well as others, are encompassed in an integrated computer code identified as Engine Structures Technology Benefits Estimator (EST/BEST) or Multi-faceted/Engine Structures Optimization (MP/ESTOP). The discipline modules integrated in MP/ESTOP include: engine cycle (thermodynamics), engine weights, internal fluid mechanics, cost, mission and coupled structural/thermal, various composite property simulators and probabilistic methods to evaluate uncertainty effects (scatter ranges) in all the design parameters. The objective of the proposed paper is to briefly describe a multi-faceted design analysis and optimization capability for coupled multi-discipline engine structures optimization. Results are presented for engine and aircraft type metrics to illustrate the versatility of that capability. Results are also presented for reliability, noise and fatigue to illustrate its inclusiveness. For example, replacing metal rotors with composites reduces the engine weight by 20 percent, 15 percent noise reduction, and an order of magnitude improvement in reliability. Composite designs exist to increase fatigue life by at least two orders of magnitude compared to state-of-the-art metals.

  6. Stabilized tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Watkins, Anthony Neal (Inventor); Oglesby, Donald M. (Inventor); Gulati, Suresh T. (Inventor); Summers, Jerry C. (Inventor); Schryer, David R. (Inventor); Davis, Patricia P. (Inventor); Leighty, Bradley D. (Inventor); Jordan, Jeffrey D. (Inventor); Schryer, Jacqueline L. (Inventor)

    2008-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  7. Post-processing of metal matrix composites by friction stir processing

    NASA Astrophysics Data System (ADS)

    Sharma, Vipin; Singla, Yogesh; Gupta, Yashpal; Raghuwanshi, Jitendra

    2018-05-01

    In metal matrix composites non-uniform distribution of reinforcement particles resulted in adverse affect on the mechanical properties. It is of great interest to explore post-processing techniques that can eliminate particle distribution heterogeneity. Friction stir processing is a relatively newer technique used for post-processing of metal matrix composites to improve homogeneity in particles distribution. In friction stir processing, synergistic effect of stirring, extrusion and forging resulted in refinement of grains, reduction of reinforcement particles size, uniformity in particles distribution, reduction in microstructural heterogeneity and elimination of defects.

  8. Liquid metal embrittlement of T91 and 316L steels by heavy liquid metals: A fracture mechanics assessment

    NASA Astrophysics Data System (ADS)

    Auger, T.; Hamouche, Z.; Medina-Almazàn, L.; Gorse, D.

    2008-06-01

    LME of the martensitic T91 and the austenitic 316L steels have been investigated in the CCT geometry in the plane-stress condition. Using such a geometry, premature cracking induced by a liquid metal (PbBi and Hg) can be studied using a fracture mechanics approach based on CTOD, J-Δ a and fracture assessment diagram. One is able to measure a reduction of the crack tip blunting and a reduction of the energy required for crack propagation induced by the liquid metal. In spite of some limitations, this qualitative evaluation shows that liquid metals do not induce strong embrittlement on steels in plane-stress condition. Rather, the effect of the liquid metal seems to promote a fracture mode by plastic collapse linked with strain localization. It indicates that the materials, in spite of a potential embrittlement, should still be acceptable in terms of safety criteria.

  9. From melamine sponge towards 3D sulfur-doping carbon nitride as metal-free electrocatalysts for oxygen reduction reaction

    NASA Astrophysics Data System (ADS)

    Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua

    2017-07-01

    Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.

  10. Identification of Cerebral Metal Ion Imbalance in the Brain of Aging Octodon degus

    PubMed Central

    Braidy, Nady; Poljak, Anne; Marjo, Chris; Rutlidge, Helen; Rich, Anne; Jugder, Bat-Erdene; Jayasena, Tharusha; Inestrosa, Nibaldo C.; Sachdev, Perminder S.

    2017-01-01

    The accumulation of redox-active transition metals in the brain and metal dyshomeostasis are thought to be associated with the etiology and pathogenesis of several neurodegenerative diseases, and Alzheimer’s disease (AD) in particular. As well, distinct biometal imaging and role of metal uptake transporters are central to understanding AD pathogenesis and aging but remain elusive, due inappropriate detection methods. We therefore hypothesized that Octodon degus develop neuropathological abnormalities in the distribution of redox active biometals, and this effect may be due to alterations in the expression of lysosomal protein, major Fe/Cu transporters, and selected Zn transporters (ZnTs and ZIPs). Herein, we report the distribution profile of biometals in the aged brain of the endemic Chilean rodent O. degus—a natural model to investigate the role of metals on the onset and progression of AD. Using laser ablation inductively coupled plasma mass spectrometry, our quantitative images of biometals (Fe, Ca, Zn, Cu, and Al) appear significantly elevated in the aged O. degus and show an age-dependent rise. The metals Fe, Ca, Zn, and Cu were specifically enriched in the cortex and hippocampus, which are the regions where amyloid plaques, tau phosphorylation and glial alterations are most commonly reported, whilst Al was enriched in the hippocampus alone. Using whole brain extracts, age-related deregulation of metal trafficking pathways was also observed in O. degus. More specifically, we observed impaired lysosomal function, demonstrated by increased cathepsin D protein expression. An age-related reduction in the expression of subunit B2 of V-ATPase, and significant increases in amyloid beta peptide 42 (Aβ42), and the metal transporter ATP13a2 were also observed. Although the protein expression levels of the zinc transporters, ZnT (1,3,4,6, and 7), and ZIP7,8 and ZIP14 increased in the brain of aged O. degus, ZnT10, decreased. Although no significant age-related change was observed for the major iron/copper regulator IRP2, we did find a significant increase in the expression of DMT1, a major transporter of divalent metal species, 5′-aminolevulinate synthase 2 (ALAS2), and the proto-oncogene, FOS. Collectively, our data indicate that transition metals may be enriched with age in the brains of O. degus, and metal dyshomeostasis in specific brain regions is age-related. PMID:28405187

  11. Tuning of CO2 Reduction Selectivity on Metal Electrocatalysts.

    PubMed

    Wang, Yuhang; Liu, Junlang; Wang, Yifei; Al-Enizi, Abdullah M; Zheng, Gengfeng

    2017-11-01

    Climate change, caused by heavy CO 2 emissions, is driving new demands to alleviate the rising concentration of atmospheric CO 2 levels. Enlightened by the photosynthesis of green plants, photo(electro)chemical catalysis of CO 2 reduction, also known as artificial photosynthesis, is emerged as a promising candidate to address these demands and is widely investigated during the past decade. Among various artificial photosynthetic systems, solar-driven electrochemical CO 2 reduction is widely recognized to possess high efficiencies and potentials for practical application. The efficient and selective electroreduction of CO 2 is the key to the overall solar-to-chemical efficiency of artificial photosynthesis. Recent studies show that various metallic materials possess the capability to play as electrocatalysts for CO 2 reduction. In order to achieve high selectivity for CO 2 reduction products, various efforts are made including studies on electrolytes, crystal facets, oxide-derived catalysts, electronic and geometric structures, nanostructures, and mesoscale phenomena. In this Review, these methods for tuning the selectivity of CO 2 electrochemical reduction of metallic catalysts are summarized. The challenges and perspectives in this field are also discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Magnesiothermic reduction for direct synthesis of Ti-Nb alloy at 1073 K (800 °C)

    NASA Astrophysics Data System (ADS)

    Choi, Kyunsuk; Lee, Kwang Hee; Ali, Basit; Choi, Sang-Hoon; Park, Kyoung-Tae; Sohn, Il

    2017-09-01

    Direct fabrication of titanium (Ti) and niobium (Nb) alloys by direct magnesiothermic reduction from the respective initial metal oxides and complex oxides has been studied. TiO2, Nb2O5, and complex TiNb2O7 oxides were used as raw materials with Mg used as a reductant. To ensure a high chemical potential of the reactants to drive the spontaneous magnesiothermic reduction of the oxide mixtures, excess Mg five times higher than the required stoichiometric molar ratio was added. Samples were heated in a glove box under recycled and purified Ar atmosphere at 1073 K (800 °C) for 10 h. After the reduction of TiO2, intermediate oxide phases of Ti6O could still be observed, but reduction of Nb2O5 and TiNb2O7 showed metallic Nb and Ti-Nb to be present with negligible oxides according to the scanning electron microscope-energy dispersive spectroscopy and x ray diffraction analysis. This indicated that direct fabrication of Ti-Nb alloys through a complex TiNb2O7 oxide is possible and can be more efficient than alloying pure metallic elements of Ti and Nb.

  13. Mixing implants of differing metallic composition in the treatment of upper-extremity fractures.

    PubMed

    Acevedo, Daniel; Loy, Bo Nasmyth; Loy, Bo Nasymuth; Lee, Brian; Omid, Reza; Itamura, John

    2013-09-01

    Mixing implants with differing metallic compositions has been avoided for fear of galvanic corrosion and subsequent failure of the implants and of bone healing. The purpose of this study was to evaluate upper-extremity fractures treated with open reduction and internal fixation with metallic implants that differed in metallic composition placed on the same bone. The authors studied the effects of using both stainless steel and titanium implants on fracture healing, implant failure, and other complications associated with this method of fixation. Their hypothesis was that combining these metals on the same bone would not cause clinically significant nonunions or undo clinical effects from galvanic corrosion. A retrospective review was performed of 17 patients with upper-extremity fractures fixed with metal implants of differing metallic compositions. The primary endpoint was fracture union. Eight clavicles, 2 proximal humeri, 3 distal humeri, 3 olecranons, and 1 glenoid fracture with an average follow-up 10 months were reviewed. All fractures healed. One patient experienced screw backout, which did not affect healing. This study implies that mixing implants with differing metallic compositions on the same bone for the treatment of fractures does not adversely affect bone healing. No evidence existed of corrosion or an increase in complications with this method of treatment. Contrary to prior belief, small modular hand stainless steel plates can be used to assist in reduction of smaller fracture fragments in combination with anatomic titanium plates to obtain anatomic reduction of the fracture without adversely affecting healing. Copyright 2013, SLACK Incorporated.

  14. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    NASA Astrophysics Data System (ADS)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  15. Structural and biophysical properties of metal-free pathogenic SOD1 mutants A4V and G93A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galaleldeen, Ahmad; Strange, Richard W.; Whitson, Lisa J.

    2010-07-19

    Amyotrophic lateral sclerosis (ALS) is a fatal, progressive neurodegenerative disease characterized by the destruction of motor neurons in the spinal cord and brain. A subset of ALS cases are linked to dominant mutations in copper-zinc superoxide dismutase (SOD1). The pathogenic SOD1 variants A4V and G93A have been the foci of multiple studies aimed at understanding the molecular basis for SOD1-linked ALS. The A4V variant is responsible for the majority of familial ALS cases in North America, causing rapidly progressing paralysis once symptoms begin and the G93A SOD1 variant is overexpressed in often studied murine models of the disease. Here wemore » report the three-dimensional structures of metal-free A4V and of metal-bound and metal-free G93A SOD1. In the metal-free structures, the metal-binding loop elements are observed to be severely disordered, suggesting that these variants may share mechanisms of aggregation proposed previously for other pathogenic SOD1 proteins.« less

  16. Off-resonance suppression for multispectral MR imaging near metallic implants.

    PubMed

    den Harder, J Chiel; van Yperen, Gert H; Blume, Ulrike A; Bos, Clemens

    2015-01-01

    Metal artifact reduction in MRI within clinically feasible scan-times without through-plane aliasing. Existing metal artifact reduction techniques include view angle tilting (VAT), which resolves in-plane distortions, and multispectral imaging (MSI) techniques, such as slice encoding for metal artifact correction (SEMAC) and multi-acquisition with variable resonances image combination (MAVRIC), that further reduce image distortions, but significantly increase scan-time. Scan-time depends on anatomy size and anticipated total spectral content of the signal. Signals outside the anticipated spatial region may cause through-plane back-folding. Off-resonance suppression (ORS), using different gradient amplitudes for excitation and refocusing, is proposed to provide well-defined spatial-spectral selectivity in MSI to allow scan-time reduction and flexibility of scan-orientation. Comparisons of MSI techniques with and without ORS were made in phantom and volunteer experiments. Off-resonance suppressed SEMAC (ORS-SEMAC) and outer-region suppressed MAVRIC (ORS-MAVRIC) required limited through-plane phase encoding steps compared with original MSI. Whereas SEMAC (scan time: 5'46") and MAVRIC (4'12") suffered from through-plane aliasing, ORS-SEMAC and ORS-MAVRIC allowed alias-free imaging in the same scan-times. ORS can be used in MSI to limit the selected spatial-spectral region and contribute to metal artifact reduction in clinically feasible scan-times while avoiding slice aliasing. © 2014 Wiley Periodicals, Inc.

  17. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, Warren H.; Payne, John R.

    1982-01-01

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB.sub.2, for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints.

  18. Respiration of metal (hydr)oxides by Shewanella and Geobacter: a key role for multihaem c-type cytochromes

    PubMed Central

    Shi, Liang; Squier, Thomas C; Zachara, John M; Fredrickson, James K

    2007-01-01

    Dissimilatory reduction of metal (e.g. Fe, Mn) (hydr)oxides represents a challenge for microorganisms, as their cell envelopes are impermeable to metal (hydr)oxides that are poorly soluble in water. To overcome this physical barrier, the Gram-negative bacteria Shewanella oneidensis MR-1 and Geobacter sulfurreducens have developed electron transfer (ET) strategies that require multihaem c-type cytochromes (c-Cyts). In S. oneidensis MR-1, multihaem c-Cyts CymA and MtrA are believed to transfer electrons from the inner membrane quinone/quinol pool through the periplasm to the outer membrane. The type II secretion system of S. oneidensis MR-1 has been implicated in the reduction of metal (hydr)oxides, most likely by translocating decahaem c-Cyts MtrC and OmcA across outer membrane to the surface of bacterial cells where they form a protein complex. The extracellular MtrC and OmcA can directly reduce solid metal (hydr)oxides. Likewise, outer membrane multihaem c-Cyts OmcE and OmcS of G. sulfurreducens are suggested to transfer electrons from outer membrane to type IV pili that are hypothesized to relay the electrons to solid metal (hydr)oxides. Thus, multihaem c-Cyts play critical roles in S. oneidensis MR-1- and G. sulfurreducens-mediated dissimilatory reduction of solid metal (hydr)oxides by facilitating ET across the bacterial cell envelope. PMID:17581116

  19. Resection and Resolution of Bone Marrow Lesions Associated with an Improvement of Pain after Total Knee Replacement: A Novel Case Study Using a 3-Tesla Metal Artefact Reduction MRI Sequence.

    PubMed

    Kurien, Thomas; Kerslake, Robert; Haywood, Brett; Pearson, Richard G; Scammell, Brigitte E

    2016-01-01

    We present our case report using a novel metal artefact reduction magnetic resonance imaging (MRI) sequence to observe resolution of subchondral bone marrow lesions (BMLs), which are strongly associated with pain, in a patient after total knee replacement surgery. Large BMLs were seen preoperatively on the 3-Tesla MRI scans in a patient with severe end stage OA awaiting total knee replacement surgery. Twelve months after surgery, using a novel metal artefact reduction MRI sequence, we were able to visualize the bone-prosthesis interface and found complete resection and resolution of these BMLs. This is the first reported study in the UK to use this metal artefact reduction MRI sequence at 3-Tesla showing that resection and resolution of BMLs in this patient were associated with an improvement of pain and function after total knee replacement surgery. In this case it was associated with a clinically significant improvement of pain and function after surgery. Failure to eradicate these lesions may be a cause of persistent postoperative pain that is seen in up to 20% of patients following TKR surgery.

  20. Controllable synthesis and property of graphene-based magnetic metal nanostructures

    NASA Astrophysics Data System (ADS)

    Wu, Kong-Lin; Li, Xiang-Zi; Wei, Xian-Wen; Ding, Ting-Hui; Jiang, Miao; Zhang, Wen-Juan; Ye, Yin

    2014-12-01

    A facile and effective solution phase reduction method was developed to synthesize graphene-based magnetic metal nanocomposites. Metals (Co, and Ni) or alloys (Fe51Co49, Fe48Ni52, Ni49Co51, Co51Cu49, and Ni52Cu48)/reduced graphene oxide (RGO) nanocomposites were successfully prepared by reduction of the corresponding aqueous metal ions and ethylenediamine (EDA)-graphene oxide (GO) with hydrazine hydrate at 353 K for 1 h under N2 atmosphere. The effects of synthetic parameters such as metal ions concentration, adding sequence of NaOH and N2H4·H2O, linkage agent and reaction time on the formation of nanocomposites were investigated. The experimental results showed that using ethylenediamine and adding sequence played critical roles in the formation of metals or alloys/RGO nanocomposites. Magnetic hysteresis measurements revealed that the as-synthesized metals or alloys in nanocomposites showed excellent soft magnetic behavior with enhanced saturation magnetization, and could have promising applications in biotechnology, catalysis, and magnetic storage devices.

  1. Long-term sustainability of metal immobilization by soil amendments: cyclonic ashes versus lime addition.

    PubMed

    Ruttens, A; Adriaensen, K; Meers, E; De Vocht, A; Geebelen, W; Carleer, R; Mench, M; Vangronsveld, J

    2010-05-01

    A soil column leaching experiment was used to gain insight into the long-term metal immobilization capacity of cyclonic ashes (CAH) compared to lime (LIME). Twenty six years of rainfall were simulated. Initially, all amended soils were brought to an equal soil pH. This was done to obtain optimal conditions for the detection of metal immobilization mechanisms different from just a pH effect. During the simulation period, soil pH in all treatments decreased in parallel. However, the evolution of metal mobility and phytoavailability showed a clearly distinct pattern. The strong reduction in metal immobilizing efficiency observed in the lime treatment at the end of the simulation period was much less pronounced, or even absent, in the CAH treatments. Moreover, metal accumulation in plants grown on the CAH amended soil was significantly lower compared to the untreated and the lime treated soil. CAH + SS treatment delivered the strongest reductions in metal mobility and bioavailability. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. [Examination of patient dose reduction in cardiovasucular X-ray systems with a metal filter].

    PubMed

    Yasuda, Mitsuyoshi; Kato, Kyouichi; Tanabe, Nobuaki; Sakiyama, Koushi; Uchiyama, Yushi; Suzuki, Yoshiaki; Suzuki, Hiroshi; Nakazawa, Yasuo

    2012-01-01

    In interventional X-ray for cardiology of flat panel digital detector (FPD), the phenomenon that exposure dose was suddenly increased when a subject thickness was thickened was recognized. At that time, variable metal built-in filters in FPD were all off. Therefore, we examined whether dose reduction was possible without affecting a clinical image using metal filter (filter) which we have been conventionally using for dose reduction. About 45% dose reduction was achieved when we measured an exposure dose at 30 cm of acrylic thickness in the presence of a filter. In addition, we measured signal to noise ratio/contrast to noise ratio/a resolution limit by the visual evaluation, and there was no influence by filter usage. In the clinical examination, visual evaluation of image quality of coronary angiography (40 cases) using a 5-point evaluation scale by a physician was performed. As a result, filter usage did not influence the image quality (p=NS). Therefore, reduction of sudden increase of exposure dose was achieved without influencing an image quality by adding filter to FPD.

  3. Electrochemistry and the mechanisms of nucleation and growth of neodymium during electroreduction from LiCl-KCl eutectic salts on Mo substrate

    NASA Astrophysics Data System (ADS)

    Tang, Hao; Pesic, Batric

    2015-03-01

    The electrochemical behavior of NdCl3 was studied on a Mo electrode in molten LiCl-KCl eutectic salts. The electroreduction of Nd(III)/Nd(0) involved two reaction steps, as confirmed by three different electrochemical techniques. In the first reaction step, Nd(III) is converted into soluble Nd(II), which undergoes further reduction into metallic Nd(0) in the second reaction step. The standard reaction rate constants for each reaction step were determined by Nicholson method. The rate constant values were used in Matsuda-Ayabe's criteria for testing the electrochemical reversibility. Accordingly, both reaction steps were quasi-reversible redox reactions. The nucleation mechanisms of neodymium metal deposited on a Mo substrate were predicted by using Scharifker-Hill model, and tested for the first time by scanning electron microscopy (SEM) studies of the electrode surface. The SEM studies confirmed that for the low initial concentration of NdCl3, neodymium nucleates and grows progressively, while for higher NdCl3 concentrations, the related mechanism is instantaneous. Both are governed by the aggregative growth mechanisms based on surface mobility of formed nanoclusters.

  4. MO-DE-207A-10: One-Step CT Reconstruction for Metal Artifact Reduction by a Modification of Penalized Weighted Least-Squares (PWLS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, H; Chen, J

    Purpose: Metal objects create severe artifacts in kilo-voltage (kV) CT image reconstructions due to the high attenuation coefficients of high atomic number objects. Most of the techniques devised to reduce this artifact utilize a two-step approach, which do not reliably yield the qualified reconstructed images. Thus, for accuracy and simplicity, this work presents a one-step reconstruction method based on a modified penalized weighted least-squares (PWLS) technique. Methods: Existing techniques for metal artifact reduction mostly adopt a two-step approach, which conduct additional reconstruction with the modified projection data from the initial reconstruction. This procedure does not consistently perform well due tomore » the uncertainties in manipulating the metal-contaminated projection data by thresholding and linear interpolation. This study proposes a one-step reconstruction process using a new PWLS operation with total-variation (TV) minimization, while not manipulating the projection. The PWLS for CT reconstruction has been investigated using a pre-defined weight, based on the variance of the projection datum at each detector bin. It works well when reconstructing CT images from metal-free projection data, which does not appropriately penalize metal-contaminated projection data. The proposed work defines the weight at each projection element under the assumption of a Poisson random variable. This small modification using element-wise penalization has a large impact in reducing metal artifacts. For evaluation, the proposed technique was assessed with two noisy, metal-contaminated digital phantoms, against the existing PWLS with TV minimization and the two-step approach. Result: The proposed PWLS with TV minimization greatly improved the metal artifact reduction, relative to the other techniques, by watching the results. Numerically, the new approach lowered the normalized root-mean-square error about 30 and 60% for the two cases, respectively, compared to the two-step method. Conclusion: A new PWLS operation shows promise for improving metal artifact reduction in CT imaging, as well as simplifying the reconstructing procedure.« less

  5. Mineral materials as feasible amendments to stabilize heavy metals in polluted urban soils.

    PubMed

    Zhang, Mingkui; Pu, Jincheng

    2011-01-01

    Four minerals, agricultural limestone (AL), rock phosphate (RP), palygorskite (PG), and calcium magnesium phosphate (CMP), were evaluated by means of chemical fractions of heavy metals in soils and concentrations of heavy metals in leachates from columns to determine their ability to stabilize heavy metals in polluted urban soils. Two urban soils (calcareous soil and acidic soil) polluted with cadmium, copper, zinc and lead were selected and amended in the laboratory with the mineral materials) for 12 months. Results indicated that application of the mineral materials reduced exchangeable metals in the sequence of Pb, Cd > Cu > Zn. The reduction of exchangeable fraction of heavy metals in the soils amended with different mineral materials followed the sequence of CMP, PG > AL > RP. Reductions of heavy metals leached were based on comparison with cumulative totals of heavy metals eluted through 12 pore volumes from an untreated soil. The reductions of the metals eluted from the calcareous soil amended with the RP, AL, PG and CMP were 1.98%, 38.89%, 64.81% and 75.93% for Cd, 8.51%, 40.42%, 60.64% and 55.32% for Cu, 1.76%, 52.94%, 70.00% and 74.12% for Pb, and 28.42%, 52.74%, 64.38% and 49.66% for Zn. Those from the acidic soil amended with the CMP, PG, AL, and RP were 25.65%, 68.06%, 78.01% and 79.06% for Cd, 26.56%, 49.64%, 43.40% and 34.68% for Cu, 44.44%, 33.32%, 61.11% and 69.44% for Pb, and 18.46%, 43.77%, 41.98% and 40.68% for Zn. The CMP and PG treatments were superior to the AL and RP for stabilizing heavy metals in the polluted urban soils.

  6. Impact of biostimulated redox processes on metal dynamics in an iron-rich creek soil of a former uranium mining area.

    PubMed

    Burkhardt, Eva-Maria; Akob, Denise M; Bischoff, Sebastian; Sitte, Jana; Kostka, Joel E; Banerjee, Dipanjan; Scheinost, Andreas C; Küsel, Kirsten

    2010-01-01

    Understanding the dynamics of metals and radionuclides in soil environments is necessary for evaluating risks to pristine sites. An iron-rich creek soil of a former uranium-mining district (Ronneburg, Germany) showed high porewater concentrations of heavy metals and radionuclides. Thus, this study aims to (i) evaluate metal dynamics during terminal electron accepting processes (TEAPs) and (ii) characterize active microbial populations in biostimulated soil microcosms using a stable isotope probing (SIP) approach. In biostimulated soil slurries, concentrations of soluble Co, Ni, Zn, As, and unexpectedly U increased during Fe(III)-reduction. This suggests that there was a release of sorbed metals and As during reductive dissolution of Fe(III)-oxides. Subsequent sulfate-reduction was concurrent with a decrease of U, Co, Ni, and Zn concentrations. The relative contribution of U(IV) in the solid phase changed from 18.5 to 88.7% after incubation. The active Fe(III)-reducing population was dominated by delta-Proteobacteria (Geobacter) in (13)C-ethanol amended microcosms. A more diverse community was present in (13)C-lactate amended microcosms including taxa related to Acidobacteria, Firmicutes, delta-Proteobacteria, and beta-Proteobacteria. Our results suggested that biostimulated Fe(III)-reducing communities facilitated the release of metals including U to groundwater which is in contrast to other studies.

  7. Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures

    PubMed Central

    Gu, Haoshuang; Wang, Zhao; Hu, Yongming

    2012-01-01

    Recently, the hydrogen gas sensing properties of semiconductor oxide (SMO) nanostructures have been widely investigated. In this article, we provide a comprehensive review of the research progress in the last five years concerning hydrogen gas sensors based on SMO thin film and one-dimensional (1D) nanostructures. The hydrogen sensing mechanism of SMO nanostructures and some critical issues are discussed. Doping, noble metal-decoration, heterojunctions and size reduction have been investigated and proved to be effective methods for improving the sensing performance of SMO thin films and 1D nanostructures. The effect on the hydrogen response of SMO thin films and 1D nanostructures of grain boundary and crystal orientation, as well as the sensor architecture, including electrode size and nanojunctions have also been studied. Finally, we also discuss some challenges for the future applications of SMO nanostructured hydrogen sensors. PMID:22778599

  8. Phytoremediation of soils and water contaminated with toxic elements and radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cornish, J.E.; Huddleston, G.J.; Levine, R.S.

    1995-12-31

    At many U.S. Department of Energy (DOE) facilities and other sites, large volumes of soils, sediments and waters are contaminated with heavy metals and/or radionuclides, often at only a relatively small factor above regulatory action levels. In response, the DOE`s Office of Technology Development is evaluating the emerging biotechnology known as phytoremediation; this approach utilizes the accelerated transfer of contaminant mass from solution to either root or above ground biomass. After growth, the plant biomass - containing 100 to 1,000 times the contaminant levels observed with conventional plants - is processed to achieve further volume reduction and contaminant concentration. Thus,more » phytoremediation offers the potential for low cost remediation of highly to moderately contaminated media. Progress made to date by DOE in developing this technology will be summarized and evaluated.« less

  9. Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction

    DOEpatents

    Liu, Di-Jia; Yang, Junbing; Wang, Xiaoping

    2010-08-03

    A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

  10. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation

    PubMed Central

    Brown, Leon D.; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J.; Reinhard, Christina; Connor, Leigh D.; Inman, Douglas; Brett, Daniel J. L.; Shearing, Paul R.

    2017-01-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO2 to U metal in LiCl–KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl–KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems. PMID:28244437

  11. A novel molten-salt electrochemical cell for investigating the reduction of uranium dioxide to uranium metal by lithium using in situ synchrotron radiation.

    PubMed

    Brown, Leon D; Abdulaziz, Rema; Jervis, Rhodri; Bharath, Vidal; Mason, Thomas J; Atwood, Robert C; Reinhard, Christina; Connor, Leigh D; Inman, Douglas; Brett, Daniel J L; Shearing, Paul R

    2017-03-01

    A novel electrochemical cell has been designed and built to allow for in situ energy-dispersive X-ray diffraction measurements to be made during reduction of UO 2 to U metal in LiCl-KCl at 500°C. The electrochemical cell contains a recessed well at the bottom of the cell into which the working electrode sits, reducing the beam path for the X-rays through the molten-salt and maximizing the signal-to-noise ratio from the sample. Lithium metal was electrodeposited onto the UO 2 working electrode by exposing the working electrode to more negative potentials than the Li deposition potential of the LiCl-KCl eutectic electrolyte. The Li metal acts as a reducing agent for the chemical reduction of UO 2 to U, which appears to proceed to completion. All phases were fitted using Le Bail refinement. The cell is expected to be widely applicable to many studies involving molten-salt systems.

  12. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2001-07-10

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode.

  13. Generation of TiII Alkyne Trimerization Catalysts in the Absence of Strong Metal Reductants

    PubMed Central

    See, Xin Yi; Beaumier, Evan P.; Davis-Gilbert, Zachary W.; Dunn, Peter L.; Larsen, Jacob A.; Pearce, Adam J.; Wheeler, T. Alex; Tonks, Ian A.

    2017-01-01

    Low-valent TiII species have typically been synthesized by the reaction of TiIV halides with strong metal reductants. Herein we report that TiII species can be generated simply by reacting TiIV imido complexes with 2 equiv of alkyne, yielding a metallacycle that can reductively eliminate pyrrole while liberating TiII. In order to probe the generality of this process, TiII-catalyzed alkyne trimerization reactions were carried out with a diverse range of TiIV precatalysts. PMID:28690352

  14. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

    DOE PAGES

    Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra; ...

    2017-07-24

    The electrochemical reduction of CO 2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO 2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably formore » HCOO –, C 2H 4, and C 2H 5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO 2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. As a result, the observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.« less

  15. Promoter Effects of Alkali Metal Cations on the Electrochemical Reduction of Carbon Dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Resasco, Joaquin; Chen, Leanne D.; Clark, Ezra

    The electrochemical reduction of CO 2 is known to be influenced by the identity of the alkali metal cation in the electrolyte; however, a satisfactory explanation for this phenomenon has not been developed. Here we present the results of experimental and theoretical studies aimed at elucidating the effects of electrolyte cation size on the intrinsic activity and selectivity of metal catalysts for the reduction of CO 2. Experiments were conducted under conditions where the influence of electrolyte polarization is minimal in order to show that cation size affects the intrinsic rates of formation of certain reaction products, most notably formore » HCOO –, C 2H 4, and C 2H 5OH over Cu(100)- and Cu(111)-oriented thin films, and for CO and HCOO– over polycrystalline Ag and Sn. Interpretation of the findings for CO 2 reduction was informed by studies of the reduction of glyoxal and CO, key intermediates along the reaction pathway to final products. Density functional theory calculations show that the alkali metal cations influence the distribution of products formed as a consequence of electrostatic interactions between solvated cations present at the outer Helmholtz plane and adsorbed species having large dipole moments. As a result, the observed trends in activity with cation size are attributed to an increase in the concentration of cations at the outer Helmholtz plane with increasing cation size.« less

  16. Highly active Pd-In/mesoporous alumina catalyst for nitrate reduction.

    PubMed

    Gao, Zhenwei; Zhang, Yonggang; Li, Deyi; Werth, Charles J; Zhang, Yalei; Zhou, Xuefei

    2015-04-09

    The catalytic reduction of nitrate is a promising technology for groundwater purification because it transforms nitrate into nitrogen and water. Recent studies have mainly focused on new catalysts with higher activities for the reduction of nitrate. Consequently, metal nanoparticles supported on mesoporous metal oxides have become a major research direction. However, the complex surface chemistry and porous structures of mesoporous metal oxides lead to a non-uniform distribution of metal nanoparticles, thereby resulting in a low catalytic efficiency. In this paper, a method for synthesizing the sustainable nitrate reduction catalyst Pd-In/Al2O3 with a dimensional structure is introduced. The TEM results indicated that Pd and In nanoparticles could efficiently disperse into the mesopores of the alumina. At room temperature in CO2-buffered water and under continuous H2 as the electron donor, the synthesized material (4.9 wt% Pd) was the most active at a Pd-In ratio of 4, with a first-order rate constant (k(obs) = 0.241 L min(-1) g(cata)(-1)) that was 1.3× higher than that of conventional Pd-In/Al2O3 (5 wt% Pd; 0.19 L min(-1) g(cata)(-1)). The Pd-In/mesoporous alumina is a promising catalyst for improving the catalytic reduction of nitrate. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Observer Evaluation of a Metal Artifact Reduction Algorithm Applied to Head and Neck Cone Beam Computed Tomographic Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Korpics, Mark; Surucu, Murat; Mescioglu, Ibrahim

    Purpose and Objectives: To quantify, through an observer study, the reduction in metal artifacts on cone beam computed tomographic (CBCT) images using a projection-interpolation algorithm, on images containing metal artifacts from dental fillings and implants in patients treated for head and neck (H&N) cancer. Methods and Materials: An interpolation-substitution algorithm was applied to H&N CBCT images containing metal artifacts from dental fillings and implants. Image quality with respect to metal artifacts was evaluated subjectively and objectively. First, 6 independent radiation oncologists were asked to rank randomly sorted blinded images (before and after metal artifact reduction) using a 5-point rating scalemore » (1 = severe artifacts; 5 = no artifacts). Second, the standard deviation of different regions of interest (ROI) within each image was calculated and compared with the mean rating scores. Results: The interpolation-substitution technique successfully reduced metal artifacts in 70% of the cases. From a total of 60 images from 15 H&N cancer patients undergoing image guided radiation therapy, the mean rating score on the uncorrected images was 2.3 ± 1.1, versus 3.3 ± 1.0 for the corrected images. The mean difference in ranking score between uncorrected and corrected images was 1.0 (95% confidence interval: 0.9-1.2, P<.05). The standard deviation of each ROI significantly decreased after artifact reduction (P<.01). Moreover, a negative correlation between the mean rating score for each image and the standard deviation of the oral cavity and bilateral cheeks was observed. Conclusion: The interpolation-substitution algorithm is efficient and effective for reducing metal artifacts caused by dental fillings and implants on CBCT images, as demonstrated by the statistically significant increase in observer image quality ranking and by the decrease in ROI standard deviation between uncorrected and corrected images.« less

  18. Reduction and Smelting of Vanadium Titanomagnetite Metallized Pellets

    NASA Astrophysics Data System (ADS)

    Wang, Shuai; Chen, Mao; Guo, Yufeng; Jiang, Tao; Zhao, Baojun

    2018-04-01

    Reduction and smelting of the vanadium titanomagnetite metallized pellets have been experimentally investigated in this study. By using the high-temperature smelting, rapid quenching, and electron probe x-ray microanalysis (EPMA) technique, the effects of basicity, reaction time, and graphite reductant amount were investigated. The vanadium contents in iron alloys increase with increasing basicity, reaction time, and graphite amount, whereas the FeO and V2O3 concentrations in the liquid phase decrease with the increase of graphite amount and reaction time. Increasing the reaction time and reductant content promotes the reduction of titanium oxide, whereas the reduction of titanium oxides can be suppressed with increasing the slag basicity. Titanium carbide (TiC) was not observed in all the quenched samples under the present conditions. The experimental results and the FactSage calculations are also compared in the present study.

  19. Creating metamaterial building blocks with directed photochemical metallization of silver onto DNA origami templates.

    PubMed

    Hossen, Md Mir; Bendickson, Lee; Palo, Pierre E; Yao, Zhiqi; Nilsen-Hamilton, Marit; Hillier, Andrew C

    2018-08-31

    DNA origami can be used to create a variety of complex and geometrically unique nanostructures that can be further modified to produce building blocks for applications such as in optical metamaterials. We describe a method for creating metal-coated nanostructures using DNA origami templates and a photochemical metallization technique. Triangular DNA origami forms were fabricated and coated with a thin metal layer by photochemical silver reduction while in solution or supported on a surface. The DNA origami template serves as a localized photosensitizer to facilitate reduction of silver ions directly from solution onto the DNA surface. The metallizing process is shown to result in a conformal metal coating, which grows in height to a self-limiting value with increasing photoreduction steps. Although this coating process results in a slight decrease in the triangle dimensions, the overall template shape is retained. Notably, this coating method exhibits characteristics of self-limiting and defect-filling growth, which results in a metal nanostructure that maps the shape of the original DNA template with a continuous and uniform metal layer and stops growing once all available DNA sites are exhausted.

  20. Metal-Folded Single-Chain Nanoparticle: Nanoclusters and Self-Assembled Reduction-Responsive Sub-5-nm Discrete Subdomains.

    PubMed

    Cao, Hui; Cui, Zhigang; Gao, Pan; Ding, Yi; Zhu, Xuechao; Lu, Xinhua; Cai, Yuanli

    2017-09-01

    Easy access to discrete nanoclusters in metal-folded single-chain nanoparticles (metal-SCNPs) and independent ultrafine sudomains in the assemblies via coordination-driven self-assembly of hydrophilic copolymer containing 9% imidazole groups is reported herein. 1 H NMR, dynamic light scattering, and NMR diffusion-ordered spectroscopy results demonstrate self-assembly into metal-SCNPs (>70% imidazole-units folded) by neutralization in the presence of Cu(II) in water to pH 4.6. Further neutralization induces self-assembly of metal-SCNPs (pH 4.6-5.0) and shrinkage (pH 5.0-5.6), with concurrent restraining residual imidazole motifs and hydrophilic segment, which organized into constant nanoparticles over pH 5.6-7.5. Atomic force microscopy results evidence discrete 1.2 nm nanoclusters and sub-5-nm subdomains in metal-SCNP and assembled nanoparticle. Reduction of metal center using sodium ascorbate induces structural rearrangement to one order lower than the precursor. Enzyme mimic catalysis required media-tunable discrete ultrafine interiors in metal-SCNPs and assemblies have hence been achieved. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Alpha-synuclein: relating metals to structure, function and inhibition.

    PubMed

    McDowall, J S; Brown, D R

    2016-04-01

    Alpha-synuclein has long been studied due to its involvement in the progression of Parkinson's disease (PD), a common neurodegenerative disorder, although a consensus on the exact function of this protein is elusive. This protein shows remarkable structural plasticity and this property is important for both correct cellular function and pathological progression of PD. Formation of intracellular oligomeric species within the substantia nigra correlates with disease progression and it has been proposed that formation of a partially folded intermediate is key to the initiation of the fibrillisation process. Many factors can influence changes in the structure of alpha-synuclein such as disease mutations and interaction with metals and neurotransmitters. High concentrations of both dopamine and metals are present in the substantia nigra making this an ideal location for both the structural alteration of alpha-synuclein and the production of toxic oxygen species. The recent proposal that alpha-synuclein is a ferrireductase is important as it can possibly catalyse the formation of such reactive species and as a result exacerbate neurodegeneration.

  2. Friction welded nonconsumable electrode assembly and use thereof for electrolytic production of metals and silicon

    DOEpatents

    Byrne, Stephen C.; Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a metal conductor and a ceramic electrode body connected by a friction weld between a portion of the body having a level of free metal or metal alloy sufficient to effect such a friction weld and a portion of the metal conductor.

  3. Methodology for the effective stabilization of tin-oxide-based oxidation/reduction catalysts

    NASA Technical Reports Server (NTRS)

    Jordan, Jeffrey D. (Inventor); Schryer, David R. (Inventor); Leighty, Bradley D. (Inventor); Watkins, Anthony N. (Inventor); Summers, Jerry C. (Inventor); Davis, Patricia P. (Inventor); Oglesby, Donald M. (Inventor); Schryer, Jacqueline L. (Inventor); Gulati, Suresh T. (Inventor)

    2011-01-01

    The invention described herein involves a novel approach to the production of oxidation/reduction catalytic systems. The present invention serves to stabilize the tin oxide reducible metal-oxide coating by co-incorporating at least another metal-oxide species, such as zirconium. In one embodiment, a third metal-oxide species is incorporated, selected from the group consisting of cerium, lanthanum, hafnium, and ruthenium. The incorporation of the additional metal oxide components serves to stabilize the active tin-oxide layer in the catalytic process during high-temperature operation in a reducing environment (e.g., automobile exhaust). Moreover, the additional metal oxides are active components due to their oxygen-retention capabilities. Together, these features provide a mechanism to extend the range of operation of the tin-oxide-based catalyst system for automotive applications, while maintaining the existing advantages.

  4. Synthesis of metal nanoparticle and patterning in polymeric films induced by electron beam

    NASA Astrophysics Data System (ADS)

    Yamamoto, Hiroki; Kozawa, Takahiro; Tagawa, Seiichi; Marignier, Jean-Louis; Mostafavi, Mehran; Belloni, Jacqueline

    2018-03-01

    Using an electron beam, thin polymeric films loaded with metal nanoparticles of silver were prepared by a one-step irradiation-induced reduction of the metal ions embedded in the polymer. The metal nanoparticles were observed by either optical absorption or microscopy. The mechanism of the reduction of metal ions and of the polymer crosslinking were deduced from the average absorbance measurements. In view of realizing specific patterns of high resolution using the electron beam, electron beam produces 200 nm wide lines that can be separated by unexposed spaces of adjustable width, where precursors were dissolved. The resolution of the electron beam has been exploited to demonstrate the achievement of nanopatterning on polymer films using a direct-writing process. This method supplies interesting applications such as masks, replicas, or imprint molds of improved density and contrast.

  5. DEMONSTRATION BULLETIN: METAL-ENHANCED ABIOTIC DEGRADATION TECHNOLOGY - ENVIROMETAL TECHNOLOGIES, INC.

    EPA Science Inventory

    EnviroMetal Technologies, Inc. (ETI), of Guelph, ON, Canada, has developed the metal-enhanced abiotic degradation technology to treat halogenated volatile organic compounds (VOC) in water. A reactive, zero-valent, granular iron medium causes reductive dehalogenation of VOCs yield...

  6. Richard E. Smalley, Buckminsterfullerene (the Buckyball), and Nanotubes

    Science.gov Websites

    : 723-730; July 1997 Supersonic Bare Metal Cluster Beams. Technical Progress Report, March 16, 1984  – April 1, 1985 Includes early cold ion beam technology research Supersonic Bare Metal Cluster Beams

  7. Chronic Kidney Disease and Exposure to Nephrotoxic Metals

    PubMed Central

    Orr, Sarah E.; Bridges, Christy C.

    2017-01-01

    Chronic kidney disease (CKD) is a common progressive disease that is typically characterized by the permanent loss of functional nephrons. As injured nephrons become sclerotic and die, the remaining healthy nephrons undergo numerous structural, molecular, and functional changes in an attempt to compensate for the loss of diseased nephrons. These compensatory changes enable the kidney to maintain fluid and solute homeostasis until approximately 75% of nephrons are lost. As CKD continues to progress, glomerular filtration rate decreases, and remaining nephrons are unable to effectively eliminate metabolic wastes and environmental toxicants from the body. This inability may enhance mortality and/or morbidity of an individual. Environmental toxicants of particular concern are arsenic, cadmium, lead, and mercury. Since these metals are present throughout the environment and exposure to one or more of these metals is unavoidable, it is important that the way in which these metals are handled by target organs in normal and disease states is understood completely. PMID:28498320

  8. Aluminothermic Reduction-Molten Salt Electrolysis Using Inert Anode for Oxygen and Al-Base Alloy Extraction from Lunar Soil Simulant

    NASA Astrophysics Data System (ADS)

    Xie, Kaiyu; Shi, Zhongning; Xu, Junli; Hu, Xianwei; Gao, Bingliang; Wang, Zhaowen

    2017-10-01

    Aluminothermic reduction-electrolysis using an inert anode process is proposed to extract oxygen and metals from Minnesota Lunar Simulant-1 (MLS-1). Effective aluminothermic reduction between dissolved MLS-1 and dissolved metal aluminum was achieved in cryolite salt media. The product phases obtained by aluminothermic reduction at 980°C for 4 h were Al, Si, and Al5FeSi, while the chemical components were 79.71 mass% aluminum, 12.03 mass% silicon, 5.91 mass% iron, and 2.35 mass% titanium. The cryolite salt containing Al2O3 was subsequently electrolyzed with Fe0.58-Ni0.42 inert anode at 960°C for 4 h. Oxygen was evolved at the anode with an anodic current efficiency of 78.28%. The results demonstrate that this two-step process is remarkably feasible for the extraterrestrial extraction of oxygen and metals. This process will help expand the existing in situ resource utilization methods.

  9. Aluminum reduction cell electrode

    DOEpatents

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  10. Synthetic Fabrication of Nanoscale MoS2-Based Transition Metal Sulfides

    PubMed Central

    Wang, Shutao; An, Changhua; Yuan, Jikang

    2010-01-01

    Transition metal sulfides are scientifically and technologically important materials. This review summarizes recent progress on the synthetic fabrication of transition metal sulfides nanocrystals with controlled shape, size, and surface functionality. Special attention is paid to the case of MoS2 nanoparticles, where organic (surfactant, polymer), inorganic (support, promoter, doping) compounds and intercalation chemistry are applied.

  11. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  12. Semiconductor assisted metal deposition for nanolithography applications

    DOEpatents

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  13. Seasonal drought effects on the water quality of the Biobío River, Central Chile.

    PubMed

    Yevenes, Mariela A; Figueroa, Ricardo; Parra, Oscar

    2018-05-01

    Quantifying the effect of droughts on ecosystem functions is essential to the development of coastal zone and river management under a changing climate. It is widely acknowledged that climate change is increasing the frequency and intensity of droughts, which can affect important ecosystem services, such as the regional supply of clean water. Very little is understood about how droughts affect the water quality of Chilean high flow rivers. This paper intends to investigate the effect of an, recently identified, unprecedented drought in Chile (2010-2015), on the Biobío River water quality, (36°45'-38°49' S and 71°00'-73°20' W), Central Chile. This river is one of the largest Chilean rivers and it provides abundant freshwater. Water quality (water temperature, pH, dissolved oxygen, electrical conductivity, biological oxygen demand, total suspended solids, chloride, sodium, nutrients, and trace metals), during the drought (2010-2015), was compared with a pre-drought period (2000-2009) over two reaches (upstream and downstream) of the river. Multivariate analysis and seasonal Mann-Kendall trend analyses and a Theil-Sen estimator were employed to analyze trends and slopes of the reaches. Results indicated a significant decreased trend in total suspended solids and a slightly increasing trend in water temperature and EC, major ions, and trace metals (chrome, lead, iron, and cobalt), mainly in summer and autumn during the drought. The reduced variability upstream suggested that nutrient and metal concentrations were more constant than downstream. The results evidenced, due to the close relationship between river discharge and water quality, a slightly decline of the water quality downstream of the Biobío River during drought period, which could be attenuated in a post-drought period. These results displayed that water quality is vulnerable to reductions in flow, through historical and emerging solutes/contaminants and induced pH mobilization. Consequently, seasonal changes and a progressive reduction of river flow affect the ecosystem functionality in this key Chilean river. The outcomes from this research can be used to improve how low flow conditions and the effects of a reduction in the river volume and discharge are assessed, which is the case under the scenario of more frequent drought periods.

  14. Metals purification by improved vacuum arc remelting

    DOEpatents

    Zanner, Frank J.; Williamson, Rodney L.; Smith, Mark F.

    1994-12-13

    The invention relates to improved apparatuses and methods for remelting metal alloys in furnaces, particularly consumable electrode vacuum arc furnaces. Excited reactive gas is injected into a stationary furnace arc zone, thus accelerating the reduction reactions which purify the metal being melted. Additionally, a cooled condensation surface is disposed within the furnace to reduce the partial pressure of water in the furnace, which also fosters the reduction reactions which result in a purer produced ingot. Methods and means are provided for maintaining the stationary arc zone, thereby reducing the opportunity for contaminants evaporated from the arc zone to be reintroduced into the produced ingot.

  15. Method of producing silicon. [gas phase reactor multiple injector liquid feed system

    NASA Technical Reports Server (NTRS)

    Wolf, C. B.; Meyer, T. N. (Inventor)

    1980-01-01

    A liquid reactant injector assembly suited for the injection of liquid reactant into a high temperature metal reductant vapor and carrier gas stream for the production of metal is presented. The assembly is especially adapted for the continuous production of high purity silicon by the reduction of SiCl4 with sodium. The assembly includes a refractory-lined, hollow metal shell having ten equally-spaced, concentric, radially directed ports provided in the shell and wall. A hydraulic, atomizing type spray nozzle is mounted in each of the ports recessed from the inner wall surface.

  16. Secondary-volatiles linked metallic iron in eucrites: The dual-origin metals of Camel Donga

    NASA Astrophysics Data System (ADS)

    Warren, Paul H.; Isa, Junko; Ebihara, Mitsuru; Yamaguchi, Akira; Baecker, Bastian

    2017-04-01

    The unique occurrence of abundant ( 1 vol%) near-pure-Fe metal in the Camel Donga eucrite is more complicated than previously believed. In addition to that component of groundmass metal, scattered within the meteorite are discrete nodules of much higher kamacite abundance. We have studied the petrology and composition of two of these nodules in the form of samples we call CD2 and CD3. The nodules are ovoids 11 (CD2) to 15 (CD3) mm across, with metal, or inferred preweathering metal, abundances of 12-17 vol% (CD2 is unfortunately quite weathered). The CD3 nodule also includes at its center a 5 mm ovoid clumping (6 vol%) of F-apatite. Both nodules are fine-grained, so the high Fe metal and apatite contents are clearly not flukes of inadequate sampling. The metals within the nodules are distinctly Ni-rich (0.3-0.6 wt%) compared to the pure-Fe (Ni generally 0.01 wt%) groundmass metals. Bulk analyses of three pieces of the CD2 nodule show that trace siderophile elements Ir, Os, and Co are commensurately enriched; Au is enriched to a lesser degree. The siderophile evidence shows the nodules did not form by in situ reduction of pyroxene FeO. Moreover, the nodules do not show features such as silica-phase enrichment or pyroxene with reduced FeO (as constrained by FeO/MgO and especially FeO/MnO) predicted by the in situ reduction model. The oxide minerals, even in groundmass samples well away from the nodules, also show little evidence of reduction. Although the nodule boundaries are generally sharp, groundmass-metal Ni content is anti-correlated with distance from the CD3 nodule. We infer that the nodules represent materials that originated within impactors into the Camel Donga portion of the eucrite crust, but probably were profoundly altered during later metamorphism/metasomatism. Origin of the pure-Fe groundmass metal remains enigmatic. In situ reduction probably played an important role, and association in the same meteorite of the Fe-nodules is probably significant. But the fluid during alteration was probably not (as previously modeled) purely S and O, of simple heat-driven internal derivation. We conjecture a two-stage metasomatism, as fluids passed through Camel Donga after impact heating of volatile-rich chondritic masses (survivors of gentle accretionary impacts) within the nearby crust. First, reduction to form troilite may have been triggered by fluids rich in S2 and CO (derived from the protonodules?), and then in a distinct later stage, fluids were (comparatively) H2O-rich, and thus reacted with troilite to form pure-Fe metal along with H2S and SO2. The early eucrite crust was in places a dynamic fluid-bearing environment that hosted complex chemical processes, including some that engendered significant diversity among metal+sulfide alterations.

  17. Effect of temperature in the selective reduction process of limonite nickel ore

    NASA Astrophysics Data System (ADS)

    Mayangsari, W.; Febriana, Eni; Prasetyo, A. B.

    2018-05-01

    Temperature is the main factor for the reduction process that influence to reduction degree, phase and morphology transformation. In order to determine these effects which is caused by reduction temperature, this study was conducted. Limoniticnickel ore was prepared by drying and size reduction. A part of prepared limonitewas characterized with XRF to determine the chemical composition. The other part was mixed with reducing agent and CaSO4 to produce pellet. A series of selective reduction processes were conducted to the pellet by using graphite crucible in the muffle furnace carbolite at 800° - 1100°C for 60 minutes. Reduced ore characterized by using XRD and SEM analysis. Based on the result study, weight loss and reduction degree increase as temperature raised along with CaSO4 addition. Moreover, it caused decomposition and transformation to the metallic phase of kamacite and iron up to 7.51% and 41.44% respectively in the reduction process at 1100°C for 60 minutes. Furthermore, particle size growth as metallic phase content increased.

  18. Pyrochemical recovery of plutonium from calcium fluoride reduction slag

    DOEpatents

    Christensen, D.C.

    A pyrochemical method of recovering finely dispersed plutonium metal from calcium fluoride reduction slag is claimed. The plutonium-bearing slag is crushed and melted in the presence of at least an equimolar amount of calcium chloride and a few percent metallic calcium. The calcium chloride reduces the melting point and thereby decreases the viscosity of the molten mixture. The calcium reduces any oxidized plutonium in the mixture and also causes the dispersed plutonium metal to coalesce and settle out as a separate metallic phase at the bottom of the reaction vessel. Upon cooling the mixture to room temperature, the solid plutonium can be cleanly separated from the overlying solid slag, with an average recovery yield on the order of 96 percent.

  19. Metal/dielectric/metal sandwich film for broadband reflection reduction

    PubMed Central

    Jen, Yi-Jun; Lakhtakia, Akhlesh; Lin, Meng-Jie; Wang, Wei-Hao; Wu, Huang-Ming; Liao, Hung-Sheng

    2013-01-01

    A film comprising randomly distributed metal/dielectric/metal sandwich nanopillars with a distribution of cross-sectional diameters, displayed extremely low reflectance over the blue-to-red regime, when coated on glass and illuminated normally. When it is illuminated by normally incident light, this sandwich film (SWF) has a low extinction coefficient, its phase thickness is close to a negative wavelength in the blue-to-red spectral regime, and it provides weakly dispersive forward and backward impedances, so that reflected waves from the two faces of the SWF interfere destructively. Broadband reflection-reduction, over a wide range of incidence angles and regardless of the polarization state of the incident light, was observed when the SWF was deposited on polished silicon. PMID:23591704

  20. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries.

    PubMed

    Chen, Xiangping; Guo, Chunxiu; Ma, Hongrui; Li, Jiazhu; Zhou, Tao; Cao, Ling; Kang, Duozhi

    2018-05-01

    It is significant to recover metal values from spent lithium ion batteries (LIBs) for the alleviation or prevention of potential risks towards environmental pollution and public health, as well as for the conservation of valuable metals. Herein a hydrometallurgical process was proposed to explore the possibility for the leaching of different metals from waste cathodic materials (LiCoO 2 ) of spent LIBs using organics as reductant in sulfuric acid medium. According to the leaching results, about 98% Co and 96% Li can be leached under the optimal experimental conditions of reaction temperature - 95 °C, reaction time - 120 min, reductive agent dosage - 0.4 g/g, slurry density - 25 g/L, concentration of sulfuric acid-3 mol/L in H 2 SO 4  + glucose leaching system. Similar results (96% Co and 100% Li) can be obtained in H 2 SO 4  + sucrose leaching system under optimized leaching conditions. Despite a complete leaching of Li (∼100%), only 54% Co can be dissolved in the H 2 SO 4  + cellulose leaching system under optimized leaching conditions. Finally, different characterization methods, including UV-Vis, FT-IR, SEM and XRD, were employed for the tentative exploration of reductive leaching reactions using organic as reductant in sulfuric acid medium. All the leaching and characterization results confirm that both glucose and sucrose are effective reductants during leaching, while cellulose should be further degraded to organics with low molecular weights to achieve a satisfactory leaching performance. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. REDUCTION OF COAL-BASED METAL EMISSIONS BY FURNACE SORBENT INJECTION

    EPA Science Inventory

    The ability of sorbent injection technology to reduce the potential for trace metal emissions from coal combustion was researched. Pilot scale tests of high-temperature furnace sorbent injection were accompanied by stack sampling for coal-based, metallic air toxics. Tested sorben...

  2. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema.

    PubMed

    Mondoñedo, Jarred R; Suki, Béla

    2017-02-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction.

  3. Predicting Structure-Function Relations and Survival following Surgical and Bronchoscopic Lung Volume Reduction Treatment of Emphysema

    PubMed Central

    Mondoñedo, Jarred R.

    2017-01-01

    Lung volume reduction surgery (LVRS) and bronchoscopic lung volume reduction (bLVR) are palliative treatments aimed at reducing hyperinflation in advanced emphysema. Previous work has evaluated functional improvements and survival advantage for these techniques, although their effects on the micromechanical environment in the lung have yet to be determined. Here, we introduce a computational model to simulate a force-based destruction of elastic networks representing emphysema progression, which we use to track the response to lung volume reduction via LVRS and bLVR. We find that (1) LVRS efficacy can be predicted based on pre-surgical network structure; (2) macroscopic functional improvements following bLVR are related to microscopic changes in mechanical force heterogeneity; and (3) both techniques improve aspects of survival and quality of life influenced by lung compliance, albeit while accelerating disease progression. Our model predictions yield unique insights into the microscopic origins underlying emphysema progression before and after lung volume reduction. PMID:28182686

  4. Method of microbially producing metal gallate spinel nano-objects, and compositions produced thereby

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duty, Chad E.; Jellison, Jr., Gerald E.; Love, Lonnie J.

    A method of forming a metal gallate spinel structure that includes mixing a divalent metal-containing salt and a gallium-containing salt in solution with fermentative or thermophilic bacteria. In the process, the bacteria nucleate metal gallate spinel nano-objects from the divalent metal-containing salt and the gallium-containing salt without requiring reduction of a metal in the solution. The metal gallate spinel structures, as well as light-emitting structures in which they are incorporated, are also described.

  5. Mechanisms for the Reduction of Actinides and Tc(VII) in Geobacter sulfurreducens

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lloyd, Jonathan R.

    2004-06-01

    The mechanism of the reduction of U(VI) and Cr(VI) has now been studied in detail. Cr(VI) is reduced by one-electron transfer reactions to Cr(III), via a cell-bound Cr(V) intermediate identified by EPR spectroscopy. Studies with a cytochrome c7 mutant demonstrate that the electron transfer chain includes this protein which may be the terminal reductase for Cr(VI). Potential mechanisms of inhibition of Cr(III) precipitation, involving complex formation with organic acids commonly used as electron donors for metal reduction in the subsurface have also been identified. We have also initiated a collaboration with computational chemists led by Prof Ian Hillier in Manchester,more » to model metal binding to cytochrome c7, and subsequent electron transfer from the enzyme to the metal quantum mechanically.« less

  6. Bio-inspired nanocatalysts for the oxygen reduction reaction.

    PubMed

    Grumelli, Doris; Wurster, Benjamin; Stepanow, Sebastian; Kern, Klaus

    2013-01-01

    Electrochemical conversions at fuel cell electrodes are complex processes. In particular, the oxygen reduction reaction has substantial overpotential limiting the electrical power output efficiency. Effective and inexpensive catalytic interfaces are therefore essential for increased performance. Taking inspiration from enzymes, earth-abundant metal centres embedded in organic environments present remarkable catalytic active sites. Here we show that these enzyme-inspired centres can be effectively mimicked in two-dimensional metal-organic coordination networks self-assembled on electrode surfaces. Networks consisting of trimesic acid and bis-pyridyl-bispyrimidine coordinating to single iron and manganese atoms on Au(111) effectively catalyse the oxygen reduction and reveal distinctive catalytic activity in alkaline media. These results demonstrate the potential of surface-engineered metal-organic networks for electrocatalytic conversions. Specifically designed coordination complexes at surfaces inspired by enzyme cofactors represent a new class of nanocatalysts with promising applications in electrocatalysis.

  7. Recent progress on fabrication of memristor and transistor-based neuromorphic devices for high signal processing speed with low power consumption

    NASA Astrophysics Data System (ADS)

    Hadiyawarman; Budiman, Faisal; Goldianto Octensi Hernowo, Detiza; Pandey, Reetu Raj; Tanaka, Hirofumi

    2018-03-01

    The advanced progress of electronic-based devices for artificial neural networks and recent trends in neuromorphic engineering are discussed in this review. Recent studies indicate that the memristor and transistor are two types of devices that can be implemented as neuromorphic devices. The electrical switching characteristics and physical mechanism of neuromorphic devices based on metal oxide, metal sulfide, silicon, and carbon materials are broadly covered in this review. Moreover, the switching performance comparison of several materials mentioned above are well highlighted, which would be useful for the further development of memristive devices. Recent progress in synaptic devices and the application of a switching device in the learning process is also discussed in this paper.

  8. The role of metals in production and scavenging of reactive oxygen species in photosystem II.

    PubMed

    Pospíšil, Pavel

    2014-07-01

    Metal ions play a crucial role in enzymatic reactions in all photosynthetic organisms such as cyanobacteria, algae and plants. It well known that metal ions maintain the binding of substrate in the active site of the metalloenzymes and control the redox activity of the metalloenzyme in the enzymatic reaction. A large pigment-protein complex, PSII, known to serve as a water-plastoquinone oxidoreductase, contains three metal centers comprising non-heme iron, heme iron of Cyt b559 and the water-splitting manganese complex. Metal ions bound to PSII proteins maintain the electron transport from water to plastoquinone and regulate the pro-oxidant and antioxidant activity in PSII. In this review, attention is focused on the role of PSII metal centers in (i) the formation of superoxide anion and hydroxyl radicals by sequential one-electron reduction of molecular oxygen and the formation of hydrogen peroxide by incomplete two-electron oxidation of water; and (ii) the elimination of superoxide anion radical by one-electron oxidation and reduction (superoxide dismutase activity) and of hydrogen peroxide by two-electron oxidation and reduction (catalase activity). The balance between the formation and elimination of reactive oxygen species by PSII metal centers is discussed as an important aspect in the prevention of photo-oxidative damage of PSII proteins and lipids. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes.

    PubMed

    Ali, Fayaz; Khan, Sher Bahadar; Kamal, Tahseen; Alamry, Khalid A; Bakhsh, Esraa M; Asiri, Abdullah M; Sobahi, Tariq R A

    2018-07-15

    Different metal nanoparticles (MNPs) templated on chitosan-silica (CH-SiO 2 ) nanocomposite fiber were prepared via simple and fast method of the metal ions uptake by fiber and their subseqent reduction using strong reducing agent. The performance difference of CH-SiO 2 templated with Cu, Co, Ag and Ni nanoparticles for both reduction of 4-nitroaniline (4-NA) and decolorization of congo red (CR) was investigated. The Cu nanoparticles loaded CH-SiO 2 (Cu/CH-SiO 2 ), showed high catalytic efficiencies in the reduction of 4-NA and CR, as compared to other loaded MNP fibers. The apparent rate constants of 6.17 × 10 -3  s -1 and 1.68 × 10 -2  s -1 and turnover frequencies (TOF) of 4.693 h -1 and 3.965 h -1 were observed for the reduction of 4-NA and CR, respectively. In addition, the catalytic activity of Cu/CH-SiO 2 catalyst was also examined and found efficient in the reduction of nitrophenols (2-NP, 3-NP and 4-NP), and other dyes. Thus, Cu/CH-SiO 2 with excellent catalytic activity can also be employed for other applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Vanadium(V) Reduction by Shewanella oneidensis MR-1 Requires Menaquinone and Cytochromes from the Cytoplasmic and Outer Membranes

    PubMed Central

    Myers, Judith M.; Antholine, William E.; Myers, Charles R.

    2004-01-01

    The metal-reducing bacterium Shewanella oneidensis MR-1 displays remarkable anaerobic respiratory plasticity, which is reflected in the extensive number of electron transport components encoded in its genome. In these studies, several cell components required for the reduction of vanadium(V) were determined. V(V) reduction is mediated by an electron transport chain which includes cytoplasmic membrane components (menaquinone and the tetraheme cytochrome CymA) and the outer membrane (OM) cytochrome OmcB. A partial role for the OM cytochrome OmcA was evident. Electron spin resonance spectroscopy demonstrated that V(V) was reduced to V(IV). V(V) reduction did not support anaerobic growth. This is the first report delineating specific electron transport components that are required for V(V) reduction and of a role for OM cytochromes in the reduction of a soluble metal species. PMID:15006760

  11. Rate Dependent Multi-Mechanism Discharge of Ag 0.50VOP 4·1.8H 2O: Insights from In Situ Energy Dispersive X-ray Diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huie, Matthew M.; Bock, David C.; Zhong, Zhong

    Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less

  12. Rate Dependent Multi-Mechanism Discharge of Ag 0.50VOP 4·1.8H 2O: Insights from In Situ Energy Dispersive X-ray Diffraction

    DOE PAGES

    Huie, Matthew M.; Bock, David C.; Zhong, Zhong; ...

    2016-09-01

    Ag 0.50VOPO 4·1.8H 2O (silver vanadium phosphate, SVOP) demonstrates a counterintuitive higher initial loaded voltage under higher discharge current. Energy dispersive X-ray diffraction (EDXRD) from synchrotron radiation was used to create tomographic profiles of cathodes at various depths of discharge for two discharge rates. SVOP displays two reduction mechanisms, reduction of a vanadium center accompanied by lithiation of the structure, or reduction-displacement of a silver cation to form silver metal. In-situ EDXRD provides the opportunity to observe spatially resolved changes to the parent SVOP crystal and formation of Ag 0 during reduction. At a C/170 discharge rate V 5+ reductionmore » is the preferred initial reaction resulting in higher initial loaded voltage. At a discharge rate of C/400 reduction of Ag + with formation of conductive Ag 0 occurs earlier during discharge. Discharge rate also affects the spatial location of reduction products. The faster discharge rate initiates reduction close to the current collector with non-uniform distribution of silver metal resulting in isolated cathode areas. The slower rate develops a more homogenous distribution of reduced SVOP and silver metal. This study illuminates the roles of electronic and ionic conductivity limitations within a cathode at the mesoscale and how they impact the course of reduction processes and loaded voltage.« less

  13. Porosity and environment

    NASA Technical Reports Server (NTRS)

    Piwonka, T. S.

    1984-01-01

    Significant progress was achieved when it was realized that porosity could be analyzed successfully by considering not only heat flow, but also fluid flow within the solidifying casting. Sound castings may be produced by lowering pressure during melting (to allow dissolved gas to escape the melt) and increasing pressure during solidification (to force liquid metal into the mushy zone to feed shrinkage). Such techniques are especially effective if they are combined with chilling of parts of the casting to produce progressive solidification, which shortens the mushy zone and, hence, the distance that metal must travel to feed porosity.

  14. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  15. Photocrystallographic observation of halide-bridged intermediates in halogen photoeliminations.

    PubMed

    Powers, David C; Anderson, Bryce L; Hwang, Seung Jun; Powers, Tamara M; Pérez, Lisa M; Hall, Michael B; Zheng, Shao-Liang; Chen, Yu-Sheng; Nocera, Daniel G

    2014-10-29

    Polynuclear transition metal complexes, which frequently constitute the active sites of both biological and chemical catalysts, provide access to unique chemical transformations that are derived from metal-metal cooperation. Reductive elimination via ligand-bridged binuclear intermediates from bimetallic cores is one mechanism by which metals may cooperate during catalysis. We have established families of Rh2 complexes that participate in HX-splitting photocatalysis in which metal-metal cooperation is credited with the ability to achieve multielectron photochemical reactions in preference to single-electron transformations. Nanosecond-resolved transient absorption spectroscopy, steady-state photocrystallography, and computational modeling have allowed direct observation and characterization of Cl-bridged intermediates (intramolecular analogues of classical ligand-bridged intermediates in binuclear eliminations) in halogen elimination reactions. On the basis of these observations, a new class of Rh2 complexes, supported by CO ligands, has been prepared, allowing for the isolation and independent characterization of the proposed halide-bridged intermediates. Direct observation of halide-bridged structures establishes binuclear reductive elimination as a viable mechanism for photogenerating energetic bonds.

  16. Organic substrates as electron donors in permeable reactive barriers for removal of heavy metals from acid mine drainage.

    PubMed

    Kijjanapanich, P; Pakdeerattanamint, K; Lens, P N L; Annachhatre, A P

    2012-12-01

    This research was conducted to select suitable natural organic substrates as potential carbon sources for use as electron donors for biological sulphate reduction in a permeable reactive barrier (PRB). A number of organic substrates were assessed through batch and continuous column experiments under anaerobic conditions with acid mine drainage (AMD) obtained from an abandoned lignite coal mine. To keep the heavy metal concentration at a constant level, the AMD was supplemented with heavy metals whenever necessary. Under anaerobic conditions, sulphate-reducing bacteria (SRB) converted sulphate into sulphide using the organic substrates as electron donors. The sulphide that was generated precipitated heavy metals as metal sulphides. Organic substrates, which yielded the highest sulphate reduction in batch tests, were selected for continuous column experiments which lasted over 200 days. A mixture of pig-farm wastewater treatment sludge, rice husk and coconut husk chips yielded the best heavy metal (Fe, Cu, Zn and Mn) removal efficiencies of over 90%.

  17. Direct Reduction of Ferrous Oxides to form an Iron-Rich Alternative Charge Material

    NASA Astrophysics Data System (ADS)

    Ünal, H. İbrahim; Turgut, Enes; Atapek, Ş. H.; Alkan, Attila

    2015-12-01

    In this study, production of sponge iron by direct reduction of oxides and the effect of reductant on metallization were investigated. In the first stage of the study, scale formed during hot rolling of slabs was reduced in a rotating furnace using solid and gas reductants. Coal was used as solid reductant and hydrogen released from the combustion reaction of LNG was used as the gas one. The sponge iron produced by direct reduction was melted and solidified. In the second stage, Hematite ore in the form of pellets was reduced using solid carbon in a furnace heated up to 1,100°C for 60 and 120 minutes. Reduction degree of process was evaluated as a function of time and the ratio of Cfix/Fetotal. In the third stage, final products were examined using scanning electron microscope and microanalysis was carried out by energy dispersive x-ray spectrometer attached to the electron microscope. It is concluded that (i) direct reduction using both solid and gas reductants caused higher metallization compared to using only solid reductant, (ii) as the reduction time and ratio of Cfix/Fetotal increased %-reduction of ore increased.

  18. METHOD FOR THE REDUCTION OF URANIUM COMPOUNDS

    DOEpatents

    Cooke, W.H.; Crawford, J.W.C.

    1959-05-12

    An improved technique of preparing massive metallic uranium by the reaction at elevated temperature between an excess of alkali in alkaline earth metal and a uranium halide, such ss uranium tetrafluoride is presented. The improvement comprises employing a reducing atmosphere of hydrogen or the like, such as coal gas, in the vessel during the reduction stage and then replacing the reducing atmosphere with argon gas prior to cooling to ambient temperature.

  19. Exploration of the Detailed Conditions for Reductive Stability of Mg(TFSI) 2 in Diglyme: Implications for Multivalent Electrolytes

    DOE PAGES

    Baskin, Artem; Prendergast, David

    2016-02-05

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  20. Co-reduction of Copper Smelting Slag and Nickel Laterite to Prepare Fe-Ni-Cu Alloy for Weathering Steel

    NASA Astrophysics Data System (ADS)

    Guo, Zhengqi; Pan, Jian; Zhu, Deqing; Zhang, Feng

    2018-02-01

    In this study, a new technique was proposed for the economical and environmentally friendly recovery of valuable metals from copper smelting slag while simultaneously upgrading nickel laterite through a co-reduction followed by wet magnetic separation process. Copper slag with a high FeO content can decrease the liquidus temperature of the SiO2-Al2O3-CaO-MgO system and facilitate formation of liquid phase in a co-reduction process with nickel laterite, which is beneficial for metallic particle growth. As a result, the recovery of Ni, Cu, and Fe was notably increased. A crude Fe-Ni-Cu alloy with 2.5% Ni, 1.1% Cu, and 87.9% Fe was produced, which can replace part of scrap steel, electrolytic copper, and nickel as the burden in the production of weathering steel by an electric arc furnace. The study further found that an appropriate proportion of copper slag and nickel laterite in the mixture is essential to enhance the reduction, acquire appropriate amounts of the liquid phase, and improve the growth of the metallic alloy grains. As a result, the liberation of alloy particles in the grinding process was effectively promoted and the metal recovery was increased significantly in the subsequent magnetic separation process.

  1. Dislocation and spontaneous reduction of the femoral implant against the femoral neck in an infected metal on metal hip resurfacing with complex collection.

    PubMed

    Tins, Bernhard

    2011-07-01

    Metal on metal resurfacing hip implants are known to have complications unique to this type of implant. The case presented adds a further previously not described complication, the dislocation and spontaneous reduction of the pin of the femoral component against the femoral neck. The radiographic and CT findings are demonstrated. The dislocation was aided by bone loss due to an infection with a large periarticular collection. Periarticular collections in hip resurfacings are often due to a hypersensitivity type reaction to metal debris. However in the case presented it was due to infection. MRI was not able to discern the infection from a sterile collection. CT demonstrated bone loss and periosteal reaction suggestive of infection. In addition calcification of the pseudocapsule was seen, this is not a recognized feature of sterile collections. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  2. Synthesis of nanoparticles using ethanol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jia Xu

    The present disclosure relates to methods for producing nanoparticles. The nanoparticles may be made using ethanol as the solvent and the reductant to fabricate noble-metal nanoparticles with a narrow particle size distributions, and to coat a thin metal shell on other metal cores. With or without carbon supports, particle size is controlled by fine-tuning the reduction power of ethanol, by adjusting the temperature, and by adding an alkaline solution during syntheses. The thickness of the added or coated metal shell can be varied easily from sub-monolayer to multiple layers in a seed-mediated growth process. The entire synthesis of designed core-shellmore » catalysts can be completed using metal salts as the precursors with more than 98% yield; and, substantially no cleaning processes are necessary apart from simple rinsing. Accordingly, this method is considered to be a "green" chemistry method.« less

  3. Water treatment process and system for metals removal using Saccharomyces cerevisiae

    DOEpatents

    Krauter, Paula A. W.; Krauter, Gordon W.

    2002-01-01

    A process and a system for removal of metals from ground water or from soil by bioreducing or bioaccumulating the metals using metal tolerant microorganisms Saccharomyces cerevisiae. Saccharomyces cerevisiae is tolerant to the metals, able to bioreduce the metals to the less toxic state and to accumulate them. The process and the system is useful for removal or substantial reduction of levels of chromium, molybdenum, cobalt, zinc, nickel, calcium, strontium, mercury and copper in water.

  4. Progress in advanced high temperature materials technology

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ault, G. M.

    1976-01-01

    Significant progress has recently been made in many high temperature material categories pertinent to such applications by the industrial community. These include metal matrix composites, superalloys, directionally solidified eutectics, coatings, and ceramics. Each of these material categories is reviewed and the current state-of-the-art identified, including some assessment, when appropriate, of progress, problems, and future directions.

  5. Nanocarbon/oxide composite catalysts for bifunctional oxygen reduction and evolution in reversible alkaline fuel cells: A mini review

    NASA Astrophysics Data System (ADS)

    Chen, Mengjie; Wang, Lei; Yang, Haipeng; Zhao, Shuai; Xu, Hui; Wu, Gang

    2018-01-01

    A reversible fuel cell (RFC), which integrates a fuel cell with an electrolyzer, is similar to a rechargeable battery. This technology lies on high-performance bifunctional catalysts for the oxygen reduction reaction (ORR) in the fuel cell mode and the oxygen evolution reaction (OER) in the electrolyzer mode. Current catalysts are platinum group metals (PGM) such as Pt and Ir, which are expensive and scarce. Therefore, it is highly desirable to develop PGM-free catalysts for large-scale application of RFCs. In this mini review, we discussed the most promising nanocarbon/oxide composite catalysts for ORR/OER bifunctional catalysis in alkaline media, which is mainly based on our recent progress. Starting with the effectiveness of selected oxides and nanocarbons in terms of their activity and stability, we outlined synthetic methods and the resulting structures and morphologies of catalysts to provide a correlation between synthesis, structure, and property. A special emphasis is put on understanding of the possible synergistic effect between oxide and nanocarbon for enhanced performance. Finally, a few nanocomposite catalysts are discussed as typical examples to elucidate the rules of designing highly active and durable bifunctional catalysts for RFC applications.

  6. Efficient selective catalytic reduction of NO by novel carbon-doped metal catalysts made from electroplating sludge.

    PubMed

    Zhang, Jia; Zhang, Jingyi; Xu, Yunfeng; Su, Huimin; Li, Xiaoman; Zhou, Ji Zhi; Qian, Guangren; Li, Li; Xu, Zhi Ping

    2014-10-07

    Electroplating sludges, once regarded as industrial wastes, are precious resources of various transition metals. This research has thus investigated the recycling of an electroplating sludge as a novel carbon-doped metal (Fe, Ni, Mg, Cu, and Zn) catalyst, which was different from a traditional carbon-supported metal catalyst, for effective NO selective catalytic reduction (SCR). This catalyst removed >99.7% NO at a temperature as low as 300 °C. It also removed NO steadily (>99%) with a maximum specific accumulative reduced amount (MSARA) of 3.4 mmol/g. Gas species analyses showed that NO removal was accompanied by evolving N2 and CO2. Moreover, in a wide temperature window, the sludge catalyst showed a higher CO2 selectivity (>99%) than an activated carbon-supported metal catalyst. Structure characterizations revealed that carbon-doped metal was transformed to metal oxide in the sludge catalyst after the catalytic test, with most carbon (2.33 wt %) being consumed. These observations suggest that NO removal over the sludge catalyst is a typical SCR where metals/metal oxides act as the catalytic center and carbon as the reducing reagent. Therefore, our report probably provides an opportunity for high value-added utilizations of heavy-metal wastes in mitigating atmospheric pollutions.

  7. EUO-Based Multifunctional Heterostructures

    DTIC Science & Technology

    2015-06-06

    magnetoresistance and the metal -insulator transition resistance ratios of doped EuO by interfacing this semiconductor with niobium; the observed effect is...general and may be applied to any metal /semiconductor interface where the semiconductor shows large Zeeman splitting under magnetic field, (2...understanding the changes in electronic structure and Fermi-surface reconstruction that occur as doped EuO progresses through the ferromagnetic metal

  8. Reduction of metal artifact in three-dimensional computed tomography (3D CT) with dental impression materials.

    PubMed

    Park, W S; Kim, K D; Shin, H K; Lee, S H

    2007-01-01

    Metal Artifact still remains one of the main drawbacks in craniofacial Three-Dimensional Computed Tomography (3D CT). In this study, we tried to test the efficacy of additional silicone dental impression materials as a "tooth shield" for the reduction of metal artifact caused by metal restorations and orthodontic appliances. 6 phantoms with 4 teeth were prepared for this in vitro study. Orthodontic bracket, bands and amalgam restorations were placed in each tooth to reproduce various intraoral conditions. Standardized silicone shields were fabricated and placed around the teeth. CT image acquisition was performed with and without silicone shields. Maximum value, mean, and standard deviation of Hounsfield Units (HU) were compared with the presence of silicone shields. In every situation, metal artifacts were reduced in quality and quantity when silicone shields are used. Amalgam restoration made most serious metal artifact. Silicone shields made by dental impression material might be effective way to reduce the metal artifact caused by dental restoration and orthodontic appliances. This will help more excellent 3D image from 3D CT in craniofacial area.

  9. Pacemaker-induced Metallic Artifacts in Coronary Computed Tomography Angiography: Clinical Feasibility of Single Energy Metal Artifact Reduction Technique.

    PubMed

    Takayanagi, Tomoya; Arai, Takehiro; Amanuma, Makoto; Sano, Tomonari; Ichiba, Masato; Ishizaka, Kazumasa; Sekine, Takako; Matsutani, Hideyuki; Morita, Hitomi; Takase, Shinichi

    2017-01-01

    Coronary computed tomography angiography (CCTA) in patients with pacemaker suffers from metallic lead-induced artifacts, which often interfere with accurate assessment of coronary luminal stenosis. The purpose of this study was to assess a frequency of the lead-induced artifacts and artifact-suppression effect by the single energy metal artifact reduction (SEMAR) technique. Forty-one patients with a dual-chamber pacemaker were evaluated using a 320 multi-detector row CT (MDCT). Among them, 22 patients with motion-free full data reconstruction images were the final candidates. Images with and without the SMEAR technique were subjectively compared, and the degree of metallic artifacts was compared. On images without SEMAR, severe metallic artifacts were often observed in the right coronary artery (#1, #2, #3) and distal anterior descending branch (#8). These artifacts were effectively suppressed by SEMAR, and the luminal accessibility was significantly improved in #3 and #8. While pacemaker leads often cause metallic-induced artifacts, SEMAR technique reduced the artifacts and significantly improved the accessibility of coronary lumen in #3 and #8.

  10. Novel mesoporous MnCo2O4 nanorods as oxygen reduction catalyst at neutral pH in microbial fuel cells.

    PubMed

    Kumar, Ravinder; Singh, Lakhveer; Wahid, Zularisam Ab; Mahapatra, Durga Madhab; Liu, Hong

    2018-04-01

    The aim of this work was to evaluate the comparative performance of hybrid metal oxide nanorods i.e. MnCo 2 O 4 nanorods (MCON) and single metal oxide nanorods i.e. Co 3 O 4 nanorods (CON) as oxygen reduction catalyst in microbial fuel cells (MFC). Compared to the single metal oxide, the hybrid MCON exhibited a higher BET surface area and provided additional positively charged ions, i.e., Co 2+ /Co 3+ and Mn 3+ /Mn 4+ on its surfaces, which increased the electro-conductivity of the cathode and improved the oxygen reduction kinetics significantly, achieved an i o of 6.01 A/m 2 that was 12.4% higher than CON. Moreover, the porous architecture of MCON facilitated the diffusion of electrolyte, reactants and electrons during the oxygen reduction, suggested by lower diffusion (R d ), activation (R act ) and ohmic resistance (R ohm ) values. This enhanced oxygen reduction by MCON boosted the power generation in MFC, achieving a maximum power density of 587 mW/m 2 that was ∼29% higher than CON. Published by Elsevier Ltd.

  11. Rocksalt nitride metal/semiconductor superlattices: A new class of artificially structured materials

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Shakouri, Ali; Sands, Timothy D.

    2018-06-01

    Artificially structured materials in the form of superlattice heterostructures enable the search for exotic new physics and novel device functionalities, and serve as tools to push the fundamentals of scientific and engineering knowledge. Semiconductor heterostructures are the most celebrated and widely studied artificially structured materials, having led to the development of quantum well lasers, quantum cascade lasers, measurements of the fractional quantum Hall effect, and numerous other scientific concepts and practical device technologies. However, combining metals with semiconductors at the atomic scale to develop metal/semiconductor superlattices and heterostructures has remained a profoundly difficult scientific and engineering challenge. Though the potential applications of metal/semiconductor heterostructures could range from energy conversion to photonic computing to high-temperature electronics, materials challenges primarily had severely limited progress in this pursuit until very recently. In this article, we detail the progress that has taken place over the last decade to overcome the materials engineering challenges to grow high quality epitaxial, nominally single crystalline metal/semiconductor superlattices based on transition metal nitrides (TMN). The epitaxial rocksalt TiN/(Al,Sc)N metamaterials are the first pseudomorphic metal/semiconductor superlattices to the best of our knowledge, and their physical properties promise a new era in superlattice physics and device engineering.

  12. [Progress in research of relationship between heavy metal exposure and cardiovascular disease].

    PubMed

    Lu, F; Zhao, F; Cai, J Y; Liu, L; Shi, X M

    2018-01-10

    Heavy metal is one of pollutants existed widely in the environment, its relationship with cardiovascular disease has attracted more and more attention. In this review, the concentrations of heavy metals, including lead, cadium and asenic, in the body from several national surveillance networks and the epidemiological studies on the effects of the exposure of three heavy metals on cardiovascular system were summarized. It is suggested to strengthen nationwide surveillance for body concentrations of heavy metals in general population in order to provide baseline data for quantitative evaluation of the risk of heavy metal exposure on cardiovascular disease.

  13. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE PAGES

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; ...

    2017-07-13

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  14. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas

    Tin and lead iodide perovskite semiconductors of the composition AMX 3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tendsmore » to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. In conclusion, the mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.« less

  15. Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

    PubMed

    Prasanna, Rohit; Gold-Parker, Aryeh; Leijtens, Tomas; Conings, Bert; Babayigit, Aslihan; Boyen, Hans-Gerd; Toney, Michael F; McGehee, Michael D

    2017-08-16

    Tin and lead iodide perovskite semiconductors of the composition AMX 3 , where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of 3D metal halide perovskites. Using a smaller A-site cation can distort the perovskite lattice in two distinct ways: by tilting the MX 6 octahedra or by simply contracting the lattice isotropically. The former effect tends to raise the band gap, while the latter tends to decrease it. Lead iodide perovskites show an increase in band gap upon partial substitution of the larger formamidinium with the smaller cesium, due to octahedral tilting. Perovskites based on tin, which is slightly smaller than lead, show the opposite trend: they show no octahedral tilting upon Cs-substitution but only a contraction of the lattice, leading to progressive reduction of the band gap. We outline a strategy to systematically tune the band gap and valence and conduction band positions of metal halide perovskites through control of the cation composition. Using this strategy, we demonstrate solar cells that harvest light in the infrared up to 1040 nm, reaching a stabilized power conversion efficiency of 17.8%, showing promise for improvements of the bottom cell of all-perovskite tandem solar cells. The mechanisms of cation-based band gap tuning we describe are broadly applicable to 3D metal halide perovskites and will be useful in further development of perovskite semiconductors for optoelectronic applications.

  16. Photoinitiated Electron Collection in Mixed-Metal Supramolecular Complexes: Development of Photocatalysts for Hydrogen Production. Final Report of Progress August 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tanko, James M.

    Mixed-metal supramolecular complexes containing one or two RuII light absorbing subunits coupled through polyazine bridging ligands to a RhIII reactive metal center were prepared for use as photocatalysts for the production of solar H 2 fuel from H 2O. The electrochemical, photophysical, and photochemical properties upon variation of the monodentate, labile ligands coordinated to the Rh reactive metal center were investigated.

  17. The impact of the worldwide Millennium Development Goals campaign on maternal and under-five child mortality reduction: ‘Where did the worldwide campaign work most effectively?’

    PubMed Central

    Cha, Seungman

    2017-01-01

    ABSTRACT Background: As the Millennium Development Goals campaign (MDGs) came to a close, clear evidence was needed on the contribution of the worldwide MDG campaign. Objective: We seek to determine the degree of difference in the reduction rate between the pre-MDG and MDG campaign periods and its statistical significance by region. Design: Unlike the prevailing studies that measured progress in 1990–2010, this study explores by percentage how much MDG progress has been achieved during the MDG campaign period and quantifies the impact of the MDG campaign on the maternal and under-five child mortality reduction during the MDG era by comparing observed values with counterfactual values estimated on the basis of the historical trend. Results: The low accomplishment of sub-Saharan Africa toward the MDG target mainly resulted from the debilitated progress of mortality reduction during 1990–2000, which was not related to the worldwide MDG campaign. In contrast, the other regions had already achieved substantial progress before the Millennium Declaration was proclaimed. Sub-Saharan African countries have seen the most remarkable impact of the worldwide MDG campaign on maternal and child mortality reduction across all different measurements. In sub-Saharan Africa, the MDG campaign has advanced the progress of the declining maternal mortality ratio and under-five mortality rate, respectively, by 4.29 and 4.37 years. Conclusions: Sub-Saharan African countries were frequently labeled as ‘off-track’, ‘insufficient progress’, or ‘no progress’ even though the greatest progress was achieved here during the worldwide MDG campaign period and the impact of the worldwide MDG campaign was most pronounced in this region in all respects. It is time to learn from the success stories of the sub-Saharan African countries. Erroneous and biased measurement should be avoided for the sustainable development goals to progress. PMID:28168932

  18. PRODUCTION OF PLUTONIUM METAL

    DOEpatents

    Lyon, W.L.; Moore, R.H.

    1961-01-17

    A process is given for producing plutonium metal by the reduction of plutonium chloride, dissolved in alkali metal chloride plus or minus aluminum chloride, with magnesium or a magnesium-aluminum alloy at between 700 and 800 deg C and separating the plutonium or plutonium-aluminum alloy formed from the salt.

  19. Printing of metallic 3D micro-objects by laser induced forward transfer.

    PubMed

    Zenou, Michael; Kotler, Zvi

    2016-01-25

    Digital printing of 3D metal micro-structures by laser induced forward transfer under ambient conditions is reviewed. Recent progress has allowed drop on demand transfer of molten, femto-liter, metal droplets with a high jetting directionality. Such small volume droplets solidify instantly, on a nanosecond time scale, as they touch the substrate. This fast solidification limits their lateral spreading and allows the fabrication of high aspect ratio and complex 3D metal structures. Several examples of micron-scale resolution metal objects printed using this method are presented and discussed.

  20. Efficient metal adsorption and microbial reduction from Rawal Lake wastewater using metal nanoparticle coated cotton.

    PubMed

    Ali, Attarad; Gul, Ayesha; Mannan, Abdul; Zia, Muhammad

    2018-05-17

    This study was designed to investigate removal of toxic metals and reduction of bacterial count from Rawal Lake wastewater with novel nanocomposite sorbents. Iron, zinc and silver oxide nanoparticles (NPs) were attached on cotton. The nanocomposites (iron NPs on cotton (FeCt), zinc NPs on cotton (ZnCt) and silver NPs on cotton (AgCt)) were characterized by FTIR, XRD and SEM, which showed successful adsorption of 10-30 nm size nanoparticles. Batch experiments were performed to determine the adsorption capacity of nanocomposite for metal removal. All the three adsorbents demonstrated 100% adsorption efficiency for Ag + , Co 2+ , Fe 3+ , Zn 2+ and Cu 2+ whereas less adsorption for Cd 2+ and Cr 3+ . The maximum adsorbance (qe) was exhibited by Co 2+ on ZnCt, FeCt and AgCt as 125.0, 111.1 and 100.0 mg g -1 , respectively. The efficiency of adsorbents for metal ions sorption was found as AgCt > ZnCt > FeCt while the order of adsorption for metals was observed as Fe 3+  > Co 2+  > Zn 2+  > Cu 2+  > Ag +  > Cr 3+  > Cd 2 + . The adsorption mechanism mostly follow Langmuir isotherm and pseudo-second order kinetic model. The maximum microbial reduction was exhibited by AgCt followed by ZnCt and FeCt. The microbes were further processed for staining and biochemical characteristics to evaluate resistance and sensitive microbes. The study concludes that the NPs doped on cotton can be effectively used for adsorption of heavy metals and reduction of microbial count from natural wastewater making it valuable for human consumption. In addition, the nanoparticles impregnated cotton can be efficiently used in water filtration plants. Copyright © 2018. Published by Elsevier B.V.

  1. SU-F-T-407: Artifact Reduction with Dual Energy Or IMAR: Who’s Winning?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elder, E; Schreibmann, E; Dhabaan, A

    2016-06-15

    Purpose: The purpose of this abstract was to evaluate the performance of commercial strategies for artifact reduction in radiation oncology settings. The iterative metal artifact reduction (Siemens iMAR) algorithm and monoenergetic virtual datasets reconstructed from dual energy scans are compared side-by-side in their ability to image in the presence of metal inserts. Methods: A CIRS ATOM Dosimetry Verification Phantom was scanned with and without a metal insert on a SOMATOM Definition AS dual energy scanner. Images with the metal insert were reconstructed with (a) a tradition single energy CT scan with the iMAR option implemented, using different artifact reduction settingsmore » and (b) a monoenergetic scan calculated from dual energy scans by recovering differences in the energy-dependence of the attenuation coefficients of different materials and then creating a virtual monoenergetic scan from these coefficients. The iMAR and monoenergetic scans were then compared with the metal-free scan to assess changes in HU numbers and noise within a region around the metal insert. Results: Both the iMAR and dual energy scans reduced artifacts produced by the metal insert. However the iMAR results are dependent of the selected algorithm settings, with a mean HU difference ranging from 0.65 to 90.40 for different options. The mean differences without the iMAR correction were 38.74. When using the dual energy scan, the mean differences were 4.53, that is however attributed to increased noise and not artifacts, as the dual energy scan had the lowest skewness (2.52) compared to the iMAR scans (ranging from 3.90 to 4.88) and the lowest kurtosis (5.72 for dual energy, range of 18.19 to 27.36 for iMAR). Conclusion: Both approaches accurately recovered HU numbers, however the dual energy method provided smaller residual artifacts.« less

  2. Microbiology and Biogeochemical Study of Underground Research Tunnel for the Geological Disposal of Nuclear Waste

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Oh, J.; Seo, H.; Rhee, S.

    2007-12-01

    The Underground Research Tunnel (URT) located in Korea Atomic Energy Research Institute (KAERI), Daejeon, South Korea was recently constructed as an experimental site to study radionuclide transport, biogeochemistry, radionuclide-mineral interactions for the geological disposal of high level nuclear waste. Groundwater sampled from URT was used to examine microbial diversity and to enrich metal reducing bacteria for studying microbe- metal interactions. Genomic analysis indicated that the groundwater contained diverse microorganisms such as metal reducers, metal oxidizers, anaerobic denitrifying bacteria, and bacteria for reductive dechlorination. Metal- reducing bacteria enriched from the groundwater was used to study metal reduction and biomineralization. The metal-reducing bacteria enriched with acetate or lactate as the electron donors showed the bacteria reduced Fe(III)-citrate, Fe(III) oxyhydroxides, Mn(IV) oxide, and Cr(VI) as the electron acceptors. Preliminary study indicated that the enriched bacteria were able to use glucose, lactate, acetate, and hydrogen as electron donors while reducing Fe(III)-citrate or Fe(III) oxyhydroxide as the electron acceptor. The bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite, siderite, and rhodochrosite. The results indicated that Fe(III)- and metal-reducing communities are present in URT at the KAERI.

  3. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current workmore » is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.« less

  4. Unifying the 2e(-) and 4e(-) Reduction of Oxygen on Metal Surfaces.

    PubMed

    Viswanathan, Venkatasubramanian; Hansen, Heine Anton; Rossmeisl, Jan; Nørskov, Jens K

    2012-10-18

    Understanding trends in selectivity is of paramount importance for multi-electron electrochemical reactions. The goal of this work is to address the issue of 2e(-) versus 4e(-) reduction of oxygen on metal surfaces. Using a detailed thermodynamic analysis based on density functional theory calculations, we show that to a first approximation an activity descriptor, ΔGOH*, the free energy of adsorbed OH*, can be used to describe trends for the 2e(-) and 4e(-) reduction of oxygen. While the weak binding of OOH* on Au(111) makes it an unsuitable catalyst for the 4e(-) reduction, this weak binding is optimal for the 2e(-) reduction to H2O2. We find quite a remarkable agreement between the predictions of the model and experimental results spanning nearly 30 years.

  5. Why copper is preferred over iron for oxygen activation and reduction in haem-copper oxidases.

    PubMed

    Bhagi-Damodaran, Ambika; Michael, Matthew A; Zhu, Qianhong; Reed, Julian; Sandoval, Braddock A; Mirts, Evan N; Chakraborty, Saumen; Moënne-Loccoz, Pierre; Zhang, Yong; Lu, Yi

    2017-03-01

    Haem-copper oxidase (HCO) catalyses the natural reduction of oxygen to water using a haem-copper centre. Despite decades of research on HCOs, the role of non-haem metal and the reason for nature's choice of copper over other metals such as iron remains unclear. Here, we use a biosynthetic model of HCO in myoglobin that selectively binds different non-haem metals to demonstrate 30-fold and 11-fold enhancements in the oxidase activity of Cu- and Fe-bound HCO mimics, respectively, as compared with Zn-bound mimics. Detailed electrochemical, kinetic and vibrational spectroscopic studies, in tandem with theoretical density functional theory calculations, demonstrate that the non-haem metal not only donates electrons to oxygen but also activates it for efficient O-O bond cleavage. Furthermore, the higher redox potential of copper and the enhanced weakening of the O-O bond from the higher electron density in the d orbital of copper are central to its higher oxidase activity over iron. This work resolves a long-standing question in bioenergetics, and renders a chemical-biological basis for the design of future oxygen-reduction catalysts.

  6. Super-reduced polyoxometalates: excellent molecular cluster battery components and semipermeable molecular capacitors.

    PubMed

    Nishimoto, Yoshio; Yokogawa, Daisuke; Yoshikawa, Hirofumi; Awaga, Kunio; Irle, Stephan

    2014-06-25

    Theoretical investigations are presented on the molecular and electronic structure changes that occur as α-Keggin-type polyoxometalate (POM(3-)) clusters [PM12O40](3-) (M = Mo, W) are converted toward their super-reduced POM(27-) state during the discharging process in lithium-based molecular cluster batteries. Density functional theory was employed in geometry optimization, and first-principles molecular dynamics simulations were used to explore local minima on the potential energy surface of neutral POM clusters adorned with randomly placed Li atoms as electron donors around the cluster surface. On the basis of structural, electron density, and molecular orbital studies, we present evidence that the super-reduction is accompanied by metal-metal bond formation, beginning from the 12th to 14th excess electron transferred to the cluster. Afterward, the number of metal-metal bonds increases nearly linearly with the number of additionally transferred excess electrons. In α-Keggin-type POMs, metal triangles are a prominently emerging structural feature. The origin of the metal triangle formation during super-reduction stems from the formation of characteristic three-center two-electron bonds in triangular metal atom sites, created under preservation of the POM skeleton via "squeezing out" of oxygen atoms bridging two metal atoms when the underlying metal atoms form covalent bonds. The driving force for this unusual geometrical and electronic structure change is a local Jahn-Teller distortion at individual transition-metal octahedral sites, where the triply degenerate t2 d orbitals become partially filled during reduction and gain energy by distortion of the octahedron in such a way that metal-metal bonds are formed. The bonding orbitals show strong contributions from mixing with metal-oxygen antibonding orbitals, thereby "shuffling away" excess electrons from the cluster center to the outside of the cage. The high density of negatively charged yet largely separated oxygen atoms on the surface of the super-reduced POM(27-) polyanion allows the huge Coulombic repulsion due to the presence of the excess electrons to be counterbalanced by the presence of Li countercations, which partially penetrate into the outer oxygen shell. This "semiporous molecular capacitor" structure is likely the reason for the effective electron uptake in POMs.

  7. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOEpatents

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  8. Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly

    DOEpatents

    Byrne, Stephen C.

    1984-01-01

    A nonconsumable electrode assembly suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body.

  9. Lithium Assisted “Dissolution–Alloying” Synthesis of Nanoalloys from Individual Bulk Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barkholtz, Heather M.; Gallagher, James R.; Li, Tao

    2016-04-12

    We report new fundamental chemistry involved in the synthesis of bimetallic nanoalloys via dissolving the pure bulk transition metals in molten lithium. It is revealed at the atomic level that when two pure bulk transition metals such as Pd and Pt are placed in molten lithium (similar to 200 degrees C), they undergo a dissolution process in which the metal-metal bonds in pure bulk transition metals are completely ruptured, which results in the existence of individual Pd and Pt atoms surrounded by lithium atoms, as is evident by synchrotron X-ray adsorption techniques. Then, upon the conversion of metal lithium tomore » LiOH in humid air, the Pd and Pt atoms undergo an alloying process to aggregate into nanoalloys. This method was further expanded to include PdZn, which is notoriously difficult to prepare via traditional nanoalloy synthesis methods due to the easily oxidizable Zn component. The constantly reducing environment of metallic Li allowed for preparation of PdZn nanoalloys with minimal Zn oxidation via dissolution-alloying of individual bulk transition metals in molten lithium. Additionally, this lithium assisted "dissolution-alloying" method bypasses many complications intrinsic to conventional ion reduction-based nanoalloy synthesis including the necessity of ligated metal ions, the use of proper reducing agents and dispersing surfactants, and the presence of segregated phases due to different reduction potentials of the constituent metal ions.« less

  10. Gallium-bearing sphalerite in a metal-sulfide nodule of the Qingzhen (EH3) chondrite

    NASA Technical Reports Server (NTRS)

    Rambaldi, E. R.; Rajan, R. S.; Housley, R. M.; Wang, D.

    1986-01-01

    The composition and possible history of the Qingshen (EH3) chondrite is presented. The chondrite contains a population of spheroidal metal-sulfide nodules, which display textural evidence of reheating and melting. Evidence of metal sulfuration is also present, suggesting replacement of metal by sulfide during melting. This process has led to the nucleation of perryite along metal-sulfide interfaces. The Ga-bearing sphalerite that was found may have formed by injection of molten sulfide droplets into the metal followed by subsolidus diffusion of Ga from the metal into the sulfide. The latter may occur because of Ga supersaturation in the metal during progressive sulfuration and its decreased affinity for the metal phase during cooling below the taenite-kamacite transition point.

  11. Modeling of Thermochemical Behavior in an Industrial-Scale Rotary Hearth Furnace for Metallurgical Dust Recycling

    NASA Astrophysics Data System (ADS)

    Wu, Yu-Liang; Jiang, Ze-Yi; Zhang, Xin-Xin; Xue, Qing-Guo; Yu, Ai-Bing; Shen, Yan-Song

    2017-10-01

    Metallurgical dusts can be recycled through direct reduction in rotary hearth furnaces (RHFs) via addition into carbon-based composite pellets. While iron in the dust is recycled, several heavy and alkali metal elements harmful for blast furnace operation, including Zn, Pb, K, and Na, can also be separated and then recycled. However, there is a lack of understanding on thermochemical behavior related to direct reduction in an industrial-scale RHF, especially removal behavior of Zn, Pb, K, and Na, leading to technical issues in industrial practice. In this work, an integrated model of the direct reduction process in an industrial-scale RHF is described. The integrated model includes three mathematical submodels and one physical model, specifically, a three-dimensional (3-D) CFD model of gas flow and heat transfer in an RHF chamber, a one-dimensional (1-D) CFD model of direct reduction inside a pellet, an energy/mass equilibrium model, and a reduction physical experiment using a Si-Mo furnace. The model is validated by comparing the simulation results with measurements in terms of furnace temperature, furnace pressure, and pellet indexes. The model is then used for describing in-furnace phenomena and pellet behavior in terms of heat transfer, direct reduction, and removal of a range of heavy and alkali metal elements under industrial-scale RHF conditions. The results show that the furnace temperature in the preheating section should be kept at a higher level in an industrial-scale RHF compared with that in a pilot-scale RHF. The removal rates of heavy and alkali metal elements inside the composite pellet are all faster than iron metallization, specifically in the order of Pb, Zn, K, and Na.

  12. c-Type Cytochrome-Dependent Formation of U(IV) Nanoparticles by Shewanella oneidensis

    PubMed Central

    Marshall, Matthew J; Dohnalkova, Alice C; Kennedy, David W; Shi, Liang; Wang, Zheming; Boyanov, Maxim I; Lai, Barry; Kemner, Kenneth M; McLean, Jeffrey S; Reed, Samantha B; Culley, David E; Bailey, Vanessa L; Simonson, Cody J; Saffarini, Daad A; Romine, Margaret F; Zachara, John M

    2006-01-01

    Modern approaches for bioremediation of radionuclide contaminated environments are based on the ability of microorganisms to effectively catalyze changes in the oxidation states of metals that in turn influence their solubility. Although microbial metal reduction has been identified as an effective means for immobilizing highly-soluble uranium(VI) complexes in situ, the biomolecular mechanisms of U(VI) reduction are not well understood. Here, we show that c-type cytochromes of a dissimilatory metal-reducing bacterium, Shewanella oneidensis MR-1, are essential for the reduction of U(VI) and formation of extracelluar UO 2 nanoparticles. In particular, the outer membrane (OM) decaheme cytochrome MtrC (metal reduction), previously implicated in Mn(IV) and Fe(III) reduction, directly transferred electrons to U(VI). Additionally, deletions of mtrC and/or omcA significantly affected the in vivo U(VI) reduction rate relative to wild-type MR-1. Similar to the wild-type, the mutants accumulated UO 2 nanoparticles extracellularly to high densities in association with an extracellular polymeric substance (EPS). In wild-type cells, this UO 2-EPS matrix exhibited glycocalyx-like properties and contained multiple elements of the OM, polysaccharide, and heme-containing proteins. Using a novel combination of methods including synchrotron-based X-ray fluorescence microscopy and high-resolution immune-electron microscopy, we demonstrate a close association of the extracellular UO 2 nanoparticles with MtrC and OmcA (outer membrane cytochrome). This is the first study to our knowledge to directly localize the OM-associated cytochromes with EPS, which contains biogenic UO 2 nanoparticles. In the environment, such association of UO 2 nanoparticles with biopolymers may exert a strong influence on subsequent behavior including susceptibility to oxidation by O 2 or transport in soils and sediments. PMID:16875436

  13. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.

    PubMed

    Zhu, Yun Pei; Guo, Chunxian; Zheng, Yao; Qiao, Shi-Zhang

    2017-04-18

    Developing cost-effective and high-performance electrocatalysts for renewable energy conversion and storage is motivated by increasing concerns regarding global energy security and creating sustainable technologies dependent on inexpensive and abundant resources. Recent achievements in the design and synthesis of efficient non-precious-metal and even non-metal electrocatalysts make the replacement of noble metal counterparts for the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) with earth-abundant elements, for example, C, N, Fe, Mn, and Co, a realistic possibility. It has been found that surface atomic engineering (e.g., heteroatom-doping) and interface atomic or molecular engineering (e.g., interfacial bonding) can induce novel physicochemical properties and strong synergistic effects for electrocatalysts, providing new and efficient strategies to greatly enhance the catalytic activities. In this Account, we discuss recent progress in the design and fabrication of efficient electrocatalysts based on carbon materials, graphitic carbon nitride, and transition metal oxides or hydroxides for efficient ORR, OER, and HER through surface and interfacial atomic and molecular engineering. Atomic and molecular engineering of carbon materials through heteroatom doping with one or more elements of noticeably different electronegativities can maximally tailor their electronic structures and induce a synergistic effect to increase electrochemical activity. Nonetheless, the electrocatalytic performance of chemically modified carbonaceous materials remains inferior to that of their metallic counterparts, which is mainly due to the relatively limited amount of electrocatalytic active sites induced by heteroatom doping. Accordingly, coupling carbon substrates with other active electrocatalysts to produce composite structures can impart novel physicochemical properties, thereby boosting the electroactivity even further. Although the majority of carbon-based materials remain uncompetitive with state-of-the-art metal-based catalysts for the aforementioned catalytic processes, non-metal carbon hybrids have already shown performance that typically only conventional noble metals or transition metal materials can achieve. The idea of hybridized carbon-based catalysts possessing unique active surfaces and macro- or nanostructures is addressed herein. For metal-carbon couples, the incorporation of carbon can effectively compensate for the intrinsic deficiency in conductivity of the metallic components. Chemical modification of carbon frameworks, such as nitrogen doping, not only can change the electron-donor character, but also can introduce anchoring sites for immobilizing active metallic centers to form metal-nitrogen-carbon (M-N-C) species, which are thought to facilitate the electrocatalytic process. With thoughtful material design, control over the porosity of composites, the molecular architecture of active metal moieties and macromorphologies of the whole catalysts can be achieved, leading to a better understanding structure-activity relationships. We hope that we can offer new insight into material design, particularly the role of chemical composition and structural properties in electrochemical performance and reaction mechanisms.

  14. DYNAMICS OF MINERAL STRUCTURES AND THE FATE OF METALS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction with reasonable ...

  15. DISCRETE TUNNELING CURRENT FLUCTUATIONS IN METAL-WATER-METAL TUNNEL JUNCTIONS. (R829623)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  16. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1986-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  17. Electroless metal plating of plastics

    DOEpatents

    Krause, L.J.

    1982-09-20

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  18. Electroless metal plating of plastics

    DOEpatents

    Krause, Lawrence J.

    1984-01-01

    Process for plating main group metals on aromatic polymers is carried out by the use of a nonaqueous solution of a salt of an alkali metal in a positive valence state and a main group metal in a negative valence state with contact between the solution and polymer providing a redox reaction causing the deposition of the main group metal and the reduction of the polymer. Products from the process exhibit useful decorative and electrical properties.

  19. Fluidized reduction of oxides on fine metal powders without sintering

    NASA Technical Reports Server (NTRS)

    Hayashi, T.

    1985-01-01

    In the process of reducing extremely fine metal particles (av. particle size or = 1000 angstroms) covered with an oxide layer, the metal particles are fluidized by a gas flow contg. H, heated, and reduced. The method uniformly and easily reduces surface oxide layers of the extremely fine metal particles without causing sintering. The metal particles are useful for magnetic recording materials, conductive paste, powder metallurgy materials, chem. reagents, and catalysts.

  20. Material Problems in Using High-Temperature Thermocouples

    NASA Astrophysics Data System (ADS)

    Edler, F.

    2011-08-01

    The material compatibility and thermal stability of ceramic-composite coatings of different oxide ceramics deposited on alumina tubes to prevent the reduction of the alumina were investigated in the high-temperature range between 1750 °C and 1850 °C. It turned out that the coatings were thermally unstable and did not provide adequate protection against the reduction of the alumina tubes. The oxide ceramics formed eutectic compositions with low melting temperatures and were also prone to reduction to elementary metals by carbon. A new type of high-temperature thermocouple on the basis of refractory and noble metals was tested in the temperature range between 1325 °C and 1800 °C. Two metal-sheathed prototypes were constructed. The thermoelectric behavior of the tungsten5%rhenium/iridium thermocouples (W5%Re/Ir) was investigated by different high-temperature exposures, and the thermoelectric stability was checked by repeated measurements at the ice point.

  1. Silicene Catalyzed Reduction of Nitrobenzene to Aniline: a Computational Study

    NASA Astrophysics Data System (ADS)

    Morrissey, Christopher; He, Haiying

    The reduction of nitrobenzene to aniline has a broad range of applications in the production of rubbers, dyes, agrochemicals, and pharmaceuticals. Currently, use of metal catalysts is the most popular method of performing this reaction on a large scale. These metal catalysts usually require high-temperature and/or high-pressure reaction conditions, and produce hazardous chemicals. This has led to a call for more environmentally friendly nonmetal catalysts. Recent studies suggest that silicene, the recently discovered silicon counterpart of graphene, could potentially work as a nonmetal catalyst due to its unique electronic property and strong interactions with molecules containing nitrogen and oxygen. In this computational study, we have investigated the plausibility of using silicene as a catalyst for the reduction of nitrobenzene. Possible reaction mechanisms will be discussed with a highlight of the difference between silicene and metal catalysts. . All calculations were performed in the framework of density functional theory.

  2. Carbon Nanosheets: Synthesis and Application.

    PubMed

    Fan, Huailin; Shen, Wenzhong

    2015-06-22

    Carbon nanosheets (CNSs) with tunable sizes, morphologies, and pore structures have been synthesized through several chemical routes. Graphitized CNSs have been synthesized through exfoliation, chemical vapor deposition, or high-temperature carbonization. Porous CNSs have been synthesized by using various methods, including pyrolysis, self-assembly, or a solvothermal method in connection with carbonization. These CNSs have successfully been used as detectors for metal ions, as cathodes for field electron emissions, as electrodes for supercapacitors and fuel cells, and as supports for photocatalytic and catalytic oxygen reduction. Therefore, the synthesis and application of CNSs are receiving increasing levels of interest, particularly as application benefits, in the context of future energy/chemical industry, are becoming recognized. This review provides a summary of the most recent and important progress in the production of CNSs and highlights their application in environmental and energy-related fields. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE PAGES

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.; ...

    2017-10-17

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  4. Mitigating oxygen loss to improve the cycling performance of high capacity cation-disordered cathode materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jinhyuk; Papp, Joseph K.; Clément, Raphaële J.

    Recent progress in the understanding of percolation theory points to cation-disordered lithium-excess transition metal oxides as high-capacity lithium-ion cathode materials. Nevertheless, the oxygen redox processes required for these materials to deliver high capacity can trigger oxygen loss, which leads to the formation of resistive surface layers on the cathode particles. Here, we demonstrate here that, somewhat surprisingly, fluorine can be incorporated into the bulk of disordered lithium nickel titanium molybdenum oxides using a standard solid-state method to increase the nickel content, and that this compositional modification is very effective in reducing oxygen loss, improving energy density, average voltage, and ratemore » performance. We argue that the valence reduction on the anion site, offered by fluorine incorporation, opens up significant opportunities for the design of high-capacity cation-disordered cathode materials.« less

  5. Metallic nanowire networks

    DOEpatents

    Song, Yujiang; Shelnutt, John A.

    2012-11-06

    A metallic nanowire network synthesized using chemical reduction of a metal ion source by a reducing agent in the presence of a soft template comprising a tubular inverse micellar network. The network of interconnected polycrystalline nanowires has a very high surface-area/volume ratio, which makes it highly suitable for use in catalytic applications.

  6. ALTERATION OF SOIL METAL CHEMISTRY AND PHYTOAVAILABILITY ASSOCIATED WITH BIOSOLIDS APPLICATION (ABSTRACT)

    EPA Science Inventory

    Biosolids are a complex mixture which contain both inorganic and organic adsorbents. Thus, addition of biosolids to soil not only increases the environmental loading of toxic metals (Cd, Zn, Cu, Ni, Pb, etc.) it alters the phytoavailability of these metals. This reduction in ph...

  7. ENVIROMETAL TECHNOLOGIES, INC. - METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN ABOVE-GROUND REACTOR, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    EnviroMetal Technology's metal-enhanced dechlorination technology employs an electrochemical process that involves oxidation of iron and reductive dehalogenation of halogenated VOCs in aqueous media. The process can be operated as an above ground reactor or can alternatively perf...

  8. A COMPREHENSIVE APPROACH TO IDENTIFY AND QUANTIFY FUNDAMENTAL PARAMETERS THAT INFLUENCE METAL LEACHING CHEMISTRY IN LANDFILLS SYSTEMS (PRESENTATION)

    EPA Science Inventory

    Various anthropogenic activities generate hazardous solid wastes that are affluent in heavy metals, which can cause significant damage to the environment and human health. Heavy metals/metalloids can exist in multiple oxidation states, and can undergo oxidation or reduction when ...

  9. A COMPREHENSIVE APPROACH TO IDENTIFY AND QUANTIFY FUNDAMENTAL PARAMETERS THAT INFLUENCE METAL LEACHING CHEMISTRY IN LANDFILLS SYSTEMS (ABSTRACT)

    EPA Science Inventory

    Various anthropogenic activities generate hazardous solid wastes that are affluent in heavy metals, which can cause significant damage to the environment and human health. Heavy metals/metalloids can exist in multiple oxidation states, and can undergo oxidation or reduction when ...

  10. Low platinum catalyst and method of preparation

    DOEpatents

    Liu, Di-Jia; Chong, Lina

    2017-11-21

    A low platinum catalyst and method for making same. The catalyst comprises platinum-transition metal bimetallic alloy microcrystallites over a transition metal-nitrogen-carbon composite. A method of making a catalyst comprises preparation of transition metal organic frameworks, infusion of platinum, thermal treatment, and reduction to form the microcrystallites and composite.

  11. Enhanced anaerobic digestion of food waste by trace metal elements supplementation and reduced metals dosage by green chelating agent [S, S]-EDDS via improving metals bioavailability.

    PubMed

    Zhang, Wanli; Zhang, Lei; Li, Aimin

    2015-11-01

    This study aimed at investigating the effects of trace metals on methane production from food waste and examining the feasibility of reducing metals dosage by ethylenediamine-N,N'-disuccinic acid (EDDS) via improving metals bioavailability. The results indicated that the effects of metal elements highly depended on the supplemental concentrations. Trace metals supplemented under moderate concentrations greatly enhanced the methane yield. However, the excessive supplementation of Fe (1000 mg/L) and Ni (50 mg/L) exhibited the obvious toxicity to methanogens. The combinations of trace metals exhibited remarkable synergistic effects. The supplementation of Fe (100 mg/L) + Co (1 mg/L) + Mo (5 mg/L) + Ni (5 mg/L) obtained the greatest methane yield of 504 mL/g VSadded and the highest increment of 35.5% compared to the reactor without metals supplementation (372 mL/g VSadded). The changes of metals speciation showed the reduction of metals bioavailability during anaerobic digestion, which might weaken the stimulative effects of trace metals. However, the addition of EDDS improved metals bioavailability for microbial uptake and stimulated the activity of methanogens, and therefore, strengthened the stimulative effects of metals on anaerobic digestion of food waste. The batch and semi-continuous experiments confirmed that the addition of EDDS (20 mg/L) bonded to trace metals prior to their supplementation could obtain a 50% reduction of optimal metals dosage. This study provided a feasible method to reduce trace metals dosage without the degeneration of process performance of anaerobic digestion. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Activated Carbon Textile via Chemistry of Metal Extraction for Supercapacitors.

    PubMed

    Lam, Do Van; Jo, Kyungmin; Kim, Chang-Hyun; Kim, Jae-Hyun; Lee, Hak-Joo; Lee, Seung-Mo

    2016-12-27

    Carbothermic reduction in the chemistry of metal extraction (MO(s) + C(s) → M(s) + CO(g)) using carbon as a sacrificial agent has been used to smelt metals from diverse oxide ores since ancient times. Here, we paid attention to another aspect of the carbothermic reduction to prepare an activated carbon textile for high-rate-performance supercapacitors. On the basis of thermodynamic reducibility of metal oxides reported by Ellingham, we employed not carbon, but metal oxide as a sacrificial agent in order to prepare an activated carbon textile. We conformally coated ZnO on a bare cotton textile using atomic layer deposition, followed by pyrolysis at high temperature (C(s) + ZnO(s) → C'(s) + Zn(g) + CO(g)). We figured out that it leads to concurrent carbonization and activation in a chemical as well as mechanical way. Particularly, the combined effects of mechanical buckling and fracture that occurred between ZnO and cotton turned out to play an important role in carbonizing and activating the cotton textile, thereby significantly increasing surface area (nearly 10 times) compared with the cotton textile prepared without ZnO. The carbon textiles prepared by carbothermic reduction showed impressive combination properties of high power and energy densities (over 20-fold increase) together with high cyclic stability.

  13. Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE PAGES

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.; ...

    2016-11-01

    In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less

  14. Li/Ag 2VO 2PO 4 batteries: the roles of composite electrode constituents on electrochemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bock, David C.; Bruck, Andrea M.; Pelliccione, Christopher J.

    In this study, we utilize silver vanadium phosphorous oxide, Ag 2VO 2PO 4, as a model system to systematically study the impact of the constituents of a composite electrode, including polymeric and conductive additives, on electrochemistry. Notably, although highly resistive, this bimetallic cathode can be discharged as a pure electroactive material in the absence of a conductive additive as it generates an in situ conductive matrix via a reduction displacement reaction resulting in the formation of silver metal nanoparticles. Also, three different electrode compositions were investigated: Ag 2VO 2PO 4 only, Ag 2VO 2PO 44 with binder, and Ag 2VOmore » 2PO 4 with binder and carbon. Constant current discharge, pulse testing and impedance spectroscopy measurements were used to characterize the electrochemical properties of the electrodes as a function of depth of discharge. In situ EDXRD was used to spatially resolve the discharge progression within the cathode by following the formation of Ag 0. Ex situ XRD and EXAFS modeling were used to quantify the amount of Ag 0 formed. Results indicate that the metal center reduced (V 5+ or Ag +) was highly dependent on composite composition (presence of PTFE, carbon), depth of discharge (Ag 0 nanoparticle formation), and spatial location within the cathode. The addition of a binder was found to increase cell polarization, and the percolation network provided by the carbon in the presence of PTFE was further increased with reduction and formation of Ag 0. Lastly, this study provides insight into the factors controlling the electrochemistry of resistive active materials in composite electrodes.« less

  15. Progress in Titanium Metal Powder Injection Molding.

    PubMed

    German, Randall M

    2013-08-20

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied-density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  16. Progress in Titanium Metal Powder Injection Molding

    PubMed Central

    German, Randall M.

    2013-01-01

    Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM) that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors. PMID:28811458

  17. The Research Laboratory of Electronics Progress Report Number 133, January 1-December 1990

    DTIC Science & Technology

    1990-12-31

    4 6 Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator-Doped Semiconductor...Epitaxy of Compound Semiconductors Chapter 7 High-Frequency InAlAs/InGaAs Metal -Insulator- Doped Semiconductor Field-Effect Transistors (MIDFETs) for...aligned silicided NMOS posed of refractory metals to allow a subsequentdevice fabrication. We have used cobalt deposi- high temperature anneal. This

  18. In situ XANES and EXAFS Analysis of Redox Active Fe Center Ionic Liquids

    DOE PAGES

    Apblett, Christopher A.; Stewart, David M.; Fryer, Robert T.; ...

    2015-10-23

    We apply in situ X-Ray Absorption Near Edge Spectroscopy (XANES) and Extended X-Ray Absorption Fine Structure (EXAFS) techniques to a metal center ionic liquid undergoing oxidation and reduction in a three electrode spectroscopic cell. Furthermore, the determination of the extent of reduction under negative bias on the working electrode and the extent of oxidation are determined after pulse voltammetry to quiescence. While the ionic liquid undergoes full oxidation, it undergoes only partial reduction, likely due to transport issues on the timescale of the experiment. Nearest neighbor Fe-O distances in the fully oxidized state match well to expected values for similarlymore » coordinated solids, but reduction does not result in an extension of the Fe-O bond length, as would be expected from comparisons to the solid phase. Instead, little change in bond length is observed. Finally, we suggest that this may be due to a more complex interaction between the monodentate ligands of the metal center anion and the surrounding charge cloud, rather than straightforward electrostatics between the metal center and the nearest neighbor grouping.« less

  19. The role of Shewanella oneidensis MR-1 outer surface structures in extracellular electron transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhenni, Rachida; Vora, Gary J.; Biffinger, Justin C.

    2010-04-20

    Shewanella oneidensis is a facultative anaerobe that uses more than 14 different terminal electron acceptors for respiration. These include metal oxides and hydroxyoxides, and toxic metals such as uranium and chromium. Mutants deficient in metal reduction were isolated using the mariner transposon derivative, minihimar RB1. These included mutants with transposon insertions in the prepilin peptidase and type II secretion system genes. All mutants were deficient in Fe(III) and Mn(IV) reduction, and exhibited slow growth when DMSO was used as the electron acceptor. The genome sequence of S. oneidensis contains one prepilin peptidase gene, pilD. A similar prepilin peptidase that maymore » function in the processing of type II secretion prepilins was not found. Single and multiple chromosomal deletions of four putative type IV pilin genes did not affect Fe(III) and Mn(IV) reduction. These results indicate that PilD in S. oneidensis is responsible for processing both type IV and type II secretion prepilin proteins. Type IV pili do not appear to be required for Fe(III) and Mn(IV) reduction.« less

  20. Effect of Different Ceramic Crown Preparations on Tooth Structure Loss: An In Vitro Study

    NASA Astrophysics Data System (ADS)

    Ebrahimpour, Ashkan

    Objective: To quantify and compare the amount of tooth-structure reduction following the full-coverage preparations for crown materials of porcelain-fused-to-metal, lithium disilicate glass-ceramic and yttria-stabilized tetragonal zirconia polycrystalline for three tooth morphologies. Methods: Groups of resin teeth of different morphologies were individually weighed to high precision, then prepared following the preparation guidelines. The teeth were re-weighed after preparation and the amount of structural reduction was calculated. Statistical analyses were performed to find out if there was a significant difference among the groups. Results: Amount of tooth reduction for zirconia crown preparations was the lowest and statistically different compared with the other two materials. No statistical significance was found between the amount of reduction for porcelain-fused-to-metal and lithium disilicate glass-ceramic crowns. Conclusion: Within the limitations of this study, more tooth structure can be saved when utilizing zirconia full-coverage restorations compared with lithium disilicate glass-ceramic and porcelain-fused-to-metal crowns in maxillary central incisors, first premolars and first molars.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baskin, Artem; Prendergast, David

    In this paper, we reveal the general mechanisms of partial reduction of multivalent complex cations in conditions specific for the bulk solvent and in the vicinity of the electrified metal electrode surface and disclose the factors affecting the reductive stability of electrolytes for multivalent electrochemistry. Using a combination of ab initio techniques, we clarify the relation between the reductive stability of contact-ion pairs comprising a multivalent cation and a complex anion, their solvation structures, solvent dynamics, and the electrode overpotential. We found that for ion pairs with multiple configurations of the complex anion and the Mg cation whose available orbitalsmore » are partially delocalized over the molecular complex and have antibonding character, the primary factor of the reductive stability is the shape factor of the solvation sphere of the metal cation center and the degree of the convexity of a polyhedron formed by the metal cation and its coordinating atoms. We focused specifically on the details of Mg (II) bis(trifluoromethanesulfonyl)imide in diethylene glycol dimethyl ether (Mg(TFSI) 2)/diglyme) and its singly charged ion pair, MgTFSI +. In particular, we found that both stable (MgTFSI) + and (MgTFSI) 0 ion pairs have the same TFSI configuration but drastically different solvation structures in the bulk solution. This implies that the MgTFSI/dyglyme reductive stability is ultimately determined by the relative time scale of the solvent dynamics and electron transfer at the Mg–anode interface. In the vicinity of the anode surface, steric factors and hindered solvent dynamics may increase the reductive stability of (MgTFSI) + ion pairs at lower overpotential by reducing the metal cation coordination, in stark contrast to the reduction at high overpotential accompanied by TFSI decomposition. By examining other solute/solvent combinations, we conclude that the electrolytes with highly coordinated Mg cation centers are more prone to reductive instability due to the chemical decomposition of the anion or solvent molecules. Finally, the obtained findings disclose critical factors for stable electrolyte design and show the role of interfacial phenomena in reduction of multivalent ions.« less

  2. WE-D-18A-01: Evaluation of Three Commercial Metal Artifact Reduction Methods for CT Simulations in Radiation Therapy Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, J; Kerns, J; Nute, J

    Purpose: To evaluate three commercial metal artifact reduction methods (MAR) in the context of radiation therapy treatment planning. Methods: Three MAR strategies were evaluated: Philips O-MAR, monochromatic imaging using Gemstone Spectral Imaging (GSI) dual energy CT, and monochromatic imaging with metal artifact reduction software (GSIMARs). The Gammex RMI 467 tissue characterization phantom with several metal rods and two anthropomorphic phantoms (pelvic phantom with hip prosthesis and head phantom with dental fillings), were scanned with and without (baseline) metals. Each MAR method was evaluated based on CT number accuracy, metal size accuracy, and reduction in the severity of streak artifacts. CTmore » number difference maps between the baseline and metal scan images were calculated, and the severity of streak artifacts was quantified using the percentage of pixels with >40 HU error (“bad pixels”). Results: Philips O-MAR generally reduced HU errors in the RMI phantom. However, increased errors and induced artifacts were observed for lung materials. GSI monochromatic 70keV images generally showed similar HU errors as 120kVp imaging, while 140keV images reduced errors. GSI-MARs systematically reduced errors compared to GSI monochromatic imaging. All imaging techniques preserved the diameter of a stainless steel rod to within ±1.6mm (2 pixels). For the hip prosthesis, O-MAR reduced the average % bad pixels from 47% to 32%. For GSI 140keV imaging, the percent of bad pixels was reduced from 37% to 29% compared to 120kVp imaging, while GSI-MARs further reduced it to 12%. For the head phantom, none of the MAR methods were particularly successful. Conclusion: The three MAR methods all improve CT images for treatment planning to some degree, but none of them are globally effective for all conditions. The MAR methods were successful for large metal implants in a homogeneous environment (hip prosthesis) but were not successful for the more complicated case of dental artifacts.« less

  3. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1984-06-12

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  4. Composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1984-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  5. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, Siba P.; Rapp, Robert A.

    1986-01-01

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily.

  6. TRACE ELEMENTS AND BENEFICIAL USE OF ORGANIC RESOURCES

    EPA Science Inventory

    This paper summarizes information on risk assessment for metals (Cd, Pb, As, Zn, Cu, Hg) in compost products used in agriculture or horticulture, and progress in research to develop and demonstrate the use of Tailor-Made Composts to remediate metal phytotoxic soils. Research has ...

  7. METAL BINDING PROPERTIES OF A MONOCLONAL ANTIBODY DIRECTED TOWARDS METAL-CHELATE COMPLEXES. (R824029)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. COMPREHENSIVE PROGRESS REPORT FOR FOURIER TRANSFORM NMR (NUCLEAR MAGNETIC RESONANCE) OF METALS OF ENVIRONMENTAL SIGNIFICANCE

    EPA Science Inventory

    Interactions of the metals cadmium and selenium with various biologically important substrates were studied by nuclear magnetic resonance (NMR) spectroscopy. Cadmium-113 NMR was used for a critical examination of three metalloproteins: concanavalin A, bovine superoxide dismutase ...

  9. Fracture criteria for discontinuously reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Rack, H. J.; Goree, J. G.; Albritton, J.; Ratnaparkhi, P.

    1988-01-01

    Summarized is the progress achieved during the period September 16, 1987 to August 15, l988 on NASA Grant NAG1-724, Fracture Criteria for Discontinuously Reinforced Metal Matrix Composites. Appended are copies of three manuscripts prepared under NASA funding during the performance period.

  10. THE INFLUENCE OF MINERAL REACTIONS ON THE ENVIRONMENTAL FATE OF METALS IN SOILS AND SEDIMENTS

    EPA Science Inventory

    Significant progress has been made in elucidating sorption reactions that control the partitioning of metals from solution to mineral surfaces in contaminated soil/sediment systems. Surface complexation models have been developed to quantify the forward reaction, however, these ...

  11. Optimized protocols for cardiac magnetic resonance imaging in patients with thoracic metallic implants.

    PubMed

    Olivieri, Laura J; Cross, Russell R; O'Brien, Kendall E; Ratnayaka, Kanishka; Hansen, Michael S

    2015-09-01

    Cardiac magnetic resonance (MR) imaging is a valuable tool in congenital heart disease; however patients frequently have metal devices in the chest from the treatment of their disease that complicate imaging. Methods are needed to improve imaging around metal implants near the heart. Basic sequence parameter manipulations have the potential to minimize artifact while limiting effects on image resolution and quality. Our objective was to design cine and static cardiac imaging sequences to minimize metal artifact while maintaining image quality. Using systematic variation of standard imaging parameters on a fluid-filled phantom containing commonly used metal cardiac devices, we developed optimized sequences for steady-state free precession (SSFP), gradient recalled echo (GRE) cine imaging, and turbo spin-echo (TSE) black-blood imaging. We imaged 17 consecutive patients undergoing routine cardiac MR with 25 metal implants of various origins using both standard and optimized imaging protocols for a given slice position. We rated images for quality and metal artifact size by measuring metal artifact in two orthogonal planes within the image. All metal artifacts were reduced with optimized imaging. The average metal artifact reduction for the optimized SSFP cine was 1.5+/-1.8 mm, and for the optimized GRE cine the reduction was 4.6+/-4.5 mm (P < 0.05). Quality ratings favored the optimized GRE cine. Similarly, the average metal artifact reduction for the optimized TSE images was 1.6+/-1.7 mm (P < 0.05), and quality ratings favored the optimized TSE imaging. Imaging sequences tailored to minimize metal artifact are easily created by modifying basic sequence parameters, and images are superior to standard imaging sequences in both quality and artifact size. Specifically, for optimized cine imaging a GRE sequence should be used with settings that favor short echo time, i.e. flow compensation off, weak asymmetrical echo and a relatively high receiver bandwidth. For static black-blood imaging, a TSE sequence should be used with fat saturation turned off and high receiver bandwidth.

  12. Method for the preparation of metal colloids in inverse micelles and product preferred by the method

    DOEpatents

    Wilcoxon, Jess P.

    1992-01-01

    A method is provided for preparing catalytic elemental metal colloidal particles (e.g. gold, palladium, silver, rhodium, iridium, nickel, iron, platinum, molybdenum) or colloidal alloy particles (silver/iridium or platinum/gold). A homogeneous inverse micelle solution of a metal salt is first formed in a metal-salt solvent comprised of a surfactant (e.g. a nonionic or cationic surfactant) and an organic solvent. The size and number of inverse micelles is controlled by the proportions of the surfactant and the solvent. Then, the metal salt is reduced (by chemical reduction or by a pulsed or continuous wave UV laser) to colloidal particles of elemental metal. After their formation, the colloidal metal particles can be stabilized by reaction with materials that permanently add surface stabilizing groups to the surface of the colloidal metal particles. The sizes of the colloidal elemental metal particles and their size distribution is determined by the size and number of the inverse micelles. A second salt can be added with further reduction to form the colloidal alloy particles. After the colloidal elemental metal particles are formed, the homogeneous solution distributes to two phases, one phase rich in colloidal elemental metal particles and the other phase rich in surfactant. The colloidal elemental metal particles from one phase can be dried to form a powder useful as a catalyst. Surfactant can be recovered and recycled from the phase rich in surfactant.

  13. Tested Demonstrations.

    ERIC Educational Resources Information Center

    Gilbert, George L., Ed.

    1981-01-01

    Provides procedures for demonstrations: (1) the ferrioxalate actinometer, which demonstrates a photochemical reaction; and (2) the silver mirror, which demonstrates the reduction of a metal salt to the metal and/or the reducing power of sugars. (CS)

  14. Dual energy CT: How well can pseudo-monochromatic imaging reduce metal artifacts?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuchenbecker, Stefan, E-mail: stefan.kuchenbecker@dkfz.de; Faby, Sebastian; Sawall, Stefan

    2015-02-15

    Purpose: Dual Energy CT (DECT) provides so-called monoenergetic images based on a linear combination of the original polychromatic images. At certain patient-specific energy levels, corresponding to certain patient- and slice-dependent linear combination weights, e.g., E = 160 keV corresponds to α = 1.57, a significant reduction of metal artifacts may be observed. The authors aimed at analyzing the method for its artifact reduction capabilities to identify its limitations. The results are compared with raw data-based processing. Methods: Clinical DECT uses a simplified version of monochromatic imaging by linearly combining the low and the high kV images and by assigning an energymore » to that linear combination. Those pseudo-monochromatic images can be used by radiologists to obtain images with reduced metal artifacts. The authors analyzed the underlying physics and carried out a series expansion of the polychromatic attenuation equations. The resulting nonlinear terms are responsible for the artifacts, but they are not linearly related between the low and the high kV scan: A linear combination of both images cannot eliminate the nonlinearities, it can only reduce their impact. Scattered radiation yields additional noncanceling nonlinearities. This method is compared to raw data-based artifact correction methods. To quantify the artifact reduction potential of pseudo-monochromatic images, they simulated the FORBILD abdomen phantom with metal implants, and they assessed patient data sets of a clinical dual source CT system (100, 140 kV Sn) containing artifacts induced by a highly concentrated contrast agent bolus and by metal. In each case, they manually selected an optimal α and compared it to a raw data-based material decomposition in case of simulation, to raw data-based material decomposition of inconsistent rays in case of the patient data set containing contrast agent, and to the frequency split normalized metal artifact reduction in case of the metal implant. For each case, the contrast-to-noise ratio (CNR) was assessed. Results: In the simulation, the pseudo-monochromatic images yielded acceptable artifact reduction results. However, the CNR in the artifact-reduced images was more than 60% lower than in the original polychromatic images. In contrast, the raw data-based material decomposition did not significantly reduce the CNR in the virtual monochromatic images. Regarding the patient data with beam hardening artifacts and with metal artifacts from small implants the pseudo-monochromatic method was able to reduce the artifacts, again with the downside of a significant CNR reduction. More intense metal artifacts, e.g., as those caused by an artificial hip joint, could not be suppressed. Conclusions: Pseudo-monochromatic imaging is able to reduce beam hardening, scatter, and metal artifacts in some cases but it cannot remove them. In all cases, the CNR is significantly reduced, thereby rendering the method questionable, unless special post processing algorithms are implemented to restore the high CNR from the original images (e.g., by using a frequency split technique). Raw data-based dual energy decomposition methods should be preferred, in particular, because the CNR penalty is almost negligible.« less

  15. Thermogravity system designed for use in dispersion strengthening studies

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 PPM water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  16. Thermogravimetry system designed for use in dispersion strengthening studies.

    NASA Technical Reports Server (NTRS)

    Herbell, T. P.

    1972-01-01

    A thermogravimetry system, designed to study the reduction of oxides in metal and alloy powders to be used in dispersion strengthened materials, is described. The apparatus was devised for use at high temperatures with controlled atmospheres. Experimental weight change and moisture evolution results for the thermal decomposition of calcium oxalate monohydrate in dry helium, and experimental weight change results for the reduction of nickel oxide in dry hydrogen and hydrogen containing 15,000 p.p.m. water vapor are presented. The system is currently being successfully applied to the evaluation of the reduction characteristics and the removal of impurities from metals and alloys to be used for dispersion strengthening.

  17. Luminescent Organometallic Nanomaterials with Aggregation-Induced Emission.

    PubMed

    Shu, Tong; Wang, Jianxing; Su, Lei; Zhang, Xueji

    2018-07-04

    Recent researches in metal nanoclusters (NCs) have prompted their promising practical applications in biomedical fields as novel inorganic luminophores. More recently, to further improve the photoluminescence (PL) performance of NCs, the aggregation-induced emission (AIE) effect has been introduced to develop highly luminescent metal NCs and metal complex materials. In this review, we start our discussion from recent progresses on AIE materials developments. Then, we address our understandings on the PL properties of thiolated metal NCs. Subsequently, we link thiolated metal NCs with AIE effect. We also highlight some recent advances in synthesizing the AIE-type metal complex nanomaterials. We finally discuss visions and directions for future development of AIE-type metal complex nanomaterials.

  18. Research Progress of Artificial Forest in the Remediation of Heavy Metal Contaminated Soils

    NASA Astrophysics Data System (ADS)

    Jiafang, MA; Guangtao, MENG; Liping, HE; Guixiang, LI

    2017-01-01

    (1) Remediation of soil contaminated by heavy metals has become a hot topic in the world, and phytoremediation technology is the most widely used. (2) In addition to traditional economic benefits, ecological benefits of artificial forest have been more and more important, which are very helpful to soil polluted with heavy metals in the environment. (3) The characteristics of heavy metal pollution of soil and plantations of repair mechanism have been reviewed, and the current mining areas, wetlands, urban plantations on heavy metal elements have enriched the research results. The purpose is to find a new path for governance of heavy metal soil pollution.

  19. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.

    PubMed

    Sun, Rongrong; Zhang, Liang; Zhang, Zefeng; Chen, Guang-Hao; Jiang, Feng

    2017-12-22

    Biological sulfur reduction can theoretically produce sufficient sulfide to effectively remove and recover heavy metals in the treatment of organics-deficient sulfate-rich metal-laden wastewater such as acid mine drainage and metallurgic wastewater, using 75% less organics than biological sulfate reduction. However, it is still unknown whether sulfur reduction can indeed compete with sulfate reduction, particularly under high-strength sulfate conditions. The aim of this study was to investigate the long-term feasibility of biological sulfur reduction under high sulfate conditions in a lab-scale sulfur-reducing biological sulfide production (BSP) system with sublimed sulfur added. In the 169-day trial, an average sulfide production rate (SPR) as high as 47 ± 9 mg S/L-h was achieved in the absence of sulfate, and the average SPR under sulfate-rich conditions was similar (53 ± 10 mg S/L-h) when 1300 mg S/L sulfate were fed with the influent. Interestingly, sulfate was barely reduced even at such a high strength and contributed to only 1.5% of total sulfide production. Desulfomicrobium was identified as the predominant sulfidogenic bacterium in the bioreactor. Batch tests further revealed that this sulfidogenic bacteria used elemental sulfur as the electron acceptor instead of the highly bioavailable sulfate, during which polysulfide acted as an intermediate, leading to an even higher bioavailability of sulfur than sulfate. The pathway of sulfur to sulfide conversion via polysulfide in the presence of both sulfur and sulfate was discussed. Collectively, when conditions favor polysulfide formation, sulfur reduction can be a promising and attractive technology to realize a high-rate and low-cost BSP process for treating sulfate-rich metal-laden wastewater. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Fusion materials semiannual progress report for the period ending June 30, 1998

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burn, G.

    1998-09-01

    This is the twenty-fourth in a series of semiannual technical progress reports on fusion materials. This report combines the full spectrum of research and development activities on both metallic and non-metallic materials with primary emphasis on the effects of the neutronic and chemical environment on the properties and performance of materials for in-vessel components. This effort forms one element of the materials program being conducted in support of the Fusion Energy Sciences Program of the US Department of Energy. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  1. A review on the multivariate statistical methods for dimensional reduction studies

    NASA Astrophysics Data System (ADS)

    Aik, Lim Eng; Kiang, Lam Chee; Mohamed, Zulkifley Bin; Hong, Tan Wei

    2017-05-01

    In this research study we have discussed multivariate statistical methods for dimensional reduction, which has been done by various researchers. The reduction of dimensionality is valuable to accelerate algorithm progression, as well as really may offer assistance with the last grouping/clustering precision. A lot of boisterous or even flawed info information regularly prompts a not exactly alluring algorithm progression. Expelling un-useful or dis-instructive information segments may for sure help the algorithm discover more broad grouping locales and principles and generally speaking accomplish better exhibitions on new data set.

  2. A metal-free electrocatalyst for carbon dioxide reduction to multi-carbon hydrocarbons and oxygenates

    NASA Astrophysics Data System (ADS)

    Wu, Jingjie; Ma, Sichao; Sun, Jing; Gold, Jake I.; Tiwary, Chandrasekhar; Kim, Byoungsu; Zhu, Lingyang; Chopra, Nitin; Odeh, Ihab N.; Vajtai, Robert; Yu, Aaron Z.; Luo, Raymond; Lou, Jun; Ding, Guqiao; Kenis, Paul J. A.; Ajayan, Pulickel M.

    2016-12-01

    Electroreduction of carbon dioxide into higher-energy liquid fuels and chemicals is a promising but challenging renewable energy conversion technology. Among the electrocatalysts screened so far for carbon dioxide reduction, which includes metals, alloys, organometallics, layered materials and carbon nanostructures, only copper exhibits selectivity towards formation of hydrocarbons and multi-carbon oxygenates at fairly high efficiencies, whereas most others favour production of carbon monoxide or formate. Here we report that nanometre-size N-doped graphene quantum dots (NGQDs) catalyse the electrochemical reduction of carbon dioxide into multi-carbon hydrocarbons and oxygenates at high Faradaic efficiencies, high current densities and low overpotentials. The NGQDs show a high total Faradaic efficiency of carbon dioxide reduction of up to 90%, with selectivity for ethylene and ethanol conversions reaching 45%. The C2 and C3 product distribution and production rate for NGQD-catalysed carbon dioxide reduction is comparable to those obtained with copper nanoparticle-based electrocatalysts.

  3. Graphene/graphene-tube nanocomposites templated from cage-containing metal-organic frameworks for oxygen reduction in Li-O₂ batteries.

    PubMed

    Li, Qing; Xu, Ping; Gao, Wei; Ma, Shuguo; Zhang, Guoqi; Cao, Ruiguo; Cho, Jaephil; Wang, Hsing-Lin; Wu, Gang

    2014-03-05

    Nitrogen-doped graphene/graphene-tube nanocomposites are prepared by a hightemperature approach using a newly designed cage-containing metal-organic framework (MOF) to template nitrogen/carbon (dicyandiamide) and iron precursors. The resulting N-Fe-MOF catalysts universally exhibit high oxygen-reduction activity in acidic, alkaline, and non-aqueous electrolytes and superior cathode performance in Li-O2 batteries. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Externally Calibrated Parallel Imaging for 3D Multispectral Imaging Near Metallic Implants Using Broadband Ultrashort Echo Time Imaging

    PubMed Central

    Wiens, Curtis N.; Artz, Nathan S.; Jang, Hyungseok; McMillan, Alan B.; Reeder, Scott B.

    2017-01-01

    Purpose To develop an externally calibrated parallel imaging technique for three-dimensional multispectral imaging (3D-MSI) in the presence of metallic implants. Theory and Methods A fast, ultrashort echo time (UTE) calibration acquisition is proposed to enable externally calibrated parallel imaging techniques near metallic implants. The proposed calibration acquisition uses a broadband radiofrequency (RF) pulse to excite the off-resonance induced by the metallic implant, fully phase-encoded imaging to prevent in-plane distortions, and UTE to capture rapidly decaying signal. The performance of the externally calibrated parallel imaging reconstructions was assessed using phantoms and in vivo examples. Results Phantom and in vivo comparisons to self-calibrated parallel imaging acquisitions show that significant reductions in acquisition times can be achieved using externally calibrated parallel imaging with comparable image quality. Acquisition time reductions are particularly large for fully phase-encoded methods such as spectrally resolved fully phase-encoded three-dimensional (3D) fast spin-echo (SR-FPE), in which scan time reductions of up to 8 min were obtained. Conclusion A fully phase-encoded acquisition with broadband excitation and UTE enabled externally calibrated parallel imaging for 3D-MSI, eliminating the need for repeated calibration regions at each frequency offset. Significant reductions in acquisition time can be achieved, particularly for fully phase-encoded methods like SR-FPE. PMID:27403613

  5. Selective CO2 reduction conjugated with H2O oxidation utilizing semiconductor/metal-complex hybrid photocatalysts

    NASA Astrophysics Data System (ADS)

    Morikawa, T.; Sato, S.; Arai, T.; Uemura, K.; Yamanaka, K. I.; Suzuki, T. M.; Kajino, T.; Motohiro, T.

    2013-12-01

    We developed a new hybrid photocatalyst for CO2 reduction, which is composed of a semiconductor and a metal complex. In the hybrid photocatalyst, ΔG between the position of conduction band minimum (ECBM) of the semiconductor and the CO2 reduction potential of the complex is an essential factor for realizing fast electron transfer from the conduction band of semiconductor to metal complex leading to high photocatalytic activity. On the basis of this concept, the hybrid photocatalyst InP/Ru-complex, which functions in aqueous media, was developed. The photoreduction of CO2 to formate using water as an electron donor and a proton source was successfully achieved as a Z-scheme system by functionally conjugating the InP/Ru-complex photocatalyst for CO2 reduction with a TiO2 photocatalyst for water oxidation. The conversion efficiency from solar energy to chemical energy was ca. 0.04%, which approaches that for photosynthesis in a plant. Because this system can be applied to many other inorganic semiconductors and metal-complex catalysts, the efficiency and reaction selectivity can be enhanced by optimization of the electron transfer process including the energy-band configurations, conjugation conformations, and catalyst structures. This electrical-bias-free reaction is a huge leap forward for future practical applications of artificial photosynthesis under solar irradiation to produce organic species.

  6. Molecular Catalysis of the Electrochemical and Photochemical Reduction of CO2 with Earth-Abundant Metal Complexes. Selective Production of CO vs HCOOH by Switching of the Metal Center.

    PubMed

    Chen, Lingjing; Guo, Zhenguo; Wei, Xi-Guang; Gallenkamp, Charlotte; Bonin, Julien; Anxolabéhère-Mallart, Elodie; Lau, Kai-Chung; Lau, Tai-Chu; Robert, Marc

    2015-09-02

    Molecular catalysis of carbon dioxide reduction using earth-abundant metal complexes as catalysts is a key challenge related to the production of useful products--the "solar fuels"--in which solar energy would be stored. A direct approach using sunlight energy as well as an indirect approach where sunlight is first converted into electricity could be used. A Co(II) complex and a Fe(III) complex, both bearing the same pentadentate N5 ligand (2,13-dimethyl-3,6,9,12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), were synthesized, and their catalytic activity toward CO2 reduction was investigated. Carbon monoxide was formed with the cobalt complex, while formic acid was obtained with the iron-based catalyst, thus showing that the catalysis product can be switched by changing the metal center. Selective CO2 reduction occurs under electrochemical conditions as well as photochemical conditions when using a photosensitizer under visible light excitation (λ > 460 nm, solvent acetonitrile) with the Co catalyst. In the case of the Fe catalyst, selective HCOOH production occurs at low overpotential. Sustained catalytic activity over long periods of time and high turnover numbers were observed in both cases. A catalytic mechanism is suggested on the basis of experimental results and preliminary quantum chemistry calculations.

  7. Solid-State Metalized Reduction of Magnesium-Rich Low-Nickel Oxide Ores Using Coal as the Reductant Based on Thermodynamic Analysis

    NASA Astrophysics Data System (ADS)

    Ma, Baozhong; Xing, Peng; Yang, Weijiao; Wang, Chengyan; Chen, Yongqiang; Wang, Hua

    2017-08-01

    The solid-state metalized reduction of magnesium-rich low-nickel oxide ore using coal as a reductant was studied based on thermodynamic analysis. The major constituent minerals of the ore were silicates and goethite. The former was the main nickel-bearing mineral, and the latter was the main iron-bearing mineral. Single factor tests were conducted to investigate the effects of reduction temperature, duration, and coal dosage on the beneficiation of nickel and iron such that optimal conditions were achieved. Considering the low recoveries of nickel and iron (Ni, 13.9 pct; Fe, 30.3 pct) under the obtained optimal conditions, an improved process, adding CaF2 before the reaction, was proposed to modify the solid-state metalized process. The results showed that the recoveries of nickel and iron reached to 96.5 and 73.4 pct, respectively, and that the grades of nickel and iron in the concentrate increased from 2.5 and 62.6 wt pct to 6.9 and 71.4 wt pct, respectively. Nickel and iron in the absence of CaF2 were metalized; nevertheless, the size of ferronickel particles was only 1 μm. Furthermore, alloys in the presence of CaF2 aggregated and exhibited bands with a length greater than 200 µm. These observations suggested that CaF2 could effectively reduce the surface tension of the newly generated alloy interface and promote the migration and polymerization of the alloy particles, which improves the beneficiation of nickel and iron by magnetic separation.

  8. Reduction of mare basalts by sulfur loss

    USGS Publications Warehouse

    Brett, R.

    1976-01-01

    Metallic Fe content and S abundance are inversely correlated in mare basalts. Either S volatilization from the melt results in reduction of Fe2+ to Fe0 or else high S content decreases Fe0 activity in the melt, thus explaining the correlation. All considerations favor the model that metallic iron in mare basalts is due to sulfur loss. The Apollo 11 and 17 mare basalt melts were probably saturated with S at the time of eruption; the Apollo 12 and 15 basalts were probably not saturated. Non-mare rocks show a positive correlation of S abundance with metallic Fe content; it is proposed that this is due to the addition of meteoritic material having a fairly constant Fe0/S ratio. If true, metallic Fe content or S abundance in non-mare rocks provides a measure of degree of meteoritic contamination. ?? 1976.

  9. Reduction Mechanisms of Cu2+-Doped Na2O-Al2O3-SiO2 Glasses during Heating in H2 Gas.

    PubMed

    Nogami, Masayuki; Quang, Vu Xuan; Ohki, Shinobu; Deguchi, Kenzo; Shimizu, Tadashi

    2018-01-25

    Controlling valence state of metal ions that are doped in materials has been widely applied for turning optical properties. Even though hydrogen has been proven effective to reduce metal ions because of its strong reducing capability, few comprehensive studies focus on practical applications because of the low diffusion rate of hydrogen in solids and the limited reaction near sample surfaces. Here, we investigated the reactions of hydrogen with Cu 2+ -doped Na 2 O-Al 2 O 3 -SiO 2 glass and found that a completely different reduction from results reported so far occurs, which is dominated by the Al/Na concentration ratio. For Al/Na < 1, Cu 2+ ions were reduced via hydrogen to metallic Cu, distributing in glass body. For Al/Na > 1, on the other hand, the reduction of Cu 2+ ions occurred simultaneously with the formation of OH bonds, whereas the reduced Cu metal moved outward and formed a metallic film on glass surface. The NMR and Fourier transform infrared results indicated that the Cu 2+ ions were surrounded by Al 3+ ions that formed AlO 4 , distorted AlO 4 , and AlO 5 units. The diffused H 2 gas reacted with the Al-O - ···Cu + units, forming Al-OH and metallic Cu, the latter of which moved freely toward glass surface and in return enhanced H 2 diffusion.

  10. Extracellular Electron Transport-Mediated Fe(III) Reduction by a Community of Alkaliphilic Bacteria That Use Flavins as Electron Shuttles

    PubMed Central

    Fuller, Samuel J.; McMillan, Duncan G. G.; Renz, Marc B.; Schmidt, Martin

    2014-01-01

    The biochemical and molecular mechanisms used by alkaliphilic bacterial communities to reduce metals in the environment are currently unknown. We demonstrate that an alkaliphilic (pH > 9) consortium dominated by Tissierella, Clostridium, and Alkaliphilus spp. is capable of using iron (Fe3+) as a final electron acceptor under anaerobic conditions. Iron reduction is associated with the production of a freely diffusible species that, upon rudimentary purification and subsequent spectroscopic, high-performance liquid chromatography, and electrochemical analysis, has been identified as a flavin species displaying properties indistinguishable from those of riboflavin. Due to the link between iron reduction and the onset of flavin production, it is likely that riboflavin has an import role in extracellular metal reduction by this alkaliphilic community. PMID:24141133

  11. A 3He-129Xe co-magnetometer probed by a Rb magnetometer with Ramsey-pulse technique

    NASA Astrophysics Data System (ADS)

    Sheng, Dong; Kabcenell, Aaron; Romalis, Michael

    2013-05-01

    We report the recent progress in development of a new kind of co-magnetometer, benifiting from both the long spin coherence time of a noble gas and a highly sensitive alkali metal magnetometer. Due to the Fermi-contact interaction between alkali metal electron spin and noble gas nuclear spin the effective magnetization of the noble gas is enhanced by a factor of 6 to 600, allowing near quantum-limited detection of nuclear spins. Collisions between polarized alkali atoms and noble gas also introduce a large shift to the nuclear spin precession frequency. We reduce this effect by using Ramsey pulse techniques to measure the noble gas spin precession frequency ``in the dark'' by turning off the pumping laser between Ramsey pulses. A furthur reduction of the back-hyperpolarization from the noble gas can be achieved by controlling the cell temperature on short time scale. We showed that a 3He-129Xe Ramsey co-magnetometer is effective in cancelling fluctuations of external magnetic fields and gradients and developed cells with sufficient 129Xe T2 time without surface coatings. The new co-magnetometer has potential applications for many precision measurements, such as searches for spin-gravity couplings, electric dipole moments, and nuclear spin gyroscopes. Supported by DARPA.

  12. High-pressure structure made of rings with peripheral weldments of reduced thickness

    DOEpatents

    Leventry, Samuel C.

    1988-01-01

    A high-pressure structure having a circular cylindrical metal shell made of metal rings joined together by weldments and which have peripheral areas of reduced shell thickness at the weldments which permit a reduction in the amount of weld metal deposited while still maintaining sufficient circumferential or hoop stress strength.

  13. ADVANCES IN BIOTREATMENT OF ACID MINE DRAINAGE AND BIORECOVERY OF METALS: 2. MEMBRANE BIOREACTOR SYSTEM FOR SULFATE REDUCTION

    EPA Science Inventory

    Acid-mine drainage (AMD) is a severe pollution problem attributed to past mining activities. AMD is an acidic, metal-bearing wastewater generated by the oxidation of metal sulfides to sulfates by Thiobacillus bacteria in both the active and abandoned mining operations. The wastew...

  14. Method of dissolving metal oxides with di- or polyphosphonic acid and a redundant

    DOEpatents

    Horwitz, Earl P.; Chiarizia, Renato

    1996-01-01

    A method of dissolving metal oxides using a mixture of a di- or polyphosphonic acid and a reductant wherein each is present in a sufficient amount to provide a synergistic effect with respect to the dissolution of metal oxides and optionally containing corrosion inhibitors and pH adjusting agents.

  15. High-performance hydrogen fuel cell using nitrate reduction reaction on a non-precious catalyst.

    PubMed

    Han, Sang-Beom; Song, You-Jung; Lee, Young-Woo; Ko, A-Ra; Oh, Jae-Kyung; Park, Kyung-Won

    2011-03-28

    The H(2)-NO(3)(-) electrochemical cell using nitrate reduction on a non-precious cathode catalyst shows much improved efficiency despite ∼75% reduction of Pt metal loading as compared to typical PEMFCs using typical ORR on precious catalysts.

  16. Mercury mobilization in a flooded soil by incorporation into metallic copper and metal sulfide nanoparticles.

    PubMed

    Hofacker, Anke F; Voegelin, Andreas; Kaegi, Ralf; Kretzschmar, Ruben

    2013-07-16

    Mercury is a highly toxic priority pollutant that can be released from wetlands as a result of biogeochemical redox processes. To investigate the temperature-dependent release of colloidal and dissolved Hg induced by flooding of a contaminated riparian soil, we performed laboratory microcosm experiments at 5, 14, and 23 °C. Our results demonstrate substantial colloidal Hg mobilization concomitant with Cu prior to the main period of sulfate reduction. For Cu, we previously showed that this mobilization was due to biomineralization of metallic Cu nanoparticles associated with suspended bacteria. X-ray absorption spectroscopy at the Hg LIII-edge showed that colloidal Hg corresponded to Hg substituting for Cu in the metallic Cu nanoparticles. Over the course of microbial sulfate reduction, colloidal Hg concentrations decreased but continued to dominate total Hg in the pore water for up to 5 weeks of flooding at all temperatures. Transmission electron microscopy (TEM) suggested that Hg became associated with Cu-rich mixed metal sulfide nanoparticles. The formation of Hg-containing metallic Cu and metal sulfide nanoparticles in contaminated riparian soils may influence the availability of Hg for methylation or volatilization processes and has substantial potential to drive Hg release into adjacent water bodies.

  17. Chromate Reduction by a Pseudomonad Isolated from a Site Contaminated with Chromated Copper Arsenate

    PubMed Central

    McLean, Jeff; Beveridge, Terry J.

    2001-01-01

    A pseudomonad (CRB5) isolated from a decommissioned wood preservation site reduced toxic chromate [Cr(VI)] to an insoluble Cr(III) precipitate under aerobic and anaerobic conditions. CRB5 tolerated up to 520 mg of Cr(VI) liter−1 and reduced chromate in the presence of copper and arsenate. Under anaerobic conditions it also reduced Co(III) and U(VI), partially internalizing each metal. Metal precipitates were also found on the surface of the outer membrane and (sometimes) on a capsule. The results showed that chromate reduction by CRB5 was mediated by a soluble enzyme that was largely contained in the cytoplasm but also found outside of the cells. The crude reductase activity in the soluble fraction showed a Km of 23 mg liter−1 (437 μM) and a Vmax of 0.98 mg of Cr h−1 mg of protein−1 (317 nmol min−1 mg of protein−1). Minor membrane-associated Cr(VI) reduction under anaerobiosis may account for anaerobic reduction of chromate under nongrowth conditions with an organic electron donor present. Chromate reduction under both aerobic and anaerobic conditions may be a detoxification strategy for the bacterium which could be exploited to bioremediate chromate-contaminated or other toxic heavy metal-contaminated environments. PMID:11229894

  18. A revolution in electrodes: recent progress in rechargeable lithium-sulfur batteries.

    PubMed

    Fang, Xin; Peng, Huisheng

    2015-04-01

    As a promising candidate for future batteries, the lithium-sulfur battery is gaining increasing interest due to its high capacity and energy density. However, over the years, lithium-sulfur batteries have been plagued by fading capacities and the low Coulombic efficiency derived from its unique electrochemical behavior, which involves solid-liquid transition reactions. Moreover, lithium-sulfur batteries employ metallic lithium as the anode, which engenders safety vulnerability of the battery. The electrodes play a pivotal role in the performance of lithium-sulfur batteries. A leap forward in progress of lithium-sulfur batteries is always accompanied by a revolution in the electrode technology. In this review, recent progress in rechargeable lithium-sulfur batteries is summarized in accordance with the evolution of the electrodes, including the diversified cathode design and burgeoning metallic-lithium-free anodes. Although the way toward application has still many challenges associated, recent progress in lithium-sulfur battery technology still paints an encouraging picture of a revolution in rechargeable batteries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Investigation of the influence of coolant-lubricant modification on selected effects of pull broaching

    NASA Astrophysics Data System (ADS)

    Adamczuk, Krzysztof; Legutko, Stanisław; Laber, Alicja; Serwa, Wojciech

    2017-10-01

    The paper presents the results of testing the wear of the tool (pull broach) and a gear wheel splineway surface roughness after the friction node of pull broach/gear wheel (CuSn12Ni2) had been lubricated with metal machining oil and the same oil modified with chemically active exploitation additive. To designate the influence of modifying metal machining oil by the exploitation additive on the lubricating properties, anti-wear and antiseizure indicators have been appointed. Exploitation tests have proved purposefulness of modifying metal machining oil. Modification of the lubricant has contributed to reduction of the wear of the tools - pull broaches and to reduction of roughness of the splineway surfaces.

  20. Process for producing elements from a fused bath using a metal strap and ceramic electrode body nonconsumable electrode assembly

    DOEpatents

    Byrne, S.C.

    1984-07-03

    A nonconsumable electrode assembly is described suitable for use in the production of metal by electrolytic reduction of a metal compound dissolved in a molten salt, the assembly comprising a ceramic electrode body and a metal subassembly of a metal conductor rod and at least one metal strap affixed to an end of the rod with opposing portions extending radially outwardly from the rod axis and having the ends of the strap attached to the electrode body. 7 figs.

  1. Method of removing sulfur emissions from a fluidized-bed combustion process

    DOEpatents

    Vogel, Gerhard John; Jonke, Albert A.; Snyder, Robert B.

    1978-01-01

    Alkali metal or alkaline earth metal oxides are impregnated within refractory support material such as alumina and introduced into a fluidized-bed process for the combustion of coal. Sulfur dioxide produced during combustion reacts with the metal oxide to form metal sulfates within the porous support material. The support material is removed from the process and the metal sulfate regenerated to metal oxide by chemical reduction. Suitable pore sizes are originally developed within the support material by heat-treating to accommodate both the sulfation and regeneration while still maintaining good particle strength.

  2. The mechanism of metal nanoparticle formation in plants: limits on accumulation

    NASA Astrophysics Data System (ADS)

    Haverkamp, R. G.; Marshall, A. T.

    2009-08-01

    Metal nanoparticles have many potential technological applications. Biological routes to the synthesis of these particles have been proposed including production by vascular plants, known as phytoextraction. While many studies have looked at metal uptake by plants, particularly with regard to phytoremediation and hyperaccumulation, few have distinguished between metal deposition and metal salt accumulation. This work describes the uptake of AgNO3, Na3Ag(S2O3)2, and Ag(NH3)2NO3 solutions by hydroponically grown Brassica juncea and the quantitative measurement of the conversion of these salts to silver metal nanoparticles. Using X-ray absorption near edge spectroscopy (XANES) to determine the metal speciation within the plants, combined with atomic absorption spectroscopy (AAS) for total Ag, the quantity of reduction of AgI to Ag0 is reported. Transmission electron microscopy (TEM) showed Ag particles of 2-35 nm. The factors controlling the amount of silver accumulated are revealed. It is found that there is a limit on the amount of metal nanoparticles that may be deposited, of about 0.35 wt.% Ag on a dry plant basis, and that higher levels of silver are obtained only by the concentration of metal salts within the plant, not by deposition of metal. The limit on metal nanoparticle accumulation, across a range of metals, is proposed to be controlled by the total reducing capacity of the plant for the reduction potential of the metal species and limited to reactions occurring at an electrochemical potential greater than 0 V (verses the standard hydrogen electrode).

  3. Ross filter pairs for metal artefact reduction in x-ray tomography: a case study based on imaging and segmentation of metallic implants

    NASA Astrophysics Data System (ADS)

    Arhatari, Benedicta D.; Abbey, Brian

    2018-01-01

    Ross filter pairs have recently been demonstrated as a highly effective means of producing quasi-monoenergetic beams from polychromatic X-ray sources. They have found applications in both X-ray spectroscopy and for elemental separation in X-ray computed tomography (XCT). Here we explore whether they could be applied to the problem of metal artefact reduction (MAR) for applications in medical imaging. Metal artefacts are a common problem in X-ray imaging of metal implants embedded in bone and soft tissue. A number of data post-processing approaches to MAR have been proposed in the literature, however these can be time-consuming and sometimes have limited efficacy. Here we describe and demonstrate an alternative approach based on beam conditioning using Ross filter pairs. This approach obviates the need for any complex post-processing of the data and enables MAR and segmentation from the surrounding tissue by exploiting the absorption edge contrast of the implant.

  4. A Facile Method for Synthesizing Dendritic Core–Shell Structured Ternary Metallic Aerogels and Their Enhanced Electrochemical Performances

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Qiurong; Zhu, Chengzhou; Li, Yijing

    2016-11-08

    Currently, three dimensional self-supported metallic structures are attractive for their unique properties of high porosity, low density, excellent conductivity etc. that promote their wide application in fuel cells. Here, for the first time, we report a facile synthesis of dendritic core-shell structured Au/Pt3Pd ternary metallic aerogels via a one-pot self-assembly gelation strategy. The as-prepared Au/Pt3Pd ternary metallic aerogels demonstrated superior electrochemical performances toward oxygen reduction reaction compared to commercial Pt/C. The unique dendritic core-shell structures, Pt3Pd alloyed shells and the cross-linked network structures are beneficial for the electrochemical oxygen reduction reaction performances of the Pt-based materials via the electronic effect,more » geometric effect and synergistic effect. This strategy of fabrication of metallic hydrogels and aerogels as well as their exceptional properties hold great promise in a variety of applications.« less

  5. Effect of temperature on the visualization by digital color mapping of latent fingerprint deposits on metal.

    PubMed

    Peel, Alicia; Bond, John W

    2014-03-01

    Visualization of fingerprint deposits by digital color mapping of light reflected from the surface of heated brass, copper, aluminum, and tin has been investigated using Adobe® Photoshop®. Metals were heated to a range of temperatures (T) between 50°C and 500°C in 50°C intervals with enhancement being optimal when the metals are heated to 250°C, 350°C, 50°C, and 300°C, respectively, and the hue values adjusted to 247°, 245°, 5°, and 34°, respectively. Fingerprint visualization after color mapping was not degraded by subsequent washing of the metals and color mapping did not compromise the visibility of the fingerprint for all values of T. The optimum value of T for fingerprint visibility is significantly dependent of the standard reduction potential of the metal with Kendall’s Tau (τ) = 0.953 (p < 0.001). For brass, this correlation is obtained when considering the standard reduction potential of zinc rather than copper.

  6. 1400200

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  7. 1400198

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  8. 1400199

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  9. 1400202

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  10. 1400203

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  11. 1400201

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  12. 1400204

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  13. 1400205

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  14. 1400207

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  15. 1400206

    NASA Image and Video Library

    2014-03-28

    NASA AND BOEING ENGINEERS INSPECT AND PREPARE ONE OF THE LARGEST COMPSITE ROCKET PROPELLANT TANKS EVER MANUFACTURED. THE COMPOSITE CRYOTANK PROMISES A 30% WEIGHT REDUCTION AND A 25 % COST REDUCTION OVER THE PREVIOUSLY USED METAL TANKS.

  16. Nanoengineered membrane electrode assembly interface

    DOEpatents

    Song, Yujiang; Shelnutt, John A

    2013-08-06

    A membrane electrode structure suitable for use in a membrane electrode assembly (MEA) that comprises membrane-affixed metal nanoparticles whose formation is controlled by a photochemical process that controls deposition of the metal nanoparticles using a photocatalyst integrated with a polymer electrolyte membrane, such as an ionomer membrane. Impregnation of the polymer membrane with the photocatalyst prior to metal deposition greatly reduces the required amount of metal precursor in the deposition reaction solution by restricting metal reduction substantially to the formation of metal nanoparticles affixed on or near the surface of the polymer membrane with minimal formation of metallic particles not directly associated with the membrane.

  17. Electrocatalysis using transition metal carbide and oxide nanocrystals

    NASA Astrophysics Data System (ADS)

    Regmi, Yagya N.

    Carbides are one of the several families of transition metal compounds that are considered economic alternatives to catalysts based on noble metals and their compounds. Phase pure transition metal carbides of group 4-6 metals, in the first three periods, were synthesized using a common eutectic salt flux synthesis method, and their electrocatalytic activities compared under uniform electrochemical conditions. Mo2C showed highest hydrogen evolution reaction (HER) and oxygen reduction reaction (ORR) activities among the nine metal carbides investigated, but all other metal carbides also showed substantial activities. All the metal carbides showed remarkable enhancement in catalytic activities as supports, when compared to traditional graphitic carbon as platinum support. Mo2C, the most active transition metal carbide electrocatalyst, was prepared using four different synthesis routes, and the synthesis route dependent activities compared. Bifunctional Mo 2C that is HER as well as oxygen evolution reaction (OER) active, was achieved when the carbide was templated on a multiwalled carbon nanotube using carbothermic reduction method. Bimetallic carbides of Fe, Co, and Ni with Mo or W were prepared using a common carbothermic reduction method. Two different stoichiometries of bimetallic carbides were obtained for each system within a 60 °C temperature window. While the bimetallic carbides showed relatively lower electrocatalytic activities towards HER and ORR in comparison to Mo2C and WC, they revealed remarkably higher OER activities than IrO2 and RuO2, the state-of-the-art OER catalysts. Bimetallic oxides of Fe, Co, and Ni with Mo and W were also prepared using a hydrothermal synthesis method and they also revealed OER activities that are much higher than RuO2 and IrO2. Additionally, the OER activities were dependent on the degree and nature of hydration in the bimetallic oxide crystal lattice, with the completely hydrated, as synthesized, cobalt molybdate and nickel molybdate showing the highest OER activities.

  18. Synthesis of Au-induced structurally ordered AuPdCo intermetallic core-shell nanoparticles and their use as oxygen reduction catalysts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuttiyiel, Kurian A.; Sasaki, Kotaro; Adzic, Radoslav R.

    Embodiments of the disclosure relate to intermetallic nanoparticles. Embodiments include nanoparticles having an intermetallic core including a first metal and a second metal. The first metal may be palladium and the second metal may be at least one of cobalt, iron, nickel, or a combination thereof. The nanoparticles may further have a shell that includes palladium and gold.

  19. Progressive Design of Plasmonic Metal-Semiconductor Ensemble toward Regulated Charge Flow and Improved Vis-NIR-Driven Solar-to-Chemical Conversion.

    PubMed

    Han, Chuang; Quan, Quan; Chen, Hao Ming; Sun, Yugang; Xu, Yi-Jun

    2017-04-01

    Surface plasmon resonance (SPR)-mediated photocatalysis without the bandgap limitations of traditional semiconductor has aroused significant attention in solar-to-chemical energy conversion. However, the photocatalytic efficiency barely initiated by the SPR effects is still challenged by the low concentration and ineffective extraction of energetic hot electrons, slow charge migration rates, random charge diffusion directions, and the lack of highly active sites for redox reactions. Here, the tunable, progressive harvesting of visible-to-near infrared light (vis-NIR, λ > 570 nm) by designing plasmonic Au nanorods and metal (Au, Ag, or Pt) nanoparticle codecorated 1D CdS nanowire (1D CdS NW) ensemble is reported. The intimate integration of these metal nanostructures with 1D CdS NWs promotes the extraction and manipulated directional separation and migration of hot charge carriers in a more effective manner. Such cooperative synergy with tunable control of interfacial interaction, morphology optimization, and cocatalyst strategy results in the distinctly boosted performance for vis-NIR-driven plasmonic photocatalysis. This work highlights the significance of rationally progressive design of plasmonic metal-semiconductor-based composite system for boosting the regulated directional flow of hot charge carrier and thus the more efficient use of broad-spectrum solar energy conversion. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Metal availability and the expanding network of microbial metabolisms in the Archaean eon

    NASA Astrophysics Data System (ADS)

    Moore, Eli K.; Jelen, Benjamin I.; Giovannelli, Donato; Raanan, Hagai; Falkowski, Paul G.

    2017-09-01

    Life is based on energy gained by electron-transfer processes; these processes rely on oxidoreductase enzymes, which often contain transition metals in their structures. The availability of different metals and substrates has changed over the course of Earth's history as a result of secular changes in redox conditions, particularly global oxygenation. New metabolic pathways using different transition metals co-evolved alongside changing redox conditions. Sulfur reduction, sulfate reduction, methanogenesis and anoxygenic photosynthesis appeared between about 3.8 and 3.4 billion years ago. The oxidoreductases responsible for these metabolisms incorporated metals that were readily available in Archaean oceans, chiefly iron and iron-sulfur clusters. Oxygenic photosynthesis appeared between 3.2 and 2.5 billion years ago, as did methane oxidation, nitrogen fixation, nitrification and denitrification. These metabolisms rely on an expanded range of transition metals presumably made available by the build-up of molecular oxygen in soil crusts and marine microbial mats. The appropriation of copper in enzymes before the Great Oxidation Event is particularly important, as copper is key to nitrogen and methane cycling and was later incorporated into numerous aerobic metabolisms. We find that the diversity of metals used in oxidoreductases has increased through time, suggesting that surface redox potential and metal incorporation influenced the evolution of metabolism, biological electron transfer and microbial ecology.

  1. White slavery, whorehouse riots, venereal disease, and saving women: historical context of prostitution interventions and harm reduction in New York City during the Progressive Era.

    PubMed

    Smolak, Alex

    2013-01-01

    Harm reduction and structural approaches to reduce HIV risk among sex workers face several barriers. One such barrier is based on moral arguments, and it has a rich historical context. This article examines the historical context of interventions with sex workers in New York City during the Progressive Era (1890-1920). Present at the time, though under a different name, the harm reduction approach was largely dismissed. These same moral underpinnings may be active today in driving interventions and policy toward those that are morally focused and away from those that focus on harm reduction and structural change.

  2. White Slavery, Whorehouse Riots, Venereal Disease, and Saving Women: Historical Context of Prostitution Interventions and Harm Reduction in New York City during the Progressive Era

    PubMed Central

    Smolak, Alex

    2013-01-01

    Harm reduction and structural approaches to reduce HIV risk among sex workers face several barriers. One such barrier is based on moral argument, and it has a rich historical context. This paper will examine the historical context of interventions with sex workers in New York City during the Progressive Era (1890–1920). Present at the time, though under a different name, the harm reduction approach was largely dismissed. These same moral underpinnings may be active today in driving interventions and policy toward those that are morally focused and away from those that focus on harm reduction and structural change. PMID:23805804

  3. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  4. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...

  5. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of effluent...

  6. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...

  7. 40 CFR 471.66 - Effluent limitations representing the degree of effluent reduction attainable by the application...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) NONFERROUS METALS FORMING AND METAL POWDERS POINT SOURCE CATEGORY Titanium Forming Subcategory § 471.66 Effluent limitations representing the degree of...

  8. Manganese As a Metal Accumulator

    EPA Science Inventory

    Manganese deposits in water distribution systems accumulate metals, radionuclides and oxyanions by a combination of surface complexation, adsorption and solid substitution, as well as a combination of oxidation followed by manganese reduction and sorption of the oxidized constitu...

  9. Laser Balancing

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Mechanical Technology, Incorporated developed a fully automatic laser machining process that allows more precise balancing removes metal faster, eliminates excess metal removal and other operator induced inaccuracies, and provides significant reduction in balancing time. Manufacturing costs are reduced as a result.

  10. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  11. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  12. Reconfigurable Electronics and Non-Volatile Memory Research

    DTIC Science & Technology

    2011-10-14

    Sources of metal dopants were elemental metals and as well as, metal-Se compounds, and there was no evident difference in the measured Raman and Electron...similar in nature. Intensity of the most of the sample reduces with dopant concentration. This is due to the reduction in Ge-Ge and Ge-Se bonds as...the metal is incorporated into the glass. The metal dopant atoms will bond with the Se atoms [5] reducing the number of Se atoms that are available

  13. Method of making composition suitable for use as inert electrode having good electrical conductivity and mechanical properties

    DOEpatents

    Ray, S.P.; Rapp, R.A.

    1986-04-22

    An improved inert electrode composition is suitable for use as an inert electrode in the production of metals such as aluminum by the electrolytic reduction of metal oxide or metal salt dissolved in a molten salt bath. The composition comprises one or more metals or metal alloys and metal compounds which may include oxides of the metals comprising the alloy. The alloy and metal compounds are interwoven in a network which provides improved electrical conductivity and mechanical strength while preserving the level of chemical inertness necessary for such an electrode to function satisfactorily. 8 figs.

  14. Measuring radiation dose in computed tomography using elliptic phantom and free-in-air, and evaluating iterative metal artifact reduction algorithm

    NASA Astrophysics Data System (ADS)

    Morgan, Ashraf

    The need for an accurate and reliable way for measuring patient dose in multi-row detector computed tomography (MDCT) has increased significantly. This research was focusing on the possibility of measuring CT dose in air to estimate Computed Tomography Dose Index (CTDI) for routine quality control purposes. New elliptic CTDI phantom that better represent human geometry was manufactured for investigating the effect of the subject shape on measured CTDI. Monte Carlo simulation was utilized in order to determine the dose distribution in comparison to the traditional cylindrical CTDI phantom. This research also investigated the effect of Siemens health care newly developed iMAR (iterative metal artifact reduction) algorithm, arthroplasty phantom was designed and manufactured that purpose. The design of new phantoms was part of the research as they mimic the human geometry more than the existing CTDI phantom. The standard CTDI phantom is a right cylinder that does not adequately represent the geometry of the majority of the patient population. Any dose reduction algorithm that is used during patient scan will not be utilized when scanning the CTDI phantom, so a better-designed phantom will allow the use of dose reduction algorithms when measuring dose, which leads to better dose estimation and/or better understanding of dose delivery. Doses from a standard CTDI phantom and the newly-designed phantoms were compared to doses measured in air. Iterative reconstruction is a promising technique in MDCT dose reduction and artifacts correction. Iterative reconstruction algorithms have been developed to address specific imaging tasks as is the case with Iterative Metal Artifact Reduction or iMAR which was developed by Siemens and is to be in use with the companys future computed tomography platform. The goal of iMAR is to reduce metal artifact when imaging patients with metal implants and recover CT number of tissues adjacent to the implant. This research evaluated iMAR capability of recovering CT numbers and reducing noise. Also, the use of iMAR should allow using lower tube voltage instead of 140 KVp which is used frequently to image patients with shoulder implants. The evaluations of image quality and dose reduction were carried out using an arthroplasty phantom.

  15. Reduction by monovalent zinc, cadmium, and nickel cations

    NASA Technical Reports Server (NTRS)

    Meyerstein, D.; Mulac, W. A.

    1969-01-01

    Understanding of chemical properties of monovalent transition metal cations in aqueous solutions was obtained by a study of kinetics of reduction of different inorganic substrates by zinc, cadmium, and nickel.

  16. Selective separation and recovery of silver and copper from mixtures by photocatalysis

    NASA Astrophysics Data System (ADS)

    Ding, Mali; Zhang, Weijun; Xie, Zhaofeng; Lei, Rihua; Wang, Jianfang; Gao, Wei

    2017-07-01

    Separation and recovery of valuable metals including silver (Ag) and copper (Cu) from electronic waste mixtures are of great economic and environmental importance. Recent years, semiconductor photocatalysts have been investigated intensively for the removal of Ag from wastewater. Few studies have been carried out on the effect of pH and co-exist metal ions such as Cu on Ag. In this study, ZnO and TiO2 were applied as photocatalysts to target on the selective recovery Ag and Cu from its mixtures under UV light. The effects of pH, catalyst, ethylene-diamine tetraacetic acid (EDTA) on the Ag and Cu photo-reduction were studied. Modeling of Ag+ and Cu2+ with and without EDTA distribution together with metal precipitations was plotted against pH to understand the chemistry involved in photocatalysis. Experimental results showed that Ag+ photo-reduction was nearly completed by ZnO and TiO2 to Ag metal, while Cu2+ photo-reduction to Cu2O only occurs by ZnO in the presence of EDTA. This work illustrates that semiconductor photocatalysts are suitable for selective recovery of Ag and Cu from wastewaters.

  17. Bath for electrolytic reduction of alumina and method therefor

    DOEpatents

    Brown, Craig W.; Brooks, Richard J.; Frizzle, Patrick B.; Juric, Drago D.

    2002-11-26

    An electrolytic bath for use during the electrolytic reduction of alumina to aluminum. The bath comprises a molten electrolyte having the following ingredients: (a) AlF.sub.3 and at least one salt selected from the group consisting of NaF, KF, and LiF; and (b) about 0.004 wt. % to about 0.2 wt. %, based on total weight of the molten electrolyte, of at least one transition metal or at least one compound of the metal or both. The compound may be, for example, a fluoride, oxide, or carbonate. The metal can be nickel, iron, copper, cobalt, or molybdenum. The bath can be employed in a combination that includes a vessel for containing the bath and at least one non-consumable anode and at least one dimensionally stable cathode in the bath. Employing the bath of the present invention during electrolytic reduction of alumina to aluminum can improve the wetting of aluminum on a cathode by reducing or eliminating the formation of non-metallic deposits on the cathode. Removing sulfur from the bath can also minimize cathode deposits. Aluminum formed on the cathode can be removed directly from the cathode.

  18. Multiheteromacrocycles that Complex Metal Ions. Fourth Progress Report, 1 May 1977 -- 30 April 1978

    DOE R&D Accomplishments Database

    Cram, D. J.

    1978-01-15

    Results are reported in a program to design, synthesize, and evaluate polycyclic host organic compounds for their abilities to complex and lipophilize guest metal ions. Work during the reporting period was devoted to synthesis and study of cyclohexametaphenylenes and cyclic phosphine oxides. (JRD)

  19. Universal fuel basket for use with an improved oxide reduction vessel and electrorefiner vessel

    DOEpatents

    Herrmann, Steven D.; Mariani, Robert D.

    2002-01-01

    A basket, for use in the reduction of UO.sub.2 to uranium metal and in the electrorefining of uranium metal, having a continuous annulus between inner and outer perforated cylindrical walls, with a screen adjacent to each wall. A substantially solid bottom and top plate enclose the continuous annulus defining a fuel bed. A plurality of scrapers are mounted adjacent to the outer wall extending longitudinally thereof, and there is a mechanism enabling the basket to be transported remotely.

  20. Enantiomerically pure 3-aryl- and 3-hetaryl-2-hydroxypropanoic acids by chemoenzymatic reduction of 2-oxo acids.

    PubMed

    Sivanathan, Sivatharushan; Körber, Florian; Tent, Jannis Aron; Werner, Svenja; Scherkenbeck, Jürgen

    2015-03-06

    Phenyllactic acids are found in numerous natural products as well as in active substances used in medicine or plant protection. Enantiomerically pure phenyllactic acids are available by transition-metal-catalyzed hydrogenations or chemoenzymatic reductions of the corresponding 3-aryl-2-oxopropanoic acids. We show here that d-lactate dehydrogenase from Staphylococcus epidermidis reduces a broad spectrum of 2-oxo acids, which are difficult substrates for transition-metal-catalyzed reactions, with excellent enantioselectivities in a simple experimental setup.

Top