Science.gov

Sample records for metal salt solutions

  1. Cryochemical method for forming spherical metal oxide particles from metal salt solutions

    DOEpatents

    Tinkle, M.C.

    1973-12-01

    A method is described of preparing small metal oxide spheres cryochemically utilizing metal salts (e.g., nitrates) that cannot readily be dried and calcined without loss of sphericity of the particles. Such metal salts are cryochemically formed into small spheres, partially or completely converted to an insoluble salt, and dried and calcined. (Official Gazette)

  2. Transition metal salt solutions and anaerobic adhesives in dental bonding.

    PubMed

    Ireland, A J; Sherriff, M

    1999-07-01

    The objectives of this experiment were twofold. Firstly to determine whether an anaerobic adhesive could be used to bond steel attachments to etched human enamel, following treatment of this surface with various concentrations of copper (II) sulphate solution. Secondly, to determine the effect of 0.05 M solutions of other transition metal sulphates and chlorides on the same bonding process. Stainless steel attachments were bonded to human enamel using an anaerobic adhesive. In each case the enamel, which had been ground flat, was etched with 37% o-phosphoric acid and then treated with copper (II) sulphate solution prior to bonding. After bench curing for one hour, the specimens were shear tested to failure, and the load at bebond recorded in each case. The effect of varying the concentration of copper (II) sulphate solution was determined. Following determination of the optimal copper (II) sulphate concentration, the experiment was repeated using the same concentration of various other transition metal sulphates and chlorides. The results were analysed using mean force to debond (N) and 95% confidence intervals. Kaplan-Meier survival probabilities and log-rank tests were also performed. Under the conditions of this experiment the optimal concentration of copper (II) sulphate solution was found to be 0.05 M. Of the various transition metal sulphates and chlorides under test, the sulphates appeared to provide a more active surface for the polymerisation of the anaerobic adhesive than the chlorides. Of the sulphate solutions, the most effective was that of copper. Anaerobic adhesives show promise as dental bonding agents capable of bonding metal attachments to enamel following enamel pretreatment with 0.05 M copper (II) sulphate solution.

  3. Metals removal from spent salts

    DOEpatents

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  4. Multilayered Thin Metal Film Deposition by Sequential Operation of Nanosilicon Electron Emitter in Metal-Salt Solutions

    NASA Astrophysics Data System (ADS)

    Ohta, Toshiyuki; Gelloz, Bernard; Koshida, Nobuyoshi

    2011-06-01

    The use of a nanocrystalline silicon (nc-Si) ballistic electron emitter in metal-salt solutions induces the deposition of thin metal films. The nc-Si emitter is composed of a thin Au/Ti film, an anodized polycrystalline Si layer, and an n+-Si substrate. When the emitter is driven in NiCl2, CoSO4, and ZnSO4 solutions without using any counter electrodes, thin Ni, Co, and Zn films are deposited on the emission area, respectively, as well as a thin Cu film in CuSO4 solution. According to cyclic voltammogram measurements under a standard three-electrode configuration, the hot electron injection effect into the solution is clearly observed in all cases at potentials within the electrochemical window, in which no electrolytic reactions occur. Energetic electrons injected into the solutions cause the direct reduction of metal ions. As a possible application, the multilayered deposition of different metals is demonstrated by sequential operation in NiCl2 and CuSO4 solutions.

  5. Formation and stabilization of anionic metal complexes in concentrated aqueous quaternary ammonium salt solutions

    SciTech Connect

    Aronson, F.L.; Hwang, L.L.Y.; Ronca, N.; Solomon, N.A.; Steigman, J.

    1985-02-04

    Anionic complexes of transition metals were stabilized in aqueous solutions containing high concentrations of various short-chain quaternary ammonium salts. Compounds with longer paraffin chains were effective in much less concentrated solution. Complex ions were detected spectrophotometrically. FeCl/sub 4//sup -/, which is usually formed in concentrated HCl, was the predominant Fe(III) complex in 30 m choline chloride containing only 0.12 M HCl. A yellow transitory Tc(VII) chloro-addition intermediate, formed in the reduction of TcO/sub 4//sup -/ by concentrated HCl, was stabilized when the solution also contained 25 m choline chloride. Its spectrum, as well as the isolation of an already known Tc(VII) bipyridyl complex, is reported. Concentrated organic electrolytes also stabilized Tc(V) oxide halides against disproportionation and Tc(IV) hexahalides against hydrolysis. Halochromates of Cr(VI) were formed and stabilized in dilute acid containing quaternary ammonium salts. Their UV spectra showed the well-resolved vibronic fine structure associated with the symmetric chromium-to-oxygen charge-transfer band. It is known that these progressions are resolved in aprotic solvents, but not in aqueous acidic solution alone, and that the loss of fine structure in aqueous media is due to hydrogen bonding. The stabilization of anionic metal complexes and the resolution of vibronic structure in halochromates are probably consequences of water-structure-enforced ion paring. The present work suggests that the water molecules in immediate contact with the complex anions are more strongly hydrogen bonded to each other than to the complex. 21 references, 4 figures.

  6. Reduction of earth alkaline metal salts in THF solution studied by picosecond pulse radiolysis.

    PubMed

    Ma, Jun; Archirel, Pierre; Schmidhammer, Uli; Teuler, Jean-Marie; Pernot, Pascal; Mostafavi, Mehran

    2013-12-27

    Picosecond pulse radiolysis of tetrahydrofuran (THF) solutions containing earth alkaline metal salt, M(II)(ClO4)2, at different concentrations are performed using two different supercontinua as probe pulse, one covering the visible and another the near-infrared (NIR) down to the visible. Two types of line scan detectors are used to record the absorption spectra in the range from 400 to 1500 nm. Because of the strong overlap between the spectra of the absorbing species in the present wavelength range, global matrices were built for each M(II) system, by delay-wise binding the matrix for pure THF with the available matrices for this cation. The number of absorbers was assessed by Singular Value Decomposition of the global matrix, and a MCR-ALS analysis with the corresponding number of species was performed. The analysis of the results show clearly that solvated electron reacts with the earth alkaline metal molecule and the product has an optical absorption band very different than that of solvated electron in pure THF. So, contrarily to the case of solution containing free Na(+), in the presence of Mg(II), Ca(II) and Sr(II) the observed absorption band is not only blueshifted, but its shape is also drastically changed. In fact with Na(+) solvated electron forms a tight-contact pair but with earth alkaline metal cation solvated electron is scavenged by the undissociated molecule M(II)(ClO4)2. In order to determine the structure of the absorbing species observed after the electron pulse, Monte Carlo/DFT simulations were performed in the case of Mg(II), based on a classical Monte Carlo code and DFT/PCM calculation of the solute. The UV-visible spectrum of the solute is calculated with the help of the TDDFT method. The calculated spectrum is close to the experimental one. It is due to two species, a contact pair and an anion.

  7. A novel method of non-violent dissolution of sodium metal in a concentrated aqueous solution of Epsom salt

    NASA Astrophysics Data System (ADS)

    Lakshmanan, A. R.; Prasad, M. V. R.; Ponraju, D.; Krishnan, H.

    2004-10-01

    A new technique of non-violent and fast dissolution of sodium metal in a concentrated aqueous solution of Epsom salt (MgSO4.7H2O) at room temperature (RT) has been developed. The dissolution process is mildly exothermic but could be carried out even in a glass beaker in air under swift stirring condition. The reaction products consist of mixed salts of MgSO4 and Na2SO4 as well as Mg(OH)2 which are only mildly alkaline and hence are non-corrosive and non-hazardous unlike NaOH. A 50 mL solution having Epsom salt concentration of 2 M was found to give the optimal composition for disposal of 1 g of sodium. Supersaturated (>2.7 M), as well as dilute (<1.1 M) solutions, however, cause violent reactions and hence should be avoided. Repeated sodium dissolution in Epsom solution produced a solid waste of 4.7 g per g of sodium dissolved which is comparable with the waste (4 g) produced in 8 M NaOH solution. A 1.4 M Epsom solution sprayed with a high-pressure jet cleaner at RT in air easily removed the sodium blocked inside a metal pipe made of mild steel. The above jet also dissolved peacefully residual sodium collected on the metal tray after a sodium fire experiment. No sodium fire or explosion was observed during this campaign. The Epsom solution spray effectively neutralized the minor quantity of sodium aerosol produced during this campaign. This novel technique would hence be quite useful for draining sodium from fast breeder reactor components and bulk processing of sodium as well as for sodium fire fighting.

  8. Parallel patterning of SiO2 wafer via near-field electrospinning of metallic salts and polymeric solution mixtures

    NASA Astrophysics Data System (ADS)

    Hu, Sanyuan; Li, Heping; Su, Zhen; Yan, Youwei

    2017-10-01

    This paper describes a near-field electrospinning technique combined with heat treatment process used to directly align parallel metal oxide and metal nitride fibers on silicon dioxide substrate. The effects of near-field electrospinning parameters (including collector-to-needle distance, applied voltage and the moving speed of the collector) on the morphology of the resulted fibers have been studied. Metallic salt-contained precursor fibers are individually aligned via near-field electrospinning of metallic salts and polymeric solution mixtures. After applying calcination process to these well aligned precursor fibers, patterning by metal oxide and metal nitride fibers such as ZnO, Ga2O3, TiO2, GaN and TiN is successfully obtained. The optical microscope images and the scanning electron microscopy show the presence of fiber patterns, whose crystalline structure is characterized by x-ray diffraction and Raman spectroscopy measurement. The results demonstrate the potential of this approach for assembling ceramic fibers into parallel arrays with controllable orientation and position.

  9. Parallel patterning of SiO2 wafer via near-field electrospinning of metallic salts and polymeric solution mixtures.

    PubMed

    Hu, Sanyuan; Li, Heping; Su, Zhen; Yan, Youwei

    2017-08-08

    This paper describes a near-field electrospinning technique combined with heat treatment process used to directly align parallel metal oxide and metal nitride fibers on silicon dioxide substrate. The effects of near-field electrospinning parameters (including collector-to-needle distance, applied voltage and the moving speed of the collector) on the morphology of the resulted fibers have been studied. Metallic salt-contained precursor fibers are individually aligned via near-field electrospinning of metallic salts and polymeric solution mixtures. After applying calcination process to these well aligned precursor fibers, patterning by metal oxide and metal nitride fibers such as ZnO, Ga2O3, TiO2, GaN and TiN is successfully obtained. The optical microscope images and the scanning electron microscopy show the presence of fiber patterns, whose crystalline structure is characterized by X-ray diffraction and Raman spectroscopy measurement. The results demonstrate the potential of this approach for assembling ceramic fibers into parallel arrays with controllable orientation and position. © 2017 IOP Publishing Ltd.

  10. An adiabatic linearized path integral approach for quantum time correlation functions: electronic transport in metal-molten salt solutions.

    PubMed

    Causo, Maria Serena; Ciccotti, Giovanni; Montemayor, Daniel; Bonella, Sara; Coker, David F

    2005-04-14

    We generalize the linearized path integral approach to evaluate quantum time correlation functions for systems best described by a set of nuclear and electronic degrees of freedom, restricting ourselves to the adiabatic approximation. If the operators in the correlation function are nondiagonal in the electronic states, then this adiabatic linearized path integral approximation for the thermal averaged quantum dynamics presents interesting and distinctive features, which we derive and explore in this paper. The capability of these approximations to accurately reproduce the behavior of physical systems is demonstrated by calculating the diffusion constant for an excess electron in a metal-molten salt solution.

  11. Electrophysical methods of separation of metal cations in the moving salts solution

    NASA Astrophysics Data System (ADS)

    Gofman, V. N.; Tuksov, I. V.; Timchenko, S. N.; Shamanin, I. V.; Poberezhnikov, A. D.; Kazaryan, M. A.

    2016-07-01

    The results of experiments on the excitation of the phenomenon of selective drift of solvated ions under the influence of an external "asymmetric" electric field to the circulating solution of calcium chloride and magnesium salts in a polar liquid dielectric - water are shown. The purpose of the experiments was to determine the influence of the field frequency and amplitude of the field strength on the excitation phenomenon, and the study of the operating characteristics of the testing apparatus - a dividing cell. The dependences of the separation efficiency of solvated cations from the frequency of the external field and the excitation threshold of the phenomenon from the field strength in the separation cell are defined.

  12. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    NASA Astrophysics Data System (ADS)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  13. Metal Oxide Solubility and Molten Salt Corrosion.

    DTIC Science & Technology

    1982-03-29

    METAL OXIDE SOLUBILITY AND MOLTEN SALT CORROSION.(U) MAR 82 K H STERN UNCLASSI E DL R L-4772NL EL .2. MICROCOPY RESOLUTION TEST CHART NATIONAL BURALU...METAL OXIDE SOLUBILITY AND MOLTEN SALT Interim report on a continuing CORROSION NRL problem. S. PERFORMING a4. REPORT NUMlER 7. AuTtwORr) S. CONTRACT OR...EQUILIBRIA AND OXIDE SOLUTION RELATIONS IN MOLTEN SALTS ............................................. 2 IV. METHODS FOR DETERMINING SOLUBILITIES

  14. Improving Loading Amount and Performance of Quantum Dot-Sensitized Solar Cells through Metal Salt Solutions Treatment on Photoanode.

    PubMed

    Wang, Wenran; Du, Jun; Ren, Zhenwei; Peng, Wenxiang; Pan, Zhenxiao; Zhong, Xinhua

    2016-11-16

    Increasing QD loading amount on photoanode and suppressing charge recombination are prerequisite for high-efficiency quantum dot-sensitized solar cells (QDSCs). Herein, a facile technique for enhancing the loading amount of QDs on photoanode and therefore improving the photovoltaic performance of the resultant cell devices is developed by pipetting metal salt aqueous solutions on TiO2 film electrode and then evaporating at elevated temperature. The effect of different metal salt solutions was investigated, and experimental results indicated that the isoelectric point (IEP) of metal ions influenced the loading amount of QDs and consequently the photovoltaic performance of the resultant cell devices. The influence of anions was also investigated, and the results indicated that anions of strong acid made no difference, while acetate anion hampered the performance of solar cells. Infrared spectroscopy confirmed the formation of oxyhydroxides, whose behavior was responsible for QD loading amount and thus solar cell performance. Suppressed charge recombination based on Mg(2+) treatment under optimal conditions was confirmed by impedance spectroscopy as well as transient photovoltage decay measurement. Combined with high-QD loading amount and retarded charge recombination, the champion cell based on Mg(2+) treatment exhibited an efficiency of 9.73% (Jsc = 27.28 mA/cm(2), Voc = 0.609 V, FF = 0.585) under AM 1.5 G full 1 sun irradiation. The obtained efficiency was one of the best performances for liquid-junction QDSCs, which exhibited a 10% improvement over the untreated cells with the highest efficiency of 8.85%.

  15. Study of quantitative interactions of potato and corn starch granules with ions in diluted solutions of heavy metal salts.

    PubMed

    Szymońska, Joanna; Molenda, Marcin; Wieczorek, Jerzy

    2015-12-10

    Interactions of potato and corn starch granules with ions in diluted solutions of silver, lead, copper or iron salts were investigated. It was shown experimentally that granules accumulated the cations in amounts depending on the granule structure and water content as well as a type of both metal and counter-ions present in solution. Potato starch retained almost three times more cations compared to corn starch what was proportional to the total phosphorous content in these starches. Quantity of milligrams of cations bound by 1g of starch was inversely correlated with the cation hydration. Ag(+), Pb(2+) and Cu(2+) were connected in stoichiometric amounts of moles to semicrystalline and amorphous parts of the granules. Fe(3+) ions were accumulated in higher than stoichiometric quantities mainly in granule amorphous regions. Metal ions penetrated into granules together with anions except nitrates which remained on surface of potato starch granules. Cations facilitated the starch thermal decomposition in accordance with values of their standard redox potentials. Nitrates supported this process only in the presence of base metal cations.

  16. SEPARATION OF METAL SALTS BY ADSORPTION

    DOEpatents

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  17. Stability and electrokinetic potential of aqueous graphite dispersions in solutions of polyvalent metal salts

    SciTech Connect

    Morarv, V.N.; Ovcharenko, F.D.

    1986-07-01

    Three changes in the charge sign of graphite in AlCl/sub 3/ solutions in the pH interval 2-12 and alternation of several zones of stability and coagulation of the dispersions are explained by taking into consideration the hydrolysis and complex formation of Al/sup 3 +/ ions, as well as the character of ionization of the solid-phase groups. Convincing proof has been obtained that it is not the simple Al/sup 3 +/ ions but their hydrolysis products which are capable of altering the charge of the graphite surface. The coagulating and stabilizing power of the aluminum ions depends on their state in solution.

  18. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  19. Electrochromic Salts, Solutions, and Devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  20. Electrochromic salts, solutions, and devices

    DOEpatents

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  1. Salts of alkali metal anions and process of preparing same

    DOEpatents

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  2. Protein aggregation in salt solutions

    PubMed Central

    Kastelic, Miha; Kalyuzhnyi, Yurij V.; Hribar-Lee, Barbara; Dill, Ken A.; Vlachy, Vojko

    2015-01-01

    Protein aggregation is broadly important in diseases and in formulations of biological drugs. Here, we develop a theoretical model for reversible protein–protein aggregation in salt solutions. We treat proteins as hard spheres having square-well-energy binding sites, using Wertheim’s thermodynamic perturbation theory. The necessary condition required for such modeling to be realistic is that proteins in solution during the experiment remain in their compact form. Within this limitation our model gives accurate liquid–liquid coexistence curves for lysozyme and γ IIIa-crystallin solutions in respective buffers. It provides good fits to the cloud-point curves of lysozyme in buffer–salt mixtures as a function of the type and concentration of salt. It than predicts full coexistence curves, osmotic compressibilities, and second virial coefficients under such conditions. This treatment may also be relevant to protein crystallization. PMID:25964322

  3. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts.

    PubMed

    Zimnyakov, D A; Sevrugin, A V; Yuvchenko, S A; Fedorov, F S; Tretyachenko, E V; Vikulova, M A; Kovaleva, D S; Krugova, E Y; Gorokhovsky, A V

    2016-06-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka-Munk function reveals a presence of local maxima in the regions 0.5-1.5 eV and 1.6-3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction.

  4. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System

    NASA Astrophysics Data System (ADS)

    Lavrynenko, O. M.; Pavlenko, O. Yu; Shchukin, Yu S.

    2016-02-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  5. Characteristic of the Nanoparticles Formed on the Carbon Steel Surface Contacting with 3d-Metal Water Salt Solutions in the Open-Air System.

    PubMed

    Lavrynenko, O M; Pavlenko, O Yu; Shchukin, Yu S

    2016-12-01

    The contact of a steel electrode with water dispersion medium in an open-air system leads to the development of various polymorphic iron oxides and oxyhydroxides on the steel surface. Whereas the usage of distilled water causes the obtaining of Fe(II)-Fe(III) layered double hydroxides (green rust) as a primary mineral phase, but in the presence of inorganic 3d-metal water salt solutions, mixed layered double hydroxides (LDHs) together with non-stoichiometric spinel ferrite nanoparticles are formed on the steel surface. Mixed LDHs keep stability against further oxidation and complicate the obtaining of spinel ferrite nanoparticles. Thermal treatment of mixed LDHs among other mineral phases formed via the rotation-corrosion dispergation process at certain temperatures permits to obtain homogenous nanoparticles of spinel ferrites as well as maghemite or hematite doped by 3d-metal cations.

  6. Kinetic study of the α-tocopherol-regeneration reaction of ubiquinol-10 in methanol and acetonitrile solutions: notable effect of the alkali and alkaline earth metal salts on the reaction rates.

    PubMed

    Mukai, Kazuo; Oi, Masanori; Ouchi, Aya; Nagaoka, Shin-ichi

    2012-03-01

    A kinetic study of regeneration reaction of α-tocopherol (α-TocH) by ubiquinol-10 has been performed in the presence of four kinds of alkali and alkaline earth metal salts (LiClO(4), NaClO(4), NaI, and Mg(ClO(4))(2)) in methanol and acetonitrile solutions, using double-mixing stopped-flow spectrophotometry. The second-order rate constants (k(r)'s) for the reaction of α-tocopheroxyl (α-Toc•) radical with ubiquinol-10 increased and decreased notably with increasing concentrations of metal salts in methanol and acetonitrile, respectively. The k(r) values increased in the order of no metal salt < NaClO(4) ~ NaI < LiClO(4) < Mg(ClO(4))(2) at the same concentration of metal salts in methanol. On the other hand, in acetonitrile, the k(r) values decreased in the order of no metal salt > NaClO(4) ~ NaI > LiClO(4) > Mg(ClO(4))(2) at the same concentration of metal salts. The metal salts having a smaller ionic radius of cation and a larger charge of cation gave a larger k(r) value in methanol, and a smaller k(r) value in acetonitrile. The effect of anion was almost negligible in both the solvents. Notable effects of metal cations on the UV-vis absorption spectrum of α-Toc• radical were observed in aprotic acetonitrile solution, suggesting complex formation between α-Toc• and metal cations. On the other hand, effects of metal cations were negligible in protic methanol, suggesting that the complex formation between α-Toc• and metal cations is hindered by the hydrogen bond between α-Toc• and methanol molecules. The difference between the reaction mechanisms in methanol and acetonitrile solutions was discussed on the basis of the results obtained. High concentrations of alkali and alkaline earth metal salts coexist with α-TocH and ubiquinol-10 in plasma, blood, and many tissues, suggesting the contribution of the metal salts to the above regeneration reaction in biological systems.

  7. Metal salt catalysts for enhancing hydrogen spillover

    DOEpatents

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  8. Data on energy-band-gap characteristics of composite nanoparticles obtained by modification of the amorphous potassium polytitanate in aqueous solutions of transition metal salts

    PubMed Central

    Zimnyakov, D.A.; Sevrugin, A.V.; Yuvchenko, S.A.; Fedorov, F.S.; Tretyachenko, E.V.; Vikulova, M.A.; Kovaleva, D.S.; Krugova, E.Y.; Gorokhovsky, A.V.

    2016-01-01

    Here we present the data on the energy-band-gap characteristics of composite nanoparticles produced by modification of the amorphous potassium polytitanate in aqueous solutions of different transition metal salts. Band gap characteristics are investigated using diffuse reflection spectra of the obtained powders. Calculated logarithmic derivative quantity of the Kubelka–Munk function reveals a presence of local maxima in the regions 0.5–1.5 eV and 1.6–3.0 eV which correspond to band gap values of the investigated materials. The values might be related to the constituents of the composite nanoparticles and intermediate products of their chemical interaction. PMID:27158654

  9. Phosphoric acid and various transition metal salt solutions as a combined etchant and activator prior to the use of an anaerobic adhesive.

    PubMed

    Ireland, Anthony J; Ireland, Martin J; Sherriff, Martyn

    2003-03-01

    The objectives of this experiment were to determine whether various transition metal salts in 37% o-phosphoric acid could both activate and etch an enamel surface prior to the use of an anaerobic adhesive. Stainless steel attachments were bonded to human enamel using an anaerobic adhesive. In each case, the enamel was etched and activated using a solution of 37% o-phosphoric acid containing various transition metal sulfates and chlorides. After bench curing, the specimens were shear bond tested to failure and the load at debond recorded in each case. The results were analyzed using mean force to debond (N) and 95% confidence intervals. Kaplan-Meier survival probabilities and log-rank tests were also performed.Conclusions. Under the conditions of this experiment, the sulfate and chloride of copper in acid were the most effective etching/activating solutions. There was no significant difference in the mean force to debond between the copper (II) sulfate and copper (II) chloride. The chloride in acid was, however, the only one of the two to produce a conventional etch pattern on the surface of the enamel. It is possible to render the enamel surface both retentive and active towards anaerobic adhesives, such that relatively unreactive substrates can be bonded to enamel using such adhesives.

  10. Notable effects of the metal salts on the formation and decay reactions of α-tocopheroxyl radical in acetonitrile solution. The complex formation between α-tocopheroxyl and metal cations.

    PubMed

    Kohno, Yutaro; Fujii, Miyabi; Matsuoka, Chihiro; Hashimoto, Haruka; Ouchi, Aya; Nagaoka, Shin-ichi; Mukai, Kazuo

    2011-08-18

    The measurement of the UV-vis absorption spectrum of α-tocopheroxyl (α-Toc(•)) radical was performed by reacting aroxyl (ArO(•)) radical with α-tocopherol (α-TocH) in acetonitrile solution including four kinds of alkali and alkaline earth metal salts (MX or MX(2)) (LiClO(4), LiI, NaClO(4), and Mg(ClO(4))(2)), using stopped-flow spectrophotometry. The maximum wavelength (λ(max)) of the absorption spectrum of the α-Toc(•) at 425.0 nm increased with increasing concentration of metal salts (0-0.500 M) in acetonitrile, and it approached constant values, suggesting an [α-Toc(•)-M(+) (or M(2+))] complex formation. The stability constants (K) were determined to be 9.2, 2.8, and 45 M(-1) for LiClO(4), NaClO(4), and Mg(ClO(4))(2), respectively. By reacting ArO(•) with α-TocH in acetonitrile, the absorption of ArO(•) disappeared rapidly, while that of α-Toc(•) appeared and then decreased gradually as a result of the bimolecular self-reaction of α-Toc(•) after passing through the maximum. The second-order rate constants (k(s)) obtained for the reaction of α-TocH with ArO(•) increased linearly with an increasing concentration of metal salts. The results indicate that the hydrogen transfer reaction of α-TocH proceeds via an electron transfer intermediate from α-TocH to ArO(•) radicals followed by proton transfer. Both the coordination of metal cations to the one-electron reduced anions of ArO(•) (ArO:(-)) and the coordination of counteranions to the one-electron oxidized cations of α-TocH (α-TocH(•)(+)) may stabilize the intermediate, resulting in the acceleration of electron transfer. A remarkable effect of metal salts on the rate of bimolecular self-reaction (2k(d)) of the α-Toc(•) radical was also observed. The rate constant (2k(d)) decreased rapidly with increasing concentrations of the metal salts. The 2k(d) value decreased at the same concentration of the metal salts in the following order: no metal salt > NaClO(4) > LiClO(4) > Mg

  11. Sol-gel processing with inorganic metal salt precursors

    DOEpatents

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  12. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOEpatents

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  13. Salting-out and Salting-in in Polyelectrolyte Solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Pengfei; Wu, Jianzhong; Wang, Zhen-Gang

    The phase behavior of polyelectrolyte (PE) solutions is governed by complicated interplay involving the mixing entropy, excluded volume, chain connectivity, and electrostatic interactions. Here we study the phase behavior of PE solutions in both salt-free condition and with added salt using a liquid-state (LS) theory based thermodynamic model. The LS model accounts or the hard-core repulsion by the Canahan-Starling equation of state, correlations due to chain connectivity by the first-order thermodynamic perturbation theory, and electrostatic correlations by the mean-spherical approximation. In comparison to the prediction from the well-known Voorn-Overbeek theory, the LS model predicts loop-type binodal curves in the salt-PE concentration diagram at temperatures slightly above the critical temperature of PE solution in salt-free case, consistent with the experimental study. The phase separated region shrinks with increasing temperature. Three scenarios of salting-out and salting-in phenomenon are predicted with addition of salts based, depending on the PE concentration.

  14. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  15. Spectral estimation of the energy-band-structure parameters of nanoparticles of potassium polytitanate modified in transition metal salt solutions

    NASA Astrophysics Data System (ADS)

    Zimnyakov, D. A.; Gorokhovsky, A. V.; Tret'yachenko, E. V.; Kochubei, V. I.; Yuvchenko, S. A.; Sina, J. S.

    2014-05-01

    An approach to spectral analysis of the energy-band-structure parameters (bandgap width and Urbach energy) of potassium polytitanate (PPT) nanoparticles modified by transition metals is proposed, which can provide a basis for the synthesis of new photocatalytic materials. It is established that the modified PPT samples are characterized by reduced values of the bandgap width and higher values of the Urbach energy as compared to the initial material. Possible mechanisms of this phenomenon are discussed.

  16. Coordination chemistry in fused-salt solutions

    NASA Technical Reports Server (NTRS)

    Gruen, D. M.

    1969-01-01

    Spectrophotometric work on structural determinations with fused-salt solutions is reviewed. Constraints placed on the method, as well as interpretation of the spectra, are discussed with parallels drawn to aqueous spectrophotometric curves of the same materials.

  17. Metals in Metal Salts: A Copper Mirror Demonstration

    ERIC Educational Resources Information Center

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  18. Metals in Metal Salts: A Copper Mirror Demonstration

    ERIC Educational Resources Information Center

    Pike, Robert D.

    2010-01-01

    A simple lecture demonstration is described to show the latent presence of metal atoms in a metal salt. Copper(II) formate tetrahydrate is heated in a round-bottom flask forming a high-quality copper mirror.

  19. Kinetic study of the aroxyl radical-scavenging reaction of alpha-tocopherol in methanol solution: notable effect of the alkali and alkaline earth metal salts on the reaction rates.

    PubMed

    Ouchi, Aya; Nagaoka, Shin-ichi; Abe, Kouichi; Mukai, Kazuo

    2009-10-08

    A kinetic study of the aroxyl (ArO*) radical-scavenging reaction of alpha-tocopherol (alpha-TocH) has been performed in the presence of six kinds of alkali and alkaline earth metal salts (LiI, LiClO(4), NaI, NaClO(4), KI, and Mg(ClO(4))(2)) in methanol solution, using stopped-flow spectrophotometry. The decay rate of the ArO* for the reaction of alpha-TocH with ArO* increased linearly with increasing concentration of metal salts. The second-order rate constants (k(s)) for the reaction of alpha-TocH with ArO* increased in the order of no metal salt < KI approximately NaClO(4) approximately NaI metal salts. For example, the k(s) values in methanol solution including 4.00 x 10(-1) M of LiI and Mg(ClO(4))(2) were 3.04 and 1.30 times larger than that in the absence of metal salts, respectively. The alkali and alkaline earth metal salts having smaller ionic radius of cation and anion and larger charge of cation gave larger rate constants (k(s)). Effects of metal cations on the UV-vis absorption spectra of the alpha-Toc* (and ArO*) radical were negligible in methanol solution, suggesting that the complex formation between the alpha-Toc* (and ArO*) radical molecule and metal cations is hindered by the hydrogen bond between radical and methanol molecules. The results indicate that the hydrogen transfer reaction of alpha-TocH proceeds via an electron transfer intermediate from alpha-TocH to ArO* radicals followed by proton transfer. Both the coordinations of metal cations to the one-electron reduced anions of ArO* (ArO: (-)) and of counteranions to the one-electron oxidized cations of alpha-TocH (alpha-TocH(+)*) may stabilize the intermediate, resulting in the acceleration of electron transfer. On the other hand, the effect of metal salts on the rate of bimolecular self-reaction (2k(d)) of the alpha-Toc* radical was not observed. The result suggests that the hydrogen transfer reaction between two alpha

  20. Metal speciation in salt marsh sediments: Influence of halophyte vegetation in salt marshes with different morphology

    NASA Astrophysics Data System (ADS)

    Pedro, Sílvia; Duarte, Bernardo; Raposo de Almeida, Pedro; Caçador, Isabel

    2015-12-01

    Salt marshes provide environmental conditions that are known to affect metal speciation in sediments. The elevational gradient along the marsh and consequent differential flooding are some of the major factors influencing halophytic species distribution and coverage due to their differential tolerance to salinity and submersion. Different species, in turn, also have distinct influences on the sediment's metal speciation, and its metal accumulation abilities. The present work aimed to evaluate how different halophyte species in two different salt marshes could influence metal partitioning in the sediment at root depth and how that could differ from bare sediments. Metal speciation in sediments around the roots (rhizosediments) of Halimione portulacoides, Sarcocornia fruticosa and Spartina maritima was determined by sequentially extracting operationally defined fractions with solutions of increasing strength and acidity. Rosário salt marsh generally showed higher concentrations of all metals in the rhizosediments. Metal partitioning was primarily related to the type of metal, with the elements' chemistry overriding the environment's influence on fractionation schemes. The most mobile elements were Cd and Zn, with greater availability being found in non-vegetated sediments. Immobilization in rhizosediments was predominantly influenced by the presence of Fe and Mn oxides, as well as organic complexes. In the more mature of both salt marshes, the differences between vegetated and non-vegetated sediments were more evident regarding S. fruticosa, while in the younger system all halophytes presented significantly different metal partitioning when compared to that of mudflats.

  1. CuInSe₂ thin-film solar cells with 7.72 % efficiency prepared via direct coating of a metal salts/alcohol-based precursor solution.

    PubMed

    Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon

    2012-09-01

    A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %.

  2. PEDOT:PSS Films with Metallic Conductivity through a Treatment with Common Organic Solutions of Organic Salts and Their Application as a Transparent Electrode of Polymer Solar Cells.

    PubMed

    Yu, Zhimeng; Xia, Yijie; Du, Donghe; Ouyang, Jianyong

    2016-05-11

    A transparent electrode is an indispensable component of optoelectronic devices, and there as been a search for substitutes of indium tin oxide (ITO) as the transparent electrode. Poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate) ( PSS) is a conducting polymer that is very promising as the next generation of materials for the transparent electrode if it can obtain conductivity as high as that of ITO. Here, we report the treatment of PSS with organic solutions to significantly enhance its conductivity. Common organic solvents like dimethylformamide and γ-butyrolactone and common organic salts like methylammonium iodide and methylammonium bromide are used for the organic solutions. The conductivity of pristine PSS films is only ∼0.2 S/cm, and it can be increased to higher than 2100 S/cm. The conductivity enhancement is much more significant than control treatments of PSS films with neat organic solvents or aqueous solutions of the organic salts. The mechanism for the conductivity enhancement is the synergetic effects of both the organic salts and organic solvents on the microstructure and composition of PSS. They induce the segregation of some PSSH chains from PSS. Highly conductive PSS films were studied as the transparent electrode of polymer solar cells. The photovoltaic efficiency is comparable to that with an ITO transparent electrode.

  3. Preparation of sugar-salt solutions.

    PubMed

    de Zoysa, I; Kirkwood, B; Feachem, R; Lindsay-Smith, E

    1984-01-01

    Correct measurement techniques are essential for the preparation of oral rehydration solutions but dangerous or ineffective solutions may also result from the inherent variability of the method and ingredients. This paper describes an experimental study conducted in Zimbabwe to compare the reliability of three methods for measuring sugar and salt in a 750 ml bottle of water: (i) 6 level teaspoons of sugar and half a level teaspoon of salt, (ii) 3 heaped teaspoons of sugar and half a level teaspoon of salt and (iii) 3 level measures of sugar and salt with a double-ended spoon. The teaspoon and 750 ml bottle methods produced reliable results. Heaped teaspoons of sugar gave more reproducible sucrose concentrations than level teaspoons . The double-ended spoon was not more reliable and gave disquietingly high sodium concentrations with refined salt. Under field conditions the level teaspoon method gave more variable results but still within acceptable limits. It is concluded that a domestic teaspoon and a standard 750 ml bottle can be recommended for the preparation of home-based oral rehydration solutions in rural Zimbabwe.

  4. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions.

    PubMed

    Sadeghi, Rahmat; Jahani, Farahnaz

    2012-05-03

    To obtain further experimental evidence for the mechanisms of the salting effect produced by the addition of salting-out or sating-in inducing electrolytes to aqueous solutions of water-soluble polymers, systematic studies on the vapor-liquid equilibria and liquid-liquid equilibria of aqueous solutions of several polymers are performed in the presence of a large series of electrolytes. Polymers are polyethylene glycol 400 (PEG400), polyethylene glycol dimethyl ether 250 (PEGDME250), polyethylene glycol dimethyl ether 2000 (PEGDME2000), and polypropylene glycol 400 (PPG400), and the investigated electrolytes are KCl, NH(4)Cl, MgCl(2), (CH(3))(4)NCl, NaCl, NaNO(3), Na(2)CO(3), Na(2)SO(4), and Na(3)Cit (tri-sodium citrate). Aqueous solutions of PPG400 form aqueous two-phase systems with all the investigated salts; however, other investigated polymers form aqueous two-phase systems only with Na(2)CO(3), Na(2)SO(4), and Na(3)Cit. A relation was found between the salting-out or sating-in effects of electrolyte on the polymer aqueous solutions and the slopes of the constant water activity lines of ternary polymer-salt aqueous solutions, so that, in the case of the salting-out effect, the constant water activity lines had a concave slope, but in the case of the salting-in effects, the constant water activity lines had a convex slope. The effect of temperature, anion of electrolyte, cation of electrolyte, and type and molar mass of polymers were studied and the results interpreted in terms of the solute-water and solute-solute interactions. The salting-out effect results from the formation of ion (specially anion)-water hydration complexes, which, in turn, decreases hydration, and hence, the solubility of the polymer and the salting-in effect results from a direct binding of the cations to the ether oxygens of the polymers.

  5. Oscillations in a Linearly Stratified Salt Solution

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our physics students like to watch a ball bouncing underwater. They do this by dropping a weighted plastic ball into a 1000-ml cylinder filled with a linearly stratified salt-water solution at room temperature. The ball oscillates and comes to rest at about mid-depth. Its motion is analogous to the damped vertical oscillations of a mass hanging…

  6. Oscillations in a Linearly Stratified Salt Solution

    ERIC Educational Resources Information Center

    Heavers, Richard M.

    2007-01-01

    Our physics students like to watch a ball bouncing underwater. They do this by dropping a weighted plastic ball into a 1000-ml cylinder filled with a linearly stratified salt-water solution at room temperature. The ball oscillates and comes to rest at about mid-depth. Its motion is analogous to the damped vertical oscillations of a mass hanging…

  7. Chronopotentiometry of refractory metals, actinides and oxyanions in molten salts: A review

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1992-01-01

    The applications of chronopotentiometry to the study of electrochemical behavior of three technologically important areas of refractory metals, actinides, and oxyanions in molten salts are critically reviewed. Chronopotentiometry is a very versatile diagnostic tool to understand the reaction mechanism of the electrode processes for the electrochemical reduction/oxidation of these electroactive species in molten salt solutions. Well adherent, compact, and uniformly thick coatings of refractory metals may be electrodeposited from their solutions in molten salts.

  8. Studies of metals electroprocessing in molten salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1982-01-01

    Fluid flow patterns in molten salt electrolytes were observed in order to determine how mass transport affects the morphology of the metal deposit. Studies conducted on the same metal, both in aqueous electrolytes in which coherent solid electrodeposits are produced, as well as in transparent molten salt electrolytes are described. Process variables such as current density and composition of the electrolyte are adjusted to change the morphology of the electrodeposit and, thus, to permit the study of the nature of electrolyte flow in relation to the quality of the electrodeposit.

  9. Metals Electroprocessing in Molten Salts

    NASA Technical Reports Server (NTRS)

    Sadoway, D. R.

    1985-01-01

    The present study seeks to explain the poor quality of solid electrodeposits in molten salts through a consideration of the effects of fluid flow of the electrolyte. Transparent cells allow observation of electrolyte circulation by a laser schlieren optical technique during the electrodeposition of solid zinc from the molten salt electrolyte, ZnCl2 - LiCl-KCl. Experimental variables are current, density, electrolyte composition, and cell geometry. Based on the results of earlier electrodeposition studies as well as reports in the literature, these parameters are identified as having the primary influence on cell performance and deposit quality. Experiments are conducted to measure the fluid flow patterns and the electrochemical cell characteristics, and to correlate this information with the morphology of the solid electrodeposit produced. Specifically, cell voltage, cell current, characteristic time for dendrite evolution, and dendrite growth directions are noted. Their relationship to electrolyte flow patterns and the morphology of the resulting electrodeposit are derived. Results to date indicate that laser schlieren imaging is capable of revealing fluid flow patterns in a molten salt electrolyte.

  10. Method for preparing salt solutions having desired properties

    DOEpatents

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  11. Chlorate salts and solutions on Mars

    NASA Astrophysics Data System (ADS)

    Hanley, Jennifer; Chevrier, Vincent F.; Berget, Deanna J.; Adams, Robert D.

    2012-04-01

    Chlorate (ClO3-) is an intermediate oxidation species between chloride (Cl-) and perchlorate (ClO4-), both of which were found at the landing site by the Wet Chemistry Lab (WCL). The chlorate ion is almost as stable as perchlorate, and appears to be associated with perchlorate in most terrestrial reservoirs (e.g. Atacama and Antarctica). It is possible that chlorate contributed to the ion sensor response on the WCL, yet was masked by the strong perchlorate signal. However, very little is known about chlorate salts and their effect on the stability of water. We performed evaporation rate experiments in our Mars simulation chamber, which enabled us to determine the activity of water for various concentrations. From this we constructed solubility diagrams for NaClO3, KClO3, Mg(ClO3)2 and Ca(ClO3)2, and determined the Pitzer parameters for each salt. Chlorate salt eutectic temperatures range from 270 K (KClO3) to 204 K (Mg(ClO3)2). Modeling the addition of chlorate to the initial WCL solutions shows that it precipitates in concentrations comparable to other common salts, such as gypsum and epsomite, and implies that chlorates may play an important role in the wet chemistry on Mars.

  12. Hydration patterns and salting effects in sodium chloride solution.

    PubMed

    Li, Weifeng; Mu, Yuguang

    2011-10-07

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water.

  13. Hydration patterns and salting effects in sodium chloride solution

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Mu, Yuguang

    2011-10-01

    The salting effects of 2M sodium chloride electrolyte are studied based on a series of model solutes with properties ranging from hydrophobic to hydrophilic. Generally, hydrophobic solutes will be salted out and hydrophilic solutes will be salted in by NaCl solution. The solvation free energy changes are highly correlated with Kirkwood-Buff integrals. The underlying mechanism resorts to the preferential binding of ions and water to solutes. Our results demonstrate that the salting effect not only depends on the salt's position in Hofmeister series, but also on the solutes' specifics. Taking the hydration free energies of solutes and ions as independent variables, a schematic diagram of salting effects is suggested. The resolved multifaceted salting effects rely on the sensitive balance of the tripartite interaction among solutes, ions, and water.

  14. Organic ionic salt draw solutions for osmotic membrane bioreactors.

    PubMed

    Bowden, Katie S; Achilli, Andrea; Childress, Amy E

    2012-10-01

    This investigation evaluates the use of organic ionic salt solutions as draw solutions for specific use in osmotic membrane bioreactors. Also, this investigation presents a simple method for determining the diffusion coefficient of ionic salt solutions using only a characterized membrane. A selection of organic ionic draw solutions underwent a desktop screening process before being tested in the laboratory and evaluated for performance using specific salt flux (reverse salt flux per unit water flux), biodegradation potential, and replenishment cost. Two of the salts were found to have specific salt fluxes three to six times lower than two commonly used inorganic draw solutions, NaCl and MgCl(2). All of the salts tested have organic anions with the potential to degrade in the bioreactor as a carbon source and aid in nutrient removal. Results demonstrate the potential benefits of organic ionic salt draw solutions over currently implemented inorganics in osmotic membrane bioreactor systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under...

  16. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under...

  17. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under...

  18. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under...

  19. 40 CFR 721.10028 - Disubstituted benzene metal salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted benzene metal salts... Specific Chemical Substances § 721.10028 Disubstituted benzene metal salts (generic). (a) Chemical... as disubstituted benzene metal salts (PMNs P-01-901 and P-01-902) are subject to reporting under...

  20. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  1. 40 CFR 721.640 - Amine substituted metal salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal salts...

  2. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  3. 40 CFR 721.4620 - Dialkylamino alkanoate metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Dialkylamino alkanoate metal salt. 721... Substances § 721.4620 Dialkylamino alkanoate metal salt. Link to an amendment published at 79 FR 34637, June... substance identified generically as dialkylamino alkanoate metal salt (P-90-274), is subject to reporting...

  4. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  5. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  6. 40 CFR 721.2093 - Alkenyl carboxylate, metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkenyl carboxylate, metal salt... Specific Chemical Substances § 721.2093 Alkenyl carboxylate, metal salt (generic). (a) Chemical substance... alkenyl carboxylate, metal salt (PMN P-99-0848) is subject to reporting under this section for the...

  7. 40 CFR 721.640 - Amine substituted metal salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal salts...

  8. 40 CFR 721.640 - Amine substituted metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal salts...

  9. 40 CFR 721.640 - Amine substituted metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal salts...

  10. 40 CFR 721.640 - Amine substituted metal salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Amine substituted metal salts. 721.640... Substances § 721.640 Amine substituted metal salts. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substances identified generically as amine substituted metal salts...

  11. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  12. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  13. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  14. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  15. 40 CFR 721.4660 - Alcohol, alkali metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alcohol, alkali metal salt. 721.4660... Substances § 721.4660 Alcohol, alkali metal salt. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance generically identified as alcohol, alkali metal salt (PMN P-91-151) is...

  16. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  17. The Upside to Hg-DOM Associations for Water Quality: Removal of Hg from Solution Using Coagulaion with Metal-Based Salts

    NASA Astrophysics Data System (ADS)

    Henneberry, Y.; Kraus, T. E.; Fleck, J.; Krabbenhoft, D. P.; Horwath, W. R.

    2011-12-01

    This study assessed the potential use of metal-based coagulants to remove dissolved mercury (Hg) from natural waters and provides information regarding the importance of Hg associations with the dissolved organic matter (DOM) fraction and metal hydroxides. Previous research indicated coagulants were not effective at removing Hg from solution; however those studies used high concentrations of Hg, which did not reflect naturally occurring concentrations of Hg. Filtered water collected from an agricultural drain in the Sacramento-San Joaquin Delta (Delta) was treated with three industrial-grade coagulants (ferric chloride, ferric sulfate, and polyaluminum chloride) to determine their efficacy in removing both inroganic (IHg) and methylmercury (MeHg) from the water column. The Delta suffers from elevated surface water Hg concentrations and as a result is listed as an imparied water body. Coagulants removed up to 85% of DOM from solution. In the absence of DOM, all three coagulants released IHg into solution, however in the presence of DOM the coagulants removed up to 97% of IHg and 80% of MeHg. Results suggest that the removal of Hg is mediated by DOM-coagulant interactions. There was a preferential association of IHg with the more aromatic, higher molecular weight fraction of DOM but no such relationship was found for MeHg. This study offers new fundamental insights regarding large-scale removal of Hg at environmentally relevant concentrations. Research using isotopically labeled Hg is providing insight into whether coagulation can remove recently added Hg (e.g. atmospheric deposition) from solution and whether once formed, the floc can remove additional Hg from the water column.

  18. Solubility of pllutonium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1993-02-26

    Plutonium solubility data from several studies have been evaluated. For each data set, a predictive model has been developed where appropriate. In addition, a statistical model and corresponding prediction intervals for plutonium solubility as a quadratic function of the hydroxide concentration have been developed. Because of the wide range of solution compositions, the solubility of plutonium can vary by as much as three orders of magnitude for any given hydroxide concentration and still remain within the prediction interval. Any nuclear safety assessments that depend on the maximum amount of plutonium dissolved in alkaline salt solutions should use concentrations at least as great as the upper prediction limits developed in this study. To increase the confidence in the prediction model, it is recommended that additional solubility tests be conducted at low hydroxide concentrations and with all of the other solution components involved. To validate the model for application to actual waste solutions, it is recommended that the plutonium solubilities in actual waste solutions be determined and compared to the values predicted by the quadratic model.

  19. Response of a salt marsh microbial community to metal contamination

    NASA Astrophysics Data System (ADS)

    Mucha, Ana P.; Teixeira, Catarina; Reis, Izabela; Magalhães, Catarina; Bordalo, Adriano A.; Almeida, C. Marisa R.

    2013-09-01

    Salt marshes are important sinks for contaminants, namely metals that tend to accumulate around plant roots and could eventually be taken up in a process known as phytoremediation. On the other hand, microbial communities display important roles in the salt marsh ecosystems, such as recycling of nutrients and/or degradation of organic contaminants. Thus, plants can benefit from the microbial activity in the phytoremediation process. Nevertheless, above certain levels, metals are known to be toxic to microorganisms, fact that can eventually compromise their ecological functions. In this vein, the aim of present study was to investigate, in the laboratory, the effect of selected metals (Cd, Cu and Pb) on the microbial communities associated to the roots of two salt marsh plants. Sediments colonized by Juncus maritimus and Phragmites australis were collected in the River Lima estuary (NW Portugal), and spiked with each of the metals at three different Effects Range-Median (ERM) concentrations (1, 10×, 50×), being ERM the sediment quality guideline that indicates the concentration above which adverse biological effects may frequently occur. Spiked sediments were incubated with a nutritive saline solution, being left in the dark under constant agitation for 7 days. The results showed that, despite the initial sediments colonized by J. maritimus and P. australis displayed significant (p < 0.05) differences in terms of microbial community structure (evaluated by ARISA), they presented similar microbial abundances (estimated by DAPI). Also, in terms of microbial abundance, both sediments showed a similar response to metal addition, with a decrease in number of cells only observed for the higher addition of Cu. Nevertheless, both Cu and Pb, at intermediate metals levels promote a shift in the microbial community structure, with possibly effect on the ecological function of these microbial communities in salt marshes. These changes may affect plants phytoremediation

  20. Solute diffusion in liquid metals

    NASA Technical Reports Server (NTRS)

    Bhat, B. N.

    1973-01-01

    A gas model of diffusion in liquid metals is presented. In this model, ions of liquid metals are assumed to behave like the molecules in a dense gas. Diffusion coefficient of solute is discussed with reference to its mass, ionic size, and pair potential. The model is applied to the case of solute diffusion in liquid silver. An attempt was made to predict diffusion coefficients of solutes with reasonable accuracy.

  1. Adaptive resolution simulation of salt solutions

    NASA Astrophysics Data System (ADS)

    Bevc, Staš; Junghans, Christoph; Kremer, Kurt; Praprotnik, Matej

    2013-10-01

    We present an adaptive resolution simulation of aqueous salt (NaCl) solutions at ambient conditions using the adaptive resolution scheme. Our multiscale approach concurrently couples the atomistic and coarse-grained models of the aqueous NaCl, where water molecules and ions change their resolution while moving from one resolution domain to the other. We employ standard extended simple point charge (SPC/E) and simple point charge (SPC) water models in combination with AMBER and GROMOS force fields for ion interactions in the atomistic domain. Electrostatics in our model are described by the generalized reaction field method. The effective interactions for water-water and water-ion interactions in the coarse-grained model are derived using structure-based coarse-graining approach while the Coulomb interactions between ions are appropriately screened. To ensure an even distribution of water molecules and ions across the simulation box we employ thermodynamic forces. We demonstrate that the equilibrium structural, e.g. radial distribution functions and density distributions of all the species, and dynamical properties are correctly reproduced by our adaptive resolution method. Our multiscale approach, which is general and can be used for any classical non-polarizable force-field and/or types of ions, will significantly speed up biomolecular simulation involving aqueous salt.

  2. Metal salts of alkyl catechol dithiophosphoric acids and oil compositions containing the salts

    SciTech Connect

    Yamaguchi, E.S.; Liston, T.V.

    1988-03-08

    Metal salts of alkyl catechol esters of dithiophosphoric acid suitable as additives in oil compositions are disclosed in this patent. Oil compositions containing the salts of such esters show improved extreme pressure/anti-wear and anit-oxidant properties.

  3. Osmotic swelling of polyacrylate hydrogels in physiological salt solutions.

    PubMed

    Horkay, F; Tasaki, I; Basser, P J

    2000-01-01

    The swelling behavior of fully neutralized sodium polyacrylate gels was investigated in aqueous solutions of alkali metal (LiCl, NaCl, KCl, CsCl) and alkaline earth metal salts (CaCl2, SrCl2, BaCl2). The total salt concentration and the ratio of monovalent to divalent cations were varied in the biologically significant range. It is found that the concentrations of both monovalent and divalent cations vary continuously and smoothly in the gel despite the abrupt change in the gel volume. The individual elastic, mixing, and ionic contributions to the free energy of the gel were separately determined as a function of the degree of network swelling to elucidate the thermodynamics of swelling. Shear modulus measurements performed at different Ca2+ concentrations suggest that Ca2+ does not form stable cross-links between the polymer chains. At low and moderate swelling ratios the concentration dependence of the shear modulus follows a power law behavior, G variation of phi n, with n = 0.34 +/- 0.03. At high swelling degrees, however, the shear modulus increases with increasing swelling. The value of the Flory-Huggins interaction parameter, chi, determined from osmotic swelling pressure and shear modulus measurements, strongly depends on the ionic composition of the equilibrium solution and increases with increasing Ca2+ concentration.

  4. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    SciTech Connect

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng; Kim, Heejae; Kim, Seongheun

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the O—D stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the O—D stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of O—D vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing O—D stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the O—D stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the O—D stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the O—D stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating O—D stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the O—D stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the O—D stretch mode is shown to be important and the asymmetric line shapes of the O—D stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We

  5. 40 CFR 721.4620 - Dialkylamino alkanoate metal salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Dialkylamino alkanoate metal salt. 721... Substances § 721.4620 Dialkylamino alkanoate metal salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkylamino alkanoate metal...

  6. 40 CFR 721.4620 - Dialkylamino alkanoate metal salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Dialkylamino alkanoate metal salt. 721... Substances § 721.4620 Dialkylamino alkanoate metal salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkylamino alkanoate metal...

  7. 40 CFR 721.4620 - Dialkylamino alkanoate metal salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Dialkylamino alkanoate metal salt. 721... Substances § 721.4620 Dialkylamino alkanoate metal salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkylamino alkanoate metal...

  8. 40 CFR 721.4620 - Dialkylamino alkanoate metal salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Dialkylamino alkanoate metal salt. 721... Substances § 721.4620 Dialkylamino alkanoate metal salt. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substance identified generically as dialkylamino alkanoate metal...

  9. Cotton fabrics with UV blocking properties through metal salts deposition

    NASA Astrophysics Data System (ADS)

    Emam, Hossam E.; Bechtold, Thomas

    2015-12-01

    Exposure to sunlight is important for human health as this increases the resistance to diverse pathogens, but the higher doses cause skin problems and diseases. Hence, wearing of sunlight protective fabrics displays a good solution for people working in open atmosphere. The current study offered quite simple and technically feasible ways to prepare good UV protection fabrics based on cotton. Metal salts including Zn, Cu and Ti were immobilized into cotton and oxidized cotton fabrics by using pad-dry-cure technique. Metal contents on fabrics were determined by AAS; the highest metal content was recorded for Cu-fabric and it was 360.6 mmol/kg after treatment of oxidized cotton with 0.5 M of copper nitrate. Ti contents on fabrics were ranged between 168.0 and 200.8 mmol/kg and it showed the lowest release as only 38.1-46.4% leached out fabrics after five laundry washings. Metal containing deposits were specified by scanning electron microscopy and energy dispersive X-ray spectroscopy. UV-transmission radiation over treated fabrics was measured and ultraviolet protection factor (UPF) was calculated. UPF was enhanced after treatment with Cu and Ti salts to be 11.6 and 14, respectively. After five washings, the amount of metal (Cu or Ti) retained indicates acceptable laundering durability.

  10. Alkali Metal/Salt Thermal-Energy-Storage Systems

    NASA Technical Reports Server (NTRS)

    Phillips, Wayne W.; Stearns, John W.

    1987-01-01

    Proposed thermal-energy-storage system based on mixture of alkali metal and one of its halide salts; metal and salt form slurry of two immiscible melts. Use of slurry expected to prevent incrustations of solidified salts on heat-transfer surfaces that occur where salts alone used. Since incrustations impede heat transfer, system performance improved. In system, charging heat-exchanger surface immersed in lower liquid, rich in halide-salt, phase-charge material. Discharging heat exchanger surface immersed in upper liquid, rich in alkali metal.

  11. Imidazolium salt ion pairs in solution.

    PubMed

    Stassen, Hubert K; Ludwig, Ralf; Wulf, Alexander; Dupont, Jairton

    2015-06-01

    The formation, stabilisation and reactivity of contact ion pairs of non-protic imidazolium ionic liquids (ILs) in solution are conceptualized in light of selected experimental evidence as well theoretical calculations reported mainly in the last ten years. Electric conductivity, NMR, ESI-MS and IR data as well as theoretical calculations support not only the formation of contact ion pairs in solution, but also the presence of larger ionic and neutral aggregates even when dissolved in solvents with relatively high dielectric constants, such as acetonitrile and DMSO. The presence of larger imidazolium supramolecular aggregates is favoured at higher salt concentrations in solvents of low dielectric constant for ILs that contain shorter N-alkyl side chains associated with anions of low coordination ability. The stability and reactivity of neutral contact species are also dependent on the nature of the anion, imidazolium substituents, and are more abundant in ILs containing strong coordinating anions, in particular those that can form charge transfer complexes with the imidazolium cation. Finally, some ILs display reactivities as contact ion pairs rather than solvent-separated ions.

  12. Composition and Method for Cleaning Salt Residues From Metal Surfaces.

    DTIC Science & Technology

    CLEANING, *METALS), (*AIRCRAFT ENGINES, CLEANING), (*PATENTS, CLEANING), ETHYLENEDINITRILO TETRAACETATES, SALTS , HELICOPTER ENGINES...ETHYLENEDIAMINE, SODIUM COMPOUNDS, POLYETHYLENE PLASTICS, PROPENES, SURFACE ACTIVE SUBSTANCES, ACETATES, CORROSION, NITRITES

  13. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOEpatents

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  14. Solubility of plutonium and uranium in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.; Fleischman, S.D.

    1993-02-12

    The solubility of plutonium and uranium in alkaline salt solutions, which will be processed in the In-Tank Precipitation (ITP) process, was investigated to screen for significant factors and interactions among the factors comprising the salt solutions. The factors included in the study were hydroxide, nitrate, nitrite, aluminate, sulfate, carbonate, and temperature. Over the range of factor concentrations studied, the level of hydroxide in the solution is not sufficient alone to predict the resulting concentration of plutonium and uranium in the solution. Other constituents of the salt solution play an important role in determining the amount of plutonium and uranium in solution. Statistical models predicting the plutonium and uranium concentrations over the range of salt solutions investigated are provided.

  15. NUCLEAR MAGNETIC RELAXATION IN LIQUID METALS, ALLOYS, AND SALTS.

    DTIC Science & Technology

    NUCLEAR MAGNETIC RESONANCE, *ALKALI METAL ALLOYS, *LIQUID METALS, * SALTS , NUCLEAR MAGNETIC RESONANCE, NUCLEAR MAGNETIC RESONANCE, RELAXATION TIME... SODIUM , GALLIUM, SODIUM ALLOYS, THALLIUM, THALLIUM COMPOUNDS, MELTING, NUCLEAR SPINS, QUANTUM THEORY, OPERATORS(MATHEMATICS), BIBLIOGRAPHIES, INTEGRAL EQUATIONS, TEST EQUIPMENT, MATHEMATICAL ANALYSIS.

  16. A novel non-vacuum process for the preparation of CuIn(Se,S)2 thin-film solar cells from air-stable, eco-friendly, metal salts based solution ink

    NASA Astrophysics Data System (ADS)

    Luo, Paifeng; Liu, Zhaofan; Ding, Yuankui; Cheng, Jigui

    2015-01-01

    A facile solution-based non-vacuum process for deposition of CuIn(Se,S)2 (CISeS) absorber layers is presented in this work, which indicates a promising way for the low-cost applications in thin-film solar cells. Firstly, low-boiling-point solvents Monobutylamine C4H11N and Carbon disulfide CS2 are selected as the complexing and thickening agents and added into the Cu/In metal salts based solution. Thus the air-stable, eco-friendly solution ink is successfully synthesized through a simple solution synthesis route. The detailed chemical reaction mechanism and the influence of the composition of precursor solution have been discussed intensively as well. After sequential spin-coating, hot-treatment and selenization process, the high-quality CISeS films are obtained and then characterized by XRD, Raman, SEM, EDS, Metallographic microscope, Hall Effect measurement and UV-vis-NIR spectroscopy, respectively. It is found that the compact CISeS films with chalcopyrite α-phase possess a double-layer structure, and also incorporate with a little ordered vacancy compounds (OVCs) and Cu2-xSe impurities. The typical near stoichiometric CISeS films without Carbon residuals have superior photoelectric properties with carrier concentration of 3.46 × 1016 N cm-3 and band gap of 1.15 eV. Finally, the original first-made PV devices provide a power conversion efficiency (PCE) of 4.25%, which can be further improved by increasing the thickness of CISeS films and/or optimizing the selenization and sulfuration technologies.

  17. Pattern Formation in Drying Drops of Polyelectrolyte - Salt Solutions

    NASA Astrophysics Data System (ADS)

    Kaya, Deniz; Belyi, Vladimir A.

    2005-03-01

    We use optical microscopy, AFM, and SEM to investigate salt patterns formed during evaporation of aqueous solutions of sodium poly(styrene sulfonate) and sodium chloride (NaPSS/NaCl). Observed patterns exhibit significantly larger variety than in the simple "drying coffee drop" experiments. We find that varying the concentration ratios of polyelectrolyte/salt solutions leads to formation of qualitatively different patterns, including radially grown salt deposits, concentric rings of salt and other structures. Our results indicate that these patterns are also sensitive to evaporation rate of the droplet. However molecular weight of the polymer appears to have little to no effect on the observed patterns.

  18. Salt-Finger Convection in a Stratified Fluid Layer Induced by Thermal and Solutal Capillary Motion

    NASA Technical Reports Server (NTRS)

    Chen, Chuan F.; Chan, Cho Lik

    1996-01-01

    Salt-finger convection in a double-diffusive system is a motion driven by the release of gravitational potential due to different diffusion rates. Normally, when the gravitational field is reduced, salt-finger convection together with other convective motions driven by buoyancy forces will be rapidly suppressed. However, because the destabilizing effect of the concentration gradient is amplified by the Lewis number, with values varying from 10(exp 2) for aqueous salt solutions to 10 (exp 4) for liquid metals, salt-finger convection may be generated at much reduced gravity levels. In the microgravity environment, the surface tension gradient assumes a dominant role in causing fluid motion. In this paper, we report on some experimental results showing the generation of salt-finger convection due to capillary motio on the surface of a stratified fluid layer. A numerical simulation is presented to show the cause of salt-finger convection.

  19. Apparatus and method for making metal chloride salt product

    DOEpatents

    Miller, William E.; Tomczuk, Zygmunt; Richmann, Michael K.

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  20. [Structure and Activity of Fungal Lipases in Bile Salt Solutions].

    PubMed

    Bogdanova, L R; Bakirova, D R; Valiullina, Yu A; Idiyatullin, B Z; Faizullin, D A; Zueva, O S; Zuev, Yu F

    2016-01-01

    The changes in structure and catalytic properties of fungal lipases (Candida rugosa, Rhizomucor miehei, Mucor javanicus) were investigated in micellar solutions of bile salts that differ in hydrophilic-lypophilic balance and reaction medium properties. The methods of circular dichroism and tryptophan fluorescence were applied to estimate the changes in peptide structure within complexes with bile salt micelles. Bile salts do not exert a significant influence on the structure of the enzymes under study: in Rh. miehei and M. javanicus lipases the alpha helix content slightly decreased, the influence of bile salts on the C. rugosa structure was not revealed. Despite negligible structural modifications in the enzymes, in bile salt solutions a considerable change in their catalytic properties was observed: an abrupt decrease in catalytic effectiveness. Substrate-bile salts micelles complex formation was demonstrated by the NMR self-diffusion method. The model of a regulation of fungal lipase activity was proposed.

  1. Heavy metals contamination of table salt consumed in iran.

    PubMed

    Cheraghali, Abdol Majid; Kobarfard, Farzad; Faeizy, Noroldin

    2010-01-01

    Lead, cadmium, mercury and arsenic are the most important heavy metals which may cause health risks following consumption of contaminated foods. Table salt is one the mostly used food additive with unique place in food consumption. Although purified table salt is expected to have lower level of contamination, some Iranians still prefer to use rock salt. Use of rock salt for food purposes has been banned by Iranian health authorities. In this study, heavy metal contamination of table salt consumed in Iran has been investigated. One hundred samples of rock and refined table salts were analyzed using atomic absorption spectrophotometeric methods for the presence of toxic heavy metals. The mean concentration of tested tracer metals including Cd, Pb, Hg and As was 0.024, 0.438, 0.021 and 0.094 μg/g, respectively. The concentrations of tested heavy metals were well below the maximum levels set by Codex. However, no statistically significant difference was found between contamination of rock salt and refined salt to heavy metals.

  2. Extraction of ethylene glycol from aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Butyrskaya, E. V.; Belyakova, N. V.; Rozhkova, M. V.; Nechaeva, L. S.

    2012-11-01

    A method is proposed for extracting ethylene glycol from aqueous salt solutions by dialysis through ion-exchange membranes, based on the Donnan exclusion of the electrolyte. Dialysis is performed in the continuous and batch modes. It is found that the batch mode of dialysis is more effective for extracting ethylene glycol from its aqueous salt solutions. The effect of the ionic form of the membrane on ethylene glycol fluxes is explained through computer simulation.

  3. Spontaneous grafting of diazonium salts: chemical mechanism on metallic surfaces.

    PubMed

    Mesnage, Alice; Lefèvre, Xavier; Jégou, Pascale; Deniau, Guy; Palacin, Serge

    2012-08-14

    The spontaneous reaction of diazonium salts on various substrates has been widely employed since it consists of a simple immersion of the substrate in the diazonium salt solution. As electrochemical processes involving the same diazonium salts, the spontaneous grafting is assumed to give covalently poly(phenylene)-like bonded films. Resistance to solvents and to ultrasonication is commonly accepted as indirect proof of the existence of a covalent bond. However, the most relevant attempts to demonstrate a metal-C interface bond have been obtained by an XPS investigation of spontaneously grafted films on copper. Similarly, our experiments give evidence of such a bond in spontaneously grafted films on nickel substrates in acetonitrile. In the case of gold substrates, the formation of a spontaneous film was unexpected but reported in the literature in parallel to our observations. Even if no interfacial bond was observed, formation of the films was explained by grafting of aryl cations or radicals on the surface arising from dediazoniation, the film growing later by azo coupling, radical addition, or cationic addition on the grafted phenyl layer. Nevertheless, none of these mechanisms fits our experimental results showing the presence of an Au-N bond. In this work, we present a fine spectroscopic analysis of the coatings obtained on gold and nickel substrates that allow us to propose a chemical structure of such films, in particular, their interface with the substrates. After testing the most probable mechanisms, we have concluded in favor of the involvement of two complementary mechanisms which are the direct reaction of diazonium salts with the gold surface that accounts for the observed Au-N interfacial bonds as well as the formation of aryl cations able to graft on the substrate through Au-C linkages.

  4. Methods for predicting properties and tailoring salt solutions for industrial processes

    NASA Technical Reports Server (NTRS)

    Ally, Moonis R.

    1993-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions controls, etc.

  5. Methods for predicting properties and tailoring salt solutions for industrial processes

    SciTech Connect

    Ally, M.R.

    1992-01-01

    An algorithm developed at Oak Ridge National Laboratory accurately and quickly predicts thermodynamic properties of concentrated aqueous salt solutions. This algorithm is much simpler and much faster than other modeling schemes and is unique because it can predict solution behavior at very high concentrations and under varying conditions. Typical industrial applications of this algorithm would be in manufacture of inorganic chemicals by crystallization, thermal storage, refrigeration and cooling, extraction of metals, emissions control, etc. 3 figs, 2 tabs, 1 ref.

  6. Purification of diverse hemoglobins by metal salt precipitation.

    PubMed

    Zimmerman, Devon; Dienes, Jack; Abdulmalik, Osheiza; Elmer, Jacob J

    2016-09-01

    Although donated blood is the preferred material for transfusion, its limited availability and stringent storage requirements have motivated the development of blood substitutes. The giant extracellular hemoglobin (aka erythrocruorin) of the earthworm Lumbricus terrestris (LtEc) has shown promise as a blood substitute, but an efficient purification method for LtEc must be developed to meet the potential large demand for blood substitutes. In this work, an optimized purification process that uses divalent and trivalent metal salts to selectively precipitate human, earthworm, and bloodworm hemoglobin (HbA, LtEc, and GdHb, respectively) from crude solutions was developed. Although several metal ions were able to selectively precipitate LtEc, Zn(2+) and Ni(2+) provided the lowest heme oxidation and highest overall yield of LtEc. In contrast, Zn(2+) was the only metal ion that completely precipitated HbA and GdHb. Polyacrylamide gel electrophoresis (PAGE) analysis shows that metal precipitation removes several impurities to provide highly pure hemoglobin samples. Heme oxidation levels were relatively low for Zn(2+)-purified HbA and LtEc (2.4±1.3% and 5.3±2.1%, respectively), but slightly higher for Ni(2+)-purified LtEc (8.4±1.2%). The oxygen affinity and cooperativity of the precipitated samples are also identical to samples purified with tangential flow filtration (TFF) alone, indicating the metal precipitation does not significantly affect the function of the hemoglobins. Overall, these results show that hemoglobins from several different species can be highly purified using a combination of metal (Zn(2+)) precipitation and tangential flow filtration. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. METHOD AND APPARATUS FOR CALCINING SALT SOLUTIONS

    DOEpatents

    Lawroski, S.; Jonke, A.A.; Taecker, R.G.

    1961-10-31

    A method is given for converting uranyl nitrate solution into solid UO/ sub 3/, The solution is sprayed horizontally into a fluidized bed of UO/sub 3/ particles at 310 to 350 deg C by a nozzle of the coaxial air jet type at about 26 psig, Under these conditions the desired conversion takes place, and caking in the bed is avoided.

  8. Effects of metal salt catalysts on yeast cell growth in ethanol conversion

    Treesearch

    Chung-Yun Hse; Yin Lin

    2009-01-01

    The effects of the addition of metal salts and metal salt-catalyzed hydrolyzates on yeast cell growth in ethanol fermentation were investigated. Four yeast strains (Saccharomyces cerevisiae WT1, Saccharomyces cerevisiae MT81, Candida sp. 1779, and Klumaromyces fragilis), four metal salts (CuCl2, FeCl3, AgNO3, and I2), two metal salt-catalyzed hydrolyzates (...

  9. Optimization of salt concentration in PEG-based crystallization solutions.

    PubMed

    Yamanaka, Mari; Inaka, Koji; Furubayashi, Naoki; Matsushima, Masaaki; Takahashi, Sachiko; Tanaka, Hiroaki; Sano, Satoshi; Sato, Masaru; Kobayashi, Tomoyuki; Tanaka, Tetsuo

    2011-01-01

    Although polyethylene glycol (PEG) is the most widely used precipitant in protein crystallization, the concentration of co-existing salt in the solution has not been well discussed. To determine the optimum salt concentration range, several kinds of protein were crystallized in a 30% PEG 4000 solution at various NaCl concentrations with various pH levels. It was found that, if crystallization occurred, the lowest effective salt concentration depended on the pH of the protein solution and the pI of the protein molecule; that is, higher salt concentrations were required for crystal growth if the difference between pH and pI was increasing. The linear relationship between the charge density of the protein and the ionic strength of the crystallization solution was further verified. These results suggested that the lowest effective concentration of salt in a crystallization solution can be predicted before performing a crystallization experiment. Our results can be a tip for tuning crystallization conditions by the vapor-diffusion method.

  10. Molten salt/metal extractions for recovery of transuranic elements

    SciTech Connect

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-09-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

  11. Molten salt/metal extractions for recovery of transuranic elements

    SciTech Connect

    Chow, L.S.; Basco, J.K.; Ackerman, J.P.; Johnson, T.R.

    1992-01-01

    The integral fast reactor (EFR) is an advanced reactor concept that incorporates metallic driver and blanket fuels, an inherently safe, liquid-sodium-cooled, pool-type, reactor design, and on-site pyrochemical reprocessing (including electrorefining) of spent fuels and wastes. This paper describes a pyrochemical method that is being developed at Argonne National Laboratory to recover transuranic elements from the EFR electrorefiner process salt. The method uses multistage extractions between molten chloride salts and cadmium metal at high temperatures. The chemical basis of the salt extraction method, the test equipment, and a test plan are discussed.

  12. SWELLING OF ERYTHROCYTES IN SOLUTIONS OF AMMONIUM SALTS

    PubMed Central

    Schiödt, E.

    1933-01-01

    Two rather simple equations have been derived, which make it possible to express in a single number the result of a series of determinations of the volume of erythrocytes swelling in solutions of ammonium salts. In all experiments made with several combinations of different concentrations of permeating and non-permeating salts, the curves calculated from the equations have covered the points found by experiment. PMID:19872754

  13. Brine rejection from freezing salt solutions: a molecular dynamics study.

    PubMed

    Vrbka, Lubos; Jungwirth, Pavel

    2005-09-30

    The atmospherically and technologically very important process of brine rejection from freezing salt solutions is investigated with atomic resolution using molecular dynamics simulations. The present calculations allow us to follow the motion of each water molecule and salt ion and to propose a microscopic mechanism of brine rejection, in which a fluctuation (reduction) of the ion density in the vicinity of the ice front is followed by the growth of a new ice layer. The presence of salt slows down the freezing process, which leads to the formation of an almost neat ice next to a disordered brine layer.

  14. Eliminating inhibition of enzymatic hydrolysis by lignosulfonate in unwashed sulfite-pretreated aspen using metal salts

    Treesearch

    Hao Liu; Junyong Zhu

    2010-01-01

    This study demonstrated the efficiency of Ca(II) and Mg(II) in removing inhibition of enzymatic hydrolysis by lignosulfonate through non-productive adsorption of enzymes. Adding 1 mmol/g cellulose of either metal salt restores approximately 65% of the activity lost when a pure cellulose/cellulase solution is spiked with lignosulfonate. Addition of either Ca(II) or Mg(...

  15. Forces between hydrophobic solids in concentrated aqueous salt solution.

    PubMed

    Mastropietro, Dean J; Ducker, William A

    2012-03-09

    Much research has focused on the discovery and description of long-ranged forces between hydrophobic solids immersed in water. Here we show that the force between high contact-angle solids in concentrated salt solution (1 M KCl) agrees very well with van der Waals forces calculated from Lifshitz theory for separations greater than 5 nm. The hydrophobic solids are octadecyltrichlorosilane-coated glass, with an advancing contact angle of 108°. Thus, in 1 M salt solution, it is unnecessary to invoke the presence of a hydrophobic force at separations greater than 5 nm. Through measurement in salt solution, we avoid the necessity of accounting for large electrostatic forces that frequently occur in pure water and may obscure resolution of other forces.

  16. Infrared spectroscopy of aqueous ionic salt solutions at low concentrations

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Gessinger, Véronique; van Driessche, Caroline; Larouche, Pascal; Chapados, Camille

    2007-05-01

    The analysis by infrared spectroscopy of aqueous solutions of the binary inorganic salts NaI and NaCl and the ternary salts CaCl2 and BaCl2 at concentrations from 1000to2mM was carried out to complement a previous study done at higher concentrations on nine binary salts (alkali halides) and one ternary salt (MgCl2) [J.-J. Max and C. Chapados, J. Chem. Phys. 115, 2664 (2001)]. These salts are completely ionized in aqueous solutions, forming monoatomic species that do not absorb IR but that perturb the surrounding water, modifying its spectrum. The factor analysis of the spectra revealed that all these salt solutions were composed of two water types: pure water and salt solvated water. The authors obtained pure salt solvated water spectra for all the salts using an extrapolation technique. The water types obtained are constant for the binary and ternary salts down to 2mM. For the binary salts, we determine that 5.0 and 4.0 water molecules are solvated to the Na +-Cl- and Na+-I- ion pairs, respectively. These numbers are the same as that obtained at higher concentrations. For the new ternary salts, we find that 6.0 and 8.0 water molecules are solvated to Ca++-(Cl-)2 and Ba++-(Cl-)2 ion pairs, respectively. These numbers are higher than the four water molecules solvated to Mg++-(Cl-)2 ion pairs determined previously, but show a progression that follows their atomic numbers. These results constitute new experimental results on "simple" systems whose molecular organization is still a matter of debate. The IR method that probes the system at the molecular level is a method different than the macroscopic ones that give the activity coefficients. The IR gives direct observation at the molecular level of the strong ion-water interactions that are often neglected and its water structure not considered in macroscopic methods. The present results and their analysis together with those obtained by other methods will facilitate the determination of the organization of these

  17. Protein diffusiophoresis and salt osmotic diffusion in aqueous solutions.

    PubMed

    Annunziata, Onofrio; Buzatu, Daniela; Albright, John G

    2012-10-25

    Diffusion of a solute can be induced by the concentration gradient of another solute in solution. This transport mechanism is known as cross-diffusion. We have investigated cross-diffusion in a ternary protein-salt-water system. Specifically, we measured the two cross-diffusion coefficients for the lysozyme-NaCl-water system at 25 °C and pH 4.5 as a function of protein and salt concentrations by Rayleigh interferometry. One cross-diffusion coefficient characterizes salt osmotic diffusion induced by a protein concentration gradient, and is related to protein-salt thermodynamic interactions as described by the theories of Donnan membrane equilibrium and protein preferential hydration. The other cross-diffusion coefficient characterizes protein diffusiophoresis induced by a salt concentration gradient, and is described as the difference between a preferential-interaction coefficient and a transport parameter. We first relate our experimental results to the protein net charge and the thermodynamic excess of water near the protein surface. We then extract the Stefan-Maxwell diffusion coefficient describing protein-salt interactions in water. We find that the value of this coefficient is negative, contrary to the friction interpretation of Stefan-Maxwell equations. This result is explained by considering protein hydration. Finally, protein diffusiophoresis is quantitatively examined by considering electrophoretic and hydration effects on protein migration and utilized to accurately estimate lysozyme electrophoretic mobility. To our knowledge, this is the first time that protein diffusiophoresis has been experimentally characterized and a protein-salt Stefan-Maxwell diffusion coefficient reported. This work represents a significant contribution for understanding and modeling the effect of concentration gradients in protein-salt aqueous systems relevant to diffusion-based mass-transfer technologies and transport in living systems.

  18. FREEZING POINTS OF ANTI-COAGULANT SALT SOLUTIONS.

    PubMed

    Hitchcock, D I; Dougan, R B

    1935-03-20

    By a method involving equilibration of ice and solution, and analysis of the solution, freezing point depressions of solutions of sodium citrate, oxalate, and fluoride have been determined over the range Delta = 0.45 to 0.65 degrees C. Determinations with sodium chloride solutions have confirmed the accuracy of the method. In each case the freezing point depression is given, within 0.002 degrees C., as a linear function of the concentration. By the use of these linear equations it is possible to prepare a solution of any of these four salts isotonic with a given biological fluid of known freezing point, provided the latter falls within the range studied.

  19. Aggregation behavior of bile salts in aqueous solution.

    PubMed

    Coello, A; Meijide, F; Núñez, E R; Tato, J V

    1996-01-01

    Freezing point depression, delta T/k, and pNa are measured and analyzed for aqueous solutions of trihydroxy (NaTC) and dihydroxy (NaDC and NaTDC) bile salts. The results show the existence of break points in the plot of delta T/k vs molality at 0.018, 0.013, and 0.007 m, respectively, in good agreement with previous published critical micelle concentration values. Above the break point bile salts form aggregates with average aggregation numbers of 2.59 +/- 0.12 (NaTC), 5.82 +/- 0.04 (NaDC), and 5.42 +/- 0.47 (NaTDC). Fractions of bound counterions are also deduced, being close to 0.3 for the three bile salts studied. This indicates that only one counterion is bound for every three monomers in the aggregate. The different structural models published for the bile salt aggregates are discussed.

  20. Thermodynamics of extraction by solutions of amines and salts of substituted ammonium bases

    NASA Astrophysics Data System (ADS)

    Ochkin, A. V.; Sergievskii, V. V.

    1989-09-01

    Extraction systems containing amines and their salts are widely used to concentrate and separate metals. From the theoretical viewpoint, these systems are among the most complex, because of the variety of intermolecular interactions in the organic phase. The explanation and quantitative description of the observed regularities of extraction became possible only as a result of progress in the study of the thermodynamics of binary and multicomponent solutions of salts of substituted ammonium bases in non-polar organic solvents, which make it possible to distinguish the contribution of each type of interaction to the non-ideal character of the solutions. All known "anomalous" features are due to the influence of the hydration of the salts of the substituted ammonium bases on their activity. The bibliography contains 113 references.

  1. Precursor Luminescence near the Collapse of Laser-Induced Bubbles in Alkali-Salt Solutions

    PubMed Central

    Chu, Han-Ching; Vo, Sonny; Williams, Gary A.

    2014-01-01

    A precursor luminescence pulse consisting of atomic line emission is observed as much as 150 nanoseconds prior to the collapse point of laser-created bubbles in alkali-metal solutions. The timing of the emission from neutral Na, Li, and K atoms is strongly dependent on the salt concentration, which appears to result from resonant radiation trapping by the alkali atoms in the bubble. The alkali emission ends at the onset of the blackbody luminescence pulse at the bubble collapse point, and the duration of the blackbody pulse is found to be reduced by up to 30% as the alkali-salt concentration is increased. PMID:19519032

  2. [Determination of Chloride Salt Solution by NIR Spectroscopy].

    PubMed

    Zhang, Bin; Chen, Jian-hong; Jiao, Ming-xing

    2015-07-01

    Determination of chloride salt solution by near infrared spectrum plays a very important role in Biomedicine. The near infrared spectrum analysis of Sodium chloride, potassium chloride, calcium chloride aqueous solution shows that the concentration change of chloride salt can affect hydrogen bond, resulting in the variation of near infrared spectrum of water. The temperature influence on NIR spectrum has been decreased by choosing reasonable wavelength range and the wavelength where the temperature effects are zero (isosbestic point). Chlorine salt prediction model was established based on partial least squares method and used for predicting the concentration of the chlorine ion. The impact on near infrared spectrum of the cation ionic radius, the number of ionic charge, the complex effect of ionic in water has also discussed in this article and the reason of every factor are analysed. Experimental results show that the temperature and concentration will affect the near-infrared spectrum of the solution, It is found that the effect of temperature plays the dominant role at low concentrations of chlorine salt; rather, the ionic dominates at high concentration. Chloride complexes are formed in aqueous solution, It has an effect on hydrogen bond of water combining with the cations in chlorine salt solution, Comparing different chloride solutions at the same concentration, the destruction effects of chloride complexes and catnions on the hydrogen bond of water increases in the sequences: CaCl2 >NaCl>KC. The modeling result shows that the determination coefficients (R2) = 99.97%, the root mean square error of cross validation (RM- SECV) = 4.51, and the residual prediction deviation (RPD) = 62.7, it meets the daily requirements of biochemical detection accuracy.

  3. Properties of alkali-halide salt solutions about polarizable nanoparticle solutes for different ion models.

    PubMed

    Wynveen, Aaron; Bresme, Fernando

    2010-10-14

    We investigate the distributions of various salts about large hydrophobic polarizable solutes in aqueous electrolyte solutions. The solutes are modeled as nanometer-sized cylindrical objects, a scale relevant to biomolecules and nanomaterials, and particularly high aspect ratio nanoparticles. Interactions, including image charge forces arising from the finite polarizability of the solute, between explicit solvent/ions and the solute are computed explicitly using a molecular dynamics simulation methodology we have recently introduced. Comparisons are made between several salt species and different models of the force fields for each ionic component of the salt. We find evidence that both small cations, Li(+), and large anions, I(-), adsorb at hydrophobic interfaces. Our results indicate that the ion structure about the solute is strongly dependent on the force field investigated, suggesting that ion selectivity is quite sensitive to the respective parameters defining the ion's size and binding energy as well as to the polarizability of the solute.

  4. 21 CFR 864.2875 - Balanced salt solutions or formulations.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Balanced salt solutions or formulations. 864.2875 Section 864.2875 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Cell And Tissue Culture Products §...

  5. Do group 1 metal salts form deep eutectic solvents?

    PubMed

    Abbott, A P; D'Agostino, C; Davis, S J; Gladden, L F; Mantle, M D

    2016-09-14

    Mixtures of metal salts such as ZnCl2, AlCl3 and CrCl3·6H2O form eutectic mixtures with complexing agents, such as urea. The aim of this research was to see if alkali metal salts also formed eutectics in the same way. It is shown that only a limited number of sodium salts form homogeneous liquids at ambient temperatures and then only with glycerol. None of these mixtures showed eutectic behaviour but the liquids showed the physical properties similar to the group of mixtures classified as deep eutectic solvents. This study focussed on four sodium salts: NaBr, NaOAc, NaOAc·3H2O and Na2B4O7·10H2O. The ionic conductivity and viscosity of these salts with glycerol were studied, and it was found that unlike previous studies of quaternary ammonium salts with glycerol, where the salt decreased the viscosity, most of the sodium salts increased the viscosity. This suggests that sodium salts have a structure making effect on glycerol. This phenomenon is probably due to the high charge density of Na(+), which coordinates to the glycerol. (1)H and (23)Na NMR diffusion and relaxation methods have been used to understand the molecular dynamics in the glycerol-salt mixtures, and probe the effect of water on some of these systems. The results reveal a complex dynamic behaviour of the different species within these liquids. Generally, the translational dynamics of the (1)H species, probed by means of PFG NMR diffusion coefficients, is in line with the viscosity of these liquids. However, (1)H and (23)Na T1 relaxation measurements suggest that the Na-containing species also play a crucial role in the structure of the liquids.

  6. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  7. Electrolyte materials containing highly dissociated metal ion salts

    DOEpatents

    Lee, Hung-Sui; Geng, Lin; Skotheim, Terje A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  8. The Effect of Salts in Promoting Specific and Competitive Interactions between Zinc Finger Proteins and Metals

    NASA Astrophysics Data System (ADS)

    Li, Gongyu; Yuan, Siming; Zheng, Shihui; Chen, Yuting; Zheng, Zhen; Liu, Yangzhong; Huang, Guangming

    2017-09-01

    Specific protein-metal interactions (PMIs) fulfill essential functions in cells and organic bodies, and activation of these functions in vivo are mostly modulated by the complex environmental factors, including pH value, small biomolecules, and salts. Specifically, the role of salts in promoting specific PMIs and their competition among various metals has remained untapped mainly due to the difficulty to distinguish nonspecific PMIs from specific PMIs by classic spectroscopic techniques. Herein, we report Hofmeister salts differentially promote the specific PMIs by combining nanoelectrospray ionization mass spectrometry and spectroscopic techniques (fluorescence measurement and circular dichroism). Furthermore, to explore the influence of salts in competitive binding between metalloproteins and various metals, we designed a series of competitive experiments and applied to a well-defined model system, the competitive binding of zinc (II) and arsenic (III) to holo-promyelocytic leukemia protein (PML). These experiments not only provided new insights at the molecular scale as complementary to previous NMR and spectroscopic results, but also deduced the relative binding ability between zinc finger proteins and metals at the molecular scale, which avoids the mass spectrometric titration-based determination of binding constants that is frequently affected and often degraded by variable solution conditions including salt contents. [Figure not available: see fulltext.

  9. Chondroitin Sulfate in Solution: Effects of Mono- and Divalent Salts

    PubMed Central

    Horkay, Ferenc; Basser, Peter J.; Hecht, Anne-Marie; Geissler, Erik

    2013-01-01

    Chondroitin sulphate (CS) is a linear sulfated polysaccharide found in cartilage and other tissues in the body. Small angle neutron scattering (SANS) and dynamic light scattering (DLS) measurements are made on semi-dilute CS solutions to determine ion induced changes in the local order of the CS chains and in their dynamic properties. In salt-free CS solutions SANS detects the correlation peak due to local ordering between adjacent chains in which the characteristic interchain distance is d ≈ 57 Å. In both monovalent and divalent salts (NaCl and CaCl2) aligned linear regions are distinguishable corresponding to distance scales ranging from the length of the monomer unit (8 Å) to about 1000 Å. With increasing calcium ion concentration, the scattering intensity increases. Even in the presence of 200 mM CaCl2, however, neither phase separation nor cross-linking occurs. DLS in the CS solutions reveals two characteristic relaxation modes, the fast mode corresponding to the thermal concentration fluctuations. The collective diffusion coefficient D decreases with increasing calcium ion concentration and exhibits a power law function of the single variable c/J, where c is the CS concentration and J is the ionic strength of the salt in the solution. This result implies that the effect of the sodium and calcium ions on the dynamic properties of CS solutions is fully accounted for by the ionic strength. PMID:23814316

  10. Modification of FGD gypsum in hydrothermal mixed salt solution.

    PubMed

    Wu, Xiao-Qin; Wu, Zhong-Biao

    2006-01-01

    A novel utilization way of the sludge from wet calcium-based flue gas desulfurization (FGD) processes has been developed in this paper. This study focused on the conversion of the FGD gypsum into alpha-hemihydrate calcium sulfate by a hydrothermal salt solution method at atmospheric pressure. Experimental study has been carried out in a batch reactor. Qualitative and quantitative analyses were made by DSC/TG thermal analysis, SEM, XRD, metalloscope and chemical analysis. The experimental results showed that the modification of FGD gypsum was controlled by the dissolution and recrystallization mechanisms. With the introduction of FGD gypsum the salt solution was supersaturated, then crystal nucleus of alpha-hemihydrate calcium sulfate were produced in the solution. With the submicroscopic structure of FGD gypsum crystal changed, the crystal nucleus grew up into alpha-hemihydrate calcium sulfate crystals. Thus, the modification of FGD gypsum was fulfilled.

  11. Castable cements to prevent corrosion of metals in molten salts

    SciTech Connect

    Gomez-Vidal, Judith C.; Morton, E.

    2016-04-22

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 °C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72±0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C shows a corrosion rate of 9E-04 mm/year. Here, the present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.

  12. Castable cements to prevent corrosion of metals in molten salts

    DOE PAGES

    Gomez-Vidal, Judith C.; Morton, E.

    2016-04-22

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 °C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72±0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl – 65.58more » wt% LiCl at 650 °C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl – 65.58 wt% LiCl at 650 °C shows a corrosion rate of 9E-04 mm/year. Here, the present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.« less

  13. Castable cements to prevent corrosion of metals in molten salts

    SciTech Connect

    Gomez-Vidal, J. C.; Morton, E.

    2016-08-01

    Castable cements on metals form a protective barrier that is able to prevent permeation of molten salts towards metallic surfaces. Silica-based castable cements are capable of protecting containment metallic alloys from the corrosive attack of molten chlorides at temperatures as high as 650 degrees C. Boron nitride (BN) blocking the pores in the cured cement prevents permeation of the molten chloride towards the metal surface. The cements tested are not chemically stable in molten carbonates, because the bonding components dissolved into molten carbonates salt. The corrosion rate is 7.72+/-0.32 mm/year for bare stainless steel 347 in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C, which is the baseline used for determining how well the cement protects the metallic surfaces from corrosion. In particular the metal fully encapsulated with Aremco 645-N with pores filled with boron nitride immersed in molten eutectic NaCl - 65.58 wt% LiCl at 650 degrees C shows a corrosion rate of 9E-04 mm/year. The present study gives initial corrosion rates. Long-term tests are required to determine if Aremco 645-N with BN coating on metal has long term chemical stability for blocking salt permeation through coating pores.

  14. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOEpatents

    Wang. Yong; Peden. Charles H. F.; Choi. Saemin

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  15. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOEpatents

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  16. PROCESS OF REMOVING PLUTONIUM VALUES FROM SOLUTION WITH GROUP IVB METAL PHOSPHO-SILICATE COMPOSITIONS

    DOEpatents

    Russell, E.R.; Adamson, A.W.; Schubert, J.; Boyd, G.E.

    1957-10-29

    A process for separating plutonium values from aqueous solutions which contain the plutonium in minute concentrations is described. These values can be removed from an aqueous solution by taking an aqueous solution containing a salt of zirconium, titanium, hafnium or thorium, adding an aqueous solution of silicate and phosphoric acid anions to the metal salt solution, and separating, washing and drying the precipitate which forms when the two solutions are mixed. The aqueous plutonium containing solution is then acidified and passed over the above described precipi-tate causing the plutonium values to be adsorbed by the precipitate.

  17. Molecular insights into shellac film coats from different aqueous shellac salt solutions and effect on disintegration of enteric-coated soft gelatin capsules.

    PubMed

    Al-Gousous, J; Penning, M; Langguth, P

    2015-04-30

    The purpose of this investigation was to study the effect of using different salts of shellac on the disintegration properties of shellac-based enteric coatings. In the last two decades, shellac has been increasingly used as an aqueous solution for enteric coating purposes, with the ammonium salt being the form typically used. Little investigation has been performed on using other salts, and therefore, this was the focus of our work. Enteric coatings, based on different shellac salts (ammonium, sodium, potassium and composite ammonium-sodium), were applied onto soft gelatin capsules. Disintegration testing of the coated soft gelatin capsules showed that alkali metal salts promote faster disintegration than ammonium salts. In order to determine the causes behind these differences, the solubility, thermal and spectroscopic properties of films cast from the different salts were investigated. The results show that films cast from ammonium-based salts of shellac are, unlike those cast from alkali metal-based salts, water-insoluble. Spectroscopic evidence suggests that this might be due to partial salt dissociation resulting in loss of ammonium as ammonia and reduced degree of shellac ionization during drying. In addition, oxidation of shellac aldehyde groups of the ammonium-based shellac salts could also play a role. And possible higher extent of shellac hydrolysis during the preparation of alkali metal salts might also be a factor. Therefore, the nature of the shellac salt used in the preparation of shellac-based aqueous coating solutions is a significant formulation factor affecting product performance.

  18. Photoionization of Sodium Salt Solutions in a Liquid Jet

    SciTech Connect

    Grieves, G. A.; Petrik, Nikolay G.; Herring-Captain, J.; Olanrewaju, B.; Aleksandrov, A.; Tonkyn, Russell G.; Barlow, Stephan E.; Kimmel, Gregory A.; Orlando, Thomas M.

    2008-06-05

    A liquid microjet was employed to examine the gas/liquid interface of aqueous sodium halide (Na+X-, X=Cl, Br, I) salt solutions. Laser excitation at 193 nm produced and removed cations of the form H+(H2O)n and Na+(H2O)m from liquid jet surfaces containing either NaCl, NaBr or NaI. The protonated water cluster yield varied inversely with increasing salt concentration, while the solvated sodium ion cluster yield varied by anion type. The distribution of H+(H2O)n at low salt concentration is identical to that observed from low-energy electron irradiated amorphous ice and the production of these clusters can be accounted for using a localized ionization/Coulomb expulsion model. Production of Na+(H2O)m is not accounted for by this model but requires ionization of solvation shell waters and a contact ion/Coulomb expulsion mechanism. The reduced yields of Na+(H2O)m from high concentration (10-2 and 10-1 M) NaBr and NaI solutions indicate a propensity for Br- and I- at the solution surfaces and interfaces. This is supported by the observation of multiphoton induced production and desorption of Br+ and I+ from the 10-2 and 10-1 M solution surfaces.

  19. Catalytic conversion of dihydroxyacetone to lactic acid using metal salts in water.

    PubMed

    Rasrendra, Carolus B; Fachri, Boy A; Makertihartha, I Gusti B N; Adisasmito, Sanggono; Heeres, Hero J

    2011-06-20

    We herein present a study on the application of homogeneous catalysts in the form of metal salts on the conversion of trioses, such as dihydroxyacetone (DHA), and glyceraldehyde (GLY) to lactic acid (LA) in water. A wide range of metal salts (26 in total) were examined. Al(III) salts were identified as the most promising and essentially quantitative LA yields (>90 mol%) were obtained at 140 °C and a reaction time of 90 min. A reaction pathway is proposed and a kinetic model using the power law approach was developed for the conversion of DHA to LA with pyruvaldehyde (PRV) as the intermediate. Good agreement between experimental data and the model was obtained. Model predictions, supported by experiments, indicate that a high yield of LA is favoured in dilute solutions of DHA (0.1 M) at elevated temperatures (180 °C) and reaction times less than 10 min.

  20. Fabrication of CPA Salt Pill with Circulating Solution Method

    NASA Astrophysics Data System (ADS)

    Hoshino, A.; Tokoi, K.; Ishisaki, Y.; Shinozaki, K.; McCammon, D.

    2008-05-01

    We report results on fabrication of a Chromium Potassium Alum (CPA) salt pill. CPA is a typical paramagnetic salt used as refrigerant of Adiabatic Demagnetization Refrigerator (ADR) because of its low Curie point, 4 11 mK. We made an test model of CPA salt pill by fast crystallizing method, namely circulating solution between 36°C and 15°C. The crystallizing rate was 0.5 g h-1, and 40 g of CPA crystal was obtained inside a stainless steel cylinder equipped with 160 copper wires. The cooling test was operated utilizing a commercial ADR system. We attached three thermometers and four heaters to the salt pill, in order to measure thermal conductance among different parts of the pill. It is confirmed that our salt pill was cooled down from B/ T=4 T/2 K to 64 mK at zero magnetic field. We suspect the cause of limiting the cooling temperature in the present level to be the dehydration of CPA, non-uniformity of magnetic field, and stainless steel of the pill which has large heat capacity below 0.1 K.

  1. NEUTRON RADIOGRAPHY MEASUREMENT OF SALT SOLUTION ABSORPTION IN MORTAR.

    PubMed

    Lucero, Catherine L; Spragg, Robert P; Bentz, Dale P; Hussey, Daniel S; Jacobson, David L; Weiss, W Jason

    2017-01-01

    Some concrete pavements in the US have recently exhibited premature joint deterioration. It is hypothesized that one component of this damage can be attributed to a reaction that occurs when salt-laden water is absorbed in the concrete and reacts with the matrix. This study examines the absorption of CaCl2 solution in mortar via neutron imaging. Mortar specimens were prepared with water to cement ratios, (w/c), of 0.36, 0.42 and 0.50 by mass and exposed to chloride solutions with concentrations ranging from 0 % to 29.8 % by mass. Depth of fluid penetration and moisture content along the specimen length were determined for 96 h after exposure. At high salt concentration (29.8 %), the sorption rate decreased by over 80 % in all samples. Along with changes in surface tension and viscosity, CaCl2 reacts with the cement paste to produce products (Friedel's salt, Kuzel's salt, or calcium oxychloride) that block pores and reduce absorption.

  2. Precious-Metal Salt Coatings for Detecting Hydrazines

    NASA Technical Reports Server (NTRS)

    Dee, Louis A.; Greene, Benjamin

    2004-01-01

    Substrates coated with a precious-metal salt KAuCl4 have been found to be useful for detecting hydrazine vapors in air at and above a concentration of the order of 0.01 parts per million (ppm). Upon exposure to air containing a sufficient amount of hydrazine for a sufficient time, the coating material undergoes a visible change in color.

  3. Process to separate alkali metal salts from alkali metal reacted hydrocarbons

    DOEpatents

    Gordon, John Howard; Alvare, Javier; Larsen, Dennis; Killpack, Jeff

    2017-06-27

    A process to facilitate gravimetric separation of alkali metal salts, such as alkali metal sulfides and polysulfides, from alkali metal reacted hydrocarbons. The disclosed process is part of a method of upgrading a hydrocarbon feedstock by removing heteroatoms and/or one or more heavy metals from the hydrocarbon feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase containing alkali metal salts and reduced heavy metals, and an upgraded hydrocarbon feedstock. The inorganic phase may be gravimetrically separated from the upgraded hydrocarbon feedstock after mixing at a temperature between about 350.degree. C. to 400.degree. C. for a time period between about 15 minutes and 2 hours.

  4. Effective potentials of Hofmeister salts in aqueous solution

    NASA Astrophysics Data System (ADS)

    Marquina-Carmona, M. A.; Hernández-Contreras, M.

    2017-01-01

    The effective pair interaction potentials of monovalent halide anions and alkali cations in bulk solution of a molecular solvent model were determined using atomistic simulations. These properties result from the microstructure of the ionic liquid which is the main ingredient in the hypernetted chain approach of liquid theory. We used an optimized set of Lennard-Jones parameters that are thermodynamically reliable for bulk phases of the Hofmeister salts.

  5. Separation of metal ions from aqueous solutions

    DOEpatents

    Almon, Amy C.

    1994-01-01

    A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.

  6. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-11-13

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat unit for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heayv metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  7. Removal of metal ions from aqueous solution

    DOEpatents

    Jackson, Paul J.; Delhaize, Emmanuel; Robinson, Nigel J.; Unkefer, Clifford J.; Furlong, Clement

    1990-01-01

    A method of removing heavy metals from aqueous solution, a composition of matter used in effecting said removal, and apparatus used in effecting said removal. One or more of the polypeptides, poly (.gamma.-glutamylcysteinyl)glycines, is immobilized on an inert material in particulate form. Upon contact with an aqueous solution containing heavy metals, the polypeptides sequester the metals, removing them from the solution. There is selectivity of poly (.gamma.-glutamylcysteinyl)glycines having a particular number of monomer repeat units for particular metals. The polypeptides are easily regenerated by contact with a small amount of an organic acid, so that they can be used again to remove heavy metals from solution. This also results in the removal of the metals from the column in a concentrated form.

  8. The chemistry of drying an aqueous solution of salts.

    PubMed

    Takenaka, Norimichi; Takayama, Kayoko; Ojiro, Naofumi; Shimazaki, Wataru; Ohira, Kingo; Soda, Hiroyuki; Suzue, Takahiko; Sadanaga, Yasuhiro; Bandow, Hiroshi; Maeda, Yasuaki

    2009-11-05

    The fate of salts in drying aqueous solution was investigated. In the drying of acidic solutions, weak acid ions and chloride ions combine with protons and evaporate, depending on the proton concentration. In the drying of alkaline solutions, weak acid ions evaporate or remain as salts depending on the ratio of the concentrations of excess nonvolatile cations (the difference between concentrations of nonvolatile cation and nonvolatile anion) to volatile anions defined as DeltaCA. Under neutral and alkaline conditions, the fate of nitrite depends not only on DeltaCA but also on the drying speed. Nitrite is converted to N2, which is formed by reacting nitrite with ammonium (denitrification), NO and NO2, HONO and salts. In urban areas, nitrite and ammonium can appear in high concentrations in dew. HONO in the atmosphere affects the ozone concentration, but dew formation decreases the concentration of HONO. If chemical denitrification occurs, nitrogen species will decrease in the environment, and as a result, the ozone concentration could decrease. Ozone levels show an ozone depression when dew formed, and a Box model simulation showed an ozone depression by decreasing HONO levels.

  9. Analysis of frozen salt solutions with laser-induced breakdown spectroscopy under Martian conditions

    NASA Astrophysics Data System (ADS)

    Schröder, S.; Pavlov, S. G.; Hübers, H.-W.; Rauschenbach, I.; Jessberger, E. K.

    2010-05-01

    focusing on the major elemental composition as well as on minor elements. In general, the alkali metal and alkaline earth metal elements were clearly detectable in the LIBS spectra in the 280-900 nm region. This allowed for a good distinction between different frozen solutions. Also the oxygen and hydrogen lines gave good signal-to-noise ratios. On the other hand, in particular, sulphur, as known, is difficult to detect in this spectral range as only weak sulphur lines are apparent in this region. The experiments demonstrate the capability of LIBS for detection and identification of frozen salt solutions under Martian conditions.

  10. Laser-induced breakdown spectroscopy for analysis of frozen salt solutions under Martian conditions

    NASA Astrophysics Data System (ADS)

    Schröder, Susanne; Pavlov, Sergey; Hübers, Heinz-Wilhelm; Rauschenbach, Isabelle; Jessberger, Elmar K.

    focusing on the major elemental composition as well as on minor elements. In general, the alkali metal and alkaline earth metal elements were clearly detectable in the LIBS spectra in the 280-900 nm region. This allowed for a good distinction between different frozen solutions. Also the oxygen and hydrogen lines gave good signal-to-noise ratios. On the other hand, in particular, sulphur, as known, is difficult to detect in this spectral range as only weak sulphur lines are apparent in this region. The experiments demonstrate the capability of LIBS for detection and identification of frozen salt solutions under Martian conditions.

  11. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    SciTech Connect

    Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

    2008-10-28

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective

  12. Scaling Equations for a Biopolymer in Salt Solution

    NASA Astrophysics Data System (ADS)

    Geissler, Erik; Hecht, Anne-Marie; Horkay, Ferenc

    2007-12-01

    The effect of the simultaneous presence of monovalent and divalent cations on the thermodynamics of polyelectrolyte solutions is an incompletely solved problem. In physiological conditions, combinations of these ions affect structure formation in biopolymer systems. Dynamic light scattering measurements of the collective diffusion coefficient D and the osmotic compressibility of semidilute hyaluronan solutions containing different ratios of sodium and calcium ions are compared with simple polyelectrolyte models. Scaling relationships are proposed in terms of polymer concentration and ionic strength J of the added salt. Differences in the effects of sodium and calcium ions are found to be expressed only through J.

  13. Effects of metal salt mixtures on Daphnia magna reproduction

    SciTech Connect

    Biesinger, K.E.; Christensen, G.M.; Fiandt, J.T.

    1986-02-01

    Three binary metal experiments were conducted using a complete block design; testing the chlorides of Cd, Hg, and Zn individually and in combinations of Cd-Hg, Cd-Zn, and Zn-Hg on Daphnia magna reproduction. These mixtures were tested at one-half, once, and twice the 16% reproductive impairment concentration previously determined for individual metals. The Cd-Hg, Cd-Zn, and Zn-Hg mixtures all showed significant reductions in reproduction at concentrations where the metal salts alone caused no significant effect.

  14. Geotechnical factors and guidelines for storage of compressed air in solution-mined salt cavities

    NASA Astrophysics Data System (ADS)

    Allen, R. D.; Doherty, T. J.; Thoms, R. L.

    1982-05-01

    The state of knowledge about utilization of solution mined salt cavities for CAES including laboratory experiments, numerical modeling, field characterization, solution mining experience, and operating parameters is outlined. Topics evaluated include: cavern geometry and size; long term creep and creep rupture of rock salt; effects of pressure and temperature loading rates; low frequency fatigue; progressive deterioration of salt fabric with possible air penetration; cavern monitoring methods; and salt properties at nonambient conditions. The only CAES operational facility in the world uses two solution mined salt cavern for air storage and is operating successfully. Stability critera for solution mined salt caverns.

  15. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  16. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for the...

  17. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for the...

  18. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for the...

  19. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for the...

  20. 40 CFR 721.4685 - Substituted purine metal salt (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Substituted purine metal salt (generic... Specific Chemical Substances § 721.4685 Substituted purine metal salt (generic name). (a) Chemical... as a substituted purine metal salt (PMN P-95-175) is subject to reporting under this section for the...

  1. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  2. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  3. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  4. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  5. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  6. 40 CFR 721.5452 - Alkali metal salt of halogenated organoborate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkali metal salt of halogenated... Specific Chemical Substances § 721.5452 Alkali metal salt of halogenated organoborate (generic). (a... generically as alkali metal salt of halogenated organoborate (PMN P-00-0638) is subject to reporting under...

  7. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  8. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  9. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  10. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  11. 40 CFR 721.4668 - Hydrated alkaline earth metal salts of metalloid oxyanions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Hydrated alkaline earth metal salts of... Specific Chemical Substances § 721.4668 Hydrated alkaline earth metal salts of metalloid oxyanions. (a... hydrated alkaline earth metal salts of metalloid oxyanions (PMN P-94-1557) is subject to reporting...

  12. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  13. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Metal salts of complex inorganic... New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic oxyacids... substances identified generically as metal salts of complex inorganic oxyacids (PMNs P-89-576 and...

  14. Precipitation of oppositely charged polyelectrolytes in salt solutions.

    PubMed

    Kudlay, Alexander; Olvera de la Cruz, Monica

    2004-01-01

    We study phase separation in symmetric solutions of weakly charged flexible chains of opposite sign. Precipitation is caused by effective attractions due to charge fluctuations and by short-range attractions between monomers. The contribution from charge fluctuations is computed within the random phase approximation (RPA), which takes into account the connectivity of charges in the polyions. The impenetrability of the ions is accounted for by using a modified Coulomb potential in the RPA. In good solvent conditions the precipitate monotonically swells and eventually dissolves upon addition of salt. However, near the theta-solvent condition, but still in the good solvent, the precipitate can be stable at any salt concentration. Moreover, the density of the precipitate after initial decrease can increase with addition of salt. This effect is a result of redistribution of salt between the precipitate and the supernatant, which is due to an interplay of electrostatic and hardcore interactions. For not too weakly charged polyions the precipitate properties become strongly dependent on temperature even in good solvent conditions.

  15. Applications of molten salts in reactive metals processing

    SciTech Connect

    Mishra, B.; Olson, D.L.; Averill, W.A.

    1993-12-31

    Pyrochemical processes using molten salts provide a unique opportunity for the extraction and refining of many reactive and valuable metals either directly from the beneficiated ore or from other process effluent that contain reactive metal compounds. This research program is aimed at developing a process for the production and recovery of reactive and valuable metals, such as zinc, tin, lead, bismuth and silver, in a hybrid reactor combining electrolytic production of the calcium reductant and in-situ utilization of this reductant for pyrochemical reduction of the metal compounds, such as halide or oxides. The process is equally suitable for producing other low melting metals, such as cadmium and antimony. The cell is typically operated below 1000C temperature. Attempts have been made to produce silver, lead, bismuth, tin and cerium by calciothermic reduction in a molten salt media. In a separate effort, calcium has been produced by an electrolytic dissociation of lime in a calcium chloride medium. The most important characteristic of the hybrid technology is its ability to produce metals under ``zero-waste`` conditions.

  16. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  17. Single crystals of metal solid solutions

    NASA Technical Reports Server (NTRS)

    Miller, J. F.; Austin, A. E.; Richard, N.; Griesenauer, N. M.; Moak, D. P.; Mehrabian, M. R.; Gelles, S. H.

    1974-01-01

    The following definitions were sought in the research on single crystals of metal solid solutions: (1) the influence of convection and/or gravity present during crystallization on the substructure of a metal solid solution; (2) the influence of a magnetic field applied during crystallization on the substructure of a metal solid solution; and (3) requirements for a space flight experiment to verify the results. Growth conditions for the selected silver-zinc alloy system are described, along with pertinent technical and experimental details of the project.

  18. Solvent effect induced solute damage in an organic inner salt.

    PubMed

    Shui, Min; Jin, Xiao; Li, Zhongguo; Yang, Junyi; Shi, Guang; Zhang, Xueru; Wang, Yuxiao; Yang, Kun; Wei, Tai-huei; Song, Yinglin

    2010-12-20

    Nonlinear absorption of a newly synthesized organic inner salt Ge-150 dissolved in four different solvents (DMF, DMSO, acetonitrile and acetone) is investigated by the Z-scan technique with both nanosecond and picosecond pulses. When pulse energy surpasses a threshold and pulse-to-pulse separation is shorter than a characteristic time, all the four solutions show absorption weakening induced by cross-pulse effects in the picosecond regime. However, only two of them (Ge-150 dissolved in DMF and DMSO) show this weakening in the nanosecond regime. By conducting a simple verification experiment, we verify this absorption weakening is induced by solute damage related to solvent effect rather than solute migration. A simple theoretical model is proposed to interpret the experimental phenomenon.

  19. Simulation of osmotic pressure in concentrated aqueous salt solutions.

    SciTech Connect

    Luo, Y.; Roux, B.; Univ. of Chicago

    2010-01-01

    Accurate force fields are critical for meaningful simulation studies of highly concentrated electrolytes. The ion models that are widely used in biomolecular simulations do not necessarily reproduce the correct behavior at finite concentrations. In principle, the osmotic pressure is a key thermodynamic property that could be used to test and refine force field parameters for concentrated solutions. Here we describe a novel, simple, and practical method to compute the osmotic pressure directly from molecular dynamics (MD) simulation of concentrated aqueous solutions by introducing an idealized semipermeable membrane. Simple models for Na+, K+, and Cl- are tested and calibrated to accurately reproduce the experimental osmotic pressure at high salt concentration, up to the solubility limit of 4-5 M. The methodology is general and can be extended to any type of solute as well as nonadditive polarizable force fields.

  20. Influence of metal salts on the photodegradation of imazapyr, an imidazolinone pesticide.

    PubMed

    Quivet, Etienne; Faure, René; Georges, Joseph; Paissé, Jean-Olivier; Lantéri, Pierre

    2006-05-01

    The behaviour of imazapyr (2-(4-isopropyl-4-methyl-5-oxo-2-imidazolin-2-yl)nicotinic acid), a broad spectrum herbicide of the imidazolinone family, has been studied under UV radiation in the presence of metal salts. Complexation interactions between imazapyr and metal ions decreased imazapyr photolysis. A chemometric study compared the photodegradation of imazapyr in aqueous solutions in the presence of Na+, Ca2+ or Cu2+ and their concomitant anionic species (Cl-, NO3-) at various pesticide/metal ion molar ratios. The study showed the major role of metal ions in the degradation of imazapyr and its main photoproducts. The molecules were strongly stabilised on complexation with metal ions, leading to an increase in persistence of the pesticide.

  1. Molecular recognition properties of tartrates and metal-tartrates in solution and gas phase.

    PubMed

    Wijeratne, Aruna B; Schug, Kevin A

    2009-05-01

    Solution phase and gas phase chiral molecular recognition properties of tartrates (salts or esters of tartaric acid) and metal tartrates (binuclear tartrato(4-)-metal-bridged complexes) are reviewed in conjunction with their applications in enantiomeric separation science and their mass spectrometric chiral discrimination properties.

  2. Behavior of several lanthanide and actinide elements in a molten salt/liquid metal extraction system

    NASA Astrophysics Data System (ADS)

    Oishi, Jun; Moriyama, Hirotake; Moritani, Kimikazu; Maeda, Seiichiro; Miyazaki, Masafumi; Asaoka, Yoshiyuki

    1988-06-01

    The extraction behavior of several lanthanide and actinide elements in the reductive-oxidative extraction process in a molten salt/liquid metal system is described. The equilibrium distributions of the elements are affected by metal composition as well as by salt composition. The effect of salt composition is due to the formation of complex compounds in the salt phase. The influence of metal composition is the result of intermetallic compounds in the metal phase. The extraction rates of the elements from the salt phase to the metal phase were also studied from the standpoint of mass transfer and chemical reaction at the interface between the two phases.

  3. Methods of deoxygenating metals having oxygen dissolved therein in a solid solution

    DOEpatents

    Zhang, Ying; Fang, Zhigang Zak; Sun, Pei; Xia, Yang; Zhou, Chengshang

    2017-06-06

    A method of deoxygenating metal can include forming a mixture of: a metal having oxygen dissolved therein in a solid solution, at least one of metallic magnesium and magnesium hydride, and a magnesium-containing salt. The mixture can be heated at a deoxygenation temperature for a period of time under a hydrogen-containing atmosphere to form a deoxygenated metal. The deoxygenated metal can then be cooled. The deoxygenated metal can optionally be subjected to leaching to remove by-products, followed by washing and drying to produce a final deoxygenated metal.

  4. Blending Of Radioactive Salt Solutions In Million Gallon Tanks

    SciTech Connect

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2012-12-10

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 ? 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, ?One good experiment fixes a lot of good theory?. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks.

  5. Blending of Radioactive Salt Solutions in Million Gallon Tanks - 13002

    SciTech Connect

    Leishear, Robert A.; Lee, Si Y.; Fowley, Mark D.; Poirier, Michael R.

    2013-07-01

    Research was completed at Savannah River National Laboratory (SRNL) to investigate processes related to the blending of radioactive, liquid waste, salt solutions in 4920 cubic meter, 25.9 meter diameter storage tanks. One process was the blending of large salt solution batches (up to 1135 - 3028 cubic meters), using submerged centrifugal pumps. A second process was the disturbance of a settled layer of solids, or sludge, on the tank bottom. And a third investigated process was the settling rate of sludge solids if suspended into slurries by the blending pump. To investigate these processes, experiments, CFD models (computational fluid dynamics), and theory were applied. Experiments were performed using simulated, non-radioactive, salt solutions referred to as supernates, and a layer of settled solids referred to as sludge. Blending experiments were performed in a 2.44 meter diameter pilot scale tank, and flow rate measurements and settling tests were performed at both pilot scale and full scale. A summary of the research is presented here to demonstrate the adage that, 'One good experiment fixes a lot of good theory'. Experimental testing was required to benchmark CFD models, or the models would have been incorrectly used. In fact, CFD safety factors were established by this research to predict full-scale blending performance. CFD models were used to determine pump design requirements, predict blending times, and cut costs several million dollars by reducing the number of required blending pumps. This research contributed to DOE missions to permanently close the remaining 47 of 51 SRS waste storage tanks. (authors)

  6. Liquid chromatography coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry and post-column addition of metal salt solutions as a powerful tool for the metabolic profiling of Fusarium oxysporum.

    PubMed

    Cirigliano, Adriana M; Rodriguez, M Alejandra; Gagliano, M Laura; Bertinetti, Brenda V; Godeas, Alicia M; Cabrera, Gabriela M

    2016-03-25

    Fusarium oxysporum L11 is a non-pathogenic soil-borne fungal strain that yielded an extract that showed antifungal activity against phytopathogens. In this study, reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to different atmospheric pressure ionization sources-quadrupole-time-of-flight mass spectrometry (API-QTOF-MS) was applied for the comprehensive profiling of the metabolites from the extract. The employed sources were electrospray (ESI), atmospheric pressure chemical ionization (APCI) and atmospheric pressure photoionization (APPI). Post-column addition of metal solutions of Ca, Cu and Zn(II) was also tested using ESI. A total of 137 compounds were identified or tentatively identified by matching their accurate mass signals, suggested molecular formulae and MS/MS analysis with previously reported data. Some compounds were isolated and identified by NMR. The extract was rich in cyclic peptides like cyclosporins, diketopiperazines and sansalvamides, most of which were new, and are reported here for the first time. The use of post-column addition of metals resulted in a useful strategy for the discrimination of compound classes since specific adducts were observed for the different compound families. This technique also allowed the screening for compounds with metal binding properties. Thus, the applied methodology is a useful choice for the metabolic profiling of extracts and also for the selection of metabolites with potential biological activities related to interactions with metal ions.

  7. Methods of making metal oxide nanostructures and methods of controlling morphology of same

    DOEpatents

    Wong, Stanislaus S; Hongjun, Zhou

    2012-11-27

    The present invention includes a method of producing a crystalline metal oxide nanostructure. The method comprises providing a metal salt solution and providing a basic solution; placing a porous membrane between the metal salt solution and the basic solution, wherein metal cations of the metal salt solution and hydroxide ions of the basic solution react, thereby producing a crystalline metal oxide nanostructure.

  8. Many segments and few dollars: SALT solutions for ELTs?

    NASA Astrophysics Data System (ADS)

    Buckley, David A. H.; Meiring, Jacobus G.; Swiegers, Jian; Swart, Gerhard P.

    2004-07-01

    The Southern African Large Telescope (SALT) is a little over 18 months away from completion (in early 2005). It is based on the innovative tilted-Arecibo optical analog, first pioneered by the Hobby-Eberly Telescope (HET). By the end of 2003, all major subsystems, including the verification instrument, will be in place and the commissioning of them begun. Tests of a 7-segment subset of the mirror array, including the Shack-Hartmann alignment instrument, the mirror actuators, capacitive edge sensors and active control system has recently started. The first engineering on-sky tests involving the complete light path, from object to detector, have begun. SALT's primary mirror consists of 91 identical segments mounted on a 9 point whiffle tree mount, using three actuators to control tip and tilt, and a foil-type capacitive edge sensor to detect mirror misalignment. These 480 relatively affordable sensors are permanently attached to the segment edges, and are capable of measuring all misalignment modes, including global radius of curvature. This sensing system, used together with a Shack-Hartman wavefront instrument at the center of curvature, controls the primary mirror array, and could be scaled to an array of the size envisaged for an ELT. SALT has developed some innovative designs improvement over the original HET concept. These include a more effective spherical aberration corrector (SAC), interferometric distance sensing and laser auto-collimation of the prime focus payload, the use of newly developed efficient and durable mirror coatings on the SAC optics, and the use of economical low expansion ceramics for the primary mirror segments. These innovative and cost effective solutions used on SALT have potential applications to ELT designs.

  9. Lead and other metals distribution in local cooking salt from the Fofi salt- spring in Akwana, Middle Benue Trough, Nigeria

    SciTech Connect

    Dim, L.A.; Kinyua, A.M.; Munyithya, J.M.; Adetunji, J. )

    1991-06-01

    Energy Dispersive X-ray Fluorescence (EDXRF) technique has been used to determine the concentrations of lead(Pb) and other heavy metals in local cooking salts (LCS) from Akwana village, Middle Benue Trough, Nigeria. The comparison of the distribution of these metals in LCS, fake salt (FS) and the usual common salts (CS) are given. Lead was found to be enriched in LCS by factor exceeding 200 times compared to the other salts. The origin of Pb contamination in the LCS is examined and its effects on the inhabitants of the village are considered.

  10. Optical Sensor for Characterizing the Phase Transition in Salted Solutions

    PubMed Central

    Claverie, Rémy; Fontana, Marc D.; Duričković, Ivana; Bourson, Patrice; Marchetti, Mario; Chassot, Jean-Marie

    2010-01-01

    We propose a new optical sensor to characterize the solid-liquid phase transition in salted solutions. The probe mainly consists of a Raman spectrometer that extracts the vibrational properties from the light scattered by the salty medium. The spectrum of the O – H stretching band was shown to be strongly affected by the introduction of NaCl and the temperature change as well. A parameter SD defined as the ratio of the integrated intensities of two parts of this band allows to study the temperature and concentration dependences of the phase transition. Then, an easy and efficient signal processing and the exploitation of a modified Boltzmann equation give information on the phase transition. Validations were done on solutions with varying concentration of NaCl. PMID:22319327

  11. Surface Potential of DPPC Monolayers on Concentrated Aqueous Salt Solutions.

    PubMed

    Casper, Clayton B; Verreault, Dominique; Adams, Ellen M; Hua, Wei; Allen, Heather C

    2016-03-03

    The presence and exchange of electrical charges on the surfaces of marine aerosols influence their ability to act as cloud condensation nuclei and play a role in thundercloud electrification. Although interactions exist between surface-active inorganic ions and organic compounds, their role in surface charging of marine aerosols is not well understood. In this study, the surface potential of dipalmitoylphosphatidylcholine (DPPC) monolayers, a zwitterionic phospholipid found in the sea surface microlayer, is measured on concentrated (0.3-2.0 M) chloride salt solutions containing marine-relevant cations (Na(+), K(+), Mg(2+), Ca(2+)) to model and elucidate the electrical properties of organic-covered marine aerosols. Monovalent cations show only a weak effect on the surface potential of DPPC monolayers in the condensed phase compared to water. In contrast, Mg(2+) and Ca(2+) increase the surface potential, indicating different cation binding modes and affinities for the PC headgroup. Moreover, it is found that for divalent chloride salt solutions, the PC headgroup and interfacial water molecules make the largest dipolar contribution to the surface potential. This study shows that for equal charge concentrations, divalent cations impact surface potential of DPPC monolayers more strongly than monovalents likely through changes in the PC headgroup orientation induced by their complexation along with the lesser ordering of interfacial water molecules caused by phosphate group charge screening.

  12. Terahertz echoes reveal the inhomogeneity of aqueous salt solutions

    NASA Astrophysics Data System (ADS)

    Shalit, Andrey; Ahmed, Saima; Savolainen, Janne; Hamm, Peter

    2017-03-01

    The structural and dynamical properties of water are known to be affected by ion solvation. However, a consistent molecular picture that describes how and to what extent ions perturb the water structure is still missing. Here we apply 2D Raman-terahertz spectroscopy to investigate the impact of monatomic cations on the relaxation dynamics of the hydrogen-bond network in aqueous salt solutions. The inherent ability of multidimensional spectroscopy to deconvolute heterogeneous relaxation dynamics is used to reveal the correlation between the inhomogeneity of the collective intermolecular hydrogen-bond modes and the viscosity of a salt solution. Specifically, we demonstrate that the relaxation time along the echo direction t1 = t2 correlates with the capability of a given cation to 'structure' water. Moreover, we provide evidence that the echo originates from the water-water modes, and not the water-cation modes, which implies that cations can structure the hydrogen-bond network to a certain extent.

  13. Recyclables recovery of europium and yttrium metals and some salts from spent fluorescent lamps.

    PubMed

    Rabah, Mahmoud A

    2008-01-01

    Europium and yttrium metals and some valuable salts were recovered from the powder coating the inner surface of the glass tubes of fluorescent lamps. The tubes were broken under 30% aqueous acetone to avoid emission of mercury vapor to the atmosphere, and the powder was collected by brushing. Metals available in the powder were pressure leached using sulfuric/nitric acid mixture. Sulphate salt of europium and yttrium so obtained was converted to thiocyanate. Trimethyl-benzylammonium chloride solvent was used to selectively extract Eu and Y from the thiocyanate solution. The metal loaded in the organic solvent was recovered by N-tributylphosphate in 1M nitric acid to produce nitrate salts of Eu and Y. Europium nitrate was separated from yttrium nitrate by dissolving in ethyl alcohol. The isolated powder contained 1.62% europium oxide, 1.65% yttrium oxide, 34.48% calcium sulphate, 61.52% Ca orthophosphate and 0.65% other impurity metals by weight. Autoclave digestion of the powder in the acid mixture for 4h at approximately 125 degrees C and 5 MPa dissolved 96.4% of the yttrium and 92.8% of the europium. Conversion of the sulphate to thiocyanate is favoured at low temperature. Extraction of Eu and Y from the thiocyanate solution attained its maximum at approximately 80 degrees C. N-tributylphosphate in 1N nitric acid at 125 degrees C achieved a stripping extent of 99%. Thermal reduction using hydrogen gas at 850 degrees C and 1575 degrees C produced europium and yttrium metals, respectively. A metal separation factor of 9.4 was achieved. Economic estimation revealed that the suggested method seemed feasible for industrial applications.

  14. Alkali Metal Suboxometalates-Structural Chemistry between Salts and Metals.

    PubMed

    Wörsching, Matthias; Hoch, Constantin

    2015-07-20

    The crystal structures of the new cesium-poor alkali metal suboxometalates Cs10MO5 (M = Al, Ga, Fe) show both metallic and ionic bonding following the formal description (Cs(+))10(MO4(5-))(O(2-))·3e(-). Comparable to the cesium-rich suboxometalates Cs9MO4 (M = Al, Ga, In, Fe, Sc) with ionic subdivision (Cs(+))9(MO4(5-))·4e(-), they contain an oxometalate anion [M(III)O4](5-) embedded in a metallic matrix of cesium atoms. Columnlike building units form with prevalent ionic bonding inside and metallic bonding on the outer surface. In the cesium-rich suboxometalates Cs9MO4, additional cesium atoms with no contact to any anion are inserted between columns of the formal composition [Cs8MO4]. In the cesium-poor suboxometalates Cs10MO5, the same columns are extended by face-sharing [Cs6O] units, and no additional cesium atoms are present. The terms "cesium-rich" and "cesium-poor" here refer to the Cs:O ratio. The new suboxometalates Cs10MO5 crystallize in two modifications with new structure types. The orthorhombic modification adopts a structure with four formula units per unit cell in space group Pnnm with a = 11.158(3) Å, b = 23.693(15) Å, and c = 12.229(3) Å for Cs10AlO5. The monoclinic modification crystallizes with eight formula units per unit cell in space group C2/c with a = 21.195(3) Å, b = 12.480(1) Å, c = 24.120(4) Å, and β = 98.06(1)° for Cs10AlO5. Limits to phase formation are given by the restriction that the M atoms must be trivalent and by geometric size restrictions for the insertion of [Cs6O] blocks in Cs10MO5. All of the suboxometalate structures show similar structural details and form mixed crystal series with statistical occupation for the M elements following the patterns Cs9(M(1)xM(2)1-x)O4 and Cs10(M(1)xM(2)1-x)O5. The suboxometalates are a new example of ordered intergrowth of ionic and metallic structure elements, allowing for the combination of properties related to both ionic and metallic materials.

  15. Structures and stability of salt-bridge in aqueous solution.

    PubMed

    Sagarik, Kritsana; Chaiyapongs, Supaporn

    2005-09-01

    Structures and stability of salt-bridges in aqueous solutions were investigated using a complex formed from the guanidinium (Gdm+) and formate (FmO-) ions as a model system. The Test-particle model (T-model) potentials to describe the interactions in the Gdm+-H2O, FmO(-)-H2O and Gdm+-FmO- complexes were constructed, tested and applied in molecular dynamics (MD) simulations of the aqueous solutions at 298 K. The three-dimensional structures and energetic of the hydrogen bond (H-bond) networks of water in the first hydration shells of the Gdm+ and FmO- ions, as well as the Gdm+-FmO- complex, were visualized and analyzed using various probability distribution (PD) maps. The structures of the average potential energy landscapes at the H-bond networks were employed to characterize the stability and dynamic behavior of water molecules in the first hydration shells of the solutes. It was observed that water molecules in the first hydration shell of the close-contact Gdm+-FmO- complex form associated H-bond networks, which introduce a net stabilization effect to the ion-pair, whereas those in the interstitial H-bond network destabilize and break the solvent-separated Gdm+-FmO- complex. The present results showed that, in order to provide complete insights into the structures and stability of ion-pairs in aqueous solutions, explicit water molecules have to be included in the model calculations.

  16. Cloud-point temperatures for lysozyme in electrolyte solutions: effect of salt type, salt concentration and pH.

    PubMed

    Grigsby, J J; Blanch, H W; Prausnitz, J M

    2001-07-24

    Liquid-liquid phase-separation data were obtained for aqueous saline solutions of hen egg-white lysozyme at a fixed protein concentration (87 g/l). The cloud-point temperature (CPT) was measured as a function of salt type and salt concentration to 3 M, at pH 4.0 and 7.0. Salts used included those from mono and divalent cations and anions. For the monovalent cations studied, as salt concentration increases, the CPT increases. For divalent cations, as salt concentration rises, a maximum in the CPT is observed and attributed to ion binding to the protein surface and subsequent water structuring. Trends for sulfate salts were dramatically different from those for other salts because sulfate ion is strongly hydrated and excluded from the lysozyme surface. For anions at fixed salt concentration, the CPT decreases with rising anion kosmotropic character. Comparison of CPTs for pH 4.0 and 7.0 revealed two trends. At low ionic strength for a given salt, differences in CPT can be explained in terms of repulsive electrostatic interactions between protein molecules, while at higher ionic strength, differences can be attributed to hydration forces. A model is proposed for the correlation and prediction of the CPT as a function of salt type and salt concentration. NaCl was chosen as a reference salt, and CPT deviations from that of NaCl were attributed to hydration forces. The Random Phase Approximation, in conjunction with a square-well potential, was used to calculate the strength of protein-protein interactions as a function of solution conditions for all salts studied.

  17. Thermodynamics of formation reaction and hydrometallurgical application of metal-ammonia complexes in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Mironov, V. E.; Pashkov, G. L.; Stupko, T. V.

    1992-09-01

    Critically selected activity coefficients of individual ions stepwise stability constants, and enthalpy and entropy changes during formation of metal-ammonia complexes in aqueous salt solutions are summarised and analysed. Special attention is paid to the specifics of ammonia complexation in solutions with high ammonia concentrations (>=1 mol dm-3), which are of interest in hydrometallurgy. Certain problems and prospects for use of metal-ammonia complexation in hydrometallurgy are discussed. The bibliography includes 154 references.

  18. Inhibition of hot salt corrosion by metallic additives

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.

    1978-01-01

    The effectiveness of several potential fuel additives in reducing the effects of sodium sulfate-induced hot corrosion was evaluated in a cyclic Mach 0.3 burner rig. The potential inhibitors examined were salts of Al, Si, Cr, Fe, Zn, Mg, Ca, and Ba. The alloys tested were IN-100, U-700, IN-738, IN-792, Mar M-509, and 304 stainless steel. Each alloy was exposed for 100 cycles of 1 hour each at 900 C in combustion gases doped with the corrodant and inhibitor salts and the extent of attack was determined by measuring maximum metal thickness loss. The most effective and consistent inhibitor additive was Ba (NO3)2 which reduced the hot corrosion attack to nearly that of simple oxidation.

  19. Transgenerational adaptation to heavy metal salts in Arabidopsis.

    PubMed

    Rahavi, Mohammad Reza; Migicovsky, Zoë; Titov, Viktor; Kovalchuk, Igor

    2011-01-01

    Exposure to abiotic and biotic stress results in changes in plant physiology and triggers genomic instability. Recent reports suggest that the progeny of stressed plants also exhibit changes in genome stability, stress tolerance, and methylation. Here we analyzed whether exposure to Ni(2+), Cd(2+), and Cu(2+) salts leads to transgenerational changes in homologous recombination frequency and stress tolerance. We found that the immediate progeny of stressed plants exhibited an increased rate of recombination. However, when the progeny of stressed plants was propagated without stress, recombination reverted to normal levels. Exposure of plants to heavy metals for five consecutive generations (S1-S5) resulted in recombination frequency being maintained at a high level. Skipping stress following two to three generations of propagation with 50 mM Ni(2+) or Cd(2+) did not decrease the recombination frequency, suggesting plant acclimation to upregulated recombination. Analysis of the progeny of plants exposed to Cu(2+) and Ni(2+) indicated higher stress tolerance to the heavy metal parental plants were exposed to. Tolerance was higher in plants propagated with stress for three to five generations, which resulted in longer roots than plants propagated on heavy metals for only one to two generations. Tolerance was also more prominent upon exposure to a higher concentration of salts. The progeny of stressed plants were also more tolerant to NaCl and methyl methane sulfonate.

  20. Stock and losses of trace metals from salt marsh plants.

    PubMed

    Caçador, Isabel; Caetano, Miguel; Duarte, Bernardo; Vale, Carlos

    2009-03-01

    Pools of Zn, Cu, Cd and Co in the leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analysed for a Tagus estuary (Portugal) salt marsh. Pools of Cu and Cd in the salt marsh were higher in spring/summer, indicating a net uptake of these metals during the growing season. Standing stocks of Zn, Cu, Cd and Co in the leaf and stem biomass of S. fruticosa, S. perennis and H. portulacoides showed a strong seasonal variation, with higher values recorded in autumn. The metal-containing leaves and stems that shed in the autumn become metal-containing detritus. The amount of this material washed out from the total marsh area (200 ha) was estimated as 68 kg of Zn, 8.2 kg of Cu, 13 kg of Co and 0.35 kg of Cd. The high tidal amplitude, a branched system of channels and semi-diurnal tidal cycle greatly favour the export of the organic detritus to adjoining marsh areas.

  1. Collapse of sodium polyacrylate chains in calcium salt solutions

    NASA Astrophysics Data System (ADS)

    Schweins, R.; Huber, K.

    The sodium salt of polyacrylic acid (NaPA) precipitates in the presence of Ca^{2+}-ions. This phase behaviour can be represented by a phase diagram where the critical NaPA concentration is plotted versus the critical Ca^{2+} concentration resulting in a straight line as a phase boundary. The location of this phase boundary is influenced by the presence of an inert monovalent salt like NaCl. The present contribution focuses on the coil dimensions of NaPA chains in dilute aqueous solution corresponding to the one phase region of such a phase diagram. A variety of parameters with which the size and shape of the polyelectrolyte chains can be modulated are revealed. Approaching the phase boundary by decreasing the NaPA concentration at a constant Ca^{2+} content leads to a collapse of the NaPA chains. Combined static and dynamic light scattering suggests a compact spherical shape as the final state of this transition, both in 0.1 M NaCl and in 0.01 M NaCl. In the lower NaCl concentration, indication is presented for the existence of a cigar or pearl necklace like intermediate. Most strikingly, the collapsed chains can be reexpanded by increasing the concentration of inert NaCl at constant content of NaPA and Ca^{2+}. Clearly, excessive Na+-ions displace the Ca^{2+}-ions from the NaPA chains.

  2. FUSED SALT METHOD FOR COATING URANIUM WITH A METAL

    DOEpatents

    Eubank, L.D.

    1959-02-01

    A method is presented for coating uranium with a less active metal such as Cr, Ni, or Cu comprising immersing the U in a substantially anhydrous molten solution of a halide of these less active metals in a ternary chloride composition which consists of selected percentages of KCl, NaCl and another chloride such as LiCl or CaCl/sub 2/.

  3. Raman spectroscopic study of the conformation of dicarboxylic acid salts in aqueous solutions

    NASA Astrophysics Data System (ADS)

    Fukushima, Kunio; Watanabe, Toshiaki; Umemura, Matome

    1986-08-01

    It is already known that the molecules of long chain monocarboxylic acid salts have a tendency to form micelles in aqueous solutions, the molecular chain taking the all- trans zigzag structure. However it is considered difficult for dicarboxylic acid salts to adopt the same structure as the monocarboxylic acid salts as they have two carboxyl groups, one on each end of the molecular chain. Therefore, a special structure is expected to exist for dicarboxylic acid salts in aqueous solution. In order to examine this, Raman spectra of suberic acid salt and azelaic acid salt in aqueous solution were measured and the normal vibrational calculation carried out, showing that dicarboxylic acid salts have a helical structure in aqueous solution.

  4. Immunomodulatory effects of metal salts at sub-toxic concentrations.

    PubMed

    Steinborn, Carmen; Diegel, Christoph; Garcia-Käufer, Manuel; Gründemann, Carsten; Huber, Roman

    2016-10-07

    Because different metals are used in complementary medicine for the treatment of diseases related to a dysfunction of the immune system, this study aimed at determining the immunomodulatory potential of Pb(NO3 )2 , AuCl3 , Cu(NO3 )2 , HgCl2 , AgNO3 , SnCl2 , AsCl3 and SbCl3 at sub-toxic concentrations and at assessing possible toxic side effects of low-concentrated metal preparations. The influence of the metal salts on primary human mononuclear cells was analyzed by measuring cell viability using the water-soluble tetrazolium salt assay, apoptosis and necrosis induction by annexin V/propidium iodide staining and proliferation by carboxyfluorescein diacetate succinimidyl ester staining and flow cytometry. Effects on T-cell activation were assessed with CD69 and CD25 expression using flow cytometry whereas CD83, CD86 and CD14 expression was measured to evaluate the influence on dendritic cell maturation. Alterations of interleukin-2 and interferon-γ secretion were detected by enzyme-linked immunosorbent assay and genotoxic effects were analyzed using the comet assay. At sub-toxic concentrations retardation of T-cell proliferation was caused by Pb(NO3 )2 , AuCl3 and Cu(NO3 )2 and inhibitory effects on interleukin-2 secretion were measured after incubation with Pb(NO3 )2 , AuCl3 , Cu(NO3 )2 , HgCl2 and AsCl3. Cu(NO3 )2 had immunosuppressive activity at dosages within the serum reference range for copper. All other metal salts showed effects at dosages above upper serum limits of normal. Therefore, only low-concentrated copper preparations are promising to have immunomodulatory potential. Toxic side effects of metal preparations used in complementary medicine are improbable because upper limits of metals set in the drinking water ordinance are either not exceeded or the duration of their application is limited. Copyright © 2016 John Wiley & Sons, Ltd.

  5. The use of molten salts as physical models for the study of solidification in metals and semiconductors

    NASA Technical Reports Server (NTRS)

    Koziol, Jurek K.; Sadoway, Donald R.

    1987-01-01

    It is presently noted that molten salts possess attributes rendering them attractive as physical models of cast metals in solidification studies. Molten alkali halides have an approximately correct Prandtl number for this modeling of metallic melts, and are transparent to visible light. Attention is given to solidification in the LiCl-KCl system, in order to determine whether such phenomena as solute rejection can be observed and characterized through the application of laser schlieren imaging.

  6. 40 CFR 721.10487 - Alkylbenzenes sulfonic acids, metal salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkylbenzenes sulfonic acids, metal... Specific Chemical Substances § 721.10487 Alkylbenzenes sulfonic acids, metal salts (generic). (a) Chemical... as alkylbenzenes sulfonic acids, metal salts (PMNs P-04-599, P-04-600, P-04-605, and P-04-606) are...

  7. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  8. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  9. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  10. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  11. 40 CFR 721.2098 - Aliphatic polycarboxylic acid metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Aliphatic polycarboxylic acid metal... Specific Chemical Substances § 721.2098 Aliphatic polycarboxylic acid metal salt (generic). (a) Chemical... as an aliphatic polycarboxylic acid metal salt (PMN P-01-7) is subject to reporting under this...

  12. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  13. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  14. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  15. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  16. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  17. 40 CFR 721.10487 - Alkylbenzenes sulfonic acids, metal salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkylbenzenes sulfonic acids, metal... Specific Chemical Substances § 721.10487 Alkylbenzenes sulfonic acids, metal salts (generic). (a) Chemical... as alkylbenzenes sulfonic acids, metal salts (PMNs P-04-599, P-04-600, P-04-605, and P-04-606)...

  18. Effect of inorganic salts on crystallization of poly(ethylene glycol) in frozen solutions.

    PubMed

    Izutsu, Ken-ichi; Aoyagi, Nobuo

    2005-01-06

    The effect of inorganic salts on eutectic crystallization of poly(ethylene glycol) (PEG) 1500-20,000 in frozen solution was studied to model the polymer and inorganic salt interaction in freeze-dried formulations. Thermal analysis of an aqueous PEG 3000 solution showed a eutectic PEG crystallization exotherm at approximately -47 degrees C and a subsequent PEG crystal melting endotherm at -14.9 degrees C. Addition of sodium chloride prevented the PEG crystallization in the freeze-concentrated solution surrounding ice crystals. Higher concentration NaCl was required to retain higher molecular weight PEG in the amorphous state. Various inorganic salts prevented the PEG crystallization to varying degrees depending mainly on the position of the anion in the Hofmeister's lyotropic series. Some salting-in and 'intermediate' salts (NaSCN, NaI, NaBr, NaCl, LiCl, KCl, and RbCl) inhibited the crystallization of PEG 7500 in frozen solutions. On the other hand, salting-out salts (NaH2PO4, Na2HPO4, Na2SO4, and NaF) did not show an apparent effect on the PEG crystallization. Some salting-out salts induced PEG crystallization in PEG and sucrose combination frozen solutions. The varying abilities of salts to prevent the PEG crystallization in frozen solutions strongly suggested that the solutes had different degrees of miscibility in the freeze-concentrates.

  19. Enhancing Skin Permeation of Biphenylacetic Acid (BPA) Using Salt Formation with Organic and Alkali Metal Bases

    PubMed Central

    Pawar, Vijay; Naik, Prashant; Giridhar, Rajani; Yadav, Mange Ram

    2015-01-01

    In the present study, a series of organic and alkali metal salts of biphenylacetic acid (BPA) have been prepared and evaluated in vitro for percutaneous drug delivery. The physicochemical properties of BPA salts were determined using solubility measurements, DSC, and IR. The DSC thermogram and FTIR spectra confirmed the salt formation with organic and alkali metal bases. Among the series, salts with organic amines (ethanolamine, diethanolamine, triethanolamine, and diethylamine) had lowered melting points while the alkali metal salt (sodium) had a higher melting point than BPA. The in vitro study showed that salt formation improves the physicochemical properties of BPA, leading to improved permeability through the skin. Amongst all the prepared salts, ethanolamine salt (1b) showed 7.2- and 5.4-fold higher skin permeation than the parent drug at pH 7.4 and 5.0, respectively, using rat skin. PMID:26839810

  20. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOEpatents

    Gay, Eddie C.

    1995-01-01

    An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500.degree. C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

  1. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    SciTech Connect

    Gay, E.C.

    1993-12-23

    An electrochemical method of separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500{degree}C. The method comprises positioning a solid Li-Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode.

  2. The effect of divalent salt in chondroitin sulfate solutions

    SciTech Connect

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-25

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca{sup 2+} cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca{sup 2+} by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl{sub 2}) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  3. The effect of divalent salt in chondroitin sulfate solutions

    NASA Astrophysics Data System (ADS)

    Aranghel, D.; Badita, C. R.; Radulescu, A.; Moldovan, L.; Craciunescu, O.; Balasoiu, M.

    2016-03-01

    Chondroitin-4 sulfate (CS4) is the main glycosaminoglycan extracted from bovine trachea. CS4 play an important role in osteoarthritis treatment, anticoagulant activity, reduces the degradation of cartilage matrix components, reduces necrosis and apoptosis of chondrocytes and reduces the activity of collagenase. Chondroitin sulfate is also responsible for proteoglycans degradation. Chondroitin sulfate can bind calcium ions with different affinities, depending on their sulfation position. The purpose of this study was to determine the structural properties and the influence of Ca2+ cations. We carried out measurements on CS4 solutions and mixtures of liquid CS4 with Ca2+ by Small-Angle Neutron Scattering (SANS). CS4 have a mass fractal behavior and the addition of a salt (CaCl2) in CS4 solutions generates the appearance of a correlation peak due to local ordering between adjacent chains with inter-chain distances between 483 Å and 233 Å for a calcium concentration of 0.01% w/w.

  4. Excess entropy of water in a supercooled solution of salt

    NASA Astrophysics Data System (ADS)

    Gallo, P.; Corradini, D.; Rovere, M.

    2011-12-01

    We consider the relationship between the excess entropy and anomalies of water. We investigate by molecular dynamics simulations the thermodynamic region of supercooled water and a supercooled aqueous solution with NaCl at a salt concentration of 0.67 mol kg-1. The TIP4P potential model displays, as already established, in pure water and in solution a phase diagram with a liquid-liquid critical point. We explore how the two-body excess entropy calculated from the radial distribution functions is an indicator of density and structural anomalies of supercooled liquid water, both in the pure system and in the NaCl(aq). The two-body excess entropy shows a peculiar behaviour associated with the density anomaly and structural changes in water as revealed by the radial distribution functions. The signature of a change in the structural relaxation of water from fragile to strong is also found by examining the behaviour of the excess entropy at decreasing temperature.

  5. Sodium chloride crystallization from drying drops of albumin-salt solutions with different albumin concentrations

    NASA Astrophysics Data System (ADS)

    Yakhno, T. A.

    2015-11-01

    The salt nature of crystalline structures resulting from drying albumin-salt solutions with a low (<1 wt %) and high (7 and 9 wt %) concentration of albumin and a NaCl concentration kept at a physiological level (0.9 wt %) is experimentally substantiated. Such a conclusion is drawn from the dynamics of phase transitions, morphological studies, and differences between the physicochemical properties of albumin and salt. Obtained data give a deeper insight into the albumin and salt distributions in drying liquids.

  6. Geotechnical factors and guidelines for storage of compressed air in solution-mined salt cavities

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Thoms, R.L.

    1982-05-01

    The state of knowledge about utilization of solution-mined salt cavities for CAES including laboratory experiments, numerical modeling, field characterization, solution mining experience, and operating parameters is outlined in this report. Topics evaluated in recent studies include: cavern geometry and size; long-term creep and creep rupture of rock salt; effects of pressure and temperature loading rates; low frequency fatigue; progressive deterioration of salt fabric with possible air penetration; cavern monitoring methods; and salt properties at nonambient conditions. Currently, the only CAES operational facility in the world is located at Huntorf, West Germany. This CAES facility uses two solution-mined salt caverns for air storage and has been operating successfully for more than 2 years. Stability criteria for solution-mined salt caverns from the Huntorf facility and recent field and laboratory studies are included in this report.

  7. Novel Superdielectric Materials: Aqueous Salt Solution Saturated Fabric

    PubMed Central

    Phillips, Jonathan

    2016-01-01

    The dielectric constants of nylon fabrics saturated with aqueous NaCl solutions, Fabric-Superdielectric Materials (F-SDM), were measured to be >105 even at the shortest discharge times (>0.001 s) for which reliable data could be obtained using the constant current method, thus demonstrating the existence of a third class of SDM. Hence, the present results support the general theoretical SDM hypothesis, which is also supported by earlier experimental work with powder and anodized foil matrices: Any material composed of liquid containing dissolved, mobile ions, confined in an electrically insulating matrix, will have a very high dielectric constant. Five capacitors, each composed of a different number of layers of salt solution saturated nylon fabric, were studied, using a galvanostat operated in constant current mode. Capacitance, dielectric constant, energy density and power density as a function of discharge time, for discharge times from ~100 s to nearly 0.001 s were recorded. The roll-off rate of the first three parameters was found to be nearly identical for all five capacitors tested. The power density increased in all cases with decreasing discharge time, but again the observed frequency response was nearly identical for all five capacitors. Operational limitations found for F-SDM are the same as those for other aqueous solution SDM, particularly a low maximum operating voltage (~2.3 V), and dielectric “constants” that are a function of voltage, decreasing for voltages higher than ~0.8 V. Extrapolations of the present data set suggest F-SDM could be the key to inexpensive, high energy density (>75 J/cm3) capacitors. PMID:28774037

  8. Complex electronic waste treatment - An effective process to selectively recover copper with solutions containing different ammonium salts.

    PubMed

    Sun, Z H I; Xiao, Y; Sietsma, J; Agterhuis, H; Yang, Y

    2016-11-01

    Recovery of valuable metals from electronic waste has been highlighted by the EU directives. The difficulties for recycling are induced by the high complexity of such waste. In this research, copper could be selectively recovered using an ammonia-based process, from industrially processed information and communication technology (ICT) waste with high complexity. A detailed understanding on the role of ammonium salt was focused during both stages of leaching copper into a solution and the subsequent step for copper recovery from the solution. By comparing the reactivity of the leaching solution with different ammonium salts, their physiochemical behaviour as well as the leaching efficiency could be identified. The copper recovery rate could reach 95% with ammonium carbonate as the leaching salt. In the stage of copper recovery from the solution, electrodeposition was introduced without an additional solvent extraction step and the electrochemical behaviour of the solution was figured out. With a careful control of the electrodeposition conditions, the current efficiency could be improved to be 80-90% depending on the ammonia salts and high purity copper (99.9wt.%). This research provides basis for improving the recyclability and efficiency of copper recovery from such electronic waste and the whole process design for copper recycling. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Glyme-lithium salt equimolar molten mixtures: concentrated solutions or solvate ionic liquids?

    PubMed

    Ueno, Kazuhide; Yoshida, Kazuki; Tsuchiya, Mizuho; Tachikawa, Naoki; Dokko, Kaoru; Watanabe, Masayoshi

    2012-09-13

    To demonstrate a new family of ionic liquids (ILs), i.e., "solvate" ionic liquids, the properties (thermal, transport, and electrochemical properties, Lewis basicity, and ionicity) of equimolar molten mixtures of glymes (triglyme (G3) and tetraglyme (G4)) and nine different lithium salts (LiX) were investigated. By exploring the anion-dependent properties and comparing them with the reported data on common aprotic ILs, two different classes of liquid regimes, i.e., ordinary concentrated solutions and "solvate" ILs, were found in the glyme-Li salt equimolar mixtures ([Li(glyme)]X) depending on the anionic structures. The class a given [Li(glyme)]X belonged to was governed by competitive interactions between the glymes and Li cations and between the counteranions (X) and Li cations. [Li(glyme)]X with weakly Lewis basic anions can form long-lived [Li(glyme)](+) complex cations. Thus, they behaved as typical ionic liquids. The lithium "solvate" ILs based on [Li(glyme)]X have many desirable properties for lithium-conducting electrolytes, including high ionicity, a high lithium transference number, high Li cation concentration, and high oxidative stability, in addition to the common properties of ionic liquids. The concept of "solvate" ionic liquids can be utilized in an unlimited number of combinations of other metal salts and ligands, and will thus open a new field of research on ionic liquids.

  10. Distribution coefficients of vitamin B2 in hydrophilic organic solvent-aqueous salt solution systems

    NASA Astrophysics Data System (ADS)

    Korenman, Ya. I.; Mokshina, N. Ya.; Zykov, A. V.

    2010-03-01

    Distribution coefficients of vitamin B2 in hydrophilic solvent ( n-butanol, isopropanol, acetone, ethyl acetate, and their mixtures)-aqueous salt (potassium chloride, sodium fluoride, and ammonium sulfate salting-out agents) solution systems were calculated. The synergic effect and optimum proportions of components in the solvent mixture for efficient extraction of vitamin B2 from aqueous solutions were established.

  11. Record of the accumulation of sediment and trace metals in a Connecticut salt marsh

    SciTech Connect

    McCaffrey, R.J.; Thomson, J.

    1980-12-01

    The possibility that a useful, historical record of deposition might be found in a salt marsh is investigated by considering a record of the accumulation of sediment and trace metals in a Connecticut salt marsh. Evidence of salt-marsh deposition dominated by riverine runoff is presented.

  12. SEQUESTERING AGENTS FOR METAL IMMOBILIZATION APPLICATION TO THE DEVELOPMENT OF ACTIVE CAPS IN FRESH AND SALT WATER SEDIMENTS

    SciTech Connect

    Knox, A; Michael Paller, M

    2006-11-17

    This research evaluated the removal of inorganic contaminants by a variety of amendments and mixtures of amendments in fresh and salt water. A series of removal and retention batch experiments was conducted to identify the best treatment for metal removal. Metal removal by the amendments was evaluated by calculating the partition coefficient and percent removal. Retention of metals by the amendments was evaluated in retention (desorption) studies in which residue from the removal studies was extracted with 1 M MgCl{sub 2} solution. The results indicated that phosphate amendments, some organoclays (e.g., OCB-750), and the biopolymer, chitosan, are very effective in removal and retention of metals in both fresh and salt water. These amendments are being evaluated further as components in the development of active caps for sediment remediation.

  13. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    SciTech Connect

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  14. Density functional theories of surface interactions in salt solutions.

    PubMed

    Forsman, Jan

    2009-02-14

    Most current density functional theories rely upon the presence of hard cores, also between ions of like charge. These hard cores should in principle reflect exchange repulsion. However, by the way in which these theories are formulated, the hard cores effectively determine the range of ion-ion correlations. This is because the mutual repulsion between like-charged ions is truncated below the corresponding hard sphere diameter. In most relevant applications, at least those related to ion correlations and surface forces in colloidal dispersions, exchange repulsion between like-charged ions is unimportant. This can easily be demonstrated by simulations. Unfortunately, the hard cores can in practice serve as fitting parameters in calculations with traditional density functional theory. In this work, we present alternative density functional theories to describe aqueous salt solutions. In these approaches, an approximation of the relevant "Coulomb hole" that results from correlations between like-charged ions is calculated for the system under study. Hence, our theories are completely free from fitting parameters, and the results are appropriately insensitive to the exchange repulsion acting between ions of like charge. The theories are evaluated by comparing predictions with simulation data, with an emphasis on ion correlations and surface interactions.

  15. Buffer Loading for Counteracting Metal Salt-Induced Signal Suppression in Electrospray Ionization

    PubMed Central

    Iavarone, Anthony T.; Udekwu, Osita A.; Williams, Evan R.

    2005-01-01

    The decrease in the sensitivity of electrospray ionization mass spectrometry caused by the presence of metal salts, such as sodium chloride, in the sample matrix is well known and is particularly problematic for biological samples. We report here that addition of high levels of ammonium acetate can improve analyte signal in aqueous electrospray solutions and counteracts the signal suppression caused by sodium chloride. A ~3-fold improvement in S/N is obtained by adding 8 M ammonium acetate to aqueous solutions of cytochrome c without added sodium chloride. No organic solvents or acids are added into the electrospray solutions. The signal-to-noise ratios of cytochrome c and ubiquitin (10−5 M) ions formed from aqueous solutions containing 2.0 × 10−2 M sodium chloride are improved by factors of ~7 and 11, respectively, by adding 7 M ammonium acetate to the solution. We propose that this effect is a result of the precipitation of Na+ and Cl− from solution within the evaporating electrospray droplets prior to the formation of gas-phase protein ions. This method is potentially useful for improving the abundance of protein ions formed from solutions in which the molecules have a nativelike conformation and is particularly advantageous for such solutions that have high levels of sodium. PMID:15253628

  16. Salting-out effects in aqueous ionic liquid solutions: cloud-point temperature shifts.

    PubMed

    Trindade, Joana R; Visak, Zoran P; Blesic, Marijana; Marrucho, Isabel M; Coutinho, João A P; Lopes, José N Canongia; Rebelo, Luis P N

    2007-05-10

    The effects of the addition of three inorganic salts, namely, NaCl, Na(2)SO(4), and Na(3)PO(4), on the liquid-liquid (L-L) phase diagram of aqueous solutions containing the model ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF(4)], were investigated. All three inorganic salts trigger salting-out effects, leading to significant upward shifts of the L-L demixing temperatures of the systems. The magnitude of the shifts depends on both the water-structuring nature of the salt and its concentration; that is, the effects are correlated with the ionic strength of the solution and the Gibbs free energy of hydration of the inorganic salt. The pH effect and the occurrence of salt precipitation in concentrated solutions are also discussed.

  17. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... Significant New Uses for Specific Chemical Substances § 721.10097 Disubstituted benzenesulfonic acid, alkali...

  18. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... Significant New Uses for Specific Chemical Substances § 721.10097 Disubstituted benzenesulfonic acid, alkali...

  19. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fluorinated carboxylic acid alkali...

  20. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... Significant New Uses for Specific Chemical Substances § 721.10097 Disubstituted benzenesulfonic acid, alkali...

  1. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Disubstituted benzoic acid, alkali...

  2. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Fluorinated carboxylic acid alkali...

  3. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... Significant New Uses for Specific Chemical Substances § 721.10097 Disubstituted benzenesulfonic acid, alkali...

  4. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Fluorinated carboxylic acid alkali...

  5. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Disubstituted benzoic acid, alkali...

  6. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Fluorinated carboxylic acid alkali...

  7. 40 CFR 721.4663 - Fluorinated carboxylic acid alkali metal salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Specific Chemical Substances § 721.4663 Fluorinated carboxylic acid alkali metal salts. (a) Chemical... fluorinated carboxylic acid alkali metal salts (PMNs P-95-979/980/981) are subject to reporting under this... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fluorinated carboxylic acid alkali...

  8. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P... Significant New Uses for Specific Chemical Substances § 721.10097 Disubstituted benzenesulfonic acid, alkali...

  9. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Disubstituted benzoic acid, alkali...

  10. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Disubstituted benzoic acid, alkali...

  11. 40 CFR 721.10098 - Disubstituted benzoic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Uses for Specific Chemical Substances § 721.10098 Disubstituted benzoic acid, alkali metal salt... identified generically as disubstituted benzoic acid, alkali metal salt (PMN P-03-643) is subject to... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Disubstituted benzoic acid, alkali...

  12. 40 CFR 721.4680 - Metal salts of complex inorganic oxyacids (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Metal salts of complex inorganic... AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.4680 Metal salts of complex inorganic...

  13. Alkali Metal Halide Salts as Interface Additives to Fabricate Hysteresis-Free Hybrid Perovskite-Based Photovoltaic Devices.

    PubMed

    Wang, Lili; Moghe, Dhanashree; Hafezian, Soroush; Chen, Pei; Young, Margaret; Elinski, Mark; Martinu, Ludvik; Kéna-Cohen, Stéphane; Lunt, Richard R

    2016-09-07

    A new method was developed for doping and fabricating hysteresis-free hybrid perovskite-based photovoltaic devices by using alkali metal halide salts as interface layer additives. Such salt layers introduced at the perovskite interface can provide excessive halide ions to fill vacancies formed during the deposition and annealing process. A range of solution-processed halide salts were investigated. The highest performance of methylammonium lead mixed-halide perovskite device was achieved with a NaI interlayer and showed a power conversion efficiency of 12.6% and a hysteresis of less than 2%. This represents a 90% improvement compared to control devices without this salt layer. Through depth-resolved mass spectrometry, optical modeling, and photoluminescence spectroscopy, this enhancement is attributed to the reduction of iodide vacancies, passivation of grain boundaries, and improved hole extraction. Our approach ultimately provides an alternative and facile route to high-performance and hysteresis-free perovskite solar cells.

  14. Effect of monovalent-divalent cation exchange on the swelling of polyacrylate hydrogels in physiological salt solutions.

    PubMed

    Horkay, F; Tasaki, I; Basser, P J

    2001-01-01

    The volume transition induced by monovalent-divalent cation exchange of fully neutralized polyacrylate hydrogels was investigated in aqueous NaCl solutions. The variation of the osmotic swelling pressure, shear modulus, and mixing pressure was measured when Na(+) ions were substituted by divalent or trivalent cations. Alkali metal salts move freely throughout the entirely network, and alkaline earth metal salts (CaCl(2), SrCl(2)) promote aggregation of polyacrylate chains, but these aggregates are relatively weak. Transition metal salts (CoCl(2), NiCl(2)) form stronger interchain associates. Rare earth cations (La(3+) and Ce(3+)) bind practically irreversibly to the polymer. Experimental data indicate that transition metal cations modify both the elastic and mixing components of the free energy, while alkaline earth metal cations affect primarily the mixing term. The behavior of freely swollen gels was compared with similar gels subjected to uniaxial compression. In uniaxially compressed gels, volume transition occurs at lower cation concentrations than in the corresponding undeformed gels. The shift of the transition point increases with the deformation ratio and is larger for Co(2+) than for Ca(2+).

  15. Partitioning of Alkali Metal Salts and Boric Acid from Aqueous Phase into the Polyamide Active Layers of Reverse Osmosis Membranes.

    PubMed

    Wang, Jingbo; Kingsbury, Ryan S; Perry, Lamar A; Coronell, Orlando

    2017-02-21

    The partition coefficient of solutes into the polyamide active layer of reverse osmosis (RO) membranes is one of the three membrane properties (together with solute diffusion coefficient and active layer thickness) that determine solute permeation. However, no well-established method exists to measure solute partition coefficients into polyamide active layers. Further, the few studies that measured partition coefficients for inorganic salts report values significantly higher than one (∼3-8), which is contrary to expectations from Donnan theory and the observed high rejection of salts. As such, we developed a benchtop method to determine solute partition coefficients into the polyamide active layers of RO membranes. The method uses a quartz crystal microbalance (QCM) to measure the change in the mass of the active layer caused by the uptake of the partitioned solutes. The method was evaluated using several inorganic salts (alkali metal salts of chloride) and a weak acid of common concern in water desalination (boric acid). All partition coefficients were found to be lower than 1, in general agreement with expectations from Donnan theory. Results reported in this study advance the fundamental understanding of contaminant transport through RO membranes, and can be used in future studies to decouple the contributions of contaminant partitioning and diffusion to contaminant permeation.

  16. ISOPAR L Release Rates from Saltstone Using Simulated Salt Solutions

    SciTech Connect

    Bronikowski, M

    2006-02-06

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Deactivated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour; the Isopar{reg_sign} L in the vault headspace is well mixed; and each pour displaces an equivalent volume of headspace, the allowable concentration of Isopar{reg_sign} L in the DSS sent to SPF has been calculated at approximately 4 ppm. The amount allowed would be higher, if the release from grout were significantly less. The Savannah River National Laboratory was tasked with determining the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 mg/L to 200 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the Isopar{reg_sign} L release data can be treated as a percentage of initial concentration in the concentration range studied. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release is larger than at lower temperatures. In one test at 95 C essentially all of the Isopar{reg_sign} L was released in three months. Initial curing temperature was found to be very important as slight variations during the first few days affected the final Isopar{reg_sign} L amount released. Short scoping tests at 95 C with solvent containing all components (Isopar

  17. ISOPAR L RELEASE RATES FROM SALTSTONE USING SIMULATED SALT SOLUTIONS

    SciTech Connect

    Zamecnik, J; Michael Bronikowski, M; Alex Cozzi, A; Russell Eibling, R; Charles Nash, C

    2008-07-31

    The Modular Caustic-Side Solvent Extraction (CSSX) Unit (MCU) and the Salt Waste Processing Facility (SWPF) will produce a Decontaminated Salt Solution (DSS) that will go to the Saltstone Production Facility (SPF). Recent information indicates that solvent entrainment in the DSS is larger than expected. The main concern is with Isopar{reg_sign} L, the diluent in the solvent mixture, and its flammability in the saltstone vault. If it is assumed that all the Isopar{reg_sign} L is released instantaneously into the vault from the curing grout before each subsequent pour, the Isopar{reg_sign} L in the vault headspace is well mixed, and each pour displaces an equivalent volume of headspace, the maximum concentration of Isopar{reg_sign} L in the DSS to assure 25% of the lower flammable limit is not exceeded has been determined to be about 4 ppm. The amount allowed would be higher if the release from grout were significantly less. The Savannah River National Laboratory was tasked with determining the release of Isopar{reg_sign} L from saltstone prepared with a simulated DSS with Isopar{reg_sign} L concentrations ranging from 50 to 200 mg/L in the salt fraction and with test temperatures ranging from ambient to 95 C. The results from the curing of the saltstone showed that the amount of Isopar{reg_sign} L released versus time can be treated as a percentage of initial amount present; there was no statistically significant dependence of the release rate on the initial concentration. The majority of the Isopar{reg_sign} L that was released over the test duration was released in the first few days. The release of Isopar{reg_sign} L begins immediately and the rate of release decreases over time. At higher temperatures the immediate release rate is larger than at lower temperatures. Initial curing temperature was found to be very important as slight variations during the first few hours or days had a significant effect on the amount of Isopar{reg_sign} L released. Short scoping

  18. Fabrication of Metal Nanoparticles from Fungi and Metal Salts: Scope and Application

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-02-01

    Fungi secrete enzymes and proteins as reducing agents which can be used for the synthesis of metal nanoparticles from metal salts. Large-scale production of nanoparticles from diverse fungal strains has great potential since they can be grown even in vitro. In recent years, various approaches have been made to maximize the yield of nanoparticles of varying shape, size, and stability. They have been characterized by thermogravimetric analysis, X-ray diffractometry, SEM/TEM, zeta potential measurements, UV-vis, and Fourier transform infrared (FTIR) spectroscopy. In this review, we focus on the biogenic synthesis of metal nanoparticles by fungi to explore the chemistry of their formation extracellularly and intracellularly. Emphasis has been given to the potential of metal nanoparticles as an antimicrobial agent to inhibit the growth of pathogenic fungi, and on other potential applications.

  19. Metal intracellular partitioning as a detoxification mechanism for mummichogs (Fundulus heteroclitus) living in metal-polluted salt marshes.

    PubMed

    Goto, Daisuke; Wallace, William G

    2010-04-01

    Intracellular partitioning of trace metals is critical to metal detoxification in aquatic organisms. In the present study, we assessed metal (Cd, Cu, Pb, and Zn) handling capacities of mummichogs (Fundulus heteroclitus) in metal-polluted salt marshes in New York, USA by examining metal intracellular partitioning. Despite the lack of differences in the whole body burdens, partitioning patterns of metals in intracellular components (heat-stable proteins, heat-denaturable proteins, organelles, and metal-rich granules) revealed clear differential metal handling capacities among the populations of mummichogs. In general, mummichogs living in metal-polluted sites stored a large amount of metals in detoxifying cellular components, particularly metal-rich granules (MRG). Moreover, only metals associated with MRG were consistently correlated with variations in the whole body burdens. These findings suggest that metal detoxification through intracellular partitioning, particularly the sequestration to MRG, may have important implications for metal tolerance of mummichogs living in chronically metal-polluted habitats.

  20. A Study of Novel Hexavalent Phosphazene Salts as Draw Solutes in Forward Osmosis

    SciTech Connect

    Mark L. Stone; Aaron D. Wilson; Mason K. Harrup; Frederick F. Stewart

    2013-03-01

    Two novel multi-valent salts based on phosphazene chemistry have been synthesized and characterized as forward osmosis (FO) draw solutes. Commercially obtained hexachlorocyclotriphosphazene was reacted with the sodium salt of 4-ethylhydroxybenzoate to yield hexa(4-ethylcarboxylatophenoxy)phosphazene. Hydrolysis, followed by and neutralization with NaOH or LiOH, of the resulting acidic moieties yielded water soluble sodium and lithium phosphazene salts, respectively. Degrees of dissociation were determined through osmometry over the range of 0.05-0.5 m, giving degrees of 3.08-4.95 per mole, suggesting a high osmotic potential. The Li salt was found to be more ionized in solution than the sodium salt, and this was reflected in FO experiments where the Li salt gave higher initial fluxes (~ 7 L/m2h) as compared to the sodium salt (~6 L/m2h) at identical 0.07 m draw solution concentrations at 30 °C. Longer term experiments revealed no detectable degradation of the salts; however some hydrolysis of the cellulose acetate membrane was observed, presumably due to the pH of the phosphazene salt draw solution (pH = ~8).

  1. Inhibition of Aminoglycoside Acetyltransferase Resistance Enzymes by Metal Salts

    PubMed Central

    Li, Yijia; Green, Keith D.; Johnson, Brooke R.

    2015-01-01

    Aminoglycosides (AGs) are clinically relevant antibiotics used to treat infections caused by both Gram-negative and Gram-positive bacteria, as well as Mycobacteria. As with all current antibacterial agents, resistance to AGs is an increasing problem. The most common mechanism of resistance to AGs is the presence of AG-modifying enzymes (AMEs) in bacterial cells, with AG acetyltransferases (AACs) being the most prevalent. Recently, it was discovered that Zn2+ metal ions displayed an inhibitory effect on the resistance enzyme AAC(6′)-Ib in Acinetobacter baumannii and Escherichia coli. In this study, we explore a wide array of metal salts (Mg2+, Cr3+, Cr6+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, and Au3+ with different counter ions) and their inhibitory effect on a large repertoire of AACs [AAC(2′)-Ic, AAC(3)-Ia, AAC(3)-Ib, AAC(3)-IV, AAC(6′)-Ib′, AAC(6′)-Ie, AAC(6′)-IId, and Eis]. In addition, we determine the MIC values for amikacin and tobramycin in combination with a zinc pyrithione complex in clinical isolates of various bacterial strains (two strains of A. baumannii, three of Enterobacter cloacae, and four of Klebsiella pneumoniae) and one representative of each species purchased from the American Type Culture Collection. PMID:25941215

  2. Separation of metal ions in nitrate solution by ultrasonic atomization

    NASA Astrophysics Data System (ADS)

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-01

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  3. Separation of metal ions in nitrate solution by ultrasonic atomization.

    PubMed

    Sato, Masanori; Ikeno, Masayuki; Fujii, Toshitaka

    2004-11-15

    In the ultrasonic atomization of metal nitrate solutions, the molar ratio of metal ions is changed between solution and mist. Small molar metal ions tend to be transferred to mist by ultrasonic wave acceleration, while large molar ions tend to remain in solution. As a result, metal ions can be separated by ultrasonic atomization. We show experimental data and propose a conceptual mechanism for the ultrasonic separation of metal ions.

  4. Concentration and precipitation of NaCl and KCl from salt cake leach solutions by electrodialysis

    SciTech Connect

    Sreenivasarao, K; Patsiogiannis, F.; Hryn, J.N.

    1997-02-09

    Electrodialysis was investigated for cost-effective recovery of salt from salt cake leach solutions. (Salt cake is a waste stream generated by the aluminum industry during treatment of aluminum drosses and scrap.) We used a pilot-scale electrodialysis stack of 5 membrane pairs, each with an effective area of 0.02 m{sup 2}. The diluate stream contained synthetic NaCl, KCl,mixtures of NaCl and KCl, and actual salt cake leach solutions (mainly NaCl and KCl, with small amounts of MgCl{sub 2}). We concentrated and precipitated NaCl and KCl salts from the concentrate steam when the initial diluate stream concentration was 21.5 to 28.8 wt% NaCl and KCl. We found that water transferring through the membranes was a significant factor in overall efficiency of salt recovery by electrodialysis.

  5. Photochemical aerobic detoxification of aqueous phenol and chlorophenol solutions promoted by iron salts and iron, vanadium, and copper oxides

    SciTech Connect

    Nizova, G.V.; Bochkova, M.M.; Kozlova, N.B.; Shul`pin, G.B.

    1995-09-10

    Phenol, 2,4,5-trichlorophenol, and pentachlorophenol in air in the presence of soluble iron salts or insoluble V{sub 2}O{sub 5}, Fe{sub 2}O{sub 3}, and CuO decompose in aqueous solution when irradiated by a luminescent lamp. The degree and the rate of decomposition are strongly influenced by the nature of the substrate and metal-containing promoter. As a result of decomposition, toxicity of solutions containing 2,4,5-trichlorophenol with respect to two types of living organisms - Protozoa (Tetrahymena pyriformis) and bacteria (Beneckea harveyi) - decreases significantly.

  6. Salt weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures

    NASA Astrophysics Data System (ADS)

    Aly, Nevin; Gomez-Heras, Miguel; Hamed, Ayman; Alvarez de Buergo, Monica

    2013-04-01

    weathering in Egyptian limestone after laboratory simulations with continuous flow of salt solutions at different temperatures Nevin Aly Mohamed (1), Miguel Gomez - Heras(2), Ayman Hamed Ahmed (1), and Monica Alvarez de Buergo(2). (1) Faculty of Pet. & Min. Engineering- Suez Canal University, Suez, Egypt, (2) Instituto de Geociencias (CSIC-UCM) Madrid. Spain. Limestone is one of the most frequent building stones in Egypt and is used since the time of ancient Egyptians and salt weathering is one of the main threats to its conservation. Most of the limestone used in historical monuments in Cairo is a biomicrite extracted from the Mid-Eocene Mokattam Group. During this work, cylindrical samples (2.4 cm diameter and approx. 4.8 cm length) were subjected, in a purpose-made simulation chamber, to simulated laboratory weathering tests with fixed salt concentration (10% weight NaCl solution), at different temperatures, which were kept constant throughout each test (10, 20, 30, 40 oC). During each test, salt solutions flowed continuously imbibing samples by capilarity. Humidity within the simulation chamber was reduced using silica gel to keep it low and constant to increase evaporation rate. Temperature, humidity inside the simulation chamber and samples weight were digitally monitored during each test. Results show the advantages of the proposed experimental methodology using a continuous flow of salt solutions and shed light on the effect of temperature on the dynamics of salt crystallization on and within samples. Research funded by mission sector of high education ministry, Egypt and Geomateriales S2009/MAT-1629.

  7. Testing of stripping columns for the removal of benzene from aqueous radioactive salt solution

    SciTech Connect

    Georgeton, G.K.; Taylor, G.A.; Gaughan, T.P.

    1995-06-27

    Radioactive high level wastes (HLW) generated from production of special nuclear materials at the Savannah River Site (SRS) are held in interim storage in 51 underground, million gallon tanks. Radioactive cesium ({sup 137}Cs) is segregated by evaporation of aqueous waste solution for interim storage in a salt matrix comprised of Na and K salts or in concentrated salt solution. The saltcake will be dissolved and {sup 137}Cs will be separated from the nonradioactive salts in solution in the In-Tank Precipitation (ITP) Process. The cesium will be combined with other radioactive species and glass formers to be melted and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). The salt solution remaining after decontamination in the ITP process will be incorporated into grout for disposal at the site`s Saltstone facility. In the ITP facility, sodium tetraphenylborate (STPB) will be added to precipitate the cesium. Potassium in the waste solution also reacts with STPB and precipitates. Due to radiolytic and chemical degradation of the tetraphenylborate (TPB) precipitate, benzene is generated. The benzene dissolves into the decontaminated salt solution (DSS) and into water (WW) used to {open_quotes}wash{close_quotes} the precipitate to lower the soluble salt content of the slurry. Safety and processing requirements for disposal of the DSS and for temporary storage of the WW dictate that the benzene concentration be reduced.

  8. Conformations of gelatin in trivalent chromium salt solutions: Viscosity and dynamic light scattering study

    NASA Astrophysics Data System (ADS)

    Qiao, Congde; Zhang, Jianlong; Kong, Aiqun

    2017-02-01

    An investigation of the influences of pH, salt type, and salt concentration on the conformations of gelatin molecules in trivalent chromium salt solutions was performed by viscosity and dynamic light scattering (DLS) techniques. It was found that the viscosity behaviors as polyelectrolytes or polyampholytes depended on the charge distribution on the gelatin chains, which can be tuned by the value of pH of the gelatin solution. The intrinsic viscosity of gelatin in basic chromium sulfate aqueous solution at pH = 2.0 first decreased and then increased with increasing Cr(OH)SO4 concentration, while a monotonic decrease of the intrinsic viscosity of gelatin was observed in CrCl3 solution. However, the intrinsic viscosity of gelatin at pH = 5.0 was found to be increased first and then decreased with an increase in salt concentration in Cr(OH)SO4 solution, as well as in CrCl3 solution. We suggested that the observed viscosity behavior of gelatin in trivalent chromium salt solutions was attributed to the comprehensive effects of shielding, overcharging, and crosslinking (complexation) caused by the introduction of the different counterions. In addition, the average hydrodynamic radius ( R h ) of gelatin molecules in various salt solutions was determined by DLS. It was found that the change trend of R h with salt concentration was the same as the change of intrinsic viscosity. Based on the results of the viscosity and DLS, a possible mechanism for the conformational transition of gelatin chains with external conditions including pH, salt concentration, and salt type is proposed.

  9. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries.

    PubMed

    Doe, Robert E; Han, Ruoban; Hwang, Jaehee; Gmitter, Andrew J; Shterenberg, Ivgeni; Yoo, Hyun Deog; Pour, Nir; Aurbach, Doron

    2014-01-07

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  10. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries

    SciTech Connect

    Doe, RE; Han, R; Hwang, J; Gmitter, AJ; Shterenberg, I; Yoo, HD; Pour, N; Aurbach, D

    2014-01-01

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  11. Adsorption of sulfur dioxide on natural clinoptilolite chemically modified with salt solutions.

    PubMed

    Ivanova, Emilia; Koumanova, Bogdana

    2009-08-15

    Various ion exchange forms of preliminary partly decationised zeolite (hydrogen forms) were obtained by indirect modification with metal salt solutions, as well as by direct treatment of natural clinoptilolite taken from Bulgarian deposits. Direct modification leads to a higher extent of samples enrichment with corresponding ion. Independently of the conditions, the alkaline and alkaline earth metal ions (especially sodium and calcium) were inserted at a greater extent, while the transitional metals-at a comparatively lower extent. The cationic forms of clinoptilolite were used for adsorption and desorption experiments. The breakthrough adsorption curves and the concentration curves at temperature-programmed desorption were obtained and compared. The breakthrough and saturation times, the adsorption capacity, the distribution coefficient, the adsorbed SO(2), the portions desorbed as SO(2) and SO(3), respectively, as well as the not desorbed portion of SO(2), were determined using these curves. It was established that a definite quantity of undesorbed SO(2) has remained in the zeolite forms modified with transitional metal cations. This statement was proved not only by the comparison between the adsorbed and desorbed quantities, but also by three-cycle adsorption-desorption experiments for the Cu(2+)-form. The results demonstrate a decrease in the capacity for each following cycle in an extent similar to the undesorbed SO(2) quantity. It was not observed a visible difference in the values of the distribution coefficients for adsorption on identical cation forms, directly or indirectly obtained. However, the breakthrough time of the samples obtained by ion exchange of the hydrogen form was longer in all cases. Definite quantities of desorbed SO(3) were registered for all forms, except for the natural clinoptilolite and the samples enriched with alkaline and alkaline earth metal cations.

  12. Results for the Fourth Quarter Calendar Year 2015 Tank 50H Salt Solution Sample

    SciTech Connect

    Crawford, C.

    2016-01-11

    In this memorandum, the chemical and radionuclide contaminant results from the Fourth Quarter Calendar Year 2015 (CY15) sample of Tank 50H salt solution are presented in tabulated form. The Fourth Quarter CY15 Tank 50H samples were obtained on October 29, 2015 and received at Savannah River National Laboratory (SRNL) on October 30, 2015. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Salt Feed Tank in the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Fourth Quarter Calendar Year 2015 (CY15) sampling of Tank 50H were requested by SRR personnel and details of the testing are presented in the SRNL Task Technical and Quality Assurance Plan.

  13. Location of microseismic swarms induced by salt solution mining

    NASA Astrophysics Data System (ADS)

    Kinscher, J.; Bernard, P.; Contrucci, I.; Mangeney, A.; Piguet, J. P.; Bigarre, P.

    2015-01-01

    Ground failures, caving processes and collapses of large natural or man-made underground cavities can produce significant socio-economic damages and represent a serious risk envisaged by the mine managements and municipalities. In order to improve our understanding of the mechanisms governing such a geohazard and to test the potential of geophysical methods to prevent them, the development and collapse of a salt solution mining cavity was monitored in the Lorraine basin in northeastern France. During the experiment, a huge microseismic data set (˜50 000 event files) was recorded by a local microseismic network. 80 per cent of the data comprised unusual swarming sequences with complex clusters of superimposed microseismic events which could not be processed through standard automatic detection and location routines. Here, we present two probabilistic methods which provide a powerful tool to assess the spatio-temporal characteristics of these swarming sequences in an automatic manner. Both methods take advantage of strong attenuation effects and significantly polarized P-wave energies at higher frequencies (>100 Hz). The first location approach uses simple signal amplitude estimates for different frequency bands, and an attenuation model to constrain the hypocentre locations. The second approach was designed to identify significantly polarized P-wave energies and the associated polarization angles which provide very valuable information on the hypocentre location. Both methods are applied to a microseismic data set recorded during an important step of the development of the cavity, that is, before its collapse. From our results, systematic spatio-temporal epicentre migration trends are observed in the order of seconds to minutes and several tens of meters which are partially associated with cyclic behaviours. In addition, from spatio-temporal distribution of epicentre clusters we observed similar epicentre migration in the order of hours and days. All together, we

  14. The amplification of polymerized diaminobenzidine with physical developers: sensitizing effects of transition metal salts and sulphide.

    PubMed

    von Ruhland, C J; Jasani, B

    2010-05-01

    Amplification of metal-complexed polymerized diaminobenzidine by two light-insensitive physical developers was systematically examined in a dot blot model system following either polymerizing diaminobenzidine in the presence of transition metal salts or applying the metal salts post-diaminobenzidine polymerization. The effect of sodium sulphide treatment on subsequent amplification was also investigated. Those metal-diaminobenzidine complexes that facilitated the most powerful amplification were subsequently tested in an immunohistochemical setting. The most dramatic amplification of polymerized diaminobenzidine was observed following its post-polymerization treatment with salts of platinum alone, or gold or vanadium with subsequent sulphide treatment, and allowed previously invisible quantities of polymerized diaminobenzidine to be clearly seen. Three other transition metal salts also improved the amplification of polymerized diaminobenzidine but to a lesser degree, namely nickel alone, and silver or rhodium with subsequent sulphide treatment. Sensitivity was comparable with the colloidal gold-silver amplification system.

  15. Students' Misconceptions in Electrochemistry: Current Flow in Electrolyte Solutions and the Salt Bridge.

    ERIC Educational Resources Information Center

    Sanger, Michael J.; Greenbowe, Thomas J.

    1997-01-01

    Examines students' misconceptions and proposed mechanisms related to current flow in electrolyte solutions and the salt bridge. Confirms reported misconceptions and identifies several new ones. Discusses probable sources of misconceptions and some methods for preventing them. Contains 27 references. (JRH)

  16. Numerical simulation of solute transport in southwestern Salt Lake Valley, Utah

    USGS Publications Warehouse

    Lambert, P.M.

    1996-01-01

    Contaminated ground water characterized by high concentrations of dissolved solids and dissolved sulfate, and in areas, by low pH and elevated concentrations of metals, is present near public-supply wells in the southwestern Salt Lake Valley. To provide State officials and water users with information concerning the potential movement of contaminated ground water to points of withdrawal in the area, an analysis of solute transport using computer models was done by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water  Rights, and local municipalities and water users.A three-dimensional solute-transport model was developed and couples with an existing ground-water flow model of Salt Lake Valley to simulate the movement of dissolved sulfate in ground water in southwestern Salt Lake Valley. Development and calibration of the transport model focused mainly on sulfate movement down-gradient from the Bingham Creek Reservoirs and the South Jordan evaporation ponds east of the mouth of Bingham Canyon. Estimates of transport parameters were adjusted during a calibration simulation representing conditions during 1965-93. After calibration, the transport model was used to simulate future sulfate movement for 1994-2043.Because of uncertainty in estimated transport-parameter values, three projection transport simulations incorporating a range of probable parameter values were done to evaluate future sulfate movement and changes in sulfate concentrations at selected public-supply wells. These projection simulations produced a possible range of computed transport rates and patterns. In general, the projection simulations indicated movement of the sulfate plume east of the Bingham Creek reservoir toward public-supply wells northeast of the reservoirs and then eastward toward the Jordan River. Ground water with high concentrations of sulfate east of the South Jordan evaporation ponds is simulated as moving west to east under the

  17. Materials and methods for stabilizing nanoparticles in salt solutions

    DOEpatents

    Robinson, David Bruce; Zuckermann, Ronald; Buffleben, George M.

    2013-06-11

    Sequence-specific polymers are proving to be a powerful approach to assembly and manipulation of matter on the nanometer scale. Ligands that are peptoids, or sequence-specific N-functional glycine oligomers, allow precise and flexible control over the arrangement of binding groups, steric spacers, charge, and other functionality. We have synthesized short peptoids that can prevent the aggregation of gold nanoparticles in high-salt environments including divalent salt, and allow co-adsorption of a single DNA molecule. This degree of precision and versatility is likely to prove essential in bottom-up assembly of nanostructures and in biomedical applications of nanomaterials.

  18. Effect of Salt Concentration on the Structure of Poly(Vinyl Alcohol) Cryogels Obtained from Aqueous Salt Solutions

    NASA Astrophysics Data System (ADS)

    Tretinnikov, O. N.; Sushko, N. I.; Zagorskaya, S. A.

    2015-03-01

    The degree of polymer crystallinity and water content on the surfaces and in the bulk of poly(vinyl alcohol) (PVA) cryogels prepared from aqueous salt solutions were determined as functions of KCl concentration using FTIR-ATR spectroscopy. It was found that the degree of PVA crystallinity increased with increasing KCl concentration and was much greater in the cryogel bulk than on its surfaces. Addition of salt at a concentration of 1.3 M increased the degree of polymer crystallinity on the cryogel surfaces by 1.6-2.3 times whereas the crystallinity in the bulk increased by 3.3-4 times. The cryogel water contents on the surfaces and in the bulk were approximately equal and were practically independent of the salt concentration.

  19. Pesticide Removal from Aqueous Solutions by Adding Salting Out Agents

    PubMed Central

    Moscoso, Fátima; Deive, Francisco J.; Esperança, José M. S. S.; Rodríguez, Ana

    2013-01-01

    Phase segregation in aqueous biphasic systems (ABS) composed of four hydrophilic ionic liquids (ILs): 1-butyl-3-methylimidazolium methylsulfate and 1-ethyl-3-methylimidazolium methylsulfate (CnC1im C1SO4, n = 2 and 4), tributylmethyl phosphonium methylsulfate (P4441 C1SO4) and methylpyridinium methylsulfate (C1Py C1SO4) and two high charge density potassium inorganic salts (K2CO3 and K2HPO4) were determined by the cloud point method at 298.15 K. The influence of the addition of the selected inorganic salts to aqueous mixtures of ILs was discussed in the light of the Hofmeister series and in terms of molar Gibbs free energy of hydration. The effect of the alkyl chain length of the cation on the methylsulfate-based ILs has been investigated. All the solubility data were satisfactorily correlated to several empirical equations. A pesticide (pentachlorophenol, PCP) extraction process based on the inorganic salt providing a greater salting out effect was tackled. The viability of the proposed process was analyzed in terms of partition coefficients and extraction efficiencies. PMID:24145747

  20. Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal-organic ionic molten salts.

    PubMed

    Chen, Fangfang; Forsyth, Maria

    2016-07-28

    Mixed salts of Ionic Liquids (ILs) and alkali metal salts, developed as electrolytes for lithium and sodium batteries, have shown a remarkable ability to facilitate high rate capability for lithium and sodium electrochemical cycling. It has been suggested that this may be due to a high alkali metal ion transference number at concentrations approaching 50 mol% Li(+) or Na(+), relative to lower concentrations. Computational investigations for two IL systems illustrate the formation of extended alkali-anion aggregates as the alkali metal ion concentration increases. This tends to favor the diffusion of alkali metal ions compared with other ionic species in electrolyte solutions; behavior that has recently been reported for Li(+) in a phosphonium ionic liquid, thus an increasing alkali transference number. The mechanism of alkali metal ion diffusion via this extended coordination environment present at high concentrations is explained and compared to the dynamics at lower concentrations. Heterogeneous alkali metal ion dynamics are also evident and, somewhat counter-intuitively, it appears that the faster ions are those that are generally found clustered with the anions. Furthermore these fast alkali metal ions appear to correlate with fastest ionic liquid solvent ions.

  1. IR spectroscopy of aqueous alkali halide solutions: Pure salt-solvated water spectra and hydration numbers

    NASA Astrophysics Data System (ADS)

    Max, Jean-Joseph; Chapados, Camille

    2001-08-01

    Extrapolation techniques were used to obtain pure salt-solvated water spectra from the attenuated total reflection infrared spectra (ATR-IR) of aqueous solutions of the nine alkali halide salts LiCl, NaCl, KCl, CsCl, NaBr, KBr, NaI, KI, and CsI and the alkaline-earth chloride salt MgCl2. These salts ionize completely in water. The ions by themselves do not absorb in the IR, but their interactions with water can be observed and analyzed. A pure salt-solvated water spectrum is easier to analyze than that of a combined solution of pure water and salt-solvated water. Although the salt-solvated water spectra examined have distinctive signatures, they can be classified in three categories: those similar to NaCl; those not similar to NaCl; and MgCl2, in a class by itself. Each of the pure salt-solvated water spectra differs from that of liquid water, though the number of bands is the same. From the Gaussian band fitting, we found that the positions of the bands were fairly constant, whereas their intensities differed. The salt hydration numbers were determined: for NaCl, KCl, NaBr, KBr, and CsI solutions it is 5; for KI and MgCL2 it is 4; for NaI it is 3.5; for CsCl it is 3; and for LiCl it is 2. From these results we found that each pair of ions (monoatomic ions) of the ten salt solutions studied are close bound and form a complex in a cluster organization with a fixed number of water molecules.

  2. Method of removal of heavy metal from molten salt in IFR fuel pyroprocessing

    DOEpatents

    Gay, E.C.

    1995-10-03

    An electrochemical method is described for separating heavy metal values from a radioactive molten salt including Li halide at temperatures of about 500 C. The method comprises positioning a solid Li--Cd alloy anode in the molten salt containing the heavy metal values, positioning a Cd-containing cathode or a solid cathode positioned above a catch crucible in the molten salt to recover the heavy metal values, establishing a voltage drop between the anode and the cathode to deposit material at the cathode to reduce the concentration of heavy metals in the salt, and controlling the deposition rate at the cathode by controlling the current between the anode and cathode. 3 figs.

  3. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  4. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOEpatents

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-06-23

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  5. Specific Ion Effects: Why the Properties of Lysozyme in Salt Solutions Follow a Hofmeister Series

    PubMed Central

    Boström, M.; Williams, D. R. M.; Ninham, B. W.

    2003-01-01

    Protein solubility in aqueous solutions depends in a complicated and not well understood way on pH, salt type, and salt concentration. Why for instance does the use of two different monovalent salts, potassium thiocyanate and potassium chloride, produce such different results? One important and previously neglected source of ion specificity is the ionic dispersion potential that acts between each ion and the protein. This attractive potential is found to be much stronger for SCN− than it is for Cl−. We present model calculations, performed within a modified ion-specific double-layer theory, that demonstrate the large effect of including these ionic dispersion potentials. The results are consistent with experiments performed on hen egg-white lysozymes and on neutral black lipid membranes. The calculated surface pH and net lysozyme charge depend strongly on the choice of anion. We demonstrate that the lysozyme net charge is larger, and the corresponding Debye length shorter, in a thiocyanate salt solution than in a chloride salt solution. Recent experiments have suggested that pKa values of histidines depend on salt concentration and on ionic species. We finally demonstrate that once ionic dispersion potentials are included in the theory these results can quantitatively be reinterpreted in terms of a highly specific surface pH (and a salt-independent pKa). PMID:12885620

  6. Method for removing metals from a cleaning solution

    DOEpatents

    Deacon, Lewis E.

    2002-01-01

    A method for removing accumulated metals from a cleaning solution is provided. After removal of the metals, the cleaning solution can be discharged or recycled. The process manipulates the pH levels of the solution as a means of precipitating solids. Preferably a dual phase separation at two different pH levels is utilized.

  7. Brazing method produces solid-solution bond between refractory metals

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Brazing two refractory metals by diffusion bonding minimizes distortion and avoids excessive grain growth in the metals. This method requires the selection of an interface metal that forms intermediate low-melting eutectics or solid solutions with the metals to be brazed.

  8. Correlation of second virial coefficient with solubility for proteins in salt solutions.

    PubMed

    Mehta, Chirag M; White, Edward T; Litster, James D

    2012-01-01

    In this work, osmotic second virial coefficients (B(22)) were determined and correlated with the measured solubilities for the proteins, α-amylase, ovalbumin, and lysozyme. The B(22) values and solubilities were determined in similar solution conditions using two salts, sodium chloride and ammonium sulfate in an acidic pH range. An overall decrease in the solubility of the proteins (salting out) was observed at high concentrations of ammonium sulfate and sodium chloride solutions. However, for α-amylase, salting-in behavior was also observed in low concentration sodium chloride solutions. In ammonium sulfate solutions, the B(22) are small and close to zero below 2.4 M. As the ammonium sulfate concentrations were further increased, B(22) values decreased for all systems studied. The effect of sodium chloride on B(22) varies with concentration, solution pH, and the type of protein studied. Theoretical models show a reasonable fit to the experimental derived data of B(22) and solubility. B(22) is also directly proportional to the logarithm of the solubility values for individual proteins in salt solutions, so the log-linear empirical models developed in this work can also be used to rapidly predict solubility and B(22) values for given protein-salt systems. Copyright © 2011 American Institute of Chemical Engineers (AIChE).

  9. Ion aggregation in high salt solutions: ion network versus ion cluster.

    PubMed

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O-D stretch mode of HDO in highly concentrated salt solutions and (13)C-NMR chemical shift of S(13)CN(-) in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  10. Ion aggregation in high salt solutions: Ion network versus ion cluster

    SciTech Connect

    Kim, Seongheun; Kim, Heejae; Choi, Jun-Ho; Cho, Minhaeng

    2014-09-28

    The critical aggregation phenomena are ubiquitous in many self-assembling systems. Ions in high salt solutions could also spontaneously form larger ion aggregates, but their effects on hydrogen-bond structures in water have long been controversial. Here, carrying out molecular dynamics (MD) simulation studies of high salt solutions and comparing the MD simulation results with infrared absorption and pump-probe spectroscopy of O–D stretch mode of HDO in highly concentrated salt solutions and {sup 13}C-NMR chemical shift of S{sup 13}CN{sup −} in KSCN solutions, we find evidence on the onset of ion aggregate and large-scale ion-ion network formation that concomitantly breaks water hydrogen-bond structure in certain salt solutions. Despite that these experimental results cannot provide direct evidence on the three-dimensional morphological structures of ion aggregates, they serve as reference data for verifying MD simulation methods. The MD results suggest that disrupted water hydrogen-bond network is intricately intertwined with ion-ion network. This further shows morphological variation of ion aggregate structures from ion cluster to ion network in high salt solutions that are interrelated to the onset of macroscopic aggregate formation and the water hydrogen-bond structure making and breaking processes induced by Hofmeister ions.

  11. Latent energy storage with salt and metal mixtures for solar dynamic applications

    NASA Technical Reports Server (NTRS)

    Crane, R. A.; Konstantinou, K. S.

    1988-01-01

    This paper examines three design alternatives for the development of a solar dynamic heat receiver as applied to power systems operating in low earth orbit. These include a base line design used for comparison in ongoing NASA studies, a system incorporating a salt energy storage system with the salt dispersed within a metal mesh and a hybrid system incorporating both a molten salt and molten metal for energy storage. Based on a typical low earth orbit condition, designs are developed and compared to determine the effect of resultant conductivity, heat capacity and heat of fusion on system size, weight, temperature gradients, cycle turbine inlet temperature and material utilization.

  12. Trace metal concentrations in Spartina densiflora and associated soil from a Patagonian salt marsh.

    PubMed

    Idaszkin, Yanina L; Bouza, Pablo J; Marinho, Carmen H; Gil, Mónica N

    2014-12-15

    The objectives of this study were to (i) assess in situ trace metal concentrations in soil and in Spartina densiflora in a Patagonian salt marsh (Rawson, Chubut, Argentina) and (ii) investigate the relationship between trace metal concentrations in soils and in plants to improve our knowledge regarding the ability of S. densiflora to take up and accumulate trace metals from the soil within its native region. Our results indicate that the soil and S. densiflora exhibit low metal concentrations in the Rawson salt marsh. S. densiflora accumulates Zn in below- and above-ground plant structures and Cr in below-ground parts. These results suggest at the time of this study there is scarce human impact associated with metals in the Rawson salt marsh.

  13. Hydraulic conductivity of compacted clay liners permeated with inorganic salt solutions.

    PubMed

    Yilmaz, Gonca; Yetimoglu, Temel; Arasan, Seracettin

    2008-10-01

    Due to their low permeability, geosynthetic clay liners (GCLs) and compacted clay liners (CCLs) are the main materials used in waste disposal landfills. The hydraulic conductivity of GCLs and CCLs is closely related to the chemistry of the permeant fluid. In this study, the effect on the hydraulic conductivity of clays of five different inorganic salt solutions as permeant fluid was experimentally investigated. For this purpose, NaCl, NH(4)Cl, KCl, CaCl(2), and FeCl( 3) inorganic salt solutions were used at concentrations of 0.01, 0.10, 0.25, 0.50, 0.75 and 1 M. Laboratory hydraulic conductivity tests were conducted on low plasticity (CL) and high plasticity (CH) compacted raw clays. The change in electrical conductivity and pH values of the clay samples with inorganic salt solutions were also determined. The experimental test results indicated that the effect of inorganic salt solutions on CL clay was different from that on CH clay. The hydraulic conductivity was found to increase for CH clay when the salt concentrations increased whereas when the salt concentrations were increased, the hydraulic conductivity decreased for the CL clay.

  14. Analysis of Frozen Sulfate and Chloride Salt Solutions Using Laser-induced Breakdown Spectroscopy Under Martian Conditions

    NASA Astrophysics Data System (ADS)

    Schröder, S.; Pavlov, S. G.; Hübers, H.-W.; Rauschenbach, I.; Jessberger, E. K.

    2010-03-01

    We showed the feasibility of laser-induced breakdown spectroscopy to analyze different frozen salt solutions under martian conditions. We focused on chloride and sulphate salts which were found on Mars and could lower the freezing point of water.

  15. Geochemical processes controlling the distribution and concentration of metals in soils from a Patagonian (Argentina) salt marsh affected by mining residues.

    PubMed

    Idaszkin, Yanina L; Alvarez, María Del Pilar; Carol, Eleonora

    2017-10-15

    Heavy metal pollution that affects salt marshes is a major environmental concern due to its toxic nature, persistence, and potential risk to organisms and to human health. Mining waste deposits originated four decades ago, by the metallurgical extraction of heavy metals, are found near to the San Antonio salt marsh in Patagonia. The aim of the work was to determine the geochemical processes that control the distribution and concentration of Cu, Fe, Pb and Zn in the soils of this Patagonian salt marsh. A survey of the mining waste deposits was carried out where three dumps were identified. Samples were collected to determine soil texture, Eh pH, organic matter and metal contents and the soil mineralogical composition. The results shows that the soils developed over the mining waste deposits are predominantly reddish constituted mainly by iron oxide, hydroxide and highly soluble minerals such as Zn and Cu sulphates. The drainage from these deposits tends to move towards the salt marsh. Within the salt marsh, the highest concentrations of Cu, Pb and Zn occur in the sectors closest to the mining wastes deposits. The sulphide oxidation and the dissolution of the Cu, Pb and Zn sulphates could be the mainly source of these metals in the drainage water. The metals in solution that reach the salt marsh, are adsorbed by the organic matter and the fine fraction of the soils. These adsorbed metals are then remobilized by tides in the lower sectors of the marsh by desorption from the cations present in the tidal flow. On the other hand, Fe tends to form non soluble oxides, hydroxides and sulphates which remain as altering material within the mining waste deposit. Finally, the heavy metal pollutants recorded in the San Antonio salt marsh shows that the mining waste deposits that were abandoned four decades ago are still a source metal contamination. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics

    PubMed Central

    Park, Sungjun; Lee, SeYeong; Kim, Chang-Hyun; Lee, Ilseop; Lee, Won-June; Kim, Sohee; Lee, Byung-Geun; Jang, Jae-Hyung; Yoon, Myung-Han

    2015-01-01

    Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconductor and aqueous electrolyte dielectrics based on small ionic salts. The proper selection of channel material (i.e., indium-gallium-zinc-oxide) and precautious passivation of non-channel areas enabled the development of simple but highly stable metal oxide transistors manifested by low operation voltages within 0.5 V, high transconductance of ~1.0 mS, large current on-off ratios over 107, and fast inverter responses up to several hundred hertz without device degradation even in physiologically-relevant ionic solutions. In conjunction with excellent transistor characteristics, investigation of the electrochemical nature of the metal oxide-electrolyte interface may contribute to the development of a viable bio-electronic platform directly interfacing with biological entities in vivo. PMID:26271456

  17. Sub-0.5 V Highly Stable Aqueous Salt Gated Metal Oxide Electronics

    NASA Astrophysics Data System (ADS)

    Park, Sungjun; Lee, Seyeong; Kim, Chang-Hyun; Lee, Ilseop; Lee, Won-June; Kim, Sohee; Lee, Byung-Geun; Jang, Jae-Hyung; Yoon, Myung-Han

    2015-08-01

    Recently, growing interest in implantable bionics and biochemical sensors spurred the research for developing non-conventional electronics with excellent device characteristics at low operation voltages and prolonged device stability under physiological conditions. Herein, we report high-performance aqueous electrolyte-gated thin-film transistors using a sol-gel amorphous metal oxide semiconductor and aqueous electrolyte dielectrics based on small ionic salts. The proper selection of channel material (i.e., indium-gallium-zinc-oxide) and precautious passivation of non-channel areas enabled the development of simple but highly stable metal oxide transistors manifested by low operation voltages within 0.5 V, high transconductance of ~1.0 mS, large current on-off ratios over 107, and fast inverter responses up to several hundred hertz without device degradation even in physiologically-relevant ionic solutions. In conjunction with excellent transistor characteristics, investigation of the electrochemical nature of the metal oxide-electrolyte interface may contribute to the development of a viable bio-electronic platform directly interfacing with biological entities in vivo.

  18. Influence of adding salt on ultrasonic atomization in an ethanol-water solution.

    PubMed

    Hamai, Koumei; Takenaka, Norimichi; Nanzai, Ben; Okitsu, Kenji; Bandow, Hiroshi; Maeda, Yasuaki

    2009-01-01

    Ethanol was enriched by ultrasonic atomization. Enrichment ratios were increased by adding salt to the ethanol solution. Different enrichment ratios were observed for different types of salts in a range of low ethanol concentrations. The enrichment ratio was significantly improved by adding K(2)CO(3) or (NH(4))(2)SO(4). It is concluded that this is due to enhanced interfacial adsorption of the ethanol. Addition of Na(2)CO(3) to the ethanol solution also enhanced the interfacial adsorption of the ethanol, but the effect was relatively small. Addition of NaCl to the ethanol solution did not enhance the interfacial adsorption of the ethanol.

  19. Length Scale Dependence of the Dynamic Properties of Hyaluronic Acid Solutions in the Presence of Salt

    SciTech Connect

    Horkay, Ferenc; Falus, Peter; Hecht, Anne-Marie; Geissler, Erik

    2010-12-07

    In solutions of the charged semirigid biopolymer hyaluronic acid in salt-free conditions, the diffusion coefficient D{sub NSE} measured at high transfer momentum q by neutron spin echo is more than an order of magnitude smaller than that determined by dynamic light scattering, D{sub DLS}. This behavior contrasts with neutral polymer solutions. With increasing salt content, D{sub DLS} approaches D{sub NSE}, which is independent of ionic strength. Contrary to theoretical expectation, the ion-polymer coupling, which dominates the low q dynamics of polyelectrolyte solutions, already breaks down at distance scales greater than the Debye-Hueckel length.

  20. Lanthanide salts solutions: representation of osmotic coefficients within the binding mean spherical approximation.

    PubMed

    Ruas, Alexandre; Moisy, Philippe; Simonin, Jean-Pierre; Bernard, Olivier; Dufrêche, Jean-François; Turq, Pierre

    2005-03-24

    Osmotic coefficients of aqueous solutions of lanthanide salts are described using the binding mean spherical approximation (BIMSA) model based on the Wertheim formalism for association. The lanthanide(III) cation and the co-ion are allowed to form a 1-1 ion pair. Hydration is taken into account by introducing concentration-dependent cation size and solution permittivity. An expression for the osmotic coefficient, derived within the BIMSA, is used to fit data for a wide variety of lanthanide pure salt aqueous solutions at 25 degrees C. A total of 38 lanthanide salts have been treated, including perchlorates, nitrates, and chlorides. For most solutions, good fits could be obtained up to high ionic strengths. The relevance of the fitted parameters has been discussed, and a comparison with literature values has been made (especially the association constants) when available.

  1. Method of producing solution-derived metal oxide thin films

    SciTech Connect

    Boyle, T.J.; Ingersoll, D.

    2000-07-11

    A method is described for preparing metal oxide thin films by a solution method. A {beta}-metal {beta}-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  2. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  3. Soaking turkey meat in salt-glucose syrup solutions--an experimental study of mass transfers.

    PubMed

    Deumier, F; Collignan, A; Bohuon, P

    2002-08-01

    Turkey meat can be salted and dried in one step by soaking in a concentrated salt-glucose syrup solution at low temperature. Sugar impregnation is minimal; only low molecular weight sugars generally penetrate the product. Glucose uptake is very quick, suggesting the possible involvement of passive glucose transporters. The operational scope of this process, depending on the targeted end-product features, was determined for turkey meat on the basis of clearly characterized mass transport phenomena between the product and the soaking solution. With 2 cm thick meat fillets processed at 10 C it is thus possible to obtain salted-dried end-products containing 2 to 10% salt and 35 to 70% water, ranges that are compatible with a broad range of commercial cured products.

  4. Ionic liquids based upon metal halide/substituted quaternary ammonium salt mixtures.

    PubMed

    Abbott, Andrew P; Capper, Glen; Davies, David L; Rasheed, Raymond

    2004-05-31

    The synthesis of ionic liquids based upon functionalized quaternary ammonium salts and metal salts of zinc, tin, or iron is demonstrated. The freezing point of these ionic liquids was studied as a function of the quaternary ammonium cation. The complex anions were identified and quantified using mass spectrometry and potentiometry. It is shown that the primary zinc anion is Zn(2)Cl(5)(-) with Zn(3)Cl(7)(-) becoming more abundant in more Lewis basic solutions. Similar results were observed for ionic liquids containing SnCl(2). The surface tension was also measured and was used to explain the high viscosity of the ionic liquids in terms of the large ion:hole size ratio and the small probability of finding a hole of suitable dimensions adjacent to a given ion to permit movement. The phase behavior of a variety of quaternary ammonium halides/ZnCl(2) mixtures is characterized and it is shown that the depression of freezing point is related to the increase in size of the component ions.

  5. Meat batter production in an extended vane pump-grinder injecting curing salt solutions to reduce energy requirements: variation of curing salt amount injected with the solution.

    PubMed

    Irmscher, Stefan B; Terjung, Eva-Maria; Gibis, Monika; Herrmann, Kurt; Kohlus, Reinhard; Weiss, Jochen

    2017-01-01

    The integration of a nozzle in an extended vane pump-grinder system may enable the continuous injection of curing salt solutions during meat batter production. The purpose of this work was to examine the influence of the curing salt amount injected with the solution (0-100%) on protein solubilisation, water-binding, structure, colour and texture of emulsion-type sausages. The amount of myofibrillar protein solubilised during homogenisation varied slightly from 33 to 36 g kg(-1) . Reddening was not noticeably impacted by the later addition of nitrite. L(*) ranged from 66.9 ± 0.3 to 67.8 ± 0.3, a(*) from 10.9 ± 0.1 to 11.2 ± 0.1 and b(*) from 7.7 ± 0.1 to 8.0 ± 0.1. Although softer sausages were produced when only water was injected, firmness increased with increasing curing salt amount injected and was similar to the control when the full amount of salt was used. The substitution of two-thirds of ice with a liquid brine may enable energy savings due to reduced power consumptions of the extended vane pump-grinder system by up to 23%. The injection of curing salt solutions is feasible without affecting structure and colour negatively. This constitutes a first step towards of an 'ice-free' meat batter production allowing for substantial energy savings due to lower comminution work. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  6. Conformational stability of alternating d (CG) oligomers in high salt solution.

    PubMed Central

    Quadrifoglio, F; Manzini, G; Vasser, M; Dinkelspiel, K; Crea, R

    1981-01-01

    The conformation of d (CG)n oligomers with n = 2,3 has been studied in aqueous solution in the presence of high salt concentration. A minimum n value of three is necessary to obtain a left-handed Z-helix. When d (CG)3 is flanked by three non Z-helicogenic alternating AT sequences the left-handed helix is unstable and a B-type conformation is obtained also at high salt concentration. PMID:6272229

  7. Fluid-loading solutions and plasma volume: Astro-ade and salt tablets with water

    NASA Technical Reports Server (NTRS)

    Fortney, Suzanne M.; Seinmann, Laura; Young, Joan A.; Hoskin, Cherylynn N.; Barrows, Linda H.

    1994-01-01

    Fluid loading with salt and water is a countermeasure used after space flight to restore body fluids. However, gastrointestinal side effects have been frequently reported in persons taking similar quantities of salt and water in ground-based studies. The effectiveness of the Shuttle fluid-loading countermeasure (8 gms salt, 0.97 liters of water) was compared to Astro-ade (an isotonic electrolyte solution), to maintain plasma volume (PV) during 4.5 hrs of resting fluid restriction. Three groups of healthy men (n=6) were studied: a Control Group (no drinking), an Astro-ade Group, and a Salt Tablet Group. Changes in PV after drinking were calculated from hematocrit and hemoglobin values. Both the Salt Tablet and Astro-ade Groups maintained PV at 2-3 hours after ingestion compared to the Control Group, which had a 6 percent decline. Side effects (thirst, stomach cramping, and diarrhea) were noted in at least one subject in both the Astro-ade and Salt Tablet Groups. Nausea and vomiting were reported in one subject in the Salt Tablet Group. It was concluded that Astro-ade may be offered as an alternate fluid-loading countermeasure but further work is needed to develop a solution that is more palatable and has fewer side effects.

  8. [Solubilization of nitrobenzene in micellar solutions of Tween 80 and inorganic salts].

    PubMed

    Li, Sui; Zhao, Yong-sheng; Xu, Wei; Dai, Ning

    2008-04-01

    The solubilization of nitrobenzene by a nonionic surfactant Tween 80 was investigated at 10 degrees C. Experimental results indicated that the solubility of nitrobenzene in water was greatly enhanced by Tween 80 at surfactant concentration above CMC(critical micelle concentration) and a linear relationship was obtained between surfactant concentration and nitrobenzene concentration from the solubility curve. The molar solubilization ratio (MSR) value was 5.093 and IgKm was 3.499. The solubilization was attributed to the ethoxylation group in Tween 80 micellar. Effect of four inorganic salts such as NaCl, KCl, CaCl2 , MgCl2 on water solubilities of nitrobenzene in Tween 80 micellar solutions was also investigated by a matrix of batch experiments. Mix the Tween 80-inorganic salts at the total mass ratios of 2:1, 5:1 and 10:1. The results show that the inorganic salts at a high concentration( > or = 500 mg x L(-1)) can enhance the solubilization capacities of Tween 80 micellar solution and increase the value of MSR and IgKm . Because of the salting-out effect between the micellar of Tween 80 and inorganic salts, the volume of micelle turns bigger, which may provide larger solubility volume for nitrobenzene. The mixture of nonionic surfactant and inorganic salts can be used in subsurface remediation as a flushing solution.

  9. Influence of structure of the metal salts of phosphinates on the performance of the fire-retardant polymers

    NASA Astrophysics Data System (ADS)

    Liu, Xueqing; Liu, Jiyan; Guo, Yuanhao; Cakmak, Miko

    2015-05-01

    Dialkylphosphinate salts (I) and amide-containing phosphinate salts(II) with varying metal cation and organic groups were used as flame retardants for epoxy resin(EP), poly(butylene terephthalate) (PBT) correspondingly. Their flame retardancy, mechanical properties, thermal stability, compatibility between phosphinate salts and polymer, and leaching of the salts from the polymer were investigated with respect to the structure of phosphinate salts.

  10. Geochemistry of metal-rich brines from central Mississippi Salt Dome basin, U.S.A.

    USGS Publications Warehouse

    Kharaka, Y.K.; Maest, A.S.; Carothers, W.W.; Law, L.M.; Lamothe, P.J.; Fries, T.L.

    1987-01-01

    Oil-field brines are the most favored ore-forming solutions for the sediment-hosted Mississippi Valley-type ore deposits. Detailed inorganic and organic chemical and isotope analyses of water and gas samples from six oil fields in central Mississippi, one of the very few areas with high metal brines, were conducted to study the inorganic and organic complexes responsible for the high concentrations of these metals. The samples were obtained from production zones consisting of sandstone and limestone that range in depth from 1900 to 4000 m (70-120??C) and in age from Late Cretaceous to Late Jurassic. Results show that the waters are dominantly bittern brines related to the Louann Salt. The brines have extremely high salinities that range from 160,000 to 320,000 mg/l total dissolved solids and are NaCaCl-type waters with very high concentrations of Ca (up to 48,000 mg/l) and other alkaline-earth metals, but with low concentrations of aliphatic acid anions. The concentrations of metals in many water samples are very high, reaching values of 70 mg/l for Pb, 245 mg/l for Zn, 465 mg/l for Fe and 210 mg/l for Mn. The samples with high metal contents have extremely low concentrations (<0.02 mg/l) of H2S. Samples obtained from the Smackover Formation (limestone) have low metal contents that are more typical of oil-field waters, but have very high concentrations (up to 85 mg/l) of H2S. Computations with the geochemical code SOLMINEQ.87 give the following results: (1) both Pb and Zn are present predominantly as aqueous chloride complexes (mainly as PbCl42- and ZnCl42-, respectively); (2) the concentrations of metals complexed with short-chained aliphatic acid anions and reduced S species are minor; (3) organic acid anions are important in controlling the concentrations of metals because they affect the pH and buffer capacity of the waters at subsurface conditions; and (4) galena and sphalerite solubilities control the concentrations of Pb and Zn in these waters. ?? 1988.

  11. Influence of halophytes and metal contamination on salt marsh macro-benthic communities

    NASA Astrophysics Data System (ADS)

    Vinagre, C.; Cabral, H. N.; Caçador, I.

    2008-03-01

    Since an important fraction of the organic matter produced by salt marshes is decomposed in situ, macro-benthic communities are particularly exposed to the trace metals retained by these systems. Yet, few studies have investigated the macro-benthic communities using the between-root sediment habitat of the salt marsh halophytes (salt-tolerant plants), or the effect of trace metal pollution on its population dynamics. In the present study, samples were collected in vegetated and unvegetated sediment, in three salt marshes in the Tagus estuary, for trace metal concentration determination in the sediment and in the halophytes roots, grain size determination and macro-benthic organism identification. Data analysis revealed that the distribution of macro-benthic organisms is mainly determined by metal contamination, metal type and by the presence/absence of halophytes, not by the halophyte species. Five different associations were identified: resistant organisms were associated with the highest concentrations of lead (sediment); tolerant organisms with zinc, copper (sediment and roots) and lead (roots); cadmium in the sediment with a lack of macro-benthic life; sensitive organisms with low levels of metals except for cadmium in the roots; and macro-benthos typical of intertidal mudflats with unvegetated areas with low metal contamination.

  12. Structures of late transition metal monoxides from Jahn-Teller instabilities in the rock salt lattice.

    PubMed

    Derzsi, Mariana; Piekarz, Przemysław; Grochala, Wojciech

    2014-07-11

    Most late transition metal (LTM) monoxides crystallize in other than a rock salt structure, which is so common in the earlier transition metal monoxides. Here we present theoretical evidence based on density functional theory that an electron-phonon coupling involving a single soft mode in the cubic cell is responsible for the onset of the experimentally observed structures of the late transition metal monoxides.

  13. Reusable chelating resins concentrate metal ions from highly dilute solutions

    NASA Technical Reports Server (NTRS)

    Bauman, A. J.; Weetal, H. H.; Weliky, N.

    1966-01-01

    Column chromatographic method uses new metal chelating resins for recovering heavy-metal ions from highly dilute solutions. The absorbed heavy-metal cations may be removed from the chelating resins by acid or base washes. The resins are reusable after the washes are completed.

  14. Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules.

    PubMed

    Endo, Satoshi; Pfennigsdorff, Andrea; Goss, Kai-Uwe

    2012-02-07

    Salting-out in aqueous NaCl solutions is relevant for the environmental behavior of organic contaminants. In this study, Setschenow (or salting-out) coefficients (K(s) [M(-1)]) for 43 diverse neutral compounds in NaCl solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The results were used to calibrate and evaluate estimation models for K(s). The molar volume of the solute correlated only moderately with K(s) (R(2) = 0.49, SD = 0.052). The polyparameter linear free energy relationship (pp-LFER) model that uses five compound descriptors resulted in a more accurate fit to our data (R(2) = 0.83, SD = 0.031). The pp-LFER analysis revealed that Na(+) and Cl(-) in aqueous solutions increase the cavity formation energy cost and the polar interaction energies toward neutral organic solutes. Accordingly, the salting-out effect increases with the size and decreases with the polarity of the solute molecule. COSMO-RS, a quantum mechanics-based fully predictive model, generally overpredicted the experimental K(s), but the predicted values were moderately correlated with the experimental values (R(2) = 0.66, SD = 0.042). Literature data (n = 93) were predicted by the calibrated pp-LFER and COSMO-RS models with root mean squared errors of 0.047 and 0.050, respectively. This study offers prediction models to estimate K(s), allowing implementation of the salting-out effect in contaminant fate models, linkage of various partition coefficients (such as air-water, sediment-water, and extraction phase-water partition coefficients) measured for fresh water and seawater, and estimation of enhancement of extraction efficiency in analytical procedures.

  15. Issues affecting storage of compressed air in solution-mined salt cavities

    SciTech Connect

    Allen, R.D.; Doherty, T.J.; Thoms, R.L.

    1982-04-01

    Geologic factors affecting salt deposit acceptability for CAES include diameter, depth, thickness, mineralogy, strength, faulting, seismic susceptibility, caprock quality and rate of dissolution by ground water. Assessment of a site involves analysis of existing information, seismic surveying, exploratory drilling, salt and caprock examination, geophysical logging, in situ stress measurement, and determination of hydrologic impact. Geologic exploration and solution mining at Huntorf, Federal Republic of Germany, are discussed. Cavern design parameters include octahedral shear strength, excess lateral stress, depth to cavern top, lateral salt thickness, vertical salt thickness, span, and height-to-diameter ratio. Noncompensated cavern operation involves cycling with respect to temperature, pressure, humidity and water. Cavern, borehole and surface monitoring methods are discussed.

  16. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt.

    PubMed

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-03-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM-INA cocrystal and a binary adduct ACM-PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM-PAM and ACM-CPR, and the piperazine salt ACM-PPZ were solved from high-resolution powder X-ray diffraction data. The ACM-INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N-H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM-PAM cocrystal, while ACM-CPR contains carboxamide dimers of caprolactam along with acid-carbonyl (ACM) hydrogen bonds. The cocrystals ACM-INA, ACM-PAM and ACM-CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM-PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM-PPZ salt and ACM-nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM-PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine salt of acemetacin exhibits superior

  17. Acemetacin cocrystals and salts: structure solution from powder X-ray data and form selection of the piperazine salt

    PubMed Central

    Sanphui, Palash; Bolla, Geetha; Nangia, Ashwini; Chernyshev, Vladimir

    2014-01-01

    Acemetacin (ACM) is a non-steroidal anti-inflammatory drug (NSAID), which causes reduced gastric damage compared with indomethacin. However, acemetacin has a tendency to form a less soluble hydrate in the aqueous medium. We noted difficulties in the preparation of cocrystals and salts of acemetacin by mechanochemical methods, because this drug tends to form a hydrate during any kind of solution-based processing. With the objective to discover a solid form of acemetacin that is stable in the aqueous medium, binary adducts were prepared by the melt method to avoid hydration. The coformers/salt formers reported are pyridine carboxamides [nicotinamide (NAM), isonicotinamide (INA), and picolinamide (PAM)], caprolactam (CPR), p-aminobenzoic acid (PABA), and piperazine (PPZ). The structures of an ACM–INA cocrystal and a binary adduct ACM–PABA were solved using single-crystal X-ray diffraction. Other ACM cocrystals, ACM–PAM and ACM–CPR, and the piperazine salt ACM–PPZ were solved from high-resolution powder X-ray diffraction data. The ACM–INA cocrystal is sustained by the acid⋯pyridine heterosynthon and N—H⋯O catemer hydrogen bonds involving the amide group. The acid⋯amide heterosynthon is present in the ACM–PAM cocrystal, while ACM–CPR contains carboxamide dimers of caprolactam along with acid–carbonyl (ACM) hydrogen bonds. The cocrystals ACM–INA, ACM–PAM and ACM–CPR are three-dimensional isostructural. The carboxyl⋯carboxyl synthon in ACM–PABA posed difficulty in assigning the position of the H atom, which may indicate proton disorder. In terms of stability, the salts were found to be relatively stable in pH 7 buffer medium over 24 h, but the cocrystals dissociated to give ACM hydrate during the same time period. The ACM–PPZ salt and ACM–nicotinamide cocrystal dissolve five times faster than the stable hydrate form, whereas the ACM–PABA adduct has 2.5 times faster dissolution rate. The pharmaceutically acceptable piperazine

  18. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates

    NASA Astrophysics Data System (ADS)

    Choi, Jun-Ho; Cho, Minhaeng

    2016-11-01

    Carrying out molecular dynamics simulations and graph theoretical analyses of high salt solutions, and comparing numerically calculated vibrational spectroscopic properties of water with femtosecond IR pump-probe experimental data, we have recently found that ions in high salt solutions can form two morphologically different ion aggregate structures. In the cases of NaCl solutions, Na+ and Cl- tend to form compact cluster-like ion aggregate in high NaCl solutions. In contrast, K+ and SCN- form spatially extended network-like ion aggregates that also exhibit a percolating network behavior. Interestingly, a variety of graph theoretical properties of ion network in high KSCN solutions were found to be very similar to those of water H-bonding network. It was shown that spatially extended ion networks in high KSCN solutions are completely intertwined with water H-bonding networks, which might be the key to understand the high solubility of thiocyanate salts in water. Here, we further consider two salts that have been extensively studied experimentally by using femtosecond IR pump-probe technique, which are NaClO4 and NaBF4. Note that ClO4 - and BF4 - are well-known chaotropic ions that have been believed to behave as water structure breaker. To understand how such chaotropic ions affect water H-bonding structure, we carried out spectral graph analyses of molecular dynamics simulation data of these aqueous solutions. Graph spectra and degree distribution of ion aggregates formed in high NaBF4 and NaClO4 solutions show that these chaotropic anions also have a strong propensity to form ion networks. The fact that salts containing chaotropic ions like SCN-, BF4 - , and ClO4 - have very high solubility limits in water could then be related to our observation that these chaotropic anions with counter cations in high salt solutions are capable of forming intricate ion networks intertwined with water H-bonding networks. We anticipate that the present graph theoretical analysis

  19. Balanced versus unbalanced salt solutions: what difference does it make?

    PubMed

    Magder, Sheldon

    2014-09-01

    The infusion of crystalloid solutions is a fundamental part of the management of critically ill patients. These solutions are used to maintain the balance of water and essential electrolytes and replace losses when patients have limited gastrointestinal intake. They also act as carriers for intravenous infusion of medication and red cells. The most commonly used solution, 0.9% saline, has equal concentrations of Na(+) and Cl(-) even though the plasma concentration of Na(+) normally is 40 meq/L higher than that of Cl(-). The use of this fluid thus can produce a hyperchloremic acidosis in a dose-dependent manner, but it is not known whether this has clinical significance. The first part of this article deals with the significance of Na(+) and Cl(-) in normal physiology. This begins with examination of their roles in the regulation of osmolality, acid-base balance, and generation of electrochemical gradients and why the concentration of Cl(-) normally is considerably lower than that of Na(+). The next part deals with how their concentrations are regulated by the gastrointestinal tract and kidney. Based on the physiology, it would seem that solutions in which the concentration of Na(+) is "balanced" by a substance other than Cl(-) would be advantageous. The final part examines the evidence to support that point. There are strong observational data that support the notion that avoiding an elevated Cl(-) concentration or using fluids that reduce the rise in Cl(-) reduces renal dysfunction, infections, and possibly even mortality. However, observational studies only can indicate an association and cannot indicate causality. Unfortunately, randomized trials to date are far too limited to address this crucial issue. What is clear is that appropriate randomized trials will require very large populations. It also is not known whether the important variable is the concentration of Cl(-), the difference in concentrations of Na(+) and Cl(-), or the total body mass of Cl

  20. Synthesis of noble metal/graphene nanocomposites without surfactants by one-step reduction of metal salt and graphene oxide.

    PubMed

    Kim, Seung-Hyun; Jeong, Gyoung Hwa; Choi, Donghyeuk; Yoon, Sunyoung; Jeon, Heung Bae; Lee, Sang-Min; Kim, Sang-Wook

    2013-01-01

    We carried out hydrazine-free, surfactant-free synthesis of noble metal/graphene nanocomposites. The reduction of the noble metals and GO was carried out simultaneously in hot water using ascorbic acid as a reductant. In the noble metal/graphene nanocomposites of Pd, Pt, Au, and Ag nanoparticles, the GO and metal salts were reduced completely by this synthetic method. In addition, the Pd/graphene nanocomposites showed good catalytic activity in the Suzuki coupling reaction and could be reused many times without loss of catalytic activity.

  1. [Effect of salts and sole of metal oxides on radiochemical changes in carbohydrates and abiogenic amino acid synthesis].

    PubMed

    Khenoch, M A; Kuzicheva, E A; Tsupkina, N V

    1980-01-01

    It has been shown that gamma-irradiation of solutions of carbohydrates in the presence of sulfates and metal oxide sols results in oxidative and destructive processes and leads to formation of carbonile compounds, organic acids, H2CO, and a substance with lambda max= =261 nm. With respect to their catalytic effect on carbohydrate changes, the sulfates and metal oxide sols investigated may be arranged into the following order: CuSO4 > > MnSO4=NiSO4 > ZnSO4 > H2O (salt free glucose solution); MoO3 > V2O5 > Al2O3 > > H2O (glucose solution without metal oxide sol). Radiolysis of glucose, mannose and arabinose is affected by the nature of gas saturating the solutions: O2 > Ar > CO2. Ionizing irradiation of solutions of hexoses and pentoses which contain nitrates as the source of nitrogen, results in the formation of amino acids with the chain length from 2 to 6 atoms of carbon (gly, ser, lys, ala, asp, his, tre, val, glu).

  2. Influence of microwave power, metal oxides and metal salts on the pyrolysis of algae.

    PubMed

    Li, Longjun; Ma, Xiaoqian; Xu, Qing; Hu, Zhifeng

    2013-08-01

    The work was to investigate the influence of microwave power, metal oxides and metal salts onto the pyrolysis of algae (4.55 wt.% moisture). It was found that the heating rate and the final temperature would increase as enhancing the microwave power. When microwave power increased from 750 W to 2250 W, the yield of solid residue decreased by 22.05%, and gas yield increased 39.45%. After adding 5% (mass basis) CuO and MgO, the yield of solid residue and bio-oil appeared the greatest decreasing ranges of 14.35% and 11.04%, respectively. Electrical energy consumption increased by 1.44% and reduced by 40.76% after CuO and MgO was added, separately. When algae was mixed with 5% (mass basis) MgCl2, ZnCl2 and NaH2PO3, respectively, the yield of solid residue increased by 3.98%, 1.13% and 2.31%, and the bio-oil yield increased by 6.3%, 16.92% and 0.71%, respectively. The effect of microwave absorption was ZnCl2>NaH2PO3>MgCl2.

  3. Changes in Proton Dynamics in Articular Cartilage Caused by Phosphate Salts and Fixation Solutions.

    PubMed

    Zheng, Shaokuan; Xia, Yang

    2010-01-01

    The objective was to study the effect of phosphate salts and fixation solutions on the proton dynamics in articular cartilage in vitro. Microscopic magnetic resonance imaging (μMRI) T(2) anisotropy and nuclear magnetic resonance (NMR) double quantum-filtered (DQF) spectroscopy were used to study the full-thickness articular cartilage from several canine humeral heads. The in-plane pixel size across the depth of the cartilage tissue was 13 μm. The acid phosphate salt was an effective exchange catalyst for proton exchange in the cartilage with an organized structure of collagen fibrils, while the alkaline phosphate salt was not. For cartilage tissue containing less organized collagen fibrils, both acid and alkaline phosphate salts have no significant effect on the T(2) value at low concentration but decrease the T(2) value at high concentration. The solutions of NaCl, KCl, CaCl(2), and D-PBS were found to have no significant effect on T(2) and DQF in cartilage. This study demonstrates the ability to modify the proton exchange in articular cartilage using the solutions of phosphate salts. The ability to modify the proton exchange in articular cartilage can be used to modulate the laminar appearance of articular cartilage in MRI.

  4. [Biological activity of selenorganic compounds at heavy metal salts intoxication].

    PubMed

    Rusetskaya, N Y; Borodulin, V B

    2015-01-01

    Possible mechanisms of the antitoxic action of organoselenium compounds in heavy metal poisoning have been considered. Heavy metal toxicity associated with intensification of free radical oxidation, suppression of the antioxidant system, damage to macromolecules, mitochondria and the genetic material can cause apoptotic cell death or the development of carcinogenesis. Organic selenium compounds are effective antioxidants during heavy metal poisoning; they exhibit higher bioavailability in mammals than inorganic ones and they are able to activate antioxidant defense, bind heavy metal ions and reactive oxygen species formed during metal-induced oxidative stress. One of promising organoselenium compounds is diacetophenonyl selenide (DAPS-25), which is characterized by antioxidant and antitoxic activity, under conditions including heavy metal intoxication.

  5. Characterization of Laboratory Prepared Concrete Pastes Exposed to High Alkaline and High Sodium Salt Solutions

    SciTech Connect

    Langton, C. A.

    2016-06-30

    The objective of this study was to identify potential chemical degradation mechanisms for the Saltstone Disposal Unit (SDU) concretes, which over the performance life of the structures may be exposed to highly alkaline sodium salt solutions containing sulfate, hydroxide, and other potentially corrosive chemicals in salt solution and saltstone flush water, drain water, leachate and / or pore solution. The samples analyzed in this study were cement pastes prepared in the SIMCO Technologies, Inc. concrete laboratory. They were based on the paste fractions of the concretes used to construct the Saltstone Disposal Units (SDUs). SDU 1 and 4 concrete pastes were represented by the PV1 test specimens. The paste in the SDU 2, 3, 5, and 6 concrete was represented by the PV2 test specimens. SIMCO Technologies, Inc. selected the chemicals and proportions in the aggressive solutions to approximate proportions in the saltstone pore solution [2, 3, 5, and 6]. These test specimens were cured for 56 days in curing chamber before being immersed in aggressive solutions. After exposure, the samples were frozen to prevent additional chemical transport and reaction. Selected archived (retrieved from the freezer) samples were sent to the Savannah River National Laboratory (SRNL) for additional characterization using x-ray diffraction (XRD), scanning electron microscopy (SEM), and energy dispersive x-ray (EDX) spectroscopy. Characterization results are summarized in this report. In addition, a correlation between the oxide composition of the pastes and their chemical durability in the alkaline salt solutions is provided.

  6. Accumulation and biological cycling of heavy metal in four salt marsh species, from Tagus estuary (Portugal).

    PubMed

    Duarte, B; Caetano, M; Almeida, P R; Vale, C; Caçador, I

    2010-05-01

    Pools of Zn, Cu, Cd and Co in leaf, stem and root tissues of Sarcocornia fruticosa, Sarcocornia perennis, Halimione portulacoides and Spartina maritima were analyzed on a bimonthly basis, in a Tagus estuary salt marsh. All the major concentrations were found in the root tissues, being the concentrations in the aboveground organs neglectable for sediment budget proposes, as seen by the low root-aboveground translocation. Metal annual accumulation, root turnovers and cycling coefficients were also assessed. S. maritima showed the higher root turnovers and cycling coefficients for most of the analyzed metals, making this a phytostabilizer specie. By contrast the low root turnover, cycling coefficient and low root necromass generation makes S. perennis the most suitable specie for phytoremediation processes. Although the high amounts of metal return to the sediments, due to root senescence, salt marshes can still be considered sinks of heavy metals, cycling heavy metals mostly between sediment and root. Copyright 2009 Elsevier Ltd. All rights reserved.

  7. Aryl Transfer Selectivity in Metal-Free Reactions of Unsymmetrical Diaryliodonium Salts.

    PubMed

    Stuart, David R

    2017-08-09

    Aromatic rings are found in a wide variety of products, including pharmaceuticals, agrochemicals, and functional materials. Diaryliodonium salts are new reagents used to transfer aryl groups under both metal-free and metal-catalyzed reactions and thereby synthesize arene-containing compounds. This minireview focuses on recent studies in selective aryl transfer reactions from unsymmetrical diaryliodonium salts under metal-free conditions. Reactions reported from 2007 to 2017, which represents a period of significant growth in diaryliodonium salt chemistry, are presented and organized by the type of reactive intermediate formed in the reaction. Specifically, reactions involving λ(3) -iodane, λ(3) -iodane radical anions, aryl radicals, and arynes are discussed. Chemoselectivity trends in aryl transfer are compared and contrasted across reaction intermediates and translation to potential auxiliaries are posited. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. [Spermatogenic function under the influence of heavy metal salts and its correction by preparation Tivortin].

    PubMed

    Romaniuk, A M; Sauliak, S V; Moskalenko, R A; Moskalenko, Iu V

    2012-01-01

    Entrance of threshold concentrations of copper, zinc, iron, manganese, lead, chromium into the body of sexually mature male rats leads to secretory malfunction of the testicles, which manifests by a decrease of sperm concentration in the ejaculate, a decrease of percentage of motile gametes, an increase in the proportion of morphologically abnormal sperm forms. The evidence of disorders in spermatogram's parameters is directly depends on the duration of the influence of combination of heavy metal salts. The application of the drug Tivortin against intoxication of heavy metal salts decrease the adverse movement of quantitative and qualitative parameters of rat's spermatogramms, so far as Tivortin improves blood circulation, stimulates cell proliferation and cell differentiation, inhibits oxidative apoptosis. These explain beneficial effects of the drug on the growth and maturation of germ cells in case of the influence heavy metal salts combination on organ and the whole body.

  9. Halophyte vegetation influences in salt marsh retention capacity for heavy metals.

    PubMed

    Reboreda, Rosa; Caçador, Isabel

    2007-03-01

    We analysed concentrations of Cu, Cd and Pb in above and belowground tissues of the halophyte species Halimione portulacoides and Spartina maritima, as well as in sediments and pore water between the roots in a Tagus estuary salt marsh (Portugal). From these results we calculated the pools of metals in the compartments mentioned above. Relative percentages of accumulation in each pool were also determined. Our aim was to determine how the type of vegetation in the salt marsh affects overall metal retention capacity of the system. It was concluded that areas colonised by H. portulacoides are potential sources of Cu, Cd and Pb to the marsh ecosystem, whereas areas colonised by S. maritima are more effective sinks at least for Cu and Cd. Consequently, S. maritima seems to contribute more effectively to the stabilisation of metals in salt marsh sediments, reducing their availability to the estuarine system.

  10. Lorentz force on sodium and chlorine ions in a salt water solution flow under a transverse magnetic field

    NASA Astrophysics Data System (ADS)

    DeLuca, R.

    2009-05-01

    It is shown that, by applying elementary concepts in electromagnetism and electrochemistry to a system consisting of salt water flowing in a thin rectangular pipe at an average velocity vA under the influence of a transverse magnetic field B0, an electromotive force generator can be conceived. In fact, the Lorentz force acting on the sodium and chlorine ions in a water solution gives rise to a so-called Faraday voltage across the two metal electrodes, positioned at the sides of the pipe. The effect is carried along the following chemical reactions at the electrodes: at the cathode, water is reduced (instead of sodium ions) and hydrogen gas is generated; at the anode, chlorine gas is produced. In college physics teaching, this interdisciplinary subject can be adopted to stress analogies and differences between the Hall voltage in conductors and the Faraday voltage in electrolyte solutions.

  11. A new class of draw solutions for minimizing reverse salt flux to improve forward osmosis desalination.

    PubMed

    Nguyen, Hau Thi; Nguyen, Nguyen Cong; Chen, Shiao-Shing; Ngo, Huu Hao; Guo, Wenshan; Li, Chi-Wang

    2015-12-15

    The applications of forward osmosis (FO) have been hindered because of the lack of an optimal draw solution. The reverse salt flux from the draw solution not only reduces the water flux but also increases the cost of draw solute replenishment. Therefore, in this study, Tergitol NP7 and NP9 with a long straight carbon chain and low critical micelle concentration (CMC) were coupled with highly charged ethylenediaminetetraacetic acid (EDTA) as an innovative draw solution to minimize reverse salt diffusion in FO for the first time. The results showed that the lowest reverse salt flux of 0.067 GMH was observed when 0.1M EDTA-2Na coupled with 15mM NP7 was used as a draw solution and deionized water was used as a feed solution in FO mode (active layer facing with the feed solution). This is due to the hydrophobic interaction between the tails of NP7 and the FO membrane, thus creating layers on the membrane surface and constricting the FO membrane pores. Moreover, 1M EDTA-2Na coupled with 15mM NP7 is promising as an optimal draw solution for brackish water and sea water desalination. Average water fluxes of 7.68, 6.78, and 5.95 LMH were achieved when brackish water was used as a feed solution (5, 10, and 20g/L NaCl), and an average water flux of 3.81 LMH was achieved when sea water was used as a feed solution (35g/L NaCl). The diluted draw solution was recovered using a nanofiltration (NF-TS80) membrane with a high efficiency of 95% because of the high charge and large size of the draw solution. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Cocoa shells for heavy metal removal from acidic solutions.

    PubMed

    Meunier, N; Laroulandie, J; Blais, J F; Tyagi, R D

    2003-12-01

    The development of economic and efficient processes for the removal of heavy metals present in acidic effluents from industrial sources or decontamination technologies has become a priority. The purpose of this work was to study the efficiency with which cocoa shells remove heavy metals from acidic solutions (pH 2) and to investigate how the composition of these solutions influences heavy metal uptake efficiency. Adsorption tests were conducted in agitated flasks with single-metal solutions (0.25 mM Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), multi-metal solution (comprised of 0.25 mM of each of the cations above) and an effluent obtained from chemical leaching of metal-contaminated soil, in the presence of different cocoa shell concentrations (5-40 g/l). Results from the single-metal solution assays indicated that the fixation capacity of heavy metals by cocoa shells followed a specific order: Pb>Cr>Cd=Cu=Fe>Zn=Co>Mn=Ni=Al. Cocoa shells are particularly efficient in the removal of lead from very acidic solutions (q(max)=6.2 mg Pb/g, pH(i)=2.0 and T=22 degrees C). The presence of other metals and cations in solution did not seem to affect the recovery of lead. It was also observed that the maximum metal uptake was reached in less than 2 h. This research has also demonstrated that the removal of metals caused a decline in solution proton concentration (pH increase) and release of calcium, magnesium, potassium and sodium from the cocoa shells.

  13. Electrochemical Recovery of Sodium Hydroxide from Alkaline Salt Solution

    SciTech Connect

    Hobbs, D.T.; Edwards, T.B.

    1996-10-01

    A statistically designed set of tests determined the effects of current density, temperature, and the concentrations of nitrate/nitrite, hydroxide and aluminate on the recovery of sodium as sodium hydroxide (caustic) from solutions simulating those produced from the Savannah River Site (SRS) In-Tank Precipitation process. These tests included low nitrate and nitrite concentrations which would be produced by electrolytic nitrate/nitrite destruction. The tests used a two compartment electrochemical cell with a Nafion Type 324 ion-exchange membrane. Caustic was successfully recovered from the waste solutions. Evaluation of the testing results indicated that the transport of sodium across the membrane was not significantly affected by any of the varied parameters. The observed variance in the sodium flux is attributed to experimental errors and variations in the performance characteristics of individual pieces of the organic-based Nafion membrane.Additional testing is recommended to determine the maximum current density, to evaluate the chemical durability of the organic membrane as a function of current density and to compare the durability and performance characteristics of the organic-based Nafion membrane with that of other commercially available organic membranes and the inorganic class of membranes under development by Ceramatec and PNNL.

  14. Raman studies of solutions of single-wall carbon nanotube salts.

    PubMed

    Anglaret, E; Dragin, F; Pénicaud, A; Martel, R

    2006-03-09

    Polyelectrolyte solutions of Na-doped single-wall carbon nanotube (SWNT) salts are studied by Raman spectroscopy. Their Raman signature is first compared to undoped SWNT suspensions and dry alkali-doped SWNT powders, and the results indicate that the nanotube solutions consist of heavily doped (charged) SWNT. Raman signature of doping is then used to monitor in situ the oxidation reaction of the nanotube salt solutions upon exposure to air and to an acceptor molecule (benzoquinone). The results indicate a direct charge-transfer reaction from the acceptor molecule to the SWNT, leading to their gradual charge neutralization and eventual precipitation in solution. The results are consistent with a simple redox titration process occurring at the thermodynamical equilibrium.

  15. Effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films

    SciTech Connect

    Kwong, Philip; Seidel, Scott; Gupta, Malancha

    2015-05-15

    In this work, the effect of transition metal salts on the initiated chemical vapor deposition of polymer thin films was studied using x-ray photoelectron spectroscopy. The polymerizations of 4-vinyl pyridine and 1H,1H,2H,2H-perfluorodecyl acrylate were studied using copper(II) chloride (CuCl{sub 2}) and iron(III) chloride (FeCl{sub 3}) as the transition metal salts. It was found that the surface coverages of both poly(4-vinyl pyridine) (P4VP) and poly(1H,1H,2H,2H-perfluorodecyl acrylate) were decreased on CuCl{sub 2}, while the surface coverage of only P4VP was decreased on FeCl{sub 3}. The decreased polymer surface coverage was found to be due to quenching of the propagating radicals by the salt, which led to a reduction of the oxidation state of the metal. The identification of this reaction mechanism allowed for tuning of the effectiveness of the salts to decrease the polymer surface coverage through the adjustment of processing parameters such as the filament temperature. Additionally, it was demonstrated that the ability of transition metal salts to decrease the polymer surface coverage could be extended to the fabrication of patterned cross-linked coatings, which is important for many practical applications such as sensors and microelectronics.

  16. Results of Analysis of Macrobatch 3 Decontaminated Salt Solution Coalescer from May 2010

    SciTech Connect

    Peters, T. B.; Fink, S. D.

    2012-12-18

    SRNL analyzed the Decontamination Salt Solution (DSS) coalescer from MCU by several analytical methods. This unit was removed from service in May 2010. The results of these analyses indicate that there is very little evidence of fouling via excessive solids, either from the leaching studies or X-Ray Diffraction (XRD) analysis.

  17. Mechanism of Pitting Corrosion Prevention by Nitrite in Carbon Steel Exposed to Dilute Salt Solutions

    SciTech Connect

    Zapp, P.E.

    2002-05-02

    The overall goal of this project was to develop a detailed understanding of the role of nitrite in preventing the breakdown of protective oxide on steel and on the onset of pitting, by considering the interactions of the oxidation and reduction reactions that may occur in alkaline salt solutions.

  18. Oxygen isotope activities and concentrations in aqueous salt solutions at elevated temperatures: Consequences for isotope geochemistry

    USGS Publications Warehouse

    Truesdell, A.H.

    1974-01-01

    Studies of the effect of dissolved salts on the oxygen isotope activity ratio of water have been extended to 275??C. Dehydrated salts were added to water of known isotope composition and the solutions were equilibrated with CO2 which was sampled for analysis. For comparison similar studies were made using pure water. Results on water nearly coincide with earlier calculations. Salt effects diminish with increasing temperature only for solutions of MgCl2 and LiCl. Other salt solutions show complex behavior due to the temperature-dependent formation of ion pairs of changing character. Equilibrium fractionations (103 ln ??) between 1 molal solutions and pure water at 25, 100, and 275??C are: NaCl 0.0, -1.5, +1.0; KCl 0.0, -1.0, +2.0; LiCl -1.0, -0.6, -0.5; CaCl2 -0.4, -1.8, +0.8; MgCl2 -1.1, -0.7, -0.3; MgSO4 -1.1, +0.1, -; NaF (0.8 m) 0.0, -1.5, -0.3; and NH4Cl (0.55 m) 0.0, -1.2, -1.3. These effects are significant in the isotope study of hot saline fluids responsible for ore deposition and of fluids found in certain geothermal systems. Minor modification of published isotope geothermometers may be required. ?? 1974.

  19. Effect of hygroscopicity of the metal salt on the formation and air stability of lyotropic liquid crystalline mesophases in hydrated salt-surfactant systems.

    PubMed

    Albayrak, Cemal; Barım, Gözde; Dag, Ömer

    2014-11-01

    It is known that alkali, transition metal and lanthanide salts can form lyotropic liquid crystalline (LLC) mesophases with non-ionic surfactants (such as CiH2i+1(OCH2CH2)jOH, denoted as CiEj). Here we combine several salt systems and show that the percent deliquescence relative humidity (%DRH) value of a salt is the determining parameter in the formation and stability of the mesophases and that the other parameters are secondary and less significant. Accordingly, salts can be divided into 3 categories: Type I salts (such as LiCl, LiBr, LiI, LiNO3, LiClO4, CaCl2, Ca(NO3)2, MgCl2, and some transition metal nitrates) have low %DRH and form stable salt-surfactant LLC mesophases in the presence of a small amount of water, type II salts (such as some sodium and potassium salts) that are moderately hygroscopic form disordered stable mesophases, and type III salts that have high %DRH values, do not form stable LLC mesophases and leach out salt crystals. To illustrate this effect, a large group of salts from alkali and alkaline earth metals were investigated using XRD, POM, FTIR, and Raman techniques. Among the different salts investigated in this study, the LiX (where X is Cl(-), Br(-), I(-), NO3(-), and ClO4(-)) and CaX2 (X is Cl(-), and NO3(-)) salts were more prone to establish LLC mesophases because of their lower %DRH values. The phase behavior with respect to concentration, stability, and thermal behavior of Li(I) systems were investigated further. It is seen that the phase transitions among different anions in the Li(I) systems follow the Hofmeister series.

  20. Cross-sectional study of platinum salts sensitization among precious metals refinery workers.

    PubMed

    Baker, D B; Gann, P H; Brooks, S M; Gallagher, J; Bernstein, I L

    1990-01-01

    A cross-sectional medical evaluation was conducted to determine respiratory and dermatological effects of platinum salts sensitization among workers in a secondary refinery of precious metals. Fifteen of 107 current employees and eight (28%) of 29 former employees, who had been terminated from employment on average for 5 years because of respiratory symptoms, had positive skin reactivity to platinum salts. Platinum salts skin reactivity was significantly associated with average air concentrations of platinum salts in employees' present work area. Workers with positive platinum salts skin tests had significantly higher prevalences of reported rhinitis, asthma, and dermatitis than negative skin test workers. They also had increased bronchial response to cold air challenge and elevated levels of total serum IgE. Platinum salts sensitization was not associated with atopic tendency as measured by sensitivity to common aeroallergens, but was strongly associated with cigarette smoking status. The findings indicate that cigarette smoking may be a risk factor for the development of platinum salts allergy. The persistence of platinum salts sensitization and high prevalence of adverse health outcomes among former workers demonstrate the importance of regular medical monitoring so that sensitized workers can be removed from exposure before they develop long-term health problems.

  1. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions

    PubMed Central

    Kalyuzhnyi, Yuriy V.; Vlachy, Vojko

    2016-01-01

    Effects of addition of salts on stability of aqueous protein solutions are studied theoretically and the results are compared with experimental data. In our approach, all the interacting species, proteins, ions, and water molecules, are accounted for explicitly. Water molecules are modeled as hard spheres with four off-center attractive square-well sites. These sites serve to bind either another water or to solvate the ions or protein charges. The ions are represented as charged hard spheres, and decorated by attractive sites to allow solvation. Spherical proteins simultaneously possess positive and negative groups, represented by charged hard spheres, attached to the surface of the protein. The attractive square-well sites, mimicking the protein–protein van der Waals interaction, are located on the surface of the protein. To obtain numerical results, we utilized the energy route of Wertheim’s associative mean spherical approximation. From measurable properties, we choose to calculate the second virial coefficient B2, which is closely related to the tendency of proteins to aggregate and eventually crystalize. Calculations are in agreement with experimental trends: (i) For low concentration of added salt, the alkali halide salts follow the inverse Hofmeister series. (ii) At higher concentration of added salt, the trend is reversed. (iii) When cations are varied, the salts follow the direct Hofmeister series. (iv) In contrast to the colloidal theories, our approach correctly predicts the non-monotonic behavior of B2 upon addition of salts. (v) With respect to anions, the theory predicts for the B2 values to follow different sequences below and above the iso-ionic point, as also confirmed experimentally. (vi) A semi-quantitative agreement between measured and calculated values for the second virial coefficient, as functions of pH of solution and added salt type and concentration, is obtained. PMID:27276970

  2. Explicit-water theory for the salt-specific effects and Hofmeister series in protein solutions

    NASA Astrophysics Data System (ADS)

    Kalyuzhnyi, Yuriy V.; Vlachy, Vojko

    2016-06-01

    Effects of addition of salts on stability of aqueous protein solutions are studied theoretically and the results are compared with experimental data. In our approach, all the interacting species, proteins, ions, and water molecules, are accounted for explicitly. Water molecules are modeled as hard spheres with four off-center attractive square-well sites. These sites serve to bind either another water or to solvate the ions or protein charges. The ions are represented as charged hard spheres, and decorated by attractive sites to allow solvation. Spherical proteins simultaneously possess positive and negative groups, represented by charged hard spheres, attached to the surface of the protein. The attractive square-well sites, mimicking the protein-protein van der Waals interaction, are located on the surface of the protein. To obtain numerical results, we utilized the energy route of Wertheim's associative mean spherical approximation. From measurable properties, we choose to calculate the second virial coefficient B2, which is closely related to the tendency of proteins to aggregate and eventually crystalize. Calculations are in agreement with experimental trends: (i) For low concentration of added salt, the alkali halide salts follow the inverse Hofmeister series. (ii) At higher concentration of added salt, the trend is reversed. (iii) When cations are varied, the salts follow the direct Hofmeister series. (iv) In contrast to the colloidal theories, our approach correctly predicts the non-monotonic behavior of B2 upon addition of salts. (v) With respect to anions, the theory predicts for the B2 values to follow different sequences below and above the iso-ionic point, as also confirmed experimentally. (vi) A semi-quantitative agreement between measured and calculated values for the second virial coefficient, as functions of pH of solution and added salt type and concentration, is obtained.

  3. Hydration structure of salt solutions from ab initio molecular dynamics

    SciTech Connect

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-07

    The solvation structures of Na{sup +}, K{sup +}, and Cl{sup -} ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na{sup +}, K{sup +}, and Cl{sup -}, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  4. Hydration structure of salt solutions from ab initio molecular dynamics

    NASA Astrophysics Data System (ADS)

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L.

    2013-01-01

    The solvation structures of Na^+, K^+, and Cl^- ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na^+, K^+, and Cl^-, respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  5. Hydration structure of salt solutions from ab initio molecular dynamics.

    PubMed

    Bankura, Arindam; Carnevale, Vincenzo; Klein, Michael L

    2013-01-07

    The solvation structures of Na(+), K(+), and Cl(-) ions in aqueous solution have been investigated using density functional theory (DFT) based Car-Parrinello (CP) molecular dynamics (MD) simulations. CPMD trajectories were collected for systems containing three NaCl or KCl ion pairs solvated by 122 water molecules using three different but commonly employed density functionals (BLYP, HCTH, and PBE) with electron correlation treated at the level of the generalized gradient approximation (GGA). The effect of including dispersion forces was analyzed through the use of an empirical correction to the DFT-GGA scheme. Special attention was paid to the hydration characteristics, especially the structural properties of the first solvation shell of the ions, which was investigated through ion-water radial distribution functions, coordination numbers, and angular distribution functions. There are significant differences between the present results obtained from CPMD simulations and those provided by classical MD based on either the CHARMM force field or a polarizable model. Overall, the computed structural properties are in fair agreement with the available experimental results. In particular, the observed coordination numbers 5.0-5.5, 6.0-6.4, and 6.0-6.5 for Na(+), K(+), and Cl(-), respectively, are consistent with X-ray and neutron scattering studies but differ somewhat from some of the many other recent computational studies of these important systems. Possible reasons for the differences are discussed.

  6. Electrodialysis for recovering salts from a urine solution containing micropollutants.

    PubMed

    Pronk, Wouter; Biebow, Martin; Boller, Markus

    2006-04-01

    Electrodialysis was investigated for the separation of micropollutants from nutrients in anthropogenic urine. In a continuously operated process, the nutrients were concentrated up to a factor of 3.2. The concentration factor was limited by water transport across the membrane. Water transport was caused by osmosis and electroosmosis, and a model was developed to describe these phenomena. The removal of several spiked micropollutants was investigated in continuous electrodialysis experiments. Ethinylestradiol was removed completely during the whole operating period. Diclofenac and carbamazepine were initially retained, but limited permeation (5-10%) occurred after longer operating times (90 days). Retentions of propranolol and ibuprofen were also high initially, but substantial breakthroughs occurred during extended operation. Considerable adsorption on the membranes was observed for all compounds. The permeation mechanism of several compounds appears to depend on the adsorbed amount on the membrane, which indicates that partitioning and diffusion mechanisms play an important role in the permeation transport. Partial desorption occurred in leaching experiments with polarity reversal, and almost quantitative desorption was observed after incubation of the membranes with Filter Count Gel Solution. Because environmental concentrations are much lower than the concentrations spiked here, it can be anticipated that operation without significant permeation is possible in practice during extended periods of time.

  7. A traditional Japanese-style salt field is a niche for haloarchaeal strains that can survive in 0.5% salt solution

    PubMed Central

    Fukushima, Tadamasa; Usami, Ron; Kamekura, Masahiro

    2007-01-01

    Background Most of the haloarchaeal strains have been isolated from hypersaline environments such as solar evaporation ponds, salt lakes, or salt deposits, and they, with some exceptions, lyse or lose viability in very low-salt concentrations. There are no salty environments suitable for the growth of haloarchaea in Japan. Although Natrialba asiatica and Haloarcula japonica were isolated many years ago, the question, "Are haloarchaea really thriving in natural environments of Japan?" has remained unanswered. Results Ten strains were isolated from a traditional Japanese-style salt field at Nie, Noto Peninsula, Japan by plating out the soil samples directly on agar plates containing 30% (w/v) salts and 0.5% yeast extract. They were most closely related to strains of three genera, Haladaptatus, Halococcus, and Halogeometricum. Survival rates in 3% and 0.5% SW (Salt Water, solutions containing salts in approximately the same proportions as found in seawater) solutions at 37°C differed considerably depending on the strains. Two strains belonging to Halogeometricum as well as the type strain Hgm. borinquense died and lysed immediately after suspension. Five strains that belonged to Halococcus and a strain that may be a member of Halogeometricum survived for 1–2 days in 0.5% SW solution. Two strains most closely related to Haladaptatus possessed extraordinary strong tolerance to low salt conditions. About 20 to 34% of the cells remained viable in 0.5% SW after 9 days incubation. Conclusion In this study we have demonstrated that haloarchaea are really thriving in the soil of Japanese-style salt field. The haloarchaeal cells, particularly the fragile strains are suggested to survive in the micropores of smaller size silt fraction, one of the components of soil. The inside of the silt particles is filled with concentrated salt solution and kept intact even upon suspension in rainwater. Possible origins of the haloarchaea isolated in this study are discussed. PMID

  8. Salt-water-freshwater transient upconing - An implicit boundary-element solution

    USGS Publications Warehouse

    Kemblowski, M.

    1985-01-01

    The boundary-element method is used to solve the set of partial differential equations describing the flow of salt water and fresh water separated by a sharp interface in the vertical plane. In order to improve the accuracy and stability of the numerical solution, a new implicit scheme was developed for calculating the motion of the interface. The performance of this scheme was tested by means of numerical simulation. The numerical results are compared to experimental results for a salt-water upconing under a drain problem. ?? 1985.

  9. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Structure-activity relationship for hydrophobic salts as viscosity-lowering excipients for concentrated solutions of monoclonal antibodies.

    PubMed

    Guo, Zheng; Chen, Alvin; Nassar, Roger A; Helk, Bernhard; Mueller, Claudia; Tang, Yu; Gupta, Kapil; Klibanov, Alexander M

    2012-11-01

    To discover, elucidate the structure-activity relationship (SAR), and explore the mechanism of action of excipients able to drastically lower the viscosities of concentrated aqueous solutions of humanized monoclonal antibodies (MAbs). Salts prepared from hydrophobic cations and anions were dissolved into humanized MAbs solutions. Viscosities of the resulting solutions were measured as a function of the nature and concentration of the salts and MAbs. Even at moderate concentrations, some of the salts prepared herein were found to reduce over 10-fold the viscosities of concentrated aqueous solutions of several MAbs at room temperature. To be potent viscosity-lowering excipients, the ionic constituents of the salts must be hydrophobic, bulky, and aliphatic. A mechanistic hypothesis explaining the observed salt effects on MAb solutions' viscosities was proposed and verified.

  11. Fourteen-year survival of Pseudomonas cepacia in a salts solution preserved with benzalkonium chloride.

    PubMed Central

    Geftic, S G; Heymann, H; Adair, F W

    1979-01-01

    A strain of Pseudomonas cepacia that survived for 14 years (1963 to 1977) as a contaminant in an inorganic salt solution which contained commercial 0.05% benzalkonium chloride (CBC) as an antimicrobial preservative, was compared to a recent clinical isolate of P. cepacia. Ammonium acetate was present in the concentrated stock CBC solution, and served as a carbon and nitrogen source for growth when carried over into the salts solution with the CBC. The isolate's resistance to pure benzalkonium chloride was increased step-wise to a concentration of 16%. Plate counts showed 4 x 10(3) colony-forming units per ml in the salts solution. Comparison of growth rates, mouse virulence, antibiotics resistance spectra, and substrate requirements disclosed no differences between the contaminant and a recently isolated clinical strain of P. cepacia. The results indicate that it is critical that pharmaceutical solutions containing benzalkonium chloride as an antimicrobial preservative be formulated without extraneous carbon and nitrogen sources or be preserved with additional antimicrobial agents. PMID:453827

  12. Effect of perfusion of bile salts solutions into the oesophagus of hiatal hernia patients and controls.

    PubMed Central

    Bachir, G S; Collis, J L

    1976-01-01

    Tests of the response to perfusion of the oesophagus were made in 54 patients divided into three groups. Group I consisted of patients with symptomatic hiatal hernia, group II hiatal hernia patients with peptic stricture, and group III normal individuals. Each individual oesophagus was perfused at a rate of 45-65 drops per minute over 25 minutes with six solutions: normal saline, N/10 HCl, taurine conjugates of bile salts in normal saline, taurine conjugates of bile salts in N/10 HCl, glycine conjugates of bile salts in normal saline, and taurine and glycine conjugates in a ratio of 1 to 2 in normal saline. It was found that acidified taurine solutions were more irritating than acid alone. With a 2mM/l solution of taurine in acid, symptoms are produced even in controls. With a 1 mM/l solution of the same conjugates, the majority of normal people feel slight heartburn or nothing, and therefore perfusion into the oesophagus of such a solution could be used as a test for oesophagitis. PMID:941112

  13. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    NASA Astrophysics Data System (ADS)

    Riley, Brian J.; Lepry, William C.; Crum, Jarrod V.

    2016-01-01

    Chlorosodalite has the general form of Na8(AlSiO4)6Cl2 and this paper describes experiments conducted to synthesize sodalite with a solution-based approach to immobilize a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. The reactants used were the salt solution, NaAlO2, and either Si(OC2H5)4 or Ge(OC2H5)4. Additionally, seven different glass sintering aids (at loadings of 5 mass%) were evaluated as sintering aids for consolidating the as-made powders using a cold-press-and-sinter technique. This process of using alkoxide additives for the Group IV component can be used to produce large quantities of sodalite at near-room temperature as compared to a method where colloidal silica was used as the silica source. However, the small particle sizes inhibited densification during heat treatments.

  14. An Evaluation of Metal Salts of 3-Nitro-1,2,4-triazol-5-one (NTO) as Potential Primary Explosives

    DTIC Science & Technology

    1989-11-01

    heavy metal salts; silver, lead, mercuric, barium, cadmium, strontium, cupric, nickel and stannous.Normal salts were prepared in all cases, and acid salts for sodium, potassium lead and mercuric. The ammonium salt was shown to be identical to that reported previously. Response to mechanical and thermal stimuli is typical of sensitive secondary explosives. It is concluded that these materials do not have any potential for use as primary (initiating) explosives. Keywords: Fillers, Warheads, Fuzes ordnance, Boosters explosives,

  15. Preliminary evaluation of solution-mining intrusion into a salt-dome repository

    SciTech Connect

    Not Available

    1981-06-01

    This report is the product of the work of an ONWI task force to evaluate inadvertant human intrusion into a salt dome repository by solution mining. It summarizes the work in the following areas: a general review of the levels of defense that could reduce both the likelihood and potential consequences of human intrusion into a salt dome repository; evaluation of a hypothetical intrusion scenario and its consequences; recommendation for further studies. The conclusions of this task force report can be summarized as follows: (1) it is not possible at present to establish with certainty that solution mining is credible as a human-intrusion event. The likelihood of such an intrusion will depend on the effectiveness of the preventive measures; (2) an example analysis based on the realistic approach is presented in this report; it concluded that the radiological consequences are strongly dependent upon the mode of radionuclide release from the waste form, time after emplacement, package design, impurities in the host salt, the amount of a repository intercepted, the solution mining cavity form, the length of time over which solution mining occurs, the proportion of contaminated salt source for human consumption compared to other sources, and the method of salt purification for culinary purposes; (3) worst case scenarios done by other studies suggest considerable potential for exposures to man while preliminary evaluations of more realistic cases suggest significantly reduced potential consequences. Mathematical model applications to process systems, guided by more advanced assumptions about human intrusion into geomedia, will shed more light on the potential for concerns and the degree to which mitigative measures will be required.

  16. Transferable ionic parameters for first-principles Poisson-Boltzmann solvation calculations: Neutral solutes in aqueous monovalent salt solutions

    NASA Astrophysics Data System (ADS)

    Ringe, Stefan; Oberhofer, Harald; Reuter, Karsten

    2017-04-01

    Implicit solvation calculations based on a Stern-layer corrected size-modified Poisson-Boltzmann (SMPB) model are an effective approach to capture electrolytic effects in first-principles electronic structure calculations. For a given salt solution, they require a range of ion-specific parameters, which describe the size of the dissolved ions as well as thickness and shape of the Stern layer. Out of this defined parameter space, we show that the Stern layer thickness expressed in terms of the solute's electron density and the resulting ionic cavity volume completely determine ion effects on the stability of neutral solutes. Using the efficient SMPB functionality of the full-potential density-functional theory package FHI-aims, we derive optimized such Stern layer parameters for neutral solutes in various aqueous monovalent electrolytes. The parametrization protocol relies on fitting to reference Setschenow coefficients that describe solvation free energy changes with ionic strength at low to medium concentrations. The availability of such data for NaCl solutions yields a highly predictive SMPB model that allows to recover the measured Setschenow coefficients with an accuracy that is comparable to prevalent quantitative regression models. Correspondingly derived SMPB parameters for other salts suffer from a much scarcer experimental data base but lead to Stern layer properties that follow a physically reasonable trend with ionic hydration numbers.

  17. Metal oxide chemistry in solution: the early transition metal polyoxoanions.

    PubMed

    Day, V W; Klemperer, W G

    1985-05-03

    Many of the early transition elements form large polynuclear metal-oxygen anions containing up to 200 atoms or more. Although these polyoxoanions have been investigated for more than a century, detailed studies of structure and reactivity were not possible until the development of modern x-ray crystallographic and nuclear magnetic resonance spectroscopic techniques. Systematic studies of small polyoxoanions in inert, aprotic solvents have clarified many of the principles governing their structure and reactivity, and also have made possible the preparation of entirely new types of covalent derivatives such as CH(2)Mo(4)O(15)H(3-), C(5)H(5)TiMo(5)O(18)(3-), and (OC)(3)Mn(Nb(2)W(4)O(19))(3-). Since most early transition metal polyoxoanions have structures based on close-packed oxygen arrays containing interstitial metal centers, their chemistry offers a rare opportunity to study chemical transformations in detail on well-defined metal oxide surfaces.

  18. Adsorption of N-alkylpyridinium chlorides from water and salt solutions on cellulose acetate ultrafiltration membranes

    SciTech Connect

    Klimenko, N.A.; Yaroshenko, N.A.; Kondratova, T.B.

    1988-09-01

    A study has been made of the adsorption of three homologues in the N-alkylpyridinium chloride series from water and salt solutions, over a wide range of concentrations, on cellulose acetate ultrafiltration membranes, Grades UAM-500 and UAM-150. When adsorption takes place from true solutions, the membrane surface is hydrophobized. In the region of micellar solutions, nonassociated molecules and micelles are adsorbed in the mesopores and supermicropores, forming a mosaic adsorption layer. The thickness of the modifying layer depends on the length of the hydrophobic radical and on the composition of the system.

  19. Phytoextraction of heavy metals by Sesuvium portulacastrum l. a salt marsh halophyte from tannery effluent.

    PubMed

    Ayyappan, Durai; Sathiyaraj, Ganesan; Ravindran, Konganapuram Chellappan

    2016-01-01

    The present study investigated the sources for remediation of heavy metals and salts from tannery effluent using salt marsh halophyte Sesuvium portulacastrum. From the results observed, in tannery effluent treated soil from 1 kg dry weight of plant sample, Sesuvium portulacastrum accumulated 49.82 mg Cr, 22.10 mg Cd, 35.10 mg Cu and 70.10 mg Zn and from 1 g dry weight of the plant sample, 246.21 mg Na Cl. Cultivation of Sesuvium portulacastrum significantly reduced the EC, pH and SAR levels in tannery effluent and salt treated soil and correspondingly increased in plant sample after 125 days of cultivation. In conclusion, Sesuvium portulacastrum was an efficient in accumulating heavy metals such as Chromium, Cadmium, Copper and Zinc, sodium and chloride maximum through its leaves when compared to stem and root. The finding of these bioacccumulation studies indicates that Sesuvium portulacastrum could be used for phytoremediation of tannery effluent contaminated field.

  20. Release of Metals by the Leaves of the Salt Marsh Grasses Spartina alterniflora and Phragmites australis

    NASA Astrophysics Data System (ADS)

    Burke, D. J.; Weis, J. S.; Weis, P.

    2000-08-01

    The perennial grass Spartina alterniflora, common to salt marshes of eastern North America, is known to accumulate metals from marsh sediment and release them into the environment. One pathway by which Spartina alterniflora releases metals is through the excretion of metal-containing salts produced by leaf salt glands. We examined the differential release of metals by Spartina alterniflora and the invasive perennial grass Phragmites australis in an urban marsh ecosystem. Leaching rates were measured by cleaning residues off leaf surfaces under field and controlled laboratory conditions. Leaf residues and leaf tissue were analysed for copper, chromium, lead and zinc by atomic absorption spectrophotometry. Spartina alterniflora was found to release significantly more metal through leaf tissue than Phragmites australis, under both field and laboratory situations. Spartina alterniflora was also found to accumulate significantly more chromium and lead in leaves than Phragmites australis. Therefore, Spartina alterniflora can release larger quantities of metals into the marsh environment than Phragmites australis, through both excretion and leaf deposition.

  1. Results For The Third Quarter Calendar Year 2016 Tank 50H Salt Solution Sample

    SciTech Connect

    Crawford, C.

    2016-10-13

    In this memorandum, the chemical and radionuclide contaminant results from the Third Quarter Calendar Year 2016 (CY16) sample of Tank 50H salt solution are presented in tabulated form. The Third Quarter CY16 Tank 50H samples (a 200 mL sample obtained 6” below the surface (HTF-5-16-63) and a 1 L sample obtained 66” from the tank bottom (HTF-50-16-64)) were obtained on July 14, 2016 and received at Savannah River National Laboratory (SRNL) on the same day. Prior to obtaining the samples from Tank 50H, a single pump was run at least 4.4 hours, and the samples were pulled immediately after pump shut down. The information from this characterization will be used by Defense Waste Processing Facility (DWPF) & Saltstone Facility Engineering for the transfer of aqueous waste from Tank 50H to the Saltstone Production Facility, where the waste will be treated and disposed of in the Saltstone Disposal Facility. This memorandum compares results, where applicable, to Saltstone Waste Acceptance Criteria (WAC) limits and targets. Data pertaining to the regulatory limits for Resource Conservation and Recovery Act (RCRA) metals will be documented at a later time per the Task Technical and Quality Assurance Plan (TTQAP) for the Tank 50H saltstone task. The chemical and radionuclide contaminant results from the characterization of the Third Quarter CY16 sampling of Tank 50H were requested by Savannah River Remediation (SRR) personnel and details of the testing are presented in the SRNL TTQAP.

  2. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  3. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOEpatents

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  4. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    EPA Science Inventory

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  5. Assessment of a 42 metal salts chemical library in mouse embryonic stem cells

    EPA Science Inventory

    The developmental effects of xenobiotics on differentiation can be profiled using mouse embryonic stem cells (mESCs). The adherent cell differentiation and cytotoxicity (ACDC) technique was used to evaluate a library of 42 metal and metaloid salts. Jl mESCs were allowed to prolif...

  6. Nonmonotonic variation with salt concentration of the second virial coefficient in protein solutions.

    PubMed

    Allahyarov, E; Löwen, H; Hansen, J P; Louis, A A

    2003-05-01

    The osmotic virial coefficient B2 of globular protein solutions is calculated as a function of added salt concentration at fixed pH by computer simulations of the "primitive model." The salt and counterions as well as a discrete charge pattern on the protein surface are explicitly incorporated. For parameters roughly corresponding to lysozyme, we find that B2 first decreases with added salt concentration up to a threshold concentration, then increases to a maximum, and then decreases again upon further raising the ionic strength. Our studies demonstrate that the existence of a discrete charge pattern on the protein surface profoundly influences the effective interactions and that linear and nonlinear Poisson Boltzmann theories fail for large ionic strength. The observed nonmonotonicity of B2 is compared with experiments. Implications for protein crystallization are discussed.

  7. Effects of ion exchange on stream solute fluxes in a basin receiving highway deicing salts

    USGS Publications Warehouse

    Shanley, J.B.

    1994-01-01

    At Fever Brook, a 1260-ha forested basin in central Massachusetts, highway deicing salt application increased the solute flux in streamflow by 120% above background flux (equivalent basis) during a 2-yr period. Attempts to isolate the nonsalt component of stream solute fluxes have commonly subtracted salt contributions based on the net Cl flux (Cl output in streamflow minus Cl input in precipitation). In these studies, any net Na flux in excess of the amount needed to balance the net Cl flux has been attributed to weathering. At Fever Brook, however, the net output of Na was less than the net output of Cl, suggesting a loss of Na within the basin. The Na sink was inferred to be cation exchange of Na for Ca and Mg in the soil. A method was developed to quantify the exchange based on a Na budget, which included an independent estimate of the Na flux from weathering. The amount of exchange was apportioned to Ca and Mg based on their relative concentrations in the stream. The background fluxes of Ca and Mg (i.e., those that would occur in the absence of deicing salts) were calculated by subtracting the amounts from ion exchange plus the much smaller direct contributions in deicing salts from the observed fluxes. Ion exchange and direct salt contributions increased the net output fluxes of Ca and Mg, each by 44% above background. In basins that receive deicing salts, failure to account for cation exchange thus may result in an underestimate of the flux of Na from weathering and overestimates of the fluxes of Ca and Mg from weathering.

  8. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, P.A.; Stines, W.B.

    1981-01-21

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates is described, wherein thermal decomposition within a temperature range of about 300 to 800/sup 0/C is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  9. Method for improved decomposition of metal nitrate solutions

    DOEpatents

    Haas, Paul A.; Stines, William B.

    1983-10-11

    A method for co-conversion of aqueous solutions of one or more heavy metal nitrates wherein thermal decomposition within a temperature range of about 300.degree. to 800.degree. C. is carried out in the presence of about 50 to 500% molar concentration of ammonium nitrate to total metal.

  10. Plutonium and americium separation from salts

    DOEpatents

    Hagan, Paul G.; Miner, Frend J.

    1976-01-01

    Salts or materials containing plutonium and americium are dissolved in hydrochloric acid, heated, and contacted with an alkali metal carbonate solution to precipitate plutonium and americium carbonates which are thereafter readily separable from the solution.

  11. Solution synthesis of mixed-metal chalcogenide nanoparticles and spray deposition of precursor films

    DOEpatents

    Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    2000-01-01

    A colloidal suspension comprising metal chalcogenide nanoparticles and a volatile capping agent. The colloidal suspension is made by reacting a metal salt with a chalcogenide salt in an organic solvent to precipitate a metal chalcogenide, recovering the metal chalcogenide, and admixing the metal chalcogenide with a volatile capping agent. The colloidal suspension is spray deposited onto a substrate to produce a semiconductor precursor film which is substantially free of impurities.

  12. Molecular thermodynamics for swelling of a mesoscopic ionomer gel in 1 : 1 salt solutions.

    PubMed

    Victorov, A; Radke, C; Prausnitz, J

    2006-01-14

    For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a molecular-thermodynamic model is based on the self-consistent field theory in the limit of strongly segregated copolymer subchains. The geometry of microdomains is described using the Milner generic wedge construction neglecting the packing frustration. A geometry-dependent generalized analytical solution for the linearized Poisson-Boltzmann equation is obtained. This generalized solution not only reduces to those known previously for planar, cylindrical and spherical geometries, but is also applicable to saddle-like structures. Thermodynamic functions are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical morphologies. Molecules are characterized by chain composition, length, rigidity, degree of ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of mobile ions and polymer segments, and the electric potential across microdomains. Apart from effects obtained by coupling the classical Flory-Rehner theory with Donnan equilibria, viz. increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the model predicts the effects of microphase morphology on swelling.

  13. Transparent Metal-Salt-Filled Polymeric Radiation Shields

    NASA Technical Reports Server (NTRS)

    Edwards, David; Lennhoff, John; Harris, George

    2003-01-01

    "COR-RA" (colorless atomic oxygen resistant -- radiation shield) is the name of a transparent polymeric material filled with x-ray-absorbing salts of lead, bismuth, cesium, and thorium. COR-RA is suitable for use in shielding personnel against bremsstrahlung radiation from electron-beam welding and industrial and medical x-ray equipment. In comparison with lead-foil and leaded-glass shields that give equivalent protection against x-rays (see table), COR-RA shields are mechanically more durable. COR-RA absorbs not only x-rays but also neutrons and rays without adverse effects on optical or mechanical performance. The formulation of COR-RA with the most favorable mechanical-durability and optical properties contains 22 weight percent of bismuth to absorb x-rays, plus 45 atomic percent hydrogen for shielding against neutrons.

  14. Electromarking solution

    DOEpatents

    Bullock, Jonathan S.; Harper, William L.; Peck, Charles G.

    1976-06-22

    This invention is directed to an aqueous halogen-free electromarking solution which possesses the capacity for marking a broad spectrum of metals and alloys selected from different classes. The aqueous solution comprises basically the nitrate salt of an amphoteric metal, a chelating agent, and a corrosion-inhibiting agent.

  15. Direct Observation of Formation Behavior of Metal Emulsion in Sn/Salt System

    NASA Astrophysics Data System (ADS)

    Yoshida, Hironori; Liu, Jiang; Kim, Sun-Joong; Gao, Xu; Ueda, Shigeru; Maruoka, Nobuhiro; Ono, Shinpei; Kitamura, Shin-ya

    2016-08-01

    Using two systems with different interfacial tensions, the behavior of metal emulsions during bottom blowing was observed directly with a high-speed camera. The interfacial tension between molten salt (KCl-LiCl-NaCl) and molten Sn was measured by a pendant drop method, and it decreased to about 100 mN/m when the Te content in Sn increased from 0 to 0.5 pct. In both systems, two types of metal emulsion behaviors were observed. In Mode A, fine metal droplets were formed after the metal film ruptured at the interface. In Mode B, the formation of coarse droplets was observed after the disintegration of the column generated by the rising bubble, and the number of droplets increased with the gas flow rate compared to that in Mode A. The generating frequency of each mode revealed that Mode B became dominant with increasing gas flow rate. In the pure Sn/salt system, the numbers of droplets of Mode B showed a local maximum at high gas flow rates, but the numbers of droplets in Sn-0.5 pctTe/salt increased continuously even in the same flow range. Regarding the size distribution, the percentage of coarse metal droplets in the Sn-0.5 pctTe alloy/salt was larger than that in the pure Sn/salt. Furthermore, the effect of interfacial tension on the variation in surface area and volume of the droplets showed a similar tendency for the column height. Therefore, a decrement of the interfacial tension led to an increment of the column height when Mode B occurred and finally resulted in a higher interfacial area.

  16. Preparation and use of crystalline bis-monoorganic phosphonate and phosphate salts of tetravalent metals

    DOEpatents

    Maya, L.

    1980-06-26

    A method of preparing and using the crystalline organic derivatives of the tetravalent metal phosphates and phosphonates provides for the contacting of an aqueous solution of a metal nitrate, with a solution of an organophosphorus acid for a period of time at room temperature that is sufficient for the formation of a metal phosphate product, and thereafter recovering said product. According to the invention, the product of the disclosed process is used in effecting analytical separations, such as ion exchange and chromatography.

  17. Intrinsic viscosity and conformational parameters of xanthan in aqueous solutions: salt addition effect.

    PubMed

    Brunchi, Cristina-Eliza; Morariu, Simona; Bercea, Maria

    2014-10-01

    The intrinsic viscosity and conformational parameters of xanthan in aqueous solutions were investigated at 25°C as a function of salt nature (NaCl and KCl) and concentration (up to 3×10(-1)mol/L). The viscometric parameters were evaluated by applying semi-empirical equations proposed by Rao and Wolf. The results show that the new model proposed by Wolf provides accurate intrinsic viscosity values comparable with those obtained by using traditional methods. The experimental data were modeled with Boltzmann sigmoidal equation. The stiffness parameter, hydrodynamic volume and viscometric expansion factor were determined and discussed. With increasing salt concentration, the hydrodynamic volume and the viscometric expansion factor decrease and the critical overlap concentration increases, reaching limiting values above a given salt concentration. The high Huggins constant values suggest the existence of aggregates for salt concentrations above 5×10(-2) and 3×10(-3)mol/L for NaCl and KCl, respectively. Stiffness parameter was determined by Smidsrød and Haug method as being 5.45×10(-3), indicating a rigid conformation for xanthan macromolecules in solution.

  18. Effect of salt solutions applied during wheat conditioning on lipase activity and lipid stability of whole wheat flour.

    PubMed

    Doblado-Maldonado, Andrés F; Arndt, Elizabeth A; Rose, Devin J

    2013-09-01

    Lipolytic activity in whole wheat flour (WWF) is largely responsible for the loss in baking quality during storage. Metal ions affect the activity of seed lipases; however, no previous studies have applied this information to WWF in a way that reduces lipase activity, is practical for commercial manufacture, and uses common food ingredients. NaCl, KCl, Ca-propionate, or FeNa-ethylenediaminetetraacetic acid (FeNa-EDTA) were applied to hard red winter (HRW) and hard white spring (HWS) wheats during conditioning as aqueous solutions at concentrations that would be acceptable in baked goods. Salts affected lipase activity to different degrees depending on the type of wheat used. Inhibition was greater in HRW compared with HWS WWF, probably due to higher lipase activity in HRW wheat. In HRW WWF, 1% NaCl (flour weight) reduced hydrolytic and oxidative rancidity and resulted in higher loaf volume and lower firmness than untreated WWF after 24 weeks of storage.

  19. Condensation of semiflexible polyelectrolytes in mixed solutions of mono- and multivalent salts

    NASA Astrophysics Data System (ADS)

    Plunk, Amelia A.; Luijten, Erik

    2013-03-01

    The salt-dependent condensation of highly charged polyelectrolytes in aqueous solution is a topic of great biological and industrial importance that has been widely studied over the past decades. It is well established that interaction with multivalent counterions leads to the formation of bundle-like aggregates for rigid polyelectrolytes and to collapsed structures or disordered aggregates for flexible polyelectrolytes. Here, we investigate the behavior of semiflexible chain molecules, where the electrostatically induced aggregation is impeded by the intrinsic bending stiffness of the polymer. Moreover, we study the competition between monovalent and multivalent counterions in mixed solutions and establish the threshold salt concentration required for condensation. Our findings are relevant for a range of biomedical problems, including the fabrication of nanoparticles for gene delivery and the packaging of DNA by histones. This work is supported by the National Science Foundation.

  20. Solution-derived sodalite made with Si- and Ge-ethoxide precursors for immobilizing electrorefiner salt

    SciTech Connect

    Riley, Brian J.; Lepry, William C.; Crum, Jarrod V.

    2016-01-01

    Chlorosodalite has the general form of Na8(AlSiO4)6Cl2 and this paper describes experiments conducted to synthesize sodalite to immobilize a mixed chloride salt using solution-based techniques. Sodalites were made using different Group IV contributions from either Si(OC2H5)4 or Ge(OC2H5)4, NaAlO2, and a simulated spent electrorefiner salt solution containing a mixture of alkali, alkaline earth, and lanthanide chlorides. Additionally, 6 glass binders at low loadings of 5 mass% were evaluated as sintering aids for the consolidation process. The approach of using the organic Group IV additives can be used to produce large quantities of sodalite at room temperature and shows promise over a method where colloidal silica is used as the silica source. However, the small particle sizes inhibited densification during pressure-less sintering.

  1. Characterization of Swollen States of Polyelectrolyte Brushes in Salt Solution by Neutron Reflectivity

    NASA Astrophysics Data System (ADS)

    Kobayashi, Motoyasu; Mitamura, Koji; Terada, Masami; Yamada, Norifumi L.; Takahara, Atsushi

    2011-01-01

    Cationic and zwitterionic polyelectrolyte brushes on quartz substrate were synthesized by surface-initiated atom transfer radical polymerization of 2-(methacryloyloxy)-ethyltrimethylammonium chloride (MTAC) and 2-(methacryloyloxy)ethyl phosphorylcholine (MPC). The effects of ionic strength on brush structure are investigated by neutron reflectivity (NR) in NaCl deuterium oxide (D2O) solutions. We observed that poly(MTAC) chains were drastically shrunk at concentrations above 0.1 M NaCl/D2O, which may be the change in charge-screening effect against ions on poly(MTAC). On the other hand, effect of salt concentration on a swollen state of poly(MPC) brush was negligible, even at the high concentration (5.0 M) close to saturation. The behaviour of poly(MPC) in salt aqueous solution is completely different from that of poly(MTAC), which may arise from the unique interaction properties, neutral nature, and hydrated water structure of phosphorylcholine units.

  2. Characterization of swollen structure of high-density polyelectrolyte brushes in salt solution by neutron reflectivity

    NASA Astrophysics Data System (ADS)

    Kobayashi, Motoyasu; Terayama, Yuki; Hino, Masahiro; Ishihara, Kazuhiko; Takahara, Atsushi

    2009-08-01

    Zwitterionic and cationic polyelectrolyte brushes on quartz substrate were prepared by surface-initiated atom transfer radical polymerization of 2-(methacryloyloxy)ethyl phosphorylcholine (MPC) and 2-(methacryloyloxy)ethyltrimethylammonium chloride (METAC), respectively. The effects of ionic strength on brush structure and surface properties of densely grafted polyelectrolyte brushes were analysed by neutron reflectivity (NR) measurements. NR at poly(METAC)/D2O and poly(MPC)/D2O interface revealed that the grafted polymer chains were fairly extended from the substrate surface, while the thickness reduction of poly(METAC) brush was observed in 5.6 M NaCl/D2O solution due to the screening of the repulsive interaction between polycations by hydrated salt ions. Interestingly, no structural change was observed in poly(MPC) brush even in a salt solution probably due to the unique interaction properties of phosphorylcholine units.

  3. Prediction of subsidence resulting from creep closure of solutioned-mined caverns in salt domes

    SciTech Connect

    Neal, J.T.

    1991-01-01

    The prediction of subsidence rates over a range of areal configurations of solution-mined caverns in salt domes is possible, based on some fifty years of history in solution mining. Several approaches contribute to predictions: site-specific observations obtained from subsidence monitoring; numerical modeling, now becoming more practicable and credible; salt-creep data from testing; and rule-of-thumb methods, based on experience. All of these approaches contribute to understanding subsidence but none are totally reliable alone. The example of subsidence occurring at the Strategic Petroleum Reserve sites demonstrates several principles of cavern creep closure, the main cause of the subsidence, and shows that reliable projections of future subsidence are possible. 13 refs., 6 figs.

  4. Synergistic cytotoxic effects of ions released by zinc-aluminum bronze and the metallic salts on osteoblastic cells.

    PubMed

    Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A

    2013-07-01

    The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.

  5. Studies of 6Li-NMR properties in different salt solutions in low magnetic fields

    NASA Astrophysics Data System (ADS)

    Gordji-Nejad, A.; Colell, J.; Glöggler, S.; Blümich, B.; Appelt, S.

    2012-01-01

    In this article we report the longitudinal relaxation times ( T1) of various 6Li salts ( 6LiI, 6LiCl and 6LiNO 3) in D 2O and H 2O, measured in low magnetic fields ( B0 = 3.5 mT). This investigation serves the purpose of clarifying the relaxation behavior of different 6Li solutions and different concentrations. The measurement were undertaken to establish a framework for future applications of hyperpolarized 6Li in medical imaging, biological studies and investigations of lithium ion batteries. Time will pass during the transport of hyperpolarized lithium ions to the sample, which leads to a polarization loss. In order to store polarization as long as possible, it is necessary to examine which 6Li salt solution has the longest relaxation time T1. Longitudinal relaxation times of 6Li salts in D 2O and H 2O were investigated as a function of concentration and the most extended T1 was found for 6LiI in D 2O and H 2O. In agreement with the theory the relaxation time T1 of all 6Li salts increase with decreasing concentration. In the case of 6LiI in H 2O an inverse behavior was observed. We assume that the prolonged T1 times occur due to formation of 6LiOH upon the solution of 6LiI in H 2O, which settles as a precipitate. By diluting the solution, the precipitate continuously dissolves and approaches T1 of 6LiOH ( T1 ˜ 28 s), leading to a shorter T1 relaxation time.

  6. Decomposition of belowground litter and metal dynamics in salt marshes (Tagus Estuary, Portugal).

    PubMed

    Pereira, Patrícia; Caçador, Isabel; Vale, Carlos; Caetano, Miguel; Costa, Ana Luísa

    2007-07-15

    The concentrations of C, Fe, Mn, Zn, Cu, Pb and Cd were determined monthly in decomposing roots of Halimione portulacoides, using litterbag experiments, in two salt marshes of the Tagus estuary with different levels of contamination. Although carbon concentrations varied within a narrow interval during the experiment, litter decomposed rapidly in the first month (weight loss between 0.051 and 0.065 g d(-1)). The time variation of metals was examined in terms of Me/C ratios and metal stocks. Ratios of Fe/C and Mn/C and their metal stocks increased in spring, presumably due to the precipitation of oxides in the surface of decomposing roots. Subsequent decrease of Fe/C and Mn/C ratios suggests the use of Fe and Mn oxides, as electron acceptors, in the organic matter oxidation. Zinc, Cu, Pb and Cd ratios to C were, in general, higher than at initial conditions implying that metal that leached out was slower than carbon. However, metal stocks decreased during the experiment indicating that incorporation or sorption of metals in Fe and Mn oxides did not counterbalance the amount of Zn, Pb and Cd released from decomposing litter. An exception was observed for Cu, since stock in the less contaminated marsh (Pancas) increased during the decomposition, indicating that litter was efficient on Cu binding under more oxidising conditions. These results emphasize the importance of litter decomposition and sediment characteristics on metal cycling in salt marshes.

  7. External application of hypertonic salt solution for treatment of posttraumatic oedema.

    PubMed

    Atalar, Hakan; Yavuz, Osman Y; Uras, Ismail; Selek, Hakan; Erakar, Aziz; Sayli, Ugur

    2005-08-01

    In 20 New Zealand rabbits (two groups of 10 rabbits each), hind limb circumference and anterior compartment pressure were measured following ketamin anaesthesia (time zero). During the same anaesthesia, closed transverse proximal tibial shaft fractures were created in both groups. Twenty-four hours after the fractures, during a second anaesthesia, limb circumference and compartment pressure were measured as before, and fractured limbs were fixed to the rabbits' bodies. At the same time, treatment was started: one group received external application of saturated salt solution and the other group received intermittent ice application. During 48 hours of treatment (from 24 to 72 hours) in the saturated salt solution group, the mean limb circumference decreased from 125.70 +/- 9.93 mm to 115.70 +/- 8.78 mm (p = 0.005) and the mean compartment pressure decreased from 18.30 +/- 1.70 mmHg to 12.40 +/- 1.77 mmHg (p = 0.005). In the control group, the mean limb circumference decreased from 127.85 +/- 7.47 mm to 122.00 +/- 6.83 mm (not significant) and the mean compartment pressure decreased from 19.57 +/- 1.27 mmHg to 17.85 +/- 2.67 mmHg (not significant). In short, differences in compartment pressure and limb circumference before and after treatment were statistically significant in the saturated salt solution group (p = 0.005) but not in the control group.

  8. Molten fluoride salts incorporation into pristine and ion-modified carbon allotropes and metallic foils

    NASA Astrophysics Data System (ADS)

    Vacík, J.; Hnatowicz, V.; Ĉervená, J.; Mach, R.; Peka, I.

    1999-01-01

    Incorporation of molten fluoride salts into different carbon allotropes (glassy carbon, pyrolytic graphite etc.) and metallic foils (Ni, Ti, etc.), pristine and ion- treated substances, has been studied using non-destructive, depth sensitive nuclear analytical methods—Neutron Depth Profiling (NDP) and Rutherford Backscattering (RBS). Strong interaction between the molten LiF and LiF+KF+NaF salts and the tested materials was found. The results are of great interest for accelerator driven transmutation technology (ADTT) which is a promising way towards effective liquidation of nuclear wastes.

  9. Investigation of the salting out of methane from aqueous electrolyte solutions using computer simulations.

    PubMed

    Docherty, H; Galindo, A; Sanz, E; Vega, C

    2007-08-02

    We calculate the excess chemical potential of methane in aqueous electrolyte solutions of NaCl using Monte Carlo computer simulations. In a recent work [Docherty et al. J. Chem. Phys. 2006, 125, 074510], we presented a new potential model for methane in water which is capable of describing accurately the excess chemical potential of methane in pure water over a range of temperatures, a quantity that can be related to the solubility and which is commonly used to study the hydrophobic effect. Here, we use the same potential model for the water-methane interactions and investigate the effect of added salt on the chemical potential of methane in the solution. The methane molecules are modeled as single Lennard-Jones (LJ) interaction sites, and the water molecules are modeled with the TIP4P/2005 model. A correcting factor of chi = 1.07 for the energetic Berthelot (geometric) combining rule of the methane-water interaction is also used, which mimics the polarization of methane in water. We consider NaCl as the salt and treat the ions with the Smith and Dang model (i.e., as charged LJ interaction sites). Ion-water, ion-ion, and ion-methane interactions are treated using Lorentz-Berthelot combining rules. In addition, the Coulombic potential is used to model charge-charge interactions which are calculated using the Ewald sum. We have carried out isobaric-isothermal (NpT) simulations to determine the equilibrium densities of the solutions. The simulation data is in excellent agreement with experimental densities of aqueous NaCl solutions of different concentration. Hydration numbers are also obtained and found to be in agreement with reported data. Canonical (NVT) simulations at the averaged densities are then performed using the Widom test-particle insertion method to obtain the excess chemical potential of methane in the saline solutions. An increase in the chemical potential of methane, corresponding to a salting out effect, is observed when salt is added to the solution

  10. Precision and accuracy of TearLab osmometer in measuring osmolarity of salt solutions.

    PubMed

    Yoon, Dan; Gadaria-Rathod, Neha; Oh, Cheongeun; Asbell, Penny A

    2014-12-01

    The purpose of this study was to examine the inherent precision and accuracy of TearLab Osmolarity System using salt solutions, including solutions of very high osmolarity (>360 mOsm/L). Ten salt solutions with osmolarity between 286 mOsm/L and 394 mOsm/L (increments of 12 mOsm/L) plus an additional solution of 400 mOsm/L were tested twice on both the TearLab osmometer and a freezing point depression osmometer. For precision, we compared the two repeated osmolarity measurements of 11 solutions obtained from TearLab. For accuracy, we compared the averaged osmolarity measurements obtained from TearLab to those from the freezing point depression osmometer. For both precision and accuracy, Bland-Altman test of agreement was used. For precision, the upper 95% limit of agreement was 4.7 mOsm/L, and the lower 95% limit of agreement was -7.1 mOsm/L. The repeatability coefficient was 5.9 mOsm/L. For accuracy, the upper 95% limit of agreement was 4.8 mOsm/L and the lower 95% limit of agreement was -5.3 mOsm/L. The present study is the first study to demonstrate that the TearLab in situ osmometer can precisely and accurately measure osmolarity of salt solutions, including those with very high osmolarity. Future studies to evaluate the precision and the accuracy of the machine in measuring complex fluids, such as tears, need to be done, and the clinical significance of measuring tear osmolarity in patients needs to be further determined.

  11. The Role of Heavy Metal Salts in Pathological Biomineralization of Breast Cancer Tissue.

    PubMed

    Romanjuk, Anatolij; Lyndin, Mykola; Moskalenko, Roman; Gortinskaya, Olena; Lyndina, Yuliya

    2016-01-01

    The process of pathological biomineralization plays an important part in the morphogenesis of tumors. The role of heavy metal salts in the pathological mineralization of breast cancer tissue should not be ruled out, considering their ability to enter into covalent bonds with calcium salt molecules. The aim of the study was to investigate the microelement composition of breast cancer calcifications and the participation of heavy metals in their formation process. The material for the study consisted of 20 specimens of breast cancer tissue in which calcifications had been found in histological tests (hematoxylin-eozin and alizarin red S staining). The chemical composition of the calcifications was studied using a scanning electron microscope with an energy-dispersive spectrometer. Alizarin red S staining detected the presence of concrements in tumor tissue and rings of calcification around these deposits. Examining the biomineralization with energy dispersive spectrometry showed that along with calcium and phosphorus, it contained microelements such as iron, zinc, copper, chromium and nickel, which can replace calcium ions in the exterior part of hydroxyapatite molecules. This causes the hydroxyapatite molecule's molar mass to increase and its solubility to decrease; its chances of being deposited in tumor tissue also increase. This implies that an increased intake of heavy metal salts in organisms can lead to pathological mineralization of breast cancer tissue. Excessive intake of heavy metal salts into the body leads to their involvement in the pathological mineralization of breast cancer tissue. This happens due to these salts bonding to hydroxyapatite molecules, direct sedimentation of proteins and increasing degenerative-necrotic changes in breast cancer tissue as the mineralization process progresses.

  12. Inefficacy of osmotic backwash induced by sodium chloride salt solution in controlling SWRO membrane fouling

    NASA Astrophysics Data System (ADS)

    Farooque, A. Mohammed; Al-Jeshi, Subhi; Saeed, Mohamed O.; Alreweli, Ali

    2014-12-01

    A study was conducted to evaluate the efficacy of osmotic backwash induced by high salt (NaCl) concentration solution on feed side of seawater reverse osmosis (SWRO) membranes, online and offline, in controlling membrane fouling and therefore minimizing/eliminating the need for chemical cleaning. SWRO membranes were deliberately fouled by feeding seawater from an open intake located on the Arabian Gulf Coast without dosing chemicals. The fouled membranes were subjected to offline cleaning with the salt solution of up to 25 % concentration. Despite the partial removal of foulants from the membrane surface, SWRO membrane performance could not be restored, indicating the ineffectiveness of osmotic backwash in aiding offline salt cleaning. Similarly, online osmotic backwash was found to be not only ineffective in removing foulants from membrane surfaces but actually increased the fouling rate, as indicated by faster fouling rates compared to other cases. Although the driving force required for the osmotic backwash existed, the generated back flow proved to be insufficient to detach foulants from membrane surfaces. During the study period, the average SWRO membrane flux was maintained between 19 and 23 LMH, whereas the average generated back flow flux by high salt concentration solution was only 11 LMH, which was not adequate to remove foulants from membrane surfaces. Moreover, it seems that the membrane configuration as well as inherent microstructure of SWRO membrane places certain constraints on the osmotic backwash process and renders osmotic backwash ineffective in tackling SWRO membrane fouling. Hence, chemical cleaning is essential to restore SWRO membrane performance whenever fouling occurs, and the use of highly concentrated salt solution does not have any significant benefit. Membrane autopsy revealed only an insignificant accumulation of biofouling layer despite the absence of disinfection. However, it was shown that culturable biofilm bacteria species

  13. Silica precipitation in acidic solutions: mechanism, pH effect, and salt effect.

    PubMed

    Gorrepati, Elizabeth A; Wongthahan, Pattanapong; Raha, Sasanka; Fogler, H Scott

    2010-07-06

    This study is the first to show that silica precipitation under very acidic conditions ([HCl] = 2-8 M) proceeds through two distinct steps. First, the monomeric form of silica is quickly depleted from solution as it polymerizes to form primary particles approximately 5 nm in diameter. Second, the primary particles formed then flocculate. A modified Smoluchowski equation that incorporates a geometric population balance accurately describes the exponential growth of silica flocs. Variation of the HCl concentration between 2 and 8 M further showed that polymerization to form primary particles and subsequent particle flocculation become exponentially faster with increasing acid concentration. The effect of salt was also studied by adding 1 M chloride salts to the solutions; it was found that salts accelerated both particle formation and growth rates in the order: AlCl(3) > CaCl(2) > MgCl(2) > NaCl > CsCl > no salt. It was also found that ionic strength, over cation identity, determines silica polymerization and particle flocculation rates. This research reveals that precipitation of silica products from acid dissolution of minerals can be studied apart from the mineral dissolution process. Thus, silica product precipitation from mineral acidization follows a two-step process--formation of 5 nm primary particles followed by particle flocculation--which becomes exponentially faster with increasing HCl concentration and with salts accelerating the process in the above order. This result has implications for any study of acid dissolution of aluminosilicate or silicate material. In particular, the findings are applicable to the process of acidizing oil-containing rock formations, a common practice of the petroleum industry where silica dissolution products encounter a low-pH, salty environment within the oil well.

  14. An empirical correlation between the enthalpy of solution of aqueous salts and their ability to form hydrates

    SciTech Connect

    Pandelov, S.; Werhahn, Jasper C.; Pilles, Bert M.; Xantheas, Sotiris S.; Iglev, H.

    2010-09-30

    The ability of aqueous salt solutions to form hydrates by cooling them at ambient pressure is probed by infrared (IR) spectroscopy by examining the structure of the spectra in the hydrogen-bonding region (3,000 - 3,800 cm-1). A collection of 75 organic and inorganic salts in saturated solutions are examined. We have found a correlation between the enthalpy of solution of the salt and its ability to form a hydrate, namely that the salt’s enthalpy of solution is lower than the standard enthalpy of fusion of ice (6 kJ/mol). This observation can serve as an empirical rule that determines whether a salt will form a hydrate upon cooling from its aqueous solution.

  15. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  16. Spectrophotometric investigation of reaction of uranyl salts with neutral organophosphorus compounds in aqueous solutions

    SciTech Connect

    Takshin, V.V.; Khokhlova, N.L.

    1985-07-01

    The authors study the reaction of uranyl salts with neutral organophosphorous compounds in aqueous solutions of mineral acids. They show that compounds of the R /SUB n/ P(O)-(OR) /SUB 3-n/ type (n = 0, 1, 2, 3; R = CH/sub 3/, C/sub 2/H/sub 5/) do not form complexes with UO/sub 2//sup 2 +/. In perchlorate solutions U/sub 2//sup 2 +/ forms complex with ((CH/sub 3/)/sub 2/ N)/sub 3/ PO. The equilibrium constant of this reaction is 6.4 + or - 0.6 mole/sup -1/. liter at 298 degrees K.

  17. Aqueous Biphasic Systems Based on Salting-Out Polyethylene Glycol or Ionic Solutions: Strategies for Actinide or Fission Product Separations

    SciTech Connect

    Rogers, Robin D.; Gutowski, Keith E.; Griffin, Scott T.; Holbrey, John D.

    2004-03-29

    Aqueous biphasic systems can be formed by salting-out (with kosmotropic, waterstructuring salts) water soluble polymers (e.g., polyethylene glycol) or aqueous solutions of a wide range of hydrophilic ionic liquids based on imidazolium, pyridinium, phosphonium and ammonium cations. The use of these novel liquid/liquid biphases for separation of actinides or other fission products associated with nuclear wastes (e.g., pertechnetate salts) has been demonstrated and will be described in this presentation.

  18. DISSOLUTION OF PLUTONIUM METAL USING NITRIC ACID SOLUTIONS CONTAINING POTASSIUM FLUORIDE

    SciTech Connect

    Rudisill, T.; Crowder, M.; Bronikowski, M.

    2007-10-15

    The deinventory and deactivation of the Savannah River Site's (SRS's) FB-Line facility required the disposition of approximately 2000 items from the facility's vaults. Plutonium (Pu) scraps and residues which do not meet criteria for conversion to a mixed oxide fuel will be dissolved and the solution stored for subsequent disposition. Some of the items scheduled for dissolution are composite materials containing Pu and tantalum (Ta) metals. The preferred approach for handling this material is to dissolve the Pu metal, rinse the Ta metal with water to remove residual acid, and burn the Ta metal. The use of a 4 M nitric acid (HNO{sub 3}) solution containing 0.2 M potassium fluoride (KF) was initially recommended for the dissolution of approximately 500 g of Pu metal. However, prior to the use of the flowsheet in the SRS facility, a new processing plan was proposed in which the feed to the dissolver could contain up to 1250 g of Pu metal. To evaluate the use of a larger batch size and subsequent issues associated with the precipitation of plutonium-containing solids from the dissolving solution, scaled experiments were performed using Pu metal and samples of the composite material. In the initial experiment, incomplete dissolution of a Pu metal sample demonstrated that a 1250 g batch size was not feasible in the HB-Line dissolver. Approximately 45% of the Pu was solubilized in 4 h. The remaining Pu metal was converted to plutonium oxide (PuO{sub 2}). Based on this work, the dissolution of 500 g of Pu metal using a 4-6 h cycle time was recommended for the HB-Line facility. Three dissolution experiments were subsequently performed using samples of the Pu/Ta composite material to demonstrate conditions which reduced the risk of precipitating a double fluoride salt containing Pu and K from the dissolving solution. In these experiments, the KF concentration was reduced from 0.2 M to either 0.15 or 0.175 M. With the use of 4 M HNO{sub 3} and a reduction in the KF

  19. Nanoporous thin films from nanophase-separated hybrids of block copolymer/metal salt

    NASA Astrophysics Data System (ADS)

    Sageshima, Yoshio; Noro, Atsushi; Matsushita, Yushu

    2013-03-01

    Block copolymers self-assemble into periodic nanostructures, i.e. nanophase-separated structures, which can be scaffolds for nano-applications such as nanoporous membranes, nanolithographic masks, photonic crystals, etc. In this study, we report facile preparation to achieve nanoporous thin films from nanophase-separated hybrids comprising polystyrene- b-poly(4-vinylpyridine) (PS-P4VP, Mn = 54k, PDI =1.13, fs = 0.61) and water-soluble iron(III) chloride (FeCl3) , where FeCl3 are incorporated into a P4VP phase via metal-to-ligand coordination. To obtain a nanoporous film, firstly a hybrid thin film was prepared by microtoming. Then, the film was immersed into water to remove metal salts, this simple procedure can produce nanoporous thin film. Morphological observations were conducted by using transmission electron microscopy (TEM). Ordered cylindrical nanopores were observed in the thin film of the water-immersed hybrid, which originally presents cylindrical nanodomains. The nanoporous film was modified by loading another metal salt, samarium(III) nitrate, into nanopores via coordination between the metal salt and P4VP tethered to the pore walls. The structure of the sample after modification was evaluated by TEM and an energy dispersive X-ray spectroscopy.

  20. Hexahalorhenate(iv) salts of metal oxazolidine nitroxides.

    PubMed

    Pedersen, Anders H; Geoghegan, Blaise L; Nichol, Gary S; Lupton, David W; Murray, Keith S; Martínez-Lillo, José; Gass, Ian A; Brechin, Euan K

    2017-04-04

    Eight coordination compounds of formulae [Fe(II)(L˙)2][Re(IV)Cl6] (1a), [Fe(II)(L˙)2][Re(IV)Br6] (1b), [Co(II)(L˙)2][Re(IV)Cl6]·CH3CN (2a), [Co(II)(L˙)2][Re(IV)Br6] (2b), [Ni(II)(L˙)(CH3CN)3][Re(IV)Cl6]·CH3CN (3a), [Ni(II)(L˙)(CH3CN)3][Re(IV)Br6]·3CH3CN (3b), [Cu(II)(L˙)2][Re(IV)Cl6] (4a) and [Cu(II)(L˙)2][Re(IV)Br6] (4b), where L˙ is the aminoxyl radical chelating ligand, 4,4'-dimethyl-2,2'-di(2-pyridyl)oxazolidine-N-oxide, have been synthesised. Structural and magnetic studies reveal metal-radical intramolecular antiferromagnetic interactions in the [M(II)(L˙)2](2+) cations in the iron, cobalt and copper based compounds (1a, 1b, 2a, 2b, 4a and 4b) with the central metal ion low-spin in the case of iron (1a and 1b) and a gradual, cobalt based, spin-crossover transition present in 2a and 2b. The nickel based compounds, 3a and 3b, were analysed in the dried form (3a(dried) and 3b(dried)) and directly in acetonitrile (3a(solvated) and 3b(solvated)). Microanalysis and IR spectroscopy on 3a(dried) and 3b(dried) suggest that the dried samples are best formulated as [Ni(II)(L˙)(H2O)3][Re(IV)X6], where X = Cl (3a(dried)) and Br (3b(dried)). All forms of 3a and 3b exhibit cationic metal-radical ferromagnetic interactions resulting in S = 3/2 ground states. In addition, 3a(dried) exhibits spin-canting behaviour with an ordering temperature of 2.7 K, an open hysteresis loop with a coercive field Hc = 580 Oe, and a remanent magnetisation Mr = 0.21μB, resulting in a canting angle of ∼1.8°. In contrast, 3b(dried) shows no spin-canting behaviour; a maximum in χMvs. T at T = 3 K suggesting long-range antiferromagnetic ordering. 3a(solvated) and 3b(solvated) show no indication of long-range magnetic ordering, unlike 4a and 4b where anomalies are evident in the low-temperature magnetic susceptibility measurements.

  1. Rheological properties and thickening mechanism of aqueous diutan gum solution: Effects of temperature and salts.

    PubMed

    Xu, Long; Gong, Houjian; Dong, Mingzhe; Li, Yajun

    2015-11-05

    Rheological properties of a new microbial polysaccharide, diutan gum in aqueous solution have been systematically investigated. It is found that molecular aggregates of diutan gum can be formed at a very low concentration (0.12 g/L), and the mechanism of thickening by diutan gum is proposed. The viscosity retention rate of diutan gum changes little when increasing the temperature from 298 K to 348 K or in a high salinity solution (55.5 g L(-1)). Gel structure can be formed in the diutan gum solution, owing to the finding that the dynamic modulus has an exponential relationship with the concentration. The gel properties of diutan gum are not sensitive to temperature, and are virtually independent of cationic environment (Na(+) and Ca(2+)). The temperature/salt tolerance of the diutan gum solution is mainly attributed to its perfect double helix molecular conformation, the location of the side chains of its molecules, and its water retention capacity.

  2. [Phytotoxicity of colloidal solutions of metal-containing nanoparticles].

    PubMed

    Konotop, Ie O; Kovalenko, M S; Ulynets', V Z; Meleshko, A O; Batsmanova, L M; Taran, N Iu

    2014-01-01

    Phytotoxicity of colloidal solutions of metal-containing nanoparticles (Ag, Cu, Fe, Zn, Mn) has been investigated using a standard Allium cepa (L.) test system. Toxicity of experimental solutions at the organism level was evaluated in terms of biomass growth of onion roots, and cytotoxicity was estimated by the mitotic index of root meristem cells. The colloidal solutions of metal nanoparticles inhibited the growth of Allium cepa (L.) roots due to their ability to penetrate into cells and interact with their components, and thus to inhibit mitosis. According to our results cytotoxicity of test solutions decreases in the following order: Cu > or = Zn > Ag > or = Fe. Solution of Mn-containing nanoparticles revealed physiological activity according to root growth reaction.

  3. Multicentre evaluation of reduced-osmolarity oral rehydration salts solution. International Study Group on Reduced-osmolarity ORS solutions.

    PubMed

    1995-02-04

    In developed countries, use of oral rehydration salts (ORS) solution with osmolarity lower than that of plasma has been recommended because of the risk of hypernatraemia. We compared the clinical efficacy of reduced-osmolarity ORS and standard ORS solutions in children with acute diarrhoea in four developing countries. 447 boys aged 1-24 months, admitted to hospitals in four countries with acute diarrhoea and signs of dehydration, were randomly assigned either standard ORS (311 mmol/L) or reduced-osmolarity ORS (224 mmol/L) solution. Total stool output was 39% greater (95% CI 11-75), total ORS intake 18% greater (3-33), and duration of diarrhoea 22% longer (2-45) in the standard ORS group than in the reduced-osmolarity ORS group. The risk of requiring intravenous infusion after completion of the initial oral rehydration was greater in children given standard ORS solution than in those given reduced-osmolarity ORS solution in three of the four countries (all-country relative risk 1.4 [0.9-2.4]). This relative risk was significantly increased only in non-breastfed children (2.0 [1.0-3.8], p < 0.05). In breastfed children, the relative risk of requiring intravenous infusion was not affected by the ORS solution (0.9 [0.4-2.0]). The mean sodium concentration 24 h after admission was significantly lower in the reduced-osmolarity ORS group than in the standard ORS group (135 [134-136] vs 138 [136-139] mmol/L, p < 0.01). Reduced-osmolarity ORS solution has beneficial effects on the clinical course of acute diarrhoea. Our findings support the use of reduced-osmolarity ORS solution in children with acute non-cholera diarrhoea in developing countries. Further studies are needed to find the best formulation and whether such a solution would be satisfactory for the treatment of cholera.

  4. Adding salt to a surfactant solution: Linear rheological response of the resulting morphologies

    SciTech Connect

    Gaudino, Danila; Pasquino, Rossana Grizzuti, Nino

    2015-11-15

    The micellar system composed of Cetylpyridinium Chloride-Sodium Salicylate (CPyCl-NaSal) in brine aqueous solutions has been studied by systematically changing the salt concentration, in order to investigate the rheology of the arising morphologies. In particular, the zero-shear viscosity and the linear viscoelastic response have been measured as a function of the NaSal concentration (with [CPyCl] = 100 mM). The Newtonian viscosity shows a nonmonotonic dependence upon concentration, passing through a maximum at NaSal/CPyCl ≈ 0.6, and eventually dropping at higher salt concentrations. The progressive addition of salt determines first a transition from a Newtonian to a purely Maxwell-like behavior as the length of the micelles significantly increases. Beyond the peak viscosity, the viscoelastic data show two distinct features. On the one hand, the main relaxation time of the system strongly decreases, while the plateau modulus remains essentially constant. Calculations based on the rheological data show that, as the binding salt concentration increases, there is a decrease in micelles breaking rate and a decrease in their average length. On the other hand, in the same concentration region, a low-frequency elastic plateau is measured. Such a plateau is considered as the signature of a tenuous, but persistent branched network, whose existence is confirmed by cryo-transmission electron microscopy images.

  5. Absorption and desorption of SO2 in aqueous solutions of diamine-based molten salts.

    PubMed

    Lim, Seung Rok; Hwang, Junhyeok; Kim, Chang Soo; Park, Ho Seok; Cheong, Minserk; Kim, Hoon Sik; Lee, Hyunjoo

    2015-05-30

    SO2 absorption and desorption behaviors were investigated in aqueous solutions of diamine-derived molten salts with a tertiary amine group on the cation and a chloride anion, including butyl-(2-dimethylaminoethyl)-dimethylammonium chloride ([BTMEDA]Cl, pKb=8.2), 1-butyl-1,4-dimethylpiperazinium chloride ([BDMP]Cl, pKb=9.8), and 1-butyl-4-aza-1-azoniabicyclo[2,2,2]octane chloride ([BDABCO]Cl, pKb=11.1). The SO2 absorption and desorption performance of the molten salt were greatly affected by the basicity of the molten salt. Spectroscopic, X-ray crystallographic, and computational results for the interactions of SO2 with molten salts suggest that two types of SO2-containg species could be generated depending on the basicity of the unquaternized amino group: a dicationic species comprising two different anions, HSO3(-) and Cl(-), and a monocationic species bearing Cl(-) interacting with neutral H2SO3. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Analytical Results from Salt Solution Feed Tank (SSFT) Samples HTF-16-6 and HTF-16-40

    SciTech Connect

    Peters, T.

    2016-09-23

    Two samples from the Salt Solution Feed Tank (SSFT) were analyzed by SRNL, HTF-16-6 and HTF-16-40. Multiple analyses of these samples indicate a general composition almost identical to that of the Salt Batch 8-B feed and the Tank 21H sample results.

  7. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOEpatents

    Maroni, V.A.; von Winbush, S.

    1987-05-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500/degree/C, electrolysis at a voltage not more negative that about /minus/1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  8. Molten salt extraction process for the recovery of valued transition metals from land-based and deep-sea minerals

    DOEpatents

    Maroni, Victor A.; von Winbush, Samuel

    1988-01-01

    A process for extracting transition metals and particularly cobalt and manganese together with iron, copper and nickel from low grade ores (including ocean-floor nodules) by converting the metal oxides or other compositions to chlorides in a molten salt, and subsequently using a combination of selective distillation at temperatures below about 500.degree. C., electrolysis at a voltage not more negative than about -1.5 volt versus Ag/AgCl, and precipitation to separate the desired manganese and cobalt salts from other metals and provide cobalt and manganese in metallic forms or compositions from which these metals may be more easily recovered.

  9. Methods of producing adsorption media including a metal oxide

    DOEpatents

    Mann, Nicholas R; Tranter, Troy J

    2014-03-04

    Methods of producing a metal oxide are disclosed. The method comprises dissolving a metal salt in a reaction solvent to form a metal salt/reaction solvent solution. The metal salt is converted to a metal oxide and a caustic solution is added to the metal oxide/reaction solvent solution to adjust the pH of the metal oxide/reaction solvent solution to less than approximately 7.0. The metal oxide is precipitated and recovered. A method of producing adsorption media including the metal oxide is also disclosed, as is a precursor of an active component including particles of a metal oxide.

  10. Infrared spectroscopy of competitive interactions between liquid crystals, metal salts, and dimethyl methylphosphonate at surfaces.

    PubMed

    Cadwell, Katie D; Alf, Mahriah E; Abbott, Nicholas L

    2006-12-28

    We report the use of Fourier transform polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS) to characterize the influence of dimethyl methylphosphonate (DMMP) on the molecular interactions occurring within thin films of nitrile-containing liquid crystals supported on surfaces presenting metal perchlorate salts. Infrared spectra obtained using thin films of 4'-octyl-4-biphenylcarbonitrile (8CB) supported on copper(II) perchlorate salts reveal the nitrile groups of 8CB to be coordinated to the copper(II) on these surfaces, and subsequent exposure of the system to DMMP to result in the elimination of these coordinated nitrile groups. Concurrently, evidence of coordination of the phosphoryl group of DMMP with copper(II) is provided by measurement of a shift of the phosphoryl stretch from 1246 to 1198 cm(-1). In contrast, surfaces presenting nickel(II) perchlorate salts only weakly coordinate with DMMP [the phosphoryl peak shifts from 1246 to 1213 cm(-1) in the presence of nickel(II)], and exposure of 8CB to DMMP results in only partial loss of coordination of the nitrile groups of 8CB with nickel(II). These PM-IRRAS measurements and others reported in this article provide insights into the molecular origins of macroscopic ordering transitions that are observed when micrometer-thick films of nitrile-containing liquid crystals supported on copper(II) or nickel(II) perchlorate are exposed to DMMP: Upon exposure to DMMP, nematic phases of 4'-pentyl-4-biphenylcarbonitrile (5CB) supported on copper(II) perchlorate salts undergo ordering transitions, whereas 5CB supported on nickel(II) perchlorate salts do not. Our IR results support the hypothesis that these ordering transitions reflect the relative strengths of coordination interactions occurring between the 5CB, DMMP, and the metal salts at these interfaces.

  11. Molecular Thermodynamics for Swelling of a Mesoscopic Ionomer Gelin 1:1 Salt Solutions

    SciTech Connect

    Victorov, Alexey; Radke, Clayton; Prausnitz,John

    2005-06-15

    For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a molecular-thermodynamic model is based on the self-consistent field theory in the limit of strongly segregated copolymer subchains. The geometry of microdomains is described using the Milner generic wedge construction neglecting the packing frustration. Thermodynamic functions are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical morphologies. Molecules are characterized by chain composition, length, rigidity, degree of ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of mobile ions and polymer segments, and the electric potential across microdomains. Apart from effects obtained by coupling classical Flory-Rehner theory with Donnan equilibria, viz., increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the model predicts the effects of microphase morphology on swelling.

  12. Enhanced copper surface protection in aqueous solutions containing short-chain alkanoic acid potassium salts.

    PubMed

    Abelev, Esta; Starosvetsky, David; Ein-Eli, Yair

    2007-10-23

    The ability of dissolved potassium monocarboxylate salts to produce surface passivation and to inhibit aqueous corrosion of copper was studied. The electrochemical measurements indicate that the inhibiting efficiency of these compounds, with a general formula Cn-1H2n-1COOK or CnK (n=3...12), is dependent on the hydrocarbon chain length. The inhibiting efficiency was higher for a longer hydrocarbon chain of n-alkanoic acid. The degree of copper protection was found to increase with an increase in n-alkanoic acid potassium salt concentration; the optimum concentration of potassium dodecanoate (C12K) in sulfate solutions was found to be 0.07 M. The protective layers formed at the copper surface subsequent to exposure in various n-alkanoic acid potassium salt solutions were characterized by contact angle measurements, electrochemical impedance spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared reflection spectroscopy. Pronounced copper protection was attributed to the growth of a protective film on the copper surface, containing both copper oxides and copper carboxylate compounds. It is suggested that the organic molecules enhance copper protection by covering copper oxides with a thin and dense organic layer, which prevents water molecules or aggressive anions from interacting with the copper surface.

  13. Viscosity-Reducing Bulky-Salt Excipients Prevent Gelation of Protein, but Not Carbohydrate, Solutions.

    PubMed

    Kumar, Awanish; Klibanov, Alexander M

    2017-08-01

    The problem of gelation of concentrated protein solutions, which poses challenges for both downstream protein processing and liquid formulations of pharmaceutical proteins, is addressed herein by employing previously discovered viscosity-lowering bulky salts. Procainamide-HCl and the salt of camphor-10-sulfonic acid with L-arginine (CSA-Arg) greatly retard gelation upon heating and subsequent cooling of the model proteins gelatin and casein in water: Whereas in the absence of additives the proteins form aqueous gels within several hours at room temperature, procainamide-HCl for both proteins and also CSA-Arg for casein prevent gel formation for months under the same conditions. The inhibition of gelation by CSA-Arg stems exclusively from the CSA moiety: CSA-Na was as effective as CSA-Arg, while Arg-HCl was marginally or not effective. The tested bulky salts did not inhibit (and indeed accelerated) temperature-induced gel formation in aqueous solutions of all examined carbohydrates-starch, agarose, alginate, gellan gum, and carrageenan.

  14. Effects of Detergent β-Octylglucoside and Phosphate Salt Solutions on Phase Behavior of Monoolein Mesophases

    PubMed Central

    Khvostichenko, Daria S.; Ng, Johnathan J.D.; Perry, Sarah L.; Menon, Monisha; Kenis, Paul J.A.

    2013-01-01

    Using small-angle x-ray scattering (SAXS), we investigated the phase behavior of mesophases of monoolein (MO) mixed with additives commonly used for the crystallization of membrane proteins from lipidic mesophases. In particular, we examined the effect of sodium and potassium phosphate salts and the detergent β-octylglucoside (βOG) over a wide range of compositions relevant for the crystallization of membrane proteins in lipidic mesophases. We studied two types of systems: 1), ternary mixtures of MO with salt solutions above the hydration boundary; and 2), quaternary mixtures of MO with βOG and salt solutions over a wide range of hydration conditions. All quaternary mixtures showed highly regular lyotropic phase behavior with the same sequence of phases (Lα, Ia3d, and Pn3m) as MO/water mixtures at similar temperatures. The effects of additives in quaternary systems agreed qualitatively with those found in ternary mixtures in which only one additive is present. However, quantitative differences in the effects of additives on the lattice parameters of fully hydrated mesophases were found between ternary and quaternary mixtures. We discuss the implications of these findings for mechanistic investigations of membrane protein crystallization in lipidic mesophases and for studies of the suitability of precipitants for mesophase-based crystallization methods. PMID:24138861

  15. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    SciTech Connect

    Kobayashi, Kazuya; Liang, Yunfeng E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Sakka, Tetsuo

    2014-04-14

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  16. Acute tellurium toxicity from ingestion of metal-oxidizing solutions.

    PubMed

    Yarema, Mark C; Curry, Steven C

    2005-08-01

    Tellurium is an element used in the vulcanization of rubber and in metal-oxidizing solutions to blacken or tarnish metals. Descriptions of human toxicity from tellurium ingestion are rare. We report the clinical course of 2 children who ingested metal-oxidizing solutions containing substantial concentrations of tellurium. Clinical features included vomiting, black discoloration of the oral mucosa, and a garlic odor to the breath. One patient developed corrosive injury to the esophagus secondary to the high concentration of hydrochloric acid in the solution. Both patients recovered without serious sequelae, which is typical of tellurium toxicity. An awareness of situations in which children may be exposed to tellurium and its clinical presentation may assist clinicians in the diagnosis of this rare poisoning.

  17. Centrifugal separation for miscible solutions: Fundamentals and applications to separation of molten salt nuclear material

    SciTech Connect

    Ning Li; Camassa, R.; Ecke, R.E.

    1995-10-01

    The authors report on the physical separation of dilute solutions using centrifugal techniques. They use numerical simulations of the diffusion and sedimentation dynamics of centrifugation to model the approach to an equilibrium concentration profile. They verify experimentally the equilibrium profiles for aqueous solutions of different salts under rotation at 25000 rpm corresponding to centrifugal accelerations of about 57,000 g and 75,000 g in two different commercial centrifuges. These measurements provide ratios of sedimentation and diffusion coefficients. The authors show experimental results for the dynamics of separation that confirm the predictions of the theoretical model. They also measure the mass diffusion coefficient for several solutions. Although the relaxation to equilibrium is long, they have determined a method for efficiently extracting enriched components from a ternary mixture based on fast dynamics at early times. These dynamics are modeled in numerical simulations with realistic fluid parameters. Based on these studies the authors show that a multistage centrifugal separation process could provide efficient physical separation of actinides and fission products from a molten-salt solution in proposed transmutation/energy-production systems. The authors consider technical issues in the design of such a separation system.

  18. Coarse-grained model of glycosaminoglycans in aqueous salt solutions. A field-theoretical approach.

    PubMed

    Kolesnikov, Andrei L; Budkov, Yurij A; Nogovitsyn, Evgenij A

    2014-11-20

    We present results of self-consistent field calculations of thermodynamic and structural properties of glycosaminoglycans (chondroitin sulfate, hyaluronic acid, and heparin) in aqueous solutions with added monovalent and divalent salts. A semiphenomenological coarse-grained model for semiflexible polyelectrolyte chains in solution is proposed. The coarse-grained model permits one to focus on the essential features of these systems and provides significant computational advantages with respect to more detailed models. Our approach relies on the method of Gaussian equivalent representation for the calculation of the partition functions in the form of functional integrals. This method provides reliable thermodynamic information for polyelectrolyte solutions over wide ranges of monomer concentrations. In the present work, we use the comparison and fitting of the experimental osmotic pressure with a theoretical equation of state within the Gaussian equivalent representation. The degrees of ionization, radii of gyration, persistence lengths, and structure factors of chondroitin sulfate, hyaluronic acid, and heparin in aqueous solutions with added monovalent and divalent salts are calculated and discussed.

  19. Effects of Salts and Metal Oxides on Electrochemical and Optical Properties of Streptococcus mutans

    NASA Astrophysics Data System (ADS)

    Kawai, Tsuyoshi; Nagame, Seigo; Kambara, Masaki; Yoshino, Katsumi

    1994-10-01

    The effects of calcium salts and metal oxide powders on electrochemical, optical and biological properties of Streptococcus mutans have been studied as a novel method to determine the strain. Electrochemical signals of Streptococcus mutans show remarkable decrease in the presence of saturated calcium salts such as CaHPO4, Ca3(PO4)2, and Ca5(PO4)3OH depending on the strains of Streptococcus mutans: Ingbritt, NCTC-10449, or GS-5. The number of viable cells also decreases upon addition of these powders. The effects of metal oxides such as ZnO and BaTiO3 on the electrochemical characteristics and photoluminescence of Streptococcus mutans have also been studied.

  20. Chemodynamics of heavy metals in long-term contaminated soils: metal speciation in soil solution.

    PubMed

    Kim, Kwon-Rae; Owens, Gary

    2009-01-01

    The concentration and speciation of heavy metals in soil solution isolated from long-term contaminated soils were investigated. The soil solution was extracted at 70% maximum water holding capacity (MWHC) after equilibration for 24 h. The free metal concentrations (Cd2+, CU2+, Pb2+, and Zn2+) in soil solution were determined using the Donnan membrane technique (DMT). Initially the DMT was validated using artificial solutions where the percentage of free metal ions were significantly correlated with the percentages predicted using MINTEQA2. However, there was a significant difference between the absolute free ion concentrations predicted by MINTEQA2 and the values determined by the DMT. This was due to the significant metal adsorption onto the cation exchange membrane used in the DMT with 20%, 28%, 44%, and 8% mass loss of the initial total concentration of Cd, Cu, Pb, and Zn in solution, respectively. This could result in a significant error in the determination of free metal ions when using DMT if no allowance for membrane cation adsorption was made. Relative to the total soluble metal concentrations the amounts of free Cd2+ (3%-52%) and Zn2+ (11%-72%) in soil solutions were generally higher than those of Cu2+ (0.2%-30%) and Pb2+ (0.6%-10%). Among the key soil solution properties, dissolved heavy metal concentrations were the most significant factor governing free metal ion concentrations. Soil solution pH showed only a weak relationship with free metal ion partitioning coefficients (K(p)) and dissolved organic carbon did not show any significant influence on K(p).

  1. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    DOEpatents

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  2. Multi-responsive metal-organic lantern cages in solution.

    PubMed

    Brega, Valentina; Zeller, Matthias; He, Yufan; Lu, H Peter; Klosterman, Jeremy K

    2015-03-25

    Soluble copper-based M4L4 lantern-type metal-organic cages bearing internal amines were synthesized. The solution state integrity of the paramagnetic metal-organic cages was demonstrated using NMR, DLS, MS, and AFM spectroscopy. 1D supramolecular pillars of pre-formed cages or covalent host-guest complexes selectively formed upon treatment with 4,4'-bipyridine and acetic anhydride, respectively.

  3. Introductory lecture: interpreting and predicting Hofmeister salt ion and solute effects on biopolymer and model processes using the solute partitioning model.

    PubMed

    Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and

  4. Phase behavior of concentrated hydroxypropyl methylcellulose solution in the presence of mono and divalent salt.

    PubMed

    Almeida, Nalinda; Rakesh, Leela; Zhao, Jin

    2014-01-01

    Thermo reversible sol-gel transitions of hydroxypropylmethylcellulose (HPMC) are critical for many pharmaceutical, cosmetic, and food applications. This study examined the effects of salt (NaCl and CaCl₂) on the viscoelastic properties of concentrated low molecular weight HPMC solutions and found that the gelation temperature decreased linearly as a function of salt concentrations, independent of valency of cations and the mole concentration of anions. Thermal analysis showed that the depression of melting temperature can be fitted for both NaCl and CaCl₂ as a function of the total number of ions by a single linear curve, which was consistent with the melting point depression of pure water by NaCl and CaCl₂, but with a higher linear slope.

  5. A new procedure to measure effective molecular diffusion coefficients of salts solutions in building materials

    NASA Astrophysics Data System (ADS)

    Delgado, J. M. P. Q.

    2013-06-01

    The aim of this work is to present a mathematical and experimental formulation of a new simple procedure for the measurement of effective molecular diffusion coefficients of a salt solution in a water-saturated building material. This innovate experimental procedure and mathematical formulation is presented in detail and experimental values of "effective" molecular diffusion coefficient of sodium chloride in a concrete sample ( w/ c = 0.45), at five different temperatures (between 10 and 30 °C) and four different initial NaCl concentrations (between 0.1 and 0.5 M), are reported. The experimental results obtained are in good agreement with the theoretical and experimental values of molecular diffusion coefficient presented in literature. An empirical correlation is presented for the prediction of "effective" molecular diffusion coefficient over the entire range of temperatures and initial salt concentrations studied.

  6. Relative toxicity of inhaled metal sulfate salts for pulmonary macrophages

    SciTech Connect

    Skornik, W.A.; Brain, J.D.

    1983-08-01

    The effects of metal sulfate aerosols on respiratory defense mechanisms in hamsters were studied. Pulmonary macrophage phagocytic rates were measured by determining the in vivo uptake of radioactive colloidal gold (/sup 198/Au) 1, 24, or 48 h after a single 4-h exposure. The concentrations of sulfate aerosols causing a 50% inhibition in pulmonary macrophage endocytosis (EC/sub 50/) were determined. When hamsters were exposed for 4 h to cupric sulfate (greater than or equal to 4.8 mg/m/sup 3/), zinc sulfate (greater than or equal to 3.1 mg/m/sup 3/), ferric sulfate (greater than or equal to 7.8 mg/m/sup 3/), or zinc ammonium sulfate (greater than or equal to 10.0 mg/m/sup 3/), macrophage endocytosis was significantly reduced 1 h after exposure compared with that in unexposed control animals. Although the response was variable, 24 h after exposures to the higher sulfate concentrations the percent of gold ingested by pulmonary macrophages remained depressed. By 48 h, the rate of macrophage endocytosis in hamsters had returned to normal control values except in hamsters exposed to 4.8 mg/m/sup 3/ cupric sulfate or 9.8 mg/m/sup 3/ ferric sulfate. These hamsters showed significant increases in phagocytosis. The EC/sub 50/ values in milligrams of sulfate per cubic meter for cupric sulfate, zinc sulfate, ferric sulfate, and zinc ammonium sulfate were 2.7, 4.5, 7.5, and 17.9, respectively. These results are negatively correlated with the ranking of sulfates using the criteria of relative irritant potency, as measured by increases in pulmonary flow resistance. Thus, rankings of related chemical structures are not absolute. Their relative toxicities vary depending on the end point selected.

  7. Relative toxicity of inhaled metal sulfate salts for pulmonary macrophages.

    PubMed

    Skornik, W A; Brain, J D

    1983-08-01

    The effects of metal sulfate aerosols on respiratory defense mechanisms in hamsters were studied. Pulmonary macrophage phagocytic rates were measured by determining the in vivo uptake of radioactive colloidal gold (198Au) 1, 24, or 48 h after a single 4-h exposure. The concentrations of sulfate aerosols causing a 50% inhibition in pulmonary macrophage endocytosis (EC50) were determined. When hamsters were exposed for 4 h to cupric sulfate (greater than or equal to 4.8 mg/m3), zinc sulfate (greater than or equal to 3.1 mg/m3), ferric sulfate (greater than or equal to 7.8 mg/m3), or zinc ammonium sulfate (greater than or equal to 10.0 mg/m3), macrophage endocytosis was significantly reduced 1 h after exposure compared with that in unexposed control animals. Although the response was variable, 24 h after exposures to the higher sulfate concentrations the percent of gold ingested by pulmonary macrophages remained depressed. By 48 h, the rate of macrophage endocytosis in hamsters had returned to normal control values except in hamsters exposed to 4.8 mg/m3 cupric sulfate or 9.8 mg/m3 ferric sulfate. These hamsters showed significant increases in phagocytosis. The EC50 values in milligrams of sulfate per cubic meter for cupric sulfate, zinc sulfate, ferric sulfate, and zinc ammonium sulfate were 2.7, 4.5, 7.5, and 17.9, respectively. These results are negatively correlated with the ranking of sulfates using the criteria of relative irritant potency, as measured by increases in pulmonary flow resistance. Thus, rankings of related chemical structures are not absolute. Their relative toxicities vary depending on the end point selected.

  8. Photovoltaic Performance of PbS Quantum Dots Treated with Metal Salts.

    PubMed

    Ko, Dong-Kyun; Maurano, Andrea; Suh, Su Kyung; Kim, Donghun; Hwang, Gyu Weon; Grossman, Jeffrey C; Bulović, Vladimir; Bawendi, Moungi G

    2016-03-22

    Recent advances in quantum dot surface passivation have led to a rapid development of high-efficiency solar cells. Another critical element for achieving efficient power conversion is the charge neutrality of quantum dots, as charge imbalances induce electronic states inside the energy gap. Here we investigate how the simultaneous introduction of metal cations and halide anions modifies the charge balance and enhances the solar cell efficiency. The addition of metal salts between QD deposition and ligand exchange with 1,3-BDT results in an increase in the short-circuit current and fill factor, accompanied by a distinct reduction in a crossover between light and dark current density-voltage characteristics.

  9. Solution synthesis of metal oxides for electrochemical energy storage applications.

    PubMed

    Xia, Xinhui; Zhang, Yongqi; Chao, Dongliang; Guan, Cao; Zhang, Yijun; Li, Lu; Ge, Xiang; Bacho, Ignacio Mínguez; Tu, Jiangping; Fan, Hong Jin

    2014-05-21

    This article provides an overview of solution-based methods for the controllable synthesis of metal oxides and their applications for electrochemical energy storage. Typical solution synthesis strategies are summarized and the detailed chemical reactions are elaborated for several common nanostructured transition metal oxides and their composites. The merits and demerits of these synthesis methods and some important considerations are discussed in association with their electrochemical performance. We also propose the basic guideline for designing advanced nanostructure electrode materials, and the future research trend in the development of high power and energy density electrochemical energy storage devices.

  10. Ionic conductivity of dual-phase polymer electrolytes comprised of NBR/SBR latex films swollen with lithium salt solutions

    SciTech Connect

    Matsumoto, Morihiko; Ichino, Toshihiro; Rutt, J.S.; Nishi, Shiro . NTT Interdisciplinary Research Lab.)

    1994-08-01

    Dual-phase polymer electrolytes (DPE) with high ionic conductivity and good mechanical strength were prepared by swelling poly(acrylonitrile-co-butadiene) rubber (NBR) and poly(styrene-co-butadiene) rubber (SBR) mixed latex films with lithium salt solutions (e.g., 1M LiClO[sub 4]/[gamma]-butyrolactone). The latex films retain particle morphology in the solid state. The NBR phase (formed from fused NBR latex particles) is polar and is impregnated selectively with polar lithium salt solutions, yielding ion-conductive channels, whereas the SBR phase (formed from fused SBR latex particles) is nonpolar and is not impregnated, providing a mechanically supportive matrix. The ionic conductivity of the DPE increased dramatically with increasing content of lithium salt solution, and higher amounts of solution were imbibed with increasing content of NBR relative to SBR. Several factors which affect the ionic conductivity of this system were examined, and the highest ionic conductivity (>10[sup [minus]3] S/cm) was obtained when either an NBR/SBR 70/30 (w/w) or a 50/50 (w/w) latex film was saturated with 1M LiClO[sub 4]/[gamma]-BL solution or 1M LiClO[sub 4]/[gamma]-BL/DME solution. Ion-conductive behavior changed critically with increasing lithium salt solution uptake. At low levels of lithium salt solution uptake, evidence suggested that ionic conductivity of the absorbed lithium salt solution was strongly influenced by the presence of the NBR in the ion-conductive channel, but at higher levels, the effects of the NBR were reduced and free'' lithium salt solution was present.

  11. Photochromism of a spiropyran and a diarylethene in bile salt aggregates in aqueous solution.

    PubMed

    Santos, Cerize S; Miller, Allyson C; Pace, Tamara C S; Morimitsu, Kentaro; Bohne, Cornelia

    2014-09-30

    Bile salt aggregates incorporate aqueous-insoluble photochromic compounds. The photochromism of a spiropyran (1, 1',3',3'-trimethyl-6-nitrospiro[2H-1]-benzopyran-2,2'-indoline) and a diarylethene derivative (2, 1,2-bis(2,4-dimethyl-5-phenyl-3-thienyl)-3,3,4,4,5,5-hexafluoro-1-cyclopentene) was quantified in different bile salt aggregates. These aggregates act as efficient hosts to solubilize aqueous insoluble photochromic compounds where either both isomers are nonpolar, for example, 2, or compounds where one isomer is hydrophobic and the other is more polar, for example, 1. Methodology was developed to determine molar absorptivity coefficients for solutions containing both isomers and to determine the photoconversion quantum yields under continuous irradiation. The methods were validated by determining parameters in homogeneous solution, which were the same as previously reported. In the case of the colored isomer of 1, the molar extinction coefficient in ethanol at 537 nm ((3.68 ± 0.03) × 10(4) cm(-1) M(-1)) was determined with higher precision. The quantum yields for the photoconversion between the isomers of 2 were shown to be the same in cyclohexane and in the aggregates of sodium cholate (NaCh), deoxycholate (NaDC), and taurocholate (NaTC), showing that bile salt aggregates are not sufficiently rigid to affect the equilibrium between the two possible conformers of the colorless form. In contrast, for 1 the quantum yields for the conversion from the colorless to the colored isomer were higher in bile salts than in ethanol, and the quantum yield was highest in the more hydrophobic aggregates of NaDC, followed by NaCh and then NaTC. The structure of the bile salt had no effect on the quantum yield for the conversion of the colored to the colorless isomer of 1, but these values were higher than in ethanol. For all three bile salts, the absorption maximum for the colored form of 1 suggested that this isomer was located in an environment that is more polar than

  12. Extraction of cerium-group lanthanide (III) nitrates from concentrated aqueous salt solutions by tributyl phosphate

    SciTech Connect

    Pyartman, A.K.; Kopyrin, A.A.; Puzikov, E.A.

    1995-01-01

    The extraction equilibrium for a hypothetical standard, designated as 1 M aqueous solution of Ln(III) nitrate and the state of the pure components in organic phase with a mole fraction of 1 have been determined assuming formation of tri- and tetrasolvates of the metal(III) nitrates in organic phase. The excessive thermodynamic functions of mixing tri-n-butyl phosphate with solutions of Ln(III) nitrate trisolvates are presented.

  13. The microscopic and ultramicroscopic changes in the skeletal muscles, caused by heavy metal salts

    PubMed Central

    Tymoshenko, Alexey; Tkach, Gennadii; Sikora, Vitalii; Bumeister, Valentina; Shpetnyi, Ihor; Lyndin, Mykola; Maksymova, Olena; Maslenko, Anna

    2016-01-01

    Purpose The article is devoted to study the structural changes in the skeletal muscles caused by heavy metal salts. Materials and methods The study was conducted on 72 mature male rats. The experimental groups were given to drink water with combinations of heavy metal salts for one, two and three months. This type of water is typical for the water basins in the northern districts of the Sumy region. The study of morphological changes in the striated muscles was concluded using light and scanning electron microscopy. Results The data analysis revealed that a prolonged duration of negative factor could intensify sclerotic and edematous processes. The structure of muscle fibers was destroyed, nuclei were deformed and placed irregularly, and many petechial hemorrhages occurred. Besides, cross-striation was irregular, I and A bands were deformed and destroyed, H band was hardly visualized. The inner mitochondrial membrane and cristae become deformed. The symplastic nuclei were placed irregularly within sarcoplasm. Besides, they were swollen. Against swollen and enlarged symplastic nuclei, pyknotic nuclei were also found. The structures of sarcoplasmic reticulum were mainly dilated with deformed and ruptured areas. Conclusion Our study approves that high concentrations of heavy metal salts have a destructive influence on the skeletal striated muscles. PMID:28386464

  14. Biosorption of heavy metals and uranium from dilute solutions

    SciTech Connect

    Schneider, I.A.H.; Misra, M.; Smith, R.W.

    1995-08-01

    Eichhornia crassipes approaches being a scourge in many parts of the world, choking waterways and hindering transport upon them. At the same time it is known to readily abstract heavy metal ions from water and, thus, aids in the removal of heavy metals found in such waters. This paper considers the possibility of using specific parts of the plant as an inexpensive adsorbent for the removal of heavy metals from contaminated chemical and mining industry waste waters. In particular the root of the plant was found to be an excellent accumulator of heavy metal ions including uranium from solution. It is also suggested that dried roots of the plant might be placed in simple bags and used in a very low cost metal ion removal system.

  15. RESULTS OF ANALYSES OF MACROBATCH 3 DECONTAMINATED SALT SOLUTION (DSS) COALESCER AND PRE-FILTERS

    SciTech Connect

    Peters, T.; Fondeur, F.; Fink, S.

    2012-06-13

    SRNL analyzed the pre-filter and Decontamination Salt Solution (DSS) coalescer from MCU by several analytical methods. The results of these analyses indicate that overall there is light to moderate solids fouling of both the coalescer and pre-filter elements. The majority of the solids contain aluminum, sodium, silicon, and titanium, in oxide and/or hydroxide forms that we have noted before. The titanium is presumably precipitated from leached, dissolved monosodium titanate (MST) or fines from MST at ARP, and the quantity we find is significantly greater than in the past. A parallel report discusses potential causes for the increased leaching rate of MST, showing that increases in free hydroxide concentration of the feed solutions and of chemical cleaning solutions lead to faster leaching of titanium.

  16. The use of saline W, a physiological salt solution for experimentation on insect immunity.

    PubMed

    Jarosz, J

    1988-01-01

    In a series of induction experiments using various Ringer solutions attempts were made to determine whether saline W, a physiological salt solution for Lepidoptera, when injected into the larval haemocoel of the greater wax moth could be recognized by the insect as a non-self molecule. Laboratory bioassays indicated the loss of insect body integrity following intracoelomic injection of saline W and three other salines, increased levels of haemolymph lysozyme activity (EC 3. 2. 1. 17), and elevated resistance to the bacterial parasite, Pseudomonas aeruginosa. The inducing effect of saline W was stronger than dipterous Ringer's solution or other physiological salines. The stimulating effects indicate that the moth distinguishes between self and non-self, and this provides a new insight into the induction of the immune response.

  17. Faraday Discussion 160 Introductory Lecture: Interpreting and Predicting Hofmeister Salt Ion and Solute Effects on Biopolymer and Model Processes Using the Solute Partitioning Model

    PubMed Central

    Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael

    2013-01-01

    Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients

  18. Metal ion removal from aqueous solution using physic seed hull.

    PubMed

    Mohammad, Masita; Maitra, Saikat; Ahmad, Naveed; Bustam, Azmi; Sen, T K; Dutta, Binay K

    2010-07-15

    The potential of physic seed hull (PSH), Jantropha curcas L. as an adsorbent for the removal of Cd(2+) and Zn(2+) metal ions from aqueous solution has been investigated. It has been found that the amount of adsorption for both Cd(2+) and Zn(2+) increased with the increase in initial metal ions concentration, contact time, temperature, adsorbent dosage and the solution pH (in acidic range), but decreased with the increase in the particle size of the adsorbent. The adsorption process for both metal ions on PSH consists of three stages-a rapid initial adsorption followed by a period of slower uptake of metal ions and virtually no uptake at the final stage. The kinetics of metal ions adsorption on PSH followed a pseudo-second-order model. The adsorption equilibrium data were fitted in the three adsorption isotherms-Freundlich, Langmuir and Dubinin-Radushkevich isotherms. The data best fit in the Langmuir isotherm indication monolayer chemisorption of the metal ions. The adsorption capacity of PSH for both Zn(2+) and Cd(2+) was found to be comparable with other available adsorbents. About 36-47% of the adsorbed metal could be leached out of the loaded PSH using 0.1M HCl as the eluting medium.

  19. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    SciTech Connect

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was

  20. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation.

  1. Aggregate transitions in aqueous solutions of sodium dodecylsulfate with a "gemini-type" organic salt.

    PubMed

    Yu, Defeng; Tian, Maozhang; Fan, Yaxun; Ji, Gang; Wang, Yilin

    2012-06-07

    Effects of a "gemini-type" organic salt 1,2-bis(2-benzylammoniumethoxy) ethane dichloride (BEO) on the aggregation behavior of sodium dodecylsulfate (SDS) have been investigated by turbidity, surface tension, isothermal titration microcalorimetry, dynamic light scattering, cryogenic transmission electron microscopy, (1)H NMR spectroscopy, and differential scanning microcalorimetry. The aggregation behavior of the SDS/BEO mixed aqueous solution shows strong concentration and ratio dependence. For the SDS/BEO solution with a molar ratio of 5:1, large loose irregular aggregates, vesicles, and long thread-like micelles are formed in succession with the increase of the total SDS and BEO concentration. Because BEO has two positive charges, the SDS/BEO solution may consist of the (SDS)(2)-BEO gemini-type complex, the SDS-BEO complex and extra SDS. The aggregation ability and surface activity of the SDS/BEO mixture exhibit the characteristics of gemini-type surfactants. Along with the results of DSC and (1)H NMR, the (SDS)(2)-BEO gemini-type structure is confirmed to exist in the system. This work provides an approach to construct the surfactant systems with the characteristics of gemini surfactants through intermolecular interaction between a two-charged organic salt and oppositely charged single-chain surfactants.

  2. A new strategy to stabilize oxytocin in aqueous solutions: I. The effects of divalent metal ions and citrate buffer.

    PubMed

    Avanti, Christina; Amorij, Jean-Pierre; Setyaningsih, Dewi; Hawe, Andrea; Jiskoot, Wim; Visser, Jan; Kedrov, Alexej; Driessen, Arnold J M; Hinrichs, Wouter L J; Frijlink, Henderik W

    2011-06-01

    In the current study, the effect of metal ions in combination with buffers (citrate, acetate, pH 4.5) on the stability of aqueous solutions of oxytocin was investigated. Both monovalent metal ions (Na(+) and K(+)) and divalent metal ions (Ca(2+), Mg(2+), and Zn(2+)) were tested all as chloride salts. The effect of combinations of buffers and metal ions on the stability of aqueous oxytocin solutions was determined by RP-HPLC and HP-SEC after 4 weeks of storage at either 4°C or 55°C. Addition of sodium or potassium ions to acetate- or citrate-buffered solutions did not increase stability, nor did the addition of divalent metal ions to acetate buffer. However, the stability of aqueous oxytocin in aqueous formulations was improved in the presence of 5 and 10 mM citrate buffer in combination with at least 2 mM CaCl(2), MgCl(2), or ZnCl(2) and depended on the divalent metal ion concentration. Isothermal titration calorimetric measurements were predictive for the stabilization effects observed during the stability study. Formulations in citrate buffer that had an improved stability displayed a strong interaction between oxytocin and Ca(2+), Mg(2+), or Zn(2+), while formulations in acetate buffer did not. In conclusion, our study shows that divalent metal ions in combination with citrate buffer strongly improved the stability of oxytocin in aqueous solutions.

  3. Adsorbate-induced anchoring transitions of liquid crystals on surfaces presenting metal salts with mixed anions.

    PubMed

    Hunter, Jacob T; Abbott, Nicholas L

    2014-02-26

    We report that metal salts composed of mixtures of anions of differing coordination strength can be used to increase the sensitivity and selectivity of adsorbate-induced anchoring transitions of liquid crystals (LCs) supported on surfaces decorated with the metal salts. Specifically, the dynamics of anchoring transitions triggered by the adsorbate dimethyl methylphosphonate (DMMP) on surfaces of aluminum(III) salts were analyzed within the framework of a model for mass transport to reveal that the sensitivity of a nitrile-containing nematic LC to DMMP increased from 250 to 25 ppb when the composition of the (counter) anion was changed from 100% perchlorate to 90% nitrate and 10% perchlorate (by mole percent). To provide insight into these observations, polarization-modulation infrared reflectance-absorbance spectroscopy (PM-IRRAS) was used to show that the intensity of the absorption band in the IR spectrum corresponding to the coordinated state of the nitrile group (but not the position of the peak) decreased with the increase in the mole fraction of the strongly coordinating anion (nitrate) in the anion mixture, thus suggesting that the addition of the strongly coordinating anion decreased the number of coordination interactions (per unit area of the interface) but not the strength of the individual coordination interactions between the metal cation and the LC. We also measured the incorporation of the nitrate anion into the metal salt to decrease the effect of humidity on the dynamic response of the LC to DMMP, a result that is consistent with weaker interactions between the nitrate anion and water as compared to the perchlorate anion and water. Finally, the bidentate anion acetylacetonate was measured to cause a similar increase in sensitivity to DMMP when mixed with perchlorate in a 1:1 ratio (the resulting sensitivity of the system to DMMP was 100 ppb). Overall, these results suggest that tailoring the identity of the anion represents a general and facile

  4. Effects of coprecipitation on uranium and plutonium concentrations in alkaline salt solutions

    SciTech Connect

    Hobbs, D.T.

    1997-03-19

    The chemistry of uranium and plutonium in conjunction with the storage, retrieval and treatment of high-level nuclear waste (HLW) has been the subject of increasing scrutiny due to concerns with nuclear criticality safety. Previous studies focused on determining the solubilities of plutonium and uranium in alkaline salt solutions that encompass the compositions present during storage and evaporation of fresh and aged. Recent studies extend the chemistry to include the effects of coprecipitation on the liquid phase concentrations of plutonium and uranium. Particle size, morphology and identification of crystalline phases in the precipitated solids as well as the plutonium and uranium dissolution characteristics upon dilution of the liquid phases were also determined.

  5. Electrically conducting poly(para-phenylene sulfide) prepared by doping with nitrosyl salts from solution

    NASA Astrophysics Data System (ADS)

    Rubner, Michael; Cukor, Peter; Jopson, Harriet; Deits, Walter

    1982-03-01

    Para(polyphenylene sulfide) may be doped spontaneously and rapidly with nitrosyl salts (NOPF6, NOSbF6) from solution to yield an electrically conducting material (10-1ohm-1cm-1). The level of conductivity is primarily dependent on the extent of dopant incorporation, which in turn is determined by the polymer’s crystallinity; the more amorphous the polymer, the more dopant it takes up and the more conductive it becomes. The incorporation of dopants produces irreversible chemical changes in the polymer resulting in the deterioration of its mechanical properties.

  6. Structural studies of ammonia and metallic lithium-ammonia solutions.

    PubMed

    Thompson, Helen; Wasse, Jonathan C; Skipper, Neal T; Hayama, Shusaku; Bowron, Daniel T; Soper, Alan K

    2003-03-05

    The technique of hydrogen/deuterium isotopic substitution has been used to extract detailed information concerning the solvent structure in pure ammonia and metallic lithium-ammonia solutions. In pure ammonia we find evidence for approximately 2.0 hydrogen bonds around each central nitrogen atom, with an average N-H distance of 2.4 A. On addition of alkali metal, we observe directly significant disruption of this hydrogen bonding. At 8 mol % metal there remains only around 0.7 hydrogen bond per nitrogen atom. This value decreases to 0.0 for the saturated solution of 21 mol % metal, as all ammonia molecules have then become incorporated into the tetrahedral first solvation spheres of the lithium cations. In conjunction with a classical three-dimensional computer modeling technique, we are now able to identify a well-defined second cationic solvation shell. In this secondary shell the nitrogen atoms tend to reside above the faces and edges of the primary tetrahedral shell. Furthermore, the computer-generated models reveal that on addition of alkali metal the solvent molecules form voids of approximate radius 2.5-3.0 A. Our data therefore provide new insight into the structure of the polaronic cavities and tunnels, which have been theoretically predicted for lithium-ammonia solutions.

  7. Do salt and low temperature impair metal treatment in stormwater bioretention cells with or without a submerged zone?

    PubMed

    Søberg, Laila C; Viklander, Maria; Blecken, Godecke-Tobias

    2017-02-01

    Although seasonal temperature changes and (road) salt in winter and/or coastal stormwater runoff might interfere with the metal treatment performance of stormwater bioretention cells, no previous study has evaluated the effect of these factors and their interactions under controlled conditions. In this 18week long study 24 well established pilot-scale bioretention columns were employed to evaluate the individual and combined effect(s) of low/high temperature, salt and presence of a submerged zone with an embedded carbon source on metal removal using a three factor, two-level full factorial experimental design. In most instances, the three factors significantly influenced the metal outflow concentrations and thus the treatment performance; the effect of temperature depended on the metal in question, salt had an overall negative effect and the submerged zone with carbon source had an overall positive effect. Despite these statistically significant effects, the discharge water quality was generally markedly improved. However, leaching of dissolved Cu and Pb did occur, mainly from bioretention cells dosed with salt-containing stormwater. The highest concentrations of metals were captured in the top layer of the filter material and were not significantly affected by the three factors studied. Overall, the results confirmed that bioretention provides a functioning stormwater treatment option in areas experiencing winter conditions (road salt, low temperatures) or coastal regions (salt-laden stormwater). However, validation of these results in the field is recommended, especially focusing on dissolved metal removal, which may be critically affected under certain conditions.

  8. Partial and charge structure fonctions of monodisperse DNA fragments in salt free aqueous solution

    NASA Astrophysics Data System (ADS)

    van der Maarel, J. R. C.; Groot, L. C. A.; Mandel, M.; Jesse, W.; Jannink, G.; Rodriguez, V.

    1992-01-01

    Observations of the partial structure functions and the charge structure function are reported for an aqueous solution of monodisperse rodlike DNA fragments, without added simple salt. In the reciprocal space interval qgeqslant 0.075 Å^{-1}, the neutron scattering data can be fitted by the correlation functions derived from the exact solution of the Poisson-Boltzmann equation in the cell model. The fit is equally good for all partial structure functions as well as the charge structure function. The cell model seems to be appropriate for this kind of solution. On reconstitue la structure d'une solution aqueuse de fragments monodisperse d'ADN à l'aide des fonctions de structure partielles et de la fonction de structure de charge mesurées par diffusion des neutrons aux petits angles. Dans l'intervalle qgeqslant 0,075 Å^{-1}, les fonctions de corrélation calculées à partir de la solution exacte de l'équation de Poisson-Boltzmann et du modèle cellulaire, ajustent les données de l'expérience. Cela est vrai aussi bien pour chacune des fonctions de structure partielles que pour la fonction de structure de charge. Le modèle cellulaire semble donc être un modèle convenable pour ces solutions.

  9. KNH2-KH: a metal amide-hydride solid solution.

    PubMed

    Santoru, Antonio; Pistidda, Claudio; Sørby, Magnus H; Chierotti, Michele R; Garroni, Sebastiano; Pinatel, Eugenio; Karimi, Fahim; Cao, Hujun; Bergemann, Nils; Le, Thi T; Puszkiel, Julián; Gobetto, Roberto; Baricco, Marcello; Hauback, Bjørn C; Klassen, Thomas; Dornheim, Martin

    2016-09-27

    We report for the first time the formation of a metal amide-hydride solid solution. The dissolution of KH into KNH2 leads to an anionic substitution, which decreases the interaction among NH2(-) ions. The rotational properties of the high temperature polymorphs of KNH2 are thereby retained down to room temperature.

  10. Super-absorbency and phase transition of gels in physiological salt solutions

    NASA Astrophysics Data System (ADS)

    Zhang, Yong-Qing; Tanaka, Toyoichi; Shibayama, Mitsuhiro

    1992-11-01

    IONIC gels with the ability to absorb many times their dry weight of water have found widespread use as absorbents in medical, chemical and agricultural applications1. The dramatic swelling power of these super-absorbent gels results from both the electrostatic repulsion between the charges on the polymer chains, and the osmotic pressure of the counter-ions2. In salt solutions such as saline, urine or blood, however, excess Na+ and Cl- ions screen the polymer charges and eliminate the osmotic imbalance, effectively changing the properties of the material to that of a non-ionic gel3: this greatly diminishes the swelling power, and hence the utility of these materials under physiological conditions. Here we report the development of a system combining a non-ionic gel with ionized surfactants, which shows super-absorbent behaviour even in the presence of salt. In water, the hydrophobic gel facilitates the formation of spherical surfactant micelles, which mimic the charged sites of an ionic gel. As the salt concentration is increased, the micelles become rod-like, maintaining the electrostatic repulsion along the polymer chains and thereby preserving the swelling power of the gel.

  11. Molecular Dynamics Simulation of the Aggregation Patterns in Aqueous Solutions of Bile Salts at Physiological Conditions.

    PubMed

    Mustan, Fatmegyul; Ivanova, Anela; Madjarova, Galia; Tcholakova, Slavka; Denkov, Nikolai

    2015-12-24

    Classical molecular dynamics simulations are employed to monitor the aggregation behavior of six bile salts (nonconjugated and glycine- and taurine-conjugated sodium cholate and sodium deoxycholate) with concentration of 10 mM in aqueous solution in the presence of 120 mM NaCl. There are 150 ns trajectories generated to characterize the systems. The largest stable aggregates are analyzed to determine their shape, size, and stabilizing forces. It is found that the aggregation is a hierarchical process and that its kinetics depends both on the number of hydroxyl groups in the steroid part of the molecules and on the type of conjugation. The micelles of all salts are similar in shape-deformed spheres or ellipsoids, which are stabilized by hydrophobic forces, acting between the steroid rings. The differences in the aggregation kinetics of the various conjugates are rationalized by the affinity for hydrogen bond formation for the glycine-modified salts or by the longer time needed to achieve optimum packing for the tauro derivatives. Evidence is provided for the hypothesis from the literature that the entirely hydrophobic core of all aggregates and the enhanced dynamics of the molecules therein should be among the prerequisites for their pronounced solubilization capacity for hydrophobic substances in vivo.

  12. Modeling of dielectric properties of aqueous salt solutions with an equation of state.

    PubMed

    Maribo-Mogensen, Bjørn; Kontogeorgis, Georgios M; Thomsen, Kaj

    2013-09-12

    The static permittivity is the most important physical property for thermodynamic models that account for the electrostatic interactions between ions. The measured static permittivity in mixtures containing electrolytes is reduced due to kinetic depolarization and reorientation of the dipoles in the electrical field surrounding ions. Kinetic depolarization may explain 25-75% of the observed decrease in the permittivity of solutions containing salts, but since this is a dynamic property, this effect should not be included in the thermodynamic modeling of electrolytes. Kinetic depolarization has, however, been ignored in relation to thermodynamic modeling, and authors have either neglected the effect of salts on permittivity or used empirical correlations fitted to the measured static permittivity, leading to an overestimation of the reduction in the thermodynamic static permittivity. We present a new methodology for obtaining the static permittivity over wide ranges of temperatures, pressures, and compositions for use within an equation of state for mixed solvents containing salts. The static permittivity is calculated from a new extension of the framework developed by Onsager, Kirkwood, and Fröhlich to associating mixtures. Wertheim's association model as formulated in the statistical associating fluid theory is used to account for hydrogen-bonding molecules and ion-solvent association. Finally, we compare the Debye-Hückel Helmholtz energy obtained using an empirical model with the new physical model and show that the empirical models may introduce unphysical behavior in the equation of state.

  13. Interconnection of Salt-induced Hydrophobic Compaction and Secondary Structure Formation Depends on Solution Conditions

    PubMed Central

    Haldar, Shubhasis; Chattopadhyay, Krishnananda

    2012-01-01

    What happens in the early stage of protein folding remains an interesting unsolved problem. Rapid kinetics measurements with cytochrome c using submillisecond continuous flow mixing devices suggest simultaneous formation of a compact collapsed state and secondary structure. These data seem to indicate that collapse formation is guided by specific short and long range interactions (heteropolymer collapse). A contrasting interpretation also has been proposed, which suggests that the collapse formation is rapid, nonspecific, and a trivial solvent related compaction, which could as well be observed by a homopolymer (homopolymer collapse). We address this controversy using fluorescence correlation spectroscopy (FCS), which enables us to monitor the salt-induced compaction accompanying collapse formation and the associated time constant directly at single molecule resolution. In addition, we follow the formation of secondary structure using far UV CD. The data presented here suggest that both these models (homopolymer and heteropolymer) could be applicable depending on the solution conditions. For example, the formation of secondary structure and compact state is not simultaneous in aqueous buffer. In aqueous buffer, formation of the compact state occurs through a two-state co-operative transition following heteropolymer formalism, whereas secondary structure formation takes place gradually. In contrast, in the presence of urea, a compaction of the protein radius occurs gradually over an extended range of salt concentration following homopolymer formalism. The salt-induced compaction and the formation of secondary structure take place simultaneously in the presence of urea. PMID:22303014

  14. Method for removing metal ions from solution with titanate sorbents

    DOEpatents

    Lundquist, Susan H.; White, Lloyd R.

    1999-01-01

    A method for removing metal ions from solution comprises the steps of providing titanate particles by spray-drying a solution or slurry comprising sorbent titanates having a particle size up to 20 micrometers, optionally in the presence of polymer free of cellulose functionality as binder, said sorbent being active towards heavy metals from Periodic Table (CAS version) Groups IA, IIA, IB, IIB, IIIB, and VIII, to provide monodisperse, substantially spherical particles in a yield of at least 70 percent of theoretical yield and having a particle size distribution in the range of 1 to 500 micrometers. The particles can be used free flowing in columns or beds, or entrapped in a nonwoven, fibrous web or matrix or a cast porous membrane, to selectively remove metal ions from aqueous or organic liquid.

  15. Metals recovering from waste printed circuit boards (WPCBs) using molten salts.

    PubMed

    Flandinet, L; Tedjar, F; Ghetta, V; Fouletier, J

    2012-04-30

    Recycling of waste electrical and electronic equipments (WEEE) has been taken into consideration in the literature due to the large quantity of concerned wastes and their hazardous contents. The situation is so critical that EU published European Directives imposing collection and recycling with a minimum of material recovery [1]. Moreover, WEEEs contain precious metals, making the recycling of these wastes economically interesting, but also some critical metals and their recycling leads to resource conservation. This paper reports on a new approach for recycling waste printed circuit boards (WPCBs). Molten salts and specifically molten KOH-NaOH eutectic is used to dissolve glasses, oxides and to destruct plastics present in wastes without oxidizing the most valuable metals. This method is efficient for recovering a copper-rich metallic fraction, which is, moreover, cleared of plastics and glasses. In addition, analyses of gaseous emission show that this method is environmentally friendly since most of the process gases, such as carbon monoxide and dioxide and halogens, are trapped in the highly basic molten salt. In other respects, under operation without oxygen, a large quantity of hydrogen is produced and might be used as fuel gas or as synthesis gas, leading to a favourable energy balance for this new process. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Organic conductors and superconductors based on bis(ethylenedithio)tetrathiafulvalene radical cation salts with supramolecular tris(oxalato)metallate anions

    NASA Astrophysics Data System (ADS)

    Prokhorova, T. G.; Yagubskii, E. B.

    2017-02-01

    The results of studies of a family of conductors and superconductors based on bis(ethylenedithio)tetrathiafulvalene radical cation salts with paramagnetic and diamagnetic supramolecular tris(oxalato)metallate anions are collated and analyzed. Methods for the preparation of these salts and various types of packing of conducting layers within the salt structures are considered. The transport properties of crystals of the salts of this family and the effect of guest solvent molecules on these properties are discussed. The contribution of scientists from the Institute of Problems of Chemical Physics, RAS, to the research into organic conductors and superconductors is noted. The bibliography includes 70 references.

  17. Metal ion sensing solution containing double crossover DNA

    NASA Astrophysics Data System (ADS)

    Park, Byeongho; Dugasani, Sreekantha R.; Cho, Youngho; Oh, Juyeong; Kim, Chulki; Seo, Min Ah; Lee, Taikjin; Jhon, Young Miin; Woo, Deok Ha; Lee, Seok; Jun, Seong Chan; Park, Sung Ha; Kim, Jae Hun

    2015-07-01

    The current study describes metal ion sensing with double crossover DNAs (DX1 and DX2), artificially designed as a platform of doping. The sample for sensing is prepared by a facile annealing method to grow the DXs lattice on a silicon/silicon oxide. Adding and incubating metal ion solution with the sensor substrate into the micro-tube lead the optical property change. Photoluminescence (PL) is employed for detecting the concentration of metal ion in the specimen. We investigated PL emission for sensor application with the divalent copper. In the range from 400 to 650 nm, the PL features of samples provide significantly different peak positions with excitation and emission detection. Metal ions contribute to modify the optical characteristics of DX with structural and functional change, which results from the intercalation of them into hydrogen bonding positioned at the center of double helix. The PL intensity is decreased gradually after doping copper ion in the DX tile on the substrate.

  18. Salt-Responsive Polysulfabetaines from Acrylate and Acrylamide Precursors: Robust Stabilization of Metal Nanoparticles in Hyposalinity and Hypersalinity.

    PubMed

    Vasantha, Vivek Arjunan; Junhui, Chen; Ying, Tay Boon; Parthiban, Anbanandam

    2015-10-13

    Metal nanoparticles (MNps) tend to be influenced by environmental factors such as pH, ionic strength, and temperature, thereby leading to aggregation. Forming stable aqueous dispersions could be one way of addressing the environmental toxicity of MNps. In contrast to the electrolyte-induced aggregation of MNps, novel zwitterionic sulfabetaine polymers reported here act as stabilizers of MNps even under high salinity. Polysulfabetaines exhibited unique solubility and swelling tendencies in brine and deionized water, respectively. The polysulfabetaines derived from methacrylate (PSBMA) and methacrylamide (PSBMAm) also showed reversible salt-responsive and thermoresponsive behaviors as confirmed by cloud-point titration, transmittance, and dynamic light scattering studies. The brine soluble nature was explored for its ability to be used as a capping agents to form metal nanoparticles using formic acid as a reducing agent. Thus, silver and noble metal (gold and palladium) nanoparticles were synthesized. The nanoparticles formed were characterized by UV-vis, XRD, TEM, EDX, and DLS studies. The size of the nanoparticles remained more or less the same even after 2 months of storage in 2 M sodium chloride solution under ambient conditions and also at elevated temperatures as confirmed by light-scattering measurements. The tunable, stimuli-responsive polysulfabetaine-capped stable MNp formed under low (hyposalinity) and hypersalinity could find potential applications in a variety of areas.

  19. Utilization of Heavy Metal Molten Salts in the ARIES-RS Fusion Reactor

    NASA Astrophysics Data System (ADS)

    Übeyli, Mustafa; Yapıcı, Hüseyin

    2008-09-01

    ARIES-RS is one of the major magnetic fusion energy reactor designs that uses a blanket having vanadium alloy structure cooled by lithium [1, 2]. It is a deuterium-tritium (DT) fusion driven reactor, having a fusion power of 2170 MW [1, 2]. This study presents the neutronic analysis of the ARIES-RS fusion reactor using heavy metal molten salts in which Li2BeF4 as the main constituent was mixed with increased mole fractions of heavy metal salt (ThF4 or UF4) starting by 2 mol.% up to 12 mol.%. Neutron transport calculations were carried out with the help of the SCALE 4.3 system by solving the Boltzmann transport equation with the XSDRNPM code in 238 neutron groups and a S 8- P 3 approximation. According to the numerical results, tritium self-sufficiency was attained for the coolants, Flibe with 2% UF4 or ThF4 and 4% UF4. In addition, higher energy multiplication values were found for the salt with UF4 compared to that with ThF4. Furthermore, significant amount of high quality nuclear fuel was produced to be used in external reactors.

  20. METAL PHTHALOCYANINES

    DOEpatents

    Frigerio, N.A.

    1962-03-27

    A process is given for preparing heavy metal phthalocyanines, sulfonated or not. The process comprises mixing an inorganic metal salt with dimethyl formamide or methyl sulfoxide; separating the metal complex formed from the solution; mixing the complex with an equimolar amount of sodium, potassium, lithium, magnesium, or beryllium sulfonated or unsulfonated phthalocyanine whereby heavy-metal phthalocyanine crystals are formed; and separating the crystals from the solution. Uranyl, thorium, lead, hafnium, and lanthanide rare earth phthalocyanines can be produced by the process. (AEC)

  1. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    SciTech Connect

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; Edstrom, Kristina; Vegge, Tejs

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions and conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.

  2. Lithium salts for advanced lithium batteries: Li-metal, Li-O2, and Li-S

    DOE PAGES

    Younesi, Reza; Veith, Gabriel M.; Johansson, Patrik; ...

    2015-06-01

    Presently lithium hexafluorophosphate (LiPF6) is the dominant Li-salt used in commercial rechargeable lithium-ion batteries (LIBs) based on a graphite anode and a 3-4 V cathode material. While LiPF6 is not the ideal Li-salt for every important electrolyte property, it has a uniquely suitable combination of properties (temperature range, passivation, conductivity, etc.) rendering it the overall best Li-salt for LIBs. However, this may not necessarily be true for other types of Li-based batteries. Indeed, next generation batteries, for example lithium-metal (Li-metal), lithium-oxygen (Li-O2), and lithium sulphur (Li-S), require a re-evaluation of Li-salts due to the different electrochemical and chemical reactions andmore » conditions within such cells. Furthermore, this review explores the critical role Li-salts play in ensuring in these batteries viability.« less

  3. Spontaneous metal deposition from organic solutions for electronic materials applications

    NASA Astrophysics Data System (ADS)

    Fang, Rui

    Electrochemical deposition (ECD) has been used widely in the electronics industry. A novel "galvanic deposition" process was used for spontaneous and selective ECD of metal from organic solutions in contrast to the more conventional aqueous media. The more noble metal ions loaded in the organic solution are reduced and deposited onto the less noble metal substrate, which is simultaneously dissolved into the organic. Cu and Pd seed layers have been successfully deposited from organic solutions onto patterned and unpatterned pure aluminum and Al(0.5wt%Cu) thin films using this immersion displacement process. The Cu and Pd deposits were effectively used as catalytic sites for subsequent conventional electroless or electrolytic copper deposition. Further studies were performed to modify and optimize the organic deposition solution composition. These modified organic solutions could be used to deposit nearly continuous copper films on both unpatterned and patterned aluminum substrates. A patent disclosure on the modified organic deposition process was made to the University of Missouri and will be officially filed with the U.S. Patent Office. The EIS technique was one method used to characterize these high resistivity organic media. The organic solution resistivities were determined to be in the range of ˜108 O-cm but decreased to ˜10 6 O-cm with the addition of some modifying additives. Pd and Cu deposition have also been accomplished on various blanket and patterned Ti, TiN, Ta, and TaN barrier films. Some pre-treatment or in-situ etching in combination with ultrasonic or intensive mechanical agitation was necessary to activate the surface and enhance the metal deposition reaction. After seeding, continuous copper films were built up using a conventional electroless or electroplating process.

  4. Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects on aqueous solutions.

    PubMed

    Hahn, Marc Benjamin; Uhlig, Frank; Solomun, Tihomir; Smiatek, Jens; Sturm, Heinz

    2016-10-19

    Ectoine is an important osmolyte, which allows microorganisms to survive in extreme environmental salinity. The hygroscopic effects of ectoine in pure water can be explained by a strong water binding behavior whereas a study on the effects of ectoine in salty solution is yet missing. We provide Raman spectroscopic evidence that the influence of ectoine and NaCl are opposing and completely independent of each other. The effect can be explained by the formation of strongly hydrogen-bonded water molecules around ectoine which compensate the influence of the salt on the water dynamics. The mechanism is corroborated by first principles calculations and broadens our understanding of zwitterionic osmolytes in aqueous solution. Our findings allow us to provide a possible explanation for the relatively high osmolyte concentrations in halotolerant bacteria.

  5. Polyelectrolyte-like behaviour of poly(ethylene-oxide) solutions with added monovalent salt

    NASA Astrophysics Data System (ADS)

    Lal, Jyotsana; Hakem, Ilhem-Faiza

    2004-03-01

    Solvent effects on the conformation of poly(ethylene-oxide) (PEO) and complexation of PEO by monovalent cations, have been examined by using small-angle neutron scattering. In methanol and acetonitrile, a big change in interchain interaction, osmotic compressibility and local chain conformation have been observed upon addition of small amounts of potassium iodide. The amplitude of the total intensity decreases significantly and a peak at a certain value of the wavevector q* appears as signature of a polyelectrolyte-like behaviour. With further addition of salt, the ionic strength of the solution increases and potassium binding becomes less favorable: the binding constant decreases with the ionic strength and PEO behaves as a neutral polymer with excluded volume. No association between PEO and potassium iodide was observed in aqueous solutions. Reference: I.F. Hakem and J. Lal. Europhysics letters, 64 (2), 204, 2003

  6. [Study on the spectra of NTO and its rubidium salt in aqueous solution].

    PubMed

    Xia, Shu-Ping; Hu, Man-Cheng; Gao, Shi-Yang; Jiang, Yu-Cheng

    2005-05-01

    In this paper, the Raman and difference FTIR spectra of NTO crystal, NTO solutions at different pH and saturated aqueous solution of Rb(NTO) x H2O have been studied. The determined structure of crystal suggests that the metal ion with oxygen and nitrogen atoms of [chemical structure see text] C-N, [chemical structure see text] C-NO2, [chemical structure see text] C=O and H2O formed bonds. The highest characterization peaks of Raman and FTIR spectra show that [chemical structure see text] C-NO2, [chemical structure see text] C=O and [chemical structure see text] C-N of NTO- formed week coordination bonds. The vibration spectra of saturation solution basically accord with those of the crystal. The bonds of saturation solution of the coordination compound have not changed. Therefore, the different vibration spectra of the saturation water solution of Rb (NTO) x H2O can be explicated by the formation of the bonds in crystal. The coordination compound formation mechanism of metal ion with NTO in alkali aqueous solution is discussed.

  7. Evaluation of poly (aspartic acid sodium salt) as a draw solute for forward osmosis.

    PubMed

    Gwak, Gimun; Jung, Bokyung; Han, Sungsoo; Hong, Seungkwan

    2015-09-01

    Poly (aspartic acid sodium salt) (PAspNa) was evaluated for its potential as a novel draw solute in forward osmosis (FO). The inherent advantages of PAspNa, such as good water solubility, high osmotic pressure, and nontoxicity, were first examined through a series of physicochemical analyses and atomic-scale molecular dynamics simulations. Then, lab-scale FO tests were performed to evaluate its suitability in practical processes. Compared to other conventional inorganic solutes, PAspNa showed comparable water flux but significantly lower reverse solute flux, demonstrating its suitability as a draw solute. Moreover, fouling experiments using synthetic wastewater as a feed solution demonstrated that PAspNa reversely flowed to the feed side reduced inorganic scaling on the membrane active layer. The recyclability of PAspNa was studied using both nanofiltration (NF) and membrane distillation (MD) processes, and the results exhibited its ease of recovery. This research reported the feasibility and applicability of FO-NF or FO-MD processes using PAspNa for wastewater reclamation and brackish water desalination. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Synergistic solubilization of porcine myosin in physiological salt solution by arginine.

    PubMed

    Takai, Eisuke; Yoshizawa, Shunsuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2013-11-01

    Myosin is an important protein resource for food industries and has a bipolar filamentous structure that is composed of subfilaments that occur in vivo. It has been shown that a high ionic strength is required to prevent myosin from forming filamentous structures and to solubilize the protein in aqueous solution. In the presence of 100-200 mM NaCl, 50 mM arginine was more effective than other additives tested, including NaCl, in myosin solubilization. Before reaching equilibrium solubility, the myosin solution was initially supersaturated upon the dilution of a stock myosin solution in 1 M NaCl into the test solvents. Arginine slowed the process of equilibration and stabilized the supersaturated solution more effectively than other additives. No structural changes in myosin caused by arginine were observed, which indicated that arginine enhanced the solubility of myosin in a physiological salt solution without affecting the structure. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Changes in mechanical properties and morphology of elastomer coatings after immersion in salt solutions

    NASA Astrophysics Data System (ADS)

    Terán Arce, Fernando; Avci, Recep; Beech, Iwona; Cooksey, Keith; Wigglesworth-Cooksey, Barbara

    2004-03-01

    RTV11 (^TM GE Silicones) and Intersleek (^TM International Paints) are two elastomers of considerable significance to the navy and maritime industry for their application as fouling release coatings. Both materials are composed of polymeric matrices with embedded filler particles, which provide increased strength and durability to the elastomer. Using Atomic force microscopy (AFM), surface and bulk analysis techniques, we have found surface regions with microelastic properties, which correlate with the locations of filler particles inside the coatings. These particles are able to undergo elastic displacements of hundreds of nm inside the polymeric matrix during compression by the AFM tip. While elastic properties of Intersleek remain largely unchanged after immersion in salt solutions, roughening, embrittlement and stiffening occurs in RTV11 coatings depending on the amount of curing agent and humidity used during preparation and curing, respectively. Interestingly, such transformations are absent after immersion in pure water. In particle free regions, elastic moduli of RTV11 take values of 2 - 3 MPa before immersion in salt solutions. After immersion, those values increase 5 - 10 times.

  10. Comparison of peak shape in hydrophilic interaction chromatography using acidic salt buffers and simple acid solutions.

    PubMed

    Heaton, James C; Russell, Joseph J; Underwood, Tim; Boughtflower, Robert; McCalley, David V

    2014-06-20

    The retention and peak shape of neutral, basic and acidic solutes was studied on hydrophilic interaction chromatography (HILIC) stationary phases that showed both strong and weak ionic retention characteristics, using aqueous-acetonitrile mobile phases containing either formic acid (FA), ammonium formate (AF) or phosphoric acid (PA). The effect of organic solvent concentration on the results was also studied. Peak shape was good for neutrals under most mobile phase conditions. However, peak shapes for ionised solutes, particularly for basic compounds, were considerably worse in FA than AF. Even neutral compounds showed deterioration in performance with FA when the mobile phase water concentration was reduced. The poor performance in FA cannot be entirely attributed to the negative impact of ionic retention on ionised silanols on the underlying silica base materials, as results using PA at lower pH (where their ionisation is suppressed) were inferior to those in AF. Besides the moderating influence of the salt cation on ionic retention, it is likely that salt buffers improve peak shape due to the increased ionic strength of the mobile phase and its impact on the formation of the water layer on the column surface. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Composite Properties of Polyimide Resins Made From "Salt-Like" Solution Precursors

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Weiser, Erik S.; SaintClair, Terry L.; Echigo, Yoshiaki; Kaneshiro, Hisayasu

    1997-01-01

    Recent work in high temperature materials at NASA Langley Research Center (LaRC (trademark)) have led to the development of new polyimide resin systems with very attractive properties. The majority of the work done with these resin systems has concentrated on determining engineering mechanical properties of composites prepared from a poly(amide acid) precursor. Three NASA Langley-developed polyimide matrix resins, LaRC (trademark) -IA, LaRC (trademark) -IAX, and LaRC (trademark) -8515, were produced via a salt-like process developed by Unitika Ltd. The 'salt-like' solutions (sixty-five percent solids in NMP) were prepregged onto Hexcel IM7 carbon fiber using the NASA LaRC Multipurpose Tape Machine. Process parameters were determined and composite panels fabricated. Mechanical properties are presented for these three intermediate modulus carbon fiber/polyimide matrix composites and compared to existing data on the same polyimide resin systems and IM7 carbon fiber manufactured via poly(amide acid) solutions (thirty-five percent solids in NMP). This work studies the effects of varying the synthetic route on the processing and mechanical properties of polyimide composites.

  12. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    NASA Astrophysics Data System (ADS)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  13. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants.

    PubMed

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-12-01

    The ability of seven species of aquatic plants (Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium (E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes (L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  14. Observation of salt effects on hydration water of lysozyme in aqueous solution using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Aoki, Katsuyoshi; Shiraki, Kentaro; Hattori, Toshiaki

    2013-10-01

    Terahertz time-domain spectroscopy was used to investigate the salt effect of ammonium sulfate on the dynamics of hydration water of lysozyme in aqueous solution. The absorption coefficient of lysozyme aqueous solutions containing salt was subtracted by that of the water and ammonium sulfate contained in the lysozyme solution. The results revealed that ammonium sulfate increases the absorption coefficient of the hydration water, which indicates that the dynamics of the hydration water becomes faster and/or the number of hydration water molecules decreases with increasing ammonium sulfate concentration.

  15. Actinides recovery from molten salt/liquid metal system by electrochemical methods

    NASA Astrophysics Data System (ADS)

    Iizuka, Masatoshi; Koyama, Tadafumi; Kondo, Naruhito; Fujita, Reiko; Tanaka, Hiroshi

    1997-08-01

    Electrochemical methods were examined for the recovery of actinides from the electrorefiner which is used in pyrometallurgical reprocessing of spent metal fuel for fast reactors. Uranium was successfully collected at the solid steel cathode from both liquid cadmium and molten salt solvents. In electrotransport from liquid cadmium, the behavior of uranium and rare earths was as expected by a computer simulation code based on the diffusion layer model at the interface between the electrolyte and the electrodes. In electroreduction from the molten salt electrolyte, a considerable amount of uranium was reduced at the CdLi anode by direct chemical reduction with lithium, especially at a lower anodic current density. The decrease in collection efficiency of uranium due to the direct chemical reduction would be avoided by maintaining the anode potential higher than the deposition potential of uranium.

  16. The Equilibrium Between Titanium Ions and Titanium Metal in NaCl-KCl Equimolar Molten Salt

    NASA Astrophysics Data System (ADS)

    Wang, Qiuyu; Song, Jianxun; Hu, Guojing; Zhu, Xiaobo; Hou, Jungang; Jiao, Shuqiang; Zhu, Hongmin

    2013-08-01

    The equilibrium between metallic titanium and titanium ions, 3Ti2+ ⇌ 2Ti3+ + Ti, in NaCl-KCl equimolar molten salt was reevaluated. At a fixed temperature and an initial concentration of titanium chloride, the equilibrium was achieved by adding an excess amount of sponge titanium in assistant with bubbling of argon into the molten salt. The significance of this work is that the accurate concentrations of titanium ions have been obtained based on a reliable approach for taking samples. Furthermore, the equilibrium constant {{K}}_{{C}} = (x_{{{{Ti}}^{{ 3 { + }}} }}^{{eql}} )3 /(x_{{{{Ti}}^{{ 2 { + }}} }}^{{eql}} )2 was calculated through the best-fitting method under the consideration of the TiOCl dissolution. Indeed, the final results have disclosed that the stable value of KC could be achieved based on all modifications.

  17. Ionic association in poly(propylene oxide) complexed with divalent metal trifluoromethanesulfonate salts

    SciTech Connect

    Frech, R.; Huang, W.

    1993-12-31

    The ionic species present in 3000 MW {alpha},{omega}-hydroxy poly(propylene oxide), PPO, complexed with divalent metal trifluoromethanesulfonate, CF{sub 3}SO{sub 3}-, {open_quotes}triflate{close_quotes} salts have been studied using infrared and Raman vibrational spectroscopy. The cations considered in this work include magnesium, calcium, zinc, cadmium and lead. The formation of ionic species was studied as a function of salt concentration in complexes with ether oxygenation ratios of 80:1, 40:1, 20:1 and 10:1. The temperature dependence of ionic association was measured in the 20:1 complexes from room temperature to 125{degrees}C. Ionic association was examined by observing bands in the symmetric SO{sub 3} stretching region and the doubly degenerate asymmetric SO{sub 3} stretching mode.

  18. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    ERIC Educational Resources Information Center

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  19. Determining the Enthalpy of Vaporization of Salt Solutions Using the Cooling Effect of a Bubble Column Evaporator

    ERIC Educational Resources Information Center

    Fan, Chao; Pashley, Richard M.

    2016-01-01

    The enthalpy of vaporization (?H[subscript vap]) of salt solutions is not easily measured, as a certain quantity of pure water has to be evaporated from a solution, at constant composition, and at a fixed temperature and pressure; then the corresponding heat input has to be measured. However, a simple bubble column evaporator (BCE) was used as a…

  20. Tidal salt marsh sediment in California, USA. Part 2: occurrence and anthropogenic input of trace metals.

    PubMed

    Hwang, Hyun-Min; Green, Peter G; Higashi, Richard M; Young, Thomas M

    2006-09-01

    Surface sediment samples (0-5 cm) from 5 tidal salt marshes along the coast in California, USA were analyzed to investigate the occurrence and anthropogenic input of trace metals. Among study areas, Stege Marsh located in the central San Francisco Bay was the most contaminated marsh. Concentrations of metals in Stege Marsh sediments were higher than San Francisco Bay ambient levels. Zinc (55.3-744 microg g(-1)) was the most abundant trace metal and was followed by lead (26.6-273 microg g(-1)). Aluminum normalized enrichment factors revealed that lead was the most anthropogenically impacted metal in all marshes. Enrichment factors of lead in Stege Marsh ranged from 8 to 49 (median=16). Sediments from reference marshes also had high enrichment factors (2-8) for lead, indicating that lead contamination is ubiquitous, possibly due to continuous input from atmospherically transported lead that was previously used as a gasoline additive. Copper, silver, and zinc in Stege Marsh were also enriched by anthropogenic input. Though nickel concentrations in Stege Marsh and reference marshes exceeded sediment quality guidelines, enrichment factors indicated nickel from anthropogenic input was negligible. Presence of nickel-rich source rock such as serpentinite in the San Francisco Bay watershed can explain high levels of nickel in this area. Coefficients of variation were significantly different between anthropogenically impacted and non-impacted metals and might be used as a less conservative indicator for anthropogenic input of metals when enrichment factors are not available.

  1. Synthesis, structures, and properties of crystalline salts with radical anions of metal-containing and metal-free phthalocyanines.

    PubMed

    Konarev, Dmitri V; Kuzmin, Alexey V; Faraonov, Maxim A; Ishikawa, Manabu; Khasanov, Salavat S; Nakano, Yoshiaki; Otsuka, Akihiro; Yamochi, Hideki; Saito, Gunzi; Lyubovskaya, Rimma N

    2015-01-12

    Radical anion salts of metal-containing and metal-free phthalocyanines [MPc(3-)](·-), where M = Cu(II), Ni(II), H2, Sn(II), Pb(II), Ti(IV)O, and V(IV)O (1-10) with tetraalkylammonium cations have been obtained as single crystals by phthalocyanine reduction with sodium fluorenone ketyl. Their formation is accompanied by the Pc ligand reduction and affects the molecular structure of metal phthalocyanine radical anions as well as their optical and magnetic properties. Radical anions are characterized by the alternation of short and long C-Nimine bonds in the Pc ligand owing to the disruption of its aromaticity. Salts 1-10 show new bands at 833-1041 nm in the NIR range, whereas the Q- and Soret bands are blue-shifted by 0.13-0.25 eV (38-92 nm) and 0.04-0.07 eV (4-13 nm), respectively. Radical anions with Ni(II), Sn(II), Pb(II), and Ti(IV)O have S = 1/2 spin state, whereas [Cu(II)Pc(3-)](·-) and [V(IV)OPc(3-)](·-) containing paramagnetic Cu(II) and V(IV)O have two S = 1/2 spins per radical anion. Central metal atoms strongly affect EPR spectra of phthalocyanine radical anions. Instead of narrow EPR signals characteristic of metal-free phthalocyanine radical anions [H2Pc(3-)](·-) (linewidth of 0.08-0.24 mT), broad EPR signals are manifested (linewidth of 2-70 mT) with g-factors and linewidths that are strongly temperature-dependent. Salt 11 containing the [Na(I)Pc(2-)](-) anions as well as previously studied [Fe(I)Pc(2-)](-) and [Co(I)Pc(2-)](-) anions that are formed without reduction of the Pc ligand do not show changes in molecular structure or optical and magnetic properties characteristic of [MPc(3-)](·-) in 1-10.

  2. Highly Efficient Transition Metal Nanoparticle Catalysts in Aqueous Solutions.

    PubMed

    Wang, Changlong; Ciganda, Roberto; Salmon, Lionel; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Ruiz, Jaime; Astruc, Didier

    2016-02-24

    A ligand design is proposed for transition metal nanoparticle (TMNP) catalysts in aqueous solution. Thus, a tris(triazolyl)-polyethylene glycol (tris-trz-PEG) amphiphilic ligand, 2, is used for the synthesis of very small TMNPs with Fe, Co, Ni, Cu, Ru, Pd, Ag, Pt, and Au. These TMNP-2 catalysts were evaluated and compared for the model 4-nitrophenol reduction, and proved to be extremely efficient. High catalytic efficiencies involving the use of only a few ppm metal of PdNPs, RuNPs, and CuNPs were also exemplified in Suzuki-Miyaura, transfer hydrogenation, and click reactions, respectively.

  3. Micronuclei assay and FISH analysis in human lymphocytes treated with six metal salts.

    PubMed

    Migliore, L; Cocchi, L; Nesti, C; Sabbioni, E

    1999-01-01

    The capability of some metal compounds for inducing micronuclei (MN) in human lymphocytes was studied. In this investigation, Al (III), Cd (II), Hg (II), Sb (V), Te (VI), and Tl (I) salts were considered. The FISH (fluorescence in situ hybridization) technique with a centromeric probe was coupled with the MN assay in binucleated cells in order to detect both centromere-positive MN (C+ MN) due to malsegregation phenomena and centromere-negative MN (C- MN) due to chromosome breakage. The blood of two young nonsmoking male donors was employed for all experiments. In both donors, all the tested metal compounds, with the exception of Tl(2)SO(4), showed a statistically significant increase of MN compared to controls, at least at one dose. FISH analysis revealed an increase in the fraction of C+ MN for Al, Cd, and Hg compounds, and of C- MN for the Sb salt; however, this was not a statistically significant increase. A different efficiency was observed for the different metal compounds, in particular, KSbO(3) and CH(3)HgCl, which were highly genotoxic, whereas the others showed minimal effects. Copyright 1999 Wiley-Liss, Inc.

  4. Allergenicity and cross-reactivity of naphthenic acid and its metallic salts in experimental animals.

    PubMed

    Yamano, Tetsuo; Shimizu, Mitsuru; Noda, Tsutomu

    2006-01-01

    The allergenicity and the cross-reactivity of naphthenic acid (NA) and its metallic salts were evaluated in experimental animals. In the guinea pig maximization test, sensitizing skin reactions were observed with cobalt naphthenate (CoN), zinc naphthenate (ZnN) and NA, but not with copper naphthenate, with CoN being the most potent sensitizer. Animals sensitized with 1 naphthenic compound cross-reacted to the other 3 as well. Furthermore, animals in the CoN-sensitized group reacted to the relevant metallic salt cobalt chloride (CoCl2). A dose-response study using the CoN-sensitized group showed that the concentration of CoCl2 required to elicit a skin reaction of similar extent in comparison with CoN was more than 10 times higher, when skin-reaction scores were compared on the basis of cobalt content. In the local lymph node assay, significant increases in stimulation index values without skin irritation were observed with CoN and ZnN, where the former was more potent than the latter. Although CoN is a reported skin sensitizer, this study showed that skin allergenicity of naphthenic compounds is not restricted solely to CoN. In addition, the results suggest the main antigenic determinant of naphthenic compounds to be the structure of NA, even though metal moieties modulate their allergenicity.

  5. System and process for production of magnesium metal and magnesium hydride from magnesium-containing salts and brines

    DOEpatents

    McGrail, Peter B.; Nune, Satish K.; Motkuri, Radha K.; Glezakou, Vassiliki-Alexandra; Koech, Phillip K.; Adint, Tyler T.; Fifield, Leonard S.; Fernandez, Carlos A.; Liu, Jian

    2016-11-22

    A system and process are disclosed for production of consolidated magnesium metal products and alloys with selected densities from magnesium-containing salts and feedstocks. The system and process employ a dialkyl magnesium compound that decomposes to produce the Mg metal product. Energy requirements and production costs are lower than for conventional processing.

  6. Application of the hybrid complexation-ultrafiltration process for metal ion removal from aqueous solutions.

    PubMed

    Zeng, Jianxian; Ye, Hongqi; Hu, Zhongyu

    2009-01-30

    Complexation-ultrafiltration process was investigated for mercury and cadmium removal from aqueous solutions by using poly(acrylic acid) sodium salt (PAASS) as a complexing agent. The kinetics of complexation reactions of PAASS with the metal ions were studied under a large excess PAASS and pH 5.5. It takes 25 and 50 min for mercury and cadmium to get the complexation equilibrium, respectively, and the reaction kinetics can be described by a pseudo-first-order equation. Effects of various operating parameters such as loading ratios, pH values, etc. on metal rejection coefficients (R) were investigated. In the process of concentration, membrane fluxes decline slowly and R values are about 1. The concentrated retentates were used further for the decomplexation. The decomplexation ratio of mercury-PAASS complex is about 30%, whereas that of cadmium-PAASS complex reaches 93.5%. After the decomplexation, diafiltration experiments were carried out at pH 2.5. Cadmium can be diafiltrated satisfactorily from the retentate, but for mercury it is the contrary. Selective separation of the both metal ions was studied from a binary solution at pH 5. When mercury, cadmium and PAASS concentrations are 30, 30 and 40 mg L(-1), respectively, mercury is retained by ultrafiltration while almost all cadmium passes through the membrane.

  7. Measuring and modeling the salting-out effect in ammonium sulfate solutions.

    PubMed

    Wang, Chen; Lei, Ying Duan; Endo, Satoshi; Wania, Frank

    2014-11-18

    The presence of inorganic salts significantly influences the partitioning behavior of organic compounds between environmentally relevant aqueous phases, such as seawater or aqueous aerosol, and other, nonaqueous phases (gas phase, organic phase, etc.). In this study, salting-out coefficients (or Setschenow constants) (KS [M(-1)]) for 38 diverse neutral compounds in ammonium sulfate ((NH4)2SO4) solutions were measured using a shared headspace passive dosing method and a negligible depletion solid phase microextraction technique. The measured KS were all positive, varied from 0.216 to 0.729, and had standard errors in the range of 0.006-0.060. Compared to KS for sodium chloride (NaCl) in the literature, KS values for (NH4)2SO4 are always higher for the same compound, suggesting a higher salting-out effect of (NH4)2SO4. A polyparameter linear free energy relationship (pp-LFER) for predicting KS in (NH4)2SO4 solutions was generated using the experimental data for calibration. pp-LFER predicted KS agreed well with measured KS reported in the literature. KS for (NH4)2SO4 was also predicted using the quantum-chemical COSMOtherm software and the thermodynamic model AIOMFAC. While COSMOtherm generally overpredicted the experimental KS, predicted and experimental values were correlated. Therefore, a fitting factor needs to be applied when using the current version of COSMOtherm to predict KS. AIOMFAC tends to underpredict the measured KS((NH4)2SO4) but always overpredicts KS(NaCl). The prediction error is generally larger for KS(NaCl) than for KS((NH4)2SO4). AIOMFAC also predicted a dependence of KS on the salt concentrations, which is not observed in the experimental data. In order to demonstrate that the models developed and calibrated in this study can be applied to estimate Setschenow coefficients for atmospherically relevant compounds involved in secondary organic aerosol formation based on chemical structure alone, we predicted and compared KS for selected

  8. Effect of Protein-Lipid-Salt Interactions on Sodium Availability in the Mouth and Consequent Perception of Saltiness: In Solutions.

    PubMed

    Yucel, Umut; Peterson, Devin G

    2015-09-02

    The influence of protein-sodium interactions on the availability of sodium in the aqueous phase of liquid samples and consequently on the perception of saltiness was investigated. The aqueous effluents of casein and casein emulsion-salt solutions were monitored for sodium availability from a tongue column system. In the aqueous protein-salt solutions, increasing the protein/salt ratio from 1:1 to 5:1 or 10:1 significantly decreased the initial salt concentration in the effluent and resulted in a higher salt concentration in the effluent over time. Sensory analysis was in agreement. Samples with increased protein were rated as having significantly lower initial saltiness and a higher salty aftertaste. However, when casein was formulated as an emulsion, the initial release of sodium in the effluent was enhanced (compared to nonemulsified protein). Increasing the emulsion interfacial area (more hydrophilic segments of the protein were structured into the aqueous phase) resulted in a higher salt concentration in the aqueous phase and greater perceived saltiness intensity. In summary, protein interactions, specifically ionic, were reported as food interactions that influence salt perception and provide a basis to develop higher flavor quality low-sodium food products.

  9. Water Uptake by Mars Salt Analogs: An Investigation of Stable Aqueous Solutions Using Raman Microscopy

    NASA Astrophysics Data System (ADS)

    Nuding, Danielle L.

    Liquid water processes that may occur on the surface and near-subsurface of Mars have important implications for the present-day water cycle, habitability, and planetary protection policies. The presence of salts on Mars plays a role in surface-atmosphere interactions as salts enhance the soil's ability to retain water. This thesis explores the phase transitions of water upon interaction with Mars relevant salt analogs. Water uptake and loss properties of a single and complex Mars analog are examined using a Raman microscope equipped with an environmental cell. The effect of the hygroscopic salts on bacterial spores was evaluated with a focus on potential terrestrial contamination on outbound spacecraft and its influence on planetary protection concerns. Calcium perchlorate (Ca(ClO4)2) is a highly deliquescent salt that may exist on the surface of present-day Mars. Here, we quantify the deliquescent relative humidity (DRH) and efflorescent relative humidity (ERH) of Ca(ClO4)2 as a function of temperature (223 K to 273 K) to elucidate its behavior on the surface of Mars. Mars relevant temperature and relative humidity (RH) conditions were simulated and deliquescence (solid to aqueous) and efflorescence (aqueous to solid) phase transitions of Ca(ClO4)2 were characterized. Experimental DRH values were compared to a thermodynamic model for three hydration states of Ca(ClO 4)2. Calcium perchlorate was found to supersaturate, with lower ERH values than DRH values. Additionally, we conducted a 17-hour experiment to simulate a subsurface relative humidity and temperature diurnal cycle. This demonstrated that aqueous Ca(ClO4)2 solutions can persist without efflorescing for the majority of a martian sol, up to 17 hours under Mars temperature heating rates and RH conditions. Applying these experimental results to martian surface and subsurface heat and mass transfer models, we find that aqueous Ca(ClO4)2 solutions could persist for most of the martian sol under present

  10. [Genotoxic effects of heavy metals and their salts in an experiment on Drosophila and mammals].

    PubMed

    Chopikashvili, L V; Bobyleva, L A; Zolotareva, G N

    1989-01-01

    Analysis of data on the influence of different metals (cadmium, cobalt, molybdenum) on the Drosophila melanogaster cells has revealed a considerable genotoxic effect of cadmium salts which manifests in the high percentage of cells elimination at the early stages of spermatogenesis--the premeiotic cells. The modifying effect of molybdenum in the combination with cadmium and molybdenum decreasing the percentage of the progeny fall may be induced by activation of the reparation systems. In the bone marrow cells of mice Cd ions modify cytogenetic effects of the AB preparation, intensifying its mutagenic activity in some cases.

  11. Electromyogram as a measure of heavy metal toxicity in fresh water and salt water mussels

    SciTech Connect

    Kidder, G.W. III |; McCoy, A.A. |

    1996-02-01

    The response of bivalves to heavy metals and other toxins has usually been determined by observing valve position. Since mussels close their valves to avoid noxious stimuli, experimental delivery of chemicals ins uncertain. To obtain constant results plastic spacers can be employed to hold the valves apart. This obviates valve position as an index of response and some other method is required. Electromyography of intact mussels is one such index, giving a simple, effective, and quantitative measurement of activity. Experiments are reported in this article on the effects of added mercury on salt water and fresh water species.

  12. Heavy metal contents of refined and unrefined table salts from Turkey, Egypt and Greece.

    PubMed

    Soylak, Mustafa; Peker, Dondu Serpil Kacar; Turkoglu, Orhan

    2008-08-01

    Trace metal contents of 28 of refined and unrefined table salt samples from Turkey, Egypt and Greece have been determined by flame atomic absorption spectrometry after coprecipitation by dysprosium(III) hydroxide. Copper, nickel, cobalt, manganese, lead and cadmium levels were found in the range of 0.17-0.47, 0.16-1.57, 0.22-0.48, 0.26-4.68, 0.50-1.64 and 0.14-0.30 microg g(-1), respectively. The results found in the presented work were compared with literature values.

  13. Caprylate Salts Based on Amines as Volatile Corrosion Inhibitors for Metallic Zinc: Theoretical and Experimental Studies

    PubMed Central

    Valente, Marco A. G.; Teixeira, Deiver A.; Azevedo, David L.; Feliciano, Gustavo T.; Benedetti, Assis V.; Fugivara, Cecílio S.

    2017-01-01

    The interaction of volatile corrosion inhibitors (VCI), caprylate salt derivatives from amines, with zinc metallic surfaces is assessed by density functional theory (DFT) computer simulations, electrochemical impedance (EIS) measurements and humid chamber tests. The results obtained by the different methods were compared, and linear correlations were obtained between theoretical and experimental data. The correlations between experimental and theoretical results showed that the molecular size is the determining factor in the inhibition efficiency. The models used and experimental results indicated that dicyclohexylamine caprylate is the most efficient inhibitor. PMID:28620602

  14. Electrochemical response of metal complexes in homogeneous solution under photoirradiation

    NASA Astrophysics Data System (ADS)

    Fukatsu, Arisa; Kondo, Mio; Okamura, Masaya; Yoshida, Masaki; Masaoka, Shigeyuki

    2014-06-01

    The electrochemical detection of metal complexes in the photoexcited state is important for understanding photoinduced electron transfer (PET) processes, which play a central role in photo-energy conversion systems. In general, however, the redox potentials of excited states have been indirectly estimated by a combination of spectroscopic properties and ground-state redox potentials. To establish a simple method for directly determining the redox potentials of the photoexcited states of metal complexes, electrochemical measurements under several conditions were performed. The electrochemical response was largely influenced not only by the generation of photoexcited molecules but also by the convection induced by photoirradiation, even when the global temperature of the sample solution was unchanged. The suppression of these unfavourable electrochemical responses was successfully achieved by adopting well-established electrochemical techniques. Furthermore, as an initial demonstration, the photoexcited state of a Ru-based metal complex was directly detected, and its redox potential was determined using a thin layer electrochemical method.

  15. The Analysis of Metal Finishing Solutions by Ion Chromatography

    DTIC Science & Technology

    1987-08-01

    traditional chemical methods now in use. This report describes procedures for the analysis of solutions for chromium plating, acid finishing, metal...samples and standards must have similar acid -base characteristics. These methods are an improvement to standard methods now in practice and have been...CITED ............................... 195 iv LIST OF TABLES Page Table 1. Ionization Constants of Acids (12) . 29 Table 2. Common Anion Eluents

  16. Silica Polymerization from Supersaturated Dilute Aqueous Solutions in the Presence of Alkaline Earth Salts.

    PubMed

    Kley, M; Kempter, A; Boyko, V; Huber, K

    2017-06-20

    The early stages of silica polymerization in aqueous solution proceed according to a mechanism based on three steps: nucleation, particle growth, and agglomeration of the particles. Application of time-resolved static and dynamic light scattering as a powerful in situ technique in combination with spectrophotometric analysis of the monomer consumption based on the molybdenum blue method was carried out to further investigate this 3-step process. Experiments were carried out at four different initial silicic acid contents covering a range between 350 and 750 ppm in the presence of either 10 mM NaCl or 5 mM of a mixture of CaCl2 and MgCl2. The process in all cases was initiated with a drop of pH to 7. Addition of the salts made possible an analysis of the impact of an electrolyte on the process. Independent of the presence or absence of salt, particle growth in step two proceeded as a monomer-addition process without being interfered significantly by Ostwald-ripening. The growing particles were compact with a homogeneous density. The size of the particles approached final values between 5 and 20 nm with the actual value increasing with decreasing initial silicic acid content. Above a certain concentration of initial silica content, which depends on the level of added salt, particle-particle interactions caused agglomeration. The presence of electrolyte shifted this level from ∼2000 ppm to a range between 500 and 750 ppm. The resulting agglomerates had a fractal dimension of 2. Independent of the conditions, particle growth could be described with a simple nucleation and growth model.

  17. Hydrology of the Bonneville Salt Flats, northwestern Utah, and simulation of ground-water flow and solute transport in the shallow-brine aquifer

    USGS Publications Warehouse

    Mason, James L.; Kipp, Kenneth L.

    1998-01-01

    This report describes the hydrologic system of the Bonneville Salt Flats with emphasis on the mechanisms of solute transport. Variable-density, three-dimensional computer simulations of the near-surface part of the ground-water system were done to quantify both the transport of salt dissolved in subsurface brine that leaves the salt-crust area and the salt dissolved and precipitated on the land surface. The study was designed to define the hydrology of the brine ground-water system and the natural and anthropogenic processes causing salt loss, and where feasible, to quantify these processes. Specific areas of study include the transport of salt in solution by ground-water flow and the transport of salt in solution by wind-driven ponds and the subsequent salt precipitation on the surface of the playa upon evaporation or seepage into the subsurface. In addition, hydraulic and chemical changes in the hydrologic system since previous studies were documented.

  18. Heavy metal removal from aqueous solutions by activated phosphate rock.

    PubMed

    Elouear, Z; Bouzid, J; Boujelben, N; Feki, M; Jamoussi, F; Montiel, A

    2008-08-15

    The use of natural adsorbent such as phosphate rock to replace expensive imported synthetic adsorbent is particularly appropriate for developing countries such as Tunisia. In this study, the removal characteristics of lead, cadmium, copper and zinc ions from aqueous solution by activated phosphate rock were investigated under various operating variables like contact time, solution pH, initial metal concentration and temperature. The kinetic and the sorption process of these metal ions were compared for phosphate rock (PR) and activated phosphate rock (APR). To accomplish this objective we have: (a) characterized both (PR) and (APR) using different techniques (XRD, IR) and analyses (EDAX, BET-N(2)); and, (b) qualified and quantified the interaction of Pb(2+), Cd(2+), Cu(2+) and Zn(2+) with these sorbents through batch experiments. Initial uptake of these metal ions increases with time up to 1h for (PR) and 2h for (APR), after then, it reaches equilibrium. The maximum sorption obtained for (PR) and (APR) is between pH 2 and 3 for Pb(2+) and 4 and 6 for Cd(2+), Cu(2+) and Zn(2+). The effect of temperature has been carried out at 10, 20 and 40 degrees C. The data obtained from sorption isotherms of metal ions at different temperatures fit to linear form of Langmuir sorption equation. The heat of sorption (DeltaH degrees), free energy (DeltaG degrees) and change in entropy (DeltaS degrees) were calculated. They show that sorption of Pb(2+), Cd(2+), Cu(2+) and Zn(2+) on (PR) and (APR) an endothermic process. These findings are significant for future using of (APR) for the removal of heavy metal ions from wastewater under realistic competitive conditions in terms of initial heavy metals, concentrations and pH.

  19. Lysozyme-lysozyme and lysozyme-salt interactions in the aqueous saline solution: a new square-well potential.

    PubMed

    Chang, Bong Ho; Bae, Young Chan

    2003-01-01

    We investigate lysozyme-lysozyme and lysozyme-salt interactions in electrolyte solutions using a molecular-thermodynamic model. An equation of state based on the statistical mechanical perturbation theory is applied to describe the interactions. The perturbation term includes a new square-well potential of mean force, which implies the information about the lysozyme surface and salt type. The attractive energy of the potential of mean force is correlated with experimental cloud-point temperatures of lysozyme in various solution conditions. The same attractive energy is used to predict osmotic pressure of a given system with no additional parameters. The new potential shows a satisfactory improvement in understanding the interactions between lysozymes in aqueous salt solutions.

  20. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution.

    PubMed

    Nam, Joo-Youn; Cusick, Roland D; Kim, Younggy; Logan, Bruce E

    2012-05-01

    Hydrogen gas can be electrochemically produced in microbial reverse-electrodialysis electrolysis cells (MRECs) using current derived from organic matter and salinity-gradient energy such as river water and seawater solutions. Here, it is shown that ammonium bicarbonate salts, which can be regenerated using low-temperature waste heat, can also produce sufficient voltage for hydrogen gas generation in an MREC. The maximum hydrogen production rate was 1.6 m(3) H(2)/m(3)·d, with a hydrogen yield of 3.4 mol H(2)/mol acetate at a salinity ratio of infinite. Energy recovery was 10% based on total energy applied with an energy efficiency of 22% based on the consumed energy in the reactor. The cathode overpotential was dependent on the catholyte (sodium bicarbonate) concentration, but not the salinity ratio, indicating high catholyte conductivity was essential for maximizing hydrogen production rates. The direction of the HC and LC flows (co- or counter-current) did not affect performance in terms of hydrogen gas volume, production rates, or stack voltages. These results show that the MREC can be successfully operated using ammonium bicarbonate salts that can be regenerated using conventional distillation technologies and waste heat making the MREC a useful method for hydrogen gas production from wastes.